
17
Reduced-Order Modeling

In this chapter, we introduce several reduced-order modeling techniques for
analyzing microsystems following the discussion of Section 1.7. Specifically,
techniques such as generalized Kirchhoffian networks, black box models,
and Galerkin methods are described in detail. In generalized Kirchhof-
fian networks, a complex microsystem is decomposed into lumped elements
that interact with each other as constituent parts of a Kirchhoffian net-
work. Techniques such as equivalent circuit representations and description-
language-based approaches are described under generalized Kirchhoffian
networks. In black box models, detailed results from simulations are used
to construct simplified and more abstract models. Methods such as nonlin-
ear static models and linear and nonlinear dynamic models are described
under the framework of black box models. Finally, Galerkin methods, where
the basic idea is to create a set of coupled ordinary differential equations,
are described. Both linear and nonlinear Galerkin methods are discussed.
The advantages and limitations of the various techniques are highlighted.

17.1 Classification

Several techniques have been developed for reduced-order modeling or
macromodeling of microsystems. Each technique has its own advantages
and disadvantages, and the selection of a technique for a particular problem
depends on a number of parameters such as the desired accuracy and non-
linearity. Many of the macromodels are created directly from physical-level
simulations and often require human input at some stage of the process; i.e.,
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FIGURE 17.1. Classification of macro-models used in microsystem design.

there exists no systematic procedure to extract them automatically from
the physical simulations. To identify macromodel extraction steps that can
be automated in these cases is an important research topic in the field of
microsystem simulation. In this section, we introduce the different macro-
models and classify them into several broad categories. Figure 17.1 shows
the classification of the various types of reduced-order models.

17.1.1 Quasi-Static Reduced-Order Modeling
Quasi-static macromodels are particularly useful for conservative systems
with no dissipative terms. The distinction between energy domains in which
the energy is strictly conserved (such as ideal elasticity, electromagnetic
fields in linear lossless media, and inviscid flows) and those that have intrin-
sic dissipation mechanisms (fluidic viscosity, friction, heat flow, viscoelas-
ticity, and internal loss mechanisms such as domain–wall motion that can
lead to hysteresis (Senturia, 1998a)) is important, since dynamical behav-
ior in a conservative domain can be derived from quasi-static behavior. All
forces can be expressed as gradients of suitable potential-energy functions.
If only conservative mechanisms are involved, one can use quasi-static sim-
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ulations together with the mass distribution to fully characterize the dy-
namical behavior. Quasi-static macromodels are appropriate for cases in
which a steady-state behavior is a reasonable assumption. In many cases,
such as the squeeze film damping in a moving MEMS structure (see Chap-
ter 18), such an assumption may be incorrect, in which case a dynamical
macromodel is needed.

This procedure is fairly accurate only for conservative energy domains.
For a more accurate analysis, the inertia and damping terms must be
considered. Forces are expressed as appropriate gradients of suitably con-
structed potential energy or coenergy functions, and these functions are
calculated quasi-statically. If one has knowledge of mass distribution, one
can assess accelerations and kinetic energy in response to these forces and
hence can construct complete dynamic models of the device using only
quasi-static simulations in the potential energy domain.

The steps followed in the quasi-static reduced-order modeling are as fol-
lows (Senturia et al., 1997):

1. Select an idealized structure that is close to the desired model.

2. Model the idealized problem analytically, either by solving the gov-
erning differential equation, or by approximating the solution with
Rayleigh–Ritz energy minimization methods.

3. Identify a set of nondimensionalized numerical constants that can be
varied within the analytical form of the solution.

4. Perform meshed numerical simulations of the desired structure over
the design space of interest, and adjust the nondimensionalized nu-
merical quantities in the macromodel for agreement with the numer-
ical simulations.

The method has some advantages: (i) simple to use and easy to imple-
ment; (ii) reasonably accurate for conservative energy systems when mass
distribution is known; (iii) can be used to determine material constants;
(iv) even if analytical functions exist for nonlinear behavior, in most cases
nonlinearities can be taken care of by a simple fit function. However, the
major disadvantage of this method is that it cannot be used in a noncon-
servative energy system, i.e., when dissipation is involved.

17.1.2 Dynamical Reduced-Order Modeling
Explicit dynamical formulation of microsystems can be very time-consuming,
and computationally expensive to insert in a system-level simulator. As a
result, it is difficult for the designer to use it in an iterative design cy-
cle or to probe sensitivities to variations in the geometry and material
constants by repeated simulations. This demands the development of dy-
namical reduced-order models for projecting the results of the fully meshed
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analysis onto physically meaningful reduced variables, containing algebraic
dependencies on structural dimensions and material constants. Dynami-
cal reduced-order modeling is much more challenging than the quasi-static
reduced-order modeling, since the design space involves large motions and
nonlinear forces. The various reduced-order modeling methods that fall un-
der dynamical methods are shown in Figure 17.1. These methods can be
broadly classified into three categories: (1) generalized Kirchhoffian net-
works, (2) black box models, and (3) Galerkin methods. In the following
sections, we will look into the different methods that fall under these three
categories in detail.

17.2 Generalized Kirchhoffian Networks

In this method, a complex microsystem is decomposed into components (or
lumped elements) that interact with each other as constituent parts of a
Kirchhoffian network (Voigt and Wachutka, 1997). Compact models with
very few degrees of freedom are formulated for each of the components. All
the system components are given a mathematical description in terms of
conjugate thermodynamic state variables and the pertinent currents (fluxes
or through quantities) and the driving forces (affinities or across quanti-
ties) such as mass flow and pressure gradient, electrical current, and voltage
drop. A system component is called a “block” and is characterized by the
number and nature of its terminals, which allow for the exchange of flux
quantities across subsystem boundaries. The components can be decom-
posed further by either (a) interconnection of basic components (structural
modeling) or (b) description by a set of algebraic equations (behavioral
modeling). The models of reusable components are stored in a block li-
brary.

Behavioral description of devices and subsystems when supported by
hardware description languages (HDL) leads to the approach of macro-
modeling based on HDLs. Some examples of HDLs are HDL-A1 (Mentor
Graphics, 1995), MAST2 (Mantooth and Vlach, 1992), and SpectreHDL3

(Cadence, Ltd., 1997). The features of these HDLs are (i) Multidomain
description, (ii) clear distinction between interface and algorithmic kernel
of the model, (iii) interface to embedded C programs, and (iv) mechanisms
for handling nonlinear ODEs to be solved by the internal algorithm.

1Hardware description language for analog and mixed signal applications:
Mentor Graphics.

2Analog hardware description language used in the SABER simulator from
Synopsys Inc.

3Analog Hardware Description Language: Cadence Ltd.
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17.2.1 Equivalent Circuit Representation
In the equivalent circuits approach, the microsystem comprising the me-
chanical, electrical, and fluidic components is represented by their electrical
equivalents (Tilmans, 1996). The approach is based on the mathematical
analogy between electrical and mechanical systems; specifically, the formal
similarities between the integrodifferential equations governing the behav-
ior of electrical and mechanical systems is the basis of the analogy. Newton’s
second law of motion relates the force F acting on a body of mass m by
the relation

F = m
∂u

∂t
= m

∂2x

∂t2
,

where u and x are the velocity and displacement of the mass. This is anal-
ogous to the constitutive equation of an electrical inductor

V = L
∂i

∂t
= L

∂2q

∂t2
,

where V is voltage, i is current, q is charge, and L is the inductance in
the electrical circuit. Here F plays the same role as the voltage V , the
velocity u as the current i, and the displacement u as the charge q. The
mass m in mechanical systems represents the inductance L in an electrical
circuit. However, while force is a “through variable” in mechanical systems,
voltage (its representative in the electrical system) is an “across variable”
in electrical systems. In general, it can be seen that a through variable in
the mechanical system is represented as an across variable in an electrical
system and vice versa. Hence, in the equivalent circuit representation, series
connections in mechanical systems are represented by parallel connections
in electrical systems and vice versa.

Once all the mechanical systems are converted to electrical counterparts,
a single representation of a system operating in more than one energy do-
main is finally obtained. Kirchhoffian conservation laws are then applied to
solve the system. Commercial packages like SPICE4 (Quarles et al., 1987)
can be used for such purposes. This method gives a better understand-
ing and visualization of the system and facilitates further analysis of the
system in order to investigate the effects of the connecting subsystems or
modifications to the system.

Lumped Parameter System

The lumped parameter approach is a reduced-order modeling method based
on the equivalent circuit representation of microsystems. The basic idea in
this method is to concentrate or lump the physical properties of the system,
such as mass, stiffness, capacitance, and inductance, into single physical el-
ements (Tilmans, 1996). The elements representing the mass are assumed

4Integrated Circuit Simulator: UC Berkeley
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TABLE 17.1. Direct electromechanical analogies for lumped translational sys-
tems.

Mechanical Quantity Electrical Quantity

Force: F Voltage: V

Velocity: u Current: i

Displacement: x Charge: q

Mass: m Inductance: L

Compliance: 1/k Capacitance: C

Viscous resistance: c Resistance: R

to be perfectly rigid, and conversely, elastic elements have no mass. Lumped
parameter modeling is typically valid as long as the wavelength of the sig-
nal is greater than all the dimensions of the device or the system under
consideration. The device is finally represented as a set of lumped electri-
cal network elements using the electrical-mechanical analogies. Once the
circuit representation is constructed, commercially available circuit simula-
tors such as SPICE can be used. Alternatively, dynamical state equations
can be obtained from the network and simulated using standard math
packages like MATLAB. There are two major issues in creating lumped-
element macromodels: the first issue is to partition the continuum device
into a network of lumped elements, and the second issue is to determine
the parameter values for each element.

The partitioning problem can be particularly troublesome, because un-
like purely electric circuits, general mechanical structures do not offer a
clean mapping between geometry and the corresponding network topology.
For example, when considering the electrostatic pull-in of the beam, the
moving beam simultaneously serves as the moving boundary of a capacitor
used for actuation and sets a moving boundary condition at the bounding
surface of a gas film. The lumped parameter values for the physical ele-
ments are typically determined from a combination of analysis, numerical
simulation, and constitutive properties obtained from test structures. An
alternative approach to determine the lumped parameters is to use energy
methods. In energy methods, a reasonable shape function with one or more
undetermined parameters is assumed, the total stored energy is calculated
with that shape function, and the stored energy is then minimized with re-
spect to the parameters. The accuracy of energy methods depends on the
quality of the shape function employed and on how well the stored energy
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(a) (b)

FIGURE 17.2. (a) A parallel plate electrostatic actuator. (b) Schematic repre-
sentation of the parallel plate electrostatic actuator.

calculation is implemented. For a first-order analysis of device behavior,
accounting for the dependence of device behavior on the geometry and
material properties, energy methods are unmatched in terms of simplicity
and speed. A generalized procedure for lumped parameter modeling is as
follows:

1. The device is decomposed into a combination of rigid bodies, ideal
springs, and ideal variable capacitors. The damping is considered ex-
ternal to the transducer.

2. The governing equations are linearized about an equilibrium signal.

3. The characteristic equations, which relate the effort variables as a
function of state variables, and the transfer matrix, which relates
the effort-flow variables at the electrical port directly to those at the
mechanical port, are derived.

4. The transfer matrix is used to obtain the equivalent circuit repre-
sentation. Typically, the equivalent circuit representation may not be
unique. So a practical situation is chosen.

We now illustrate the equivalent circuit representation of a parallel plate
electrostatic actuator (in the absence of air-damping) using the above pro-
cedure. Figure 17.2(a) shows the parallel plate electrostatic actuator con-
sisting of a rigid mass suspended by two flexible beams. A potential dif-
ference is applied between the ground plane and the mass, giving rise to
attractive electrostatic forces. The mass moves down, and the beams bend
due to these forces. The schematic representation of the device is given in
Figure 17.2(b). Since the mass is rigid, the suspension structure can be
modeled as a mass–spring system. The two identical beams represent the
two springs. The spring constant (k = 2k1) can be derived from the beam
flexure formula. We use the energy method as described earlier to generate
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FIGURE 17.3. Transfer matrix computation for the parallel plate actuator using
lumped parameters.

the lumped parameters. The total energy W of the system, consisting of
electrical (We) and mechanical (Wm) energies, is given by

W = We(qt, xt) + Wm(qt, xt) =
q2
t

2C(xt)
+

1
2
k(xt − xr)2, (17.1)

where qt and xt are the charge and displacement at the time instant t,
and xr is the equilibrium position of the mass; C is the capacitance of
the system at the time instan, which is a function of xt and is given as
C(xt) = ε0A/(d+xt); ε0 is the permittivity of vacuum and A denotes area.
Taking the total differential of the energy represented by equation (17.1),
we obtain

δW =
∂W

∂qt
δqt +

∂W

∂xt
δxt = vtdqt + Ftdxt, (17.2)

where vt is the voltage between the plates and Ft is the mechanical force
acting on the movable plate. Using equations (17.1), (17.2) and the expres-
sion for capacitance, we obtain

vt(qt, xt) =
∂W

∂qt
=

qt(d + xt)
ε0A

and Ft(qt, xt) =
∂W

∂xt
=

q2
t

2ε0A
+k(xt−xr).

Since the equations are nonlinear, they are linearized using the Taylor’s
series expansion around some bias point (x0, q0). The constitutive equation,
describing the linear relations between the incremental or small signal effort
variables and the state variables, for voltage at the bias point (x0, q0) is



17.2 Generalized Kirchhoffian Networks 685

FIGURE 17.4. Decomposition of the transfer matrix into elemental matrices for
circuit representation.

given by

v(q, x) =
∂vt

∂qt

∣∣∣∣
0
q +

∂vt

∂xt

∣∣∣∣
0
x =

(d + x0)
ε0A

q +
q0

ε0A
x =

q

C0
+

v0

(d + x0)
x. (17.3)

Using the constitutive equation for force and the expression for Ft, we
obtain the final expression for the force, i.e.,

F (q, x) =
∂Ft

∂qt

∣∣∣∣
0
q +

∂Ft

∂xt

∣∣∣∣
0
x =

q0

ε0A
q + kx =

v0

(d + x0)
q + kx. (17.4)

The constitutive equations and the final expressions for v and F as given
by equations (17.3) and (17.4), respectively, can be used to construct the
transfer matrix as shown in Figure 17.3. The transfer matrix can be decom-
posed into elemental matrices in several ways, giving rise to many feasible
circuit representations of the device. Figure 17.4 shows one decomposi-
tion of the transfer matrix and the corresponding circuit representation.
There are several other circuit representations possible for the same de-
vice (see (Tilmans, 1996), for details) including some with pure capacitive
circuits. Typically, the designer chooses the most appropriate circuit rep-
resentation based on the application.

The advantages of the lumped parameter method are as follows: (i) It
is easy to use and can be easily incorporated into system simulators. (ii)
Equivalent lumped resistors treated external to the system can be used to
model dissipation. (iii) The equivalent circuit representation can be used
to analyze complex structures and coupled subsystems with several elec-
trical and mechanical ports. The disadvantages of the method are these:
(i) Unlike pure electric circuits, mechanical structures do not offer a clean
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FIGURE 17.5. Continuously distributed system with infinite degrees of freedom.

mapping between the geometry and the corresponding network analogy.
(ii) No CAD tools are currently available that can automatically construct
an energetically correct lumped-element topology directly for an arbitrary
device geometry. (iii) Large-signal and nonlinear analysis is cumbersome,
difficult, and error-prone. (iv) In most cases the conservative and dissipative
energy domains are to be modeled separately.

Distributed Parameter System

In a distributed parameter system (see (Tilmans, 1997)), the mass, com-
pliance, capacitance, etc., are not easily identifiable as lumped elements
at individual points. These elements are, instead, continuously distributed
throughout the system. Figure 17.5 shows another parallel plate actuator,
but in this case, in contrast to the lumped parameter case, the mass is a
continuously deformable beam with a uniformly distributed load on it. The
electrical and mechanical domains are coupled either through the bound-
ary of the flexible beam or throughout the entire system as in the case of
transducers employing piezoelectric materials. In such cases, it is difficult
to distinguish between the mechanical and electrical forces, and the lumped
parameter system cannot be easily used to extract the circuit parameters.
Instead, the distributed parameter approach needs to be employed. The
fundamental difference between lumped parameter models and distributed
parameter systems is that while the former method has a finite number of
degrees of freedom, the latter has an infinite number of degrees of freedom.
The lumped parameter models and the distributed parameter models are
just two distinct mathematical models of the same physical system and
the distributed parameter approach can be considered as a more general
approach compared to the lumped parameter approach (Tilmans, 1997).

The procedure for distributed parameter modeling is given by:

1. A quasi-one-dimensional modeling of the system is first performed,
where only the displacements associated with the dominant modes
are considered, while the ones in the other directions are neglected.
This reduces the dependence of the system behavior to a single co-
ordinate.
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2. The characteristic equations are derived using modal analysis, which
is described in detail later in this section.

3. Modal analysis techniques are used to find the solution to the gov-
erning equations in terms of normalized mode shapes and generalized
coordinates by the use of the mode-superposition principle.

4. A Galerkin-like approach is then used to generate an infinite set of
uncoupled ODEs that represent the system by means of an infinite
number of single-degree-of-freedom lumped-parameter systems.

5. The characteristic equations of the system that describe the linear
relations between incremental variations of the port variables around
a stable bias point are derived. The equations are then linearized
around the bias point.

6. Using the possible characteristic equations and the numerous equiv-
alent circuit representations, a circuit representation that represents
the practical situation in the most appropriate way is selected.

The steps in the distributed parameter approach are similar to those in
the lumped parameter approach, except that the continuous system is mod-
eled using modal analysis in the distributed parameter approach to reduce
the degrees of freedom. We consider the actuator shown in Figure 17.5 to il-
lustrate the distributed parameter approach. The electrical and mechanical
domains are coupled through the surface of the flexible beam, which can be
thought of as an infinite number of localized individual electrostatic trans-
ducers. The electrical energy stored in each such element of infinitesimal
area δA is given by

UδA =
1
2

(σt(x, y)δA)2

ε0δA/(d + wt(x))
=

1
2

σt(x, y)2

ε0/(d + wt(x))
δA, (17.5)

where σt(x, y) denotes the surface electric charge density as a function of
position. The total differential of equation (17.5) is given by

δU =
∂U

∂σt
δσt +

∂U

∂wt
δwt.

The voltage at time instant t, vt (see the discussion leading to equation
(17.2)), can be expressed as

vt =
∂U

∂σt
=

σt(x, y)
ε0/(d + wt(x))

.

Similarly, the mechanical pressure acting along the surface pt can be ex-
pressed as

pt =
∂U

∂wt
= −σt(x, y)2

2ε0
.
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Similar to the derivation of equations (17.3), (17.4), the expressions for
v ≡ ∆vt and p ≡ ∆pt in terms of w ≡ ∆wt and σ ≡ ∆σt are given by

v =
d + w0

ε0
σ +

v0

d + w0
w and p = − v0

d + w0
σ + 0 · w.

The operating point is indicated by the subscript 0, and the coefficient
“0” arises because the stiffness properties of the beam are considered to
be external to the transducer (Woodson and Melcher, 1968). Rewriting the
above equations, the expressions for σ and p are given by

σ =
ε0

d + w0
v − ε0v0

(d + w0)2
w and p = − ε0v0

(d + w0)2
v +

ε0v
2
0

(d + w0)3
w.

In the absence of elastic stiffness, the exterior mechanical pressure p is
completely counterbalanced by the electrostatic pressure pe, and hence

pe = −p =
ε0v0

(d + w0)2
v − ε0v

2
0

(d + w0)3
w.

Next, the elastic properties of the beam are taken into account. Employing
energy methods (Shames and Dym, 1985) and excluding dynamic terms,
the differential equation of motion is

L [w(x)] = −qe(x) + q(x), (17.6)

where qe(x) and q(x) are transverse forces per unit length of electrical and
mechanical origin, and L is the differential operator given by

L = EI
∂4

∂x4 − N
∂2

∂x2 , (17.7)

where E and I are the Young’s modulus and the second moment of iner-
tia of the beam, respectively, and N is the applied axial force. Rewriting
equation (17.6), we have

q(x) =
bε0v0

(d + w0(x))2
v + Le [w(x)] , (17.8)

where

Le ≡ L − bε0v
2
0

(d + w0(x))3
= L − ke(x).

The eigenvalues and the mode shapes (eigenvectors) of the governing equa-
tion (17.8) are now computed by solving a standard eigenvalue problem.
Using the mode superposition principle, an infinite number of ordinary
differential equations are formed (this topic is discussed in more detail in
Section 17.4). Typically, a few mode shapes contain most of the mechani-
cal energy, and these few modes can satisfactorily capture the mechanical
deformation, thereby reducing the order of the problem.
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In summary, we have a few ODEs to describe the parallel plate actuator,
which can now be used to construct the equivalent circuit of the system
in the same way as described earlier for the lumped parameter modeling.
The advantages of the distributed parameter approach are the following:
(i) It can be used to model continuous systems where most other methods
fail. (ii) It can be incorporated into system simulators. (iii) Distributed
parameter electrical devices can be coupled to the mechanical and the elec-
trical terminal pairs as done in the lumped networks case. In a general
case, the system has one electrical port characterized by the voltage v and
the current i, and an infinite number of mechanical ports characterized
by a generalized load and a generalized velocity. The disadvantages of the
method are these: (i) It needs designer input, and test structures are re-
quired to verify whether the modeling results are correct. (ii) In most cases
the conservative and dissipative energy domains have to be modeled sep-
arately. (iii) Since there is no unique representation possible, macromodel
generation cannot be automated easily.

17.2.2 Description Languages
Even though the equivalent circuit approach is popular, there are several
drawbacks to using an equivalent circuit representation, the most impor-
tant one being that not all microdevices can be represented by equivalent
circuits, and even if an equivalent circuit representation exists, its construc-
tion may not be trivial. Besides, the physical meaning of the problem gets
complicated due to representation of nonelectrical quantities such as force
and velocity in terms of electrical quantities such as current and voltage.
As a result, it may not be easy to understand how well the model captures
the physics of the device.

Several other methods have also been developed which are based directly
on the algebraic-differential equations that describe the device behavior.
Suitable languages are used to describe the equations, with hardware de-
scription language being one of them. Simulations using description lan-
guages are, however, slower. The speed can be increased by using built-in
libraries (stamps) for some standard structures or devices. Nodal analysis is
another method, where the differential equations are solved directly. These
two techniques are summarized below.

Element Stamps

One way of building coupled systems of equations in the electrical and
mechanical domain is through the use of element stamps. Element stamps
are the building blocks of conventional circuit simulators. They are derived
from lumped-constant models of individual microdevices, and built into the
circuit simulator (Casinovi, 2002). The use of element stamps for the con-
stitutive elements allows one to simulate a system in a faster and more ef-
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ficient way compared to models written in hardware description languages.
Lumped constant models are sufficiently accurate for many applications.
Ordinary circuit simulators use lumped constant models for electronic de-
vices. This approach enables the simulation of complex mixed technology
systems starting from their constitutive elements. Like Kirchhoff’s laws for
electrical components, the equations governing the dynamics of constrained
rigid bodies are additive with respect to the number of elements in the
system. As a consequence, models of microdevices can be represented by
stamps, which contain all the terms that contribute to the global system
of equations.

The Modified Nodal Analysis (MNA) technique for circuit simulation is
based on Kirchhoff’s current law, which states that the sum of all outgoing
currents at each node is equal to zero, i.e.,∑

k

ik = 0.

Kirchhoff’s current law, when considered at each node, generates a set of
algebraic differential equations, which can be transformed into a set of
algebraic equations by applying a suitable numerical integration scheme.
The nonlinear algebraic equations can be solved by numerical methods
(e.g., a Newton’s method), which require repeated solution of a set of linear
equations of the form

Av = b.

The observation that each element in the circuit contributes to the above
equation leads to the element stamp concept. Figure 17.6 shows a simple
resistor (of conductance G) connected between nodes t and o. The branch
current, i, given by i = G(vt − v0), appears with a positive sign in the
current equation at node t and with a negative sign at node o. Hence,
the resistor contributes the term +G(vt − v0) to the tth equation and the
term −G(vt − v0) to the oth equation. An element stamp (which is the
coefficient matrix A having rows corresponding to each node, and columns
corresponding to each variable) for the resistor is shown in Figure 17.6.
If vt and vo are the tth and the oth elements of the voltage vector, v,
respectively, the resistor’s contribution to the coefficient matrix adds a
quantity +G to positions (t, t) and (o, o) and a −G to the positions (t, o)
and (o, t). The lumped-constant models for MEMS is based on the fact
that all the MEMS structures are built from a common set of basic (or
atomic) elements, such as beams, anchors, and plates. Though these are
less accurate than distributed constant models, they reduce the computa-
tional effort by a great deal. For many applications the accuracy obtained
from a lumped-constant model could be sufficient. Just as the conventional
circuit simulation relies on the lumped-constant models of the electronic
devices, microsystem simulation can be achieved by extending the concept
of element stamps to microdevices and their constitutive elements. In this
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FIGURE 17.6. Element stamp for a resistor.

FIGURE 17.7. Schematic diagram of the parallel plate actuator with damping.

case, the Kirchhoff’s circuit laws are replaced by the Newtonian equations
of motion. The equations governing the dynamics of rigid bodies are given
by ∑

k

Fk = 0 and
∑

k

Tk = 0,

where F and T stand for forces and torques, respectively. The similarity
between Kirchhoffian current laws and these equations is apparent. How-
ever, one difference is that since microsystems involve both mechanical and
electrical domains, there are both mechanical and electrical variables and
equations contained in element stamps for microsystems. We illustrate the
development of an element stamp for the parallel plate actuator shown in
Figure 17.2. External (air) damping is also considered and is represented by
the external damper (c) as shown in the schematic diagram in Figure 17.7.
The governing equations for the system are given by

m
∂2x

∂t2
+c

∂x

∂t
+kx = Fe = −ε0A

2

[
V 2

(d − x)2

]
and i =

∂q

∂t
=

∂

∂t

[
ε0AV

d + x

]
.

Trapezoidal integration and linearization of the governing equations gives
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FIGURE 17.8. Element stamp for the parallel plate actuator.

rise to the following simple algebraic equation:

mux +
h

2
cux + k

h

2
x +

h

2

[
∂Fe

∂vt
vt +

∂Fe

∂vb
vb

]
= 0,

where ux = ∂x/∂t, h is the time step of integration, and vt and vb are the
voltages on the beam and the ground element, respectively. Using the node-
wise analysis as described above for the resistor, the element stamp for this
MEM actuator is shown in Figure 17.8. The stamp has four rows, two for
the electrical equations and two for the mechanical-dynamical equations.
The four columns correspond to the four variables, namely, vt, vb, x, and ux.
This method takes much less time to simulate in a circuit simulator. It pro-
vides a compact and efficient way of adding the contribution of a particular
element to the overall system. Since built-in models are used, this procedure
can handle only those devices that can be described by the built-in models.
This might not be a disadvantag, since all MEMS devices can be described
in terms of a set of basic elements. The computational effort required is
much less compared to general purpose simulators like SABER5 (Mantooth
and Vlach, 1992) or MATLAB that rely on user-provided HDL models.

Nodal Analysis

Nodal analysis has been widely used for formulating system equations in
circuit analysis tools such as SPICE. The circuit is decomposed into N -
terminal devices, and each device is modeled by ordinary differential equa-
tions (ODEs) with coefficients parameterized by device geometry and ma-
terial properties (Zhou et al., 1998). The devices are linked together at
their terminals or nodes, and the resulting coupled differential equations
can be solved as a system of nonlinear ODEs. This approach is fast, rea-
sonably accurate, flexible, and can be used for a higher-level simulation of

5Mixed mode circuit simulators from Synopsys Inc.
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(a) (b)

FIGURE 17.9. (a) A cantilever-beam-based microdevice. (b) Nodal representa-
tion of the microdevice.

microsystems.
In nodal analysis, the microdevice is represented using atomic elements

like anchors, gaps, and beams (Zhou et al., 1998). Figure 17.9 shows a mi-
crodevice and its nodal representation. The nodal representation contains
three anchor elements, one beam element, and an electrostatic gap element.
Each atomic element has a lumped behavioral model with geometric pa-
rameters that can be specified individually. This simplifies the evaluation
of changes in size on the device performance in each design iteration. The
system matrices formed are much smaller than those in finite element anal-
ysis, and the models are implemented in analog HDLs supporting mixed
physical domain simulations. The total system is formulated by formulat-
ing each individual element first. For the beam element defined between
nodes 1 and 2, we have

f1
n = f1

n(q1, q2), n = 1, 2,

and for the gap element (nodes 2, 3, 4, 5) we have

f2
n = f2

n(q2, q3, q4, q5), n = 2, 3, 4, 5,

where fn, represents the internal forces (the forces in the x-direction, y-
direction, and the moment) acting at node n, and qn represents the node
displacements (the displacements in the x- and y-directions and the angle
of rotation). The superscript and the subscript denote the element number
and the node number, respectively. Each node has three degrees of freedom
in 2D: the displacements in the x- and y-directions and the rotation. The
sum of all the internal forces (fn) acting at a given node is equal to the
external load P acting at the node, which in this case is the electrostatic
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force. The assembled equations for each node are given by

P1 = f1
1 (q1, q2),

P2 = f1
2 (q1, q2) + f2

2 (q2, q3, q4, q5),
P3 = f2

3 (q2, q3, q4, q5),
P4 = f2

4 (q2, q3, q4, q5),
P5 = f2

5 (q2, q3, q4, q5).

The displacements and the rotations associated with nodes 1, 4, and 5 are
zero, so they are removed. The final system of equations is given by

P2 = f1
2 (q2) + f2

2 (q2, q3),
P3 = f2

3 (q2, q3).

This system of equations can be solved by standard numerical methods.
NODAS (Fedder and Jing, 1998) is a circuit-level behavioral simulation

tool that uses the concept of nodal analysis. Design with NODAS starts
from schematic entry, where microsystem elements (such as beams and
fluidic channels) and circuit elements (such as transistors) can be wired
together. A composite net list for the entire system is generated and sent
to the circuit simulator. In the schematic generation phase, terminals of
element instances are represented by groups of pins. Each pin has an asso-
ciated discipline determining its physical nature. Since schematic assembly
consumes a lot of effort and is prone to error, if pins were used for each
degree of freedom, buses are used in digital circuit schematics for com-
pactness of schematic representation. Similarly, for the same reason analog
buses are used in NODAS; however, since existing limitations in analog
HDLs (hardware description languages) allow only pins of the same dis-
cipline to be grouped as one bus, they result in three buses per terminal:
translational, rotational, and electrical. This compact terminal represen-
tation reduces wiring effort and wiring errors. Splitters are the behavioral
blocks used to convert scalar wires to bus wires. They also apply stimuli
and monitor simulation results at the individual degree of freedom. Global
acceleration and rotational rate pins are used and shared by all elements
in combination with the hierarchical schematic for each model to reduce
clutter in the schematic. These pins take care of the external dynamics
influence. The “through” and “across” variables are chosen in accordance
with Kirchhoff’s laws. The across variables are chosen depending on the
output required. Since Kirchhoff’s network laws are applied in the chip’s
reference frame, coordinate transformation matrices are used to transform
from one coordinate system to another. Some of the basic lumped models
used are the linear beam model, nonlinear beam model, and nonlinear gap
model. SUGAR (Zhou et al., 1998) uses a similar approach by modeling the
MEMS structures in terms of three basic elements (i.e., beams, gaps, and
anchors) and builds the ODE models for each kind. The system equations
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are then formulated according to node connectivity information given as
an input file and solved using nodal analysis.

The advantages of the nodal analysis method for microsystem design are
as follows: (i) It can solve coupled nonlinear differential equations. (ii) It is
fast, reasonably accurate, flexible, and can be used for higher-level simula-
tion of microsystems. (iii) It can perform DC, steady-state, and transient
analysis. The disadvantages of the nodal analysis technique are these: (i)
The approach can still be expensive for complex systems. (ii) It cannot
account for all the nonlinear behavior encountered in microsystems. More
details on nodal analysis as well as more examples can be found in (Fed-
der and Jing, 1998; Vandemeer et al., 1998; Mukherjee and Fedder, 1998;
Baidya and Mukherjee, 2002).

17.3 Black Box Models

Black box models stem from basic ideas in system and control theory. Black
box models are based on measured input-output behavior, hence the name
“black box models.” Detailed results from simulations are used to construct
simplified and more abstract models. The various models that fall under
this category can be broadly classified into:

1. Nonlinear static models: These models use mathematical optimiza-
tion, approximation, and interpolation methods for curve fitting and
parameter adaptation. Table-based numerical reduced-order model-
ing falls in this category.

2. Linear dynamic models: These are usually formulated in the Laplace
domain. The system is simulated in the time or frequency domain.
Algorithms from control and system theory are used to calculate the
transfer function. The response function is calculated using the con-
volution integral principles on the impulse function and the actual
input function. If the system is complicated, random input functions
may be needed to simulate the system instead of step or impulse func-
tions. Krylov subspace techniques and moment matching methods fall
under this category.

3. Nonlinear dynamic models: In these models, the modeling is done
based on assumptions about the internal structure composed of basic
functional blocks. A few control theory approaches are also available.
Krylov subspace methods fall under this category.

17.3.1 Nonlinear Static Models
The method that falls in this category is table-based reduced-order model-
ing.
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Table-Based Reduced-Order Modeling

Table-based reduced-order models use tables of numerical data to describe
the relationship between variables (Wu and Carley, 2001). The table-based
models are built directly from data obtained from measurements or device
simulations without detailed knowledge of underlying physics. Hence, the
difficulties and errors associated with extracting analytical models are elim-
inated and the process can be automated. For behavioral-level simulations,
cubic spline interpolation is used to evaluate the functions. In addition to
the nonlinear behavioral numerical model, a set of linear numerical mod-
els is constructed to assist in solving for operating points, to perform AC
analysis, and to design closed-loop feedback systems. The procedure for
table-based macromodeling can be described as:

1. The device is described by a set of ODEs, which are solved using
standard numerical methods.

2. The functions that describe the relationships between the variables
are represented in numerical tables, obtained from device simulations.

3. During simulations, the models are evaluated by interpolating the
data in the tables.

The microdevice shown in Figure 17.5 is modeled using the steps outlined
above. The governing equation for the dynamics of the device is given by

m
∂2x

∂t2
+ c

∂x

∂t
+ fs = fe,

where m is the effective mass, c is the damping factor, fs is the spring
force, and fe is the electrostatic actuation force. First, a full simulation
of the device is performed to generate the table of data. The mechanical
part (or the spring force) is computed using any standard finite element
solver, and the electrostatic force is computed using the capacitance solver
based on the boundary element method. The functions that represent the
relationship between the variables, in this case fs and fe, are generated
from tables of numerical data obtained from device simulations. During
the simulations, the tabl-based models are evaluated by interpolating the
data; typically, a cubic spline interpolation is used. As an example, suppose
y depends on x, and for some value of x between xi and xi+1, y can be
computed by

y = a1yi + a2yi+1 + a3
∂2yi

∂x2 + a4
∂2yi+1

∂x2 ,

a1 =
xi+1 − x

xi+1 − xi
, a2 =

x − xi

xi+1 − xi
,

a3 =
1
6
(a3

1 − a1)(xi+1 − xi)2, a4 =
1
6
(a3

2 − a2)(xi+1 − xi)2.
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Since second derivatives are required, typically, a second table comprising
second derivatives is also constructed.

The merits of table-based reduced-order modeling are: (i) The procedure
eliminates the difficulties and errors associated with analytical model ex-
traction. (ii) The method can be easily automated once the order and state
variables of the ODE are decided. The problems with table-based macro-
modeling are: (i) The method does not preserve the physical meaning of
the system. (ii) It is not easy for the designer to propose modifications
and expect the system to behave as desired. (iii) At least some expensive
full-scale physical simulations are required to generate the table(s) of data.

17.3.2 Linear Dynamic Models
The reduced-order modeling methods that fall in this category are the
Krylov subspace technique and the moment matching technique, which are
discussed in this section.

Krylov Subspace Technique Based on the Lanczos Method

The governing equation for a continuous time-invariant multi-input multi-
output (MIMO) system (e.g., a comb-drive microresonator) is of the form
(Srinivasan et al., 2001; Bai, 2002)

Cẋ(t) + Gx(t) = Bu(t), y(t) = LT x(t), (17.9)

where t is the time variable, x(t) ∈ �N is a state vector, u(t) ∈ �m

is the input excitation vector, and y(t) ∈ �p is the output vector. Here
C,G ∈ �N×N are system matrices, B ∈ �N×m and L ∈ �N×p are the
input and output distribution arrays, respectively, N is the state space
dimension, m and p are much smaller than N , and m ≥ p.

A variety of analyses can be performed for the linear dynamical system
given in equation (17.9). For example:

1. A static analysis to compute the equilibrium condition.

2. A steady-state analysis, also called the frequency response analysis, to
determine the frequency responses of the system to external steady-
state oscillatory (e.g., sinusoidal) excitation.

3. A transient analysis to compute the output behavior y(t) subject to
time varying excitation u(t).

4. A sensitivity analysis to determine the proportional changes in the
time response y(t) and/or steady-state response to a proportional
change in system parameters.
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Some of these analyses can be very expensive, especially if performed using
equation (17.9). If a reduced-order system to equation (17.9) can be de-
veloped, the analysis can be performed quickly. The reduced-order system
should have the following desirable attributes:

1. The reduced system should have a much smaller state-space dimen-
sion compared to the state-space dimension of the full-order system.

2. The error between the full-order and the reduced-order models should
be as small as possible.

3. The reduced-order model should preserve the essential properties of
the full-order system.

Therefore, the reduced-order linear system should be of the form

Cnż(t) + Gnz(t) = Bnu(t), y(t) = LT
nz(t), (17.10)

where z(t) ∈ �n is a state vector, u(t) ∈ �m is the input excitation vector,
and y(t) ∈ �p is the output vector. Here Cn,Gn ∈ �n×n are system
matrices, Bn ∈ �n×m and Ln ∈ �n×p are the input and output distribution
arrays, respectively; n is the state space dimension, which should be much
smaller than N . Assuming a single-input single-output (SISO) system for
simplicity, p = m = 1. In this case, we use b and l for input and output
vectors, respectively. The MIMO system can be dealt with in a similar
manner.

The Krylov subspace technique (Srinivasan et al., 2001) reduces the orig-
inal system (equation (17.9)) to the reduced system (equation (17.10)).
Before we discuss the reduction method, it is important to understand the
concept of Krylov subspaces. A Krylov subspace is a subspace spanned
by a sequence of vectors generated by a given matrix and a vector as fol-
lows. Given a matrix A and a starting vector r, the nth Krylov subspace
Kn(A, r) is spanned by a sequence of n column vectors:

Kn(A, r) = span[r,Ar,A2r,A3r, . . . ,An−1r].

This is called the right Krylov subspace. When A is asymmetric, there
exists a left Krylov subspace generated by AT and a starting vector l
defined by

Kn(AT , l) = span[l,AT l, (AT )2l, . . . , (AT )n−1l].

Next, we need to define a set of basis functions such that they span the
desired Krylov subspaces. Let V = [v1, v2, v3, . . . , vn] and W = [w1, w2, w3,
. . . , wn] be basis vectors such that

Kn(A, r) = span[v1, v2, v3, . . . , vn], Kn(AT , l) = span[w1, w2, w3, . . . , wn].
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The Lanczos process is an elegant way of generating such basis vectors.
The Lanczos vectors V and W are constructed to be biorthogonal, i.e.,

wT
j vk = 0 ∀ j �= k.

The Lanczos algorithm to generate V and W from A, r, and l can be found
in (Freund, 1999).

The reduced system, using Krylov subspaces, can be generated using the
following steps (see also Figure 17.10):

1. Taking s0 as the expansion point of equation (17.9), A and r are
defined as

A = −(G + s0C)−1C and r = (G + s0C)−1b.

2. Using the Lanczos method, V and W are computed as

span[V] = Kn(A, r), span[W] = Kn(AT , l).

3. The reduced matrices Cn,Gn,bn, ln are computed as follows: For
double-sided projection

Cn = VT CW, Gn = VT GW, bn = WTb, ln = VT l,

and for single-sided projection,

Cn = VTCV, Gn = VT GV, bn = VTb, ln = VT l.

The double-sided projection formula does not always guarantee a sta-
ble reduced-order model except for certain trivial cases (e.g., RC net-
works), whereas single-sided projection onto V guarantees an uncon-
ditionally stable reduced-order system. However, double-sided pro-
jection generally gives more accurate results than single-sided projec-
tion. The order of the subspace is chosen according to the frequency
range where matching is required. For matching of q resonant peaks,
n has to be at least 2q.

Often, second-order systems are encountered in microsystems (Bai, 2002;
Ramaswamy and White, 2001), of the form

Mq̈(t) + Dq̇(t) + Kq(t) = Pu(t), y(t) = QTq + RT q̇(t),

where Q and R are chosen depending on the output variable of interest.
The second-order system can be formulated into an equivalent linear system
of the form given in equation (17.10) such that the symmetry of the original
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FIGURE 17.10. Basic transformations in the Krylov subspace method for macro-
modeling.

system is preserved, i.e.,

x(t) =

⎡⎢⎣q(t)

q̇(t)

⎤⎥⎦ , C =

⎡⎢⎣D M

F 0

⎤⎥⎦ ,

G =

⎡⎢⎣K 0

0 −F

⎤⎥⎦ , B =

⎡⎢⎣p

0

⎤⎥⎦ , l =

⎡⎢⎣Q

R

⎤⎥⎦ ,

where F can be any N × N nonsingular matrix. Generally, F is chosen to
be the identity matrix, I, while F = M is also a reasonable choice if M,
D, and K are symmetric. The advantages of the Krylov subspace method
are: (i) It is fairly accurate for linear systems and can be automated. (ii) It
is computationally very effective. The disadvantages are: (i) It is not very
accurate for highly nonlinear systems. (ii) It does not preserve the physical
meaning of the original system.

Moment Matching Techniques

The main idea behind the moment matching technique (Ismail, 2002) is to
construct the transfer function directly from the system equations using
Laplace transformation, and then to approximate the transfer function by
some rational function. Consider again equation (17.9). Taking the Laplace
transform of this equation, the frequency domain formulation is given by

sCẊ(s) + GX(s) = BU(s), Y(s) = LTX(s). (17.11)

Eliminating the variable X(s) from equation (17.11), the input and output
are related by a p × m matrix-valued rational function

H(s) = LT (G + sC)−1B,

where H(s) is known as the transfer function of the linear system, and the
state-space dimension of the system is N . The Taylor series expansion of
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the scalar transfer function H(s) about s0 is given by

H(s) = lT (I−(s−s0)A)−1r = lT r+(lT Ar)(s−s0)+(lT A2r)(s−s0)2+· · ·
= m0 + m1(s − s0) + m2(s − s0)2 + · · · ,

where mj are the moments about s0. The objective is to approximate H(s)
by a rational function Hq(s) ∈ �q−1,q over the range of frequencies of in-
terest, where q ≤ N . One choice is the Padé approximation (Bultheel and
Barvel, 1986). A function Hq(s) ∈ �q−1,q is said to be a qth Padé approx-
imant of H(s) about an expansion point s0 if it matches with moments of
H(s) as far as possible. It is required that (Bai, 2002)

H(s) = Hq(s) + O((s − s0)2q). (17.12)

Note that we have 2q conditions on the 2q degrees of freedom that describe
the approximation function. Specifically, let

Hq(s) =
Pq−1(s)
Qq(s)

=
a0 + a1s + a2s

2 + · · · + aq−1s
q−1

1 + b1s + b2s2 · · · + bqsq
.

The coefficients [ai] and [bi] of the polynomials Pq−1(s) and Qq(s), and also
the moments can be computed by multiplying both sides of equation (17.12)
by Qq(s) and comparing the first q(s− s0)k terms for k = 0, 1, 2, . . . , n− 1.
A system of 2q nonlinear equations is solved to find the 2q unknowns. This
takes into account the dominant q poles, while the poles larger than this
value are neglected.

The advantages of this method are: (i) Reduction in computational effort.
(ii) A wide variety of physical phenomena encountered in microsystems, in-
cluding dissipation, can be modeled. (iii) The accuracy can be improved by
taking more moments at each node. (iv) Static, steady-state, and transient
analysis can be performed. The disadvantages of this approach are: (i) It is
applicable for linear dynamical systems only. (ii) It is inefficient if the num-
ber of inputs is large. (iii) It is not stable for higher-order approximations.
(iv) It is computationally expensive for each expansion point.

The multinode moment matching (MMM) method (Ismail, 2002) is an
extension of the single point moment matching (SMM) method and has
much better efficiency than to the SMM technique. The MMM technique
simultaneously matches the moments at several nodes of a circuit using
explicit moment matching around s = 0. MMM requires a smaller compu-
tational effort, since only (q + 1) moments are required (see (Ismail, 2002)
for details). MMM is numerically stable, as the higher powers are not used
in the expansion, avoiding truncation errors.

17.3.3 Nonlinear Dynamic Models
Nonlinear dynamic models are frequently encountered in microsystems.
Linearizing the nonlinear equations and using reduced-order methods like



702 17. Reduced-Order Modeling

the linear Krylov subspace method based on a Lanczos process or other lin-
ear basis function techniques may not be sufficient to capture the nonlinear
behavior of the system. Arnoldi-based Krylov subspace methods (Chen and
White, 2000) and the trajectory piecewise linear approach (Rewienski and
White, 2001) and its modifications are found to work better for nonlinear
systems. These techniques are summarized in this section.

Krylov Subspace Technique Based on the Arnoldi Method

Consider a nonlinear system of the form

ẋ = f(x) + bu(t), y = lT x, (17.13)

where x is a vector of length n, f is a nonlinear vector function, u(t) is the
input of the system, and y(t) is the output. Taylor series expansion of the
function f about the origin (the equilibrium point) to second order yields
a quadratic approximation of the form

ẋ = Jfx + xTWx + bu(t), y = lT x, (17.14)

where Jf is the Jacobian of f evaluated at the origin and W is an N×N×N
Hessian tensor. The matrices Jf and W are given by

Jf i,j =
∂fi

∂xj
and Wi,j,k =

∂2fi

∂xj∂xk
.

We assume that Jf is nonsingular. Let A = Jf
−1 be the inverse of the

Jacobian. Multiplying equation (17.14) by A yields

Aẋ = x + AxTWx + Abu(t), y = lT x. (17.15)

The orthogonal basis for the Krylov subspace span[Ab,A2b, . . . ,Aqb],
where q � N , is the size of the reduced system that will be generated
by using the Arnoldi method (Chen and White, 2000) for numerical stabil-
ity. The Arnoldi process generates V, an n × q orthonormal matrix whose
columns span the Krylov subspace. Using the change of variables x = Vz
in equation (17.15), we have

AVż = Vz + AzT VTWVz + Abu(t), y = lTVz.

Left-multiplying by VT , and defining H = VTAV, we have

Hż = z + VTAzTVT WVz + VTAbu(t), y = lTVz.

The system can be expressed in the original form (equation (17.13)) by
left-multiplying by H−1 to obtain

ż = H−1z + H−1VTAzT VTWVz + H−1VTAbu(t), y = lT Vz.
(17.16)
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Setting

J′ = H−1, b′ = H−1VTb, l′ = VT l,

where H−1VTAzT VTWVz is quadratic in z and can be written in the
form zTW′z for some W′. Then, equation (17.16) can be reduced to a
quadratic system of the form

ż = J′z + zTW′z + b′u(t), y′ = l′T z,

where y′ is an approximation to y. The key step in this approach is the
use of Arnoldi projection to reduce the large quadratic tensor to a small
quadratic tensor.

The merits of this approach are: (i) This method is much more accurate
than the linearized models and can be automated. (ii) It is computationally
very effective. The problem with this approach is that it is not very accurate
for highly nonlinear systems even though it has a quadratic nonlinear term.
If higher-order terms are included, the cost of the reduced order model
increases as O(n4), and the number of coefficients to be evaluated is very
large.

Trajectory Piecewise-Linear Approach

The key idea in the trajectory piecewise-linear approach is based on repre-
senting the nonlinear system with a piecewise-linear system and then reduc-
ing each of these pieces with Krylov subspace projection methods (Rewien-
ski and White, 2001). Instead of approximating the individual components
as piecewise-linear and then composing hundreds of components to make
a system with exponentially many different linear regions, a small set of
linearizations is generated about the state trajectory, which is the response
to a “training input.” Introducing the change of variables x = Vz in equa-
tion (17.13) and multiplying the resulting equation by VT yields

ż = VT f(Vz) + VTbu(t) and y = lT Vz.

The two key issues here are first, selecting a reduced basis V such that
the system provides a good approximation of the original system. This
has already been addressed in the previous sections. The second issue,
which makes the Taylor-series-expansion-based reduced-models inefficient,
is the computation of the term VT f(Vz). For linear and quadratic reduced-
order models, the linear and the quadratic terms from the Taylor expansion
about an equilibrium point x0 are considered, and all higher-order terms
are neglected, i.e.,

f(x) ≈ f(x0) + A0(x − x0) +
1
2
W0(x − x0) ⊗ (x − x0),
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where ⊗ is the Kronecker product and A0 and W0 are the Jacobian and
the Hessian of f(·). For the linear case, the reduced-order model becomes

ż = VT f(x0) + A0rz + VTbu(t) and y = lT Vz,

while for the quadratic case, the reduced order model becomes

ż = VT f(x0) + A0rz +
1
2
W0r(z ⊗ z) + VTbu(t) and y = lT Vz,

where A0r = VTA0V and W0r = VTW0(V ⊗ V) are q × q and q × q2

matrices, respectively, which are typically dense and must be represented
explicitly. As a result, the cost of computing VT f(Vz) and the cost of
storing the matrices A0r (A0r and W0r for the quadratic case) are O(q2)
in the linear case and O(q3) in the quadratic case. Hence, although the
method based on Taylor expansion may be extended to higher orders of
nonlinearities, this approach is limited in practice to cubic expansions due
to exponentially growing memory and computational costs.

In the piecewise-linear approach, s linearized models of the nonlinear
system with expansion points x0, . . . ,xs−1 are considered, i.e.,

ẋ = f(xi) + Ai(x − xi) + bu(t),

where x0 is the initial state of the system and Ai are the Jacobians of f(·)
evaluated at the states xi. Considering a weighted combination form,

ẋ =
s−1∑
i=0

[wi(x)f(xi) + wi(x)Ai(x − xi)] + bu(t),

where wi(x) are weights that sum to 1. Assuming that a qth-order basis V
has already been generated, the following reduced-order model is obtained:

ż = (Ar · w′(z)T )z + γ · w′(z)T + bru(t), y = lrz,

where γ =
[
VT (f(x0) − A0x0), . . . ,VT (f(xs−1) − As−1xs−1)

]
, br = VT b,

lr = lT V, Ar =
[
A0rA1r . . .A(s−1)r

]
, w′ = [w0, w1, . . . , ws−1] is a vector

of weights, and Air = VTAiV. The weights are computed in the following
manner.

1. For i = 0, . . . , (s − 1) compute di = ‖z − zi‖2.

2. Compute m = min[di : i = 1, . . . , (s − 1)].

3. For i = 0, . . . , (s − 1) compute wi = (exp(di)/m))−25.

4. Normalize wi.
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This implies that the linearized point that is closest to the current position
gets the maximum weight. Instead of finding linearized models covering the
entire N -dimensional state space, a collection of models is generated along
a single trajectory of the system. This is done by simulating the system at
the initial point and moving ahead by a very small interval from that point
to get a new point, and the process is repeated for each point. However,
this method requires performing simulation of the initial nonlinear sys-
tem, which may be very costly due to the initial size of the problem. This
problem is avoided by using the Arnoldi-based Krylov subspace method,
instead of the full simulation, to simulate the nonlinear system and obtain
approximate trajectory and linearization points, making the process faster.

Further improvements to the method have been reported in (Rewien-
ski and White, 2002), where a richer aggregated reduced basis is obtained
by applying the Arnoldi method at each linearization point instead of only
once. This results in improved accuracy and consequently reduces the order
of the reduced model further. In the original implementation, the projection
matrix V was constructed using a Krylov subspace based on a linearization
about the initial state x0. In the new implementation, the above approach
has been replaced by a three-step procedure. First, at each of the lineariza-
tion points xi, a reduced-order basis is generated in a suitable Krylov space
corresponding to a linearized model generated at xi. Second, the union of
all the bases is formed, and third, the set is reduced using singular value
decomposition. The method for basis generation was replaced from the
Arnoldi-based Krylov subspace method to the TBR (Truncated Balanced
Realization) algorithm in (Vasilyev et al., 2003), and a hybrid method using
both TBR and Krylov subspace has been implemented. It was found that
the TBR-based methods gave better accuracy than the method in which
the Krylov subspace was used solely.

17.4 Galerkin Methods

Galerkin methods are popular techniques for reduced-order modeling. In
this section, we summarize both linear and nonlinear Galerkin methods for
reduced-order modeling.

17.4.1 Linear Galerkin Methods
The objective is to create a set of coupled ordinary differential equations
that give an accurate representation of the dynamical behavior of the de-
vice. The approach is to formulate the dynamical behavior in terms of a
finite set of orthonormal spatial basis functions, each with a time-dependent
coefficient. Though this method is not typically analytical, it still forms a
very important tool in the reduced-order modeling of microsystems that
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cannot be represented as lumped elements. Because of the relatively small
number of state variables, the models can be quickly evaluated, and inte-
grated over time. Such models can be readily inserted into circuit simula-
tors for behavioral representation at the system level, including feedback
effects around nonlinear devices. For completely numerical sets of ODEs,
automatic model-order reduction can be implemented, at least for linear
problems, and for nonlinear problems by using a combination of methods
like the Krylov subspace techniques. The two most popular methods that
fall under this category are the linear modes of vibration and Karhunen–
Loève decomposition.

Linear Modes of Vibration

The basic idea in this method is to represent the physical variable, e.g., the
deformed shape of the microdevice, as a summation of the linear normal
mode shapes. This results in the transformation from the nodal coordi-
nates to the time-dependent coefficients of the mode shapes, called modal
coordinates (Ananthasuresh et al., 1996). This approach also eliminates the
coupling between the inertia and stiffness matrices of the governing equa-
tions. Assuming that higher modes of vibration have negligible effect on
the system’s response, a reduced-order model is obtained by using only the
first few modes. Instead of the original system of N coupled equations, N
being the total number of degrees of freedom, only n equations need to be
solved in the reduced-order model, where n is the number of modes consid-
ered. The number of modes considered determines both the accuracy and
the computation time of the system. A general procedure for this method
is given as (Ananthasuresh et al., 1996):

1. Derive basis functions from an initially meshed structure by solving
for the small-amplitude (linear) modes of a structure.

2. Form a basis set that is orthonormal in the state space.

3. Consider the first few modes to represent the physical variable(s) of
interest (e.g., structural deformation).

4. Represent the solution to the system as a linear combination of the
modes with time-dependent coefficients.

The undamped dynamical behavior of a fully meshed structure is given by

Mẍ + Kx = F(x, t), (17.17)

where M is the global inertial matrix, K is the global stiffness matrix, and
F(x, t) is the nonlinear external force. Let S be the modal matrix, i.e., an
N ×N matrix whose columns are the mode shape vectors. The generalized
inertia matrix MG and the generalized stiffness matrix KG are defined as

MG = ST MS and KG = ST KS,
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where both MG and KG are diagonal. Substituting x = Sq in equa-
tion (17.17) and premultiplying by ST, we get

MGq̈ + KGq = ST F(Sq, t).

Since MG and KG are diagonal matrices, the coupling of the q’s is through
the nonlinear force term. In practice, only a few modes are sufficient to
describe the deformation. So the N equations are reduced to a smaller
number of m equations, where m is the number of mode shapes considered.

If damping properties are to be included, the damping force is added as
an additional term on the right-hand side of the equation, or a new set of
geometric basis functions is generated by including the space external to
the structure where the damping is present. If an additional force term is
added, it contains a dependence on velocity. Another approach to account
for damping is to assume Rayleigh damping, in which case the linear modes
obtained from M and K would be sufficient to capture the full behavior.
However, in general, to include the effect of damping, one may have to solve
the quadratic eigenvalue problem (λ2M + λD + K)s = 0 for the desired
modal matrix S.

If the structure undergoes large-amplitude deformation, then in an ideal
case, the stiffness matrix needs to be recomputed as the amplitude changes.
An alternative approach is to retain the original stiffness matrix and add
an extra force term to account for the large-amplitude effects, such as stress
stiffening of the structure. It is convenient to express the right-hand side in
terms of modal coordinates instead of the meshed coordinates. The energy
method (Senturia, 1998b) can be used for this purpose, and this procedure
is summarized below:

1. Find the linear modes for the elastic problem assuming the no-load
condition.

2. Perform quasi-static simulation over a design space that includes the
deformations described by a superposition of p modes and develop a
suitable potential energy function for other conservative forces (e.g.,
electrostatic) and large-amplitude elastic effects (e.g., for stress stiff-
ening). Create analytical expressions for the variation of potential
energy as a function of the selected mode set (this function is nonlin-
ear and must include products of modal amplitudes, etc.).

3. Replace the right-hand side of the modal dynamic formulation with
suitable derivatives of the potential energy functions with respect
to modal amplitudes. The net result is a small coupled set of 2p (2
state variables per mode) ODEs that can be easily integrated forward
in time, without requiring any conversions to and from the original
meshed space.

The advantage with modal methods is that they break open the coupled-
domain problem. The original modal basis functions are obtained from a
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single energy domain, e.g., elasticity, together with the associated mass dis-
tribution, and the nonlinear potential energy functions can be computed
one energy domain at a time. Therefore, it is not necessary to perform com-
plex self-consistent coupled-domain simulations. This approach requires
many (single-energy domain) simulations combined with fitting parameters
to obtain analytical functions. So it is difficult to do it manually. It is possi-
ble to automate the procedure for nonlinear conservative problems. There
are limits to the basis-function approach. Thus far, it has been difficult
to calculate accurately the stress stiffening of an elastic body undergoing
large-amplitude deformation using superposition of modal coordinates. Ad-
ditionally, when the device undergoes nonlinear motion, such as contact,
modal approaches fail. However, the class of microsystems that can now
be handled with the automated basis-function approach is large enough
to be interesting. More examples using modal basis functions for MEMS
simulations are given in (Gabbay and Senturia, 1998; Varghese et al., 1999).

Karhunen–Loève Decomposition Method

The basic idea in the Karhunen-Loève (KL) decomposition method is sim-
ilar to the basic idea in the linear modes method, i.e., to develop a few
global basis functions to represent the entire system by a reduced-order
model. In the case of the linear modes method, the linear modes of the sys-
tem obtained through the solution of the generalized eigenvalue problem
form the set of basis functions. Karhunen–Loève decomposition is another
method to generate global basis functions, and the advantage with the KL
decomposition is that it works better than the linear modes technique for
nonlinear cases. The procedure for the extraction of the basis functions in
the KL decomposition method is summarized below:

1. Simulate the entire system dynamics first by using a time-stepping
scheme that is stable and known to give accurate results.

2. The spatial distributions of each state variable u(x, t) are sampled
at a series of tn different time instants during the simulations. These
sampled distributions are stored as a series of vectors ui, and each
vector represents a “snapshot” in time.

3. The basis functions are determined using either the singular value
decomposition (SVD) or the KL approach.

In the SVD approach, which is mathematically equivalent to the KL decom-
position technique, n orthogonal basis functions [a1, . . . ,an] are determined
by minimizing the following expression:

tn∑
i=1

| ui − proj(ui, span[a1, . . . ,an]) |2 . (17.18)
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This is accomplished by taking the singular value decomposition (SVD) of
the matrix U, whose columns are ui. The SVD of U is given by

U = VΣWT ,

where V contains the eigenvector as columns and Σ contains the eigenval-
ues in the diagonal. By taking ai = vi for i = 1, 2, . . . , n, the minimization
of the expression in equation (17.18) is accomplished.

The KL approach (Sirovich, 1987) is a procedure for extracting an empir-
ical basis for a modal decomposition from an ensemble of signals. Assuming
that the signals are an ensemble of the functions ui, the objective is to find
a single deterministic function that is most similar to members of ui on
average. In other words, one needs to find a function that maximizes the
inner product with the field ui. That is, one needs to maximize

λ =
〈(φ,ui)2〉

(φ, φ)
,

where 〈〉 is the averaging operator, which can be a time, space, or ensemble
average, and (φ,ui) =

∫
Ω φ(x)ui(x)dΩ is the inner product defined in the

function space Ω. It turns out that this condition is met when φ(x) is an
eigenfunction of the two-point tensor given by

Kφ =
∫

Ω
K(x, x′)φ(x′)dx′ = λφ(x),

where K(x, x′) is a nonnegative Hermitian operator given by

K(x, x′) = 〈ui(x)ui(x′)〉 =
1
tn

tn∑
i=1

ui(x)uT
i (x′).

The above equation can be solved by the direct method or by the method
of “snapshots” (Sirovich, 1987). In the method of “snapshots” the eigen-
function can be represented as the summation of snapshots ui, i.e.,

φ(x) =
∑

k

αkuk(x). (17.19)

Substituting this into the two-point tensor equation yields a matrix eigen-
value problem that determines the eigenvalues and eigenvectors α. Sub-
stituting this set of eigenvectors in equation (17.19) yields a set of eigen-
functions φ(x), which is the set of global basis functions. It is important
to note that the eigenfunction corresponding to the largest eigenvalue cor-
responds to the most energetic of the snapshots ensemble followed by the
eigenfunction corresponding to the next-largest eigenvalue, and so on. Af-
ter the basis functions are generated by using either the SVD or the KL
method, the Galerkin procedure is employed with the basis functions to
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FIGURE 17.11. Basic steps in the Karhunen–Loève decomposition method.

convert the original nonlinear governing PDE to a set of coupled ODEs
much smaller in size. Figure 17.11 explains the various steps for imple-
menting the Karhunen–Loève decomposition method.

The advantages of this method are: (i) In general, very few basis functions
are required. (ii) Nonlinear behavior is efficiently captured. (iii) The same
basis functions can be employed to simulate different input parameters,
even though regeneration of the basis functions for the new input param-
eters can provide more accurate results. The disadvantages of the method
are: (i) Using a combined state vector instead of independent basis func-
tions can result in a reduced number of basis functions, but this can distort
the physical meaning of the problem. (ii) Problems can still occur, since
the basis functions chosen may not capture the entire state space. This is
usually the case when there are multiple attractors, rare intermittent fluc-
tuations, or bifurcations in the parameter space. (iii) Complications can
result in systems exhibiting intermittent chaotic behavior. (iv) The over-
head with the initial full-scale simulation is quite high. Low-dimensional
flow dynamical systems may converge to erroneous states after long-time
integration and can be observed in reduced-order models constructed from
the Karhunen–Loève decomposition method. A dissipative model based on
a spectral viscosity diffusion convolution operator has been used in (Sirisup
and Karniadakis, 2004), for improving the asymptotic behavior of KL pre-
dictions.

In spite of the existing voids, the KL decomposition technique is promis-
ing for nonlinear dynamic simulation, especially as the complexity in-
creases. As coupled domain simulation tools improve, this approach can
be a powerful tool for microsystem simulation. The standard KL decom-
position has been modified under several circumstances to generate more
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efficient macromodels. Nonlinear responses have been well captured by an
arc-length-based KL decomposition presented in (Chen and Kang, 2001b).
This method is motivated by the fact that while rapidly varying events
can occur in a very short time period, they typically traverse a relatively
large interval in the phase space. Hence, considering an ensemble average
based not only on time but also on arc length in phase space can lead
to better macromodels. This has been shown in (Chen and Kang, 2001b),
for a capacitive pressure sensor, where the arc-length-based approach is
found to capture the rapidly changing dynamics of the device better than
the standard KL approach. Further analysis of this approach shows that
the arc-length-based ensemble average is a weighted time average, with
the weighting function equal to the magnitude of the vector field, thereby
stressing the event of rapid change.

Weighted Karhunen–Loève Decomposition Method

Another modification to the standard KL decomposition is the use of a
weighting function (Qiao and Aluru, 2003c; Graham and Kevrekidis, 1996;
Zhang et al., 2003). The basic idea is that instead of trying to minimize
equation (17.18), we assign different weights to different snapshots and try
to minimize the weighted residual, i.e.,

Ns∑
i=1

| wiui − proj (wiui, span{a1, . . . ,aN}) |2. (17.20)

Observe the difference between equations (17.18) and (17.20): wi is the
weighting assigned to snapshot ui. In the weighted KL approach, instead of
minimizing a least-squares measure of “error” between the linear subspace
spanned by the basis functions and the observation space, we minimize the
weighted “error” between these two spaces.

By using the fact that the SVD of a snapshot ensemble gives the basis
that minimizes equation (17.18), it is easy to show that the basis that
minimizes equation (17.20) is the column vector of matrix L2:

ŨW = L2Σ2R2
T , (17.21)

where W is an Ns × Ns diagonal matrix whose diagonal elements are the
weighting coefficients for each snapshot, i.e., [W ]i,i = wi.

Remarks:

1. If the weighting function matrix is the identity, i.e., wi = 1 (i =
1, 2, . . . , Ns), then the weighted KL technique and the standard KL
technique produce identical bases.

2. In the implementation of the weighted KL technique, once the snap-
shots are obtained, a weight is assigned to each snapshot.
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3. Since the snapshot ensemble matrix is multiplied by a diagonal ma-
trix, the computational cost of a weighted KL decomposition based
on equation (17.21) is almost the same as the computational cost of
the classical KL decomposition.

Significance of Weighting: The concept of assigning different weights to dif-
ferent snapshots is useful when the transient behavior of certain variables
(for example, velocity or pressure) changes significantly with time. For ex-
ample, in the case of electroosmotic transport, the flow gets to steady state
at different times for different locations in the channel (see the discussion
in (Qiao and Aluru, 2003c), for more details). If a higher weighting is as-
signed to those snapshots taken during the fast-changing transient, then
the basis obtained with SVD will, according to equation (17.20), be able to
produce more accurate results. In other words, the new basis obtained with
weighted snapshots will be able to represent the system behavior much bet-
ter than the basis functions obtained with the classical KL decomposition
technique. If the transient behavior of the system is gradual, then the use
of the weighting function is limited, and both weighted and classical KL
decomposition techniques can be expected to produce comparable accuracy
results.

A feasible approach for rapidly varying transient solutions is to obtain
more snapshots during the time when the solution is changing rapidly
and to compute the basis using the classical KL decomposition technique.
However, there are several situations in which obtaining snapshots is not
straight-forward. For example, when snapshots are obtained from exper-
iments, repeating the experiment to obtain more snapshots can be very
expensive. Similarly, if the snapshots are obtained from numerical simula-
tions and if a rapidly varying transient is represented by a few snapshots,
repeating the simulation to get more snapshots with a smaller time step
can be very expensive. A good compromise in such cases is to use weighted
snapshots to get better basis functions, instead of repeating the experi-
ments or the numerical simulations. Many times it is difficult to foresee the
various time scales encountered in the system. The concept of weighting in
a KL decomposition technique introduces more flexibility and accuracy to
represent multiple time scales in a dynamical system.

Discussion on Weighted Basis versus Error in the Solution: It is important
to note that weighting is a concept introduced to improve the accuracy over
certain time scales or periods rather than a technique that can be used to
improve the accuracy over the entire time period. In fact, reduced-order
modeling using a weighted basis usually exhibits slightly higher error in
the time period that is less significantly weighted. Typically, reduced-order
modeling exhibits a very nonuniform error in the whole time domain, i.e.,
it might behave very well in certain time periods but not be able to capture
the basic characteristics in certain other time periods. By using a weighted
KL basis, it is possible to achieve a more uniform reduction in error in the
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solution.
A second question of significant interest is, how does a weighted ba-

sis compare with other bases in capturing the system transient? There is
no easy answer without a detailed mathematical analysis. However, we do
know that (1) increasing the number of basis functions used in approx-
imating, for example, the velocities and pressure generally improves the
accuracy of the simulation; (2) different methods generate different bases,
and the number of significant basis functions that need to be included in
each method is different. The accuracy of the solution is influenced by both
the number of basis functions and the quality of the bases. Typically, the
number of basis functions that need to be included in a weighted approach
is less than the number of basis functions that need to be included in the
classical KL approach for comparable accuracy.

Example: Transient Analysis of Electroosmotic Flow

Electroosmotic flow (see Chapter 7 for governing equations and other de-
tails) in a cross channel, shown in Figure 17.12, is used as an example to
demonstrate the KL and the weighted KL techniques. The cross channel is
an interesting problem, since the flow in the intersection exhibits many in-
teresting characteristics. In the case of balanced applied potentials, the net
flow into the side channel is negligible but the fluid velocity does not vanish
in the side channel. A good reduced-order model should capture both the
flow in the main channel and flow within the intersection of the cross chan-
nel. The flow in the cross channel exhibits multiple time scales, i.e., the
flow within the intersection reaches steady state much more quickly than
the flow in the main channel. In addition, the velocity profile within the
intersection is more complex than the velocity profile in the main channel.
To capture the multiple time scales encountered in the cross channel exam-
ple, a weighted KL decomposition is used to generate the basis functions
for the reduced-order model.

Sixty snapshots are used to generate a reduced-order model. The snap-
shots are equispaced in time with a time period of 8.85 µs between snap-
shots. Figure 17.13(a) shows the weighting function employed to generate
the weighted KL basis. The weighting coefficient, w(i), for the ith snapshot
is calculated by

w(i) = r + (1 − r)
e−(i/c)2 − e−(Ns/c)2

1 − e−(Ns/c)2 , (17.22)

where Ns is the total number of snapshots, r is the minimal weighting
for all snapshots, and c is a parameter controlling the steepness of the
weighting function. In this calculation, since the first few snapshots contain
the information of how V-velocity near the intersection reaches steady state,
they are weighted more heavily than the other snapshots. The snapshots
closer to the steady-state value are not critical, so they are assigned a lower
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FIGURE 17.12. Geometry of a cross channel used in transient analysis.

weighting. The minimal weighting is set to be 1/6. The steepness parameter
is chosen to be 8.5 in this case.

Figure 17.13(b) shows the U-velocity prediction in the main channel,
and both methods (standard and weighted KL techniques) produce almost
identical results at steady state, though the reduced-order model using
weighted KL basis gives slightly better accuracy at the beginning of the
simulation. In Figure 17.14(a), we compare the performance of weighted
and standard KL techniques by fixing the number of snapshots and in-
vestigating the number of basis functions required with each technique to
get comparable accuracy. We use 60 snapshots in each approach. For the
weighted KL technique we use 4 basis functions for the x-component of the
velocity, 4 basis functions for the y-component of the velocity, and 3 basis
functions for the pressure (referred to as (4U+4V+3P) in Figure 17.14(a)).
To reproduce the results obtained by the weighted KL technique, 6 basis
functions had to be used for the x-velocity, 6 basis functions for the y-
velocity, and 6 basis functions for the pressure (denoted by (6U+6V+6P)).
For comparable accuracy, we need almost twice the number of basis func-
tions in a standard KL approach than in the weighted KL technique. This
result indicates that when the number of snapshots is fixed, a weighted KL
technique needs fewer basis functions than a standard KL technique to re-
produce full simulation results. The use of fewer basis functions leads to a
computationally more efficient approach. We also observed that a technique
with (4U+4V+3P) basis functions is almost twice as fast as the technique
with (6U+6V+6P) basis functions; i.e., a reduced-order model based on
the weighted KL technique can be twice as fast as the reduced-order model
based on the standard KL technique while achieving essentially the same
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FIGURE 17.13. (a) A weighting function that assigns different weighting coeffi-
cients for different snapshots. (b) Comparison of U-velocity in the main channel
far upstream of the intersection. 60 snapshots are used and 3U+3V+3P basis
functions are used in both methods.

accuracy.
In Figure 17.14(b), we compare the performance of weighted and stan-

dard KL techniques by fixing the number of snapshots and basis functions.
The number of snapshots is fixed to 20, and the number of basis functions
for U, V, and P is fixed to 3, i.e., (3U+3V+3P). The snapshots are eq-
uispaced in time with a time period of 26.6 µs between snapshots. The
weighting coefficients for the weighted KL technique are computed using
equation (17.22). The minimal weighting r is 1/6, and the steepness pa-
rameter is set to be 9. Figure 17.14(b) compares the weighted and standard
KL techniques with the full transient simulation. The results indicate that
the weighted KL basis is able to capture the velocity profile during the ini-
tial transient much more effectively than the standard KL approach. The
steady-state solution predicted by both techniques is almost the same and
compares well with the full transient simulation. From this we can conclude
that with the same number of snapshots and basis functions, the weighted
KL approach can offer better accuracy in resolving multiple time scales than
the standard KL approach. In Figure 17.15, we compare the performance
of weighted and standard KL techniques by fixing the number of basis
functions (3U+3V+3P) and using different snapshots with each approach.
The weighted KL method uses 22 snapshots to generate the basis functions
(the weighting coefficients are again selected by the approach described in
the previous paragraph), and the standard KL method uses 66 snapshots
to generate basis functions. The result in Figure 17.15 indicates that the
weighted KL technique offers better accuracy during the initial transient
than the standard KL method, while both methods produce comparable
accuracy at steady state. From this result, we can conclude that for a fixed
number of basis functions, a weighted KL technique using fewer snapshots
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FIGURE 17.14. (a) Comparison of V-velocity at position a − a′ of Figure 17.12.
60 snapshots are used in both methods. (b) Comparison of V-velocity at position
a − a′ of Figure 17.12. 20 snapshots and 3U+3V+3P basis functions are used in
both reduced-order modeling techniques.
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FIGURE 17.15. Comparison of V-velocity at position a − a′ of Figure 17.12.
3U+3V+3P basis functions are used in both reduced-order modeling techniques.
22 snapshots are used in the weighted KL method and 66 snapshots are used in
the standard KL method to generate basis functions.

can produce better accuracy than a standard KL technique.
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17.4.2 Nonlinear Galerkin Methods
A dynamical system can be represented by a differential equation of the
form

v̇ = G(v, λ), (17.23)

where in the general case v is an element of a Hilbert space E and G(v, λ)
is a smooth nonlinear operator. We investigate the loss of stability of an
equilibrium ve of equation (17.23) under quasi-static variation of a dis-
tinguished system parameter λ. Equation (17.23) can be rewritten in the
form

u̇ = L(λ)u + g(u, λ), (17.24)

where L = Gv(ve) is the linearization of the operator G at ve, the equi-
librium position; g is a smooth nonlinear operator, and u = v − ve is
the deviation from ve. From the point of stability we assume that equation
(17.24) has an asymptotically stable equilibrium position ue = 0 for a range
of parameter values λ. Now λ is varied quasi-statically, and it is assumed
that for λ = λc a loss of stability occurs at ue = 0. Then, two cases exist
for which a proper dimension reduction can be performed (ε � 1):

1. For | λ − λc |= O(ε), the center manifold theory applies.

2. For | λ − λc |= O(1), the Galerkin methods apply.

According to the center manifold theory (Troger and Steindl, 1991), the
field variable can be decomposed into a form:

u(x, t) = uc(x, t) + us(x, t) =
nc∑
i=1

qi(t)χi(x) + U(qi(t),x), (17.25)

where χi(x) are the active spatial modes, obtained from the solution of the
eigenvalue problem related to the linear system

u̇ = L(λc)u.

Also, qi(t) are the time-dependent amplitudes, and us(x, t) can be rep-
resented by an infinite sum. The key point is that the influence sum of
the higher modes contained in us(x, t) can be expressed in terms of the
lower-order modes by the function U(qi(t),x).

In applying the Galerkin methods, the field variable u(x, t) is expressed
in the form

u(x, t) =
m∑

j=1

qj(t)φj(x)

by a set of m comparison vectors φj(x) called the Galerkin basis, which sat-
isfies the geometric and natural boundary conditions. Two subdivisions in
the Galerkin methods exist, namely, the standard (linear) Galerkin method
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and the nonlinear Galerkin method. In the linear Galerkin method one ne-
glects us(x, t) in equation (17.25). Therefore, the fast dynamics taken into
account by the center manifold theory are completely ignored in the re-
duction process. Nonlinear Galerkin methods take into consideration the
influence of higher modes and are also known by the name inertial mani-
folds in the mathematical literature. Two nonlinear Galerkin methods that
have gained importance are (Steindl and Troger, 2001):

1. Approximate inertial manifold theory.

2. Postprocessed Galerkin method.

Application of Karhunen–Loève decomposition in nonlinear Galerkin meth-
ods has been presented in (Bangia et al., 1997). The dynamics of incom-
pressible Navier–Stokes flow in a spatially periodic array of cylinders in
a channel (for a mixing application) have been investigated using this
method.

Approximate Inertial Manifold Theory

Equation (17.24) can be rewritten in the form (Steindl and Troger, 2001)

u̇c = PLuc + Pg(uc + us), (17.26)

u̇s = QLus + Qg(uc + us), (17.27)

by decomposing E = Ec ⊕ Es, where Ec is finite-dimensional and Es is
closed. This decomposition is achieved by defining the projection P onto
Ec along Es, giving uc = Pu ∈ Ec and us = Qu ∈ Es, where Q =
I −P (see (Troger and Steindl, 1991), for details). In the standard Galerkin
approximation of equation (17.24), from the eigenfunctions of L, m modes
are selected, equation (17.27) is completely ignored, and us is set to be zero
in equation (17.26) to obtain

u̇ml = PLuml + Pg(uml),

where the index l denotes linear approximation. The influence of fast dy-
namics on the slow (essential) dynamics is completely ignored. Sometimes,
a much better approximation is obtained if it is assumed that equation
(17.24) has an inertial manifold of dimension m that can be realized as the
graph of a function h : PE → QE, or in other words, us = h(umn). The
projection of the inertial form onto PE is then given by

u̇mn = PLumn + Pg(umn + h(umn)). (17.28)

Now the approximation of u is given by uapprox = umn + h(umn), which
is analogous to equation (17.25). In the actual process, first, one makes a
standard Galerkin approximation using n nodes. Then the m-dimensional
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approximation of the inertial manifold, h, is calculated (see (Brown et al.,
1990), for details) and used in equation (17.28) and in the expression for
uapprox. This method can capture nonlinear behavior better than standard
Galerkin methods, but it involves extra cost, since the inertial manifold
needs to be computed at every integration step.

Postprocessed Galerkin Method

This method is computationally more efficient than the approximate iner-
tial manifold theory (Garcia-Archilla et al., 1998). In this method, first the
standard Galerkin method is used, and at time (t) only when some output
is required, the variables are approximated by the inertial manifold. That
is, the solution qm = qml is calculated from

q̇ml = PLqml + Pg(qml),

which requires less effort than computing qm = qmn from

q̇mn = PLqmn + Pg(qmn + happrox(qmn)).

The final approximate solution for u, uapprox, is computed by uapprox =
uml+happrox(uml), where happrox is the approximate inertial manifold. The
computational cost is reduced greatly as a result of this simplification.

The concept of dynamic postprocessing has been introduced in (Margolin
et al., 2003), for highly oscillatory systems. For a variety of systems, the
normal postprocessed Galerkin method has been found to be a very effi-
cient technique for improving the accuracy of ordinary Galerkin/nonlinear
Galerkin methods with very little extra computational cost. The normal
postprocessed Galerkin methods are based on truncation analysis using
asymptotic (in time) estimates for the low and high mode components,
which hold only when the solutions are on or near an attractor. As a re-
sult, these estimates may not hold for nonautonomous systems with highly
oscillatory (in time) forcing, long transients, etc. Dynamic postprocessing
can handle such situations by integration along transients (see (Margolin
et al., 2003), for more details).




