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Marginal versus Random-effects
Models

16.1 Introduction

The most frequently used models for discrete repeated measurements are
of the marginal or random-effects type, and most of them can be viewed
as direct extensions of general linear models introduced in Chapter 3 for
independent observations to the context of correlated data. Despite the se-
vere similarities between marginal and random-effects model specifications,
both families often produce very different results, confusing many statis-
ticians less familiar with these types of models. The aim of the current
chapter is therefore to investigate why such strong differences occur in so
many applications. In Section 16.2, marginal and random-effects results are
compared for the toenail data. Section 16.3 provides some theoretical argu-
ments about the observed differences between both modeling approaches.
Finally, the Sections 16.4 and 16.5 will apply these ideas to the toenail and
the NTP data, respectively.

16.2 Example: The Toenail Data

Table 16.1 summarizes the parameter estimates and standard errors for
a marginal model and a random-effects model, fitted to the toenail data.
Both models include linear time-effects, with treatment-specific intercepts
and slopes. The marginal model parameter estimates are obtained using
generalized estimating equations (GEE1), where a marginal logit function
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TABLE 16.1. Toenail Data. Parameter estimates (standard errors) for a gener-
alized linear mixed model (GLMM) and a marginal model (GEE), as well as the
ratio between both sets of parameters.

GLMM GEE
Parameter Estimate (s.e.) Estimate (s.e.) Ratio
Intercept group A −1.63 (0.44) −0.72 (0.17) 2.26
Intercept group B −1.75 (0.45) −0.65 (0.17) 2.69
Slope group A −0.40 (0.05) −0.14 (0.03) 2.87
Slope group B −0.57 (0.06) −0.25 (0.04) 2.22

SD random intercept (τ) 4.02 (0.38)

is combined with unstructured working assumptions about the association
structure. The random-effects model is of the logistic-normal type, with no
other random effects than intercepts with variance τ2, fitted using adaptive
Gaussian quadrature with 50 quadrature points. The models are repara-
meterized versions for the models used earlier in the Chapters 10 and 15,
for the same data. Obviously, both analyses produce very different results
in the sense that the estimates from the generalized linear mixed model
analysis are much bigger in magnitude.

16.3 Parameter Interpretation

The severe differences in results obtained from marginal and random-effects
models follow from the fact that the parameters in both models have
completely different interpretations. To see the nature of the difference
between both model families, consider a binary outcome variable and as-
sume a random-intercepts logistic model with linear predictor logit[P (Yij =
1|bi)] = β0 + bi +β1t, where t is the time covariate. This model was used in
Section 16.2 for each treatment group separately. The conditional means
E(Yij |bi), as functions of t, are given by

E(Yij |bi) =
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)
. (16.1)

The model assumes that the conditional means all satisfy a logistic model,
with the same slope β1 but with different intercepts β0 + bi for all subjects.
The marginal average evolution E(Yij) is obtained from averaging (16.1)
over the random effects, i.e.,

E(Yij) = E[E(Yij |bi)]

= E

[
exp(β0 + bi + β1t)

1 + exp(β0 + bi + β1t)

]
(16.2)
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FIGURE 16.1. Graphical representation of a random-intercepts logistic curve,
across a range of levels of the random intercept, together with the corresponding
marginal curve.

�= exp(β0 + β1t)
1 + exp(β0 + β1t)

.

A graphical representation of both (16.1) and (16.2) is given in Figure 16.1.
Obviously, the marginal time trend is much less steep than each of the indi-
vidual time trends. Intuitively, it is to be expected that this effect strongly
depends on the amount of between-subject variability: In case the random-
intercepts variability is large, parameters from fitting marginal models and
random-effects models will be very different, while equal parameter values
hold if the variance of the random-effects equals zero.

Figure 16.1 clearly shows that the regression parameters in marginal and
random-effects models have a completely different inerpretation. Therefore,
it may be helpful to denote them differently, such as βRE for the parameter
vector in the random-effects model, and βM for the parameter vector in
the marginal model. The vector βRE models the evolution of each individ-
ual subject separately, whereas βM expresses how, on average, the success
probability evolves in the population.

This phenomenon holds more generally for any generalized linear mixed
model, and there is no straightforward relation between the parameter vec-
tor βRE in the random-effects model and the parameter vector βM in the
marginal model, except in a few special cases. For example, consider the
linear mixed model introduced in Section 4.3, where the random-effects
model Y i|bi ∼ N(Xiβ + Zibi, Σi) implies that, marginally, Y i has mean
E(Yij) = E[E(Yij |bi)] = Xiβ, showing that, in this case βRE = βM. An-
other example is the above discussed logistic model with random intercepts,
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Model Family
↙ ↘

marginal random-effects
model model

↓ ↓
inference inference
↙ ↘ ↙ ↘

likelihood GEE marginal hierarchical
↓ ↓ ↓ ↓

βM βM βRE (βRE, bi)
↓ ↓

‘βM’ ‘βM’

FIGURE 16.2. Representation of model families and corresponding inferences. A
superscript ‘M’ stands for marginal, ‘RE’ for random effects. A parameter between
quotes indicates that marginal functions but no direct marginal parameters are
obtained.

for which it can be derived that∣∣∣∣βRE

βM

∣∣∣∣ ≈√c2τ2 + 1 > 1 (16.3)

where τ2 is the variance of the random intercepts and with c = 16
√

3/(15π)
(Diggle et al 2002, Section 7.4). Note that (16.3) implies our heuristically
obtained result that βRE is not smaller than βM, with equality when the
random-intercepts variance τ2 is zero.

The fact that parameters from marginal and random-effects models need
to be interpreted completely differently shows that the choice between these
model families has important consequences and should be reflected upon
very carefully. A schematic display of the possible choices is given in Fig-
ure 16.2. Whenever a marginal model is fitted, one directly obtains esti-
mates and inferences for the components in βM, the regression vector that
models the average trend in the population. Within this class of approaches,
fitting and inference can be based on full maximum likelihood principles, or
on methods that only require correct specification of a number of moments
(GEE and related methods). In case a random-effects model is fitted, one
should realize that, even when estimation and inference is based on likeli-
hood principles for the marginal likelihood (14.2) where the random effects
have been integrated out, the parameters keep their original random-effects
interpretation, such that estimates as well as inferences are obtained for the
components in βRE rather than βM. Note that, under the random-effects
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model family, one can also obtain inferences for the random effects, under
the assumption that the hierarchical model formulation was correct, i.e.,
under the assumption that the correlation between repeated measurements
was indeed implied by an underlying random-effects structure. Alterna-
tively, one may consider the generalized linear mixed model as just one
approach to construct a marginal likelihood, without having any interests
in possible presence of underlying latent variables bi.

Note that, because the random-effects approach results in a marginal
likelihood, hereby completely specifying the distribution of Y i, it is possible
to derive the marginal average trends in the data. As is indicated in (16.2),
this requires averaging the conditional means in (16.1), over the random
effects bi. Again, numerical integration methods can be used, but it is often
much easier to use numerical averaging by sampling a large number M of
random-effects vectors bi from their fitted distribution N(0, D̂), and to
estimate E(Y ij) at a specific point t in time by

Ê(Yij) =
1
M

M∑
i

exp(β̂RE
0 + bi + β̂RE

1 t)

1 + exp(β̂RE
0 + bi + β̂RE

1 t)
.

This can be calculated for a fine grid of time-points t, such that a graphical
representation for the average trend can be obtained. An example, including
SAS code for averaging over the fitted random-effects distribution can be
found in Section 19.4. It should be emphasized that, in general, the average
trend E(Yij) is not of the same parametric form as the conditional means
E(Yij |bi). Hence, the averaging over the random effects will not yield formal
estimates for the elements in βM. They can only provide a plot of the
population-averaged trends. This explains why, in Figure 16.2, the marginal
trends obtained from the random-effects approach are indicated as ‘βM.’

16.4 Toenail Data: Marginal versus Mixed Models

We reconsider the toenail data, with the results from a GEE analysis and
a random-effects analysis summarized in Table 16.1. The generalized linear
mixed model is logistic with random intercepts only, hence, the approximate
relation (16.3) holds and yields as approximate ratio

√
[16

√
3/(15π)]2(4.02)2 + 1 = 2.56
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FIGURE 16.3. Toenail Data. Treatment-arm specific evolutions. (a) Marginal
evolutions as obtained from a marginal (GEE) model, (b) marginal evolutions
as obtained from integrating out a GLMM, and (c) evolutions for an “average”
subject from a GLMM, i.e., a subject with bi = 0.
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which is in line with the observed ratio reported in Table 16.1. The fitted
average evolutions, directly obtained from the GEE analysis, are given by

P (Yij = 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
exp(−0.72 − 0.14t)

1 + exp(−0.72 − 0.14t)
, Treatment A

exp(−0.65 − 0.25t)
1 + exp(−0.65 − 0.25t)

, Treatment B,

and are shown in the top graph in Figure 16.3. The middle panel of Fig-
ure 16.3 shows the marginal trends implied by the mixed model, i.e.,

P (Yij = 1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
E

[
exp(−1.63 + bi − 0.40t)

1 + exp(−1.63 + bi − 0.40t)

]
, Treatment A

E

[
exp(−1.75 + bi − 0.57t)

1 + exp(−1.75 + bi − 0.57t)

]
, Treatment B,

where the expectation is taken over the fitted random-effects distribution
N(0, 4.022). Note that very similar trends are obtained, except maybe early
in the study (first 2 months). This may be due to sampling variability, or
due to the fact that not all subjects have been followed until the end of the
experiment. Indeed, as discussed in Section 2.3, 72 (24%) out of the 298
participants left the study prematurely, due to a variety of, often unknown,
reasons. As will be discussed in Part VI, GEE and random-effects analy-
ses make different assumptions about the relation between missingness and
the longitudinal response of interest. This may result in (slightly) different
fitted average trends. Finally, the bottom plot in Figure 16.3 shows the
expected trends for ‘average’ patients, i.e., for patients with random inter-
cept bi = 0. This again illustrates that, unlike for linear mixed models, the
population-averaged trends cannot be obtained by setting random effects
in a generalized linear mixed model, equal to zero.

As a summary and conclusion, we now compare the results from various
models and estimation techniques applied to the toenail data. Table 16.2
summarizes the results from the marginal model and the random-effects
model, considered earlier in Section 16.2: Both models include linear time-
effects, with treatment-specific intercepts and slopes. The marginal model
parameter estimates are obtained using generalized estimating equations
(GEE1), where a marginal logit function is combined with unstructured
working assumptions about the association structure. The random-effects
model is of the logistic-normal type, with no other random effects than in-
tercepts with variance τ2. The mixed model has been fitted using MQL and
PQL (both with REML for fitting the linear mixed models to the pseudo-
data), as well as with adaptive Gaussian quadrature with 50 quadrature
points. A selection of the results was shown before in Table 16.1. We now
clearly observe that the estimates obtained from PQL and MQL are situ-
ated somewhat in between the estimates obtained from QUAD and GEE,
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TABLE 16.2. Toenail Data. Parameter estimates (standard errors) for a gener-
alized linear mixed model and a marginal model (GEE). The mixed model has
been fitted using MQL and PQL (both with REML for fitting the linear mixed
models to the pseudo-data), as well as with adaptive Gaussian quadrature with 50
quadrature points (QUAD).

Parameter QUAD PQL
Intercept group A −1.63 (0.44) −0.72 (0.24)
Intercept group B −1.75 (0.45) −0.72 (0.24)
Slope group A −0.40 (0.05) −0.29 (0.03)
Slope group B −0.57 (0.06) −0.40 (0.04)
Var. random intercepts (τ2) 15.99 (3.02) 4.71 (0.60)

Parameter MQL GEE
Intercept group A −0.56 (0.17) −0.72 (0.17)
Intercept group B −0.53 (0.17) −0.65 (0.17)
Slope group A −0.17 (0.02) −0.14 (0.03)
Slope group B −0.26 (0.03) −0.25 (0.04)
Var. random intercepts (τ2) 2.49 (0.29)

where MQL is closest to GEE. As has been discussed in Section 14.4, MQL
is based on a Taylor series expansion of the mean µij around current esti-
mates of the fixed effects and around random effects equal to zero. Therefore
it produces estimates relatively close to those from marginal models, which
do not contain any random effects at all (i.e., which have all bi ≡ 0). PQL,
on the other hand, explicitly accounts for the random effects in its Tay-
lor series expansion and therefore yields estimates closer to those obtained
under Gaussian quadrature.

16.5 Analysis of the NTP Data

As discussed in Chapter 13, the generalized linear mixed model (GLMM)
is not the only model in the class of random-effects models. An alternative
model is the beta-binomial model, introduced in Section 13.4.2. We will
now fit a beta-binomial model and compare it to the results obtained from
previous analyses. It will be assumed that the success probability πi and
the within-cluster correlation ρi satisfy

ln
(

πi

1 − πi

)
= β0 + βddi (16.4)

ln
(

1 + ρi

1 − ρi

)
= βa, (16.5)
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TABLE 16.3. NTP Data. Parameter estimates (standard errors) for the
beta-binomial model, fitted to various outcomes in three studies. β0 and βd are
the marginal intercept and dose effect, respectively; βa is the Fisher z transformed
correlation; ρ is the correlation.

Outcome Parameter DEHP EG DYME
External β0 -4.91(0.42) -5.32(0.71) -7.27(0.74)

βd 5.20(0.59) 2.78(0.81) 8.01(0.82)
βa 0.21(0.09) 0.28(0.14) 0.21(0.12)
ρ 0.10(0.04) 0.14(0.07) 0.10(0.06)

Visceral β0 -4.38(0.36) -7.45(1.17) -6.21(0.83)
βd 4.42(0.54) 4.33(1.26) 4.94(0.90)
βa 0.22(0.09) 0.04(0.09) 0.45(0.21)
ρ 0.11(0.04) 0.02(0.04) 0.22(0.10)

Skeletal β0 -4.88(0.44) -2.89(0.27) -5.15(0.47)
βd 4.92(0.63) 3.42(0.40) 6.99(0.71)
βa 0.27(0.11) 0.54(0.09) 0.61(0.14)
ρ 0.13(0.05) 0.26(0.04) 0.30(0.06)

Collapsed β0 -3.83(0.31) -2.51(0.09) -5.42(0.45)
βd 5.59(0.56) 3.05(0.17) 8.29(0.79)
βa 0.32(0.10) 0.28(0.02) 0.33(0.10)
ρ 0.16(0.05) 0.14(0.01) 0.16(0.05)

where di is the dose administered to the ith cluster. Note that this is
the same parameterization as was used before for the Bahadur model in
Section 7.2.3. Table 16.3 shows the results for the three NTP studies, and
for the four different outcomes.

For the sake of comparison, we will focus on the outcome ‘External mal-
formations’ in the DEHP study. Table 16.4 summarizes the results from
analyses based on marginal models (Chapters 7 and 8) conditional models
(Chapters 11 and 12), and random-effects models (Chapters 14 and 16).
As has been indicated in Section 11.4, estimates for the conditional models
are typically considerably smaller than their marginal counterparts, due
to the fundamental difference in interpretation. Indeed, conditional-model
parameters describe the conditional logit and log odds ratios of outcomes,
given other outcomes, whereas in marginal models no such conditioning
takes place. A similar argument explains the differences between marginal
and random-effects models (Section 16.3).

The results from conditional models are very similar, whatever estima-
tion method is used (maximum likelihood or pseudo-likelihood). The vari-
ous marginal modeling approaches (Bahadur, various forms of GEE, ALR)
provide very similar inferences as well, even though some subtle differ-
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TABLE 16.4. NTP Data. External malformations in the DEHP study. Parame-
ter estimates (standard errors) from analyses based on marginal models (Chap-
ters 7 and 8), conditional models (Chapters 11 and 12), and random-effects mod-
els (Chapters 14 and 16). β0 and βd are the intercept and dose effect, respectively;
the association parameter varies between models.

Model β0 βd Association

Conditional models

Quadr. loglin. (ML) -2.81(0.58) 3.07(0.65) LOG OR 0.18(0.04)
Quadr. loglin. (PL) -2.85(0.53) 3.24(0.60) LOG OR 0.18(0.04)

Marginal models

Lik. Bahadur -4.93(0.39) 5.15(0.56) βa 0.11(0.03)
St. GEE1 (exch) -4.98(0.37) 5.33(0.55) ρ 0.11
St. GEE1 (ind) -5.06(0.38) 5.31(0.57)
Prent. GEE1 (exch) -4.99(0.37) 5.32(0.55) ρ 0.11 (0.04)
Prent. GEE1 (ind) -5.06(0.38) 5.31(0.57)
Lin. based (exch) -5.00(0.37) 5.32(0.55) ρ 0.06
Lin. based (ind) -5.06(0.38) 5.31(0.57)
GEE2 -4.98(0.37) 5.29(0.55) βa 0.15(0.05)
ALR -.516(0.35) 5.64(0.52) βa 0.96(0.30)

Random-effects models

Beta-binomial -4.91(0.42) 5.20(0.59) βa 0.21(0.09)

GLLM (MQL) -5.18(0.40) 5.70(0.66) Int. var τ2 1.20(0.53)
GLMM (PQL) -5.32(0.40) 5.73(0.65) Int. var τ2 0.95(0.40)
GLMM (QUAD) -5.97(0.57) 6.45(0.84) Int. var τ2 1.27(0.62)

ences exist, as was explained throughout the various analyses conducted
in Chapter 8. More severe discrepancies are observed when the various
random-effects analyses are compared. The differences between MQL, PQL
and Gaussian quadrature have been observed and explained before in Sec-
tion 16.4. However, note how the results from the beta-binomial model are
closer to those from the marginal models than to those from the GLMM
model under Gaussian quadrature. This can be explained as follows. It
follows from (13.4) and (13.5) that the parameters πi and ρi modeled in
(16.4) and (16.5) have marginal interpretations. Hence, although the beta-
binomial model has a random-effects genesis, the regression coefficients
need to be interpreted marginally.
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