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Abstract 
Combinatorial min-cut algorithms on graphs have emerged as an increas­

ingly useful tool for problems in vision. Typically, the use of graph-cuts is 
motivated by one of the following two reasons. Firstly, graph-cuts allow ge­
ometric interpretation; under certain conditions a cut on a graph can be seen 
as a hypersurface in N-D space embedding the corresponding graph. Thus, 
many applications in vision and graphics use min-cut algorithms as a tool 
for computing optimal hypersurfaces. Secondly, graph-cuts also work as a 
powerful energy minimization tool for a fairly wide class of binary and non-
binary energies that frequently occur in early vision. In some cases graph 
cuts produce globally optimal solutions. More generally, there are iterative 
techniques based on graph-cuts that produce provably good approximations 
which (were empirically shown to) correspond to high-quality solutions in 
practice. Thus, another large group of applications use graph-cuts as an op­
timization technique for low-level vision problems based on global energy 
formulations. 

This chapter is intended as a tutorial illustrating these two aspects of 
graph-cuts in the context of problems in computer vision and graphics. We 
explain general theoretical properties that motivate the use of graph cuts, as 
well as show their limitations. 

5.1 Introduction 

Graph cuts remain an area of active research in the vision and graphics com­
munities. Besides finding new applications, in the last years researchers have 
discovered and rediscovered interesting links connecting graph cuts with other 
combinatorial algorithms (dynamic programming, shortest paths [107, 477]), 
Markov random fields, statistical physics, simulated annealing and other regular-
ization techniques [362, 113, 424], sub-modular functions [491], random walks 
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and electric circuit theory [356, 357], Bayesian networks and belief propagation 
[790], integral/differential geometry, anisotropic diffusion, level sets and other 
variational methods [767, 109, 28,477]. 

Graph cuts have proven to be a useful multidimensional optimization tool 
which can enforce piecewise smoothness while preserving relevant sharp discon­
tinuities. This paper is mainly intended as a survey of existing literature and a 
tutorial on graph cuts in the context of vision and graphics. We present some ba­
sic background information on graph cuts and discuss major theoretical results, 
some fairly new and some quite old, that helped to reveal both strengths and limi­
tations of these surprisingly versatile combinatorial algorithms. This chapter does 
not provide any new research results, however, some applications are presented 
from a point of view that may differ from the previous literature. 

The organization of this chapter is as follows. Chapter 5.2 provides necessary 
background information and terminology. In their core, combinatorial min-
cut/max-flow algorithms are binary optimization methods. Chapter 5.3 presents 
a simple binary problem that can help to build basic intuition on using graph cuts 
in computer vision. Then, graph cuts are discussed as a general tool for exact 
minimization of certain binary energies. 

Most publications on graph cuts in vision and graphics show that, despite their 
binary nature, graph-cuts offer significantly more than "binary energy minimiza­
tion". Chapter 5.4 shows that graph cuts provide a viable geometric framework 
for approximating continuous hypersurfaces on N-dimensional manifolds. This 
geometric interpretation of graph cuts is widely used in applications for com­
puting globally optimal separating hypersurfaces. Finally, Chapter 5.5 presents 
generalized (non-binary) graph cuts techniques applicable to exact or approxi­
mate minimization of multi-label energies. In the last decade, such non-binary 
graph cut methods helped to significantly raise the bar for what is considered a 
good quality solution in many early vision problems. 

5.2 Graph Cuts Basics 

First, we introduce some basic terminology. Let Q = (V, £̂ ) be a graph which 
consists of a set of nodes V and a set of directed edges S that connect them. The 
nodes set V = {s,t)\JV contains two special terminal nodes, which are called 
the source, s, and the sink, t, and a set of non-terminal nodes V. In Figure 5.1(a) 
we show a simple example of a graph with the terminals s and t. Such N-D grids 
are typical for applications in vision and graphics. 

Each graph edge is assigned some nonnegative weight or cost w{p, q). A cost 
of a directed edge (p, q) may differ from the cost of the reverse edge [q,p). An 
edge is called a t-link if it connects a non-terminal node in V with a terminal. An 
edge is called a n-link if it connects two non-terminal nodes. A set of all (directed) 
n-links will be denoted by M. The set of all graph edges E consists of n-links in 
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(a) A graph Q (b) A cut on Q 

Figure 5.1. Graph construction in Greig et. al. [362]. Edge costs are reflected by thickness. 

M and t-links {(5,p), (p, t)) for non-terminal nodes p eV.ln Figure 5.1 t-links 
are shown in red and blue, while n-links are shown in yellow. 

5.2.1 The Min-Cut and Max-Flow Problem 

An s/t cut C (sometimes we just call it a cut) is a partitioning of the nodes in the 
graph into two disjoint subsets S and T such that the source s is in S and the sink 
t is in T. Figure 5.1(b) shows one example of a cut. The cost of a cut C — {S, T] 
is the sum of costs/weights of "boundary" edges (p, q) such thatp G S and q eT. 
If (p, q) is a boundary edge, then we sometimes say that cut C severs edge (p, q). 
The minimum cut problem is to fiind a cut that has the minimum cost among all 
cuts. 

One of the fundamental results in combinatorial optimization is that the mini­
mum s/t cut problem can be solved by finding a maximum flow from the source 
s to the sink t. Speaking informally, maximum flow is the maximum "amount of 
water" that can be sent from the source to the sink by interpreting graph edges as 
directed "pipes" with capacities equal to edge weights. The theorem of Ford and 
Fulkerson [324] states that a maximum flow from s to t saturates a set of edges 
in the graph dividing the nodes into two disjoint parts {«S, T) corresponding to a 
minimum cut. Thus, min-cut and max-flow problems are equivalent. In fact, the 
maximum flow value is equal to the cost of the minimum cut. 

5.2.2 Algorithms for the Min-Cut and Max-Flow Problem 

There are many standard polynomial time algorithms for min-cut/max-flow[217]. 
These algorithms can be divided into two main groups: "push-relabel" style meth­
ods [350] and algorithms based on augmenting paths. In practice the push-relabel 
algorithms perform better for general graphs. In vision applications, however, 
the most common type of a graph is a two or a higher dimensional grid. For 
the grid graphs, Boykov and Kolmogorov [110] developed a fast augmenting 
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path algorithm which often significantly outperforms the push relabel algorithm. 
Furthermore, its observed running time is linear. 

While the (sequential) algorithm in [110] is very efficient, with the execution 
time of only a few seconds for a typical problem, it is still far from real time. A 
possible real time solution may come from a GPU acceleration that has become 
popular for improving the efficiency of algorithms allowing parallel implementa­
tions on pixel level. Note that push-relabel algorithm can be run in parallel over 
graph nodes [350]. In the context of image analysis problems, graph nodes typ­
ically correspond to pixels. Thus, pixel based GPU architecture is a seemingly 
perfect match for accelerating push-relabel algorithm for computing graph cuts in 
vision and graphics. This is a very promising direction for getting applications of 
graph cuts up to real time. 

5.3 Graph Cuts for Binary Optimization 

In this section we concentrate on graph cuts as a binary optimization tool. In 
fact, min-cut/max-flow algorithms are inherently binary techniques, and so bi­
nary problems constitute the most basic case for graph cuts. In Section 5.3.1 we 
discuss the earliest known example where graph cuts were used in vision, which 
also happens to be a particularly clear binary problem. The example illustrates 
that graph cuts can effectively enforce spatial coherence on images. Section 5.3.2 
presents the general case of binary energy minimization with graph cuts. 

5.3.1 Example: Binary Image Restoration 

The earliest use of graph cuts for energy minimization in vision is due to Greig 
et.al. [362]. They consider the problem of binary image restoration. Given a binary 
image corrupted by noise, the task is to restore the original image. This problem 
can be formulated as a simple optimization over binary variables corresponding 
to image pixels. In particular, [362] builds a graph shown in Figure 5.1(a) where 
non-terminal nodes p e V represent pixels while terminals 5 and t represent two 
possible intensity values. To be specific, source s will represent intensity 0 and 
sink t will represent intensity 1. Assume that I{p) is the observed intensity at pixel 
p. Let Dp{l) be a fixed penalty for assigning to pixel p some "restored intensity" 
label / G {0,1}. Naturally, if I{p) = 0 then Dp{0) should be smaller than Dp{l), 
and vice versa. To encode these "observed data" constraints, we create two t-
links for each pixel node in Figure 5.1. The weight of t-link {s,p) is set to jDp(l) 
and the weight of (p, t) is set to Dp{0). Even though t-link weights should be 
non-negative, the restriction Dp >0 for data penalties is not essential. 

Now we should add regularizing constraints that help to remove image noise. 
Such constraints enforce spatial coherence between neighboring pixels by min­
imizing discontinuities between them. In particular, we create n-links between 
neighboring pixels using any (e.g. 4- or 8-) neighborhood system. The weight of 
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these n-links is set to a smoothing parameter A > 0 that encourages a minimum 
cut to sever as few n-links as possible. 

Remember that a cut C (Figure 5.1(b)) is a binary partitioning of the nodes 
into subsets S and T. A cut can be interpreted as a binary labeling / that assigns 
labels /p G {0,1} to image pixels: if j ; G 5 then fp = 0 and if p e T then 
fp = 1. Obviously, there is a one-to-one correspondence between cuts and binary 
labelings of pixels. Each labeling / gives a possible image restoration result. 

Consider the cost of an arbitrary cut C = {S, T } . This cost includes weights 
of two types of edges: severed t-links and severed n-links. Note that a cut severs 
exactly one t-link per pixel; it must sever t-link (p, t) if pixel p is in the source 
component p e S or t-link (s,p) if pixel p is in the sink component p £ T. 
Therefore, each pixel p contributes either Dp{0) or Dp{l) towards the t-link part 
of the cut cost, depending on the label fp assigned to this pixel by the cut. The cut 
cost also includes weights of severed n-links (p, q) G AT. Therefore, 

The cost of each C defines the "energy" of the corresponding labeling / : 

E{f):=\C\=Y^Dp{fp) + A. ^ J ( / , = 0,/, = l), (5.1) 

where X(-) is the identity function giving 1 if its argument is true and 0 otherwise. 
Stated simply, the first term says that pixel labels fp should agree with the ob­
served data while the second term penalises discontinuities between neighboring 
pixels. Obviously, a minimum cut gives labeling / that minimizes energy (5.1). 

Note that parameter A controls the relative importance of the data constraints 
versus the regularizing constraints. Note that if A is very small, an optimal labeling 
assigns each pixel p a label fp that minimizes its own data cost Dp{fp). In this 
case, each pixel chooses its own label independently from the other pixels. If A is 
big, then all pixels must choose one label that has a smaller average data cost. For 
intermediate values of A, an optimal labeling / should correspond to a balanced 
solution with compact spatially coherent clusters of pixels who generally like the 
same label. Noise pixels, or outliers, should conform to their neighbors. 

Before [362], exact minimization of energies like (5.1) was not possible. Re­
searches still used them, but had to approach them with iterative algorithms like 
simulated annealing [341]. In fact, Greig et.al. published their result mainly to 
show that in practice simulated annealing reaches solutions very far from the 
global minimum even in simple binary cases. Unfortunately, the result of Greig 
et.al. remained unnoticed in the vision community for almost 10 years probably 
because the binary image restoration looked too restrictive as an application. 
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(a) a cut on a 2D grid (b) a cut and a separating hypersurface in 3D 

Figure 5.2. s-t cut on a grid corresponds to binary partitioning of N-D space where the grid 
is embedded. Such space partitioning may be visualized via a separating hypersurface. 
As shown in (a), multiple hypersurfaces may correspond to the same cut. However, such 
hypersurfaces become indistinguishable as the grid gets finer. 

5.3.2 General Case of Binary Energy Minimization 

In general, graph construction as in Figure 5.1 can be used for other binary "la­
beling" problems. Suppose v ê are given a penalty Dp{l) that pixel p incurs when 
assigned label / G C — {0,1} and we need to find a spatially coherent binary 
labeling of the whole image. We may wish to enforce spatial regularization via 
some global energy function that generalizes (5.1) 

p e p (p,«)6Ar 

(5.2) 

The question is: can we find a globally optimal labeling / using some graph cut 
construction? There is a definitive answer to this question for the case of binary 
labelings. According to [491], a globally optimal binary labeling for (5.2) can be 
found via graph cuts if and only if the pairwise interaction potential V^̂  satisfies 

^p,(o, 0) + v ; , ( i , 1) < Fp,(o, 1) + Fp,(i, 0) 

which is called the regularity condition. The theoretical result in [491] is construc­
tive and they show the corresponding graph. It has the same form as the graph of 
Greig et.al. in Figure 5.1, however, edge weights are derived differently. 

5.4 Graph Cuts as Hypersurfaces 

Solution of many problems in vision, image processing and graphics can be rep­
resented in terms of optimal hypersurfaces. This section describes a geometric 
interpretation of graph-cuts as hypersurfaces in N-D manifolds that makes them 
an attractive framework for problems like image segmentation, restoration, stereo, 
photo/video editing, texture synthesis, and others. 
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We show a basic idea allowing s-t cuts to be viewed as hypersurfaces, discuss 
interesting theories that make various connections between discrete graph cuts 
and hypersurfaces in continuous spaces, and we also provide a number of recently 
published examples where a hypersurface view of graph cuts has led to interesting 
applications in computer vision, medical imaging, or graphics. 

5.4.1 Basic idea 

Consider two simple examples in Figure 5.2. Throughout Section 5.4 we assume 
that a graph has no "soft" t-links, that is the source and the sink terminals are 
directly connected only to some of the graph nodes via infinity cost t-links. In 
fact, all nodes hardwired to two terminals can be effectively treated as multiple 
sources and multiple sinks that have to be separated by a cut. Figure 5.2 shows 
these sources and sinks in dark red and dark blue colors. Such sources and sinks 
provide hard constraints or boundary conditions for graph cuts; any feasible cut 
must separate sources from sinks. Other nodes are connected to the sources and 
sinks via n-links. 

Without loss of generality (see Section 5.4.2), we can concentrate on feasible 
cuts that partition the simple 4- and 6- nearest neighbor grid-graphs in Figure 5.2 
into two connected subsets of nodes: source component and sink component. Con­
tinuous 2D and 3D manifolds where the grid nodes are embedded can be split into 
two disjoint contiguous regions, one containing the sinks, and the other containing 
the sources. A boundary between two such regions are separating hypersurfaces 
shown in green color. As illustrated in Figure 5.2(a), there are many separating 
hypersurfaces that correspond to the same cut. They should all correctly separate 
the grid nodes of the source and the sink components, but they can "freely move" 
in the space between the grid nodes. Without getting into mathematical details, 
we will identify a class of all hypersurfaces corresponding to a given cut with 
a single hypersurface. In particular, we can choose a hypersurface that follows 
boundaries of "grid cells", or we can choose "the smoothest" hypersurface. Note 
that the finer the grid, the harder it is to distinguish two separating hypersurfaces 
corresponding to the same cut. 

Thus, any feasible cut on a grid in Figure 5.2 corresponds to a separating hy­
persurface in the embedding continuous manifold. Obviously, the opposite is also 
true; any separating hypersurface corresponds to a unique feasible cut. General­
ization of examples in Figure 5.2 would establish correspondence between s — t 
graph-cuts and separating hypersurfaces in case of "fine" locally connected grids 
embedded in N-D spaces. Following ideas in [109], one can set a cost (or area) 
of each continuous hypersurface based on the cost of the corresponding cut. This 
defines a cut metric introduced in [109] for continuous N-D manifold embedding 
a graph. By changing weights of n-links at graph nodes located in any particular 
point in space, one can tune local costs of all separating hypersurfaces that pass 
through such locations. In practical applications a cut metric can be easily tuned 
to attract (repel) hypersurfaces to (from) certain locations on N-D manifolds. A 
cut metric is a simple, yet sufficiently general tool. In particular, according to 
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(a) connected source segment (b) disjoint source segments 

Figure 5.3. Separating hypersurfaces can have different topological properties for the same 
set of hard constraints. Separating hypersurfaces in (a) and (b) correspond to two distinct 
feasible s — t cuts. Min-cut/max-flow algorithms compute a globally optimal hypersur-
face/cut without any restrictions on its topological properties as long as the sources and the 
sinks are separated. 

[109] a cut metric on 2D and 3D manifolds can approximate any given continu­
ous Riemannian metric. Finally, standard combinatorial algorithms for computing 
minimum cost s-t cuts (see Section 5.2.2) become numerical tools for extracting 
globally optimal separating hypersurfaces. 

5.4.2 Topological properties of graph cuts 

The adjective "separating" implies that a hypersurface should satisfy certain hard 
constraints or boundary conditions; it should separate source and sink grid cells 
(seeds). Note that there are many freedoms in setting boundary conditions for 
graph cuts. Depending on hard constraints, topological properties of separating 
hypersurfaces corresponding to s — t cuts may vary. 

For example, we can show that the boundary conditions in Figure 5.2 guarantee 
that any feasible cut corresponds to topologically connected separating hypersur­
face. For simplicity, we assume that our graphs are connected, that is, there are 
no "islands" of disconnected nodes. In Figure 5.2 all source and all sink nodes 
form two connected components. In such cases a minimum cost cut must par­
tition the graph into exactly two connected subsets of nodes; one containing all 
sources and the other containing all sinks. Assuming that the minimum cost cut 
creates three or more connected components implies that some of these compo­
nents contain neither sources, nor sinks. This contradicts minimality of the cut; 
linking any "no-source/no-sink" subset back to the graph corresponds to a smaller 
cost feasible cut. 

Examples in Figure 5.3 illustrate different topological properties for separat­
ing hypersurfaces in more general cases where multiple disjoint components of 
sources and sinks (seeds) are present. Note that feasible s — t cuts may pro­
duce topologically different separating hypersurfaces for the same set of boundary 
conditions. 
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In fact, controlling topological properties of separating hypersurfaces by setting 
up appropriate hard constraints is frequently a key technical aspect of applications 
using graph cuts. As discussed in Section 5.4.3, appropriate positioning of sources 
and sinks is not the only tool to achieve desired topology. As shown in Figure 5.4, 
certain topological properties of separating hypersurfaces can be enforced via 
infinity cost n-links. 

5.4.3 Applications of graph cuts as hypersurfaces 

Below we consider several examples from recent publications where graph cuts 
are used as a method for extracting optimal hypersurfaces with desired topological 
properties. 

Methods for object extraction [107, 96, 683, 903] take full advantage of topo­
logical freedom of graph-cut based hypersurfaces. In particular, they allow to 
segment objects of arbitrary topology. The basic idea is to set as sources (red 
seeds) some image pixels that are known (a priori) to belong to an object of in­
terest and to set as sinks (blue seeds) some pixels that are known to be in the 
background. A separating hypersurface should coincide with a desirable object 
boundary separating object (red) seeds from background (blue) seeds, as demon­
strated in Figure 5.3. A cut metric can be set to reflect image gradient. Pixels 
with a high image gradient would imply a low cost of local n-links and vice 
versa. Then, minimal separating hypersurfaces tend to adhere to object bound­
aries with high image gradients. Another practical strength of object extraction 
methods based on graph cuts is that they provide practical solutions for organ 
extraction problems in N-D medical image analysis [107]. One Hmitation of this 
approach to object extraction is that it may suffer from a bias to "small cuts", but 
this can often be resolved with proper constraining of the solution space. 

Stereo was one of the first applications in computer vision where graph cuts 
were successfully applied as a method for optimal hypersurface extraction. Two 
teams, Roy&Cox [693, 692] and Ishikawa&Geiger [425], almost simultaneously 
proposed two different formulations of the stereo problem where disparity maps 
are interpreted as separating hypersurfaces on certain 3D manifolds. Their key 
technical contribution was to show that disparity maps (as optimal hypersurfaces) 
can be efficiently computed via graph cuts. 

For example, Roy&Cox [693, 692] proposed a framework for stereo where 
disparity maps are separating hypersurfaces on 3D manifolds similar to one in 
Figure 5.2(b). Points of this bounded rectangular manifold are interpreted as 
points in 3D "disparity space" corresponding to a pair of rectified stereo images. 
This disparity space is normally chosen with respect to one of the images, so 
that each 3D point with coordinates {x, y, d) represents correspondence between 
pixel (x, y) in the first stereo image and pixel {x H- d, y) in the second image. 
Then, solution of stereo problem is a hypersurface d = f{x,y) on 3D manifold 
in Figure 5.2(b) that represents a disparity map assigning certain disparity d to 
each pixel (x, y) in the first image. Note that hypersurface d = f{x, y) separates 
the bottom and the top (facets) of 3D manifold in Figure 5.2(b). Then, an optimal 
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S 
(a) Infeasible folding in [693, 692] (b) Infeasible folding in [425] 

Figure 5.4. Graph-cuts approach allows to impose certain additional topological constraints 
on separating hypersurfaces, if necessary. For example, [426, 111] proposed infinity cost 
directed n-links, shown in brown color in (a), that forbid folds on separating hypersurfaces 
in Figure 5.2. In particular, a hypersurface in Figure 5.2(b) without such folds corresponds 
to a disparity map d = f{x, y) according to [693, 692]. Also, [425] impose monotonic-
ity/ordering constraint on their disparity maps by adding infinity cost directed n-links (in 
brown color) that make illegal topological folds shown in (b). For clarity, examples in (a) 
and (b) correspond to single slices of 3D manifolds in Figure 5.2(b) and 5.5(a). 

disparity map can be computed using graph cuts as an efficient discrete model for 
extracting minimal separating hypersurfaces. 

According to [693], cut metric on 3D "disparity space" manifold in Fig­
ure 5.2(b) is set based on color consistency constraint between two stereo 
cameras. Weights of n-links at node (x, y, d) are set as follows: if intensities of 
pixels (x, y) and (x + d, y) in two cameras are similar then the likelihood that two 
pixels see the same 3D object point is high and the cost of n-links should be small. 
Later, [426, 692, 111] suggested anisotropic cut metric where vertical n-links are 
based on the same likelihoods as above but horizontal n-links are fixed to a con­
stant encouraging smoother disparity maps that avoid unnecessary disparity level 
jumps. 

In general, separating hypersurfaces in Figure 5.2(b) can have folds that would 
make them inappropriate as disparity maps d — f{x,y). If a minimum hypersur­
face computed via graph cuts has a fold then we did not find a feasible disparity 
map. Therefore, [426, 111] propose a set of hard constraints that make topologi­
cal folds (see Figure 5.4(a)) prohibitively expensive. Note that additional infinity 
cost vertical n-links (directed down) make folds infeasible. This topological hard 
constraint takes advantage of the "directed" nature of graph cuts; a cost of a cut 
includes only severed directed edges that go from the (red) nodes in the source 
component to the (blue) nodes in the sink component. A cut with an illegal fold 
in Figure 5.4(a) includes one infinity cost n-link. 

Ishikawa&Geiger [425] also solve stereo by computing optimal separating hy­
persurfaces on a rectangular 3D manifold. However, their interpretation of the 
manifold and boundary conditions are diflferent. As shown in Figure 5.5(a), they 
interpret a separating hypersurface 2; = /(x,;//) as a "correspondence mapping" 
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left image ;̂  c'ip 1 -V clip 2 

(a) Hypersurface as correspondence (b) Hypersurface separates two video clips 

Figure 5.5. Two more examples of graph cuts as separating hypersurfaces. Formulation 
of stereo problem in [425] computes pixel correspondences represented by a separating 
hypersurface on a 3D manifold in (a). A smooth transition between two video clips is 
performed in [499] via graph cuts computing globally optimal separating hypersurface in 
a 3D region of overlap between two clips in (b). 

between pixels p — {x,y) in the left image and pixels q — {f{x,y),y) in 
the right image (of a rectified stereo pair). Assignment of correspondences may 
be ambiguous if a hypersurface has folds like one in Figure 5.4(b). In order to 
avoid ambiguity, [425] introduce monotonicity (or ordering) constraint that is en­
forced by directed infinity cost n-links shown in brown color. Note that a cut in 
Figure 5.4(b) severs two brown n-links that go from a (red) node in a source com­
ponent to a (blue) node in a sink component. Thus, the cost of the cut is infinity 
and the corresponding separating hypersurface with a fold becomes infeasible. 

Similar to [693, 692], the cut metric on manifold in Figure 5.5(a) is based on 
color consistency constraint: a 3D points {x,y,z) on the manifold has low n-link 
costs if intensity of pixel (x, y) in the left image is close to intensity of pixel (z, y) 
in the right image. Note that hyperplanes parallel to diagonal crossection (from 
bottom-left to top-right comers) of manifold in Figure 5.5(a) give correspondence 
mappings with constant stereo disparity/depth levels. Thus, spatial consistency of 
disparity/depth map can be enforced with anisotropic cut metric where diagonal n-
links (from left-bottom to right-top comer) are set to a fixed constant representing 
penalty for jumps between disparity levels. 

Another interesting example of graph-cuts/hypersurface framework is a method 
for video texture synthesis in [499]. The technique is based on computing a seam­
less transition between two video clips as illustrated in Figure 5.5(b). Two clips 
are overlapped in 3D (pixel-time) space creating a bounded rectangular manifold 
where transition takes place. A point in this manifold can be described by 3D co­
ordinates [x,y,t) where p = (x, t/) is a pixel and t is time or video frame number. 
The transition is represented by a separating hypersurface t = f{x,y) that speci­
fies for each pixel when to switch from clip I to clip 2. During transition a frame 
may have a mix of pixels from each clip. The method in [499] suggest a specific 
cut metric that for each point {x,y,i) in the overlap region depends on intensity 
difference between two clips. Small difference indicates a good moment (in space 
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and time) for seamless transition between the clips and n-links at such {x.y^t) 
points are assigned a low cost. Note that "seamless transition" is a purely visual 
effect and it may be achieved with any separating hypersurface in Figure 5.5(b). 
In this case there is no real need to avoid hypersurfaces with "folds" which would 
simply allow pixels to switch between clip 1 and clip 2 a few times. 

5.4.4 Theories connecting graph-cuts and hypersurfaces in R^ 

In this section we discuss a number of known results that established theoretically 
solid connections between cuts on discrete graphs and hypersurfaces in contin­
uous spaces. It has been long argued in computer vision hterature that discrete 
algorithms on graphs, including graph cuts, may suffer from metrication artifacts. 
Indeed, 4- and 6- nearest neighbor connections on 2D and 3D grids may produce 
"blocky" segments. Such geometric artifacts are due to "Manhattan distance" met­
rication errors. It turns out that such errors can be easily corrected, resolving 
the long-standing criticism of graph cuts methods. Boykov&Kolmogorov [109] 
showed that regular grids with local neighborhood systems of higher order can 
produce a cut metric that approximates any continuous Riemannian metric with 
arbitrarily small error. Using powerful results from integral geometry, [109] shows 
that weights of n-links from a graph node embedded at point p of continuous N-D 
manifold are solely determined by a given N x N positive-definite matrix D{p) 
that defines local metric/distance properties at point p according to principles of 
Riemannian geometry. This result is quite intuitive as weights of n-links at this 
graph node define local measure for area/distance for hypersurfaces according to 
the corresponding cut metric. It is also interesting that results in [109] apply to ar­
bitrary Riemannian metrics including anisotropic cases where local metric could 
be direction-sensitive. 

So far in Section 5.4 we followed the general approach of [109] where hy­
persurfaces on N-D manifolds have implicit representation via cuts on embedded 
graphs. As illustrated in Figure 5.2, a cut only "impHes" a separating hypersur­
face. A specific hypersurface can be obtained through additional conventions, as 
discussed in Section 5.4.1. More recently, [477] proposed an explicit approach 
to hypersurface representation by graph cuts that, in a way, is dual to [109]. The 
basic idea in [477] is to bisect a bounded N-D manifold with a large number 
of (random) hyperplanes. These hyperplanes divide the manifold into small cells 
(polyhedra) which can be thought of as irregular voxels. Then, [477] build an ir­
regular "random-grid" graph where each cell is represented by a node. Two cells 
are connected by an n-link if and only if they touch through a common facet. 
Clearly, there is a one-to-one correspondence between a set of all n-links on the 
graph and a set of all facets between cells. A cut on this graph explicitly represents 
a unique hypersurface formed by facets corresponding to severed n-links. Obvi­
ously, a cost of any cut will be equal to the area of the corresponding hypersurface 
(in any metric) if weights of each n-link is equal to the area of the correspond­
ing facet (in that metric). Thus, the model for representing hypersurfaces via 
graph-cuts in [477] can be applied to any metric. In their case, min-cut/max-flow 
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algorithms will compute a minimum separating hypersurface among all explicitly 
represented hypersurfaces satisfying given boundary conditions. 

Cuts on a graph in [477] represent only a subset of all possible hypersurfaces on 
an embedding manifold. If one keeps bisecting this bounded manifold into finer 
cells then the number of representable hypersurfaces increases. [477] proves that 
bisecting the manifold with a countably infinite number of random hyperplanes 
would generate small enough cells so that their facets can represent any contin­
uous* hypersurface with an arbitrarily small error. This demonstrates that their 
approach to graph-cut/hypersurface representation is also theoretically solid. 

Intuitively speaking, theoretical results in [109] and [477] imply that both ap­
proaches to representing continuous hypersurfaces via discrete graph cuts models 
have reasonable convergence properties and that minimum cost cuts on finer 
graphs "in the limit" produce a minimum separating hypersurfaces for any given 
metric. Results such as [109] and [477] also establish a link between graph cuts 
and variational methods such as level-sets [729, 616, 702, 617] that are also 
widely used for image segmentation. 

There is (at least) one more interesting theoretical result linking graph cuts 
and hypersurfaces in continuous spaces that is due to G. Strang [767]. This result 
was established more than 20 years ago and it gives a view somewhat different 
from [109,477]. Strang describes a continuous analogue of the min-cut/max-flow 
paradigm. He shows that maximum flow problem can be redefined on a bounded 
continuous domain n in the context of a vector field f{p) representing the speed 
of a continuous stream/flow. A constraint on discrete graph flow that comes from 
edge capacities is replaced by a "speed limit" constraint \f{p)\ < c{p) where 
c is a given non-negative scalar function .̂ Discrete flow conservation constraint 
for nodes on a graph has a clear continuous interpretation as well: a continu­
ous stream/flow is "preserved" at points inside the domain if vector field / is 
divergence-free divf — 0. Strang also gives appropriate definition for sources 
and sinks on the boundary of the domain-'. Then, the continuous analogue of 
the maximum flow problem is straightforward: find a maximum amount of water 
that continuous stream / can take from sources to sinks across the domain while 
satisfying all the constraints. 

The main topic of this sections connects to [767] as follows. Strang defines a 
"real" cut on H as a hypersurface 7 that divides the domain into two subsets. The 
minimum cut should separate sources and sinks and have the smallest possible 
cost J c which can be interpreted as a length of hypersurface 7 in isotropic metric 
defined by a scalar function c. Strang also establishes duality between continuous 
versions of minimum cut and maximum flow problems that is analogous to the 
discrete version established by Ford and Fulkerson [324]. On a practical note, 

Apiece-wise twice differentiable, see [477] for more details. 
^More generally, it is possible to set an anisotropic "speed limit" constraint J{p) G c(p) where c 

is some convex set defined at every point p G ri. 
^Sources and sinks can also be placed inside the domain. They would correspond to points in U 

where divf is non-null, t.e. where stream / has an in-flow or out-flow. 
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a recent work by Appleton&Talbot [28] proposed a finite differences approach 
that, in the limit, converges to a globally optimal solution of continuous min-
cut/max-flow problem defined by Strang. Note, however, that they use graph cuts 
algorithms to "greatly increase the speed of convergence". 

5.5 Generalizing Graph Cuts for Multi-Label Problems 

In this section, we show that even though graph cuts provide an inherently bi­
nary optimization, they can be used for multi-label energy minimization. In some 
cases, minimization is exact, but in more interesting cases only approximate min­
imization is possible. There is a direct connection between the exact multi-label 
optimization and a graph cut as a hypersurface interpretation of Section 5.4. 
We begin by stating the general labeling problem, then in Section 5.5.1 we de­
scribe the case when optimization can be performed exactly. Finally, Section 5.5.2 
describes the approximate minimization approaches and their quality guarantees. 

Many problems in vision and graphics can be naturally formulated in terms 
of multi-label energy optimization. Given a set of sites V which represent pix­
els/voxels, and a set of labels C which may represent intensity, stereo disparity, a 
motion vector, etc., the task is to find a labeling / which is a mapping from sites 
V to labels £. Let fp be the label assigned to site p and / be the collection of such 
assignments for all sites in V. 

We can use the same general form of energy (5.2) that was earlier introduced 
in the context of binary labeling problems. The terms Dp{l) are derived from the 
observed data and it expresses the label preferences for each site p. The smaller 
the value of Dp{l), the more likely is the label / for site p. Since adding a con­
stant to Dp{l) does not change the energy formulation, we assume, without loss 
of generality, that Dp{iys are nonnegative. The pairwise potential Vpq{lpy Iq) ex­
presses prior knowledge about the optimal labeling / . In general, prior knowledge 
can be arbitrarily complex, but in graph cuts based optimization, we are essen­
tially limited to different types of spatial smoothness priors. Typically Vpq{lp, Iq) 
is a nondecreasing function of ||/p — lq\\^. Different choices of Vpq{lp, Iq) imply 
different types of smoothness, see Sections 5.5.1 and 5.5.2 . 

5.5.1 Exact Multi-Label Optimization 

In this section, we describe the only known case of exact multi-label minimiza­
tion of energy (5.2) via graph cuts. The corresponding graph construction is not 
covered by the general theoretical result in [491], which applies to binary label­
ing cases only. We have to make the assumption that labels are linearly ordered. 
This assumption limits the applicability of the method. For example, it cannot be 
directly used for motion estimation, since motion labels are 2 dimensional and 

"̂ Here we used the norm 11 • 11 notation because, in general, Ip may be a vector 
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t^ 

Figure 5.6. Part of the graph construction for energy minimization in 5.3 , |£| = 4 

cannot be linearly ordered^. Without loss of generality, assume that labels are in­
tegers in the range C = {1,...,A;}. Let Vpq = \pq\fp - fq\. Then the energy 
is: 

E{f) = J2^pifp)+ E Vl/P-Z.l. (5.3) 
per {p,q)eM 

In vision, [425, 111] were the first to minimize energy (5.3) with a minimum 
cut on a certain graph Q. In fact, this graph is topologically similar to a graph 
of Roy&Cox [693] where separating hypersurface on 3D manifold gives a stereo 
disparity map, see Section 5.4.3. 

The graph is constructed as follows. As usual, vertices V contain terminals 5 
and t. For each site p, create a set of nodes pi, ...,pfc_i. Connect them with edges 
{tf, . . . ,^^}, where t? = {s,pi), f^ = {pj-i,pj), and tl = {pk-i,t). Each edge 
t^ has weight Kp + Dp{j), where Kp = 1 -\- {k - 1) YjqeM^ \q- Here Np is 
the set of neighbors of p . For each pair of neighboring sites p, q and for each 
j G { l , . . . , A ; - l } , create an edge (p^, QJ) with weight \pq. Figure 5.6 illustrates 
the part of G which corresponds to two neighbors p and q. For each site p, a cut 
on Q severs at least one edge t^^. The weights for ti^ are defined sufficiently large 
so that the minimum cut severs exactly one of them for each p. This establishes a 
natural correspondence between the minimum cut and an assignment of a label to 
p. If the minimum cut severs edge t\, assign label i to p. It is straightforward to 
show that the minimum cut corresponds to the optimum /[111]. 

Ishikawa [424] generalized the above construction to minimize any energy 
function with convex V^g's. His construction is similar to the one in this section, 
except even more edges between p^'s and g '̂s have to be added. Unfortunately, 
a convex Vpq is not suitable for the majority of vision applications, especially if 
the number of labels is large. Typically, object properties tend to be smooth every­
where except the object boundaries, where discontinuities may be present. Thus in 
vision, a piecewise smooth model is more appropriate than the everĵ where smooth 
model. However using a convex Vpq essentially corresponds to the everywhere 
smooth model. The penalty that a convex Vpq imposes on a sharp jumps in labels 
is so large, that in the optimal / discontinuities are smoothed out with a "ramp". 
It is much cheaper to create a few small jumps in / rather than one large jump. 

^Iterative application of the algorithm described here was used for motion in [694] 

file:///pq/fp
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Figure 5.7. From left to right: a labeling / , a labeling within one standard move of / (the 
changed site is highlighted by a black circle), labeling within one green-yellow swap of / , 
labeling within one green expansion of / . 

Of all the convex Vpq, the one in (5.3) works best for preserving discontinuities. 
Nevertheless in practice, it oversmooths disparity boundaries [837]. 

5.5.2 Approximate Optimization 

The potential Vpq in the previous section is not discontinuity preserving because 
Vpq is allowed to grow arbitrarily large. One way to construct a discontinuity pre­
serving Vpq is to cap its maximum value. Perhaps the simplest example is the 
Potts model Vpq = Xpq • I{fp ^ fq) [113]. We have already seen Potts Vpq in 
Section 5.3.1^, and it corresponds to the piecewise constant prior on / . Unfortu­
nately, energy minimization with Potts Vpq is NP-hard [113], however graph cuts 
can be used to find an answer within a factor of 2 from the optimum [113]. 

In this section, we describe two approximation methods, the expansion and 
the swap algorithms [113]. According to the results in [491], the swap algorithm 
may be used whenever Vpq{a, a) + Vpq{l3, (3) < Vpq{a, P) + Vpq{P, a) for all 
a, ^ G C, which we call the swap inequality. The expansion algorithm may be 
used whenever ^^^(a, a)+V^g(/?, 7) < Vpq{a,y)-\-Vpq{P,a) for alia,/S^'y G C, 
which we call the expansion inequality. Any Vpq which satisfies the expansion 
inequality also satisfies the swap inequality, hence the expansion inequality is 
more restrictive. 

Both swap and expansion inequalities admit discontinuity preserving Vpq's. 
The truncated linear Vpq{ajP) — mm(T, | |a - P\\) satisfies the expansion in­
equality. The truncated quadratic Vpq{a^l3) = min{T,\\a - PW^) satisfies the 
swap inequality. Here T is a positive constant, which is the maximum penalty 
for a discontinuity. The truncated linear and truncated quadratic Vpq correspond 
to a piecewise smooth model. Small deviations in labels incur only a small 
penalty, thus the smoothness is encouraged. However sharp jumps in labels are 
occasionally permitted because the penalty T is not too severe to prohibit them. 

În the binary case, it is typically called the Ising model. 
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5.5.2.1 Local Minimum with Respect to Expansion and Swap Moves 

Both the expansion and the swap algorithms find a local minimum of the energy 
function. However, in discrete optimization, the meaning of "a local minimum" 
has to be defined. For each / , we define a set of moves M/ . Intuitively, these are 
the moves to other labelings that are allowed from / . Then we say that / is a local 
minimum with respect to the set of moves, if for any / ' E M/ , E{f) > E{f). 
Most discrete optimization methods (e.g. [341, 81]) use standard movQS, defined 
as follows. Let / / ( / , / ' ) be the number of sites for which / and / ' differ. Then 
for each / , standard moves are M/ — {f\H{f,f) < 1}. Thus a standard move 
allows to change a label of only one site in / , and hence \Mf\ is linear in the 
number of sites, making it is easy to find a local minimum with respect to the 
standard moves. The result, however is very dependent on the initial point since a 
high dimensional energy has a huge number of such local minima. In particular, 
the solution can be arbitrarily far from the global minimum. 

We now define the swap moves. Given a labeling / and a pair of labels a and 
P, a move / " ^ is called an a-/? swap if the only difference between / and / " ^ 
is that some sites that were labeled a in / are now labeled P in / " ^ , and some 
sites that were labeled Pin f are now labeled a in / " ^ . Mf is then defined as the 
collection of a-P swaps for all pairs of labels a,P e C 

We now define the expansion moves. Given a labeling / and a label a, a move 
/ ^ is called an a-expansion if the only difference between / and f^ is that some 
sites that were not labeled a in / are now labeled a in Z"'. Mf is then defined 
as the collection of a-expansions swaps for all labels a e C. Figure 5.7 shows 
an example of standard move versus a-expansion and a-P swap. Notice that a 
standard move is a special case of an a-expansion and a a-P swap. However 
there are a-expansion moves which are not a-P swaps and vice versa. 

The expansion (swap) move algorithm finds a local minimum with respect to 
expansion (swap) moves. The number of expansion (swap) moves from each la­
beling is exponential in the number of sites. Thus direct search for an optimal 
expansion (swap) move is not feasible. This is where graph cuts are essential. It 
is possible to compute the optimal a-expansion or the optimal a-p swap with 
the minimum cut on a certain graph. This is because computing an optimal a-
expansion (optimal a-P swap) is a binary minimization problem which happens 
to be regular [491] when the expansion (swap) inequality holds. 

The expansion (swap) algorithms are iterative. We start with an initial labeling 
/ . We then cycle in random order until convergence over all labels a e C (pairs 
ofa.pe C\ find the optimal / " (/"^) out of all a-expansions (a-y5-swaps), and 
change current labeling to / " ( /"^) . Obviously this cannot lead to an increase in 
energy, and at convergence we found the local minimum with respect to expansion 
(swap) moves. Thus the key step is how to find the optimal a-expansion (a-p 
swap), which is performed by finding a minimum cut on a certain graph Q = 
(V, S). The actual graph constructions can be found in [113]. 

The criteria for a local minimum with respect to the expansions (swaps) are 
so strong that there are significantly fewer of such minima in high dimensional 
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spaces compared to the standard moves. Thus the energy function at a local min­
imum is likely to be much lower. In fact, it can be shown that the local minimum 
with respect to expansion moves is within a constant factor of optimum. The best 
approximation is in case of the Potts model, where this factor is 2. It is not surpris­
ing then that most applications based on graph cuts use the expansion algorithm 
with the Potts model [111, 88, 489,490, 895,499, 521, 403, 10, 900]. 


