
15
Fitting Generalized Linear Mixed
Models with SAS

15.1 Introduction

Nowadays, many software packages allow for fitting of generalized linear
mixed models, using one or several of the estimation procedures discussed
in Chapter 14. Amongst the commercially available packages, SAS is the
most flexible package, with most of the discussed methods included. In this
chapter, we will show how the various methods can be implemented in the
SAS package. The examples will be worked out using SAS version 9.1. It
is by no means the intention to give a full detailed overview of all available
options. Instead, emphasis will be on general guidelines with respect to the
choice of the appropriate SAS procedures as well as with respect to how
models are specified in the various available procedures. We refer to the
online SAS manuals for a full description of the available procedures and
their possible options.

As a guiding example, we reconsider the toenail data, with the same
random-effects model as used in Section 14.8. More specifically, it will be
assumed that, conditionally on subject-specific, random, intercepts bi, Yij

is Bernoulli distributed with mean πij , modeled as

logit(πij) = β0 + bi + β1Ti + β2tij + β3Titij , (15.1)

in which Ti is the treatment indicator for subject i (1 for group B, 0 for
group A), tij is the time point at which the jth measurement is taken
for the ith subject, and bi is the random intercept assumed to be normally
distributed with mean zero and variance τ2. Note that the marginal version
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of this model was used in Chapter 10 to illustrate how marginal models
can be fitted within the SAS environment.

As in Chapter 10, it will be assumed that the data have been stored in the
SAS data file ‘test,’ which contains the variables ‘onyresp,’ ‘treatn,’ ‘time,’
and ‘idnum.’ The variable ‘response’ is the binary outcome variable defined
as 1 for a severe toenail infection, and equal to 0 otherwise. Further, ‘treat’
is a binary treatment indicator to be 1 for group B and 0 for group A.
The variable ‘time’ contains the time-point at which the outcome has been
measured, and ‘idnum’ is the variable containing the subject’s identification
label. Finally, it will be assumed that the data are organized such that each
record corresponds to the information available for one specific subject, at
one specific point in time, and it will be assumed that the data have been
ordered according to the variable ‘idnum.’ For example, our toenail data
set is set up in the following way:

Obs time treatn idnum onyresp

1 0 1 1 1
2 1 1 1 1
3 2 1 1 1
4 3 1 1 0
5 6 1 1 0
6 9 1 1 0
7 12 1 1 0

.... .. . ... .
1903 0 1 383 1
1904 1 1 383 1
1905 2 1 383 1
1906 3 1 383 1
1907 6 1 383 0
1908 9 1 383 0

Note that subject #383 left the study prematurely after 9 months of follow-
up, but before month 12.

15.2 The GLIMMIX Procedure for
Quasi-Likelihood

The marginal and penalized quasi-likelihood methods have been imple-
mented in the SAS procedure GLIMMIX, which is still experimental under
SAS version 9.1. As an example, we will fit Model (15.1) using the PQL
method. The procedure has many more statements and options than those
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TABLE 15.1. SAS Procedure GLIMMIX. Available options for specification of the
estimation method.

Quasi-likelihood type Inference pseudo-data
GLIMMIX option PQL/MQL ML/REML
‘method=RSPL’ PQL REML
‘method=MSPL’ PQL ML
‘method=RMPL’ MQL REML
‘method=MMPL’ MQL ML

presented here, but we restrict to the basic statements needed to fit a gen-
eralized linear mixed model.

15.2.1 The SAS Program
The following SAS code can be used to fit Model (15.1) using PQL based
on REML estimation for the linear mixed models for the pseudo data:

proc glimmix data=test method=RSPL ;
class idnum;
model onyresp (event=’1’) = treatn time treatn*time

/ dist=binary solution;
random intercept / subject=idnum;
run;

Users of the SAS procedure MIXED for linear mixed models will recog-
nize that the code here is very similar to that used in PROC MIXED. As
explained in Section 14.4, this is because the estimation methods imple-
mented in the GLIMMIX procedure iteratively fit linear mixed models to
newly updated pseudo data.

A very important option is ‘method=’ in the GLIMMIX statement. Here,
the type of quasi-likelihood is specified. In our example, the model is fitted
using PQL, based on REML for the linear mixed models. This corresponds
to the option ‘method=RSPL.’ An overview of the other available options
is given in Table 15.1.

The CLASS statement specifies which variables should be considered as
factors. Such classification variables can be either character or numeric.
Internally, each of these factors will correspond to a set of dummy vari-
ables in the manner described in the SAS manual on linear models (1991,
Section 5.5).

The MODEL statement names the response variable and all covariates
corresponding to the fixed effects. By default, an intercept is added. In
case no intercept is needed, the option ‘noint’ can be inserted. The option
‘(event=‘1’)’ has been added here in order to specify that the probability
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to be modeled is P (Yij = 1) (the probability of a severe infection), rather
than P (Yij = 0). The ‘solution’ option is used to request printing of the es-
timates of all the fixed effects in the model, together with standard errors,
t-statistics, corresponding p-values and confidence intervals. The ‘dist=’ is
used to specify the conditional distribution of the data, given the random
effects. Various distributions are available, including the normal, Bernoulli,
binomial, and Poisson distribution. In our example, the Bernoulli distrib-
ution is specified as ‘dist=binary.’ The link function is then by default the
natural link. In our example, this is the logit link. Others, such as probit,
log-log, log, or identity, can be requested by adding an appropriate ‘link=’
option.

The RANDOM statement defines the vectors zij corresponding to the
random effects in the model. Note that, when random intercepts are re-
quired (as in our example), this should be specified explicitly, which is in
contrast to the MODEL statement where an intercept is included by de-
fault. The ‘subject=’ option is used to identify the subjects in our dataset.
Here, ‘subject=idnum’ means that all records with the same value for ‘id-
num’ are assumed to be from the same subject, whereas records with dif-
ferent values for ‘idnum’ are assumed to contain independent data. The
variable ‘idnum’ is permitted to be continuous as well as categorical (speci-
fied in the CLASS statement). However, when ‘idnum’ is continuous, PROC
GLIMMIX considers a record to be from a new subject whenever the value
of ‘idnum’ is different from the previous record.

Suppose that random slopes for the time trend were to be included as
well. This could be obtained by replacing the RANDOM statement in the
above program by

random intercept time / subject=idnum type=un;

in which the option ‘type=un’ now specifies that the random-effects covari-
ance matrix D is a general unstructured 2 × 2 matrix. Special structures
are available, such as models that assume equal variance for the intercepts
and slopes, or models that assume independent intercepts and slopes.

15.2.2 The SAS Output
We now discuss some of the output produced by the original program
presented in Section 15.2.1.

First, a table is given with some information about the fitted model and
the estimation procedure. The ‘Residual PL’ estimation technique refers
to PQL with REML (restricted or residual maximum likelihood) for the
fitting of the linear models for the pseudo data:

Model Information

Data Set WORK.TEST
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Response Variable onyresp
Response Distribution Binary
Link Function Logit
Variance Function Default
Variance Matrix Blocked By idnum
Estimation Technique Residual PL
Degrees of Freedom Method Containment

Number of Observations Read 1908
Number of Observations Used 1908

The table labeled ‘Response Profile’ summarizes the number of severe
and non-severe infections in the dataset, and reports that the probability
that will be modeled is P (Yij = 1), the probability of a severe infection.

Response Profile

Ordered Total
Value onyresp Frequency

1 0 1500
2 1 408

The GLIMMIX procedure is modeling the probability
that onyresp=’1’.

The ‘Iteration History’ table gives a summary of the different steps in the
iterative optimization procedure. Depending on the numerical optimization
algorithm chosen, this table will contain different entries. The most impor-
tant ones are:

Iteration History

Objective Max
Iteration Function Change Gradient

0 8517.0833042 0.97407150 0.000272
1 9474.2004261 1.19238147 0.000682
2 10389.283759 2.00000000 1.148E-6

.. ............ .......... ........

11 11147.900904 0.00001765 7.376E-8
12 11147.902006 0.00000000 3.708E-6

Convergence criterion (PCONV=1.11022E-8) satisfied.
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At each intermediate step, minus the log-likelihood evaluated in the current
parameter values is reported, together with how much this value differs from
the value in the previous step. Further, the column labeled ‘Max Gradient’
reports the largest absolute value of the components in the gradient. At
the optimum, this value equals zero.

Fit Statistics

-2 Res Log Pseudo-Likelihood 11147.90
Pseudo-AIC (smaller is better) 11149.90
Pseudo-AICC (smaller is better) 11149.90
Pseudo-BIC (smaller is better) 11153.59
Pseudo-CAIC (smaller is better) 11154.59
Pseudo-HQIC (smaller is better) 11151.38
Pearson Chi-Square 1455.03
Pearson Chi-Square / DF 0.76

The table termed ‘Fit Statistics’ gives minus twice the residual log-
pseudo-likelihood value evaluated in the final solution, together with a
number of information criteria, including the Akaike information criterion
(AIC) and the Schwarz (BIC) information criterion. When REML estima-
tion is used for the fitting of the linear mixed models for the pseudo-data,
an objective function is maximized, which is called residual log-likelihood
function, while, strictly speaking, the function is not a log-likelihood, and
should not be used as a log-likelihood. We refer to Verbeke and Molenberghs
(2000, Chapters 5 and 6) for a more detailed discussion with examples. Fur-
ther, information criteria are statistics that are sometimes used to compare
non-nested models that cannot be compared based on a formal testing pro-
cedure. The main idea behind information criteria is to compared models
based on their maximimized (residual) log-likelihood value (or equivalently
minimized minus twice the log-likelihood value), but to penalize for the
use of too many parameters. They should by no means be interpreted as
formal statistical tests of significance. In specific examples, different infor-
mation criteria can even lead to different model selections. An example
of this is given in Section 6.4 of Verbeke and Molenberghs (2000) in the
context of linear mixed models. More details about the use of information
criteria can be found in Akaike (1974), Schwarz (1978), and Burnham and
Anderson (1998). Finally, the ‘Pearson Chi-Square’ value and derived ratio
over the degrees of freedom are based on the marginal distribution of the
pseudo-data as well. It should be emphasized that, as all statistics in the
above output table are based on the underlying model for the pseudo data,
rather than on the model for the actually observed outcomes, they should
be interpreted with extreme caution.

Covariance Parameter Estimates
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Standard
Cov Parm Subject Estimate Error

Intercept idnum 4.7116 0.6031

In the table called ‘Covariance Parameter Estimates,’ estimates and as-
sociated standard errors are given voor de variance components in the
model, i.e., for the elements in the random-effects covariance matrix D. In
our example, this is the random-intercepts variance τ2.

Finally, two tables are reported containing estimates and inferences for
the fixed effects in the model. As discussed in Section 14.6, the reported
inferences immediately result from the linear mixed model fitted to the
pseudo-data in the last step of the iterative estimation procedure.

Solutions for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.7239 0.2370 292 -3.05 0.0025
treatn 0.000918 0.3363 1612 0.00 0.9978
time -0.2883 0.03349 1612 -8.61 <.0001
treatn*time -0.1106 0.05366 1612 -2.06 0.0395

Type III Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

treatn 1 1612 0.00 0.9978
time 1 1612 74.10 <.0001
treatn*time 1 1612 4.25 0.0395

15.3 The GLIMMIX Macro for Quasi-Likelihood

The GLIMMIX procedure can be viewed as a formal procedure, although
still experimental in SAS version 9.1, which has grown out of the SAS
macro GLIMMIX, applied earlier in Section 10.5 for fitting generalized es-
timating equations (GEE) based on linearization (Section 8.8). In GEE,
the association between repeated measures is modeled through a marginal
working correlation matrix. In our context, this correlation is modeled via
the inclusion of random effects, conditionally on which repeated measures
are assumed independent. This similarity implies that the same macro can
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be used for fitting generalized linear mixed models as well. Without go-
ing into much detail, we present here the SAS code needed to repeat the
analysis from Section 15.2 with the GLIMMIX macro. Afterwards, some
selected output is shown.

15.3.1 The SAS Program
Before the GLIMMIX macro can be called, one has to specify where the
code can be obtained from:

%inc ’path\glmm800.sas’ / nosource;
run;

The following SAS code can now be used to repeat the analysis from
Section 15.2 with the GLIMMIX macro:

%glimmix(
data=test,
stmts=%str(

class idnum;
model onyresp = treatn time treatn*time / solution;
random intercept / subject=idnum;
parms (4) (1) / hold=2;
),

error=binomial
)
run;

The statements that appear in the STMTS statement are directly fed
into the PROC MIXED calls needed for fitting the linear mixed models
to the pseudo-data. Note that the GLIMMIX macro by default includes a
residual overdispersion parameter. If the corresponding generalized linear
mixed model does not contain such a parameter, it should explicitly be
kept equal to one by the user. This is done using the ‘hold=’ option in the
PARMS statement.

Because the MIXED procedure uses REML estimation by default, the
above program requests PQL estimation, based on REML fitting for the
pseudo-data. If ML fitting is required, this can be specified by adding the
line

procopt=%str(method=ml),

into the above ‘%glimmix’ call. In case MQL is required, rather than the
default PQL, this can be specified by adding the line

options=MQL,
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15.3.2 Selected SAS Output
Without discussing the output from the GLIMMIX macro in much detail,
we here present some output tables, which are to be compared with the
output from the GLIMMIX procedure, discussed in Section 15.2.2.

Covariance Parameter Estimates

Cov Parm Subject Estimate

Intercept idnum 4.7116
Residual 1.0000

Fit Statistics

-2 Res Log Likelihood 11147.9
AIC (smaller is better) 11149.9
AICC (smaller is better) 11149.9
BIC (smaller is better) 11153.6

Solution for Fixed Effects

Standard
Effect Estimate Error DF t Value Pr > |t|

Intercept -0.7239 0.2370 292 -3.05 0.0025
treatn 0.000918 0.3363 1612 0.00 0.9978
time -0.2883 0.03349 1612 -8.61 <.0001
treatn*time -0.1106 0.05366 1612 -2.06 0.0395

Type 3 Tests of Fixed Effects

Num Den
Effect DF DF F Value Pr > F

treatn 1 1612 0.00 0.9978
time 1 1612 74.10 <.0001
treatn*time 1 1612 4.25 0.0395

Note that, indeed, the residual overdispersion parameter was kept equal
to one, and the results are the same as obtained earlier from the GLIMMIX
procedure.
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15.4 The NLMIXED Procedure for Numerical
Quadrature

Gaussian and adaptive Gaussian quadrature, as approximations to the in-
tegral in the marginal likelihood (Section 14.5) have been implemented in
the SAS procedure NLMIXED. As an example, we will reproduce the re-
sults reported in Table 14.2 for (non-adaptive) Gaussian quadrature with 3
quadrature points. The procedure has many more statements and options
than those presented here, but we restrict to the basic statements needed
to fit a generalized linear mixed model.

15.4.1 The SAS Program
The following SAS code can be used to fit Model (15.1) using Gaussian
quadrature with 3 quadrature points:

proc nlmixed data=test noad qpoints=3;
parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5 tau=3.9;
teta = beta0 + b + beta1*treatn + beta2*time

+ beta3*time*treatn;
expteta = exp(teta);
p = expteta/(1+expteta);
model onyresp ˜ binary(p);
random b ˜ normal(0,tau**2) subject=idnum;
run;

Before presenting the results of this analysis, we briefly discuss the state-
ments and options used in the above program. It is clear from the above
code that the NLMIXED procedure requires completely different model-
specifications than most other SAS procedures. The main advantage is
that the user is given a very high degree of flexibility in the way the model
is specified and parameterized. One of the consequences of this flexibility
is that the user not only needs to specify the model but also has to specify
names for all the parameters in the model. In this respect, it is important
to know that SAS considers all symbols in the model specification that are
not referring to variables in the input dataset as unknown parameters, to
be estimated from the data.

The option ‘noad’ in the NLMIXED statement is needed to request non-
adaptive quadrature as, by default, adaptive quadrature is used. The option
‘qpoints=’ specifies the number of quadrature points. If this option is omit-
ted, the number of quadrature points is selected adaptively by evaluating
the log-likelihood function at the starting values of the parameters until
two successive evaluations show sufficiently small relative change. Remem-
ber that model fitting based on the Laplace approximation for the integrals
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in the marginal likelihood (Section 14.3) can be specified by choosing adap-
tive Gaussian quadrature with one quadrature point.

The PARMS statement is used to specify starting values for all para-
meters in the model. Parameters not listed in the PARMS statement are
given an initial value of 1. Here we are confronted with one of the major
drawbacks of the current version of the NLMIXED procedure, i.e., the fact
that the procedure does not automatically generate starting values, except
for the default value of 1 for all the parameters that do not occur in the
PARMS statement. In complex models however, convergence of the numer-
ical optimization algorithms may highly depend on the specified starting
values.

The MODEL statement is used to specify the conditional distribution
of the data, given the random effects. Various distributions are available,
including the normal, Bernoulli, binomial, and Poisson distributions. In our
example, the Bernoulli distribution is specified as ‘binary(p)’ in which p is
the success probability that has been specified in the program lines prior to
the MODEL statement. The user has full flexibility over the way the model
is specified as well as the number of intermediate steps that are used to
define the success probability. For example, the above program corresponds
to the parameterization as given in (15.1). A different parameterization of
the same model would be

logit(πij) =

⎧⎨⎩
β0 + bi + β1tij , Treatment A

β2 + bi + β3tij , Treatment B

This can be specified using the statements

teta = beta0*(1-treatn) + beta2*treatn + b
+ beta1*(1-treatn)*time + beta3*treatn*time;

expteta = exp(teta);
p = expteta/(1+expteta);

or, equivalently,

if treatn=0 then teta=beta0 + b + beta1*time;
if treatn=1 then teta=beta2 + b + beta3*time;
expteta = exp(teta);
p = expteta/(1+expteta);

In case models are needed that do not fit within any of the classical distrib-
utions, user-defined likelihoods can be specified through the option ‘model
onyresp ∼ general(		)’ in which 		 is the user-defined log-likelihood.

The RANDOM statement defines the random effects in the model. In
our example, if the RANDOM statement had been omitted, the parameter
b would have been considered a fixed intercept, and this would have led to
an over-parameterized model. Now, b is specified to be normally distributed
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with mean 0 and standard deviation τ . Again, the user has full flexibility
here. For example, if one wishes to estimate the random-intercepts variance
rather than the standard deviation, this can be achieved by specifying

random b ˜ normal(0,tau2) subject=idnum;

Also, a mean model can be specified for the random effect b. For example,
our original model can also be specified as

proc nlmixed data=test noad qpoints=3;
parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5 tau=3.9;
teta = b + beta1*treatn + beta2*time + beta3*time*treatn;
expteta = exp(teta);
p = expteta/(1+expteta);
model onyresp ˜ binary(p);
random b ˜ normal(beta0,tau**2) subject=idnum;
run;

in which the overall intercept β0 is now incorporated as average of the
random effects. Inclusion of random slopes in Model (15.1) can be done
with the following code:

proc nlmixed data=test qpoints=10 noad;
parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5

d11=16 d12=0 d22=0.1;
teta = beta0 + b1 + beta1*treatn + beta2*time

+ b2*time + beta3*time*treatn;
expteta = exp(teta);
p = expteta/(1+expteta);
model onyresp ˜ binary(p);
random b1 b2 ˜ normal([0, 0], [d11,d12,d22]) subject=idnum;
run;

with obvious parameterization for the means of all components in the
random-effects vector, and with the random-effects covariance specified
through its lower triangle. If for example, one wishes to incorporate in-
dependence of random intercepts and slopes, this is done by replacing the
RANDOM statement in the above program by

random b1 b2 ˜ normal([0, 0], [d11,0,d22]) subject=idnum;

When one wishes to directly estimate the correlation between random
intercepts and slopes, rather than their covariance, the following PARMS
and RANDOM statements can be used:

parms beta0=-1.6 beta1=0 beta2=-0.4 beta3=-0.5
d11=16 rho=0 d22=0.1;

random b1 b2 ˜ normal([0, 0],
[d11,rho*sqrt(d11)*sqrt(d22),d22])

subject=idnum;
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The ‘subject=’ option determines when new realizations of the random
effects occur. The procedure assumes the occurrence of a new realization
whenever the value of the variable specified in the ‘subject=’ option changes
from the previous observation. This is why the input dataset needs to be
sorted according to this variable (Section 15.1). Further, the RANDOM
statement allows inclusion of an output option of the form ‘out=dataset’
which requests an output dataset containing empirical Bayes estimates for
the random effects, together with their approximate standard errors.

The current version of the NLMIXED procedure allows one RANDOM
statement only, which poses some restrictions to flexibly specifying random-
effects models with random effects at different levels. In the examples con-
sidered so far, we had two levels in the design: A first level representing the
subjects, and a second level representing the measurements within the sub-
jects. An example where more than two levels would be required would be
the analysis of longitudinal profiles from children randomly sampled from
randomly sampled schools. In order to correctly account for the different
sources of sampling variability, random effects might be needed for schools
as well as for children within the schools. Such multi-level models can, to
some extent, be fitted within the NLMIXED procedure, but non-standard
coding is required.

15.4.2 The SAS Output
We now discuss some of the output produced by the original program pre-
sented in Section 15.4.1. The parameter estimates and associated standard
errors have already been reported in Table 14.2.

First, two tables are given, containing information about the specified
model, the observations in the dataset, and the numerical optimization
algorithms used in the model fitting process:

Specifications

Data Set WORK.TEST
Dependent Variable onyresp
Distribution for Dependent Variable Binary
Random Effects b
Distribution for Random Effects Normal
Subject Variable idnum
Optimization Technique Dual Quasi-Newton
Integration Method Gaussian Quadrature

Dimensions

Observations Used 1908
Observations Not Used 0
Total Observations 1908
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Subjects 294
Max Obs Per Subject 7
Parameters 5
Quadrature Points 3

The table labeled ‘Parameters’ lists the parameters in the model, their
starting values, and minus the log-likelihood evaluated in these initial pa-
rameter values:

Parameters

beta0 beta1 beta2 beta3 tau NegLogLike

-1.6 0 -0.4 -0.5 3.9 760.941002

The ‘Iteration History’ table gives a summary of the different steps in
the iterative optimization procedure. Depending on the chosen numerical
optimization algorithm, this table will contain different entries. The most
important ones are:

Iteration History

Iter NegLogLike Diff MaxGrad

1 747.757703 13.1833 129.7817
2 728.271809 19.48589 133.3329
3 686.505096 41.76671 116.594

.. .......... ........ ........

10 672.074434 0.000686 0.012941
11 672.074433 8.32E-7 0.000319

NOTE: GCONV convergence criterion satisfied.

At each intermediate step, minus the log-likelihood evaluated in the cur-
rent parameter values is reported, together with how much this value differs
from the value in the previous step. Further, the column labeled ‘MaxGrad’
reports the largest absolute value of the components in the gradient. At the
optimum, this value equals zero.

Fit Statistics

-2 Log Likelihood 1344.1
AIC (smaller is better) 1354.1
AICC (smaller is better) 1354.2
BIC (smaller is better) 1372.6
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The table termed ‘Fit Statistics’ gives minus twice the log-likelihood
value evaluated in the final solution, together with the information criteria
of Akaike (AIC) and Schwarz (BIC), as well as a finite-sample corrected
version of AIC (AICC). They have the same interpretation as discussed
earlier in Section 15.2.2. However, the information criteria are now defined
in terms of the maximized likelihood (obtained from numerical integration)
for the assumed model for the actually observed data, rather than on the
likelihood for the underlying pseudo-data, as was the case in Section 15.2.2.

The final part of the output is the table labeled ‘Parameter Estimates,’
which contains estimates and associated inferences for all the parameters
in the marginal likelihood:

Parameter Estimates

Standard
Parameter Estimate Error DF t Value Pr > |t| Alpha

beta0 -1.5221 0.3063 293 -4.97 <.0001 0.05
beta1 -0.3932 0.3812 293 -1.03 0.3031 0.05
beta2 -0.3198 0.03481 293 -9.19 <.0001 0.05
beta3 -0.09098 0.05236 293 -1.74 0.0833 0.05
tau 2.2555 0.1217 293 18.54 <.0001 0.05

Parameter Lower Upper Gradient

beta0 -2.1250 -0.9192 -0.00007
beta1 -1.1433 0.3570 -0.00002
beta2 -0.3883 -0.2513 0.000058
beta3 -0.1940 0.01207 0.000319
tau 2.0161 2.4950 -0.00003

As discussed in Section 14.6, the reported standard errors are obtained
from the inverse Fisher information matrix. The ratio of the estimate over
its standard error produces a t-value that is compared to a t-distribution
in order to obtain a formal test of significance. One hereby uses an ad
hoc number of degrees freedom equal to the number of subjects in the
dataset, minus the number of random effects. In our example, this results
in t-tests based on 294 − 1 = 293 degrees of freedom. In case one wishes
classical Wald-type tests (Z-tests), these can be obtained by pre-specifying
a large number of degrees of freedom. This is done through the ‘df=’ op-
tion in the NLMIXED statement. Based on the chosen t-approximation
to the standardized parameter estimate, lower and upper confidence limits
are reported based on the (1 − Alpha)100% confidence level. The default
‘Alpha’-value can be changed using the ‘alpha=’ option in the NLMIXED
statement. Finally, the column labeled ‘Gradient’ contains the first-order
derivative of the objective function with respect to each of the parame-
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ters in the marginal likelihood. Note that the maximal gradient value of
0.000319 reported previously in the ‘Iteration History’ table is the gradi-
ent value for the parameter β3, i.e., for the interaction between the time
trend and the treatment indicator. Finally, it should be emphasized that,
in general, the reported p-values for variance components should be inter-
preted with great care, due to possible occurrence of boundary problems,
as explained in Section 14.6.

15.5 Alternative Software Tools

In this chapter, we have extensively illustrated the use of the SAS package
for fitting generalized linear mixed models. Many other statistical software
packages offer tools for fitting these models, including HLM (Raudenbush
et al 2001), EGRET (Cytel Software Corpration 2000), gllamm in Stata
(Rabe-Hesketh, Pickles, and Skrondal 2001), and MIXOR and MIXREG
(Hedeker and Gibbons 1994, 1996).

As discussed in Chapter 14, there is a variety of methods available for
fitting generalized linear mixed models. They differ in the type of approx-
imation or in the order of the approximation. When using software, it is
therefore very important to be aware of what precisely has been imple-
mented. A full description of software tools can be found in Tuerlinckx et
al (2004) and in Skrondal and Rabe-Hesketh (2004).




