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Abstract 
Since their introduction in a classic paper by Rudin, Osher and Fatemi 

[695], total variation minimizing models have become one of the most pop
ular and successful methodology for image restoration. More recently, there 
has been a resurgence of interest and exciting nev̂  developments, some 
extending the applicabilities to inpainting, blind deconvolution and vector-
valued images, while others offer improvements in better preservation of 
contrast, geometry and textures, in ameliorating the staircasing effect, and 
in exploiting the multiscale nature of the models. In addition, new computa
tional methods have been proposed with improved computational speed and 
robustness. We shall review some of these recent developments. 

2.1 Introduction 

Variational models have been extremely successful in a wide variety of restoration 
problems, and remain one of the most active areas of research in mathematical 
image processing and computer vision. By now, their scope encompasses not only 
the fundamental problem of image denoising, but also other restoration tasks such 
as deblurring, blind deconvolution, and inpainting. Variational models exhibit the 
solution of these problems as minimizers of appropriately chosen functionals. The 
minimization technique of choice for such models routinely involves the solution 
of nonlinear partial differential equations (PDEs) derived as necessary optimality 
conditions. 

Perhaps the most basic (fundamental) image restoration problem is denoising. 
It forms a significant preliminary step in many machine vision tasks, such as ob
ject detection and recognition. It is also one of the mathematically most intriguing 
problems in vision. A major concern in designing image denoising models is to 
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preserve important image features, such as those most easily detected by the hu
man visual system, while removing noise. One such important image feature are 
the edges; these are places in an image where there is a sharp change in image 
properties, which happens for instance at object boundaries. A great deal of re
search has gone into designing models for removing noise while preserving edges; 
recently there has also been a lot of effort in preserving other fine scale image fea
tures, such as texture. All successful denoising models take advantage of the fact 
that there is an inherent regularity found in natural images; this is how they at
tempt to tell apart noise and actual image information. Variational and PDE based 
models make it particularly easy to impose geometric regularity on the solutions 
obtained as denoised images, such as smoothness of boundaries. This is one of 
the main reasons behind their success. 

Total variation based image restoration models were first introduced by Rudin, 
Osher, and Fatemi (ROF) in their pioneering work [695] on edge preserving image 
denoising. It is one of the earliest and best known examples of PDE based edge 
preserving denoising. It was designed with the explicit goal of preserving sharp 
discontinuities (edges) in images while removing noise and other unwanted fine 
scale detail. Being convex, the ROF model is one of the simplest variational mod
els having this most desirable property. The revolutionary aspect of this model is 
its regularization term that allows for discontinuities but at the same time disfa
vors oscillations. It was originally formulated in [695] for grayscale imagery in 
the following form: 

inf / \Vu\. (2.1) 

Here, ft denotes the image domain (for instance, the computer screen), and is 
usually a rectangle. The function f{x) : ft —> R represents the given observed 
image, which is assumed to be corrupted by Gaussian noise of variance cr .̂ The 
constraint of the optimization forces the minimization to take place over images 
that are consistent with this known noise level. The objective functional itself is 
called the total variation (TV) of the function u{x); for smooth images it is equiv
alent to the L^ norm of the derivative, and hence is some measure of the amount 
of oscillation found in the function u{x). Optimization problem (2.1) is equiva
lent to the following unconstrained optimization, which was also first introduced 
in [695]: 

inf j \Vu\+\l {u-ffdx. (2.2) 

Here, A > 0 is a Lagrange multiplier. The equivalence of problems (2.1) and (2.2) 
has been established in [162]. In the original ROF paper [695] there is an itera
tive numerical procedure given for choosing A so that the solution u{x) obtained 
solves (2.1). 

We point out that total variation based energies appear, and have been pre
viously studied in, many different areas of pure and applied mathematics. For 
instance, the notion of total variation of a function and functions of bounded 
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variation appear in the theory of minimal surfaces. In applied mathematics, to
tal variation based models and analysis appear in more classical applications such 
as elasticity and fluid dynamics. Due to ROF, this notion has now become central 
also in image processing. 

Over the years, the ROF model has been extended to many other image restora
tion tasks, and has been modified in a variety of ways to improve its performance. 
In this article, we will concentrate on some recent developments in total variation 
based image restoration research. Some of these developments have led to new 
algorithms, and others to new models and theory. While we try to be compre
hensive, we are of course limited to those topics and works that are of interest to 
us, and that we are familiar with. In particular, we aim to provide highlights of a 
number of new ideas that include the use of different norms in measuring fidelity, 
applications to new image processing tasks such as inpainting, and so on. We also 
hope that this article can serve as a guide to recent literature on some of these 
developments. 

2.2 Properties and Extensions 

2.2.1 BV Space and Basic Properties 

The space of functions with bounded variation (BV) is an ideal choice for mini-
mizers to the ROF model since BV provides regularity of solutions but also allows 
sharp discontinuities (edges). Many other spaces like the Sobolev space W^'^ do 
not allow edges. Before defining the space BV, we formally state the definition of 
TV as: 

^ | V / | - s u p | ^ / V .gdx I g G C,i(n,]R-),|g(x)| < IVx G l^j (2.3) 

where / G L^ [Q) and H C M^ is a bounded open set. We can now define the 
space BV as {/ G L^(17) | / ^ | V / | < oo}. Thus, BV functions amount to L^ 
functions with bounded TV semi-norm. Moreover, through the TV semi-norm 
there is a natural link between BV and the ROF model. 

Given the choice oiBV{^) as the appropriate space for minimizers of the ROF 
model (2.2), there are the basic properties of existence and uniqueness to settle. 
The ROF model in unconstrained form (2.2) is a strictly convex functional, hence, 
admits a unique minimum. Moreover, it is shown in [162] that the equality con
straint J^{u — f^dx = o^ in the non-convex ROF model (2.1) is equivalent 
to the convex inequaUty constraint ^^{u — f)^dx < a^. Hence, the non-convex 
minimization in (2.1) is equivalent to a convex minimization problem which un
der some additional assumptions is further equivalent to the above unconstrained 
minimization (2.2). 

For BV functions there is a useful coarea formulation linking the total vari
ation to the level sets giving some insight into the behavior of the TV norm. 
Given a function / G BVi^L) and 7 G M, denote by {/ == 7} the set: 
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{x G R^ I / ( x ) = 7 } . Then, if/ is regular, the TV of/ can be given by: 

/ |V/|= r [ dsdj. (2.4) 

Jn J-ooJ{f='y} 
Here, the term Jr. . ds represents the length of the set {/ — ^y}. The formula 
states that the TV norm of / can be obtained by integrating along all contours of 
{/ = 7} for all values of 7. Thus, one can view TV as controlling both the size 
of the jumps in an image and the geometry of the level sets. 

2.2.2 Multi-channel TV 

Total variation based models can be extended to vector valued images in various 
ways. 

An interesting generalization of TV denoising to vector valued images was 
proposed by Sapiro and Ringach [704]. The idea is to think of the image u : 
R^ —> W^ as a parametrized two dimensional surface in W^, and to use the 
difference between eigenvalues of the first fundamental form as a measure of 
edge strength. A variational model results from integrating the square root of the 
magnitude of this difference as the regularization term. 

Blomgren and Chan [98] generalized total variation regularization to vectorial 
data as the Euclidean norm of the vector of (scalar) total variations of the compo
nents. This generalization has the benefit that vector valued images defined on the 
line whose components are monotone functions with identical boundary condi
tions all have the same energy, regardless of their smoothness. This implies good 
edge preserving properties. 

Another interesting approach generalizing edge preserving variational denois
ing models to vector valued images is due to Kimmel, Malladi, and Sochen [473]. 
They regard the given image u{x) : R^ —> R ^ as a surface in R^"^^, and 
propose an area minimizing flow (which they call Beltrami flow) as a means of 
denoising it. 

2.2.3 Scale 

The constant A that appears in the ROF model plays the role of a "scale pa
rameter". By tweaking A, a user can select the level of detail desired in the 
reconstructed image. In this sense, A in (2.2) is analogous to the time variable in 
scale space theories for nonlinear diffusion based denoising models. The geomet
ric interpretation of the regularization term in (2.2) given by the co-area formula 
suggests that A determines which image features are kept based on, roughly 
speaking, their "perimeter to area" ratio. 

The intuitive link between A and scale of image features can be exactly verified 
in the case of an image that consists of a white disk on a black background. Strong 
and Chan [770] determined the solution of the ROF functional for such a given 
image f{x). It turns out to be (1 — ^ ) / ( x ) for A > :̂ . In particular, there is 
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always a loss of contrast in the reconstruction, no matter how large the fidelity 
constant A is. And when A < ^, the solution is identically 0, meaning that the 
model prefers to remove disks of radius less than j . This simple but instructive 
example indicates how to relate the parameter A to the scale of objects we desire to 
preserve in reconstructions. Strong and Chan's observation has been generalized 
to other exact solutions of the ROF model in [69]. 

The parameter A can thus be used for performing multiscale decomposition of 
images: Image features at different scales are separated by minimizing the ROF 
energy using different values of A. Recent research along these lines is described 
in section 2.5.3. 

2.3 Caveats 

While using TV-norm as regularization can reduce oscillations and regularize 
the geometry of level sets without penaHzing discontinuities, it possesses some 
properties which may be undesirable under some circumstances. 

Loss of contrast. The total variation of a function, defined on a bounded do
main, is decreased if we re-scale it around its mean value in such a way that the 
difference between the maximum and minimum value (contrast) is reduced. In 
[770, 567], the authors showed that for any non-trivial regularization parameter, 
the solution to the ROF model has a contrast loss. The example of a white disk 
with radius R over a black background discussed in 2.2.2 is a simple illustration. 
In this case, the contrast loss is inversely proportional to f{x)/r before the disk 
merges with the background. In general, reduction of the contrast of a feature by 
h > 0 would induce a decrease in the regularization term of the ROF model by 
0{h) and an increase in the fidelity term by 0(/i^) only. Such scalings of the 
regularization and fidelity terms favors the reduction of the contrast. 

Loss of geometry. The co-area formula (2.4) reveals that, in addition to loss of 
contrast, the TV of a function may be decreased by reducing the length of each 
level set. In some cases, such a property of the TV-norm may lead to distortion 
of the geometry of level sets when applying the ROF model. In [770], Strong and 
Chan show that, for circular image features, their shape is preserved at least for a 
small change in the regularization parameter and their location is also preserved 
even they are corrupted by noise of moderate level. In [69], Bellettini et al. extend 
Strong and Chan's results and show that the set of all bounded connected shapes 
C that are shape-invariant in the solution of the ROF model is precisely given by 

C CR^ :C convex, a C e C^'^ and ess sup K,dc{p) < \dC\/\C\ \ . 
p€dC J 

Here, \dC\ is the perimeter of C, \C\ is the area of C and Kdc{p) is the curvature 
of dC at p. The downside of the above characterization is that the ROF model 
distorts the geometry of shapes that do not belong to the shape-invariant set. For 
instance, it has been shown in [567], if the input image is a rectangle R over a 



22 Chan, Esedoglu, Park & Yip 

background with a different intensity, then cutting a comer (an isosceles triangle) 
with height h of the rectangle would induce a reduction in the TV-norm by 0{h) 
and an increment of the fitting term by 0(^^) , thus favoring cutting the comers. 

Staircasing. This refers to the phenomenon that the denoised image may look 
blocky (piecewise constant). In the 1-D discrete case, there is a simple explanation 
to this — the preservation of monotonicity of neighboring values. Such a property 
requires that, for each i, if the input / = {/^} satisfies fi < / i+i (resp. >), 
then the output must satisfy Ui < Ui^i (resp. >) for any A. In the case where / 
satisfies /i,j_i < /i^ > /i„+i < /io+2 for some ZQ, which often happens when 
the tme signal is monotonically increasing around io and is cormpted by noise but 
u satisfies Ujo-i < Ui^ = Ui^j^y < ^1^+2, then, visually, u looks like a staircase 
at zo but a monotonically increasing signal is more desirable. In the 2-D case, the 
monotonicity preserving property is no longer tme in general, for instance, near 
comers of image features. However, away from the comers where the curvature 
of the level sets is high, staircase is often observed. 

Loss of Texture. Although highly effective for denoising, the TV norm cannot 
preserve delicate small scale features like texture. This can be accounted for from 
a combination of the above mentioned geometry and contrast loss caveats of the 
ROF model which have the tendency to affect small scale features most severely. 

2.4 Variants 

Total variation based image reconstmction models have been extended in a variety 
of ways. Many of these are modifications of the original ROF functional (2.2), 
addressing the above mentioned caveats. 

2.4.1 Iterated Refinement 

A very interesting and innovative new perspective on the standard ROF model has 
been recently proposed by Osher et al. [615]. The new framework involved can be 
generalized to many convex reconstmction models (inverse problems) beyond TV 
based denoising. When applied to the ROF model in particular, this new approach 
fixes a number of its caveats, such as loss of contrast, and promises even further 
improvements in other significant aspects of reconstruction, such as preservation 
of textures. 

The key idea is to compensate for the loss of signal in reconstmcted images by 
minimizing the ROF model repeatedly, each time adding back the signal removed 
in the previous iteration. Thus, starting with a given fo{x) := f{x), repeat for 
i = l , 2 , 3 , . . . : 

1. Set Uj{x) = argmin-n of (2.2) using fj{x) as the given image. 

2. Set/,+i(x) = fj{x) + {f-uj{x)). 
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When applied to the characteristic function of a disk, this algorithm recovers it 
perfectly after a finite number of iterations without loss of contrast. 

The algorithm can be generalized to inverse problems of the form inf̂ ^ J{u) + 
H{u, / ) . Here, J is a convex regularization term, and H{u, f) a fidelity term that 
is required to be convex in u for every / . In this setting, the iterative procedure 
above becomes: Start with UQ = 0, repeat for j = 1 ,2 ,3 , . . . 

Uj^i = argmiii H{w,f) + J{w) — J{uj) — {DuJ{uj),w — Uj). (2.5) 

Here, DuJ{uj) denotes the derivative of the functional J at the j-th iterate Uj, 
and (•, •) represents the duality pairing. If J is non-differentiable (as in the ROF 
model), then DuJ{uj) needs to be understood as an element of the subgradient 
dJ{uj) of J at Uj. It is clear from formula (2.5) that the algorithm involves re
moving from the regularization term J{u) its linearization at the current iterate 
Uj. 

Formula (2.5) suggests the following definition: For p e dJ{v), let 

DP{u, v) := J{u) - J{y) - (p, u - v) 

be the generalized Bregman distance associated with the functional J . It defines 
a notion of distance between two functions u and v because it satisfies the condi
tions DP{u^ v) > 0 for all u, v, and D^[u, u) = 0. However, it is not a metric as 
it needs not be symmetric or satisfy a triangle inequality. 

A number of important general theorems have been established in [615], 
including: 

• As long as the distance of the reconstructed image Uj to the given noisy 
f{x) remains greater than a (the noise variance), the iteration decreases the 
Bregman distance of the iterates Uj to the true (i.e. noise-free) image. 

• H{ujjf) decreases monotonically and tends to 0 as j —> oo. 

In [615], further results can be found about the convergence rate of the iterates Uj 
to the given image / under certain regularity assumptions on / . 

2.4.2 L^ Fitting 

A simple way to modify the ROF model in order to compensate for the loss of 
contrast is to replace the squared L^ norm in the fidelity term in (2.2) by the L^ 
norm instead. The resulting energy is 

f\Vu\+x[\ f\ dx. (2.6) 

Discrete versions of this model were studied for one dimensional signals by 
Alliney [14], and in higher dimensions by Nikolova [602]. In particular, it has 
been shown to be more effective that the standard ROF model in the presence of 
certain types of noise, such as salt and pepper. Recently, it has been studied in the 
continuous setting by Chan and Esedoglu [165]. 
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Although the modification involved in (2.6) seems minor, it has certain desir
able consequences. First and foremost, the scaling between the two terms of (2.6) 
is different from the one in the original ROF model (2.2), and leads to contrast in-
variance: lfu{x) is the solution of (2.6) with f{x) as the given image, then cu{x) 
is the solution of (2.6) with cf{x) as the given image. This property does not hold 
for (2.2). A related consequence is: If the given image f{x) is the characteristic 
function of a set ft with smooth boundary, then the image is perfectly recovered 
by model (2.6) for large enough choices of the parameter A. This is in contrast to 
the behavior of the ROF model, which always prefers to remove some of the orig
inal signal from the reconstructed one, and preserves a very small class of shapes. 
This statement can be generalized beyond original images given by characteristic 
functions of sets to show that a wide class of regular images are left unmodified 
by model (2.6) for large enough choices of the parameter A. 

In addition to having better contrast preservation properties, model (2.6) also 
turns out to be useful for the denoising of shapes. A natural variational model 
for denoising a shape S, which we model as a subset of W^, is the following: 
minscR^ Per(S) + X\S A I] | , where the first term in the energy represents the 
perimeter of the set E, and the second represents the volume of the symmetric 
difference of the sets S and S weighted by the scale parameter A > 0. This model 
is exactly the one we would get if the minimization in the standard ROF model 
(2.2) is restricted to functions of the form u{x) = IY:{X) and f{x) = Is'(x). 
Unlike the standard ROF problem, however, this minimization is non-convex. In 
particular, standard approaches for solving it run the risk of getting stuck in local 
minima. The total variation model with L^ fidelity term (2.6) turns out to be a 
convex formulation of the shape denoising problem given above. Indeed, the fol
lowing statement has been proved in [165]: Let u{x) be a minimizer of (2.6) for 
f{x) = ls{x). Then, for a.e. pi, e [0,1], the set E(//) = {j; G R ^ : u{x) > /i} 
is a minimizer of the shape denoising problem. Thus, in order to solve the non-
convex shape denoising problem, it suffices to solve instead the convex problem 
(2.6) and then take (essentially) any level set of that solution. 

2,4.3 Anisotropic TV 

In [299], Esedoglu and Osher introduced and studied anisotropic versions of the 
ROF model (2.2). The motivation is to privilege certain edge directions so that 
they are preferred in reconstructions. This can be useful in applications in which 
there may be prior geometric information available about the shapes expected in 
the recovered image. In particular, it can be used to restore characteristic functions 
of convex regions having desired shapes. 

The idea proposed in [299] is to replace the total variation penalty term in (2.2) 
with the following more general term: 

/ (j){Vu) := sup / u{x)dvvg{x) dx 
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where the function 0 : M^ —> R is a convex, positively one-homogeneous 
function that is 0 at the origin, and the set W^ is defined as follows: 

W^:={yeW:X'y< (j){x) \/x G R''} . 

For example, if (/)(a;) — \x\, then the set Wff, turns out to be simply the unit ball 
{y e R^ : \y\ < 1}, and the definition of/^ (l){Vu) given above reduces to the 
standard definition of total variation. Another simple example in two dimensions 
\S(j){x,y) = \x\ 4- |y|, in which case the set W^ is just the closed unit square. 

The set VK̂  defined above is the Wulff shape associated with the function (j). It 
determines the shapes that are compatible with the anisotropy 0. For example, it is 
proved in [299] that i f / (x) is the characteristic function of (a scaled or translated 
version of) the Wulff shape W^, then the solution ti is a constant multiple of 
f{x). This result generalizes that of Strong and Chan [770] and Meyer in [567] 
that concern the case of a disk for the standard ROF model. 

If W(f, is a convex polygon in two dimensions, then its sides act as preferred 
edge directions for the reconstructions obtained by the anisotropic ROF model. 
Indeed, it is proved in [299] that \iu{x) = I s (^) is a solution to the anisotropic 
model, and if S is known to be a set with piecewise smooth boundary dH, then 
dT, should include a line segment parallel to one of the sides of W^p wherever its 
tangent becomes parallel to one of those sides. On the other hand, one can show 
that dT, can include comers that are different than the ones in dW^. 

In addition to being of interest for applications, the results of [299] are also of 
theoretical interest. Indeed, these anisotropic variants of total variation constitute 
an infinitude of equivalent regularizations (in the sense that the semi-norms they 
define are equivalent), yet the properties of their minimizers have been shown to 
be extremely different. That suggests that in general one should not expect an 
image restoration model to perform quite as well as the original ROF model just 
because its regularization term is equivalent to total variation. 

2.4.4 H^'^ Regularization andInf Convolution 

As discussed in Section 2.3, staircasing is one of the potential caveats to watch for 
when using total variation based regularization. It occurs even more severely in 
reconstructions by functionals that have a non-convex dependence on image gra
dients; one famous example is the Perona-Malik scheme, which can be thought 
of as gradient descent for such an energy functional whose dependence on image 
gradients grows sublinearly at infinity. The TV model is borderline convex: its 
dependence on image gradients is linear at infinity. This feature, which is respon
sible for its abihty to reconstruct images with discontinuities, is also responsible 
for the staircasing effect. 

A natural approach to overcoming the staircasing effect is to make the recon
struction model more convex in regions of moderate gradient (away from the 
edges). A functional designed to accomplish this was proposed by Blomgren, 
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Mulet, Chan, and Wong [99]. It has the form 

/ I Vi^l^('^^l) dx-i-X f {u- ff dx. (2.7) 

Here, the function P ( 0 • ^ ^ —^ [0? 2] is to be chosen so that it monotonically 
decreases from 2 to 0. A simple example is P{^) — T^-

The idea behind (2.7) is that the model automatically adapts the gradient expo
nent to fit the data, so that near edges it behaves exactly like the ROF model, and 
away from the edges it may behave more like the Dirichlet energy. This leads to 
much smoother reconstructions in regions of moderate gradient and thus prevents 
staircasing. On the other hand, unlike the ROF model, (2.7) is non-convex and 
difficult to analyze. 

Another approach to preventing staircasing is to introduce higher order deriva
tives into the energy; the cost of moderately high but constant gradient regions 
is zero for such terms. On the other hand, a functional that depends on higher 
order derivatives would not maintain edges in its reconstructions. It is therefore 
necessary to once again allow the model to decide for itself where to use the total 
variation norm and where to use higher order derivative norms. One of the earli
est proposals of this kind was made by Chambolle and Lions in [162], where they 
introduced the notion of inf convolution between two convex functionals. In this 
approach, an image u is decomposed into two parts: u = ui-{-U2. The ui compo
nent is measured using the total variation norm, while the second component U2 
is measured using a higher order norm. The precise decomposition ofu into these 
two components is part of the minimization problem. More precisely, one solves 
the following variational problem that now involves two unknowns: 

inf / \Vui\-ha\D^U2\-\-X{ui+U2-f)^dx. 
Ui,U2 

Minimizing this energy requires the discontinuous component of the image to be 
allocated to the ui component, while regions that are well approximated by mod
erate but nearly constant slopes get allocated to the U2 component at very little 
cost. This prevents staircasing to a remarkable degree in the one dimensional ex
amples presented in [162]. Another method that utilizes total variation and higher 
order derivatives to suppress staircasing is by Chan, Marquina, and Mulet in [168]. 

Despite the important contributions listed above, staircasing remains one of the 
challenges of total variation based image reconstructions. 

2.5 Further Applications to Image Reconstruction 

2.5.7 Deconvolution 

The TV norm can also be used to regularize image deblurring problems. The 
forward degradation model for a blurred and noisy image can be realized as: / = 
k ^ u -{- rj, where / is the observed (degraded) image, k a given point spread 
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function (PSF), u the clean image, rj an additive noise (often Gaussian), and * 
denoting the convolution operator. 

The task of restoring an image u under the above degradation is known as 
deconvolution if the PSF k is known or blind deconvolution if there is little or 
no known a priori information on the PSF. If we replace the u in the uncon
strained ROF model (2.2) with the convolution k * u, then we arrive at the TV 
deconvolution model: 

mm\\k^u-f\\l^X^\\u\\Tv- (2.8) 
u£BV 

Here, as in the ROF model (2.2), the regularization parameter X^ is related to the 
statistical signal to noise ratio (SNR). 

Extending the work by You and Kaveh [911], Chan and Wong introduce in 
[176] the TV blind deconvolution model: 

min \\k^u- fWl + A^^II^IIITV + Afc||A;||Tv. (2.9) 
u,kEBV 

where the additional parameter Afc controls the spread of k. Moreover, solu
tions {u{Xk)} of (2.9) form a one parameter family corresponding to A^. The 
authors also propose an alternating minimization algorithm for minimizing the 
above energy (2.9) which we denote by F{u,k). Here, given u'^ one solves 
for k^~^^ := Bigi[nmkF{u^,k), then given k'^'^^, one solves for u^'^^ := 
argminxi F{u, k'^'^^) altematingly. Such an alternating procedure is shown to be 
convergent when the TV-norm is replaced by the H^-nonn. 

A key advantage of using TV regularization for blind deconvolution is that the 
TV norm can recover sharp edges in the PSF (e.g. motion blur or out-of-focus 
blur) while not penalizing smooth transitions. 

2.5.2 Inpainting 

Image inpainting refers to the filling-in of missing or occluded regions in an image 
based on information available on the observed regions. A common principle for 
inpainting is to complete isophotes (level sets) in a natural way — such a philos
ophy is also true for professional artists to restore damaged ancient paintings. To 
this end, several successful inpainting models have been proposed such as Mas-
nou and Morel [553] and Bertalmio et al. [79]. We refer the reader to [171] and the 
references therein for other more recent models. Among these models, Chan and 
Shen proposed in [171] a TV inpainting model which uses variational methods in 
inpainting. The basic ingredient is to solve the boundary value problem: 

m i n / \Vu\ subject to U = UQ 'mQ.\D. (2.10) 

Here, D is the missing region to be inpainted, UQ is the observed image whose 
value in D is missing. Thus, the TV inpainting method simply fills-in the missing 
region such that the TV in O is minimized. The use of TV-norm is desir-
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able because it has the effect of extending level sets into D without smearing 
discontinuities along the tangential direction of the boundary of D. 

With a slight modification of (2.10), simultaneous inpainting (in D) and 
denoising (in Q.\D) may be done as follows: 

min / \Vu\+\ / {^a-uofdx. (2.11) 
^ JQ, Jn\D 

Define a spatial varying parameter Ae(x) which is 0 in D and is A in H \ £). Then 
the Euler-Lagrange equation for (2.11) can be written as 

which has the same form as that for the ROF model, except the regularization 
is switching between 0 and A in different regions. Thus, it is easy to modify an 
implementation of the ROF model to the TV inpainting model. Finally, we remark 
that some variants of (2.11) such as curvature-driven dififiision [172] and Euler's 
Elastica [167] have been proposed which complete isophotes in a smoother way. 

2.5.3 Texture and Multiscale Decompositions 

Another way of looking at denoising problems is by separating a given noisy 
image / into two components to form the decomposition: f = u-\- v, where u is 
the denoised image and v = f — uthe noise. In [567], Meyer adopts this view for 
the purpose of texture extraction where v captures not only noise but also texture. 
To do this, he proposed a new decomposition model: 

in f | jE ; (^ )= f |V i / |+A| | i ; | | . , / = ^ - t - i ; | (2.12) 

where the * norm is given by: 

||«||. = inf ^{\\y/^^^T^U^\v = d^gi+dyg2} (2.13) 

and the v component lies in what is essentially the dual space of BV, the G space: 

G={v\v = d,gi^ dyg2 , 91,92 G L^{R^)} . (2.14) 

Here, v is an oscillatory function representing texture and the * norm is designed 
to give small value for these functions. Thus, the main idea in (2.12) is to try to 
pull out texture by controlling ||^||*. Experiments in [843, 619] (discussed below) 
visually show that the model (2.12) extracts texture better than the standard ROF 
model. 

In practice, the model (2.12) is difficult to implement due to the nature of the 
* norm. Vese and Osher [843] were the first to overcome this difficulty where 
they devise an L^ approximation to the norm || • ||*. In a later work [619], Osher 
et al. propose another L^ approximation based on the //~^ norm and introduce a 
resulting fourth order PDE. Both works numerically demonstrate the effectiveness 
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of the model (2.12) for texture extraction and also give some further applications 
to denoising and deblurring. 

In a related work, Aujol et al. [36] propose a decomposition algorithm based 
on Meyer's work [567] where they further decompose an image a s / = u-\-v-}-w 
where u, v, and w are cartoon, texture, and noise respectively. 

Given the scale properties of the ROF model seen in section 2.2.3, it is natu
ral to consider a multiscale decomposition based on the ROF model. Multiscale 
decompositions are of particular interest since one may want to extract image 
features of many different scales (either coarse or fine). One such multiscale de
composition is Tadmor et al. [784] and proceeds in a hierarchical manner. After 
choosing an initial AQ = A to remove the smallest oscillation in a given image / , 
the regularization parameters {A^}, \j = 2^X induce a sequence of dyadic scales 
for jf = 1,.. . ,/;:. If we denote by ux. the solution to the ROF model (2.2) for 
parameter \j, then / has the decomposition: 

/ = UXo + tiAi + tiA2 + • • • + ^Afc + Vx^ . 

with vxk denoting the k-th stage residual vx^ = f - {uxo + '̂ Ai + ux^ H H 
uxk). Furthermore, the authors show that Wvx^ ||* ^ 0 as A: ̂  oo. Hence | | / -
J2i=o ^Ai II* —̂  0 as /u —> oo and the decomposition converges to / in the * norm. 
A related work based on merging dynamics of a monotonicity constrained TV 
model can be found in [169]. 

2.6 Numerical Methods 

There have been numerous numerical algorithms proposed for minimizing the 
ROF objective. Most of them fall into the three main approaches, namely, di
rect optimization, solving the associated Euler-Lagrange equations and using the 
dual variable explicitly in the solution process to overcome some computational 
difficulties encountered in the primal problem. We will focus on the latter two 
approaches. 

2.6.1 Artificial Time Marching and Fixed Point Iteration 

In their original paper [695], Rudin et al. proposed the use of artificial time march
ing to solve the Euler-Lagrange equations which is equivalent to the steepest 
descent of the energy function. More precisely, consider the image as a function 
of space and time and seek the steady state of the equation 

S=V-fT^V2A(.-/). (2.15) 
dt '\\vu\p) 

Here, \Vu\(3 := >/|Vii| + f3'^ is a regularized version of \Vu\ to reduce degen
eracies in flat regions where | Vw| ~ 0. In numerical implementation, an expUcit 
time marching scheme with time step At and space step size Ax is used. Under 

file://'//vu/p
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this method, the objective value of the ROF model is guaranteed to be decreasing 
and the solution will tend to the unique minimizer as time increases. However, 
the convergence is usually slow due to the Courant-Friedrichs-Lewy (CFL) con
dition, At < cAx-^|Vn| for some constant c > 0 (see [546]), imposed on the size 
of the time step, especially in flat regions where \Vu\ ^ 0. To relax the CFL con
dition, Marquina and Osher use, in [546], a "preconditioning" technique to cancel 
singularities due to the degenerate diffusion coefficient l/ |Vw|: 

( ^ ) - ' " - « 
(2.16) 

which can also be viewed as mean curvature motion with a forcing term — 2A(ii — 
/ ) . Explicit schemes suggested in [546] for solving the above equation improve 
the CFL to At < cAx^ which is independent of \Vu\. 

To completely get rid of CFL conditions, Vogel and Oman proposed in [849] 
a fixed point iteration scheme (FP) which solves the stationary Euler-Lagrange 
directly. The Euler-Lagrange equation is linearized by lagging the diffusion co
efficient and thus the {i + l)-th iterate is obtained by solving the sparse linear 
equation: 

While this method converges only linearly, empirically, only a few iterations are 
needed to achieve visual accuracy. In practice, one typically employs specifically 
designed fast solvers to solve (2.17) in each iteration. 

2.6.2 Duality-based Methods 

The methods described in Section 2.5.1 are based on solving the primal Euler-
Lagrange equation which is degenerate in regions where Vu = 0. Although 
regularization by l/\Wu\f3 avoids the coefficient of the parabolic term becom
ing arbitrarily large, the use of a large enough /3 for effective regularization will 
reduce the ability of the ROF model to preserve edges. 

Chan et al. in [166], Carter in [151] and Chambolle in [160] exploit the dual 
formulation of the ROF model By using the identity ||x|| = supn ||<i x • g for 
vectors in Euclidean spaces and treating g as the dual variable, one arrives at the 
dual formulation: 

sup / / V • gdx - ; ^ / (V . g)^dx (2.18) 
g€Ci(n,s2)7n ^^ Jn 

where B^ is the unit disk in M .̂ Once g is obtained, the primal variable can 
be recovered by u = / — A~^V-g. A promise of the dual formulation is that 
the objective function is differentiable in g, unlike the primal problem which is 
badly behaved when Vu = 0. However, the optimization problem becomes a 
constrained one which requires additional complexity to solve. 
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The approach used in [166] solves for u and g simultaneously. Its derivation 
starts by treating the term Vu/\Vu\ in the primal Euler-Lagrange equation as an 
independent variable g, leading to the system: 

- V . g + A(tz - / ) = 0, g\Vu\(3 -Vu = 0. 

The above system of nonlinear equations is solved by Newton's method and 
quadratic convergence rate is almost always achieved. In the Newton updates, 
one may combine the two equations to eliminate the need to update g, thus the 
cost per iteration is as cheap as the fixed point iteration (2.17). Empirically, this 
primal-dual method is much more robust than applying Newton's method directly 
to the primal problem in u only. 

In [160], Chambolle devised an efficient algorithm solely based on the dual 
formulation (2.18). By carefully looking at the Euler-Lagrange equation for 
(2.18) and eliminating the associated Lagrange multipliers, one arrives at solv
ing / / (g) - | / / (g ) | = 0 where H{g) = - V ( / - A~^V • g) is the negative of 
the gradient of the primal variable u. The update formula for g used in [160] is a 
simple relaxation g'̂ "̂ ^ = f-ft|///g^^)| ^^^^e r > 0 is chosen to be small enough 
so that the iteration converges. 


