
22
Random-effects Models with Serial
Correlation

22.1 Introduction

In the previous chapter, we presented a random-effects based probit model
and applied pseudo-likelihood ideas for parameter estimation. The model
was generated from a multivariate normally distributed latent variable.
This means that the latent variable follows a linear mixed model. An ob-
vious extension is the inclusion of serial correlation, or autocorrelation, as
can be done for the standard linear mixed-effects model. The extension
proposed by Renard, Molenberghs, and Geys (2004) is the basis for this
chapter. The model presented in Section 21.3 exhibits residual correlation
between the surrogate and true endpoints on the same subject, in addition
to the correlation induced by the random effects. The approach formulated
in this chapter can be seen as a general version of this.

Barbosa and Goldstein (2000) propose to extend the standard multi-
level model for binary outcomes, and hence the standard generalized linear
mixed model, by allowing the residuals at the individual level to be corre-
lated. These authors wrote the covariance between residuals for individual
i at occasions j and k as√

πij(1 − πij)πik(1 − πik)f(|tij − tik|),

where the conditional mean, given random effects bi, πij = E(yij |bi) is
modeled as usual and f(u) is a function of u, the time lag between measure-
ment times tij and tik, i.e., |tij − tik|. For example, Barbosa and Goldstein
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(2000) proposed the form:

f(u) = α + exp[−κ(u)], (22.1)

for some function κ of the time lag, and they used the PQL algorithm to
estimate parameters. In what follows, we will propose different parametric
shapes for autocorrelation functions. A drawback of this approach, common
with other PQL applications, especially with binary data, is the severe bias
that can result. Also, the correction described above is ad hoc and falls
outside the likelihood framework.

We first propose a full probabilistic model, starting from a general probit
model, based on an underlying latent linear mixed model with serial cor-
relation. The model is proposed in Section 22.2. Full likelihood estimation
of this model is computationally demanding, however, and we therefore
propose to use pairwise likelihood for estimation purposes in Section 22.3,
building on the methodology presented in Chapter 21. In Section 22.4, a
generalized linear mixed models augmented with autocorrelation is pre-
sented. The psychiatric study, analyzed before in Section 21.4, will be ana-
lyzed again in Section 22.5, using both autocorrelation methods. Whereas
the analysis in Section 21.4 considered the specific context of surrogate
marker evaluation, here we focus on the CGI outcome only. In Section 22.6,
SAS code to fit the random-effects multivariate probit model, with or with-
out serial correlation, as well as the generalized linear mixed model with
serial correlation, is presented.

22.2 A Multilevel Probit Model with
Autocorrelation

The model we propose for repeated binary data extends model (21.2), i.e.,
it extends the standard hierarchical or multilevel probit model. It is related
to the model discussed in Heagerty and Lele (1998), which deals with binary
spatial data. We will focus on a two-level hierarchy, or two-level model with,
using multilevel terminology, subjects at the second level and measurements
within subjects at the first level.

As in Section 21.2, we will introduce the model from a latent variable
perspective. As usual, let Y i = (Yi1, . . . , Yini)

′ denote the vector of binary
measurements on subject i (i = 1, . . . N). We posit the existence of an
unobserved continuous variable Ỹij and assume that the observed binary
response is obtained by dichotomizing Ỹij based on a certain threshold or
cut-off value. This threshold can be chosen to be 0 without loss of generality,
provided an intercept term is included in the model. In other words, it is
assumed that a positive response, Yij = 1, is recorded if Ỹij > 0 and a
negative response (Yij = 0) otherwise. On the latent variable scale the
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model, generalizing (21.2), can be written as:

Ỹij = x′
ijβ + z′

ijbi + ε̃ij . (22.2)

The standard multilevel probit model is obtained by assuming that the
random effects bi and residual error terms ε̃ij are normally distributed. An
additional assumption is that of conditional independence among responses,
that is, conditionally on bi, the Ỹij ’s are independent. This implies that bi ∼
N(0, D) and, for reasons of identification, that Ỹij ∼ N(0, 1). Whereas this
assumption was made in Chapter 21, we relax it here by assuming instead
that the Ỹij ’s are realizations from a stationary unit-variance Gaussian
process ε̃(t) with autocorrelation function

corr[ε̃(t), ε̃(t′)] = ρ(|t′ − t|), (22.3)

which is similar in spirit to (22.1). Indeed, following Goldstein, Healy, and
Rasbash (1994), we assume that ρ(u) = exp[−κ(u)], where κ(u) is a positive
increasing function, not necessarily linear. Obvious choices include

κ(u) = αu,

the exponential decay model,

κ(u) = αu2,

the Gaussian decay model, or, more generally,

κ(u) =
K∑

k=1

αkuk

for any (fractional) polynomial constrained to take on positive values on
[0, +∞[. As pointed out by Goldstein, Healy, and Rasbash (1994), a dif-
ficulty when κ(u) is a polynomial is that successive powers tend to be
highly correlated and this may cause estimation difficulties. Another pos-
sible choice is then to add an inverse polynomial term such as in

κ(u) = α1u + α2u
−1,

which avoids the high correlations associated with ordinary polynomial
functions. One could even consider fractional polynomials within the κ
function. Verbeke and Molenberghs (2000, Section 10.3) provide examples
of serial correlation functions with fractional polynomials. Another useful
extension is to make the parameters αk explicitly dependent on explanatory
variables. As to the choice of the κ function, Goldstein, Healy, and Rasbash
(1994) state that it should “contain as few parameters as necessary to
be flexible enough to describe real data. (. . . ) There seems to be little
substantive guidance on choice, and it is likely that different functional
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forms will be appropriate for different kinds of data.” Especially when
covariates are allowed in the autocorrelation function, options for κ(u) and
hence for ρ(u) in (22.3) are virtually unlimited.

As a result, Ỹ i is a normally distributed vector with variance-covariance
matrix Σi = R(ti) = Ri, since the variances are kept equal to unity, and for
reasons of model identification. The matrix R(ti) has its (j, k)th element
equal to ρ(|tij − tik|), where tij is the time at which the jth measurement
on subject i is made.

22.3 Parameter Estimation for the Multilevel
Probit Model

The log-likelihood for the observed (binary) data can be written

	 =
N∑

i=1

1∑
ai1,...,aini

=0

δai1,...,aini

× ln
∫

P (Yi1 = ai1, . . . , Yini = aini |bi)φ(bi)dbi, (22.4)

with

δai1,...,aini
=

{
1 if Yi1 = ai1, . . . , Yini = aini ,

0 otherwise.

Exactly as in Chapter 21, this expression entails the evaluation of multi-
variate normal probabilities. For instance, we have

P (Yi1 = 1, . . . , Yini = 1|bi)

= P (Ỹi1 > 0, . . . , Ỹini > 0|bi)

=
∫ ξi1

−∞
. . .

∫ ξini

−∞
φ[x1, . . . , xni

; R(ti)]dx1 . . . dxni
, (22.5)

where we define
ξij = x′

ijβ + z′
ijbi,

φ(x; R) denotes the standardized multivariate normal density function, in
the sense of having unit variances, with correlation matrix R.

As in Section 21.2, we propose the use of maximum pairwise likeli-
hood (PL) to overcome the computational burden of full likelihood. In this
case, we assemble all possible pairwise probabilities P (Yij = 	, Yik = m)
(	, k = 0, 1) within the ith unit. For the present model, these marginal bi-
variate probabilities can all be expressed in terms of univariate and bivari-
ate probits that are computationally inexpensive to evaluate. For instance,
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we have
P (Yij = 1, Yik = 1) = Φ2 (ξij , ξik; ρijk) , (22.6)

with

ξij =
x′

ijβ√
var(Ỹij)

(22.7)

and overall correlations, induced in part by the random-effects structure
and in part by the autocorrelation,

ρ̃ijk =
z′

ijDzik + ρ(|tij − tik|)√
1 + z′

ijDzij

√
1 + z′

ikDzik

, (22.8)

where D denotes the variance-covariance matrix of bi, the function Φ2
denotes the standard bivariate Gaussian distribution function, and var(Ỹij),
var(Ỹi′j) and ρii′j are obtained by selecting the appropriate 2×2 submatrix
of the (marginal) covariance matrix of Ỹ i,

Vi = ZiDZ ′
i + R(ti).

Parameter estimation and inference follows from the methodology de-
scribed in Section 21.2, built upon estimation and inferential tools laid out
in Sections 9.2 and 9.3. In particular, the sandwich estimation ought to be
used for precision estimation, and hypothesis testing can proceed using the
test statistics laid out in Section 9.3.

A SAS macro was written to implement the methodology in the case
of a model with random intercept and autocorrelation function ρ(u) =
exp(−αuk). The algorithm was implemented in SAS IML (SAS Institute
Inc. 1995) and maximization of the log PL performed using the NLPDD
(Double-Dogleg) optimization routine (SAS Institute Inc. 1995). This op-
timization procedure requires only function and gradient calls that are less
expensive to evaluate than second-order derivatives. To avoid constrained
optimization, a Cholesky decomposition for D was used and the parameter
α was log transformed. To estimate the covariance matrix of the PL esti-
mator by way of the sandwich estimator, it should be observed that (9.6)
requires only gradient calls, whereas (9.5) can be computed using numerical
second-order derivatives (e.g., by forward difference approximation).

Renard, Molenberghs, and Geys (2004) assessed the proposed method-
ology by means of a simulation study. Their simulations indicate that the
mean and dependence parameters are strongly biased with a small number
of subjects (N = 100). Increasing the number of measurements somewhat
reduces the extent of bias. With a medium number of subjects (N = 500),
parameters are still largely biased when the number of measurement occa-
sions is small (ni = 5) but the bias falls within more acceptable limits with
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an increased number of measurement occasions per subject. The autocorre-
lation parameter is noticeably biased, though. With a large number of sub-
jects (N = 1000), the bias for the mean parameters and the random-effect
variance parameter becomes small but for the autocorrelation parameter
it is still sizeable with datasets containing as many as N = 20, 000 ob-
servations. Regarding precision estimation, the estimated standard errors
somewhat overestimate the sampling variability, especially for the random-
effect variance. These authors also reported on various convergence prob-
lems. This is not surprising for complicated models of this nature. Already
for the general linear random-effects model, involving fixed effects, random
effects, and serial correlation, convergence can be very involved. Here, the
model additionally has a non-linear link structure and further binary data
carry way less information than continuous outcomes. Model fitting for
models this complex should therefore proceed with caution.

22.4 A Generalized Linear Mixed Model with
Autocorrelation

In Section 8.8, marginal models based on linearization were considered,
based on the concept of data approximation which later was employed
in Section 14.4. In the first case, dependence among repeated measures
is introduced by means of a residual covariance matrix, Σi in (8.36). In
the second case, random effects are introduced. In both cases, the SAS
procedure GLIMMIX could be used for parameter estimation, using PQL
or MQL approximation.

The basis for this model development is the decomposition, in line with
(14.6):

Y i = µi + εi, (22.9)

where µi is specified by means of a GLMM and εi is the residual error
structure. In a standard GLMM, εi is assumed to be uncorrelated and
hence does not lead to additional parameters, as the variances follow from
the mean-variance link. In the linearization based method of Section 8.8, µi

does not contain random effects, but εi is assumed to be correlated. One can
choose an autocorrelation model to determine the variance of εi in (22.9),
i.e., the matrix Σi in (8.36). Obvious choices include spatial exponential or
spatial Gaussian models, an AR(1) structure if measurements are equally
spaced, or any autocorrelation structure described in Section 22.2.

Combining both ideas produces a generalized linear mixed model with
autocorrelation, just as the model in Section 22.2. The main difference is
that (22.2) specifies a linear mixed model with autocorrelation in terms
of the latent outcome underlying the multivariate probit model, whereas
here the random effects are introduced at the level of the linear predictor
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TABLE 22.1. Meta-analysis in Schizophrenia. Maximum pseudo-likelihood para-
meter estimates (standard errors) for the probit random-intercept model with and
without autocorrelation. The exponential and Gaussian models were taken for the
autocorrelation structure. Coding for ‘Treat’: 0 = standard, 1 = experimental.

Random intercept
Random + autocorrelation

Effect intercept Expon. Gaussian
Intercept -0.27 (0.16) -0.18 (0.12) -0.22 (0.14)
Week 1 -1.88 (0.18) -1.34 (0.20) -1.62 (0.17)
Week 2 -1.17 (0.17) -0.88 (0.16) -1.08 (0.15)
Week 4 -0.70 (0.16) -0.52 (0.13) -0.62 (0.15)
Week 6 -0.21 (0.14) -0.16 (0.11) -0.18 (0.13)
Treat×Week 1 0.29 (0.21) 0.19 (0.15) 0.23 (0.18)
Treat×Week 2 0.58 (0.21) 0.43 (0.16) 0.52 (0.18)
Treat×Week 4 0.54 (0.21) 0.39 (0.16) 0.47 (0.19)
Treat×Week 6 0.33 (0.22) 0.24 (0.16) 0.29 (0.19)
Treat×Week 8 0.20 (0.22) 0.14 (0.17) 0.17 (0.20)
R.I. s.d. τ 1.83 (0.11) 1.12 (0.23) 1.53 (0.12)
R.I. var. τ2 3.53 (0.40) 1.25 (0.52) 2.34 (0.37)
Autocorr. par. lnφ -1.34 (0.33) -1.21 (0.17)
Autocorr. ρ = ρ(u = 1) 0.27 (0.03) 0.26 (0.02)
log PL -1727.0 -1722.2 -1726.3

describing µi after application of the link function, whereas the autocorre-
lation structure is introduced at the level of εi. In other words, whereas the
random effects and autocorrelation structures sit ‘side by side’ in (22.2),
this is not the case here. To illustrate this, consider a logit-based model
with autocorrelation function:

Y i =
eXiβ+Zibi

1 + eXiβ+Zibi

+ εi (22.10)

where εi is assumed to exhibit residual correlation, entering the covariance
expression as in (20.48). Both structures enter the pseudo data as in (14.7)
and it may appear that then the random effects and the residual error are
side by side. However, the residual error of the pseudo data (14.7) is now
a transformed version of the original error εi.
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TABLE 22.2. Meta-analysis in Schizophrenia. PQL parameter estimates
(model-based standard errors) for a linearization-based marginal model with
autoregressive autocorrelation structure, random-intercept model, and ran-
dom-intercept model with autoregressive autocorrelation structure. Logit link. Es-
timates obtained using the SAS procedure GLIMMIX. Coding for ‘Treat’: 0 =
standard, 1 = experimental.

Auto- Random R.I. +
Effect correlation intercept Autocorr.
Intercept -0.22 (0.13) -0.15 (0.20) -0.13 (0.19)
Week 1 -1.58 (0.18) -2.33 (0.24) -2.89 (0.21)
Week 2 -0.95 (0.16) -1.42 (0.23) -1.80 (0.20)
Week 4 -0.54 (0.15) -0.86 (0.22) -1.12 (0.19)
Week 6 -0.15 (0.13) -0.28 (0.22) -0.37 (0.18)
Treat×Week 1 0.30 (0.20) 0.28 (0.27) 0.22 (0.27)
Treat×Week 2 0.51 (0.16) 0.63 (0.25) 0.76 (0.25)
Treat×Week 4 0.44 (0.16) 0.59 (0.25) 0.76 (0.25)
Treat×Week 6 0.26 (0.17) 0.37 (0.26) 0.48 (0.26)
Treat×Week 8 0.17 (0.18) 0.21 (0.28) 0.28 (0.28)
R.I. var. τ2 3.54 (0.30) 5.92 (0.49)
Autocorr. par. θ 3.00 (0.14) 0.77 (0.10)
Autocorr. ρ = ρ(u = 1) 0.72 (0.01) 0.27 (0.04)
Autocorr. var. σ2 1.02 (0.03) 0.55 (0.02)

22.5 A Meta-analysis of Trials in Schizophrenic
Subjects

We consider the same meta-analysis based on five trials as in Section 21.4,
and focus on the CGI (‘Clinician’s Global Impression’) outcome. This is
somewhat different from Section 21.4, where PANSS and CGI were ana-
lyzed jointly, in the context of surrogate marker evaluation. More specifi-
cally, the CGI overall change versus baseline is considered. Dichotomization
was obtained by defining a success (Yij = 1) as clinical improvement since
baseline (i.e., CGI grade equal to 1 or 2) and a failure otherwise.

We will first consider the multilevel probit models of Section 22.2 and
then turn to generalized linear mixed models with serial correlation in
Section 22.4.

The parameterization includes a saturated treatment by time model for
the mean structure and include a random intercept in the model. For the
autocorrelation structure, we assumed that κ(u) = αuγ and tried several
values of γ = −1, 0.5, 1, 2. The exponential model (γ = 1) provided the
best fit in terms of (pseudo-)likelihood value at maximum. Both γ = 1 and
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γ = 2 are reported in Table 22.1. We also fitted a model with

κ(u) = α1u + α2u
−1,

but a boundary solution was obtained.
The parameter α was rewritten as α = exp(φ). This implies that the

overall autocorrelation function, for γ = 1, is

ρ(u) = exp[−κ(u)] = exp[− exp(φ)u], (22.11)

and hence the correlation between, for example, two measurements one
time unit apart is

ρ = ρ(1) = exp[−κ(1)] = exp[− exp(φ)]. (22.12)

In Table 22.1, parameter estimates and standard errors are reported for
the random-intercept model with and without exponential autocorrelation
structure. Apart from the autocorrelation parameter φ, we also present
ρ as in (22.12), for ease of reference and interpretation. As can be seen,
parameter estimates for the model with exponential autocorrelation are all
reduced in magnitude by an amount of roughly 30%. This is essentially due
to the fact that the error terms in (22.2) are assumed to be autocorrelated;
hence the autocorrelation explains a certain amount of variability that is
otherwise captured in the residual variance. This residual variance itself
depends on the regression parameters, which is why they are affected by
such a change. The log PL value shows an improvement in the fit of the
model. Formal testing needs to be done based on the method laid out in
Section 9.3. As stated earlier, Gaussian autocorrelation fits the data less
well than exponential autocorrelation. This also explains why the regression
parameters in the Gaussian decay case change less.

Let us now switch to the generalized linear mixed models with autocor-
relation. The autocorrelation function can be modeled using model (22.11).
However, we will use a slightly reparameterized form, in agreement with
the parameterization used by SAS, for convenience:

ρ(u) = exp
(

−1
θ
uγ

)
and thus the correlation between two measurements one time unit apart is:

ρ = ρ(1) = exp
(

−1
θ

)
. (22.13)

Table 22.2 presents three models, with the same fixed-effects structure as
in Table 22.1. Apart from the autocorrelation parameter θ, we also present
the correlation ρ as in (22.13).

The first model exhibits an exponential autocorrelation structure only,
and no random effects. The second model is the random-intercepts model,
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and the third model combines both features. Observe that the correlation
parameter ρ for the latter model is very similar to the one obtained in
Table 22.1, which is not surprising. Fixed-effects parameter estimates are
different, due to two causes. First, we use the logit link in Table 22.2 versus
the probit link in Table 22.1. Second, PQL estimation in the GLMM case
is known to lead to parameter attenuation, as reported in several instances
(Tables 14.1 and 17.4).

To separate both issues, the same three models as in Table 22.2, but now
with probit link, are presented in Table 22.3. Now, compare the second
model in Table 22.3 to the first model in Table 22.1. Both are random-
intercepts models, without serial correlation and with probit link. The at-
tenuation in the PQL case is then clear, suggesting the use of integration
based methods (Section 14.3) for pure random-effects GLMM, or of the
pseudo-likelihood method when autocorrelation is additionally present. At
least, this comparison issues caution regarding the use of PQL for gener-
alized linear mixed models with autocorrelation, just as care is needed in
the absence of autocorrelation.

The fixed effects in the first columns of Tables 22.2 and 22.3 are somewhat
smaller than in the corresponding second and third columns. This is to
be expected since these models are marginal, whereas the other two are
random-effects based (Chapter 16). Recall the approximate relationship
between a random-intercepts model and the corresponding marginal model,
given by (16.3). In fact, the discrepancy is not as large as it could be, due
to the attenuation of the PQL based methods.

Another comparison is between the fixed-effects parameter estimates in
Table 22.3 and their counterparts in Table 22.2. This reveals, once more, the
relationship between probit based parameters and their logit counterparts,
the approximate conversion factor being π/

√
3, as explained in Section 3.4.

In both Tables 22.2 and 22.3, the autocorrelation in the first model is
considerably larger than in the third model. This is to be expected, as in
the third model a part of the autocorrelation is captured by the random
intercept, whereas all correlation is accounted for by the autocorrelation
process in the first model. In the first model in both tables, the autocorre-
lation variance σ2 plays the role of an overdispersion parameter, indicating
no evidence for overdispersion in this case. The same cannot be said for
the third models, as the variance is captured by both the random-intercept
variance and the serial variance, and the relationship between both is not
straightforward because non-linear, as is clear from the position of the ran-
dom effects versus the residual association in (22.10).
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TABLE 22.3. Meta-analysis in Schizophrenia. PQL parameter estimates
(model-based standard errors) for a linearization-based marginal model with
autoregressive autocorrelation structure, random-intercept model, and ran-
dom-intercept model with autoregressive autocorrelation structure. Probit link.
Estimates obtained using the SAS procedure GLIMMIX. Coding for ‘Treat’: 0
= standard, 1 = experimental.

Auto- Random R.I. +
Effect correlation intercept Autocorr.
Intercept -0.14 (0.08) -0.11 (0.11) -0.11 (0.11)
Week 1 -0.94 (0.11) -1.38 (0.14) -1.68 (0.12)
Week 2 -0.58 (0.10) -0.84 (0.13) -1.05 (0.11)
Week 4 -0.34 (0.09) -0.51 (0.13) -0.66 (0.10)
Week 6 -0.10 (0.08) -0.16 (0.13) -0.21 (0.10)
Treat×Week 1 0.17 (0.11) 0.17 (0.16) 0.15 (0.15)
Treat×Week 2 0.30 (0.10) 0.38 (0.14) 0.44 (0.14)
Treat×Week 4 0.27 (0.10) 0.37 (0.14) 0.45 (0.14)
Treat×Week 6 0.17 (0.10) 0.23 (0.15) 0.28 (0.15)
Treat×Week 8 0.11 (0.11) 0.13 (0.16) 0.17 (0.16)
R.I. var. τ2 1.25 (0.10) 2.08 (0.15)
Autocorr. par. θ 3.00 (0.14) 0.75 (0.10)
Autocorr. ρ = ρ(u = 1) 0.72 (0.01) 0.26 (0.05)
Autocorr. var. σ2 1.02 (0.03) 0.51 (0.02)

22.6 SAS Code for Random-effects Models with
Autocorrelation

The method presented in Section 22.2 has been implemented, for the case
of a random-intercept probit model with autocorrelation, by Didier Renard
(Renard, Molenberghs, and Geys 2004) in a SAS macro, available from the
authors upon request. A call to the macro to fit the random-intercept only
model in Table 22.1 is:

%plrint_corr(dataset=cgi, y=cgi_bin, x=weekcls treat*weekcls,
classvar=weekcls, id=id, varinit=, weight=1,
info=0, scorrtim=, scorrinit=, scorrpow=);

Most of the arguments to the macro are self-evident and in agreement with
standard SAS statements. These include ‘y’ and ‘x’ for the response and
independent variables, respectively, ‘classvar’ for the independent variables
that need to be treated as class variables, and ‘id’ to indicate the levels
of independent replication. Pseudo-likelihood is requested by ‘weight=1,’
whereas ‘weight=0’ refers to full maximum likelihood. Convergence in gra-
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dient terms is governed by ‘conv,’ with a default value of 10−4, and ‘maxiter’
controls the maximum number of iterations, with a default value of 100. The
user can control whether the information matrix is calculated using first-
order derivatives (‘info=0’) or rather numerically calculatead second-order
derivatives (‘info=1’). An initial value for the random-intercept variance
can be passed on by way of ‘varinit.’ The remaining options control the au-
tocorrelation process. The time variable used in the autocorrelation process
is passed on through ‘scorrtim.’ If this argument is left empty, then no auto-
correlation is included and hence a standard random-intercept probit model
is obtained. The power p of the exponential process exp[−α(tij − tik)k] is
specified via ‘scorrpow,’ with a (default) value of 1 for exponential decay
and k = 2 for Gaussian decay. The parameter α can be initialized using
‘scorrinit.’

The use of these options implies that for the model with random intercept
and exponential autocorrelation, the call changes to:

%plrint_corr(dataset=cgi, y=cgi_bin, x=weekcls treat*weekcls,
classvar=weekcls, id=id, varinit=%str(1.117),
weight=1, info=0, scorrtim=weekcls,
scorrinit=%str(0.5), scorrpow=1);

Turning attention to the generalized linear mixed model with autocorre-
lation, the following code can be used:

proc glimmix data=m.cgi method=RSPL;
class id weekcls;
nloptions maxiter=50 technique=newrap absftol=1e-4;
model cgi_bin (event=’1’) = weekcls treat*weekcls

/ dist=binary link=probit solution;
random intercept / subject=id type=un;
random _residual_ / subject=id type=sp(exp)(timecls);

run;

The RANDOM statement with ‘intercept’ argument produces the random
intercept model, whereas the serial process is invoked by means of the RAN-
DOM statement with ‘ residual ’ argument. The ‘type=sp(exp)’ requests
exponential decay. Removing the first RANDOM statement produces a
marginal model with autocorrelation process only. Removing the second
one yields the classical random-intercept model. Removing the ‘link=probit’
option from the MODEL statement yields the logit link equivalents to these
models. Since convergence can be challenging, it might be necessary to try
several NLOPTIONS arguments to control updating, convergence criteria,
etc. In our case, it has been necessary to switch the updating algorithm
to Newton-Rahpson with the ‘technique=newrap’ option because quasi-
Newton methods tend to get trapped in an infinite cycling between two
or more values. Moreover, the number of iterations needs to be increased
since for some analyses the default number of 20 was exceeded. Finally, the
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convergence criterion was relaxed, either in terms of the function itself, us-
ing the ‘absftol=’ option, or in terms of the gradient, using the ‘absgtol=’
option.

22.7 Concluding Remarks

We have presented two approaches to deal with hierarchical generalized
linear models, with both random effects and serial correlations. The first
one is based on a probit model, overlaying a linear mixed model. The second
one is based on the generalized linear mixed model framework, where the
residual error terms are allowed to be correlated.

Both approaches have advantages and disadvantages. The hierarchical
probit model is simple and appealing because the various effects enter the
latent variable in a way very similar to the linear mixed model. On the
other hand, the approach is restricted to a probit specification. Even though
extensions could start from other fully specified marginal models, the prop-
erties and simplicity of an underlying multivariate normal are important
factors rendering the probit specification unique. Although this seems to
imply a restriction to binary data at the same time, the multilevel probit
approach could in fact be applied to ordinal data, as in Section 7.6. Pseudo-
likelihood provides a convenient estimation method. Renard, Molenberghs,
and Geys (2004) reported good computational properties, but a loss in
efficiency. A large sample size might be necessary for the asymptotic prop-
erties of the PL estimator to hold and the autocorrelation parameter may
be subject to substantial bias in samples of small to moderate size. Nev-
ertheless, in the analysis of our example, the autocorrelation parameter
was estimated very similarly between the multilevel probit model and the
GLMM-based approach.

Although the PL estimation procedure can, in principle, be applied to
hierarchies with more than two levels, practical limitations on the number
of levels will arise. For instance, in a three-level model all possible pairs
within and between level 2 units pertaining to the same level 3 unit should
be considered. This will become computationally prohibitive as the number
of levels and the number of replicates per level increase.

The GLMM-based approach is very general and applies to all link func-
tions. Nevertheless, because the random effects and the autocorrelation
structure enter at different places into the model, irrespective of whether
one consider the direct outcomes or the pseudo data derived from them,
the model is somewhat less transparant and, for example, calculation of
the overall variance or the overall correlation is far from straightforward.
Although PQL is convenient, it suffers from potentially severe attenuation
bias in the fixed efects parameter estimates, the estimates of the variance
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components, as well as in all standard errors. This phenomenon has been
reported before and switching from PQL to MQL would make things worse.

Finally, convergence difficulties should be anticipated to occur quite fre-
quently in applications, regardless of which of the two routes were chosen.
Even in linear mixed models, convergence failures are relatively common
when modeling of the covariance structure involves joint specification of
random effects, serial correlation, and measurement error, simply because
these components of variability cannot easily be disentangled. An exam-
ple in the context of the linear mixed model can be found in Verbeke and
Molenberghs (2000, Section 9.4). Not surprisingly, this phenomenon ampli-
fies with binary data, which contain less information than their continuous
counterparts.




