
17
The Analgesic Trial

17.1 Introduction

Marginal models, fitted to the analgesic trial, introduced in Section 2.2,
more specifically to the binary ‘general satisfaction assessment’ outcome
(‘GSABIN,’ denoted by Yij), will be studied in Section 17.2. Section 17.3
describes subject-specific models fitted to the GSABIN outcome. A compar-
ison between both methods is offered in Section 17.4. Some key programs
are presented in Section 17.5. We should keep in mind that the actual out-
come, GSA, is measured on a five-point ordinal scale. Ordinal outcomes
is the topic of Chapter 18, and there also, a number of analyses of the
analgesic trial will be offered.

Another issue deserves mention at this point. As is to be expected in
patients with severe chronic pain, a good number drops out before the end
of the study. Unless the very strong assumption of missingness completely
at random (MCAR) is made, GEE is strictly speaking not valid in this
case. MCAR is violated as soon as the reason for missingness is outcome
related, even when the dependence is on observed outcomes. The missing
data concepts are outlined in Chapter 26. Ways to extend GEE to over-
come this problem are presented in Chapter 27, where these data will be
considered again.
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17.2 Marginal Analyses of the Analgesic Trial

The analgesic trial has been introduced in Section 2.2. The primary out-
come in this one-armed trial is ordinally scored global satisfaction as-
sessment (GSA). For the purpose of our analysis, we will consider a di-
chotomized version of (2.1):

GSABIN =

{
1 if GSA ≤ 3 (‘Very Good’ to ‘Moderate’),

0 otherwise.
(17.1)

Preliminary analyses have indicated that, among a set of potential covari-
ates, the linear and square effects of time tij , as well as the effect of baseline
pain control assessment (‘PCA0,’ denoted Xi) are of importance. The mar-
ginal regression model so obtained is

logit[P (Yij = 1|tij , Xi)] = β0 + β1tij + β2t
2
ij + β3Xi. (17.2)

Because there are four equally-spaced follow-up measurements, not only
independence and exchangeable, but also autoregressive and unstructured
working assumptions are consistent with the design of the study. Table 17.1
displays parameter estimates and standard errors for standard GEE (Sec-
tion 8.2) , under a variety of working assumptions. Table 17.2 presents the
results for alternating logistic regression (Section 8.6). Table 17.3 summa-
rizes analyses from Tables 17.1 and 17.2 that are based on exchangeable
working assumptions, and supplements them with the corresponding fits
obtained from ordinary logistic regression, Prentice’s method (Section 8.4)
and the linearization method (Section 8.8). It is clear from Table 17.1 that
all analyses agree closely in terms of parameter estimates and standard
errors. Even between the empirically corrected and model-based standard
errors, there is little difference. This may be due to the fact that the corre-
lation is relatively small. However, given the size of the dataset, it is likely
that the correlation is significantly different from zero. Exploring the cor-
relation in a little more detail, we find for the three non-trivial correlation
matrices:

REXCH =

⎛⎜⎜⎝
1 0.22 0.22 0.22

1 0.22 0.22
1 0.22

1

⎞⎟⎟⎠ ,

RAR =

⎛⎜⎜⎝
1 0.25 0.06 0.02

1 0.25 0.06
1 0.25

1

⎞⎟⎟⎠ ,
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TABLE 17.1. Analgesic Trial. Parameter estimates (model-based standard er-
rors; empirically corrected standard errors) for standard GEE under a variety of
working assumptions: IND (independence), EXCH (exchangeable), AR (autore-
gressive), UN (unstructured).

Effect Parameter IND EXCH
Intercept β1 2.80(0.49;0.47) 2.92(0.49;0.46)
Time β2 -0.79(0.39;0.34) -0.83(0.34;0.33)
Time2 β3 0.18(0.08;0.07) 0.18(0.07;0.07)
Basel. PCA β4 -0.21(0.09;0.10) -0.23(0.10;0.10)
Correlation ρ — 0.22

Effect Parameter AR UN
Intercept β1 2.94(0.49;0.47) 2.87(0.48;0.46)
Time β2 -0.90(0.35;0.33) -0.78(0.33;0.32)
Time2 β3 0.20(0.07;0.07) 0.17(0.07;0.07)
Basel. PCA β4 -0.22(0.10;0.10) -0.23(0.10;0.10)
Correlation ρ 0.25 —
Correlation (1,2) ρ12 0.18
Correlation (1,3) ρ13 0.25
Correlation (1,4) ρ14 0.20
Correlation (2,3) ρ23 0.18
Correlation (2,4) ρ24 0.18
Correlation (3,4) ρ34 0.46

and

RUN =

⎛⎜⎜⎝
1 0.18 0.25 0.20

1 0.18 0.18
1 0.46

1

⎞⎟⎟⎠ ,

with obvious notation. Inspecting RUN, it is clear that AR may be a work-
ing assumption, different from the true structure. EXCH looks more promis-
ing as a simplification to UN, even though it looks like ρ34 is higher than
the others, while the others might well be equal to one another. Two re-
marks are in place. First, the above reasoning is irrelevant for the validity
of GEE since the working assumptions are allowed to be incorrect, the
only aspect that might be jeopardized being efficiency. This is clearly not
the case in this analysis. Second, if one were interested in the correlation
structure as such, there is no means within the standard GEE framework
to make formal inferences about the correlation structure.

To overcome this, let us study the results for ALR in Table 17.2. Apart
from exchangeability, an unstructured odds ratio model is assumed (termed
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TABLE 17.2. Analgesic Trial. Parameter estimates and empirically corrected
standard errors for ALR under a variety of log odds ratio structure: EXCH (ex-
changeable), FULLCLUST (unstructured), and ZREP (a user-defined design).

Effect Parameter EXCH FULLCLUST ZREP
Intercept β1 2.98(0.46) 2.92(0.46) 2.92(0.46)
Time β2 -0.87(0.32) -0.80(0.32) -0.80(0.32)
Time2 β3 0.18(0.07) 0.17(0.06) 0.17(0.07)
Basel. PCA β4 -0.23(0.22) -0.24(0.10) -0.24(0.10)
Log OR α 1.43(0.22)
Log OR(1,2) α12 1.13(0.33)
Log OR(1,3) α13 1.56(0.39)
Log OR(1,4) α14 1.60(0.42)
Log OR(2,3) α23 1.19(0.37)
Log OR(2,4) α24 0.93(0.42)
Log OR(3,4) α34 2.44(0.48)
Log OR par. α0 1.26(0.23)
Log OR par. α1 1.17(0.47)

‘fullclust’ in the SAS procedure GENMOD). As stated earlier, the odds
ratios now have a standard error associated to them. It is clear that some
of our conjectures, based on the correlations in Table 17.1 are confirmed
straightaway. For example, the exchangeable log odds ratio is significantly
different from zero, and so are all the odds ratios in the unstructured model.
There is also a hint that α34 is different from the others, with all others
being equal. To confirm this, a formal test is necessary. An easy approach
is to consider a Wald test for the null hypothesis

H0 : α12 = α13 = α14 = α23 = α24.

A Wald test statistic for this null hypothesis would assume the form

W = (Cα)′(CV C ′)−1(Cα)′, (17.3)

where α = (α12, α13, α14, α23, α24, α34)′, C is an appropriate contrast ma-
trix:

C =

⎛⎜⎜⎝
1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 1 −1 0 0
0 0 0 1 −1 0

⎞⎟⎟⎠ , (17.4)

and V is the asymptotic covariance matrix of the log odds ratio parameters.
An estimate for the matrix V is given in the SAS output by way of the
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‘covb’ option in the REPEATED statement and equals:

V̂ =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

0.107 0.023 0.023 0.030 0.033 0.008
0.023 0.149 0.068 0.016 0.012 0.026
0.023 0.068 0.176 0.012 0.033 0.054
0.030 0.016 0.012 0.135 0.074 0.032
0.033 0.012 0.033 0.074 0.178 0.069
0.008 0.026 0.054 0.032 0.069 0.231

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (17.5)

Computing the Wald test statistic (17.3), using the estimated αj1j2 para-
meters, yields W = 2.04 (4 d.f., p = 0.7284). Hence, the first five log odds
ratio parameters can be considered equal. Given this, it is of interest to see
whether these common parameters differ from the remaining one, α34. A
convenient null hypothesis then is

H0 :
1
5

(α12 + α13 + α14 + α23 + α24) = α34.

A corresponding contrast matrix is

C = (1, 1, 1, 1, 1,−5). (17.6)

The corresponding Wald test statistic equals W = 6.35 (1 d.f., p = 0.0117)
and hence we can conclude that there is a pair of distinct odds ratios: a
common one for the first five, and then the sixth one. Should one test the
null hypothesis whether the exchangeable model is a tolerable simplifica-
tion of the unstructured one, then C in (17.4) would be augmented with
an additional row (0, 0, 0, 0, 1,−1) and the corresponding 6 d.f. Wald test
statistic equals 8.93 (p = 0.1119). This need not be considered a contra-
diction: the 6 d.f. dilutes the power associated with the single degree of
freedom contrast (17.6), by combining it with 5 non-significant contrasts,
given by (17.4).

The so-obtained final model is presented in the column labeled ‘ZREP’
in Table 17.2, where now:

α12 = α13 = α14 = α23 = α24 = α0,

α34 = α0 + α1.

At the odds ratio level:

ψ̂12 = ψ̂13 = ψ̂14 = ψ̂23 = ψ̂24 = ψ̂0 = 3.53,

ψ̂34 = ψ̂0 · ψ̂1 = 11.36.

Note that the Z-statistic associated with α0 is highly significant (p <
0.0001), even though the estimated value may seem moderate. The Z test
for α1 produces a p-value of p = 0.0119, in perfect agreement with the
corresponding Wald test, obtained above.
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Although not commonly done, we could present the “odds ratio matrices”
based on the models in Table 17.2:

ΨEXCH =

⎧⎪⎪⎨⎪⎪⎩
1 4.18 4.18 4.18

1 4.18 4.18
1 4.18

1

⎫⎪⎪⎬⎪⎪⎭ ,

ΨUN =

⎧⎪⎪⎨⎪⎪⎩
1 3.10 4.76 4.95

1 3.29 2.53
1 11.47

1

⎫⎪⎪⎬⎪⎪⎭ ,

and

ΨZREP =

⎧⎪⎪⎨⎪⎪⎩
1 3.53 3.53 3.53

1 3.53 3.53
1 11.36

1

⎫⎪⎪⎬⎪⎪⎭ .

Curly braces are used rather than parentheses, to avoid confusion with
a correlation or covariance matrix. In summary, the ‘ZREP’ structure is
adequate for the odds ratios, it is not necessary to spend 6 unstructured
parameters. Although exchangeability is off, the discrepancy is not very
large, and there certainly is no strong impact on the marginal model para-
meter estimates.

Clearly, the various GEE methods provide virtually the same fit. Not
only the empirically corrected standard errors, but also the model-based
ones (not shown here, except for logistic regression), virtually coincide.

17.3 Random-effects Analyses of the Analgesic
Trial

In this section, we will consider the random-effects counterparts of (17.2)
from Section 17.2:

Yij |bi ∼ Bernoulli(πij),
logit(πij) = β0 + bi + β1tij + β2t

2
ij + β3Xi, (17.7)

where notation is used as in Section 14.7, i.e.,

πij = logitP (Yij = 1|bi, tij , Xi).

Thus, a random intercept has been added to the linear predictor (17.2),
producing a random-intercept logistic regression model. Apart from the
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TABLE 17.3. Analgesic Trial. Parameter estimates (empirically corrected stan-
dard errors) for ordinary logistic regression, standard GEE, Prentice’s GEE, the
linearization-based method, and ALR under exchangeable working assumptions.
(The standard errors for logistic regression are the usual, uncorrected ones.)

Effect Parameter Log. regr. Standard Prentice
Intercept β1 2.80(0.49) 2.92(0.46) 2.94(0.46)
Time β2 -0.79(0.39) -0.83(0.33) -0.84(0.33)
Time2 β3 0.18(0.08) 0.18(0.07) 0.18(0.07)
Basel. PCA β4 -0.21(0.09) -0.23(0.10) -0.23(0.10)
Correlation ρ 0.21 0.26(0.05)

Effect Parameter Lineariz. ALR
Intercept β1 2.94(0.46) 2.98(0.46)
Time β2 -0.84(0.33) -0.87(0.32)
Time2 β3 0.18(0.07) 0.18(0.07)
Basel. PCA β4 -0.23(0.10) -0.23(0.10)
Corr. ρ 0.26(0.04)
Log OR α 1.43(0.22)

NTP data in Section 14.7, similar models were considered for the toenail
data in Section 14.8. For the random effect bi we assume that bi ∼ N(0, τ2).

Model (17.7) was fitted to the analgesic trial data using MQL and PQL,
combined with REML, by means of the SAS procedure GLIMMIX. Using
the SAS procedure NLMIXED, numerical integration was employed, using
both non-adaptive and adaptive quadrature, in both cases with 10 and 20
quadrature points. Results are summarized in Table 17.4. The parameter
τ , the standard deviation of the random intercept, was included directly
into the numerical integration based NLMIXED programs. Its square and
associated precision, the variance of the random intercept, was obtained
through the delta method. Of course, it is very easy to obtain it by an
additional run of the NLMIXED procedure, upon a slight change of the
program code. In addition to the SAS-based analyses, we fitted model (17.7)
using the MIXOR package and the MLwiN package. The MIXOR program
is in the public domain and can be downloaded from

http://www.uic.edu/ hedeker/mixreg.html.

It is developed for mixed-effects ordinal regression analysis, and hence in
particular in the binary case, and has been documented extensively in
Hedeker and Gibbons (1993, 1994, 1996). It performs numerical integra-
tion (Gaussian quadrature) and uses the Newton-Raphson algorithm to
maximize the marginal likelihood. Technically, MIXOR is most directly
comparable to NLMIXED. This is reflected in the parameter estimates but
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TABLE 17.4. Analgesic Trial. Parameter estimates (standard errors) for gen-
eralized linear mixed models, under MQL and PQL (combined with REML) in
SAS, PQL1 and PQL2 in MLwiN, as well as with numerical integration, in SAS
(I: non-adaptive with 10 quadrature points; II: non-adaptive with 20 quadrature
points and adaptive with both 10 and 20 quadrature points) and using MIXOR.

Integrand approximation
SAS GLIMMIX MLwiN

Effect Par. MQL PQL1 PQL1 PQL2
Intercept β1 2.91(0.53) 3.03(0.55) 3.02(0.55) 4.07(0.70)
Time β2 -0.83(0.39) -0.87(0.41) -0.87(0.41) -1.17(0.48)
Time2 β3 0.18(0.08) 0.19(0.08) 0.19(0.08) 0.25(0.10)
Basel. PCA β4 -0.22(0.11) -0.22(0.11) -0.22(0.11) -0.31(0.15)
Rand. int s.d. τ 1.06(0.25) 1.04(0.23) 1.01(0.12) 1.61(0.15)
Rand. int var. τ2 1.12(0.53) 1.08(0.48) 1.02(0.25) 2.59(0.47)

Numerical integration
SAS NLMIXED

Effect Par. I II MIXOR
Intercept β1 4.07(0.71) 4.05(0.71) 4.05(0.55)
Time β2 -1.16(0.47) -1.16(0.47) -1.16(0.45)
Time2 β3 0.25(0.09) 0.24(0.09) 0.24(0.10)
Basel. PCA β4 -0.30(0.14) -0.30(0.14) -0.30(0.15)
Rand. int s.d. τ 1.60(0.22) 1.59(0.21) 1.59(0.21)
Rand. int var. τ2 2.56(0.70) 2.53(0.68) 2.53(0.67)

not entirely in the standard errors, because MIXOR uses an approximation
to the (empirical) information matrix, whereas NLMIXED uses numerical
derivatives. MLwiN is the successor of an earlier DOS incarnation MLN,
and is the implementation of the multilevel modeling approach, proposed in
Bryk and Raudenbush (1992), Longford (1993), and Goldstein (1995). Kreft
and de Leeuw (1998) provide a more informal and introductory approach
to the subject. This modeling approach for hierarchical data (and hence
in particular longitudinal data) is primarily used and known in the social
sciences environment. While the language typically used to describe the
model is somewhat different from the linear and generalized linear mixed
model formalisms, it is very similar and a wide class of mixed models can
be considered within the multilevel paradigm as well.

The MLwiN and MIXOR results are shown in Table 17.4 as well. Note
that the MQL approximation is particularly bad in this case, and the pa-
rameter estimates are virtually the same as those obtained under GEE
(Table 17.3). These results are more extreme than the ones obtained for
the NTP data (Table 16.4). The main reason is that in the analgesic trial
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the number of binary measurements per subject is small, such that the
approximations on which MQL and PQL are based do not work particu-
larly well. For more details, see Section 14.4. The results for PQL are a
bit better. This phenomenon is generally observed, although the difference
between them is often larger. Recall that MQL linearizes the link function
around the expected linear predictor, thus effectively bringing the model
for the pseudo-data closer to a marginal one than PQL. Between the two
PQL1 based estimates, there hardly is a difference. An important differ-
ence is seen when switching from PQL1 to PQL2 (see Section 14.3 for
details), effectively bringing the results in line with the numerical integra-
tion based ones. It is fair to say that even in a case like this, where the
number of measurements per subjects is relatively small, PQL2 tends to
produce good approximations.

Among the numerical integration based ones, there is little or no differ-
ence. First, even though Table 17.4 presents only three columns for this
class of methods, six analyses were done. From the four analyses based on
the SAS procedure NLMIXED, three coincide within the reported preci-
sion, with only non-adaptive quadrature and 10 quadrature points giving a
slightly different result. The MIXOR based estimates are identical, within
the reported precision, to the ones form SAS, group II. The only difference
is seen in the standard errors: whereas SAS bases its estimates upon Fisher’s
information matrix, MIXOR uses an approximation. For more details, see
the MIXOR website.

17.4 Comparing Marginal and Random-effects
Analyses

In Section 17.2, we presented several marginal analyses and offered a com-
parison among them. The key message is that the results are very similar.
In Section 17.3, random effects analyses were offered, based on the cor-
responding model. The numerical integration based methods are virtually
identical, and so are the PQL2 based ones. MQL and PQL1 produce rela-
tively poor approximations in this case.

When comparing marginal with random effects analyses, the discussion
offered in Chapter 16 should be kept in mind. A key warning is that the
two model families are rather different, and that the parameters have to be
interpreted differently. This was exemplified in Sections 16.4 and 16.5. Nev-
ertheless, for a random-intercept logistic regression, like the one considered
here, (16.3) can be used to calculate an approximation to the ratio between
the two sets of parameters. Using standard GEE1 from Table 17.3 and the
integration based estimates from Table 17.4, the approximate factor from
(16.3) is 1.37, the ratios between the two sets of parameter estimates are
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(1.39, 1.40, 1.33, 1.30), and the corresponding ratios between the standard
errors are (1.54, 1.42, 1.29, 1.40), providing good agreement between both.

17.5 Programs for the Analgesic Trial

In this section, we will present a few key programs for the analgesic trial.

17.5.1 Marginal Models with SAS
A standard GEE1 program, with unstructured working assumptions, linear
and quadratic effects of time as well as an effect of baseline pain control
assessment, is given by:

proc genmod data=m.gsa descending;
class patid timecls;
model gsabin = time|time pca0 / dist=b;
repeated subject=patid / withinsubject=timecls

type=un covb corrw modelse;
run;

The corresponding ALR program would change the repeated statement to

repeated subject=patid / withinsubject=timecls
logor=fullclust covb corrw modelse;

The empirically corrected estimates for the latter case are

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|

Intercept 2.9219 0.4583 2.0237 3.8201 6.38 <.0001
TIME -0.7980 0.3207 -1.4266 -0.1694 -2.49 0.0128
TIME*TIME 0.1683 0.0648 0.0412 0.2953 2.60 0.0094
pca0 -0.2359 0.0960 -0.4241 -0.0478 -2.46 0.0140
Alpha1 1.1280 0.3278 0.4856 1.7705 3.44 0.0006
Alpha2 1.5631 0.3865 0.8056 2.3206 4.04 <.0001
Alpha3 1.6035 0.4192 0.7819 2.4251 3.83 0.0001
Alpha4 1.1864 0.3680 0.4652 1.9077 3.22 0.0013
Alpha5 0.9265 0.4218 0.0997 1.7533 2.20 0.0281
Alpha6 2.4387 0.4805 1.4970 3.3805 5.08 <.0001

Note, again, that a single panel contains both the marginal regression β
parameters and the log odds ratio α parameters. The asymptotic covariance
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matrix panel (not shown) can be used directly to construct Wald tests. Note
that, while there is a CONTRAST statement in the GENMOD procedure,
it does not support the use of the α parameters, even though it does support
typical linear contrasts of β parameters, whether in the cross-sectional case,
GEE, or ALR.

In Table 17.2, a user-defined log odds ratio structure was considered,
where all of them where set equal to each other, except α34, which was
allowed to have an excess. The REPEATED statement for this case is

repeated subject=patid / withinsubject=timecls
logor=zrep(

(1 2) 1 0,
(1 3) 1 0,
(2 3) 1 0,
(2 4) 1 0,
(3 4) 1 1

)
covb modelse;

The ‘logor=zrep( )’ option allows a flexible linear structure on the α para-
meters, producing a large number of covariance structures and providing
flexibility to choose the most convenient one from among equivalent pa-
rameterizations. For example, changing the last line to (3 4) 0 1 would
specify α2 to be the log odds ratio for the last pair, rather than the dif-
ference between that one and the earlier ones. A serial structure can be
mimicked by means of this option. For example,

logor=zrep((1 2) 1,
(1 3) 0.5,
(1 4) 0.3333,
(2 3) 1,
(2 4) 0.5,
(3 4) 1)

would produce odds ratios of the form

ψj1j2 = e
1

j2−j1
α = ψ

1
j2−j1 ,

and these diminish as the time interval between measurements increases,
when ψ > 1.

Returning to the earlier program, the corresponding estimates are

Analysis Of GEE Parameter Estimates
Empirical Standard Error Estimates

Standard 95% Confidence
Parameter Estimate Error Limits Z Pr > |Z|
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Intercept 2.9215 0.4607 2.0186 3.8244 6.34 <.0001
TIME -0.8021 0.3215 -1.4323 -0.1720 -2.49 0.0126
TIME*TIME 0.1701 0.0650 0.0427 0.2975 2.62 0.0089
pca0 -0.2351 0.0958 -0.4229 -0.0474 -2.46 0.0141
Alpha1 1.2640 0.2309 0.8115 1.7166 5.47 <.0001
Alpha2 1.1719 0.4660 0.2584 2.0853 2.51 0.0119

We see at a glance that both α parameters are significant.
For completeness, let us present a program for the linearization-based

method (Section 8.8), using the GLIMMIX macro,

%glimmix(data=gsa, procopt=%str(method=ml noclprint),
stmts=%str(

class patid timecls;
model gsabin = time|time pca0 / solution;
repeated timecls / sub=patid type=un rcorr=3;
),

error=binomial,
link=logit);

The option ‘rcorr=3’ is added to the REPEATED statement, and not
‘rcorr,’ since the first two subjects have incomplete follow-up, and hence
only a particular upper left block of the entire working correlation matrix
would be given. The GLIMMIX procedure counterpart is

proc glimmix data=gsa method=RSPL empirical;
class patid timecls;
model gsabin (event=’1’) = time|time pca0

/ dist=binary solution;
random _residual_ / subject=patid type=un;
run;

17.5.2 Random-effects Models with SAS
Shifting attention to the random-effects models, the MQL analysis is ob-
tained using the GLIMMIX procedure code:

proc glimmix data=m.gsa method=RMPL;
class patid timecls;
model gsabin (event=’1’) = time|time pca0

/ dist=binary solution;
random intercept / subject=patid type=un;
run;

Clearly, changing the method via ‘method=RSPL’ produces the PQL ver-
sion. The integration-based methods are obtained using code of the form:

proc nlmixed data=m.gsa qpoints=10 noad;
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FIGURE 17.1. Analgesic Trial. MLwIN Program for PQL2 without overdispersion
parameter.

parms beta0=4 beta1=-1 beta2=0.25 beta3=-0.25 tau=1.5;
theta = beta0 + b + beta1*time + beta2*time2 + beta3*pca0;
exptheta = exp(theta);
p = exptheta/(1+exptheta);
model gsabin ˜ binary(p);
random b ˜ normal(0,tau**2) subject=patid;
run;

Again, changing the ‘qpoints=’ option in the PROC NLMIXED statement,
combined with inclusion or omission of the ‘noad’ option in the same state-
ments, produces all of the analyses discussed in Section 17.3. When a probit
rather than a logit link is desired, one merely adds the option ‘link=probit’
to the GENMOD and GLIMMIX programs. Here, however, one should re-
move the ‘exptheta=’ programming statement and replace the definition
of p by ‘p = probnorm(theta).’

17.5.3 MIXOR
A small portion of the output, obtained when calling MIXOR, is:
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MIXOR - The program for mixed-effects ordinal regression analysis
(version 2)

Global Satisfaction Assessment
Response function: logistic
Random-effects distribution: normal

---------------------------------------------------------
* Final Results - Maximum Marginal Likelihood Estimates *
---------------------------------------------------------

Total Iterations = 10
Quad Pts per Dim = 20
Log Likelihood = -506.275
Deviance (-2logL) = 1012.549
Ridge = 0.000

Variable Estimate Stand. Error Z p-value
-------- ---------- ------------ ---------- ------------
intcpt 4.04741 0.71278 5.67835 0.00000 (2)
Time -1.16003 0.47453 -2.44457 0.01450 (2)
Time2 0.24449 0.09678 2.52624 0.01153 (2)
PCA0 -0.29971 0.15375 -1.94932 0.05126 (2)

Random effect variance term (standard deviation)
intcpt 1.59139 0.20578 7.73355 0.00000 (1)

note: (1) = 1-tailed p-value
(2) = 2-tailed p-value

At the end, an estimate of an approximate intracluster correlation is
presented, based on both the random-intercept variance and the variance
of the standard logistic density (π2/3).

Calculation of the intracluster correlation
-------------------------------------------
residual variance = pi*pi / 3 (assumed)
cluster variance = (1.591 * 1.591) = 2.533

intracluster correlation = 2.533 / ( 2.533 + (pi*pi/3)) = 0.435

However, the basis for this calculation is not very strong and caution is
needed with its use (Laenen et al 2004). These authors suggested it is bet-
ter to calculate an intraclass correlation coefficient based on the observed
outcomes, rather than in terms of the latent variable. However, in most
cases no constant would be obtained, not even when there is a random
intercept only.
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FIGURE 17.2. Analgesic Trial. MLwIN Program for PQL2 with overdispersion
parameter.

17.5.4 MLwiN
MLwiN is a windows-driven program. The model is constructed in alge-
braic format, whereafter the unknown parameters are estimated. A random-
intercepts logistic model would be called a two-level model within this set-
ting, where the levels refer to the subject level on the one hand and the
measurement within subject level on the other hand. There is a wide variety
of options available for such aspects as the estimation method, the presence
or absence of overdispersion, etc. Two example programs are provided in
Figures 17.1–17.2.




