
Chapter 15 

Optical Flow Estimation 
D. Fleet and Y. Weiss 

Abstract 

This chapter provides a tutorial introduction to gradient-based optical flow 
estimation. We discuss least-squares and robust estimators, iterative coarse-
to-fine refinement, different forms of parametric motion models, different 
conservation assumptions, probabilistic formulations, and robust mixture 
models. 

15.1 Introduction 

Motion is an intrinsic property of the world and an integral part of our visual ex­
perience. It is a rich source of information that supports a wide variety of visual 
tasks, including 3D shape acquisition and oculomotor control, perceptual organi­
zation, object recognition and scene understanding [319, 346, 393, 525, 542, 596, 
754, 822, 865]. In this chapter we are concerned with general image sequences of 
3D scenes in which objects and the camera may be moving. In camera-centered 
coordinates each point on a 3D surface moves along a 3D path X{t). When pro­
jected onto the image plane each point produces a 2D path x{t) = {x(t),y{t))^, 
the instantaneous direction of which is the velocity dx(t)/dt. The 2D velocities 
for all visible surface points is often referred to the 2D motion field [407]. The goal 
of optical flow estimation is to compute an approximation to the motion field from 
time-varying image intensity. While several different approaches to motion esti­
mation have been proposed, including correlation or block-matching (e.g, [25]), 
feature tracking, and energy-based methods (e.g., [5]), this chapter concentrates 
on gradient-based approaches; see [59] for an overview and comparison of the 
other common techniques. 
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Figure 15.1. The gradient constraint relates the displacement of the signal to its temporal 
difference and spatial derivatives (slope). For a displacement of a linear signal (left), the 
difference in signal values at a point divided by the slope gives the displacement. For 
nonlinear signals (right), the difference divided by the slope gives an approximation to the 
displacement. 

15.2 Basic Gradient-Based Estimation 

A common starting point for optical flow estimation is to assume that pixel 
intensities are translated from one frame to the next, 

I[x,t) = /(x-fix, t + 1) , (15.1) 

where I{x,t) is image intensity as a function of space x — (x,y)^ and time 
t, and u = (1̂ 1,1̂ 2)̂  is the 2D velocity. Of course, brightness constancy rarely 
holds exactly. The underlying assumption is that surface radiance remains fixed 
from one frame to the next. One can fabricate scenes for which this holds; e.g., 
the scene might be constrained to contain only Lambertian surfaces (no specular-
ities), with a distant point source (so that changing the distance to the light source 
has no effect), no object rotations, and no secondary illumination (shadows or 
inter-surface reflection). Although unrealistic, it is remarkable that the brightness 
constancy assumption (15.1) works so well in practice. 

To derive an estimator for 2D velocity u, we first consider the ID case. Let 
/i(x) and /2(x) be ID signals (images) at two time instants. As depicted in Fig. 
15.1, suppose further that f2{x) is a translated version of/i(x); i.e., let f2{x) = 
/ i {x — d) where d denotes the translation. A Taylor series expansion of/i (x — d) 
about X is given by 

fi{x-d) = h{x)-df[{x)^-0{d^f'{), (15.2) 

where / ' = df{x)/dx. With this expansion we can rewrite the difference 
between the two signals at location x as 

fl{x)-f2{x) = df[(x)^0{d^f'{). 

Ignoring second- and higher-order terms, we obtain an approximation to d\ 

h{x) - h{x) 
d = 

f[{x) 
(15.3) 
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The ID case generalizes straightforwardly to 2D. As above, assume that the 
displaced image is well approximated by a first-order Taylor series: 

I{x + ti, i -f-1) « I{x, i) + U' V/(x, t) + It{x, t) , (15.4) 

where V/ = (/x, ly) and /( denote spatial and temporal partial derivatives of the 
image 7, and w = (ui, ^2)^ denotes the 2D velocity. Ignoring higher-order terms 
in the Taylor series, and then substituting the linear approximation into (15.1), we 
obtain [409] 

VI{x,t)-u-^It[x,t) - 0. (15.5) 

Equation (15.5) relates the velocity to the space-time image derivatives at one 
image location, and is often called the gradient constraint equation. If one has 
access to only two frames, or cannot estimate It, it is straightforward to derive 
a closely related gradient constraint, in which It{x,t) in (15.5) is replaced by 
SI{x, t) = I{x, t + 1) - I{x, t) [533]. 

Intensity Conservation 

Tracking points of constant brightness can also be viewed as the estimation of 2D 
paths x{t) along which intensity is conserved: 

I{x{t),t) = c , (15.6) 

the temporal derivative of which yields 

jll{x{t)^) = 0. (15.7) 

Expanding the left-hand-side of (15.7) using the chain rule gives us 

d ^, , . . dl dx dl dy dl dt „^ ^ ,.^ox 

where the path derivative is just the optical flow u = {dx/dt, dy/dtY. If we 
combine (15.7) and (15.8) we obtain the gradient constraint equation (15.5). 

Least-Squares Estimation 

Of course, one cannot recover u from one gradient constraint since (15.5) is one 
equation with two unknowns, ui and U2. The intensity gradient constrains the 
flow to a one parameter family of velocities along a line in velocity space. One 
can see from (15.5) that this hne is perpendicular to V/ , and its perpendicular 
distance from the origin is | / t | / | |V / | | . 

One common way to further constrain u is to use gradient constraints from 
nearby pixels, assuming they share the same 2D velocity. With many constraints 
there may be no velocity that simultaneously satisfies them all, so instead we find 
the velocity that minimizes the constraint errors. The least-squares (LS) estimator 
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minimizes the squared errors [533]: 

E{u) = ̂ 9{x) [u . VI{x, t) + It{x, 01' , (15.9) 
X 

where g{x) is a weighting function that determines the support of the estimator 
(the region within which we combine constraints). It is common to let g{x) be 
Gaussian in order to weight constraints in the center of the neighborhood more 
highly, giving them more influence. The 2D velocity u that minimizes E{u) is 
the least squares flow estimate. 

The minimum of E{u) can be found from its critical points, where its 
derivatives with respect to u are zero; i.e., 

^ ^ § i i ^ = J^g{x) [mij+u,i^i, + u,] = 0 

dE{uuU2) ^ j^gix) [u,Iy'+u,Uy + Iyh] = 0. 

These equations may be rewritten in matrix form: 

Mu = 6 , (15.10) 

where the elements of M and b are: 

When M has rank 2, then the LS estimate is ii = M~^6. 

M 
Yloly-^t 

Implementation Issues 

Usually we wish to estimate optical flow at every pixel, so we should express M 
and 6 as functions of position x, i.e., M(x) u{x) = b{x). Note that the elements 
of M and 6 are local sums of products of image derivatives. An effective way to 
estimate the flow field is to first compute derivative images through convolution 
with suitable filters. Then, compute their products (Ix^, hJy, ly^, Ixh and lyh), 
as required by (15.10). These quadratic images are then convolved with ^(cc,) to 
obtain the elements of M(cc) and b[x). 

In practice, the image derivatives will be approximated using numerical dif­
ferentiation. It is important to use a consistent approximation scheme for all 
three directions [303]. For example, using simple forward differencing (i.e., 
Ix = I{x,y) — I{x -\- 1,2/)) will not give a consistent approximation as the x, 
y and t derivatives will be centered at different locations in the xyt-cuhQ [407]. 
Another practicality worth mentioning is that some image smoothing is generally 
useful prior to numerical differentiation (and can be incorporated into the deriva­
tive filters). This can be justified from the first-order Taylor series approximation 
used to derive (15.5). By smoothing the signal, one hopes to reduce the ampli­
tudes of higher-order terms in the image and to avoid some related problems with 
temporal aHasing. 
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Figure 15.2. (left) A single moving grating viewed through a circular aperture is consistent 
with all 2D velocities along a line in velocity space, (right) With two drifting gratings there 
are multiple constraint lines that intersect to uniquely constrain the 2D velocity. (After [6]) 

Aperture Problem 

When M in (15.10) is rank deficient one cannot solve for u. This is often called 
the aperture problem as it invariably occurs when the support g{x) is sufficiently 
local. However, the important issue is not the width of support, but rather the 
dimensionality of the image structure. Even for large regions, if the image is one-
dimensional then M will be singular. As depicted in Fig. 15.2 (left); when each 
image gradient within a region has the same spatial direction, it is easy to see that 
Tank\M] — 1. Moreover, note that a single gradient constraint only provides the 
normal component of u, 

-It V/ 

'' ||v/|| ||v/|| • 
When there exist constraints with two or more gradient directions, as depicted in 
Fig. 15.2 (right), then the different constraint lines intersect to uniquely constrain 
the 2D velocity. 

15.3 Iterative Optical Flow Estimation 

Equation (15.9) provides an optimal solution, but not to our original problem. 
Remember that we ignored high-order terms in the derivation of (15.3) and (15.5). 
As depicted in Fig. 15.1, i f / i is linear then d = d. Otherwise, to leading order, 
the accuracy of the estimate is bounded by the magnitude of the displacement and 
the second derivative of / i : 

\d-d\ < 
d'\fi'{x)\ 

+ 0{d^ (15.11) 

For a sufficiently small displacement, and bounded | / (V/i I? we expect reasonably 
accurate estimates. This suggests a form of Gauss-Newton optimization in which 
we use the current estimate to undo the motion, and then we reapply the estimator 
to the warped signsils to find the residual motion. This continues until the residual 
motion is sufficiently small. 
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In 2D, given an estimate of the optical flow field u ^, we create a warped imagQ 
sequence I^{x,t): 

I^{x,t-\-6t) = I{x-\-u^St,t-^St), (15.12) 

where 6t is the time between consecutive frames. (In practice, we only need to 
warp enough frames for temporal differentiation.) Assuming that u = u^ -\- 6u, 
it is straightforward to see from (15.1) and (15.12) that 

I^{x,t) = I^{x + Su,t-i-l) , (15.13) 

If 6u = 0, then clearly I^ would be constant through time (assuming brightness 
constancy). Otherwise, we can estimate the residual flow using 

6u = M-^b (15.14) 

where M and b are computed by taking spatial and temporal derivatives 
(differences) of/^. The refined optical flow estimate then becomes 

In an iterative manner, this new flow estimate is then used to rewarp the original 
sequence (as in (15.12)), and another residual flow can be estimated. 

This iteration yields a sequence of approximate objective functions that con­
verge to the desired objective function [91]. At iteration j , given the estimate u^ 
and the warped sequence P, our desired objective function is 

E{Su) = Y^g{x) [l{x,t)-I{x-^u^ -i-Su^t-i-l)]^ (15.15) 
X 

= ^ ^ ( c c ) [ 7 ^ ( x , i ) - P ( a ; + JM,i + l ) ] ' 
X 

« Y,9{x) \vP{x,t)'Su-^li{x,t)\ = E{Su).(l5A6) 
X 

The gradient approximation to the difference in (15.15) gives an approximate 
objective function E. From (15.11) one can show that E approximates E to 
second-order in the magnitude of the residual flow, Su. The approximation er­
ror vanishes as Su is reduced to zero. The iterative refinement with rewarping 
reduces the residual motion at each iteration so that the approximate objective 
function converges to the desired objective function, and hence the flow estimate 
converges to the optimal LS estimate (15.15). 

The most expensive step at each iteration is the computation of image gradi­
ents and the matrix inverse in (15.14). One can, however, formulate the problem 
so that the spatial image derivatives used to form M are taken at time t, and as 
such, do not depend on the current flow estimate u^ [375]. To see this, note that 
the spatial deriatives are computed at time t and it is straightforward to see that 
I(x,t) = P(a3, t). Of course 6 in (15.14) will always depend on the warped im­
age sequence and must be recomputed at each iteration. In practice, when M is 
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Temporal Sampling with Period T 
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Figure 15.3. (Left) The spectrum of a translating signal is nonzero on a line in the frequency 
domain. Temporal sampling introduces spectral replicas, causing aliasing for higher speeds 
(steeper slopes). (Right) The problem may be avoided by blurring the images before 
computing derivatives. The spectra of such coarse-scale filters will be insensitive to the 
replicas. Velocity estimates from the coarse scale are used to warp the images, thereby 
undoing much of the motion. Finer-scale derivative filters can now be used to estimate the 
residual motion. (After [743]) 

not recomputed from the warped sequence then the spatial and temporal deriva­
tives will not centered at the same location in {x,y,t) and hence more iterations 
may be needed. 

Temporal Aliasing and Coarse-To-Fine Refinement 

In practice, our images have temporal sampling rates lower than required by 
the sampling theorem to uniquely reconstruct the continuous signal. As a 
consequence, temporal aliasing is a common problem in motion estimation. 

The spectrum of a translating signal is confined to a plane through the origin 
in the frequency domain [322, 866]. That is, if we construct a space-time signal 
/ ( x , t) by translating a 2D signal fo{x) with velocity u, i.e., / ( x , t) = fo{x — 
ut), one can show that the space-time Fourier transform o f / ( x , t) is given by 

F{uJa:,UJy,UJt) = Fo{oJa:,UJy)S{uiUJa: -{-U20^y-\-(^t) (15.17) 

where FQ is the 2D Fourier transform of /o and SQ is a Dirac delta. Equation 
(15,17) shows that the spectrum is nonzero only on a plane, the orientation of 
which gives the velocity. When the continuous signal is sampled in time, replicas 
of the spectrum are introduced at intervals of 27r/T radians, where T is the time 
between frames (see Fig. 15.3 (left)). It is easy to see how this causes problems; 
i.e., the derivative filters may be more sensitive to the spectral replicas at high 
spatial frequencies than to the original spectrum on the plane through the origin. 

This suggests a simple approach to aliasing problems [25, 75]. Optical flow 
can be estimated at the coarsest scale of a Gaussian pyramid, where the image 
is significantly blurred, and the velocity is much slower (due to subsampling). 
The coarse-scale estimate can be used to warp the next (finer) pyramid level to 
stabilize its motion. Since the velocities after warping are slower, as shown in 
Fig. 15.3 (right)), a wider low-pass frequency band will be free of aliasing. One 
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can therefore use derivatives at the finer scale to estimate the residual motion. 
This coarse-to-fine estimation continues until the finest level of the pyramid (the 
original image) is reached. Mathematically, this is identical to iterative refine­
ment except that each scale's estimate must be up-sampled and interpolated before 
warping the next finer scale. 

While widely used, coarse-to-fine methods have their drawbacks, usually stem­
ming from the fact that fine-scale estimates can only be as reliable as their 
coarse-scale precursors; a poor estimate at one scale provides a poor initial guess 
at the next finer scale, and so on. That said, when aliasing does occur, one must 
use some mechanism such as coarse-to-fine estimation to avoid local minima in 
the optimization. 

15.4 Robust Motion Estimation 

The LS estimator is optimal when the gradient constraint errors, i.e., 

e{x) = U'VI{x,t)-\-It{x,t) , (15.18) 

are mean-zero Gaussian, and the errors in different constraints are independent 
and identically distributed (IID). Not surprisingly, this is a fragile assumption. 
For example, brightness constancy is often violated due to changing surface ori­
entation, specular reflections, or time-varying shadows. When there is significant 
depth variation in the scene, the constant motion model will be extremely poor, 
especially at occlusion boundaries. 

LS estimators are not suitable when the distribution of gradient constraint errors 
is heavy-tailed, as they are sensitive to small numbers of measurement outliers 
[380, 518]. It is therefore often crucial that the quadratic estimator in (15.9) be 
replaced by a robust estimator, /?(•), which limits the influence of constraints with 
larger errors (e.g., see [40, 89, 612]): 

E[u) = J2 six) p{e{x), a) . (15.19) 

For example, Black and Anandan [89] used the redescending Geman-McClure 
estimator [342], p{e,a) — e^/(e^ + a^), where a'^ determines the range of 
constraint errors for which influence is reduced. 

Among the various ways one might minimize (15.19), one very useful approach 
takes the form of iteratively reweighted least-squares [518]. In short, this is an iter­
ative solution in which the weights g{x) in (15.9) are scaled by a weight fiinction 
that downweights those constraints that are inconsistent (i.e., have large errors) 
with the current motion estimate. Often it is also useful to anneal the optimization, 
wherein cr̂  starts large, and is then slowly decreased to achieve greater robustness. 
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15.5 Motion Models 

Thus far we have assumed that the 2D velocity is constant in local neighbour­
hoods. Unfortunately, even for small regions this is often a poor assumption. We 
now consider generalizations to more interesting motion models. 

Affine Model 

General first-order afiine motion is usually a better model of local motion than 
a translational model (e.g., [75, 89, 320]). An affine velocity field centered at 
location XQ can be expressed in matrix form as 

U{X\XQ) — A(cc; xo) c , (15.20) 

where c = (ci, C2, C3, C4, C5, CQ)^ are the motion model parameters, and 

A(x; XQ) 
1 0 X-XQ y-yo 0 0 
0 1 0 0 X—XQ y—yo 

Combining (15.20) and (15.5) yields the gradient constraint equation 

VI{x,t)A{x;xo) c -\- It{x,t) = 0 , 

for which the LS estimate for the neighbourhood has the form 

c - M-^b, (15.21) 

where now M and b are given by 

M = ^ p A ^ V / ^ V / A , b = -^gA^Vl'^It. 
X X 

When M is rank deficient there is insufficient image structure to estimate the six 
unknowns. Affine models often require larger support than constant models, and 
one may need a robust estimator instead of the LS estimator. 

Iterative refinement is also straightforward with affine motion models. Let the 
optimal affine motion be n = A c, and let the affine estimate at iteration j be 
u^ = Ac^. Because the flow is linear in the motion parameters, it follows that 
Su = u — u^ and Sc = c — c^ satisfy 

Su = A6c . (15.22) 

Accordingly, defining /-^(cc, t) to be the original sequence I{x,t) warped by u^ 
as in (15.12) we use the same LS estimator as in (15.21), but with I and c replaced 
by P and 6c. The updated LS estimate is then c^'^^ = c^ -\- 6c. 

Low-Order Parametric Deformations 

There are many other polynomial and rational deformations that make useful mo­
tion models. Similarity deformations, comprising translation [di, <i2)> 2D rotation 
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Figure 15.4. (a,b) Mouth regions of two consecutive images of a person speaking, (c) Flow 
field estimated using dense optical flow method, (d) Flow field estimated using the learned 
model with 6 basis flow fields. (After [319]) 

0, and uniform scaling by s are a special case of the aflfine model, but still very use­
ful in practice. In a neighbourhood centred at XQ it has the same form as (15.20), 
but with c= [di, d2, s cos 6*, s sinO)^ and 

A{x\ XQ) 
1 0 x-xo -y-\-yo 
0 1 y -yo X -xo 

With this linear form, one can solve directly for c using linear least-squares, and 
then compute the similarity parameters di^d2, s, and 0. 

Another useful motion model is the projective deformation (or homography) 
[75], which captures image deformations of a 3D plane under camera rotation 
and translation. See in Chapter 17 for a discussion of homographies and related 
motion models. 

Learned Subspace Models 

Many objects exhibit complex motions that are not well modeled by low-order 
polynomials. For example Fig. 15.4(a,b) shows two frames of a mouth during 
speech, for which non-rigidity, occlusion, and fast speeds make flow estimation 
difficult. Interestingly, the regression framework above extends to diverse types 
of complex 2D motions with the use of basis flow fields, {^j(a?)}/=i, such that 
the local optical flow field is expressed as 

(15.23) 

In this context, optical flow estimation reduces to the estimation of the linear 
coefficients c, analogous to the affine model discussed above. 

In [319] a motion basis was learned for human mouths. This was accomplished 
by applying a robust estimator with a generic smoothness model [89] to mouths 
to obtain training data (e.g., see Fig. 15.4(c)). The principal components of the 
ensemble of training flow fields were then extracted and used as the basis. Figure 
15.4(d) shows the optical flow obtained with the subspace model and a robust 
estimator. The model was found to greatly increase the quality of the optical flow 
estimates, and the temporal variation in the subspace coefficients were then used 
to recognize linguistic events [319]. 
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General Differentiable Warps 

In general, one can formulate area-based regression in terms of warp functions 
w(x\p) that are not necessarily smooth in space, nor linear in the warp parameters 
p. One can parametrize the warp as a function of time, or assume the two-frame 
case: 

I{x,t) = I{w{x;p),t-^1). (15.24) 

The warp functions must be differentiable with respect to p. To develop an effi­
cient estimation algorithm, one may need to further constrain w to be invertible 
(e.g., see [375]). 

15.6 Global Smoothing 

While area-based regression is commonly used, some of the earliest formulations 
of optical flow estimation assumed smoothness through non-parametric motion 
models, rather than an explicit parametric model in each local neighbourhood 
(e.g., see [407, 593,714]). Horn and Schunck [409] proposed an energy functional 
of the form: 

E{u) - /"(V7.w + 7t)2 -f A ( | | V n i | p + ||VtX2in dxdy . (15.25) 

A key advantage of global smoothing is that it enables propagation of information 
over large distances in the image. In image regions of nearly uniform intensity, 
such as a blank wall or tabletop, local methods will often yield singular (or poorly 
conditioned) systems of equations. Global methods can fill in the optical flow 
from nearby gradient constraints. 

Equation (15.25) can be minimized directly with discrete approximations to 
the integral and the derivatives in (15.25). Thie yields a large system of linear 
equations that may be solved through iterative methods such as Gauss-Seidel or 
SOR overrelaxation [352]. Alternatively one can solve the corresponding Euler-
Lagrange (PDE) equations under reflecting boundary conditions (e.g., [133,714]). 
Recent extensions to global methods include robust penalty functions (for data 
and smoothness terms), the use of coarse-to-fine search for optimization, and the 
incorporation of stronger local constraints on the motion, resulting in impressive 
optical flow estimates [133]. 

The main disadvantage of global methods is computational efficiency. Even 
with more efficient optimization algorithms (e.g. [779, 878]) the computational 
cost is far higher than with local methods. Whether this is justified may depend 
on the image domain and the need for dense optical flow. Another problem is 
in the setting of the regularization parameter A that determines the amount of 
desired smoothing (similar problems arise in choosing the support width for area-
based regression). Prior knowledge on the smoothness of flow can be useful here, 
and more sophisticated methods might be used to estimate (or marginalize) the 
regularization parameter. 
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15.7 Conservation Assumptions 

All of the above formulations assumed intensity conservation. Nevertheless, 
gradient constraints may be used to track any differentiable image property. 

Higher-Order Derivative Constraints 

Some techniques assume that image gradients are conserved (e.g., [593, 743, 
823]). This provides two further constraints at each pixel, i.e., 

-\-U2lxy+Ixt = 0 (15.26) 

Ullxy -f U2lyy -^ lyt = 0 . 

These are useiul insofar as they provide more constraints with which to esti­
mate motion parameters. Conversely, higher-order derivatives are often extremely 
noisy, and the conservation of V / implies that the motion field has no first-
order deformation (e.g., rotation). Intensity conservation (15.7), by comparison, 
assumes only that the image motion is smooth. 

Phase-Based Methods 

Phase-based methods [320, 321] are based on an initial decomposition of the 
image into band-pass channels, like those produced by quadrature-pair filters in 
steerable pyramids [330]. While multi-scale representations are commonly used 
for flow estimation, a further decomposition into orientation bands yields more 
local constraints, often with better signal-to-noise ratios. Complex-valued band­
pass images can be represented as real and imaginary images, or in terms of 
amplitude and phase images. Figure 15.5 shows the real-part of a ID band-pass 
signal, along with its amplitude and phase. Amplitude encodes the magnitude of 
local signal modulation, while phase encodes the local structure of the signal (e.g., 
zero-crossings, peaks, etc). 

Phase-based methods assume conservation of phase in each band-pass channel. 
The phase-based gradient constraint, given a complex-valued band-pass channel, 
r(x, t), with phase (/)(x, t) = arg[r(x, t)], is simply 

V(/)(ir,t)"u + (/)t(x,t) = 0 . (15.27) 

These may be combined to estimate optical flow using any of the estimators 
above. In practice, because phase is a multi-function, only uniquely defined on 
intervals of width 27r, explicit differentiation is difficult. Instead, it is convenient 
to exploit the following identities for computing spatial derivatives and temporal 
differences, 
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Figure 15.5. A band-pass filtered ID signal can be expressed using its amplitude and phase 
signals. Note the linearity of phase over large spatial extents. 

where Im[r] denotes the imaginary part of r, r* is the complex-conjugate of r, 
and Tx = dr/dx. Compared to phase, r{x, t) is relatively easy to differentiate 
and interpolate [322, 320]. 

Phase has a number of appealing properties for optical flow estimation. First, 
phase is amplitude invariant, and therefore quite stable when significant changes 
in contrast and mean intensity occur between frames. Second, phase is approxi­
mately linear over relatively large spatial extents, and has very few critical points 
where the gradient is zero. This is important as it implies that more gradient con­
straints may be available, and that the range of velocities that can be estimated 
is significantly larger than with image derivatives. This also improves the accu­
racy of gradient-based estimates, reducing the number of iterations required for 
refinement. Phase has also been shown to be stable with respect to first-order de­
formations of the image from one time to the next [321]. Both the expected spatial 
extent of phase linearity and the stability of phase are determined, in part, by 
filter bandwidth. The main disadvantages of phase concern the computational ex­
pense of the band-pass filters, and the spatial support of the filters near occlusion 
boundaries and fine-scale objects. 

Brightness Variations 

While contrast normalization, or the use of phase, provides some degree of in-
variance with respect to deviations from brightness constancy, more significant 
variations in brightness must be modeled expHcitly. The models may be object 
specific, to model objects under different lighting conditions [375], poses or con­
figurations [91]. Alternatively, the models may be physics-based [390], or they 
may be generic models for smooth mean and contrast variations [595]. Despite the 
wide-spread use of brightness constancy these models may be extremely useful 
for certain domains. 
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15.8 Probabilistic Formulations 

One problem with the above estimators is that, although they provide useful esti­
mates of optical flow, they do not provide confidence bounds. Nor do they show 
how to incorporate any prior information one might have about motion to further 
constrain the estimates. As a result, one may not be able to propagate flow esti­
mates from one time to the next, nor know how to weight them when combining 
flow estimates from different information sources. These issues can be addressed 
with a probabilistic formulation. 

The cost function (15.16) has a simple probabilistic interpretation. Up to nor­
malization constants, it corresponds to the log likelihood of a velocity under the 
assumption that intensity is conserved up to Gaussian noise. 

I{x,t) = I{x-\-u,t + l)-\-rj. (15.28) 

If we assume that the same velocity u is shared by all pixels within a neighbour­
hood, that T] is white Gaussian noise with standard deviation a, and uncorrelated 
at different pixels, we obtain the conditional density 

p{I\u) oc e ~ ^ ^ ^ ^ ^ , (15.29) 

where E{u) is the LS objective function (15.16). To obtain further insight into 
this likehhood function, we again approximate E to second order using E as in 
(15.15). Under this approximation the likelihood function is Gaussian with mean 
M.~^ b and covariance matrix M~^. 

The approximate covariance matrix M~ defines an uncertainty ellipse around 
the estimated optical How. These uncertainties can be propagated to subsequent 
frames, or to other spatial scales [744]. They can also be used directly in algo­
rithms for 3D reconstruction [418]. (See [880] for a more detailed discussion of 
likelihood functions for probabilistic optical flow estimation.) 

The probabilistic formulation also allows one to introduce prior information. 
Equation (15.29) can be combined with a prior probabihty distribution over local 
velocities. For example, a very useful prior model is that the local flow tends 
to be slow (e.g. [744]). This is convenient to model with a zero-mean Gaussian 
distribution, 

p{u) a e^""^" . (15.30) 

Combining this prior probability with the approximate likelihood function (15.29) 
gives us a Gaussian posterior probability whose mean (and mode) is 

u - (M + A / ) - ^ 6 , (15.31) 

where A is the ratio of the noise and prior variances, A = a'^/o-p. Note that this 
Bayesian estimate will actually be biased, and will not correctly estimate the 
speed or direction of patterns where the local uncertainty is large. This has the 
benefit that it dampens the estimates to help avoid divergence in iterative refine­
ment and tracking. Interestingly, many "illusions" in human motion perception 
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can actually be explained with a prior favoring slow motions and a Bayesian 
model of inference [881]. 

Total Least-Squares 

When one assumes significant image noise that contaminates spatial as well 
as temporal derivatives, then the maximum likelihood motion estimate given a 
collection of space-time image gradients is given by total-least-squares (TLS) 
[598, 867]. If we view velocity as a unit direction in space-time, or in 3D homo­
geneous coordinates v = a{ui,U2,1), a e 7Z, and denote the space-time image 
gradient o^ ^ (V/(cCfc,t),/^(ccfc,t))^, then the gradient constraint becomes 
Ok^v = 0. The sum or squared constraint errors is then 

E{v) = v'^Sv , where S = ^ o^ o^ ^ . (15.32) 
k 

The TLS solution is obtained by minimizing E{v) in (15.32), subject to the 
constraint \\v\\ = 1 to avoid the trivial solution. The solution is given by the 
eigenvector corresponding to the minimum eigenvalue of S. This approach has 
been called tensor-based, with S called the structure tensor [86, 390, 428], These 
methods have produced excellent optical flow results [305]. 

Different noise models yield different estimators. TLS is a ML estimator when 
the noise in Ok is additive, isotropic and IID. When the noise is anisotropic and not 
identically distributed the formulation becomes much more complex [597]. More 
complex noise models, especially those with correlated noise in local regions, 
remain a topic for future research. 

15.9 Layered Motion 

One common problem with area-based regression methods concerns the size of 
spatial support. With larger support there are more constraints for parameter es­
timation, but there is a greater risk that simple parametric motion models will 
be unsuitable. This is particularly serious near occlusion boundaries where mul­
tiple motions exist. For example, in the scene depicted in Fig. 15.6 the camera 
was translating, and therefore both the soda can and the background move with 
respect to the camera, but with different image velocities. To demonstrate this, 
Fig. 15.6 (right) shows a subset of the gradient constraints in the small region 
(marked in white) at the left side of the can. There are two points with a high 
density of constraint-line intersections, corresponding to the velocities of the can 
and the background. 

One way to cope with regions with multiple motions is to explicitly model 
the layers in the scene. The layered model is like a cardboard cutout represen­
tation of a scene in which different cardboard surfaces correspond to different 
layers, and they are assumed to be able to move independently [435, 853]. Lay­
ered motion estimation can be formulated using probabilistic mixture models, 
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Figure 15.6. (left) The depth discontinuity at the left side of the can creates a motion 
discontinuity as the camera translates right, (right) Motion constraint lines in velocity space 
are shown from pixels within the white square. (After [435]) 

with the Expectation-Maximization (EM) algorithm for parameter estimation 
[38, 435, 878, 879]. 

Mixture Models 

Let there be a region of pixels {a^/c}^i in which we suspect there are multiple 
velocities; e.g., the region might contain an occlusion boundary. By way of no­
tation, let u{x\ c) denote a parameterized flow field with parameters c. Within a 
single region of the image we will assume that there are Â  motions, parameter­
ized by Cn, fori <n < N. Furthermore, according to the our mixture model, the 
individual motions occur with probability vfin- These mixing probabilities tell us 
what fraction of the K pixels within the region we expect to be consistent with 
(i.e., ownedhy) each motion. Of course the mixing probabilities sum to 1. 

Let us further assume that we have one gradient constraint per pixel within the 
region. Let Ok = {VI{xk, t)^It{xk, t))^ denote the spatial and temporal image 
derivatives at pixel Xk. As above, given the correct motion, we assume that the 
gradient constraint is satisfied up to Gaussian noise: 

e{Xk\Cn) = VI{Xk,t)'Un{x\ Cn)-^It{Xk,t) = TJ , 

where 77 is a mean-zero Gaussian random variable with a standard deviation of 
ay. Thus, the likelihood of observing a constraint Ok given the n^^ flow model, 
is simply Pn{ok \ Cn) = G(e{xk\ Cn)'^ (Jv) where G{e\ a) denotes a mean-zero 
Gaussian with standard deviation a evaluated at e. 

Finally, given the mixing probabilities and likelihood fianctions, the mixture 
model expresses the probability of a gradient measurement o^, as 

N 

p{ok\m,ci, ..., CN) = ^rnnPn{ok\cn) ^ 

The probability of observing Ok is a weighted sum of the probabilities of 
observing Ok fi*om each of the individual motions. The joint likelihood of a col­
lection of K independent observations {0^}^^ is the product of the individual 
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probabilities: 

K 

L{m, ci, ..., CN) = ]][p(ofc|m, ci, ..., CN) . (15.33) 
A ; = l 

Our goal is to find the mixture model parameters (the mixture proportions and 
the motion model parameters) that maximize the likelihood (15.33). Alternatively, 
it is often convenient to maximize the log likelihood: 

K / N \ 

logL(m, ci, ..., cr^) = X^log ( X] '^nPn{ok\cn) I . 

EM and Ownerships 

The EM algorithm is a general technique for maximum likelihood or MAP param­
eter estimation [257]. The approach is often explained in terms of a parametric 
model, some observed data, and some unobserved data. Our observed data are 
the gradient constraints. The model parameters are the motion parameters and 
mixing probabilities, and the unobserved data are the assignments of gradient 
measurements to motion models. Note that if we knew which measurements were 
associated with which motion, then we could solve for each motion independently 
from their respective constraints. 

Roughly speaking, the EM algorithm is an iterative algorithm that iterates two 
steps that compute 1) the expected values of the unobserved data given the most 
recent estimate of the model parameters (the E Step), and then 2) the ML/MAP es­
timate for the model parameters given the observed data, and the expected values 
for the unobserved data. 

A key quantity in this algorithm is called the ownership probability. An owner­
ship probability, denoted qni^k), is the probability that the n*^ motion model is 
responsible for the constraint (i.e., generated the observed data) at pixel x^. This 
is an important quantity as it effectively segments the region, telling us which pix­
els belong to which motions. Using Bayes' rule, the probability that Ok is owned 
by model Mn can be expressed as 

. . . , >, p{Ok\Mn)p{Mn) 
p{Mn\ok) = :^^ . 

In terms of the mixture model notation here, this becomes 

'7n(x.) = ^ r ' ' " ^ ' \ ' ' " , ^ , • (15.34) 

That is, the likelihood of the observation given the n^^ model is simply 
Pn{ok I Cn), and the probability of the n^^ model is just rrin. The denominator 
is the marginalization of the joint distribution p{ok, Cn) over the space of mod­
els. And of course it is easy to show that Yin ^n i^k) — ^-^^ the context of the EM 
algorithm these ownership probabilities can be viewed as soft assignments of data 
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to models. Once these assignments are made we can perform a weighted regres­
sion to find the motion parameters of each model, using the same tools developed 
above for a single motion. 

Given ownership probabilities, the updated mixing probability for model Mn 
is just the fraction of the total available ownership probability assigned to the n*^ 
model, m,n = ^ Ylk=i Qni^k). The estimation of the motion model parame­
ters is similarly straightforward. That is, given the ownership probabilities, we 
estimate the motion parameters for each model independently as a weighted area-
based regression problem. For the case of a translational motion model, where the 
motion parameters are just Cn = Un, this is just the minimization of the weighted 
least-squares error 

K 

E{Un) = J^QniXk) [S/I{Xk,t)'Un + It{Xk,t)f , (15.35) 
k=l 

Because the mixture model likelihood function (15.33) will have multiple local 
minima, a starting point for the EM iterations is required. That is, to begin the 
iterative procedure one needs an initial guess of either the ownership probabilities, 
or of the model parameters (motion and mixture parameters). Often one starts by 
choosing random values for the initial ownership probabilities and then begin with 
the estimation of the mixing probabihties and the motion model parameters. 

Outliers 

As above, we must expect outliers among the gradient constraint observations. 
Gradient measurements near an occlusion boundary, for example, may not be 
consistent with either of the two motions. As a result, it is often extremely useful 
to introduce an outlier model, MQ, in addition to the motion models; the likeli­
hood for this outlier layer may be modeled with a uniform density [435]. Figure 
15.7 shows results for the region near the can with two motion models and an 
outher model like that described here. For the region shown in Fig. 15.7, the mea­
surement constraints owned by the outlier model are shown in the bottom-right 
plot. 

15.10 Conclusions 

This chapter surveys several approaches to optical flow estimation. It is therefore 
natural to ask what works best? While historically some techniques have been 
shown to outperform others [59], in recent years several different approaches have 
produced excellent results on benchmark data sets, provided one pays attention to 
detail. Some of the important details include (1) multiple scales to help avoid 
local minima, (2) iterative warping and estimate refinement, and (3) robust cost 
functions to handle outliers. Accordingly, many techniques work well up to the 
limits of the key assumptions, namely, brightness constancy and smoothness. 
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Figure 15.7. The top figures show a region at a depth discontinuity, and some of the con­
straint lines from pixels within that region. The black crosses in the upper-right show a 
sequence of estimates at EM iterations. White crosses depict the final the estimates. The 
bottom figures showing ownership probabilities. The bottom-left shows ownership proba­
bilities at each pixel (based on the motion constraint at that pixel). The next two plots shown 
the velocity constraints where intensity depicts ownership (black denotes high ownership 
probability). The bottom-right plot shows constraint lines owned by the outlier model. 
(After [435]) 

Future research is needed to move beyond brightness constancy and smooth­
ness. Detecting and tracking occlusion boundaries should greatly improve optical 
flow estimation. Similarly, prior knowledge concerning the expected form of 
brightness variations (e.g., given knowledge of scene geometry, lighting, or re­
flectance) can dramatically improve optical flow estimation. Brightness constancy 
is especially problematic over long image sequences where one must expect 
the appearance of image patches to change significantly. One promising area 
for future research is the joint estimation appearance and motion, with suitable 
dynamics for both quantities. 


