
5
Thermal Effects in Microscales

In this chapter we consider heat transfer in gas microflows. In the first sec-
tion we concentrate on the thermal creep (transpiration) effects that may
be important in channels with tangential temperature gradients on their
surfaces. For example, a microchannel surface with a prescribed heat flux is
subject to temperature variations along its surface, and this results in ther-
mal creep flow. We analyze thermal creep with numerical simulations to
demonstrate the main concept, and subsequently we describe a prototype
experiment. In the second and third sections we study other temperature-
induced flows and investigate the validity of the heat conduction equation
in the limit Kn → 0. In the fourth and fifth sections we investigate the com-
bined effects of thermal creep, heat conduction, and convection in pressure-,
force-, and shear-driven channel flows.

5.1 Thermal Creep (Transpiration)

It is possible to start rarefied gas flows due to tangential temperature gradi-
ents along the channel walls, where the fluid starts creeping in the direction
from cold toward hot. This is the so-called thermal creep or transpiration
phenomenon. We explain this counterintuitive effect with the following ex-
ample: Consider two containers filled with the same gas that are kept at
the same pressure

P1 = P2
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but at different temperatures

T1 > T2.

If these two containers are connected with a relatively thick channel (λ �
h), the equilibrium condition requires no-flow in the channel. If the chan-
nel thickness (h) becomes comparable to the mean free path (λ), rarefied
gas effects have to be taken into account. In such a case the local equi-
librium mechanism is very complex, and interaction of the gas molecules
with the walls must also be considered. Here, we consider free-molecular
flow conditions (i.e., λ � h) to simplify the discussion. In this flow regime,
the intermolecular collisions are negligible compared to the interaction of
molecules with the surfaces. If we assume that molecule–wall interactions
are specular (i.e., σv = 0), then the following analysis is valid. We assume
that the density of the fluid is proportional to the number density (number
of molecules per unit volume),

ρ ∝ n,

and the temperature of the fluid is proportional to the square of average
molecular speed,

T ∝ c̄2.

The mass fluxes at the hot and the cold ends of the channel are

mn1c̄1 and mn2c̄2,

respectively; here m is the mass of the gas molecules. Then

mn1c̄1

mn2c̄2
≈ ρ1

ρ2

(
T1

T2

)0.5

=
P1

P2

(
T2

T1

)0.5

=
(

T2

T1

)0.5

≤ 1,

where we have used the equations of state

P = ρRT and
P1

P2
= 1.

The above analysis indicates a flow creeping from cold to hot. Osborne
Reynolds was the first to realize this phenomenon, and he coined the term
thermal transpiration (Reynolds, 1879). At about the same time, Maxwell
developed independently a theory for thermal creep. In the early 1900s,
Knudsen built a molecular compressor based on the thermal transpiration
idea by connecting a series of tubes with constrictions arranged between
each tube (Knudsen, 1910a; Knudsen, 1910b). The constrictions were very
small, so that the rarefaction effects became important in the constrictions.
By heating the same side of these constrictions to very high temperatures
(773 K), Knudsen was able to maintain considerable pressure gradients
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(Loeb, 1961). According to (Ebert and Albrand, 1963), Gaede also de-
scribed a thermal pump in his unpublished notes. Other developments in
thermal creep driven vacuum pumps can be found in (Vargo et al., 1998).

A detailed derivation of thermal creep boundary condition for rarefied
flows with λ < h is given in (Kennard, 1938; Loeb, 1961). It can also be
derived directly from the Boltzmann equation (see Section 15.4.2). In order
to accommodate the thermal creep effects, the wall velocity is enhanced
with the following term:

Uc =
3
4

µR

P

∂T

∂s
, (5.1)

where Uc is the creep velocity, and ∂T
∂s is the tangential temperature gra-

dient along the surface. Therefore, the high-order velocity slip boundary
condition is modified as

Us =
1
2

[(2 − σ)Uλ + σUw] + Uc.

The velocity profile for a pressure-driven channel flow of thickness h,
including the thermal creep effects, is then given by equation (4.5) with
(5.1) added on to the right-hand side. Integrating this profile, we obtain
the mass flowrate:

Ṁ = − h3P

12µRT

dP

dx

[
1 + 6

2 − σv

σv
(Kn − Kn2)

]
+

3
4

µh

T

dT

dx
. (5.2)

We conclude that thermal creep can change the mass flowrate in a chan-
nel. If the pressure gradient and the temperature gradient along the channel
walls act along the same direction, the flowrate is decreased; otherwise, the
flowrate is increased.

• Therefore, it is possible to have nonzero flowrate in a microchannel
even in the case of zero pressure gradient.

5.1.1 Simulation Results
An interesting aspect of thermal creep is that it causes zero net mass
flowrate in channels where thermal creep and pressure gradient balance
each other. To demonstrate this we simulated air flow in microchannels of
various dimensions connecting two tanks kept at different conditions with

• Temperatures at 300 K and 400 K, and

• Knudsen number at Kn = 0.365, 0.122, 0.052.

The pressure in both tanks is initially atmospheric. Thermal creep effects
cause pumping of the fluid toward the hot tank, increasing the pressure
in the hot tank and lowering the pressure in the colder one. This pressure
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TABLE 5.1. Pressure differences due to the thermal creep effects obtained by
numerical simulation and from the analytical formula.

Gas Kn ∆Panaly(Pa) ∆Pnumer(Pa)
Air 0.052 342.0 336. 0
Air 0.122 1482.0 1409.0
Air 0.365 9151.0 8832.0

difference eventually starts flow in the middle of the channel in the direction
from hot to cold (high pressure to low pressure), resulting in zero average
mass flowrate in the channel as the steady state is reached. For zero net
mass flowrate, equation (5.2) can be written as

dP

dx
=
(

9µ2R

h2P

) dT
dx

1 + 6[ 2−σ
σ (Kn − Kn2)]

.

It is possible to integrate this equation approximately using average val-
ues of viscosity (µ̄), pressure (P̄ = P1+P2

2 ), and Knudsen number (Kn),
resulting in

P1 − P2 ≈
(

9µ̄2R

h2P̄

)
(T1 − T2)

1 + 6
(

2−σ
σ

(
Kn − Kn

2
)) , (5.3)

where viscosity and Knudsen number are evaluated at average temperature
(T̄ = T1+T2

2 ) and average pressure (P̄ ). Equation (5.3) shows that the
pressure drop between two tanks can be increased by either decreasing the
channel thickness (h) or the average pressure (P̄ ). In other words:

• Thermal creep effects can be significant in rarefied flows where the
pressure is low or in microflows in atmospheric pressures where the
typical dimensions are on the order of a micron or lower.

The steady-state pressure distribution along the channel center and in
the reservoirs, normalized with atmospheric pressure (initial pressure at
both tanks), is given in Figure 5.1 for three different channel sizes. It is
seen that the pressure change due to thermal creep for high Kn flows is
nonnegligible. In Table 5.1, we compare the pressure differences predicted
by equation (5.3) with the numerical values obtained by simulations; the
agreement is very good.

The above numerical experiment describes an unsteady problem for
which the relevant time scales are governed by two different transient pro-
cesses. The first transient process is due to the fluid starting to creep along
the channel surface. As time goes on, the creeping fluid layer starts inter-
acting with the stagnant fluid layers above it, creating a boundary layer
similar to the impulsively started wall problem, the so-called Rayleigh prob-
lem (Batchelor, 1998). Of course, formation of the boundary layer creates
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FIGURE 5.1. Normalized pressure variation along the channel center and reser-
voirs for different rarefaction parameters (P0 = 1 atm). Triangles and circles show
the location of calculation points.

shear stresses, which, in turn, activate the velocity slip mechanism (Ken-
nard, 1938). This is the initial transient process with time scale

t ∝ h2

ν
.

Considering microchannels with typical height of about one micron, this
transient is very fast.

The second time scale of the problem corresponds to the time it takes
to get from initial transients to a steady-state solution where the net mass
flowrate is zero. This time scale is based on the creep velocity and tank
dimensions. In particular, this time scale increases as the tank size is in-
creased. In the limit where the tanks are reservoirs of infinite dimensions,
the fluid steadily creeps from the cold to the hot tank, and the pressure at
the two reservoirs remains practically the same.

Figure 5.2 shows the flow field for early times as well as for a steady-state
behavior. A uniform flow is obtained in the channels initially (past the end
of the aforementioned first process). As more fluid is introduced into the
hot tank, the pressure there increases while the pressure at the cold tank
decreases. Initially, the pressure built up by this process is not sufficient
to reverse the flow in the middle of the channel, and more fluid is being
transported into the hot tank (see Figure 5.2 (a)). When the pressure in the
hot tank is sufficiently high to overcome the flow due to thermal creep, the
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FIGURE 5.2. Demonstration of the thermal creep effects: Flow field for early
times (a), and steady-state solution (b) (Kn = Knav = 0.365).
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FIGURE 5.3. Proposed experimental apparatus for studying thermal creep ef-
fects.

net mass flowrate across the channel becomes zero, and the steady solution
is obtained; this is shown in Figure 5.2 (b). A single streamline passing
through the channel center is also shown in the plot. It is seen that the
fluid recirculates in the channel and there is no net flow to either tank.

This pumping effect of thermal creep has been exploited by (Sone et al.,
1996b), who designed a channel with periodic ditches, similar to the grooved
channel of Figure 3.25 but with the groove present on both walls. They
imposed a periodic temperature variation, whereby the temperature decays
linearly on the groove side, but it increases linearly on the channel wall.
This device produces a unidirectional flow with maximum mass flowrate
at Kn ≈ 0.3, and it works both for channels as well as pipes. While the
original studies in (Sone et al., 1996b), were based on DSMC, subsequently
an experiment was conducted to verify the pumping effect (Sone et al.,
2001).

5.1.2 A Thermal Creep Experiment
The purpose of this experiment is to examine the importance of thermal
creep effects in microchannel flows. It is based on the numerical example
presented above, also in (Beskok et al., 1995), and ideas similar to Knud-
sen’s experiments (Loeb, 1961), but it differs from the early experiment of
(Vargo and Muntz, 1996), where porous diaphragms were used rather than
microchannels.

The objective is to test the thermal creep effects in an apparatus pre-
sented schematically in Figure 5.3. It consists of two reservoirs connected
through a series of microchannels made out of silicon. The typical dimen-
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sions of the microchannels should be 1µm thick, 100µm wide, and few
millimeters long. Using a series of microchannels increases the net flow
area without effectively increasing the channel area to perimeter ratio.

A possible experimental procedure is as follows: First, both of the pres-
sure release valves are open, and therefore, the system is in equilibrium with
the ambient conditions. Then, the pressure release valves are closed. The
temperature and the pressure of the system are recorded to ensure that the
two reservoirs are at identical thermodynamic state. Second, the reservoirs
are dipped into constant-temperature fluid baths at different temperatures
T1 and T2. The pressure and the temperature in the reservoirs should be
recorded in time. If the continuum hypothesis is valid, the pressure in the
reservoirs should be unchanged. If thermal creep effects are present, the
pressure in the cold reservoir should decrease, and the pressure in the hot
reservoir should increase. The experiments should run until a stationary
state is observed. The time scale of the experiment is directly related to the
size of the reservoirs. Therefore, the reservoirs should be designed as small
as possible. However, they should be large enough to maintain continuum
description for the gas in them (i.e., Kn < 0.001). It is possible to increase
the rarefaction effects in the experiments by performing the experiment at
lower pressures than atmospheric conditions. Therefore, a systematic study
of thermal creep as a function of Kn can be performed. Also, the temper-
ature of the fluid baths can be changed from one experiment to another
in order to verify the sensitivity of thermal creep to temperature gradients
for a given Kn.

5.1.3 Knudsen Compressors
Micromolecular compressors are useful for various microscale gas pumping
applications. For example, compressors pumping gas samples through mi-
cromass spectrometers can be used to detect pollutants and various chemi-
cal or biological agents. MEMS-based thermal transpiration Knudsen com-
pressors were proposed in (Pham-van-Diep et al., 1995), and in (Beskok
et al., 1995). The idea in (Pham-van-Diep et al., 1995), is based on uti-
lization of a cascade of multiple stages to obtain large pressure variations.
Each stage consists of an array of capillaries and a connector section. The
temperature increase imposed along the capillary pumps the gas from cold
toward the hot direction, resulting in pressure increase in the capillary sec-
tion. The gas is cooled in the connector section, and thus the temperature
drops to the value corresponding to the inlet of the capillary section. This
creates periodically repeatable temperature variations in each stage of the
compressor. Since the pressure in the connector section drops only slightly,
it is possible to have a net pressure built up with multistage units.

Large-scale Knudsen compressors have low volumetric flowrate and inef-
ficient energy usage; however, their microscale counterparts eliminate these
disadvantages and result in low-power gas-pumping systems with nonmov-
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ing components. (Vargo et al., 1998) built a microvacuum pump delivering
5×1014 molecules per second with a pump volume of 0.16mL at inlet pres-
sure of 10mTorr and power input of 28.5mW. Another micro pump with
the same flowrate was built to operate at 1mTorr. It required a volume
of 13.9mL and power input of 2.4W. A tenfold decrease in the inlet pres-
sure resulted in almost a hundred times increase in the power input and
the volume of the system. The flow in the capillary section of the Knud-
sen compressor is in transition or free-molecular flow regime, and thus the
capillary radius is small, and thermal transpiration effects are dominant in
this section. However, the dimensions of the connector section are consider-
ably larger than the local mean free path, so that slip or continuum flow is
present in this section. In the compressor built by Vargo et al., the capillary
and the connector radii were 0.225µm and 10.795 mm, respectively. The
bottleneck in the design of a Knudsen compressor is usually in determining
the dimensions of the connector section, which becomes a limitation for
low-pressure applications where the mean free path is already quite large.

In the experiments of Vargo et al., the maximum temperature variation in
one stage of the compressor was about 20 to 30 K, with average temperature
of 282 K. The inlet pressure and the working gas were varied. Good device
performance for pressures as low as 1 mTorr was reported. Finally, Vargo et
al. have developed a numerical model for predicting flowrate and pressure
buildup in Knudsen compressors operating in the transition flow regime.
The numerical predictions were validated using the experimental data, and
the new algorithm was employed to study compressor performance under
various flow conditions.

5.2 Other Temperature-Induced Flows

In addition to the flow induced by thermal creep, which is an O(Kn) effect,
there are other possibilities for setting up a flow in rarefied flows in the
absence of any external forces, e.g., gravity. Here we list a few representative
cases and provide a short explanation:

• thermal stress slip flow,

• nonlinear thermal stress flow,

• flow induced around the edge of a heated plate, and

• flow induced by a temperature discontinuity.

Most of these cases were discovered by Sone, Aoki, and their collaborators
by analyzing the Boltzmann equation (see Section 15.4.2). They are most
probably present in microsystem flows, but they are difficult to isolate and
be detected as individual effects. Here we give a brief summary for each
following the work in (Sone, 2002; Sone, 2000).
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FIGURE 5.4. Flow domain showing the temperature discontinuities at the upper
and lower walls. (Courtesy of K. Aoki.)

The thermal stress slip flow is an O(Kn2) effect, and it is derived fol-
lowing a consistent second-order expansion in Kn of the Boltzmann equa-
tion. In that case, in addition to the thermal creep that is present in the
first-order expansion of the boundary terms, there is a correction term for
the slip velocity proportional to the normal gradient of the temperature.
A nonuniform normal gradient can cause a slip velocity even if the bound-
ary is isothermal. To explain this in more detail, we follow the argument
of Sone (see Section 15.4.2 and (Sone, 2002)). Let us consider a gas be-
tween two eccentric circular cylinders with different uniform temperatures
T1 and T2. No thermal creep flow is induced; however, there is, in general,
a nonuniform normal temperature gradient on each cylinder, that is,

∂2T

∂xi∂xj
nitj �= 0,

where ni and tj are components of the unit vectors in the normal and
tangential directions, respectively. A global flow is then set up circulating
between the cylinders along the clockwise direction if the temperature of the
outside cylinder T2 is higher. This phenomenon was discovered by (Sone,
1972), who termed it “thermal stress slip flow.”

The nonlinear thermal stress flow is an O(Kn) effect and was dis-
covered by (Kogan et al., 1976) as a new type of convection. When the
temperature gradient in a gas is so large that its nonlinear effect is not
negligible, the thermal stress does not balance by itself and remains in the
momentum equation (see momentum equations in Section 15.4.2). This
causes a flow when the distance between isothermal lines or surfaces varies
along them. In this flow, in contrast to the thermal creep flow and thermal
stress slip flow, a solid boundary plays only an indirect role in setting up
the isothermal contours.
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FIGURE 5.5. Flow induced in the lower half of the domain for T2/T1 = 2. The
scale

√
u2 + v2/

√
2RT1 = 0.02 is indicated next to the plots. The upper plot

corresponds to Kn = 0.2 and the lower plot to Kn = 0.02. (Courtesy of K. Aoki.)

The flow induced around the sharp edge of a heated plate cannot
be predicted by the asymptotic analysis of the Boltzmann equation as in
the previous two cases. This phenomenon was discovered more recently in
numerical and experimental work by (Aoki et al., 1995) and (Sone and
Yoshimoto, 1997). If a uniformly heated plate is placed in the middle of
gas contained in a tank of uniform temperature, flow is induced around the
edge of the plate for a wide range of Knudsen number. There is no flow
induced by thermal creep, since the temperature is uniform everywhere.
The induced velocity scales approximately as O(

√
Kn).

Lastly, flow induced by a temperature discontinuity has been stud-
ied by (Aoki, 2001), who set up a flow in a square enclosure, half of which
is at temperature T1 and the other half at temperature T2 (see Figure 5.4).
A flow is induced from the colder to the hotter part along the one wall with
the discontinuity at the middle, and this sets up a global circulating flow
(see Figure 5.5). The maximum flow speed tends to a constant value at low
Kn values and decays for Kn ≥ 0.1.

5.3 Heat Conduction and the Ghost Effect

We examine here the possible breakdown of the heat conduction equation
in the limit that Kn → 0. This phenomenon was studied by (Sone et al.,
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1996a) and shows a fundamental inconsistency in the momentum and en-
ergy (Navier–Stokes) equations. We consider a gas at rest contained in a
tank. According to the continuum description, the gas temperature field is
described by the heat conduction equation, i.e., the energy equation with
all the convective terms absent. Below, we follow the argument of (Sone,
2002; Sone, 2000), that demonstrates that the heat equation is not always
appropriate, e.g., in microscales.

Let us consider the energy equation in the continuum limit and examine
only the relevant terms (for a monoatomic gas) as follows:

5
2
ρui

∂(RT )
∂xi

= · · · +
∂

∂xi

(
k

∂T

∂ki

)
, (5.4)

where k is the thermal conductivity. The corresponding heat conduction
equation for a gas at rest is

∂

∂xi

(
k

∂T

∂xi

)
= 0.

The thermal conductivity (k) of a gas is a function of its mass as well
as its temperature. Specifically, k (divided by the density of the gas) is
proportional to the mean free path with the proportionality coefficient a
general function of temperature, i.e.,

k

ρ
= F

(
T

T0

)√
2RTRλ.

Therefore, in the energy equation the conduction term divided by the den-
sity is O(λ). For a gas flow of the order of the mean free path (λ), which
is neglected in classical gas dynamics, its convection term is of the same
order as the conduction term and cannot be neglected. More specifically,
the order of magnitude for the convection term is

Convection ∝ O(ρV RT/L),

and the order of magnitude for the conduction term is

Conduction ∝ O(ρ(RT )3/2λ/L2),

where V and L are, respectively, the characteristic flow speed of the gas
and the length scale of variation of the temperature of the gas. Thus, the
two terms are comparable when

V ∝ O(
√

RTλ/L) ∝ O(Kn).

The question then is whether there are flows of such magnitude; however,
we have already seen in this section that both the thermal creep flow and
the nonlinear thermal stress flow are possible candidates. These flows are
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always present, even at extremely small Knudsen numbers, unless all sur-
faces in the device have uniform temperature and all temperature isocon-
tours are parallel. These two conditions are difficult to satisfy simultane-
ously except in the trivial case of two infinite plates at exactly uniform
temperatures with no end effects! Therefore, according to (Sone, 2002) the
heat-conduction equation is inappropriate for describing the temperature
field of a stationary gas in the continuum limit.

Sone termed this the “ghost effect” in the sense that something that does
not exist in the world of a gas in the continuum limit has a finite effect in
the molecular world. In (Sone, 2000) an example of the ghost effect is given
for a channel with small periodic temperature variation at the two walls.
No experiments in microscales have reported the ghost phenomenon, and it
is difficult to assess its practical significance; nevertheless, it is a significant
result from the fundamental principles point of view.

5.4 Heat Transfer in Poiseuille Microflows

It is possible to create Poiseuille flow in a microchannel using either a
pressure drop or a body force. Although the continuum descriptions for
both cases are similar, kinetic theory predictions and statistical simulations
for force-driven flows show that the Navier–Stokes solutions fail to predict
the important temperature minimum effects, even for Kn ≈ 0.01 flows with
M < 0.1 (Zheng et al., 2002). Therefore, we divide this section into two
parts, addressing the pressure- and force-driven flows separately.

5.4.1 Pressure-Driven Flows
Heat transfer in pressure-driven gas microflows has important engineering
applications. There have been several studies of microflows under constant
wall temperature and heat flux conditions. For example, thermally devel-
oping slip flows under constant heat flux have been presented for circu-
lar and rectangular microchannels in (Ameel et al., 1997; Yu and Ameel,
2002), respectively. A similar problem is studied at the entrance of a con-
duit by including the heat transfer within the Knudsen layers (Chen and
Xu, 2002). Thermally developing flows in circular tubes under constant
wall temperature have been studied in the slip flow regime (Larrodé et al.,
2000). The constant-temperature convective heat transfer under hydrody-
namically and thermally fully developed conditions is considered for vari-
ous geometries and flow regimes, such as slip flow in rectangular channels
(Tunc and Bayazitoglu, 2002) and flow in two-dimensional channels for
0 < Kn ≤ 10 (Simek and Hadjiconstantinou, 2002).

In this section, we neglect gas compressibility effects and present an
analytical treatment of heat transfer for pressure-driven flows. We consider
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the slip flow regime where the continuum description is valid. Such results
were first obtained by (Inman, 1964), who showed that reduced heat transfer
rates are obtained in the presence of slip flow. Specifically, Inman obtained
the following equation for the Nusselt number Nu for constant heat flux q
at the wall

1
Nu(Kn)

=
17
140

− 9 Kn +48Kn2

35(1 + 6Kn)2
+

γ

γ + 1
Kn
Pr

, (5.5)

where the Nusselt number is defined as

Nu ≡ qDH

k∆T
.

Here DH is the hydraulic diameter (DH = 2 × (2h) = 4h for a channel of
total width 2h), and ∆T is the temperature difference between the wall and
the bulk of the fluid. Also, Nu(Kn = 0) = 8.235 is the value corresponding
to no-slip conditions. The above equation is based on Maxwell’s first-order
slip condition and neglects the effect of thermal creep.

Next, we analyze the combined effects of convection and thermal creep.
The momentum equation subject to slip boundary conditions with a spec-
ified tangential temperature variation (see equation (2.19)) can be solved
analytically. The rarefaction effects on momentum transfer can be inves-
tigated either by analyzing the volumetric flowrate increase in a pressure-
driven channel or by analyzing the change in the skin friction coefficient
for a fixed volumetric flowrate, under an appropriately specified pressure
gradient. The nondimensional velocity distribution in a channel extending
from y = −h to y = h is obtained as

U(y/h) =
Re
2

∣∣∣∣∂p

∂x

∣∣∣∣ [1 −
( y

h

)2
+ 2

(
2 − σv

σv

)
Kn

1 + 1
2 Kn

]
+

3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
, (5.6)

where ∂Ts

∂x denotes the tangential temperature variation along the chan-
nel surface, and we defined Kn = λ/h, with h the half-channel width.
Given this parabolic velocity profile we obtain the coefficient of high-order
boundary condition from equation (2.39) to be b = − 1

2 . Correspondingly,
the volumetric flowrate Q̇ through the channel, in nondimensional form,
becomes

Q̇ =
4
3

+ 4
(

2 − σv

σv

)
Kn

1 + 1
2 Kn

+
3
π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
, (5.7)

since |∂P
∂x | = 2

Re . The leading-order variation in the volumetric flowrate
under fixed ∂p

∂x is linear in Kn due to velocity slip, and quadratic in Kn due
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to thermal creep effects (for fixed Eckert number). However, since Kn ∝
M/Re and Ec ∝ M2, then we see that the thermal creep term is linear in
Kn, i.e., proportional to Kn /M .

In order to maintain zero average flowrate in a channel under a prescribed
pressure gradient for an incompressible flow, the following condition should
be maintained:

∂p

∂x
=

9
2π

(γ−1)
γ Kn2 ∂Ts

∂x

Ec(1 + 3(2−σv

σv
) Kn
1+ 1

2 Kn)
. (5.8)

In this case, if
∂Ts

∂x
> 0,

the flow creeps from cold to hot along the channel surface, where a positive
pressure gradient creates back-flow in the middle of the channel (Kennard,
1938; Loeb, 1961). With regard to the effects of thermal creep on Fanning
friction coefficient of the flow for a fixed volumetric flowrate, the ratio of
the friction coefficient of a slip surface Cf to the friction coefficient Cf0 of
a no-slip surface is given by

Cf

Cf0

=
1 − 3

πQ̇
Kn2 Re

Ec
∂Ts

∂x

1 + 3 2−σv

σv
( Kn
1+ 1

2 Kn)
. (5.9)

It is seen that for fixed flowrate Q̇, Eckert number Ec, and Reynolds
number Re, the ratio of Fanning friction coefficients of slip flow to the
no-slip flow changes significantly by varying the Knudsen number Kn. For
flows without thermal creep effects (i.e., ∂Ts

∂x = 0.0), the extra terms in
the numerator of equation (5.9) are absent, and the formula is further
simplified; see more details in (Beskok and Karniadakis, 1992; Beskok and
Karniadakis, 1994).

The above analytical results can be used to validate computer programs
for microfluidic applications. Here we present computations obtained with
the spectral element program µFlow. Comparisons are performed up to
Kn = 0.15, and the results are presented in Figure 5.6. The dashed line and
the solid line show the drag reduction predicted by the first- and high-order
slip flow theory without thermal creep effects, respectively. The triangles
correspond to numerical predictions with high-order slip flow theory, and
the circles correspond to numerical predictions with high-order slip flow
theory including in this case the thermal creep effects (here Ec = 1.0,
Re = 1.0, and ∂Ts

∂x = 1.0). The differences between the analytical and
numerical results are negligible.

The aforementioned simplified analysis can also be used to explain the
drag reduction observed in the experiments reported in (Pfahler et al.,
1991). For comparison, the experimental results are also plotted in Figure
5.6. The ratio predicted from equation (5.9) for Kn = 0.088 corresponding
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F
F

JP9 He

FIGURE 5.6. Ratio of Fanning friction coefficients of slip flow to no-slip flow in a
pressure-driven channel. (Parameters for thermal creep contribution are Ec = 1.0,
Re = 1.0, and ∂Ts

∂x
= 1.)

to the helium flow (case JP9 in (Pfahler et al., 1991)) is 0.79 in reasonable
agreement with the measured value 0.8 to 0.85. The nitrogen flow gives a
slightly greater drag reduction of about 0.86 compared to the theoretical
predictions of 0.9 for Kn = 0.04. Our predictions assume accommodation
coefficient σv = 1 and that compressibility effects in the channels are ne-
glected. Thus, the Knudsen number variation in the channels due to com-
pressibility effects is not taken into account, and the Knudsen number is
calculated by taking the arithmetic average of the inlet and outlet Knudsen
numbers of the microchannel. Furthermore, isothermal flow conditions are
assumed, and thermal creep effects are neglected. For channel thicknesses
significantly smaller, corresponding to Kn > 0.1, the experimental results
show a strong dependence of the ratio of drag coefficients on the Reynolds
number, which is not predicted by the above analysis.

Regarding heat exchange in microdomains, it is interesting to note that
the viscous heating terms are quite significant; see also (Hadjiconstantinou,
2003b), for a discussion on shear work on solid boundaries for Kn ≤ 3. For
example, if the reference temperature T0 is taken to be the room tem-
perature and the specified temperature difference of the domain ∆T is
small, the viscous heating effects become nonnegligible for M ≥ 0.05 (see
equation (2.22)). An analytical solution of general heat convection prob-
lem for steady and thermally fully developed planar microchannel flows
under specified uniform heat flux (q̇) on the boundaries can be obtained by
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FIGURE 5.7. Variation of tangential temperature gradient (∂Ts
∂x

) along the sur-
face of a pressure-driven channel as a function of Mach number for different levels
of heat fluxes (q̇) (Re = 1.0, ∆T = 1K, and T0 = 300 K).

decomposing the temperature profile into two parts,

T (x, y) =
∂Ts

∂x
x + θ(y), (5.10)

where ∂Ts

∂x x and θ(y) show the axial and cross-flow temperature variations,
respectively. The coordinates x and y are also nondimensionalized here
with the reference length scale. A global energy balance in the domain with
an insulated top surface and a specified constant heat flux on the bottom
surface gives the following relation for the tangential temperature gradient
along the channel:

∂Ts

∂x
=

1
RePrQ̇

(
q̇ +

8
3
EcPr

)
. (5.11)

The corresponding cross-flow temperature distribution in the channel is

θ(y) = RePr
∂Ts

∂x

(
B

y2

2
− y4

12

)
− EcPr

y4

3
+ Cy + D, (5.12)

where
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M=0.000
M=0.007
M=0.034
M=0.067
M=0.088
M=0.101

FIGURE 5.8. Variation of temperature profiles in a pressure-driven channel flow
for continuum and rarefied flows, with specified heat flux on the bottom surface
(Y = −1), as a function of Mach number (Re = 1.0 and Pr = 0.7).
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,

with θ0 the reference temperature. The modifications to the coefficients B
and D due to Kn shows the thermal creep, velocity slip, and temperature
jump effects. The continuum solution is recovered as the rarefaction effects
diminish (i.e., Kn → 0 ).

A quadratic equation for ∂Ts

∂x can be obtained by combining equations
(5.7) and (5.11). The solution for ∂Ts

∂x for specified heat fluxes is shown in
Figure 5.7 as a function of Mach number. Equation (2.22) is used to specify
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the Eckert number variation for both the continuum and the rarefied flow
cases. The Knudsen number variations are specified by equation (2.21). It
is seen that the heat flux required to maintain ∂Ts

∂x = 0 is the same for
both continuum and rarefied flow curves. The physical significance of this
result is that for a specified Mach number there is only a single value of
the heat flux required to compensate the viscous heating effects (see equa-
tion (5.11)). Another significant result is the reduction in the magnitude
of ∂Ts

∂x in rarefied flows, which implies that microchannels sustain smaller
tangential temperature gradients compared to the large-scale channels. Ex-
amining equation (5.7) and Figure 5.7, we see that the volumetric flowrate
of a heated microchannel increases due to thermal creep effects. However,
cooled microchannels allow less volumetric flowrate compared to the con-
tinuum case. If the rarefaction effects are increased further, the viscous
heating effects will dominate. Under this condition ∂Ts

∂x may become pos-
itive, which will result in increase of the volumetric flowrate beyond the
predictions of continuum theory even for cooled channels.

Temperature profiles under different heat flux conditions are shown in
Figures 5.8 and 5.9. The temperature jump diminishes if both surfaces of
the channel are insulated (see Figure 5.9, top). In this case, the max-
imum temperature occurs near the walls, where shear stresses are more
dominant and the tangential temperature variation becomes positive (see
Figure 5.7). This suggests significant changes in the volumetric flowrate
of the microchannel, which is the main reason for the differences in the
temperature profiles of two cases. Thermal creep in a microchannel can be
avoided if the channel is carefully cooled at a cooling rate of q̇ = − 8

3PrEc
(see equation (5.11)); this results in constant temperature along the chan-
nel wall. The temperature distribution for a microchannel, without thermal
creep effects, is also given in Figure 5.9 (bottom). This result suggests that
the temperature of the insulated surface will be greater than its counterpart
modeled by the continuum theory.

The analytical results presented for pressure-driven and shear-driven
channels (Section 5.5) are also verified with numerical simulations. Since
the temperature variation is in the form of a fourth-order polynomial, con-
vergence of the numerical scheme to the exact solution can be obtained
with very coarse discretizations. Typically, fourth-order polynomial expan-
sion in µFlow simulation is sufficient to resolve the spatial variations; see
Section 14.1.

Remark: The analytical results presented in this section are based on the
incompressibility approximation. Therefore, they are valid for small tem-
perature and pressure variations in the microchannels. Small temperature
variations can be a good approximation, but it has been shown experi-
mentally that the pressure drop in microchannels could be large. In the
experiments of (Pfahler et al., 1991), a total pressure drop of about one
order of magnitude is reported. Even though the inlet Mach numbers of
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FIGURE 5.9. Temperature profiles in a pressure-driven channel flow for contin-
uum and rarefied flows as a function of Mach number. The top row shows the
insulated channel, and the bottom row shows specified heat flux that counter-
balances the viscous heating effects, so that overall, ∂Ts/∂x = 0, and therefore
there are no thermal creep effects; Re = 1.0 and Pr = 0.7.

the flows are very small, exit Mach numbers up to M = 0.70 have been
observed. For such situations, the flow in the microchannels cannot be as-
sumed incompressible, and thus the above analysis will not be strictly valid.
In general, it is theoretically inconsistent (Aoki, 2001) to use the incom-
pressible flow model with slip boundary conditions caused by rarefaction
but the analysis here is meant to highlight approximately the heat transfer
effects.

5.4.2 Force-Driven Flows
It is possible to drive channel flows using a body force. The force- and
pressure-driven flows are hydrodynamically similar. In either case, the pres-
sure gradient or the force field will be balanced by the viscous shear on the
channel walls, and for compressible flows part of the force will be used to
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accelerate the fluid in the streamwise direction. However, the two driving
forces are very different at the microscopic level. The external force accel-
erates individual particles, while the pressure gradient induces a collective
flow (Zheng et al., 2002). The energy equation for these two cases also shows
some differences. For example, the pressure creates a cooling effect by flow
expansion (the first term on the right-hand side in equation (2.7)), while
the body force affects the kinetic energy of the sytstem (Panton, 1984).
For pressure-driven compressible flows the expansion cooling negates the
viscous heating (last term in equation (2.7)), while viscous heating may
play a crucial role in force-driven flows.

(Zheng et al., 2002) performed extensive DSMC and Navier–Stokes stud-
ies of pressure- and force-driven Poiseuille flows in the slip flow regime,
and compared these with each other and with the kinetic theory predic-
tions. They have shown that the compressible Navier–Stokes equations do
not predict the correct flow physics for the force-driven flow case even for
Kn = 0.01 flows. Specifically, the Navier–Stokes solutions failed to predict
the central minimum in the temperature profile and the nonconstant pres-
sure distribution. In Figure 5.10 we present the temperature distribution
predicted across the channel using the DSMC and Navier–Stokes solutions.
The temperature distribution predicted by the Navier-Stokes solution gives
a temperature maximum in the center of the channel, while the DSMC and
the kinetic theory predicts two off-center maxima, with a local temperature
minimum at the center of the channel. The inability of the Navier–Stokes
equations to predict this behavior indicates a global failure, which can-
not be corrected by modifications of the transport coefficients, equation
of state, or the slip/jump boundary conditions. (Zheng et al., 2002) have
shown that such discrepancies between the DSMC and Navier-Stokes pre-
dictions do not exist for the pressure-driven Poiseuille flow.

The temperature minima can also be predicted using the entropic lattice
Boltzmann method (LBM), specifically the so-called minimal kinetic model;
see Section 15.5. In this nonisorthermal case, the entropic LBM does a good
job in capturing the correct temperature variation. Here we present results
of (Ansumali et al., 2003), who performed an extensive study of this flow
using the 16-velocity minimal kinetic model. The Knudsen number was
varied from Kn = 0.001 to Kn = 0.5, while the Mach number was varied
from Ma = 0.01 to Ma = 0.3. Some typical simulation results are presented
in Figure 5.4.2. Similar to the DSMC results of (Zheng et al., 2002), the
minimal kinetic model predicts the temperature minimum. Some important
conclusions, which we can draw from the results of (Ansumali et al., 2003)
in Figure 5.4.2 are:

• Even at very low Mach numbers, where the flow is often assumed to
be isothermal, the temperature variations can be nonnegligible. For
example, the simulation results predict that at Ma = 0.12,Kn = 0.2,
the temperature variation can be as large as 7 K within a distance of
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FIGURE 5.10. Temperature profile across a microchannel for the force-driven
Poiseuille flow. The curve with the error bars is the DSMC, while the solid line
shows the Navier–Stokes results. (Courtesy of A.L. Garcia.)

a few microns.

• The amplitude of the deviation from the isothermal condition is a
function of the Knudsen and the Mach number. The deviation in-
creases as the Knudsen or the Mach number increases.

• At a fixed Knudsen number, changing the Mach number does not
lead to any qualitative change in the temperature profile.

• At a fixed Mach number the influence of the increase of the Knudsen
number is to increase the depth of temperature minimum.

• At a fixed Mach number, as the Knudsen number is increased, the
(two symmetric) maxima in the temperature profile move near to the
wall.

5.5 Heat Transfer in Couette Microflows

In this section a two-dimensional channel extending from y = 0 to y = h is
considered. The flow is driven by moving the top wall of the channel with
a specified velocity U0. Thus, this case can be a prototype for a microrotor.
Assuming a two-dimensional fully developed flow, the Navier–Stokes equa-
tions can be simplified to give linear velocity distribution in the channel.
This can be written in nondimensional form

u

U0
= U(y/h) =

y/h + 2−σv

σv
Kn

1 + 2 2−σv

σv
Kn

+
3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
. (5.13)
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FIGURE 5.11. Temperature profile across the channel as a function of the Knud-
sen and the Mach numbers. In the figure, the Knudsen number increases going
from left to the right, while the Mach number increases going from the bottom to
the top. The dimension of the simulated channel was L/W = 20. The Knudsen
and Mach numbers (Kn, M) used in the simulations were: Plot F1: (0.001, 0.01),
Plot F2: (0.001, 0.02), Plot F3: (0.001, 0.05), Plot F4: (0.20, 0.01), Plot F5:
(0.20, 0.05), Plot F6: (0.20, 0.12), Plot F7: (0.45, 0.01), Plot F8: (0.45, 0.04), Plot
F9: (0.45, 0.17), respectively. (Courtesy of I. Karlin and S. Ansumali.)

The corresponding volumetric flowrate per channel width is

Q̇ =
1
2

+
3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
. (5.14)

It is seen that thermal creep effects result in change of the flowrate of the
channel. The ratio of friction coefficients of the shear-driven slip flow to a
continuum flow is given by

Cf

Cf0

=
1

1 + 2 2−σv

σv
Kn

. (5.15)

The above equation is obtained for constant mass flowrate in the channel. If
thermal creep effects are considered, the driving velocity Uo of the channel
must be modified to keep the volumetric flowrate constant. Therefore, the
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FIGURE 5.12. Variation of tangential temperature gradient (∂Ts
∂x

) along the sur-
face of a shear-driven channel as a function of Mach number for different levels of
heat fluxes (q̇). Dashed line: continuum; solid line: rarefied. (Re = 1.0, ∆T = 1K,
and T0 = 300 K).

thermal creep effects are not included in the derivation of equation (5.15).
Heat convection analysis for a steady and thermally fully developed

shear-driven microchannel is obtained by decomposing the temperature
profile into two parts, as given in equation (5.10). The channel is assumed
to have an insulated top surface and a bottom surface with a specified
heat flux (q̇). With this decomposition, the temperature variation across
the channel becomes a third-order polynomial given by

θ(y) =
A

6
y3 +

B

2
y2 −

(
A

2
+ B

)
y + C, (5.16)

where
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∂x
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∂Ts

∂x
=

2
RePrQ̇

[
q̇ +
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(1 + 2Kn)2

]
. (5.17)
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FIGURE 5.13. Variation of temperature profiles in a shear-driven channel flow
for continuum and rarefied flows, with specified heat flux at the bottom surface,
as a function of Mach number. Y = 0 corresponds to a stationary wall, and Y = 1
corresponds to a moving wall (Re = 1.0 and Pr = 0.7).

A quadratic equation for ∂Ts

∂x can be obtained by combining equations
(5.14) and (5.17). The solution for ∂Ts

∂x for specified heat fluxes is shown in
Figure 5.12 as a function of Knudsen number. Equation (2.22) is used to
specify the Eckert number variation for both the continuum and the rar-
efied cases. The Knudsen number variations are also specified by equation
(2.21). It is seen that the heat flux required to maintain ∂Ts

∂x = 0 for a spec-
ified Mach number is smaller in microchannels compared to the continuum
case. The viscous heating effects are more dominant in the continuum case
compared to microscales; see also (Wendl and Agarwal, 2002). This leads
to different results for cooled and heated channels with respect to thermal
creep effects.

Variation of temperature profiles across the channel is given in Figure
5.13 as a function of Mach number. Both the continuum and the rarefied
flow cases are presented. Here, the nondimensional heat flux of q̇ = ±1
is specified at the bottom surface of the channel. The temperature jump



192 5. Thermal Effects in Microscales

FIGURE 5.14. Variation of temperature profiles in a shear-driven channel flow
for continuum and rarefied flows. The top row shows insulated channels, and the
bottom row shows cooled channels with equation (5.18) such that there are no
thermal creep effects (i.e., ∂Ts

∂x
= 0). Re = 1.0 and Pr = 0.7.

effects are clearly seen in the rarefied flow case. In a microchannel the
temperature of the insulated surface is less than that of the continuum
predictions for heated channels, while the opposite is true for cooled chan-
nels. The effects of thermal creep on volumetric flowrate of the channel
depends on the direction that the flow is sheared by the top surface, and
whether the channel is cooled or heated. As long as the driving velocity U0
is in the same direction with increasing ∂Ts

∂x , the volumetric flowrate of the
channel will increase due to the thermal creep effects.

The temperature jump diminishes if both surfaces of the channel are
insulated (see Figure 5.14, top). For this case, the viscous heating effect
in a microchannel is less than the continuum prediction. Therefore, the
temperature differences of top and bottom surfaces are relatively small in
microchannels compared to the continuum case. It is also possible to specify
heat flux on the boundaries that will cancel the viscous heating effects. This
case gives zero tangential temperature gradient on the microchannel walls.
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The heat flux necessary to maintain this condition is

q̇ = − EcPr
(1 + 2Kn)2

. (5.18)

The temperature variation for a microchannel without thermal creep ef-
fects is also given in Figure 5.14 (bottom). This result suggests that the
temperature of the insulated surface will be smaller than its counterpart
modeled by the continuum theory.

Remark: The results presented in this section assume small temperature
and pressure fluctuations compared to the reference pressure and temper-
ature. However, planar shear-driven channels have zero pressure gradient.
Thus, the only limitation on the incompressibility assumption is small tem-
perature fluctuations, which is satisfied, since ∆T ≈ O(1) in this study.




