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Abstract: Computer technology constitutes a formidable asset in the acquisition,
manipulation, analysis, and modeling of neuroanatomical data. Single-cell arboriza-
tions can be digitally represented as a large number of connected cylinders. In
this form, neuronal structure is amenable to three-dimensional (3D) rendering,
extensive quantitative characterization, and computational modeling of biophysics,
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electrophysiology, outgrowth, network connectivity, and dynamics. This chapter de-
scribes the state of the art in neuron and network modeling, with particular emphasis
on the methods to acquire, analyze, and synthesize neuroanatomical data. Several
commercial and freeware systems are available to reconstruct neuronal morphology
in digital format, from a variety of preparations, either directly from the microscope
or off-line from captured images. The resulting, increasing amount of digital data
(and meta-data) can be archived and publicly distributed to maximize scientific im-
pact. This database enables continuing efforts in modeling dendritic branching of
neurons throughout the central nervous system, including cortex, cerebellum, and
spinal cord. The experimental acquisition of complete axonal projections from sin-
gle neurons poses additional challenges, which are only recently being overcome.
The combination of dendritic and axonal reconstructions (or models), together
with the surface and volumetric representation of the surrounding tissue, allows
the computational derivation of synaptic connectivity. Taken together, such models
constitute a powerful substrate for the implementation of large-scale, anatomically
realistic neural networks. These advances can be instrumental for the cross-scale
elucidation of the relationship between structure, activity, and function in the brain.

Keywords: algorithm, axon, computer, connectivity, dendrite, reconstruction, simu-
lation

I. INTRODUCTION

The mammalian brain is often referred to as the “most complex object
in the universe.” Indeed, the sheer number of cells and their connections
must be compounded with their exquisite organization, from the intricacy of
dendritic and axonal branching, to the specificity of the interactions among
neuronal classes. Facing such mighty complexity, neuroscientists have tra-
ditionally reverted to two levels of analysis. At the system level, descriptions
are typically qualitative, with interactions among functional components
simply tagged as “present” or “absent” (or perhaps “strong” and “weak”).
In contrast, quantitative characterization accompanies the reductionist ap-
proach to investigate ever more “elementary” components, from individual
cells to spines, synaptic densities, single receptors, their subunits, and indi-
vidual amino acids. Can the rigorous biophysical knowledge of cellular and
subcellular processes be synthesized at the network level?

Computer technology constitutes a formidable asset in the acquisition,
manipulation, analysis, and modeling of neuroanatomical data. Models have
played a fundamental role in most fields of science, including several sub-
disciplines within neurobiology. Neuroanatomy has somehow lagged be-
hind, as its cross-scale complexity prevented the intuitive development of
abstract theories. This deadlock can be now solved by adopting hardware
and software tools to render neuronal and network structures quantita-
tively accessible to our understanding. This chapter describes the state of
the art in neuron and network modeling, with particular emphasis on the
methods to acquire, analyze, and synthesize neuroanatomical data in digital
format.
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II. DIGITAL MORPHOMETRY OF SINGLE NEURONS

A. Computer Acquisition

Typical neuroanatomical experiments result in chemically processed tis-
sue mounted on a microscope slide. The corresponding observable micro-
scope image can only be further manipulated in a limited way. A key step
toward the flexible, quantitative, and extensive analysis and modeling of
these data consists of their computer acquisition or digitization. The result-
ing digital files represent data in numerical (machine-readable) format.

Among the essential elements of digital neuroanatomy (as of much of
neuroscience) are individual neurons. Ramon y Cajal pioneered the use of
camera lucida, or drawing tube, a system of mirrors mounted between the
microscope oculars and the stage, which allows the precise hand-tracing of
the specimen. With this method, still in use in many neuroscience labora-
tories, neuronal structure is captured on paper as a pencil drawing of its
two-dimensional (2D) projection.

Dendritic and axonal trees can be described in digital form as a series of in-
terconnected cylinders, each characterized by the three spatial coordinates
of the end point, the diameter, and the identity of the cylinder they are
attached to in the path to the soma. Several systems, alternative to camera
lucida, have been developed to acquire neuronal morphology directly in
digital form. The most widely adopted commercial system is MicroBright-
Field’s Neurolucida (www.microbrightfield.com). The Neurolucida setup
includes a computer–microscope interface, a motorized stage, and a com-
plete software suite (Glaser and Glaser, 1990). Similarly to the camera lucida
system, the user sees the computer’s monitor overlaid on the microscopic
image. However, instead of drawing with a pencil on paper, the user virtu-
ally draws the structure of interest with mouse clicks, and the digital file is
created in the computer memory in real time. Fine regulation of the focus
is logged as depth, yielding precise spatial information in all three dimen-
sions. The adjustable size of the mouse cursor determines the diameter of
the structure being traced. In addition, extended structures can be followed
continuously, thanks to the joystick-controlled horizontal movement of the
stage, virtually paralleled by corresponding moves on the drawing screen.
Neurolucida also allows the reconstruction of arborizations across multiple
serial sections (Fig. 19.1A).

An alternative to the online reconstruction of neurons at the microscope
is constituted by the semiautomated acquisition of a stack of (possibly tiled)
digital images, serially ordered by their depth (or focal plane). Digital re-
construction of neuronal morphology can then be carried out off-line. This
system allows lengthy reconstructions to be completed with minimal op-
eration of the (usually expensive) microscope, including from perishable
preparations such as fluorescence stains for confocal microscopy. In ad-
dition, image stacks can be postprocessed, e.g., by contrast optimization,
filtering, and deconvolution.



Figure 19.1. Computer-assisted digital reconstructions. (A) Screenshot from Micro-
BrightField’s Neurolucida r© software for 3D neuron reconstruction. This image
shows neuron reconstruction superimposed on a live image from the microscope.
Additional windows provide accessory tools that assist with the neuron tracing are also
shown. Neuron reconstruction by Robin Price. (Courtesy of MicroBrightField, Inc.)
(B) Neuron morpho ImageJ plug-in screenshot. The top window contains a cerebel-
lar climbing fiber image from a Z-stack captured by optical microscopy. A portion of
this image is enlarged in the bottom window, showing the semimanual tracing oper-
ation. Each reconstructed tracing point (red lines) is represented as one row in the
inset window. Column entries for each point correspond to a progressive numerical
identity, type, x, y , and z coordinates, radius, and identity of the parent segment.
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An additional powerful software for the off-line digital reconstruction of
neuronal morphology from image stacks is Neuron morpho (Fig. 19.1B),
a plug-in of the NIH-distributed imaging program ImageJ. Both ImageJ
(http://rsb.info.nih.gov/ij) and Neuron morpho (www.maths.soton.ac.uk/
staff/D’Alessandro/morpho) are freely available and run on all JAVA-
compatible platforms (including Windows, Linux, and MacOS). Another,
less widely used, system for digital reconstruction uses polynomial interpola-
tion to join 2D reconstructions from serial images (Wolf et al., 1995). Several
ongoing projects are also attempting to automate the digital reconstruction
processbypatternrecognition(e.g.,He et al., 2003;Rodriguez et al., 2003), an
extremely difficult but ultimately commanding step of progress in this field.

B. Digital Files

Digital neuronal morphologies can be displayed and inspected in
“pseudo-3D,” including angle views different from that originally imaged un-
der the microscope. Neurolucida offers its own rendering program, called
NeuroExplorer (Fig. 19.2). An extremely popular neuronal visualization
and editing software tool is Cvapp (Cannon et al., 1998), a freeware, JAVA-
based program that can be run both locally or through a web browser
(www.compneuro.org/CDROM/nmorph).

A major advantage of digital representation of neuronal structure is that
virtually any geometrical feature captured by the cylinder-based description
can be measured and statistically analyzed quickly, reliably, and precisely (see
also Appendix). Over 50 morphometric functions can be extracted from
single or multiple neuromorphological files with L-Measure (Scorcioni and
Ascoli, 2001), another JAVA program freely available both for download and
web-based usage (Fig. 19.2; www.krasnow.gmu.edu/L-Neuron).

Digital morphologies can be also used to implement anatomically
realistic simulations of neuronal biophysics and electrophysiology, e.g.,
with the popular NEURON environment (Hines and Carnevale, 2001;
www.neuron.yale.edu). A large collection of such models is available for
download and use (Migliore et al., 2003; http://senselab.med.yale.edu).

The computer acquisition of digital morphology is considerably labor in-
tensive (∼1 week-person per neuron). Thus, researchers willing to share
reconstructions with peers provide an invaluable service to the scientific
community (Gardner et al., 2003). Several electronic collections of neu-
ronal morphology are available for a variety of cell classes (reviewed in
Ascoli, 2002a; Turner et al., 2002). Although almost each archive of neu-
ronal reconstructions comes with its own unique file format (Ascoli et al.,
2001a), these can be easily interconverted using tools such as Cvapp and
L-Measure. Nevertheless, particular care must be taken in considering the
lab-idiosyncratic morphological characteristics, which can derive from spe-
cific experimental conditions and protocols, hardware and software setups,
and individual operators’ bias (Scorcioni et al., 2004).
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Figure 19.2. Electronic tools for rendering and analyzing neuronal morphol-
ogy. (A) Cvapp display of a neuron from Markram’s neocortical database
(http://microcircuit.epfl.ch; LBC cell C300301B1 from layer 4). (B) Screenshot (in-
set) of the L-Measure web-based graphical user interface (see also Appendix). (C)
Screenshot from MicroBrightField’s NeuroExplorer (TM) software showing results
of quantitative morphological analyses and an interactive 3D graphical representa-
tion of a reconstructed neuron. (Courtesy of MicroBrightField, Inc.)
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C. Dendritic Modeling

A single neuron can be represented in digital form by tens of thousands of
3D coordinates of its branching neurites. This structure can be modeled by
designing algorithms to generate synthetic neurons in virtual reality (Ascoli,
1999). The natural variability of neuronal anatomy within a given morpho-
logical class can be captured by stochastic simulations, in which nonidentical
virtual cells are generated in different runs of the model (provided that the
seed of random number generation is changed). If the parameters of the
algorithm have a straightforward geometric meaning, their statistical distri-
butions can be extracted directly from the populations of real neurons to
be modeled (Ascoli and Krichmar, 2000).

A seminal example of this approach is Burke’s diameter-based model of
dendrogram geometry (reviewed in Burke and Marks, 2002). In this algo-
rithm, dendrites sequentially elongate by a unitary length step, each time
sampling diameter dependent, experimentally derived, bifurcation and ter-
mination probabilities. If a bifurcation is sampled, two daughter segments
are attached at the next steps. If a termination is sampled, the growth of the
given branch stops. If neither a bifurcation nor a termination is sampled,
another dendritic segment is attached and the process repeats. Originally
developed to describe spinal motoneurons, variations of this model have
been successfully applied to cerebellar Purkinje cells (Ascoli et al., 2001b)
and hippocampal pyramidal cells (Donohue et al., 2002) as well (Fig. 19.3).

Models of dendritic morphology exclusively based on branch diameter
are generally under constrained. In other words, the simulated neurons
tend to display greater variability than observed in the real cells. In a recent
advancement, hidden variables (specifically, path distance and the number of
terminal tips, or degree) were exploited to address this issue. All model param-
eters were made dependent on the local values of the hidden variables, which
were updated at every step of the algorithm. The resulting hidden Markov
model successfully captured all relevant properties of dendrogram geometry
in hippocampal pyramidal cells (Samsonovich and Ascoli, in press).

An additional element in neuromorphological modeling is the spatial em-
bedding of dendrograms, i.e., the 3D orientation of dendrites. Dendrites can
be described as “pointing” in a given absolute direction, or in an orienta-
tion relative to the origin of their internal coordinates, i.e., the soma (Ascoli,
1999). A Bayesian method was recently introduced to measure the relative
contribution of these various components of tropism from experimental
data (Samsonovich and Ascoli, 2003). In all principal cell classes of the rat
hippocampus, it was found that the major (and only statistically significant)
component of systematic growth was away from the soma. Thus, the heavily
polarized shape of hippocampal pyramidal and granule cells may be solely
produced by the local orientation of the stems from the soma, which may
be genetically determined. As a result, a simple two-parameter model (only
specifying the amount of “push” away from the soma, and that of random
deflection) can surprisingly capture the emergent shape of these cell classes
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Figure 19.3. Simulated dendritic morphologies. (A) Diameter-based model of a spinal
motoneuron. Scale bar: 1000 µm. (B) Diameter-based model of a cerebellar Purkinje
cell. Scale bar: 50 µm. (C) Hidden Markov model of a hippocampal CA3 pyrami-
dal neuron. Scale bar: 100 µm. (D) Hidden Markov model of a hippocampal CA1
pyramidal neuron. Scale bar: 100 µm. (E) Globally constrained model of a dentate
granule cell. Scale bar: 100 µm.

(Fig. 19.3). Thus, the hidden Markov model of dendrograms and the algo-
rithm of dendritic orientation together constitute a remarkably complete
description of neuronal morphology, which was recently also applied to
dentate granule cells (Samsonovich and Ascoli, in press).

An alternative model of granule cell morphology was developed based on
global constraints such as the position of terminations along the principal
component of the dendritic field (Winslow et al., 1999). While the resulting
shape coarsely reproduces the structure of real neurons (Fig. 19.3), algo-
rithms of this type cannot be taken (even metaphorically) as mechanistic
models of development, because real growing branches have access only to
locally expressed and stored signals, and not to global information regarding
the whole tree or the distal surrounding environment.

Nevertheless, algorithms based on the overall distribution of branching
probability against the number of bifurcations, even if a global termination
is externally imposed to the whole tree, can still be taken as descriptive models
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of development, if they capture the temporal dynamics of neuronal growth
(Van Ooyen and Van Pelt, 2002). From this point of view, even local models
based on dendritic diameter must be considered “hidden,” since the param-
eter distributions are measured from adult shapes, and kept constant during
virtual growth. An extensive review of computational models of neuronal
outgrowth, with a discussion of the strengths, weaknesses, and biological
plausibility, has been recently published (Donohue and Ascoli, 2004).

III. AXONAL CONNECTIVITY IN THE ELECTRONIC AGE

A. Semiautomated Vectorization

Computer-assisted digital reconstructions of dendritic trees, albeit time-
consuming, have now become standard routine in modern cellular neu-
roanatomy laboratories. The axonal arborizations of projection neurons,
however, are simply too huge to be digitized in the same fashion. Only a
small number of such reconstructions have been successfully completed in
what amounts to a truly heroic effort of dedicated individuals. Camera lu-
cida tracings are still widely adopted to obtain a permanent graphic record
of axonal projections from single neurons. How can these data be converted
in digital form for improved analysis and modeling?

Pencil drawings can be computer-acquired with a high-resolution scanner,
and a segment representation of the tracings can be obtained with freely
available software (e.g., www.wintopo.com). Alternatively, camera lucida pro-
jections can be directly acquired in electronic form by using computer-
interfaced tablets (e.g., Gras and Killman, 1983). In both cases, the result
is a set of digitized but disjoined segments (for a technical comparison, see
Ewart et al., 1989).

Using a tablet-acquired data set from Tamamaki et al. (1988) as a test bed,
we have recently developed an algorithm to fully reconnect axonal arboriza-
tions in the same format as typically obtained with the techniques described
in section “Computer Acquisition” (Fig. 19.4). This implementation (which
can be also applied to scanned-in camera lucida paper-and-pencil drawings)
simply follows a nearest-neighbor strategy, taking into account the average
spread of axonal branches in the thickness of the serial sections (Scorcioni
and Ascoli, in press).

Using this semiautomated vectorization procedure, we reconstructed
eight complete axonal morphologies from individual neurons, including
at least one for each of the principal cell classes of the hippocampal forma-
tion: entorhinal cortex layer II stellate cells, dentate gyrus granule cells, CA3,
CA2, and CA1 pyramidal cells, and subicular neurons (Fig. 19.5). While the
amount of effort required to hand-trace these large arborizations on paper
or tablets is still quite considerable, the semiautomated image processing
now makes it feasible to obtain larger collections of digital axonal data from
each neuronal class.
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Figure 19.4. Reconstruction of axonal trees from manual tracings. (A) Raw vector-
ized data. Note various disconnected segments (arrows). (B) Algorithmically con-
nected arborization. Long thin arrows indicate branches that have been joined by
an additional segment. Short thick arrows indicate “true” gaps that should remain
disconnected in the final reconstruction.
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Figure 19.5. Montage of complete ipsilateral projections of one axon from each of
the principal cell classes of the hippocampal formation. (A) Lateral view. 1 (purple):
subicular pyramidal neuron; 2 (light blue): enthorhinal layer II spiny stellate cell;
3 (dark blue): CA3 pyramidal cell; 4 (red): CA2 pyramidal cell; 5–7 (light-to-dark
green): three (distal, medial, and proximal) CA1 pyramidal cells. (B) Horizontal
view. (C) Coronal view. (Raw data provided by Dr. N. Tamamaki.)

B. Derivation of Connectivity

A powerful application of digital neuronal reconstructions is constituted
by the computational derivation of the potential for connectivity among
cell classes. In particular, when axonal and dendritic arborizations share
the same anatomical space, it is possible to identify a minimum interaction
distance within which synapses could be established. A similar (and compu-
tationally equivalent) approach consists of defining a “sphere of influence”
around neurites, and analyzing their overlaps. In either case, given an “in-
put” and “output” arborization, it is possible to mathematically derive the
number and spatial distribution of potential synapses (e.g., Kalisman et al.,
2003).
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The relevant geometric parameters for this analysis (e.g., interaction dis-
tance) can be estimated from experimental data, such as the size of dendritic
spines, the interbouton distance on axons, and the length of growth cones.
It is important to stress that this approach yields an estimate of the potential
for synaptic connectivity, rather than a direct number of synapses. This po-
tential can be regarded as an upper limit of the number of synapses, or as
the combinatorial pool of possible synapses, a subset of which is expressed at
any given time. In light of the anatomical plasticity of synaptic connections
(which are formed and eliminated continuously in at least some regions
of the cortex), this measure can be physiologically relevant in the study of
the cellular and network bases of learning and memory (Stepanyants et al.,
2004).

Potential connectivity is affected both by the intrinsic shape of afferent
and efferent cells and by their spatial distribution and orientation. Thus, this
type of analysis yields results that are cell-class specific, and can be used to
compare different types of neurons within an anatomical region, inferring
their possible functional roles (Stepanyants et al., 2004). This approach has
also been applied to elucidate the information processing in entire sensory
pathways of model systems down to synaptic level ( Jacobs and Pittendrigh,
2002). Alternatively, it is possible to estimate parameters of the spatial dis-
tribution of specific morphologies to ensure effective connectivity of the
network (Costa and Manoel, 2003).

Information of system-level connectivity among brain regions is currently
being collated in electronic databases, such as the Brain Architecture Man-
agement System (Bota and Arbib, 2004; http://brancusi.usc.edu/bkms).
The advances in computational neuroanatomy described in this and pre-
vious sections of this chapter will soon make it possible to create web-based
archives of neuronal connectivity at the cellular level (Ascoli and Atkeson,
in press).

C. Models of Axonal Navigation

Projecting neurons navigate long distances toward their target before ex-
pressing full arborizations in the neuropil (see, e.g., Fig. 19.5). Therefore,
computational models of axonal anatomy must include algorithmic descrip-
tions of pathfinding in addition to intrinsic structural determinants. Much
is known about the molecular correlates of axonal navigation (e.g., Dono-
hue and Ascoli, 2004). Nonetheless, the theoretical understanding of these
complex phenomena is still incomplete, and relatively little information has
been so far integrated in computational models.

Senft and Ascoli (1999) proposed a phenomenological model in which
axons navigated toward groups of neurons (or glia), turning and possibly
bifurcating depending on their local orientation relative to their target,
until they arrived within a given distance. At this point, axons started es-
tablishing synapses, again turning and bifurcating as necessary to optimally
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interact with their local postsynaptic counterparts. After making synaptic
contact, the axonal branch in this model was temporarily inhibited from
further synapsing. This “refractory period” was a critical parameter of the
algorithm, which could discriminate among diverse axonal morphologies
such as perforant pathways, sprouting neurites, and climbing fibers (long-,
medium-, and short-lasting inhibition, respectively).

Earlier computational models concentrated on a mechanistic descrip-
tion of the biophysical processes underlying axonal movement, such as
filopodial dynamics (Buettner, 1995). Several studies have focused on the
mathematical description of chemical and cellular gradients as the main
guiding cue for axons (e.g., Goodhill, 1998). Increasing attention in com-
putational neuroanatomy is also being paid to the effect of competition
(both for external targets and for internal metabolic resources) among ax-
ons (Van Ooyen and Van Pelt, 2002). A recent model integrated gradient
navigation, axon–axon interaction, and the further influence of patterned
activity (Yates et al., 2004). Other relevant efforts include the attempt to
describe neuritic navigation and connectivity in 2D with a cell automata for-
malism (Segev and Ben-Jacob, 2000), and the introduction of cell fate mech-
anisms in the computational description of axonal pathfinding (Eglen and
Willshaw, 2002).

Notably, the relative scarcity of complete axonal reconstructions in digital
format prevents a rigorous statistical comparison of the simulated axonal
morphologies with the corresponding experimental data. In this sense, a
wealth of useful data may become available when the resolution of Diffusion
Tensor Imaging reaches the scale of individual axonal bundles (Mori, 2002).

IV. BOTTOM-UP NETWORK MODELING

A. System-Level Boundaries and Virtual Stereology

Axonal projections (and in some cases, dendritic trees as well) are typi-
cally affected by system-level geometric constrains, such as the shape of the
afferent and efferent nuclei and regions. Thus, in order to fully characterize
neuritic shape and neuropil connectivity, it is important to include in the
model a digital representation of the relevant tissue and layer boundaries.
These data can be acquired from neuroanatomical preparation in ways sim-
ilar to those described in “Computer Acquisition.” Suitable raw data include
high-resolution ex vivo microscopic magnetic resonance imaging, or µ-MRI
(see, e.g., Lester et al., 2002), cytostructural boundaries traced from intra-
cellular filling experiments (Fig. 19.6), or classic histochemical preparation
such as Nissl or myelin stains.

From serially traced system-level boundaries, it is possible to compute
continuous surfaces (rendered, e.g., as tiled triangles) and the correspond-
ing volumes (list of internal voxels). Both representations carry impor-
tant information. Surfaces often determine the orientation of axonal and
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Figure 19.6. Cytostructural boundaries of the rat hippocampus traced from serial
sections. (A) Dorsolateral view. Dentate gyrus and Ammon’s horn are clearly visible
in both the left and right hippocampi. (B) Mediocaudal view. One of the hippocampi
is approximately displayed along its transversal axis, and the other one along its
longitudinal axis. (Raw data provided by Dr. N. Tamamaki.)

dendritic arborization, while cell bodies, synapses, and branch coordinates
can be virtually positioned in the appropriate volumes. Following this strat-
egy, a large number of reconstructed (or simulated) neurons can be as-
sembled in 3D (Scorcioni et al., 2002) to “recreate” regional anatomy from
cellular-level information (Fig. 19.7).
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Figure 19.7. Large-scale model of the rat dentate gyrus showing one thousand granule
cells (green) over a surface reconstruction of the cellular layer (blue), and the axon
from a single spiny stellate cell (purple) projecting from layer II of the entorhinal
cortex. (A) Dorsomedial view. (B) Detail on one of the dentate blade endings. (C)
Detail from within the hilus. The volume is mostly empty as the granule cell axons
(mossy fibers) are not included in the visualization.

Large-scale neuroanatomical models such as those displayed in Fig. 19.7
can be used to compute synaptic connectivity (see section “Derivation
of Connectivity”), as well as to impose global constraints to models of
neuronal morphology (see “Dendritic Modeling” and “Models of Axonal
Navigation”). “Virtual slices” at arbitrary planes of orientation can be
explored to foster intuition and guide electrophysiological and anatomi-
cal experiments. In addition, basic stereological properties, such as spa-
tial occupancy and density of various subcellular components (e.g., den-
drites and axons), can be derived for each layer and position in the
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virtual tissue. This approach has been applied to evaluate optimal mo-
toneuron packing in the spinal cord (Burke and Marks, 2002), to quan-
titatively analyze the basal forebrain corticopetal system (Zaborszky et al.,
2002), and the somatosensory cerebro–cerebellar and ascending auditory
pathways (Leergaard and Bjaalie, 2002). An important application of this
line of study will consist of the inclusion of glia and blood vessels in
considering the relationship between structure and function in neural
systems.

B. Anatomically Realistic Neural Networks

Biophysical models of single-cell electrophysiology now routinely include
a faithful description of neuronal morphology and account for the result-
ing functional compartmentalization (e.g., Lazarewicz et al., 2002a; Migliore
et al., 2003). In contrast, most artificial neural networks have grown increas-
ingly abstract, and retain almost none of the anatomical characteristics of the
brain regions they are supposed to represent. Recent efforts, however, have
concentrated on the development of anatomically realistic neural network
models.

Small networks can be assembled “by hand” out of individual cell models,
within the framework of existing modeling environments, such as NEURON
(e.g., www.physiol.ucl.ac.uk/research/silver a/neuroConstruct). Even with
massively parallel supercomputers, however, simulation of activity dynamics
at the level of subcellular electrophysiological mechanisms can be carried
out only for a limited number of neurons. Nevertheless, simple, compu-
tationally efficient formalisms exist to capture essential neuronal dynamics
(Izhikevich, in press), which can be in principle applied to real-scale network
models. The problem remains to automatically and efficiently assemble a
realistic anatomical network construct.

The cellular-level anatomy of the CA1 area of a hippocampal slice was sim-
ulated with the powerful ArborVitae software (Senft and Ascoli, 1999). Cell
bodies for a variety of morphological classes were distributed in layers, sub-
sequently warped to reproduce the natural folds of the rodent archicortex.
Dendrites were then virtually grown in 3D using approaches as described
in “Dendritic Modeling.” Finally, axons were made to navigate toward and
connect with targets specified according to the known wiring diagram of
area CA1. The whole simulation could be run, displayed, and saved in a
limited amount of time.

Recently, ArborVitae was augmented with the ability to “read in” digital
representations of system-level experimental data of layer surfaces and re-
gional volumes. Thus, cells can be distributed according to their precise
spatial location, while axons’ navigation can be simulated through a “real”
voxel substrate (Senft, 2002). Figure 19.8 shows an example of this appli-
cation to the simulation of a corticothalamic projection within an imaged
human brain.
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Figure 19.8. An ArborVitae model of human corticothalamic projections. (A)
Reverse-contrast display of axons departing from a cortical sulcus and navigating
through the white matter toward the thalamus. (B) Zoom-in on the gray matter,
with several cortical neurons visible. Unique colors were assigned to each individual
cell and its respective processes. (Courtesy of Dr. S. L. Senft.)
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The results of ArborVitae simulations can be used to model (offline) the
activity dynamics of neuronal populations. The results can then be reloaded
for interactive display and analysis. In fact, once the specific connectivity
among all cellular classes is obtained from anatomical data (see section
“Derivation of Connectivity”), neural network dynamics can be run without
the need to explicitly simulate and display the details of network structure
(e.g., Ascoli and Atkeson, in press). Three-dimensional arrangements of
neurons are however essential to reproduce system-level properties cap-
tured by imaging techniques, such as EEG and fMRI, as well as functional
interactions with other complex components (e.g., glia).

V. PHYSIOLOGICAL RELEVANCE

A. Influence of Morphology on Neuronal Electrophysiology

Paradoxical as it may sound to the readers of this book, many theoretical
neuroscientists question the need to consider anatomy in computational
models of the nervous system. In fact, many early computational models
of brain function, from the (sub)cellular to the system level, essentially
approximated neuroanatomy away. Recent mounting evidence (especially
from modeling studies), nevertheless, indicates that both neuronal mor-
phology and network connectivity play a critical role in shaping activity (and
thus, presumably, function).

At the cellular level, there is widespread consensus that the integrative
properties of dendrites in most neuronal classes are sculpted by their active
membrane properties (e.g., Migliore et al., 2003). Voltage-dependent chan-
nels, however, are not always uniformly distributed throughout the dendritic
trees, creating complex interactions that can only be investigated with nu-
merical simulations. For example, the peculiar bursting activity of CA3 pyra-
midal cells can be obtained with two distinct channel distributions, but the
corresponding subcellular mechanisms are drastically different (Lazarewicz
et al., 2002b).

If the distribution of channels is maintained uniform throughout the
dendritic trees, nearly all of the known neocortical spiking patterns can sim-
ply derive from the different morphologies of the various neuronal classes
(Mainen and Sejnowski, 1996). Specifically, the ability of action potentials
to forward- and back propagate in the neuronal dendrites of various mor-
phological classes is dramatically variable due to the geometrical difference
alone (Vetter et al., 2001). The topological structure of the trees also influ-
ences firing patterns (Van Ooyen et al., 2002).

Even the natural variability among individual neurons within a morpho-
logical class can heavily affect spiking dynamics. When simulated with the
same plausible distribution of membrane properties, a set of morpholog-
ically accurate CA3 pyramidal cells were shown to fire both regularly and
irregularly, with a wide frequency range between 1 and 100 Hz (Krichmar
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et al., 2002). Such a morphological control of electrophysiological behavior
was robust with respect to the distribution of active channel and the sim-
ulation protocols (reviewed in Krichmar and Nasuto, 2002). Similarly, in
a combined experimental and computational study, Schaefer et al. (2003)
showed that temporal integration in neocortical pyramidal cells is affected
by the proximal branching pattern in apical trees.

As these biophysical mechanisms relating structure and activity at the sin-
gle neuron level are uncovered, it is important to critically consider the
corresponding subtlety in the representation of digital anatomy in elec-
trophysiological simulations (Lazarewicz et al., 2002a). Depending on both
experimental and simulation protocols, morphologies of the same class, re-
constructed in different laboratories, can yield more disparate firing prop-
erties than can morphologies of different classes, reconstructed in the same
laboratory (Scorcioni et al., 2004).

B. Network Dynamics

Since morphology affects the intrinsic excitability of individual neurons,
it can be expected to influence network dynamics as well. There are, how-
ever, multiple additional avenues of interaction between neuroanatomy and
network activity. For example, the spatial location of the neurons and the
axonal path length can determine the pattern of onset response latencies
(e.g., Kotter et al., 2002).

The typically laminated arrangement of fiber tracts in the cortex also
determines the synaptic position in the dendritic layers. This in turn corre-
lates with the electrotonic distance of the input signal from the soma. Even
an oversimplified model of passive integration can illustrate that specify-
ing this elementary level of anatomical information deeply changes nearly
all dynamical aspects of a recurrent network (Ascoli, 2003). Similar conclu-
sions can be drawn in less orderly and more abstract Hopfield-type networks
(Costa et al., 2003).

When multiple cell classes are considered within a subregion, the specific
pattern of their connectivity also powerfully modulate the input–output
function of neural network (Ascoli and Atkeson, in press). Thus, the func-
tion of a given subclass, and the robustness of its contribution to network
activity, can be inferred individually for each neuronal class of the subregion.
In this perspective, biological neural networks can be viewed as assemblies
of functional motifs. The internal anatomy of each motif determines its spe-
cific function. Likewise, the anatomy of the motif assembly determines the
overall network function.

It should be noted that neuronal structure correlates with and in fact de-
termines all of the above characteristics (time delays, electrotonic distances,
synaptic connectivity), as well as the intrinsic firing properties of each mor-
phology class (and individual cell). Thus, the effects of several of these
characteristics are likely to be strongly correlated in biological networks. It
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is parsimonious to hypothesize that various levels of biophysical organiza-
tion, such as distribution of dendritic channels, branching pattern, layer
position of synapses, and class-specific interconnectivity, coevolved to ro-
bustly express the desired network functions. This coevolution may also
guarantee a certain degree of homeostatic balance in the resulting activity
dynamics.

Given the intricacy of these interactions, computational modeling is ex-
tremely useful to separate (at least in silico) and quantitatively examine the
contributions of each anatomical property to network dynamics. Anatomi-
cally realistic neural network models carry the potential to similarly investi-
gate several other mechanisms of interaction between structure and activity.
These include, but are not limited to, ephaptic interactions, intrinsic (or
extrinsic) electric field modulation of neuronal firing, chemical inhomo-
geneity in the extracellular medium, glia buffering, and control. Finally,
these effects should be expected to be compounded with the natural in-
terindividual variability of neural connectivity, and the related functional
and structural effects of (and on) synaptic plasticity.

C. Design Principles

A complementary approach to understanding the physiological relevance
of neuron and network anatomy consists of the analysis of the possible
principles underlying their structural design. For example, dendritic trees
can be observed to increase their space occupancy (i.e., elongate and sprout
additional branching) in response to deafferentiation, due, e.g., to lesioning
of the presynaptic cell population (Shetty and Turner, 1999). This experi-
mental observation could be interpreted by postulating that the principle
behind, or goal of (some of the characteristics of), the shape of dendrites is
the homeostatic formation of a given number of synapses. This hypothesis
can be further tested by altering the number of synapses with a different
extrinsic manipulation.

A popular assumption is that biological shape has evolved to optimize
the expression of its intended function while minimizing the metabolic or
structural cost, such as the total wiring length of input and output cables
(Cherniak et al., 2002). In particular, both the axonal branching pattern
(Mitchison, 1992) and the volumetric ratio between axon and dendrites
(Chklovskii et al., 2002) appear to be close to optimal in the mammalian
neocortex. The clustered organization of cortical connections reflect a key
topological characteristic of small-world networks (Hilgetag and Kaiser, in
press), resulting in highly efficient yield of functional connectivity despite a
limited physical connectivity.

The same design principles can be investigated at larger scales. For ex-
ample, the spatial placement of macroscopic components of the nervous
system (functional subregions in the cortex, or ganglia in invertebrates) can
be also compatible with optimal wiring and connectivity (e.g., Young and
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Scannell, 1996). Similarly, the intricate spatial pattern of ocular columns
may correspond to the optimization of the trade-off between coverage and
continuity (Carreira-Perpinan and Goodhill, 2002).

VI. CONCLUSIONS AND FUTURE PERSPECTIVES

A central tenet of neuroinformatics is the digital representation and
archiving of (in principle) all relevant information about the nervous system
(Ascoli et al., 2003). This goal may constitute a powerful basis for the creation
of a large-scale, low-level model of brain structure, activity, and function.
Neuroanatomy is leading the pack of success stories in neuroinformatics
(Ascoli, 2002b). What is the rationale for envisioning a structural model of
the brain, down to the detail of dendritic morphology (Samsonovich and
Ascoli, 2002)?

Virtual experiments can be carried out quickly, reliably, safely, and inex-
pensively. In silico investigations can go beyond the boundary of wet lab
technical and physical limits (e.g., simultaneously recording from millions
of neurons). They allow the exploration of a large number of promising
questions, and optimal experimental conditions (only the best of which
to be implemented in a “real” experiment). Virtual experiments can also
examine the theoretical effect of each model parameter separately by pre-
cisely reproducing all other initial conditions. Finally, they limit the use of
ethically charged invasive procedures. A detailed, large-scale model of the
mammalian brain will also foster scientific education both at the basic and
advanced levels.

A simple estimation of the computational power necessary to handle the
structure and activity of billions of neurons and trillions of synapses may lead
to the conclusion that a truly realistic model of the brain at the cellular level
is implausible in any foreseeable future. However, such a model could be
dynamically computed piecewise with a multiscale strategy. When virtually
recording the overall activity of the cortex, no detail may be necessary about
dendritic spines in the cerebellum. Certainly, powerful computational and
statistical techniques will be required to exploit such a large-scale model, yet
such challenges in silico look less insurmountable than those faced when
envisioning the corresponding experiments in real brains.

Devil’s advocates will maintain that neuroscience is still too far from the
reach of such a grand goal. While this argument is difficult to disagree with, it
is relieving to look at the temporal growth of the GeneBank database. From
the start of the Human Genome Project (1986), it took 6 years to establish
acceptable guidelines, and almost 10 years to complete the yeast genome.
Yet only 3 years after that, an entire human chromosome was mapped. It
was only one additional year (2000) before all 23 human chromosomes were
completed. The clearly exponential graph now looks dramatically flat until
the incept of the quite recent boom. The creation of a realistic, large-scale
human brain model may follow a similar pattern.
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Although the computational power of hardware and software is increas-
ing at an exponential rate, so is the amount of experimental data col-
lected in biomedical sciences in general, and neuroscience in particular.
In principle, much of these data need to be incorporated in the realis-
tic model. Neuroinformatics started when experimental neuroscience was
already a mature field. Is modeling catching up, or is the gap between rel-
evant published data and corresponding computational simulations ever
widening?

The answer to this question depends on what is meant by “relevant,”
i.e., what level of modeling computational neuroscientists are designing.
This, in turn, is defined by the type of scientific explanation being sought,
e.g., behavior in terms of genes, network rhythms in terms of neuronal
spiking properties, synaptic strength in terms of calcium buffering. In this
perspective, computational models become a constructive definition of our
quantitative understanding of the structure, activity, and function of the
nervous system. The “ultimate race” between experiments and models, then,
is along the fine line dividing data and knowledge.

APPENDIX

A. Simple Extraction of Morphometric Parameters with L-Measure

Common measurements extracted from neuronal morphology include
total neuronal length and minimum, average, and maximum dendritic di-
ameter. As a first basic example, a step-by-step guide is given, showing how
to extract these basic parameters with L-Measure. Only requirements are an
Internet connection and a JAVA-enabled browser.

1. Connect to the online version of L-Measure at www.krasnow.gmu
.edu/L-Neuron (click “L-Measure” in the left column, then click “On-
line Version”). A security window will appear to ask for access permis-
sion, click “Yes.”

2. From the panel “Function,” select “Length” in the top left box, and
then click “Add.” A new measurement “Length” will appear in the list
of functions to be measured on the right.

3. From the same panel, add function “Diameter.”
4. From the panel “Input,” open and add the neurons you wish to

analyze and measure. You can freely download electronic neuronal
sample from www.krasnow.gmu.edu/L-Neuron (click “Morphology
Database”).

5. From the panel “Go” click the “Go” button. L-Measure will list all ex-
tracted measurements in the bottom panel. For each selected function,
L-Measure displays six values:

a. Total sum: In case of “Length” this is the total sum of all segment
lengths, which represents the first desired measurement.
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b. Compartments included: It lists how many compartments were in-
cluded in this measurement.

c. Compartments excluded.
d. Minimum value: It reports the minimum value for the specified

function. In the diameter row, this represents the second desired
measurement.

e. Average value: It reports the average value across all segments (the
third desired measurement).

f. Maximum value: In the diameter row, this represents the fourth
desired measurement.

g. Standard deviation.

B. A More Complex Example

This section illustrates a more complex example in which a Sholl dia-
gram of length vs. Euclidean distance is generated from basal dendrites
with a sphere radial increment of 50 µm. For this section, a pyramidal
cell in SWC file format is required, which can be freely downloaded from
www.krasnow.gmu.edu/L-Neuron (click “Morphology Database”).

1. Connect to the online version of L-Measure at www.krasnow.gmu
.edu/L-Neuron (click “L-Measure” in the left column).

2. From the “Specificity” panel, select the function “Type” and insert
the value “3” followed by the “=” radio button. Then click the “Add”
button (type = 3 in SWC files identifies basal dendrites).

3. From the top left box in the “Function” panel, select “Length.”
4. From the bottom left box, select “Euclidean Distance.”
5. Select “Width of Bins” from the bottom radio button, and insert a

value of 50.
6. Click the “Add” button. A new function named “Length vs. Euclidean

Distance” will be added to the right top panel.
7-A. In the “Input” panel, add the SWC neuronal reconstruction file.

8. In the “Go” panel, click the “Go” button. The bottom box will show
the resulting measurement table.

To obtain a graphical representation of the Sholl diagram, additional steps
are required together with a spreadsheet-like software, such as Microsoft
Excel. To obtain an Excel compatible output, insert the following extra step
into the above sequence:

7-B. In the “Output” panel, click the “Save As” button, choose a directory,
and write “example.xls.”

9. Double-click the produced “.xls” file. Microsoft Excel will automati-
cally recognize and open the selected file.

10. Within Excel, select the first two rows.
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11. Click the “Chart Wizard” button.
12. Select “XY scatterplot.”
13. Press “finish.”
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