
19
The Epilepsy Data

19.1 Introduction

In this chapter, a marginal and a random-effects approach toward modelling
repeated counts will be illustrated based on the Epilepsy data, introduced
in Section 2.5. We will fit a marginal GEE model (Section 19.2) as well as
a generalized linear mixed model (Section 19.3), and we will extensively
compare the results in Section 19.4.

Throughout this chapter, Yij represents the number of epileptic seizures
patient i experiences during week j of the follow-up period. Further, as
before, let tij be the time-point at which Yij has been measured, tij =
1, 2, . . . until at most 27.

19.2 A Marginal GEE Analysis

We will first perform a GEE1 analysis (Section 8.2), assuming a marginal
Poisson model, with logarithmic natural link function, and with linear,
treatment-specific, time-effects. More specifically, it will be assumed that

Yij ∼ Poisson(λij),

log(λij) =
{

β0 + β1tij if placebo
β0 + β2tij if treated.

(19.1)

We assume a common intercept for both treatment groups in order to
incorporate our prior belief that, due to the randomization, there is no sys-
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TABLE 19.1. Epilepsy Study. Parameter estimates and standard errors (empir-
ically corrected; model-based) for the regression coefficients in Model (19.1), ob-
tained from a GEE1 analysis with AR(1) working correlation matrix.

Effect Parameter Estimate (s.e.)
Common intercept β0 1.3140 (0.1435; 0.1601)
Slope placebo β1 −0.0142 (0.0234; 0.0185)
Slope treatment β2 −0.0192 (0.0178; 0.0174)

tematic difference between both groups at the start of the study. Given the
high number of repeated measurements (up to 27), an unstructured working
correlation would require estimation of many correlation parameters. Fur-
ther, the long observation period makes the assumption of an exchangeable
correlation structure quite unrealistic. We therefore use the AR(1) working
correlation structure, which is meaningful because we have equally spaced
time points at which measurements have been taken.

Prior to the fitting of the model in (19.1), an extended model was fitted
including quadratic time-evolutions, but these turned out not to be signif-
icantly different from zero (p = 0.5239). Therefore, from now on, we will
restrict to models with linear time-effects. The analysis has been performed
using the SAS procedure GENMOD. Without going into any more detail,
the SAS program used for the GEE analysis for Model (19.1) is given by

proc genmod data=test;
class id timeclss trt;
model nseizw = trt*time / dist=poisson;
repeated subject=id / withinsubject=timeclss

type=AR(1) corrw modelse;
estimate ’diff slopes’ trt*time 1 -1 ;
run;

and we refer to Section 10.3 for more details on fitting GEE models within
the SAS system.

The results of the analysis are shown in Table 19.1. The auto-correlation
coefficient has been estimated as 0.5963, i.e., two measurements from the
same subject one week apart have correlation equal to 0.5963. For measure-
ments two weeks apart, the correlation is estimated to be 0.59632 = 0.3556,
and so on. Note that the small differences between the model-based and
the empirically corrected standard errors do not lead to different conclu-
sions with respect to hypothesis testing. None of the average time effects
is significantly different from zero (empirically corrected p-values equal to
0.5429 and 0.2795 for the placebo and the treated group, respectively), nor
are they significantly different from each other (p = 0.8721, obtained by the
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FIGURE 19.1. Epilepsy Study. Treatment-arm specific evolutions. (a) Marginal
evolutions as obtained from a marginal (GEE) model, (b) marginal evolutions
as obtained from integrating out a GLMM, and (c) evolutions for an “average”
subject from a GLMM, i.e., with bi = 0.
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ESTIMATE statement in the above program). Finally, the fitted average
evolutions are shown in panel (a) of Figure 19.1.

19.3 A Generalized Linear Mixed Model

An alternative analysis could be based on a random-effects approach to-
wards modeling the association structure. We then assume that, condi-
tionally on random effects, the Yij are independent Poisson distributed
random variables. As before, a logarithmic link function is used, with lin-
ear, treatment-specific, time trends. As random effects, we include random
intercepts as well as random time effects. More specific, the model is given
by

Yij |bi ∼ Poisson(λij),

log(λij) =
{

(β0 + bi1) + (β1 + bi2)tij if placebo
(β0 + bi1) + (β2 + bi2)tij if treated,

(19.2)

where the random effects bi = (bi1, bi2)′ are assumed to be normally dis-
tributed with mean vector 0 and 2 × 2 covariance matrix D. As in the
marginal model, we assume the same fixed intercept for the two groups.
This reflects our prior belief that, due to the randomization, the initial
values are equally distributed in both treatment groups.

The analysis has been performed using the SAS procedures GLIMMIX
and NLMIXED. First, PQL and MQL have been applied, with REML
estimation for the linear mixed models for the pseudo data (Section 15.2).
Afterwards, we used adaptive Gaussian quadrature with 1 and with 10
quadrature points. Note that the adaptive Gaussian quadrature with one
quadrature point is equivalent to applying the Laplace approximation to
the integrals in the marginal likelihood function (Section 14.5.2).

The SAS programs are given by

proc glimmix data=test method=RSPL;
class id trt;
model nseizw = trt*time / dist=poisson solution;
random intercept time / type=UNR subject=id;
estimate ’diff slopes’ trt*time 1 -1;
run;

proc nlmixed data=test qpoints=1;
parms beta0=1 beta1=-0.1 beta2=-0.1

d11=1 rho=0 d22=0.1;
if (trt = 0) then eta = beta0 + b1

+ beta1*time + b2*time;
else if (trt = 1) then eta = beta0 + b1
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TABLE 19.2. Epilepsy Study. Parameter estimates and standard errors for the
regression coefficients in Model (19.2), obtained from an MQL and PQL analysis,
from an analysis based on the Laplace approximation, and from an analysis based
on adaptive Gaussian quadrature with 10 quadrature points (QUAD).

MQL PQL
Effect Parameter Estimate (s.e.) Estimate (s.e.)
Common intercept β0 1.3525 (0.1492) 0.8079 (0.1261)
Slope placebo β1 −0.0180 (0.0144) −0.0242 (0.0094)
Slope treatment β2 −0.0151 (0.0144) −0.0191 (0.0094)
Variance of intercepts d11 1.9017 (0.2986) 1.2510 (0.2155)
Variance of slopes d22 0.0084 (0.0014) 0.0024 (0.0006)
Correlation rand.eff. ρ −0.3268 (0.1039) −0.3394 (0.1294)

Laplace QUAD
Effect Parameter Estimate (s.e.) Estimate (s.e.)
Common intercept β0 0.7740 (0.1291) 0.7739 (0.1293)
Slope placebo β1 −0.0244 (0.0096) −0.0245 (0.0096)
Slope treatment β2 −0.0193 (0.0096) −0.0193 (0.0097)
Variance of intercepts d11 1.2814 (0.2220) 1.2859 (0.2231)
Variance of slopes d22 0.0024 (0.0006) 0.0024 (0.0006)
Correlation rand.eff. ρ −0.3347 (0.1317) −0.3349 (0.1318)

+ beta2*time + b2*time;
lambda = exp(eta);
model nseizw ˜ poisson(lambda);
random b1 b2 ˜ normal([0, 0],

[d11, rho*sqrt(d11)*sqrt(d22), d22])
subject = id;

estimate ’diff slopes’ beta1-beta2;
run;

We refer to the Sections 15.2 and 15.4 for more details on the SAS pro-
cedures GLIMMIX and NLMIXED, respectively.

The results of our analyses are summarized in Table 19.2. We find sub-
stantial differences between the MQL and PQL methods. For example, the
difference in estimates for the intercepts equals 1.3525 − 0.8079 = 0.5785,
which is large when compared to the estimated standard errors. A similar
remark holds for the random-intercepts variance d11. Note also the sim-
ilarity of the fixed-effects estimates obtained from the MQL method and
those reported in Table 19.1, obtained from fitting a marginal GEE method.
This phenomenon was already observed earlier in the context of the toe-
nail dataset (Section 16.4). Further, we find very little differences between
the results from the Laplace approximation and the results from the adap-
tive Gaussian quadrature with 10 quadrature points. Hence, in contrast
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FIGURE 19.2. Epilepsy Study. Sampled predicted profiles for 20 subjects in the
placebo group (thin lines), and the resulting marginal evolution obtained from
averaging over the 20 subjects (bold line).

to earlier examples, the number of quadrature points used in the adaptive
Gaussian quadrature approximation has negligable effect on the results. As
was indicated in Section 14.3, this will typically be the case in datasets with
many repeated measurements per subject, as in the present example. As
was also observed earlier (Section 16.4), the results obtained from the PQL
approach are closer to those obtained from adaptive Gaussian quadrature
than those resulting from the MQL approach. Finally, in contrast to our
earlier results based on the marginal GEE model, we now obtain slopes
that are significantly different from zero (all p-values smaller than 0.05),
unless under the MQL approach, but none of the four analyses revealed a
significant difference between the slopes β1 and β2 (all p-values larger than
0.6).

19.4 Marginalizing the Mixed Model

As explained in Chapter 16, the regression coefficients in (19.2) need to be
interpreted conditionally on the random effects bi, i.e., the parameters have
a subject-specific interpretation. In case the population-averaged, marginal,
evolutions are of interest, additional computations are needed. For example,
the marginal expectation of the outcome Yij , measured at time-point tij ,
in the placebo group, is given by

E[Yij ] = E[E[Yij |bi]]
= E [exp[(β0 + bi1) + (β1 + bi2)tij ]] (19.3)
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�= exp[β0 + β1tij ]

with an expression similar to (19.3) for the expected evolution in the treated
group. Calculation of (19.3) requires integrating out the random effects over
their fitted distribution. As explained in Section 16.3, this can be done
based on numerical integration techniques or based on numerical averag-
ing. Here, we will follow the latter procedure, with 1000 draws for each
treatment group.

As an example, let us consider the placebo group, and let the model be
fitted using adaptive Gaussian quadrature with 10 quadrature points. We
start by randomly drawing 1000 realized values for the random effects bi,
taken from a bivariate normal distribution with mean vector zero, and with
covariance matrix equal to the fitted random-effects covariance matrix (see
Table 19.2)

D =
(

1.2859 −0.0185
−0.0185 0.0024

)
.

The Cholesky decomposition of D, defined as the upper triangular matrix
L such that L′L = D, and needed in the SAS code for drawing the 1000
random vectors bi is given by

L =
(

1.1340 −0.0163
0 0.0462

)
.

For each of the 1000 realized random vectors bi, and for a fine grid of time
points t, the conditional expectation exp[(β0+bi1)+(β1+bi2)t] is calculated,
with the fixed effects β0 and β1 replaced by their fitted values 0.7739 and
−0.0245, respectively (see Table 19.2). An estimate for the unconditional
mean at a given point t in time is then obtained from averaging the 1000
conditional means, i.e.,

Ê[Y (t)] =
1

1000

1000∑
i=1

exp[(0.7739 + bi1) + (−0.0245 + bi2)t].

A graphical representation of the average evolution for the placebo group
is then obtained by plotting this estimate for a sufficiently fine grid of t-
values. A graphical representation of this procedure is given in Figure 19.2,
for 20 placebo subjects randomly drawn from the fitted model (rather than
the 1000 actually used in the calculations).

The SAS code needed for the implemenation of the above procedure is
given by:

data h;
do treat=0 to 1 by 1;

do subject=1 to 1000 by 1;
b1=rannor(-1);b2=rannor(-1);
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ranint=1.1340*b1; ranslope=-0.0163*b1 + 0.0462*b2;
do t=0 to 27 by 0.1;

if treat=0 then y=exp(0.7739+ranint
+(-0.0245+ranslope)*t);

else y=exp(0.7739+ranint +(-0.0193+ranslope)*t);
output;

end;
end;

end;

proc sort data=h;
by t treat;
run;

proc means data=h;
var y;
by t treat;
output out=out;
run;

proc gplot data=out;
plot y*t=treat / haxis=axis1 vaxis=axis2 legend=legend1;
axis1 label=(h=2.5 ’Time (weeks)’) value=(h=1.5)

order=(0 to 25 by 5) minor=none;
axis2 label=(h=2.5 A=90 ’E(Y)’) value=(h=1.5)

order=(0 to 6 by 1) minor=none;
legend1 label=(h=2 ’Treatment: ’)

value=(h=2 ’Placebo’ ’Treated’);
title h=3 ’Marginal average evolutions (GLMM)’;
symbol1 c=black i=join w=5 l=1 mode=include;
symbol2 c=black i=join w=5 l=2 mode=include;
where _stat_=’MEAN’;
run;

The result is shown in panel (b) of Figure 19.1. Note the difference be-
tween the estimated average profiles obtained from this generalized linear
mixed model and those obtained earlier from a marginal GEE analysis
[shown in panel (a) of the same figure]. First, the GLMM results show
clear curvature in the fitted average profiles and even suggest a small in-
crease in average number of epileptic seizures toward the end of the study.
This is completely absent in the GEE profiles. A possible explanation is
that the GEE model (19.1) restricts the fitted averages to be monotone
functions over time. The GLMM model can accomodate non-monotonicity,
through the random effects, even though the linear predictor in (19.2) is
linear in time. Further, the GEE approach slightly favors the treatment
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group, while the GLMM results tend to favor the placebo group (although
none of the differences where found to be statistically significant). A pos-
sible explanation can be found in the fact that, as has been explained in
Section 2.5, many patients leave the study after week 16. When those pa-
tients are compared to those who are still in the study at week 17, one can
observe that, in the placebo group, the worst patients continue, while the
opposite is true for the treated group. Hence, the two treatment groups are
different with respect to the type of subjects that continue past week 16.
As will be explained in Section 27.5, the GEE approach does not correct for
this which may yield possibly over-optimistic conclusions about the treated
group.

Finally, panel (c) in Figure 19.1 also shows the fitted evolution in both
treatment groups, for ‘average’ patients, i.e., patients with random-effects
values equal to zero. This again illustrates that the non-linearity of the
link function implies that the average evolution cannot be obtained from
setting the random effects in the generalized linear mixed model equal to
zero, which is in contrast to the linear mixed model (Chapter 4).




