
18
Reduced-Order Simulation

In chapter 17 we discussed various techniques for reduced-order model-
ing of microsystems. In this chapter, we discuss the application of these
techniques to several examples in microflows. First, we present circuit and
device models and their application to lab-on-a-chip systems. Then, we dis-
cuss macromodeling of squeeze film damping by applying equivalent circuit,
Galerkin, mixed-level, and black box models. Next, we present a compact
model for electrowetting. Finally, we summarize some of the software pack-
ages that are available for reduced-order simulation.

18.1 Circuit and Device Models for Lab-on-a-Chip
Systems

The concept of a micro-total analysis system (µ-TAS) or a lab-on-a-chip
for integrated chemical and biochemical analysis has grown considerably in
scope since its introduction (Manz et al., 1990; Reyes et al., 2002). µ-TAS
involves the miniaturization of all the functions found in chemical analysis,
including fluidic transport, mixing, reaction, and separation (Greenwood
and Greenway, 2002), so that the entire chemical measurement laboratory
could be miniaturized onto a device of a few square centimeters. For exam-
ple, the system shown in Figure 18.1 incorporates the essential processes
(fluidic transport, mixing, reaction, and separation) involved in a µ-TAS.
One of the critical elements of any microfluidic system or µ-TAS is its flu-
idic transport system. For the example considered in Figure 18.1, the fluid
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FIGURE 18.1. A prototype chemical analysis system. The system incorporates
fluidic transport, mixing, reaction, and separation.

is transported from the ends of the cross-shaped segments to the reservoir
marked as the “Final Species.” Most microfluidic chips transport the fluid
electrokinetically (see Chapter 7) and/or by pressure. Electrokinetic trans-
port and control of fluids has the advantage that it eliminates the need for
mechanically moving parts, such as valves and pumps, which have thus far
been difficult to construct and interface to microchip systems (Weigl et al.,
2003).

An important element of the µ-TAS is the reaction chamber. As shown
in Figure 18.1, chemical/biological species are transported to the reaction
chambers, where chemical reactions take place leading to the formation of
a product. The rate of formation of the product is dependent on the flux
of the reactant, the proportion of the various reactants in the solution,
the order of the reaction, and the reaction kinetics. The solution from the
reaction chamber is sometimes tapped for detection. The detection of the
product is typically easier than the detection of the reacting species. In such
a case, the presence of the product and the concentration of the product
can give quantitative information about the reacting species. Thus, often
reaction and detection schemes are intrinsically linked together, and both
of these form an integral part of the µ-TAS.

Another important functionality in µ-TAS is the separation of biomole-
cules and biochemical species. Electrophoresis and isoelectric focusing (see
Chapter 7 for details) are the most commonly employed methods of separa-
tion. In Figure 18.1, for example, the separation is based on electrophoresis.
Higher field intensity is generally tolerable for electrophoretic separation in
microchannels (Ehrfeld, 2003). Smaller characteristic dimensions in combi-
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nation with higher field intensities lead to a shorter time scale of separation,
which is a fundamental advantage in µ-TAS compared to macroscopic de-
vices.

When designing integrated microfluidic systems of the type shown in
Figure 18.1, some important objectives are to:

1. Increase the throughput.

2. Improve the homogeneity of the mixture.

3. Obtain higher separation efficiency.

4. Perform detection faster.

However, it may not be possible to attain all these objectives, and there
can be a trade-off leading to an optimized design. In this section, using the
techniques discussed in Chapter 17, “easy-to-use” circuit and device mod-
els are presented, which can be used to explore the design space and select
an optimal design for integrated microfluidic systems to perform various
functions. The model development is illustrated using the example shown
in Figure 18.1. The models are, however, general enough that they can be
applied or extended to other microfluidic systems. The development of a
compact/circuit model for fluid flow due to a combined pressure and elec-
trical potential gradient is first discussed. The compact model is described
in two parts, namely, the electrical model and the fluidic model.

18.1.1 Electrical Model
For microfluidic devices that rely on the electrokinetic force as the driving
force, the electric field must be computed first. In the case of electroosmotic
flow (see Chapter 7 for details; here we restate only the essential equations
to derive the circuit models), the potential field due to an applied potential
can be computed by solving the Laplace equation:

∇2φ = 0, (18.1)

where φ is the electrical potential. Since equation (18.1) predicts a linear
potential drop for simple straight channels, the potential variation can be
represented by linear electrical resistances. In order to develop a complete
circuit that takes into account the charge stored in the electrical double
layer (EDL), capacitive elements also need to be included in modeling the
electrical domain. The EDL can be decomposed into the stern layer and
the diffuse layer. As the stern layer and the diffuse layer store charge,
the capacitance associated with these layers is important. In addition, the
capacitance of the channel wall, which arises due to a potential difference
across the channel wall, needs to be taken into account. The electrical
resistance of the EDL can be safely neglected, since the effective resistance
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of the EDL is much higher than the resistance of the channel filled with
buffer (Hayes and Ewing, 2000). Figure 18.2(a) and Figure 18.2(b) illustrate
a typical cross-shaped channel segment (this is similar to the cross shapes
formed by S1, S2, M1, S3 or B1, B2, B3, M1 or B4, B5, B6, M2 or S4, S5, S6,
M2 in Figure 18.1) in a microfluidic system and its circuit representation,
respectively.

The electrical resistance of a solution-filled simple straight channel is
given by the expression

Rch,i =
ρsol,iLi

Ac,i
,

where ρsol,i is the electrical resistivity of the solution in the ith channel,
i = 1, 2, . . . 4 (see Figure 18.2(b)), Li is the length of the ith channel, Ac,i

is the cross-sectional area of the ith channel, and Rch,i is the electrical
resistance of the ith channel.

The expression for the effective capacitance, shown in Figure 18.2(b), is
given by

(Ceff,i)
−1 = (Cst,i)

−1 + (Cdl,i)
−1 + (Cwall,i)

−1
,

where Cst,i is the capacitance of the stern layer of the ith channel, Cdl,i
is the capacitance of the diffuse layer of the ith channel, and Cwall,i is the
capacitance of the ith channel wall; Cst,i is given by the expression (Oldham
and Myland, 1994)

Cst,i =
εAs,i

xH,i
,

where ε is the permittivity of the fluid in the channel, As,i is the inner
surface area of the ith channel, and xH,i is the thickness of the stern layer.
The capacitance of the diffuse layer, Cdl,i, is given by the expression (Davies
and Rideal, 1966)

Cdl,i =
σT,iAs,i{( 2kBT

ze

)
sinh−1

(
σT,i

c
1
2

[ 500π
εRT

] 1
2
)} ,

where σT,i is the intrinsic surface charge density on the channel wall, kB is
Boltzman’s constant, T is the temperature, z is the valence of the counte-
rion, e is the charge of an electron, c is the concentration of the counterion
in the bulk solution, and R is the universal gas constant. The capacitance
of the wall for a cylindrical channel, Cwall,i, is given by the expression

Cwall,i =
εAs,i

ri ln( ro

ri
)
,

where ri is the inner radius of the channel and ro is the outer radius of the
channel.

When no potential difference is applied across the channel wall, no charge
is induced in the channel wall. As a result, the capacitance of the chan-
nel wall can be neglected in the computation of the effective capacitance.
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(a) (b)

FIGURE 18.2. (a) A typical cross-shaped channel segment of a microfluidic sys-
tem. The electrical potentials, φ1−4, are given. V1 and V2 are the transverse
applied potentials. (b) The electrical network representation for the cross-shaped
channel. Rch,1−4 are the electrical resistances, ψ1−4 are the surface potentials of
the channel walls, and Ceff,1−4 are the capacitances of the EDLs.

For example, there is no wall capacitance for i = 2, 3, 4, since there is no
applied voltage across the channel, as shown in Figure 18.2(a). Typically,
the capacitance of the stern layer is much higher than the capacitance
of the diffuse layer (Oldham and Myland, 1994). Also, when capacitances
are connected in series (as in this case), the capacitance with the smaller
value dominates. Therefore, in most cases the effective capacitance, Ceff ,
can be approximated by the diffuse layer capacitance, Cdl. The effective
capacitance can be related to the surface potential by the expression

Ceff,iψ0,i = qst,i = σT,iAs,i,

or
ψ0,i =

σT,iAs,i

Ceff,i
, (18.2)

where ψ0,i is the surface potential on the ith channel and qst,i is the total
charge stored in the EDL of the ith channel.

18.1.2 Fluidic Model
For the fluidic transport driven by an electrical field and/or a pressure
gradient, the “through quantities” are the flow rates through the chan-
nels, while the “across quantities” are the electrical potential differences
and the pressure differences imposed on the fluidic channels. In this section
we present a derivation of the constitutive equation relating the “through
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quantities” to the “across quantities” making use of the continuity equa-
tion and the steady-state momentum equation for electroosmotic flows (see
Chapter 7 for details).

Slip Case

The slip case model can be used when the thickness of the EDL is insignif-
icant compared to the depth or diameter of the channel. The body force,
F = ρeE (see Chapter 7), is nonzero only within a few Debye lengths from
the channel wall, since the potential induced by the zeta potential drops to
zero very quickly near the channel wall (Mitchell et al., 2000). In the devel-
opment of the compact model for the slip flow case, we will assume that the
flow is fully developed and the thickness of the EDL is insignificant com-
pared to the thickness or diameter of the channel (this assumption usually
holds good for channels larger than 200 nm; see Chapter 7 for details). As
a result, the effect of the electrokinetic force can be represented by a slip
velocity at the wall given by the Helmholtz–Smoluchowski equation (see
section 7.3)

up = −εζ

µ
∇φ, (18.3)

where ∇φ is the potential gradient across the fluidic channel and ζ is the
zeta potential of the fluidic channel. The Poisson–Boltzmann equation,
which is used for the full-scale simulation of electroosmotic flow, can be
linearized for low values of surface charge density. Then, the Debye–Hückel
theory predicts the following relationship between the zeta potential, ζ,
and the surface potential, ψ0 :

ζ = ψ0 exp(−κχ),

where κ is the inverse of the Debye length and χ is the radius of the
counterion. The surface potential can be computed from equation (18.2)
using the capacitance model. Thus, from knowing the surface potential, the
zeta potential of the channel wall can be computed. The velocity profile
across a capillary slit is a function of only the slip velocity and the pressure
gradient, i.e.,

u = − 1
2µ

dp

dx

(
y2 − h2

4

)
+ up, (18.4)

where x denotes the stream direction of the channel, y denotes the trans-
verse direction of the channel, and h is the channel depth. Since up is given
by equation (18.3), solving for the velocity in equation (18.4) is reduced to
computing the pressure distribution in the fluidic network. By taking di-
vergence of the momentum equation and applying the continuity condition,
we get the expression

∇2p = ∇ · F − ∇ · (ρf (u · ∇)u).
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In the regions where the flow is fully developed, the convection term
(u·∇)u is zero. Thus, ∇ · (ρf (u · ∇)u) vanishes. The term corresponding to
the divergence of the force must be zero in the fully developed flow regions;
otherwise, the flow would not be fully developed due to the nonuniform
body force. Hence, for the region where the flow is fully developed, the
pressure calculation is reduced to a Laplace equation,

∇2p = 0. (18.5)

Thus, equation (18.5) decouples the solution of pressure from the solution
of velocity.

Integrating the velocity profile given in equation (18.4) across the cross-
section of the capillary slit and using equations (18.1), (18.3), and (18.5),
we get the following expression for the flowrate per unit width:

Q =
(

h3

12µL

)
∆p +

(
εζh

µL

)
∆φ. (18.6)

For the ith channel in an array of channels, equation (18.6) can be rewritten
as:

Qi = Hi∆pi + Ei∆φi, (18.7)

where Hi is the hydraulic conductance of the ith channel, Ei is the elec-
trohydraulic conductance of the ith channel, ∆pi is the pressure drop in
the ith channel, and ∆φi is the electrical potential drop in the ith channel.
The expressions for Hi and Ei for the capillary slit are given in equa-
tion (18.6). For a cylindrical channel, the hydraulic conductance and the
electro-hydraulic conductance are given by

Hi =
πri

4

8µiLi
and Ei =

εζiπri
4

µiLi
,

where ri is the inner radius of the ith cylindrical channel. Equation (18.7)
is the constitutive relationship, which relates the “through quantity” to the
“across quantities” (a combined pressure and electrical potential drop). If
the flow is driven by only a pressure gradient, then the second term in
equation (18.6) can be neglected. Similarly, if the flow is driven by only an
electric field, then the first term on the right-hand side of equation (18.6)
can be neglected. Figure 18.4 shows the circuit representations of the fluidic
domain for the cross-shaped channel segment shown in Figure 18.3. It is to
be noted that the total flow is the sum of the electrokinetically driven flow
and the pressure-driven flow.

No-Slip Case

The slip velocity model discussed above can be employed when the Debye
length is thin compared to the channel width. However, when the Debye
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FIGURE 18.3. A cross-shaped channel with a combined pressure and electrical
potential gradients. The electrical potentials, φ1−4, and pressures, p1−4, are given.

FIGURE 18.4. Circuit representation for the electrokinetically driven flow is on
the left. E1−4 are the electrohydraulic conductances of the channels and (Cfl,1−4)
are the fluidic capacitances. Circuit representation for the pressure-driven flow
is given on the right. H1−4 are the hydraulic conductances of the channels. The
plus sign between the two figures indicates that the total flow is the sum of the
electrokinetically driven flow and the pressure-driven flow.

length is comparable to the channel width, the slip velocity model may
not be accurate. For a capillary slit, the velocity profile is given by the
expression (Patankar and Hu, 1998; Keh and Tseng, 2001)

u(y) = − 1
2µ

dp

dx

(
y2 − h2

4

)
− ε

µ
∇φ

(
ψ0 − ψ(y)

)
, (18.8)
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where

ψ(y) =
ψ0cosh( y

λD
)

cosh( h
λD

)
, (18.9)

and λD is the Debye length; see equation (7.1). Integrating the velocity
profile (given in equation (18.8)) across the cross-section and using equation
(18.9), we get the following expressions for the hydraulic conductance and
the electrohydraulic conductance of the ith channel:

Hi =
hi

3

12µiLi
and Ei =

ε

µiLi
ψ0

⎛⎝2hi − 2λD

sinh
(

hi

λD

)
cosh

(
hi

λD

)
⎞⎠ .

Fluidic Channels with Elastic Membranes

In the case of channels with integrated elastic parts in them (e.g., a flexible
membrane) a capacitive element needs to be included in the circuit model
of the fluidic domain as shown in Figure 18.4. The fluidic capacitor can be
modeled as

Cfl =

∫∫
Γw(x, y)dΓ

p
, (18.10)

where Cfl is the fluidic capacitance, w is the deflection, Γ is the total surface
area of the flexible membrane, and p is the pressure difference across the
channel wall. For a rectangular membrane of dimensions a×b, the fluidic
capacitance from equation (18.10) is given by

Cfl =
4a

π5Dr

∞∑
m=1,3,5,...

(−1)
m−1

2

m5

sin(mπ
2 )

mπ
a{

b

2
+

a

2mπ
[αm − tanh(αm)(3 + αm tanh(αm))]

}
,

where

αm =
mπb

2a
,

and Dr is the rigidity of the membrane given by

Dr =
Emodh3

m

12(1 − ν2)
,

where hm is the thickness of the membrane, Emod is the elastic modulus of
the membrane, and ν is the Poisson ratio of the membrane.

The implementation of the electrical model and the fluidic model is car-
ried out using the modified nodal analysis technique (Ogrodzki, 1994). Once
the variations of φ and p are known, the flowrate in each channel can be
computed using the constitutive relationship given in equation (18.7).
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FIGURE 18.5. Chemical species A and B are transported to the reaction cham-
ber, where they undergo a second-order reversible reaction process.

18.1.3 Chemical Reactions: Device Models
Consider a scheme (shown in Figure 18.5) in which the chemical species
A and B are transported to the reaction chamber, where they undergo a
second-order reversible reaction process to produce species C. The govern-
ing equations for this reaction process are given by

A + B
k1�
k2

C,

∂mA

∂t
= QACA − k1(mA)(mB) + k2(mC),

∂mB

∂t
= QBCB − k1(mA)(mB) + k2(mC),

∂mC

∂t
= k1(mA)(mB) − k2(mC),

where Qi is the flowrate of the ith species, which is computed from the
fluidic transport model (or known from the design specifications), Ci is the
concentration of the ith species, mi is the number of moles of the ith species
present in the reaction chamber, k1 is the forward reaction rate, and k2 is
the backward reaction rate. A trapezoidal scheme is used to discretize the
ODEs given above. The discretized equations are given by

(mn+1
A − mn

A)
∆t

= QACA − k1

4
(mn+1

A + mn
A)(mn+1

B + mn
B) +

k2

2
(mn+1

C + mn
C),

(mn+1
B − mn

B)
∆t

= QBCB − k1

4
(mn+1

A + mn
A)(mn+1

B + mn
B) +

k2

2
(mn+1

C + mn
C),

(mn+1
C − mn

C)
∆t

=
k1

4
(mn+1

A + mn
A)(mn+1

B + mn
B) − k2

2
(mn+1

C + mn
C).
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FIGURE 18.6. A basic separation unit, which can separate species that are op-
positely charged, have different valences or different electrophoretic mobilities.

The nonlinear equations given above are solved by employing a Newton–
Raphson scheme to compute mn+1

A , mn+1
B and mn+1

C at the (n + 1)th time
step given mn

A, mn
B , and mn

C at the nth time step. These equations consti-
tute the device model for the reaction module.

18.1.4 Separation: Device Model
Figure 18.6 shows a simple separation mechanism, which is repeated as the
basic unit in the circular separation device reported in (Kutter, 2000). The
separation unit can separate species that are either oppositely charged or
have different valences or different electrophoretic mobilities. The total flux
of a given species through a channel is given by the following expression:

Jt =
[
Ddiff

∂c

∂x
+

zFcDdiff

RT
(∇φ) c + vconvc

]
Ac, (18.11)

where Jt is the total flux, Ddiff is the diffusion coefficient of the species, c is
the concentration of the species, Fc is Faraday’s constant, z is the valence
of the ion, R is the universal gas constant, T is the temperature, Ac is
the cross-sectional area of the fluidic channel, and vconv is the convective
velocity of the flow that arises due to the bulk flowrate, Q, given in equation
(18.6):

vconv =
Q

Ac
.

From equation (18.11), the total flux is the sum of the diffusive flux (given
by the first term), the electrophoretic flux (given by the second term and
it is zero for uncharged species), and the convective flux (given by the
last term), which arises due to the bulk flow in the channel. Typically, the
separation unit is designed in such a way that the convective flux and the
electrophoretic flux (for charged species) dominate over the diffusive flux
(Fletcher et al., 1999). Thus, assuming that the diffusive flux is negligible,
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the expression for the total flux is given by

Jt =
[
zFcDdiff

RT
(∇φ) c + vconvc

]
Ac

or
Jt = (Qph + Q)c,

where Q is the convective flowrate, which is computed using equation
(18.6), and Qph is the electrophoretic flow rate, which is given by the ex-
pression (Fletcher et al., 1999)

Qph =
(

zFcDdiff

RT

)
Ac∇φ.

Thus, the constitutive equation, which relates the “through quantity” (elec-
trophoretic flowrate) to the “across quantity” (electrical potential differ-
ence), in the case of electrophoretic flow, is given by

Qph =
(

zFcDdiffAc

RTL

)
∆φ = F∆φ,

where F is the electrophoretic conductance of the fluidic channel.
Consider an example, where two species A and B are present in the

separation channel shown in Figure 18.6. Assume that species A is unit-
positively charged and species B is unit-negatively charged, while the sur-
face of the channel has a negative fixed charge. Therefore, the electroos-
motic flow through the channel would be from left to right (i.e., from the
anode side to the cathode side) as shown in Figure 18.6. The electrophoretic
flow for A would be from left to right, but that for B would be in the oppo-
site direction. This is due to the difference in the electrophoretic velocities
of these two species. Thus, the ratio of the rate of molar increment at the
outlet of the separation channel for the two species is given by the expres-
sion

Separation Ratio =
(Q + sign(zA)× | Qph |A)cin

A

(Q + sign(zB)× | Qph |B)cin
B

=
(Q+ | Qph|A)cin

A

(Q− | Qph|B)cin
B

,

where cin
A is the concentration of species A at the inlet, and cin

B is the
concentration of species B at the inlet. Considering that the bulk flow is
due to electrical potential gradient only (i.e., pressure-driven flow is ab-
sent), the separation ratio of the species can be expressed in terms of the
electrophoretic conductance, electrohydraulic conductance, and the inlet
concentration of the species, i.e.,

Separation Ratio =
(H + FA)cin

A

(H + FB)cin
B

. (18.12)

Thus, the knowledge of the electrophoretic conductance and the electro-
hydraulic conductance can be used to compute the separation ratio using
equation (18.12), which can be considered as the device model for the sep-
aration module.
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FIGURE 18.7. A block diagram for combined circuit/device analysis of the
lab-on-a-chip system shown in Figure 18.1.

18.1.5 Integration of the Models
Figure 18.7 summarizes the integration of the circuit and device models
for the prototype integrated microfluidic system shown in Figure 18.1. The
circuit-based electrical model is first employed to compute the electrical
potential distribution in the entire microfluidic system. Using the electri-
cal potential distribution as an input, the fluidic circuit model is used to
compute the flow variables (the pressure distribution, flowrate, etc.) in
the entire system. The flowrates through various channels are then used
to compute the mixing ratio/efficiency, reactions and the separation ratio.
Even though Figure 18.7 is specific to the microfluidic system shown in
Figure 18.1, it can be generalized to various other microfluidic systems by
appropriately combining the electrical, fluidic, mixing, reaction/detection,
and separation modules.

18.1.6 Examples
In this section, we demonstrate the application of the models and the im-
plementation using several examples. In the first example (Figure 18.8,
(Jacobson et al., 1999)), we consider microfluidic devices, which can be
used for electrokinetically driven parallel and serial mixing. In the second
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(a) (b)

FIGURE 18.8. Schematics of the microchips for parallel (a) and serial (b) elec-
trokinetic mixing. The circles depict sample, buffer, and waste reservoirs. The
sample, buffer, and analysis channels are labeled “S,” “B,” and “A,” respectively.
The T intersections are the basic units for the parallel mixing device, while the
cross intersections are the basic units for the serial mixing device (Jacobson et al.,
1999).

example, we demonstrate a circuit-model-based analysis of a pneumatically
controlled fluidic transport system, which has been used in a high-density
microfluidic chip by (Thorsen et al., 2002). In the final example, we con-
sider an integrated system, and a complete simulation-based analysis of the
lab-on-a-chip.

Electrokinetically Driven Mixing

Microfluidic devices for parallel and serial mixing have been experimen-
tally demonstrated (Jacobson et al., 1999). The parallel mixing device
(Figure 18.8a) is designed with a series of independent T-intersections,
and the serial mixing device (Figure 18.8b) is based on an array of cross-
intersections. Figures 18.9(a) and 18.9(b) show the circuit representation
of the mixing devices. Since the channels do not contain any flexible walls,
the fluidic capacitances are neglected. The parameters (e.g., channel di-
mensions and applied potential) used in the simulation are the same as
those used in the experiments reported in (Jacobson et al., 1999). The zeta
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potential of the channel walls for this example is computed from the ca-
pacitor model and has been verified with the experimental results given in
(Jacobson et al., 1999). The expressions that have been used to compute the
sample fraction are the same as those given in (Jacobson et al., 1999). For
the parallel mixing device, the sample fraction in the jth analysis channel
is computed by the expression

(S.F.)Aj
= (n)Aj

=
(Q)Sj

(Q)Aj

,

where S.F. is the sample fraction, (Q)Sj
is the flowrate of the sample in

the jth analysis channel, and (Q)Aj
is the flowrate of the total solution in

the jth analysis channel. For the serial mixing device, the sample fraction
in the (m + 1)th analysis channel is computed by the expression

(S.F.)Am+1 = (n)Am+1 =
m∏

k=1

[
1 − (Q)Bk

(Q)Sk+1

]
,

where (Q)Bk
is the flowrate of the buffer in the kth channel and (Q)Sk+1 is

the sample flowrate in the (k+1)th channel. Table 18.1 gives a comparison
of the simulated and experimental results for the parallel and serial mixing
devices. The simulation results show very good agreement with the experi-
mental results. The CPU times to compute the electrical variables and the
fluidic variables for the systems shown in Figure 18.8 (i.e., the mixing de-
vices) were of order 1 second on a 800-MHz PC. Figures 18.10a and 18.10b
show the variation in the sample fraction that can be obtained by control-
ling the electrical potential at the buffer and the sample reservoirs. These
results demonstrate the advantage of the circuit model for designing mi-
crofluidic systems. It is practically impossible to get the variation of the
output parameter with the input parameter varying over such a large range
using experimental techniques or full-scale simulation methods.

The depth of the channels considered for parallel and serial mixing are
10 µm and 5.5 µm, respectively. For such large depths, the slip flow circuit
model presented in Section 18.1.2 gives accurate results. Even if a no-slip
flow circuit model is employed, the results would match exactly with the slip
flow circuit model. However, as the depth of the channel gets smaller, the
no-slip model can produce more accurate results than the slip-flow model.
Shown in Figure 18.11 is a comparison of the relative error between the full
simulation results and the slip and no-slip models for channel depths of 50
nm, 100 nm, and 200 nm. The Debye length is 10 nm in all cases. For both
models, the error grows as the depth of the channel decreases. However,
the error is much smaller with the no-slip model than with the slip model.
Also, the rate of growth of the error is smaller with the no-slip model than
with the slip model.
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TABLE 18.1. A comparison of the simulated and experimental results for different
types of mixing.

CHANNEL
(PARALLEL
MIXING)

SAMPLE FRACTION
(EXPERIMENT)

SAMPLE FRACTION
(SIMULATION)

A1 0 0

A2 0.84 0.833

A3 0.67 0.675

A4 0.51 0.522

A5 0.36 0.340

A6 0.19 0.165

A7 1.0 1.0

CHANNEL (SE-
RIAL
MIXING)

SAMPLE FRACTION
(EXPERIMENT)

SAMPLE FRACTION
(SIMULATION)

A1 1.0 1.0

A2 0.36 0.37

A3 0.21 0.22

A4 0.12 0.12

A5 0.059 0.053

Large-Scale Integration

In Chapter 1, we discussed a large-scale-integration-based microfluidic chip
in Figure 1.31. Here we revisit the problem and show some results obtained
using the circuit models discussed in the previous chapter. In the example
shown in Figure 1.31, the fluidic transport system consists of two layers
(Figure 18.12): the “control” layer, which contains all channels required to
actuate the valves, is situated on top of the “flow” layer, and the “flow”
layer contains the network of the channels being controlled (Unger et al.,
2000). All biological assays and fluid manipulations are performed in the
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(a) (b)

FIGURE 18.9. (a) The circuit (both fluidic and electrical) representation of the
parallel mixing device. Since the flow is electrokinetically driven, the fluidic resis-
tance of the channel is the inverse of the electrohydraulic conductance. (b) The
circuit representation of the serial mixing device.

(a) Parallel mixing (b) Serial mixing

FIGURE 18.10. Variation in the sample fraction (denoted by N2) of the second
analysis channel when the applied potential (in “volts”) in the sample reservoir
and the buffer reservoir is changed. The plots for the other analysis channels (in
both cases) have the same pattern.

flow layer. A valve is created whenever a control channel crosses a flow
channel (Figure 18.12). The resulting thin membrane at the junction be-
tween the two channels can be deflected by fluidic actuation (Thorsen et al.,
2002; Unger et al., 2000).

The schematic A of Figure 18.12 shows the orientation of the control layer
and the flow layer. The schematic B of Figure 18.12 shows the valve closing
for rectangular and rounded channels. The dotted lines indicate the con-
tour of the top of the channel for a rectangular (left) and a rounded (right)
channel as pressure is increased. In the example shown in Figure 18.13(a),
rectangular channels are considered. Making multiple, independently actu-
ated valves in a device requires independent control of the pressure applied
to each control line. Figure 18.13(a) shows an example of such a device.
From the “top view,” the black channels oriented from west to east are
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FIGURE 18.11. A comparison of the percentage relative error in the bulk flowrate
Q between the slip flow model and the no-slip flow model, when compared with
full-scale simulation.

FIGURE 18.12. (A) Schematic of the arrangement of the control layer and the
flow layer used for attaining pneumatic control. (B) Schematic of the valve closing
for rectangular and rounded channel (Unger et al., 2000).

the control channels, and the gray channels oriented from north to south
are flow channels. The control layer is on top of the flow layer. The flow
channels are numbered from 0 to 7, and the control channels are named in
alphabetic order from A to F. A valve at the intersection of flow channel
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(a) (b)

FIGURE 18.13. (a) Microfluidic system consisting of “control channels” (left
to right) and “flow channels” (top to bottom). Intersections with wider control
channels denote valves or switches. A cross indicates a closed valve. For further
details refer to (Thorsen et al., 2002). (b) The fluidic circuit representation of the
system. The valves are modeled as electrical switches.

0 and control channel A is designated as “A0.” Such a designation is later
used to explain the circuit representation of the system. The configuration
shown in Figure 18.13(a) consists of simple “on–off” valves, which can be
considered as fluidic switches to control the flow in the “flow” channels.
Each control line can actuate multiple valves simultaneously. Since the di-
mension of the control line can be varied, it is possible to have a control
line pass over multiple flow channels to actuate multiple valves. The active
element is the roof of the flow channel, and the intersections that act as
valves or fluidic switche, are denoted by a wider width of the control chan-
nel. The intersections that are marked by a cross (Figure 18.13(a)) indicate
a closed (or off) position, and the intersections that are not marked by any
cross indicate an open (or on) position.

The circuit representation for the microfluidic system shown in Fig-
ure 18.13(a) (Thorsen et al., 2002) is depicted in Figure 18.13(b). Since the
flow is pressure-driven, only the fluidic circuit needs to be considered. The
fluidic circuit represents the flow layer, and the intersections with valves
are shown as electrical switches. The resistances (or conductances) in the
fluidic circuit of Figure 18.13(b) are the fluidic resistances of the channels
in the flow layer. The “on–off” position of the valves depends on the gauge
pressure in the control channel compared to the pressure in the flow chan-
nel. Thus, the control layer is represented in the fluidic circuit through its
gauge pressure. In Figure 18.13(b) the pressure difference of the ith con-
trol channel is represented by “Vi”. The notation “V” is used because of
the analogy between electrical voltage and pressure. The “on” position of
a switch (in Figure 18.13(b)) is represented by a vertical dash connecting
two consecutive resistances (e.g., “A0”), and the “off” position of a switch
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FIGURE 18.14. (a) Simulation of fluid flow through the microfluidic system
shown in Figure 18.13(a). The plus signs indicate presence of flow. (b) Varia-
tion of the threshold pressure with the thickness of the membrane.

is represented by a slanted dash causing a break between two consecutive
resistances (e.g., “B4”). The hydraulic conductances (or hydraulic resis-
tances) can be modeled using the approach explained in Section 18.1.2.
The pressure-actuated control valves can be modeled as switches, which
are considered “off” if the pressure in the control channel is above the
“threshold pressure” and are considered “on” if the pressure in the con-
trol channel is below the threshold pressure. The threshold pressure can
be computed from the expression (Timoshenko and Woionowsky-Krieger,
1959)

Pthreshold =
(ha

2 )

( 4a4

π5Dr

∑∞
m=1,3,5...

(−1)
m−1

2

m5
sin( mπ

2 )
mπ
a

{1 − αm tanh(αm)+2
2 cosh(αm) })

,

where h is the height of the flow channel, a and b are the dimensions of
the rectangular membrane acting as the valve, Dr and αm are as defined
in Section 18.1.2. Figure 18.14(a) shows the simulated flow distribution in
the flow layer of the microfluidic circuit shown in Figure 18.13(b). A plus
sign corresponding to a given flow channel indicates that the flow is “on;”
otherwise, the flow is “off.” A cell associated with a given flow channel
will receive fluid only if the flow is on. Figure 18.14(b) shows the nonlinear
variation of the threshold pressure with the thickness of the membrane,
and Figure 18.15(a) shows the nonlinear variation of the threshold pressure
with the dimension of the square membrane. Thus, for a specified threshold
pressure one can choose the thickness of the membrane from Figure 18.14(b)
and the dimension of the membrane from Figure 18.15(a). The CPU time
to simulate the flow distribution for the system shown in Figure 18.13(a)
was 16 seconds. Figure 18.15(b) shows the simulation result for an array
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FIGURE 18.15. (a) Variation of the threshold pressure with the width of the
square membrane. (b) An example of large-scale integration, where the fluid is
stored in a desired pattern in a microfluidic chip containing 60×126 chambers.

of 60×126 chambers. Fluid is stored in the chambers based on the filling
mechanism described in Figure 18.13(a) (Thorsen et al., 2002). This result
demonstrates that the fluid can be stored in any arbitrary pattern using
large-scale integration of micro/nanochannels.

Lab-on-a-Chip

In the final example we consider a lab-on-a-chip system (Figure 18.16),
which is designed based on the “nanochip” reported in (Becker and Lo-
cascio, 2002). The various chemical species are transported to the different
modules on the chip from their sources by electrokinetic transport. One-
third of the channels (marked as set A1 in Figure 18.16) perform the dual
role of fluid transport and passive mixing. Each channel in the set marked
as A1 is designed as shown in Figure 18.17(a) (Kutter, 2000). In this design,
the characteristic dimension at a given level is half of that at the previous
level. As a result, in the case of diffusion-dominated mixing, the equilibra-
tion time for mixing decreases at every level, since the equilibration time
for homogeneous mixing is proportional to the square of the characteris-
tic dimension; see Chapter 9. Thus, the homogeneity of the sample being
transported increases. Figure 18.17(b) shows the circuit model, where the
number of split levels used is three. In the simulations presented here,
the number of splitting levels is considered as a design parameter. Figures
18.18(a) and 18.18(b) show the dependence of the flowrate and the ho-
mogeneity of the mixture, emix, on the number of split levels. The mixing
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FIGURE 18.16. The schematics of the microfluidic chip considered in the
lab-on-a-chip example. The fluidic transport system represented on the south-
west side of the chip is duplicated on all the other sides.

(a) (b)

FIGURE 18.17. (a) The split channel design used for fluid transport in set A1 of
the microfluidic chip. This type of channel serves a dual purpose of transporting
and mixing. (b) The circuit (both fluidic and electrical) representation for the
split channel design.

effectiveness is defined as (see Section 9.4)

emix = 1 −
√

1
N

∑N
i=1 (ci − cPM

i )2√
1
N

∑N
i=1 (c0

i − cPM
i )2

,

where ci is the concentration at the ith node, cPM
i is the concentration at

the ith node if the two streams (i.e., the sample and the buffer streams)
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FIGURE 18.18. (a) The dependence of the flowrate on the number of split levels
used. (b) The dependence of the effectiveness of the mixing (i.e., homogeneity of
the mixture) on the number of split levels used.

are perfectly mixed, and c0
i is the concentration at the ith node if the two

streams do not mix at all. The analytical solution of the diffusion equation,
obtained by the method of separation of variables, provides the concentra-
tion variation in the transverse direction. The mixing effectiveness, emix,
ranges from 0 to 1, with 1 indicating complete mixing and 0 indicating no
mixing.

The following parameters have been used for the results shown in Fig-
ures 18.18(a–b): ∆φ = 100 V (the potential difference applied between the
start and the end of the channel, e.g., in Figure 18.17(a) it is applied be-
tween 0 and 11); length of each level = 200 µm; height of the initial channel
= 16 µm; σT = 6.2 × 10−3 C/m2; µ = 10−3 kg/m.s; ε = 6.95 × 10−10. The
concentration of species A at the inlet of the transport system is considered
to be 0.1 mM. The results in Figures 18.18(a–b) indicate that there is a
trade-off between the throughput and mixture homogeneity. However, if
one uses a high value for the fluidic resistance of the initial channel, then
that dominates the total fluidic resistance. As a result, the throughput
is standardized and does not depend strongly on the number of splitting
levels. Therefore, the device designer can control the effectiveness of the
mixing process by varying the number of splitting levels.

Electrophoretic separation and electrokinetic transport are the governing
mechanisms through the set of channels marked as A2 in Figure 18.16,
while electrokinetic transport is the governing mechanism through the set
of channels marked as A3. The species in set A1 (say A) is transported to
the detection module (D), where it reacts with species B (already present
in the detection chamber) to produce species C which can be used for
off-chip detection. The reaction model given in Section 18.1.3 has been
used to simulate the reaction between species A and B to produce species
C. The initial condition corresponds to zero moles of A and C and one
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FIGURE 18.19. (a) Concentration (of species C) versus time for various applied
potentials. (b) Concentration (of species C) versus time for two different numbers
of input ports per side of the microfluidic chip.

mole of species B in the reaction chamber (D). A second-order forward
reaction is considered for this reaction chamber (i.e., D). Therefore, the
backward reaction rate is considered to be zero. A forward reaction rate
of 10−2 (mM.s)−1 has been considered. Figures 18.19(a), 18.19(b), and
18.20(a) show the variation in the rate of formation of species C with time
for different design parameters (e.g., applied potential, number of input
ports per side of the chip, channel length). If the minimum concentration
of species C required for detection is known (say 1 mM as considered in
this case), then one can predict the detection time from the simulation
results or one can design the chip to meet a specific detection time. The
chemical species (G and H) transported through the channels A2 and A3
are transported to the reactor module (R in Figure 18.16), where they
undergo a second-order reversible chemical reaction to produce another
chemical species, F. The reaction model given in Section 18.1.3 has been
used for simulating the reaction between species G and H to produce species
F. The initial condition corresponds to zero moles of G, H and F in the
reaction chamber (R). The following parameters have been used for this
phase: total length of a single channel = 2 mm; height of a single channel = 1
µm; σT = 2×10−1 C/m2; forward reaction rate = 0.1 (mM.s)−1; backward
reaction rate = 0.01 s−1. The concentration of species G at the inlet of the
transport system is considered to be 20 mM and the concentration of species
H is considered to be 50 mM. Figures 18.20(b) and 18.21(a) show the effect
of various design parameters on the variation of the concentration of F with
time. Figure 18.21(b) shows the dependence of the separation ratio (taking
place in the set “A2”) on the ratio of the electrophoretic mobility of the
species being separated. The applied potential difference is 100 V for this
case. A time step of 0.1 second has been used for this case. The CPU time to
do a transient analysis of the complete system (shown in Figure 18.16) for
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FIGURE 18.20. (a) Concentration (of species C) versus time for different lengths
(total) of the microfluidic channel. (b) Concentration (of species F) versus time
for various applied potentials.
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FIGURE 18.21. (a) Concentration (of species F) versus time for different numbers
of input ports per side of the microfluidic chip. (b) The dependence of separation
ratio (taking place on set “A2” in Figure 18.16) on the ratio of the electrophoretic
mobility of the species being separated.

500 seconds was on the order of 10 minutes on a PC of modest capability.

18.2 Macromodeling of Squeezed Film Damping

The dynamical behavior of microsystem components is often strongly af-
fected by viscous air damping effects. They have to be carefully taken into
account during the design and optimization process in order to get a real-
istic and reliable description of the device operation. The damping effects
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can be treated in two ways. The first is as a damping coefficient in the simu-
lation model at the descriptional level (e.g., mechanical FEM device model
or system-level compact model) as a fit parameter. The other method is to
accurately treat it using a physical model (on the continuous-field level by
solving the Navier–Stokes equations), which implies a large computational
effort. The first method is easy. However, it lacks physical transparency,
whereas the second method becomes prohibitive in the case of complex de-
vice geometry and/or coupling with other physical energy domains. How-
ever, for a large class of MEM devices, we can use a simplified form of the
Navier–Stokes equations, e.g., the Reynolds squeezed film equation, which
requires considerably less computational cost. Reynolds squeezed film equa-
tion (see Section 6.1) is typically applicable when a small gap between the
two plates/structures opens and closes with time. This assumption holds
for structures where the seismic mass moves perpendicular to a fixed wall,
for plates with tilt around horizontal axes, and for clamped beams where
the flexible part moves against a fixed wall. Some examples of MEM de-
vices where the Reynolds equation is valid are fixed–fixed beams, cantilever
beams, and micromirrors.

The nonlinear isothermal compressible Reynolds squeezed film equation
for air damping with slip flow is (see Section 6.1)

∇ · [(1 + 6Kn)h3p∇p
]

= 12µ
∂(ph)

∂t
,

where h(x, y, t) is the variable gap between the movable part and the ground
electrode of the MEM device, p(x, y, t) is the air pressure under the beam,
Kn(x, y, t) = λ/h is the Knudsen number, where λ is the mean free path
of air. Figure 18.22 shows a typical MEM device, a deformable beam/plate
at a height h(x, y, t) over a ground plane, which in the undeformed state
is the initial gap between beam and the ground plane. The shaded region
(on the xy plane) is the domain where the Reynolds equation is solved
with the boundaries indicated in Figure 18.22. Depending on the example
considered, the boundary conditions can change. For a mirror, the fluid
system is assumed to be open (ambient pressure) on all sides, whereas for a
fixed–fixed beam, the fluid system is open along the sides of the beam and
closed (no flow) at the ends of the beam. Squeezed film damping in MEMS
is a coupled phenomenon (mechanics, electrostatics, and fluidics). In order
to obtain a self-consistent solution at any time instant, an iterative scheme
has to be followed (e.g., a relaxation scheme) among the three domains.
Considerable amount of work has been done in the reduced-order modeling
of squeezed film damping in MEMS. They fall into the categories already
discussed in Chapter 17, namely, equivalent circuit models, Galerkin meth-
ods, description language models/mixed-level simulation, and black box
models.
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FIGURE 18.22. Domain for solving squeezed film damping equation in a MEM
device.

18.2.1 Equivalent Circuit Models
Compact models for squeezed film damping based on equivalent circuit
representation have the advantage of being incorporated into standard cir-
cuit simulators. The forces created by a squeezed gas film between ver-
tically moving planar surfaces can be divided into spring and damping
forces, which can be realized with frequency-dependent resistors and induc-
tors (Veijola et al., 1995a). The second-order nonlinear Reynolds equation
can be linearized when the motion of the plate(s) is small, the two plates
are substantially parallel, and the motion is perpendicular to the surface
of the plates. The linearized equation is written as

p0g
2

12µe
∇2

(
p

p0

)
− ∂

∂t

(
p

p0

)
=

∂

∂t

(
x

g

)
, (18.13)

where p is a small pressure change of the static pressure p0. The variation
of the plate spacing x is also assumed to be small compared with the static
gap g; µe is the effective viscosity of the gas given by (Veijola et al., 1995a)

µe =
µ

1 + 9.638Kn1.159 .

The linearized Reynolds equation (18.13) has two principal components in
its solution, one in phase with the plate movement and the other out of
phase, i.e., the spring term and the damping term, respectively. The force
components can be calculated by integrating over the plate area, which for
a rectangular plate is given (Blech, 1983) as an infinite series expansion

F0

x
=

64Sp0A

π6g

∑
m,n(odd)

m2 + c2n2

(mn)2[(m2 + c2n2) + S2/π4]
, (18.14)

F1

x
=

64S2p0A

π8g

∑
m,n(odd)

1
(mn)2[(m2 + c2n2) + S2/π4]

, (18.15)
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FIGURE 18.23. (a) Equivalent circuit element for squeezed film damping. (b)
Equivalent circuit for squeezed film damping in the entire gap.

where m and n are odd integers, A = WL is the plate area, and c = W/L.
Here W and L are the width and length of the mass planar surfaces as
shown in Figure 18.22; S is the squeeze number given by

S =
12µeW

2

p0g2 ω,

and ω is the angular frequency. The forces in equations (18.14), (18.15)
can be represented by the electrical equivalent circuit using a combination
of an inductance (equals the spring behavior of the gas) and a resistance
(acts as a damping element) in series, as shown in Figure 18.23(a). Figure
18.23(a) shows a single element for a corresponding m and n. The actual
equivalent circuit for squeezed film damping would consist of a parallel
combination of such elements (for various m and n) connected in parallel
to the MEM device circuit as shown in Figure 18.23(b). The governing
differential equation for the circuit shown in Figure 18.23(a) is

Lm,n
∂im,n

∂t
+ Rm,nim,n = V =

∂u

∂t
, (18.16)

where V is the voltage drop through the element (analogous to velocity
in mechanics and represented by the flux term ∂u

∂t ). At steady state (all
signals are sinusoidal having a single angular frequency ω), the current and
velocity (flux term) can be expressed as

im,n = Im,n exp(jωt), u = U exp(jωt),
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where I and U are complex coefficients. Putting this in equation (18.16),
we get

Im,n =
jω

Rm,n + jωLm,n
U,

and hence the total current in the squeezed film equivalent circuit that
corresponds to the total force is the sum of all currents of the parallel
sections

Is =
∑

m,n(odd)

Im,n = U
∑

m,n(odd)

jω

Rm,n + jωLm,n
.

The imaginary and the real parts of the ratio Is/U are

Im

(
Is

U

)
=

∑
m,n(odd)

Rm,nω

R2
m,n + ω2L2

m,n

, Re
(

Is

U

)
=

∑
m,n(odd)

Lm,nω2

R2
m,n + ω2L2

m,n

,

which satisfy the frequency dependency specified in equations (18.14),
(18.15), respectively. This requires that Im

(
Is

U

)
= F0/x and Re

(
Is

U

)
=

F1/x. This gives

Lm,n = (mn)2
π4g

64Ap0
, Rm,n = (mn)2(m2 + c2n2)

π6g3

768AW 2µe
.

The components Lm,n and Rm,n depend on the distance g (the static gap).
If the displacement is large, the component values will also vary with the
displacement and hence are nonlinear in nature. The equivalent circuit of
squeezed film damping is connected in parallel with the MEM device circuit,
and the whole system can be solved using any standard circuit simulator.
For more details on circuit modeling of squeezed film damping, see (Veijola,
2001; Turowski et al., 1998).

18.2.2 Galerkin Methods
Linear modes of vibration of a system have been used for reduced-order
modeling of MEM dynamics as discussed in Chapter 17. In this section,
squeezed film damping has been considered in such a model-order reduc-
tion. The fluid (film) in between the plates typically undergoes Stokes flow
(low Reynolds number, hence negligible inertia effects) and thus does not
have any “normal modes” of its own that could be used for basis functions
in combination with the elastic modes. One obvious approach is to linearize
the dissipative effect under an assumption of small motion. Once linearized,
frequency-domain analysis can be used, converting the time-dependent dis-
sipation problem in the time domain into a time-independent frequency-
domain calculation of amplitude and phase response. This approach was
the basis for the early squeezed film damping work involving rigid body
motion and has been widely used in the MEMS field. Even when the mov-
ing body is flexible, it is possible to use the modal amplitude to create a
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moving boundary condition for the fluidic system and calculate the reaction
force. This has been done for small-amplitude damped resonant motions of
flexible microbeams and resonators. When the amplitudes are large, such
as for the electrostatic pull-in of a beam, linearized modal solutions are
not accurate. In (Mehner et al., 2003), an approach has been presented to
add dissipative effects of squeezed film damping (Reynolds equation) in the
transient and harmonic analysis of MEMS. The macromodels are automat-
ically generated by a modal projection technique based on the harmonic
transfer functions of the fluidic domain. The transfer functions are either
obtained at the initial position (small signal case) or at various deflec-
tion states (large deflection case). In this method, an equivalent damping
and stiffness matrix that captures the true dependency between structural
velocities and fluid pressure is computed in the modal coordinates. The
damping Cjiq̇i and the stiffness coefficients Kjiqi of such a matrix repre-
sentation can be obtained from the following modal force balance equation:

Cjiq̇i + Kjiqi = φT
j

∫
NT p(φiq̇i)dA,

where qi is the modal coordinate, φi is the ith eigenvector (mode), and NT

is the vector of finite element shape functions. Here Cji and Kji state the
dependency between structural wall velocities caused by mode i and the
reacting fluid forces that act on mode j. The damping and the squeeze co-
efficients of each mode are the main diagonal terms. Off-diagonal terms
represent the fluidic crosstalk among modes, which happens in case of
asymmetric gap separation. The following steps are performed to obtain
the coefficients of C and K:

1. The squeezed film model is excited by wall velocities that are equal
to the values of the first eigenvector (mode).

2. A harmonic response analysis is performed to compute the pressure
response in the entire frequency range.

3. The real and the imaginary parts of the element pressure are inte-
grated and the complex nodal force vector computed for each fre-
quency.

4. The scalar product of all eigenvectors and the nodal force vector of
step 3 is computed. The resulting numbers are modal forces, which
indicate how much of the pressure distribution acts on each mode.

5. The damping and the stiffness coefficients are extracted from the real
and the imaginary parts of the modal forces.

6. Steps 1 to 5 are repeated for each eigenmode.
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(a) (b)

FIGURE 18.24. (a) Pressure distribution under an oscillating flat plate at low fre-
quency. (b) Pressure distribution under an oscillating flat plate at high frequency.
(http : //www.ansys.com/ansys/mems/mems downloads/thermal analogy
damping.pdf)

A modal decomposition of damping effects is acceptable, since the Reynolds
squeezed film equation is linear. More examples using modal basis functions
for MEMS simulations are given in (Gabbay and Senturia, 1998; Varghese
et al., 1999). Figure 18.24(a) shows the pressure distribution under a flat
plate for a low frequency of oscillation, while Figure 18.24(b) shows the
pressure distribution under a flat plate for a high frequency of oscillation.
At high frequency, the fluid cannot easily escape from the sides, giving
roughly uniform and high pressure under the plate.

The Karhunen–Loève decomposition method for model order reduction
has also been effectively used for squeezed film damping in (Hung and Sen-
turia, 1999). The method used is basically the same as that in the absence
of damping. From a few full-simulation runs, snapshots are taken for the
fluid pressure distribution and a set of pressure basis functions formed us-
ing an SVD analysis. These basis functions are then used in the dynamic
simulation of the device, thereby reducing the order of the system. The
nonlinear Reynolds equation can be reduced efficiently using this method
with no linearization involved as in the case of the equivalent circuit rep-
resentation. The trajectory piecewise-linear approach has also been used
for modeling squeezed film damping in MEM devices; see (Rewienski and
White, 2001), for details.

18.2.3 Mixed-Level Simulation
A mixed-level formulation uses a hardware description language for mod-
eling squeezed film damping (Schrag and Wachutka, 2002). From an FEM
model of the microstructure built by any standard FEM tool, a netlist for
finite network (FN) simulation is constructed utilizing the grid and the
geometric information from the FEM model. The governing equations (the
Reynolds equation and the mass continuity equation) are discretized and
coded in VHDL-AMS (Schrag et al., 2001; Sattler et al., 2003). The limita-
tions of the Reynolds equation due to edge effects and perforations on the
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FIGURE 18.25. Mixed-level approach for modeling squeezed film damping in
MEMS (see (Schrag and Wachutka, 2002), for details).

plate are rectified using error-compensating compact models. These com-
pact models are in the form of lumped circuit elements such as resistances
or constants, which can be determined from a few FEM simulations. The
FN model in the sense of the Kirchhoffian network theory describes the
squeezed film damping by two conjugate variables, namely, the pressure
difference pik between two adjacent nodes (“across variables”) and the cor-
responding mass flow rate Qik (“through variable”) (Schrag and Wachutka,
2002). The mass balance equation is satisfied automatically as a result of
the Kirchhoffian laws. However, correct formulation of the mass flowrate
at each node must be done separately. The FN model can be implemented
into a general-purpose system simulator and applied to arbitrary device
geometries. The flowchart for the method is shown in Figure 18.25.

18.2.4 Black Box Models
The Arnoldi method has been used in (Chen and Kang, 2001a), to solve
a MEMS micromirror device for both small and large deflections in the
presence of fluid damping. The fluid damping equation (nonlinear isother-
mal Reynolds equation) has been linearized using Taylors series, and the
Arnoldi method has been used to construct a reduced-order linear model
for small angular deflections. For large angular deflections, both the lin-
ear and the second-order nonlinear terms from the fluid equation were
retained in the Taylors expansion, and the Arnoldi method has been ap-
plied to construct a weakly nonlinear model. The accuracy can be increased
by considering higher-order terms in the Taylors expansion, but the com-
putational cost goes up, restricting the use of the process. The trajectory
piecewise-linear approach overcomes some of these difficulties, as described
in Chapter 17.
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FIGURE 18.26. (a) A bulk circuit diagram for a liquid with a small amount of
electrical resistance Rliq atop a dielectric solid with capacitance Csol and a large
electrical resistance Rsol. (b) The corresponding steady-state PDE with boundary
conditions.

18.3 Compact Model for Electrowetting

In Chapter 8, we discussed electrowetting and the associated physical
phenomena. Here we revisit electrowetting and discuss a compact model.
Figure 18.26(a) shows the equivalent circuit diagram for the liquid-drop-
dielectric solid system. Here φ is the electrical potential inside the drop,
and ρl and ρs are the resistivities of the liquid and solid, respectively. The
total impedence for the circuit diagram shown in Figure 18.26 is (Shapiro
et al., 2003a)

V (s)
I(s)

= z(s) =
1 + Rliq

Rsol
+ sRliqCsol

sCsol + 1
Rsol

,

where s is the Laplace variable. For a sinusoidal signal V (t) = Ṽ cos(ωt) of
frequency ω, s is taken as s = iω. The voltage drop across the solid Vsol(s)
is given by

Vsol(s) = zsol(s)I(s) =
zsol(s)
z(s)

V (s) =

(
1

1 + Rliq
Rsol

+ sRliqCsol

)
V (s).

In the steady state (i.e., s = iω → 0), the voltage and energy stored in the
dielectric are

Ṽsol =

(
1

1 + Rliq
Rsol

)
Ṽ and Ede =

1
2
Csol

(
1

1 + Rliq
Rsol

)2

Ṽ 2, (18.17)

where Ṽ is the applied DC voltage. The dependence shown in equation
(18.17) is similar to the energy in the perfectly insulating solid; Ede(R, θ) =
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1
2

εsV 2

h πR2 sin2 θ, except for the new Rliq/Rsol term. Hence, the resistance
of the liquid drop Rliq is shape-dependent. This dependence of resistance
on the droplet shape gives rise to contact angle saturation in this model, see
(Shapiro et al., 2003a; Shapiro et al., 2003b), for more details. The corre-
sponding PDE and boundary conditions for the equivalent circuit diagram
are shown in Figure 18.26(b).

18.4 Software

Several software packages have been developed, both commercially and
by universities, for the simulation of microsystems (including microfluidic
systems) using macromodels. Table 18.2 presents some of the available
software packages.
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TABLE 18.2. Software packages for reduced-order modeling of MEMS and mi-
crofluidics.

Name Manufacturer Description

HDL-A Mentor Graph-
ics Inc.

Analog and mixed signal analysis (equiv-
alent circuits for MEMS/microfluidics).

MAST/SABER Synopsys Inc. Analog and mixed signal analysis (equiv-
alent circuits for MEMS/microfluidics).

SpectreHDL Cadence Design
Systems

Analog and mixed signal analysis (equiv-
alent circuits for MEMS/microfluidics).

NODAS Carnegie Mellon
Univ.

A library of parameterized components
for using SABER (Synopsys Inc.) nodal
simulator to simulate MEMS devices.

SPICE U of C, Berkeley A general-purpose circuit simulation pro-
gram for nonlinear dc, nonlinear tran-
sient, and linear ac analyses (equivalent
circuits for MEMS/microfluidics).

SUGAR U of C, Berkeley An open source simulation tool for MEMS
based on nodal analysis techniques.

ANSYS
Multiphysics

ANSY Inc. Modal analysis, reduced-order models for
fluid damping, system-level simulation.

MEMS Xplorer MEMSCAP Inc. System level simulation (Equivalent cir-
cuits for MEMS).

CoventorWare Coventor Inc. Macromodels and system-level models for
MEMS and microfluidics.




