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Simple Fluids in Nanochannels

With the growing interest in the development of faster, smaller, and more
efficient biochemical analysis devices, nanofluidic systems and hybrid mi-
cro/nano fluidic systems have attracted considerable attention in recent
years. In nanoscale systems, the surface-to-volume ratio is very high, and
the critical dimension can be comparable to the size of the fluid molecules.
The influence of the surface and the finite-size effect of the various molecules
on fluid transport needs to be understood in detail, while such effects may
be largely neglected for liquid flows in macroscopic channels. In this chap-
ter, we discuss the analysis of simple fluids such as Lennard–Jones liquids
in confined nanochannels. A key difference between the simulation of the
fluidic transport in confined nanochannels, where the critical channel di-
mension can be a few molecular diameters, and at macroscopic scales is that
the well-established continuum theories based on Navier–Stokes equations
may not be valid in confined nanochannels. Therefore, atomistic scale sim-
ulations, in which the fluid atoms are modeled explicitly or semiexplicitly
and the motion of the fluid atoms is calculated directly, shed fundamental
insights on fluid transport. The most popular technique for atomistic sim-
ulation of liquid transport is molecular dynamics (MD), which is discussed
in detail in Chapter 16. After presenting some details on the atomistic
simulation of simple fluids, we discuss density profiles, diffusion transport,
and validity of the Navier–Stokes equations for simple fluids in confined
nanochannels. In the last section we discuss in detail the slip condition at
solid–liquid interfaces and present experimental and computational results
as well as conceptual models of slip. We also revisit the lubrication prob-
lem, first discussed in Chapter 7, and we present the Reynolds–Vinogradova
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FIGURE 10.1. A sketch of a nanochannel filled with a simple fluid. The filled
circles denote the channel wall atoms, and the open circles denote the fluid atoms.
The fluid atoms interact with each other by a Lennard–Jones potential VLJ,1, and
the fluid atoms interact with the wall atoms by a Lennard–Jones potential VLJ,2.

theory for hydrophobic surfaces.

10.1 Atomistic Simulation of Simple Fluids

Atomistic simulation of nanofluids has gained considerable attention over
the last two decades. Much of the existing literature has been devoted to
understanding “simple fluids” in nanochanels. Though there is no consensus
on the precise definition of a simple fluid in the literature, in most cases,
it is simply taken as a collection of atoms that interact via the Lennard–
Jones potential and the dynamics of which follow the classical mechanics
described by Newton’s law. In practice, some noble gases (e.g., argon) can
be modeled fairly accurately as a simple fluid. Figure 10.1 shows a schematic
of a nanochannel filled with a simple fluid.

The investigation of simple fluids, in contrast to the study of complex
fluids such as water (discussed in Chapter 11) or electrolytes (discussed
in Chapter 12), has many advantages. First, the computational cost of
atomistic simulation involving simple fluids is much lower compared to
that of complex fluids, since it is much cheaper to evaluate the Lennard–
Jones potential describing simple fluids compared to the evaluation of the
electrostatic interactions that are required in the study of most complex
fluids. Second, despite its simplicity, the investigation of simple fluids can
provide deep insight into the physics of fluid transport in nanochannels, and
such insight can guide the study of more complex fluids. For example, the
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study of simple fluids indicated that the classical Navier–Stokes equations
breakdown in a channel as narrow as 4 fluid atomic diameters (Travis
et al., 1997), and later, a similar finding was reported for electroosmotic
transport in a silicon nanochannel that is also about 4 water diameters wide
(Qiao and Aluru, 2003b). Third, the investigation of simple fluid transport
provides data for the validation of theories describing fluid transport in
nanochannels. Due to the complicated interactions involved in complex
fluids, most of the nanofluid transport theories that have been developed
so far are limited to simple fluids.

As mentioned above, simple fluids can be described using a Lennard–
Jones (LJ) potential (LJ and other potentials are discussed in detail in
Section 16.1; here we quickly recap the salient features of the LJ potential
and introduce the reduced units that are used in this chapter) of the form

VLJ = 4ε

[(σ

r

)12
−
(σ

r

)6
]

, (10.1)

where ε, σ are the Lennard–Jones parameters that depend on the atoms
involved in the interaction. Note that:

1. ε is related to the interaction strength, and a higher ε corresponds to
a higher interaction energy between the atoms.

2. σ corresponds to the distance at which the potential between the two
atoms goes to zero, which can be approximately taken as the diameter
of a fluid atom.

Since the Lennard–Jones potential describes the interactions between non
polar molecules quite well (Talanquer, 1997) and the force corresponding to
the Lennard–Jones potential can be evaluated efficiently numerically, it is
the most popular interaction potential used in MD simulations. In the MD
simulation of Lennard–Jones fluids, the physical quantities are typically
computed using reduced units. Table 10.1 summarizes the units for various
quantities, e.g., length, temperature, and density. In the table, ε and σ
are as defined in equation (10.1), kB is the Boltzmann constant, and m
is the mass of a Lennard–Jones atom. Unless otherwise mentioned, all the
quantities are measured in reduced units in the next two sections.

The studies on Lennard–Jones fluids have indicated that depending on
the critical length scale of the channel (typically the channel width/height
or the diameter), the fluidic transport behavior (e.g., convection and diffu-
sion phenomena) can either deviate significantly from the classical contin-
uum theory prediction or be very similar to the transport of a bulk fluid
described by the classical theory. These observations follow from the fact
that when the fluid atoms are confined to molecular channels, the fluid
can no longer be taken to be homogeneous, and strong oscillations in fluid
density occur near the solid–fluid interface. Therefore, the dynamic behav-
ior of the fluid becomes significantly different from that of the bulk. Some
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TABLE 10.1. Units for various quantities in Lennard–Jones fluids.

Length σ Velocity (ε/m)1/2

Mass m Shear rate (ε/mσ2)1/2

Energy ε Stress ε/σ3

Time (mσ2/ε)1/2 Viscosity (mε)1/2/σ2

Number density σ−3 Diffusivity σ(ε/m)1/2

Temperature ε/kB
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FIGURE 10.2. Density profile of a Lennard–Jones fluid. Simulations are per-
formed in an 11-fluid-atomic-diameter channel.

significant results that have been observed when LJ liquids are confined in
nanochannels are summarized below.

10.2 Density Distribution

The strong density oscillations of fluid atoms near the fluid/solid interface is
a universal phenomenon, and it has been observed in almost all MD simula-
tions of nanofluidic flows and been verified experimentally (Chan and Horn,
1985; Zhu and Granick, 2002; Zhu and Granick, 2001). Figure 10.2 shows
the density profile of Lennard–Jones fluid atoms in a 11-fluid-diameter-wide
channel (see also Figure 1.7, which shows density fluctuations of an LJ liq-
uid in a larger channel). Density fluctuations near a channel wall can be ex-
plained using the concept of a radial distribution function (RDF). A radial
distribution function (or the pair correlation function), typically denoted
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FIGURE 10.3. Sketch of a typical radial distribution function (RDF) g(r). RDF
measures the probability density of finding a particle at a distance r from a given
particle (r = 0 corresponds to the position of the given particle).

by g(r), is a basic measure of the structure of a liquid. RDF measures the
probability density of finding a particle at a distance r from a given particle
position. Figure 10.3 is a sketch of a typical radial distribution function.
At a short distance from the given particle position, g(r) is essentially zero
because of the strong repulsion between the particles; i.e., particles cannot
get too close to each other. As r increases, g(r) shows a first peak, which
is mainly caused by the attractive interactions between the particles. At a
short distance from the first peak, a depletion of the particles is observed
because of repulsive forces, and this gives rise to a minimum in g(r). The
combination of the attractive and the repulsive forces between the particles
leads to the various peaks and valleys observed in the radial distribution
function shown in Figure 10.3. At a distance farther away from the given
particle position, the distribution of particles is no longer influenced by the
given particle, and g(r) approaches a constant. The fluid layering near the
channel wall is mainly induced by the structure of the fluid radial distri-
bution function and the structure of the solid wall. Here the position of
the solid wall is similar to the position of the given particle in the radial
distribution function, and the fluid density oscillations are similar to the
oscillations in the radial distribution function.

Simple fluids in nanochannels are inhomogeneous because of the strong
layering of fluid atoms near the channel wall. Classical fluid transport the-
ories do not account for the inhomogeneity of the fluid, and transport
parameters such as diffusivity and viscosity are strongly influenced by the
fluid layering in nanochannels (Thompson and Troian, 1997). Fluid lay-
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FIGURE 10.4. Density (upper panel) and velocity (lower panel) profiles in a
5.0σ-radius cylindrical pore for two separate runs with different wall–fluid inter-
actions. In the first run, εwf is 3.5 times larger than ε, and in the second run, εwf

is equal to ε. (Courtesy of J. Fischer.)

ering can be influenced by various parameters such as the wall structure,
fluid–wall interactions, and channel width, and these issues are discussed
below.

Effect of Fluid–Wall Interactions

The interaction between a fluid atom and a wall atom is usually mod-
eled by the Lennard–Jones potential. The Lennard–Jones parameters for
fluid–fluid and fluid–wall interactions are denoted by (ε, σ) and (εwf , σwf),
respectively. A higher εwf corresponds to a stronger interaction between
the fluid and the wall atoms. (Heinbuch and Fischer, 1989) found that the
fluid layering becomes stronger when εwf increases. Figure 10.4 shows the
number density and velocity profiles for two separate runs with different
fluid–wall interaction parameters in a 5.0-σ radius cylindrical pore. In the
first run, εwf is 3.5 times larger than ε, and in the second run, εwf is equal
to ε. In both runs, the average number density of the fluid in the pore is
0.8 and the temperature of the fluid is 0.835. Clearly, the layering effect is
much more distinct in the first run compared to the second run. This can
be explained by the fact that as εwf increases, the attractive force exerted
by the wall atoms on the fluid atoms increases, and the tendency of a fluid
atom to stay near the wall increases. A similar observation has been made
by (Thompson and Robbins, 1990) in their study of Couette flow in a slit
channel of width 12.8σ.

(Travis and Gubbins, 2000) further investigated the variation of the den-
sity profile in a nanochannel when the attractive part of the Lennard–Jones
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interaction is turned on and off by shifting the Lennard–Jones potential.
Specifically, the Poiseuille flow in a 4.0σ-wide slit channel was investigated
for three different systems, A, B, and C. In system A, fluid–fluid and fluid–
wall interactions are described by the purely repulsive part of the Lennard–
Jones, or Weeks–Chandler–Andersen (WCA) potential (see Section 16.1 for
details on WCA potential). In system B, the fluid–fluid and fluid–wall in-
teractions are described by the full 12-6 Lennard–Jones (including both
the attractive and the repulsive interactions) potential. In system C, the
fluid–fluid interactions are described by the WCA potential, and the in-
teractions between the fluid and the wall are described by the full 12-6
Lennard–Jones potential. Figure 10.5 (a) shows a comparison of the den-
sity profiles for the three different systems. It is observed that the presence
of attractive fluid–wall forces (system B and C) leads to the formation of
boundary liquid layers of higher density than in the case of repulsive wall–
fluid interactions (system A). It is also observed that the density of the
layers is higher in system C compared to that of system B. This can be
explained by the fact that compared to system B, the fluid atoms in system
C have a greater affinity for the wall atoms and less affinity for other fluid
atoms. In addition, the number of density peaks (i.e., the number of fluid
layers in the channel) is also different for the three systems. These results
indicate that the density distribution of fluid atoms in the channel is sensi-
tive to both the fluid–wall and fluid–fluid interactions, and care should be
taken in choosing the best potential to depict a particular fluidic system.
Figure 10.5 (b) shows the average number density of fluid atoms along the
channel length direction. We see that the fluids are highly structured in all
three systems. The density oscillates with a wavelength of order σ. Clearly,
the wall structure has been imposed upon the fluid. Similar behavior has
also been observed by (Zhang et al., 2001) in the simulation of n-decane
confined between two Au(111) surfaces.

Effect of Structure and Thermal Motion of the Wall Atoms

Smooth walls (Toxvaerd, 1981; Somers and Davis, 1992) as well as walls
with atomistic structure (Travis and Gubbins, 2000; Sokhan et al., 2001;
Somers and Davis, 1992) have been widely used in the MD simulation of
fluids confined in nanoscale channels. For a smooth wall, the wall–fluid po-
tential depends only on the normal distance between the fluid atom and the
channel wall, while for a wall with atomistic structure, the wall–fluid poten-
tial depends on the relative distance between the fluid atom and each atom
in the wall. Typically, only the first fluid layer is significantly influenced
by the wall structure, and the rest of the fluid layers are not significantly
affected by the structure of the wall. In many simulations, the wall atoms
are either frozen to their lattice sites (Heinbuch and Fischer, 1989; Zhang
et al., 2001) or constrained to their lattice sites by a spring (Thompson and
Robbins, 1990; Travis and Gubbins, 2000; Sokhan et al., 2001). The former
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(a)

(b)

FIGURE 10.5. Number density profiles across (a) and along (b) a 4.0σ-wide slit
channel for three different cases where the fluid–fluid and fluid–wall interactions
are modeled differently (System A: WCA system, filled circles, system B: LJ
system, open circles, and system C: WCA-LJ system, open triangles). (Courtesy
of K. P. Travis.)
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enables the use of a larger time step in MD, since the thermal vibration of
the solid atoms is not resolved, while the latter seems to be more realistic.
The thermal oscillation of wall atoms introduces further corrugations into
the potential felt by the fluid atoms near the wall, and therefore leads to a
reduced density oscillation near the channel wall (Thompson and Robbins,
1990; Sokhan et al., 2001).

Effect of Channel Width

The density oscillations in the channel also depend on the channel width.
Somers and Davis investigated the variation of density profiles in slit chan-
nels of different widths ranging from 2.0σ to 8.0σ (Somers and Davis, 1992).
Figure 10.6 shows the density profiles obtained with various channel widths.
The results indicate that for channel widths that can accommodate integral
fluid layers, e.g., 2σ, 2.75σ, and 4σ, distinct peaks in the density profile are
observed. For channel widths, such as 2.25σ and 3.25σ, the channel is wide
enough to accommodate distinct fluid layers: hence additional layers begin
to develop, and the new layers appear at channel widths of 2.5σ and 3.5σ.
When the channel width is 8σ, seven distinct peaks are observed, and as
the channel width increases further, more peaks are observed, but these
additional peaks are much weaker compared to the peaks very close to the
channel wall. For channels wider than 10σ, the fluid layers near the wall
are independent of the channel width, and the fluid in the central portion
of the channel behaves more like a bulk fluid.

Effect of Fluid Flow

The fluid flow is found to have negligible effect on the density distribu-
tion. (Bitsanis et al., 1987) conducted simulations on Couette flow in a
nanometer-slit pore using shear rates of 1010 to 1011 s−1 and found that
the density distribution is not significantly influenced by the flow; i.e., the
density profile in the channel in the presence of bulk transport of fluid is the
same as that obtained from an equilibrium MD simulation. This result was
also verified by other reported MD simulations. Since experimental tech-
niques or real processes that deal with fluid flow in nanopores are likely to
employ smaller shear rates than those that were employed in MD, we can
conclude that in simple fluids the density profile will be the equilibrium
density profile.

While all the results presented above on the calculation of density profiles
in nanochannels were based on MD simulations, the density profiles can also
be calculated using analytical methods. (Fischer and Methfessel, 1980) as
well as (Bitsanis et al., 1988) have used the Yvon–Born–Green (YBG) the-
ory (McQuarrie, 1973) of inhomogeneous fluids with the Fischer–Methfessel
approximation for the fluid pair-correlation functions (Fischer and Meth-
fessel, 1980) to calculate the density distribution of Lennard–Jones atoms
confined in a nanoscale channel. In order to obtain an equation for number
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FIGURE 10.6. Fluid density distribution in smooth-slit channels of different
widths. The results with reservoir are shown as a line, and the results with no
reservoir are shown as circles. A reservoir is introduced to simulate the Couette
flow. (Courtesy of H. T. Davis.)

density one has to approximate the pair correlation function, which is the
Fischer–Methfessel approximation. This is the only approximation needed,
and in this respect the YBG theory is superior to the free-energy theories.
The YBG theory has been shown to predict the fluid densities near smooth
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walls with good accuracy.

10.3 Diffusion Transport

Diffusion transport is typically important in most nanofluidic systems. This
can be understood by calculating the Peclet number, Pe = UL/D, which
measures the ratio of the bulk transport (convection) to the diffusion trans-
port. In most nanofluidic systems, the characteristic length L ranges from
a nanometer to a micrometer, and the bulk velocity ranges from a micro-
meter per second to a millimeter per second. For a fluid with a diffusivity of
D = 1.0× 10−9 m/s2, the Peclet number ranges from 10−6 to 1, indicating
that diffusion either dominates the transport or is as important as the bulk
transport.

The diffusion coefficient must be generalized in order to describe trans-
port in confined nanochannels. For homogeneous and equilibrium systems,
the diffusion coefficient can be calculated using either the Green–Kubo
equation

D =
1
3

∫ ∞

0
〈v(0) · v(t)〉 dt, (10.2)

where v is the atom velocity and 〈〉 denotes the ensemble average, or by
the Einstein equation

D =
1
6

lim
t→∞

〈[r(t0 + t) − r(t0)]2〉
t

, (10.3)

where r is the atom position. The Green–Kubo expression given in equa-
tion (10.2) is strictly valid only for homogeneous and equilibrium systems.
However, it is generally accepted that, at least for the calculation of the
average diffusivity in nanochannels, the Green–Kubo expression given in
equation (10.2) or the Einstein relationship given in equation (10.3) is ade-
quate. For example, Bitsanis and coworkers (Bitsanis et al., 1987) computed
pore-averaged diffusitives and found that the diffusivities under flow and
the equilibrium diffusivity agree within the limits of statistical uncertain-
ity. Moreover, the diffusivities calculated from the Green–Kubo formula
and the Einstein relationship agree quite well. It is important to note that
in the calculation of the diffusivities under flow, the drift contribution to
either equation (10.2) or equation (10.3) has to be excluded. In summary,
both the Green–Kubo formula and the Einstein relationship are widely
used in the calculation of diffusivity of fluids in nanochannels.

The diffusion of fluids confined in nanoscale channels has been studied
extensively in slit and cylindrical pores. In a slit pore, diffusion is different
in the direction parallel (the x- and y-directions) and normal (z-direction)
to the pore wall, especially for narrow pores. This is because, unlike the
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diffusion parallel to the pore wall, the diffusion in the direction normal
to the pore wall is inherently transient; i.e., in the long time limit, the
diffusivity in the direction normal to the pore wall is zero due to the geo-
metrical limit. To circumvent this problem, the diffusion in the z-direction
is usually characterized by a mean-square displacement ∆z2(t) that can be
calculated for a short time. In this section, we will discuss the results for
diffusion parallel to the pore wall (characterized by D‖ or Dx and Dy) and
the diffusion normal to the pore wall (characterized by ∆z2(t)) separately.

(Magda et al., 1985) studied diffusion in slit pores with smooth pore
walls using equilibrium MD simulations. Figure 10.7 shows the variation of
the pore-averaged diffusivity parallel to the pore (D‖) with the pore width.
The plot indicates that:

1. Even for the smallest pore width (h = 2), where the fluids are highly
confined, the fluid atoms maintain considerable mobility.

2. When the channel width is small (h < 4), the average D‖ in the
pore fluctuates with the channel width, and when the channel width
increases beyond h = 5, the average D‖ increases smoothly toward
the asymptotic bulk value.

3. For a channel width of h = 11.57, the average D‖ is almost the same
as the bulk diffusivity.

The second observation can be attributed to the average density varia-
tion with the change in channel width. As shown in Figure 10.7, when the
channel width is small (h < 4), the average density fluctuates with the
channel width, and when the channel width increases beyond h = 5, the
average density decreases smoothly toward the asymptotic bulk value. The
dependence of the diffusivity on density in the pore region is much weaker
compared to the quadratic dependence observed in the bulk (Levesque and
Verlet, 1970). This means that the variation of diffusivity with density fol-
lows a quadratic dependence as the pore width increases and the properties
of the confined fluid approach that of the bulk. However, when the pore
width is low (lower than 6σ), then the layering effect dominates and affects
the variation of diffusivity. This leads to a weaker dependence of diffu-
sivity on density for narrow pores. A possible explanation for this is the
structured, almost solid-like form of the density profile in narrow pores.

To investigate the effect of the local fluid density on the diffusivity par-
allel to the pore (D‖), the pore (h = 11.57) has been divided into five slices
parallel to the solid–liquid interface, and the diffusivity D‖ is calculated
inside each slice. Figure 10.8 shows the density profile and the diffusivity
in each slice. Clearly, even though there is a significant variation in the fluid
density, the diffusivity in each slice is within the statistical error of those of
the others. To understand this result in more detail, an empirical theory,
local average density method (LADM), has been developed to describe the
transport coefficient (e.g., diffusivity) of a fluid confined in a nanochannel
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FIGURE 10.7. Correlation of the pore-averaged diffusivity parallel to the wall
(D‖) with the average fluid density. Here h is the pore width (reduced unit);
ρave/ρbulk is the average density of the occupied pore volume divided by the
density of the bulk liquid. (Courtesy of H.T. Davis.)

FIGURE 10.8. Diffusivity as a function of the distance from the pore walls. Here
Di is the diffusion coefficient parallel to the pore walls averaged over the ith slice
parallel to the interface. The pore width is 11.57σ. (Courtesy of H.T. Davis.)

(Bitsanis et al., 1988). In the LADM theory, the diffusivity of the fluid at
a position r depends on the local average density ρ(r) of the fluid instead
of the local density ρ(r). The local average density at r is defined as the
average density inside a sphere with its center at r and with diameter equal
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FIGURE 10.9. Density and local average density profiles in an 8σ-wide slit pore.
(Courtesy of H.T. Davis.)

to the diameter of the fluid molecules σ, i.e.,

ρ(r) =
1

πσ3/6

∫
s<σ/2

ρ(r + s) d3s.

Figure 10.9 shows the local average density distribution in an 8.0σ chan-
nel (Bitsanis et al., 1988). Clearly, even though the oscillations in the local
fluid density are significant, the local average density shows very little oscil-
lation. This explains the small diffusivity variation in the pore (see Figure
10.8) even though there is a significant variation in the local fluid density.
From the above discussion, we can conclude that in confined nanopores
the parallel diffusivity at a given position is determined primarily by the
average density in the pore and not by the local density.

To investigate the effect of the wall structure on the diffusivity parallel to
the pore wall, (Somers and Davis, 1992) performed diffusivity calculations
by considering structured and smooth walls. Figures 10.10 (a) and (b) show
the variation of the diffusivity D‖ with the pore width for the structured
and smooth walls, respectively. The results for the smooth-pore wall (panel
(b)) agree qualitatively with those reported in (Magda et al., 1985), and the
results for the structured wall show some interesting differences from the
results for the smooth wall; i.e., as the pore width increases, the diffusivity
in the structured pore approaches the bulk value more slowly compared to
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the smooth wall. This can be explained by the added fluid ordering in the
structured pore. Figure 10.10 also shows the variation of the diffusivity with
bulk transport of the fluid. For both the smooth and structured pore walls,
the presence of Couette flow does not change the diffusivity noticeably for a
shear rate less than 0.20

√
ε/mσ2, but the diffusivity increases considerably

for shear rates higher than 0.20
√

ε/mσ2. It is likely that shear thinning may
be responsible for the observed increase in the diffusivity. Similar results
have also been observed by (Bitsanis et al., 1987). In addition, the inset
in Figure 10.10 (a) shows that the wall registry (characterized by the wall
registry index α) also affects the diffusivity significantly in narrow pores.
This is likely to be caused by the changed fluid structure when the wall
structure is varied. The wall registry is a measure of the variation in surface
roughness of the wall (Somers and Davis, 1992). When the axial coordinate
of the surface atoms on both the walls (i.e., the upper wall and the lower
wall of the slit) are the same, then the wall registry index α is 0. However,
when the upper wall atoms and the lower wall atoms are seperated by a
certain distance, then the wall registry index is nonzero.

As mentioned above, the diffusivity normal to the channel wall cannot
be defined using equation (10.2) or (10.3). However, it is possible to char-
acterize the diffusion process normal to the channel wall by a mean-square
displacement ∆z2(t) that can be calculated for a short time. Figure 10.11
shows the comparison of the mean-square displacement in the direction
normal (z-direction) and parallel to the channel wall (x- and y-directions)
for channel widths of 3.0σ and 4.0σ. Figure 10.11 indicates that:

1. After 2.0 ps, the diffusion process in the z-direction can be charac-
terized by a mean-square displacement.

2. The diffusion process in the z-direction is faster in the larger channel
(h = 4σ) compared to the smaller channel (h = 3σ).

3. For h = 4σ, the diffusion in the x- and y-directions is much faster
compared to the diffusion in the z-direction.

These results are not surprising, since the movement of the fluid atoms is
more confined in the direction normal to the channel wall compared to the
movement of the fluid in the direction parallel to the channel wall.

In the discussion so far, we have assumed that the fluid molecule size is
smaller than half of the slit pore width and that the diffusion is character-
ized by the normal-mode diffusion; i.e., the mean-square displacement of the
fluid molecules obeys the Einstein relationship. In the normal-mode diffu-
sion, one molecule can pass another molecule within the channel. However,
if the pore width decreases further and the pore is cylindrical, a molecule
cannot pass another molecule because of its large size relative to the pore
size, and the diffusion process is then characterized by a single-file diffu-
sion. The mean-square displacement of a fluid molecule due to single-file
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FIGURE 10.10. Diffusivity parallel to pore walls versus pore width (� - equi-
librium (α = 0), � - Couette flow). (a) Structured pores (inset: � - ratio of the
diffusivity in Couette flow and in equilibrium simulation (α = 0), � - ratio of
diffusivity in equilibrium for α = 0.71 and α = 0. See (Somers and Davis, 1992),
for the definition of the wall registry index α). (b) Smooth pores. (Courtesy of
H.T. Davis.)

diffusion can be expressed as

s2 = 2Bt0.5,

where B is the diffusion mobility. For the diffusion of methane, ethane,
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FIGURE 10.11. Comparison of the mean-square displacement parallel and normal
to the channel walls. (Courtesy of H.T. Davis.)

and ethylene through carbon nanotubes (see Section 13.2 for a discussion
on carbon nanotubes), (Mao and Sinnott, 2000) showed that there exists
a transition-mode diffusion for which the mean-square displacement of a
fluid molecule due to a single-file diffusion can be expressed as

s2 = 2Ctn.

Figure 10.12 shows the log-log plots of the mean-square displacement for
methane, ethane, and ethylene in a (10, 0) carbon nanotube (diameter: 0.8
nm). Clearly, the diffusion of methane is a normal-mode diffusion and the
diffusions of ethane and ethylene are transition-mode diffusions. Mao and
Sinnott further showed that the diffusion of ethane and ethylene in a (9, 0)
carbon nanotube (diameter: 0.72 nm) follows the single-file mode, while
the diffusion of methane is still in the normal mode. Such differences are
caused by the fact that the size of ethane and ethylene are larger compared
to methane; therefore, the methane molecules can pass one another in a
0.72-nm diameter, while ethane and ethylene molecules cannot pass each
other in such small-diameter tubes.

10.4 Validity of the Navier–Stokes Equations

In the continuum fluid transport theory governed by the Navier–Stokes
equations, it is assumed that the state variables (e.g., density and tempera-
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FIGURE 10.12. Log-log plot of the mean-square displacement for methane (a),
ethane (b), and ethylene (c) in a (10, 0) carbon nanotube (diameter: 0.8 nm).
(Courtesy of S. Sinnott.)
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FIGURE 10.13. Velocity profile obtained from MD simulation of Poiseuille flow
in an 11-fluid-diameter channel. The solid line is a quadratic fit to the velocity
profile. The temperature of the fluid is set to 2.5, the average fluid density is 0.8,
and a constant force of 0.1 is applied on each fluid molecule to generate the flow.
All the variables are measured in reduced units.

ture) do not vary appreciably over the length and time scales comparable to
the molecular free path and molecular relaxation time. However, as shown
in Section 10.2, the fluid density near the solid–liquid interface can vary
significantly over intermolecular distances. While these local density oscil-
lations may not necessarily mean the breakdown of the continuum theory,
it is important to understand in detail how the continuum theory works
for fluids in confined nanochannels.

During the last several years, researchers have used MD simulations to
test the accuracy of Navier–Stokes equations in nanochannels (Koplik et al.,
1989; Koplik et al., 1987; Travis and Evans, 1996; Travis et al., 1997; Bitsa-
nis et al., 1987; Travis and Gubbins, 2000; Pozhar, 2000). In many of these
simulations, a Poiseuille flow with a constant force on each fluid molecule
is used as a prototypical problem. The continuum Navier–Stokes equations
predict a parabolic velocity profile across the channel for the Poiseuille
flow. The velocity profiles in slit channels as narrow as 10 molecular diam-
eters indicate that the deviation between continuum and MD predictions
is very small (Travis et al., 1997). Figure 10.13 shows the velocity pro-
file obtained from MD simulation of Poiseuille flow in an 11-fluid-diameter
channel and its quadratic fit. Clearly, the deviation of the velocity profile
from the Navier–Stokes equation is small. However, if the channel width
is smaller than 10 fluid diameters, the deviation of the MD velocity from
the continuum prediction becomes more significant (Travis and Gubbins,
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2000; Travis et al., 1997). For example, Figure 10.14 shows the velocity dis-
tribution for Poiseuille flow in a 4-fluid-molecule-diameter slit channel for
three systems (see Section 10.2 for a description of the potentials used in
the three systems) with different interaction potentials between fluid–wall
and fluid–fluid (Travis and Gubbins, 2000). For each system considered,
the velocity profile obtained from MD simulations is no longer parabolic
and deviates significantly from the Navier–Stokes prediction. Specifically,
for system A (we will discuss only the result for system A, since the results
for system B and system C are similar to that of system A), the velocity
decreases in the region 0.75 < |z| < 0.97 as we approach the channel cen-
ter, and there is a local maximum for the velocity located at |z| ≈ 0.95.
The corresponding strain rate profile is shown in Figure 10.15, and the
strain rate is zero at |z| ≈ 0.97 and |z| ≈ 0.2. The fluid viscosity inside the
channel, calculated by

µ(z) =
τxz(z)
γ(z)

, (10.4)

is shown in Figure 10.16. Note that in equation (10.4), τxz(z) is the shear
stress at position z, and a local, linear constitutive relationship between
the shear stress and the strain rate, on which the classical Navier–Stokes
equation is based, is assumed. We observe that the viscosity calculated by
equation (10.4) is negative in the region 0.75 < |z| < 0.97 and 0 < |z| < 0.2
and diverges at |z| ≈ 0.97 and |z| ≈ 0.2. This indicates that the viscosity in
such a narrow channel cannot be described by a local, linear constitutive
relation. Therefore, the classical Navier-Stokes equation is not valid for the
analysis of fluid flow in a 4.0-fluid-diameter slit channel.

For fluid flow in channels larger than 10 fluid molecular diameters, the
classical Navier–Stokes equation can be used to analyze the flow. However,
since the fluid can be highly confined in nanochannels, the fluid viscos-
ity may be significantly different from the bulk value. Despite the fact
that the fluid viscosity is an important parameter in determining the flow
characteristics, only a few papers have discussed the viscosity of fluids in
nanochannels systematically. (Bitsanis et al., 1990) have calculated the ef-
fective viscosity for Couette and Poiseuille flow in slit channels ranging
from 2 to 9.5 fluid molecular diameters. The effective viscosity is defined
in such a way that the Navier–Stokes equation using the effective viscosity
can predict the macroscopic observables correctly, e.g., the surface shear
stress in a Couette flow or the flowrate in a Poiseuille flow. Figure 10.17
shows the variation of the effective viscosity for Couette and Poiseuille flow
with the pore width. The plot indicates that:

1. The effective fluid viscosity is flow-dependent;

2. At small pore width, the effective viscosity increases dramatically;
and
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FIGURE 10.14. Velocity profiles in a 4.0-fluid-diameter slit channel for three
different systems. System A: WCA system, filled circles; system B: LJ system,
open circles and system; C: WCA-LJ system, open triangles. See Section 10.2 for
the definition of the three systems. (Courtesy of K.P. Travis.)

FIGURE 10.15. Strain rate profiles in a 4.0-fluid-diameter slit channel for three
different systems. System A: WCA system, filled circles; system B: LJ system,
open circles; and system C: WCA-LJ system, open triangles. (Courtesy of K.P.
Travis.)



386 10. Simple Fluids in Nanochannels

FIGURE 10.16. Shear viscosity in a 4.0-fluid-diameter slit channel for three dif-
ferent systems as calculated by equation (10.4). System A: WCA system, filled
circles, system B: LJ system, open circles and system C: WCA-LJ system, open
triangles. (Courtesy of K. P. Travis)

3. The effective viscosity converges toward the bulk viscosity as the pore
width increases.

The first observation originates from the definition of the effective viscosity
for the flow. The second observation is caused by the fluid layering near
the pore surface. As the pore width decreases, more fluid molecules are
observed within the fluid layers near the pore wall, where the movement
of the fluid molecules is highly confined, thus leading to a higher effective
viscosity.

Over the past decade, Pozhar has developed a rigorous statistical-mechan-
ics approach to nonequilibrium phenomena in strongly inhomogeneous flu-
ids (Pozhar, 1994; Pozhar, 2001; Pozhar, 2000). The approach relies on the
rigorous generalization of the Mori–Zwanzig projection operator technique
developed in the framework of the theory of dynamical systems. This ap-
proach, unlike the LADM method, has been realized for the most general
case of strongly inhomogeneous fluids. However, due to the complicated
nature of the theory, there have been very few applications of this method
for the analysis of fluid flow. Therefore, the accuracy of the theory has not
yet been rigorously established.
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FIGURE 10.17. Effective viscosities for Couette and Poiseuille flows versus pore
width. The viscosity of a homogeneous fluid at the pore average density is also
shown. The inset shows the variation of the pore-averaged self-diffusion coeffi-
cients. (Courtesy of H.T. Davis.)

10.5 Boundary Conditions at Solid–Liquid
Interfaces

In this section we revisit the question of slip at solid–liquid interfaces and
present an in-depth review of the experimental work as well as the concep-
tual models derived from these findings. We then present different mathe-
matical models that correct the no-slip condition and have been found to
represent the available experimental data reasonably well.

10.5.1 Experimental and Computational Results
The first experimental work to investigate the validity of the no-slip bound-
ary condition at a solid surface was conducted by Coulomb (1784), who
concluded that it was valid even at microscopic scales. About a century
later, Helmholtz and von Piotrowski (1860) found evidence of slip between
a solid surface and a liquid, and later, (Brodman, 1891) verified their re-
sults. However, Couette (1890) and others used glass tubes with grease
inside and concluded that the no-slip boundary condition is valid. It is
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FIGURE 10.18. Definition of slip length b. The inner boundary layer δ is explained
in the section on conceptual models of slip.

worth noting also that the experiments of Whetham (1890) that led to
the acceptance of the no-slip condition were made on hydrophilic surfaces
(Bonaccurso et al., 2003).

Navier (1823) was the first to model partial slip at the wall for liquids
well before Maxwell’s slip condition for gases (1879). Specifically, Navier’s
boundary condition at the wall is

vs = bn · (∇v + ∇T v
)
. (10.5)

An interpretation of the slip length b is shown in the sketch of Figure
10.18 for unidirectional flow over a flat wall. It is the distance behind the
solid–liquid interface at which the velocity extrapolates to zero.

The validation of slip boundary conditions continued in the beginning of
the twentieth century, focusing mostly on flow in capillaries. (Traube and
Whang, 1928) reported a four- to five-fold increase in flowrate of water in a
capillary treated with oleic acid. However, their results could be interpreted
either as boundary slip or simply as surface-tension-induced capillary rise.
In independent experiments with water flowing in capillaries treated with
paraffin, (Ronceray, 1911) also studied how changes in the surface tension
may affect the flowrate but concluded aganist the slip condition. The most
systematic study, perhaps, of this effect was undertaken by (Schnell, 1956),
who used water in glass capillaries (from 240 to of 800 µm) treated with
dimethyldichlorosilane (i.e., silicone) to make them hydrophobic. He found
that for a small pressure drop in the capillary the flowrate was lower in
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FIGURE 10.19. Schematic of the surface force apparatus (SFA).

the treated cases compared to the untreated ones, but at higher pressure
drop he observed the opposite. Interestingly, at velocities past the onset of
turbulence there was no discerible difference in flowrate. Overall, Schnell’s
experiments stood the test of time and are considered the first to prove con-
vincingly that a boundary slip occurs for hydrophobic (i.e., water-repellent)
surfaces. This result agrees with the physical intuition, i.e., that boundary
slip is larger in hydrophobic surfaces, since the attractive forces between
the liquid and the solid surface are less than for hydrophilic surfaces, and
thus the solid–liquid interface friction is reduced. At about the same time,
it was established by (Debye and Cleland, 1959) that boundary slip can
also occur in liquid hydrocarbons for flow through porous Vycor glass.

In the last few decades there has been a renewed interest in determining
the validity of the no-slip boundary condition for liquids due to the interest
in polymers and other complex fluids but primarily due to microfluidic
applications. In (Chuarev et al., 1984), both water and mercury were tested
in flow through glass capillaries of diameter less than 10 µm treated with
trimethylchlorosilane. It was found that for water with contact angles less
than 70◦ the no-slip condition was valid, but for higher hydrophobicity
increased flowrates were obtained corresponding to a slip length between 30
and 200 nm according to Navier’s formula of equation (10.5). For mercury,
a contact angle of more than 130◦ also led to boundary slip. These results
suffer, however, from the limitation in determining the capillary diameter
precisely as well as in controlling the homogeneity of the internal capillary
surface.

The effective use of the surface force apparatus (SFA) in the 1990s has led
to many interesting experimental results and detailed studies of boundary
slip with water and other substances. SFA employs a sphere in close prox-
imity to a plane, but other configurations are also possible, e.g., two crossed
cylinders. The two surfaces are approaching at a controlled speed, causing
drainage of the liquid placed within the sphere–plane gap; see sketch of
figure 10.19. Typically, an oscillation of small amplitude is imposed on the
sphere (or the plane), and the response force on the plane is recorded. The
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FIGURE 10.20. Slip length versus driving rate obtained in SFA experiments.
Sucrose solutions of different concentrations are used to change the viscosity:
19.2 mPa s (crosses); 38.9 mPa s (diamonds); 80.3 mPa s (triangles); taken from
(Craig et al., 2001). (Courtesy of V. Craig.)

ratio of the force component in-phase with the oscillation to the amplitude
of the oscillation gives the normal stiffness coefficient, while the correspond-
ing ratio for the out-of-phase component gives the damping coefficient.

In (Baudry et al., 2001), a drop of glycerol was placed between the two
surfaces with roughness of about 1 nm. The surfaces of the plane and
the sphere were coated with thiol and gold, respectively, in a first set of
experiments, and with thin cobalt film (for both sphere and plane) in a
second set of experiments; cobalt makes the surface hydrophilic, while thiol
makes it hydrophobic. The measured (advancing) contact angles for thiol
and cobalt were 94◦ and 62◦, respectively. The main finding, based on the
measured damping coefficient, was that at sphere–plane distances less than
300 nm the hydrophobic surface gave a large deviation from the no-slip
condition with slip length b ≈ 40 nm, while for the cobalt surface the slip
was zero. The molecular size of the glycerol molecule is 0.6 nm, so the slip
length is about 65 times the molecular diamater of glycerol. Interestingly,
at distances smaller than 5 nm, both hydrophobic and hydroplilic surfaces
gave the same response and it was assumed that at these small distances
the film did not behave like a liquid.

In (Craig et al., 2001), SFA measurements were also used to infer bound-
ary slip for water on sphere–plane surfaces with (advancing) contact angle
70◦. The silica sphere and the mica flat surface were coated with a layer
of gold and an additional layer of titanium to promote adhesion. Aqueous
solutions of sucrose at various concentration levels were used to control the
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viscosity magnitude. It was found that at low viscosity and low approach
rate of the surfaces, the no-slip condition was valid, whereas at higher vis-
cosities and shear rates boundary slip was observed. The corresponding
slip length was up to 18 nm, corresponding to the highest viscosity of the
aqueous solutions (80.3 mPa s) and varied nonlinearly with the driving rate
(up to 22 µm/s). A summary of these results is included in Figure 10.20.
In a follow-up experiment in (Bonaccurso et al., 2003), the effect of rough-
ness mounted on hydrophilic surfaces on the slip length was investigated.
Roughness with rms heights of 0.7 nm, 4 nm, and 12.2 nm was tested, and
the force curves showed clearly an enhanced slip at the wall as the rough-
ness increased. The particular slip length value depended on the way that
the data were fitted, but very large values of b were reported on the order
of hundreds of nanometers.

In (Zhu and Granick, 2001), SFA measurements with molecularly smooth
surfaces of mica were obtained for water (polar) and tetradecane (non
polar), an oil with low viscosity close to water. In particular, three dif-
ferent liquid–solid systems were considered with increasing contact an-
gle: (1) tetradecane against adsorbed surfactant; (2) tetradecane against a
methyl-terminated self-assembled monolayer (SAM), and (3) water against
a methyl-terminated SAM. In the last two cases a monolayer of octadecyl-
triethoxysiloxane (OTE) was used on which the (advancing) contact angle
of water was 110◦ and that of tetradecane was 44◦. It was found that for
cases (2) and (3) with the OTE layer causing partial wetting of the sur-
face, boundary slip was obtained for film thickness less than about 100 µm.
However, case (1) gave no slip at the solid interface. The results of (Zhu
and Granick, 2001) led to similar conclusions as in (Craig et al., 2001), in
that the slip length depends strongly on the approach (driving) rate and is
largest for water: the largest value is b ≈ 35 nm at shear rates about 103

s−1. Below a threshold value of the approach rate (and thus shear rate) the
no-slip boundary condition is valid.

The effect of roughness on boundary slip was examined in a follow-up
paper by the same researchers (Zhu and Granick, 2002). Roughnesses with
rms values up to 6 nm were fabricated using self-assembled OTE monolayers
and OTS (octadecyltrichlorosilane) layers. The advancing contact angle
was similar for all cases, but the receding contact angle was a decreasing
function of surface roughness. It was hypothesized that large roughness will
decrease the slip length, although cases with an increase in slip length have
also been reported (Bonaccurso et al., 2003; Ponomarev and Meyerovich,
2003). The results of (Zhu and Granick, 2002) are summarized in Figure
10.21, where atomic force microscopy images of roughness on a 3 µm ×3µm
area are also shown. The data of (Zhu and Granick, 2002) show that even
the case of largest slip length (b ≈ 35 nm) for water produces no slip at
the wall if the roughness rms height exceeds 6-nm. The critical shear rate
for onset of slip seems to depend linearly on the roughness rms height and
is independent of its wavelength. For 6-nm roughness a value of shear rate
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FIGURE 10.21. Effect of roughness and flow rate (or driving rate) on boundary
slip. Plots (a), (b) and (c) show images of roughness at 6 nm, 3.5 nm, and 2 nm,
respectively. Plot (d) shows the correction factor in the Reynolds–Vinogradova
theory (equation (10.11)), and plot (e) the corresponding slip length. Filled sym-
bols correspond to deionized water and open symbols to tetradecane. The various
curves correspond to roughness of: squares - 6 nm; circles - 3.5 nm; triangles - 2
nm; and diamonds – atomically smooth. (Courtesy of S. Granick.)

of 105 s−1 is required to cause onset of boundary slip. These results are in
disagreement with the results of (Bonaccurso et al., 2003) for hydrophilic
surfaces.

There has been some skepticism regarding the findings of boundary slip
based on the SFA measurements. However, similar conclusions were ob-
tained in (Bonaccurso et al., 2002), using a colloidal probe technique to
measure forces between hydrophilic surfaces (mica and glass) for water.
In particular, spherical borosilicate glass particles of radius 10 µm were
sintered to atomic force microscope (AFM) cantilevers. The hydrophilic
surface was periodically moved up and down, and the cantilever deflection
was measured optically. A slip length of up to 9 nm was measured for shear
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FIGURE 10.22. Normalized flowrate (left) and slip length versus channel height
for several fluids. (Courtesy of N. Giordano.)

rates of 104 s−1. Electrokinetic effects, which could render the data erro-
neous by causing an increase of the effective viscosity in the electric dou-
ble layer (EDL), were found insignificant. In another study in (Pit et al.,
2000), a novel technique was employed to test boundary slip for hexadecane
flowing over a hydrocarbon/lyophobic smooth surface. This technique was
adapted from an experimental setup used to investigate boundary slip in
polymers. In particular, fluorescent probes of the size of the hexadecane
molecules were used as traces in a capillary formed between two parallel
disks, only one of which was rotating. A combination of fluorescence re-
covery after photobleaching and total internal reflection at the solid–liquid
interface was employed to directly probe the velocity within 80 nm of a
solid wall. The surface was made of modified sapphire treated with OTS
(γ > 21 mJ/m2) and FDS (perfluorodecanetrichlorosilane, γ < 13 mJ/m2)
in order to change the interfacial energy in a controlled manner. It was
found that for the bare sapphire surface a slip length of 175 nm (±50 nm)
was obtained, while for a dense OTS layer the slip length was 400 nm (±100
nm) independent of the shear rate in the range from 200 s−1 to 2000 s−1.
For the FDS surface no boundary slip was observed. In agreement with
most of the other investigators, (Pit et al., 2000) also hypothesized that
roughness decreases slip, and thus it is in competition with the strength of
the fluid–surface interaction.

With regard to microfluidic applications directly involving microchan-
nels, it is not clear how much the slip boundary condition depends on the
way that the flow is driven, although the majority of the experimental
work clearly points to a strong dependence on the shear rate (an exception
is the work of (Pit et al., 2000)). In the work of Bau and collaborators
(Urbanek et al., 1993), a pressure-driven flow was considered, and bound-
ary slip was reported for channels with the smallest height of 20 µm and
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silicone oil as well as isopropol alcohol (see Figure 1.16 in Section 1.2). A
comprehensive study of pressure-driven flows was undertaken in (Cheng
and Giordano, 2002), with several fluids for very small microchannels fab-
ricated lithographically down to 40 nm. The channel width was 20 µm, and
the length was in the range of 100 to 900 µm; the roughness was about 0.5
nm. The flowrate was measured using a macroscopic capillary in series with
the outlet side of the sample, but for smaller flowrate values a microchannel
was fabricated and the flow was measured with photomicroscopy. One of
the surfaces of the channel was glass, and the other one was coated with
photoresist; no measurements of the contact angle were made.

In Figure 10.22 (left) the flowrate normalized by the theoretical predic-
tion for no-slip Poiseuille flow is plotted, taken from (Cheng and Giordano,
2002). Specifically,

αtheory =
h3w

12µL

(where h, w, L denote the height, width, and length of the microchannel) is
used in the normalization. We see that for all the liquids tested, the flowrate
increases except for water. In particular, hexadecane (the fluid with the
largest molecular size) exhibits the largest deviation from the no-slip theory.
This is in agreement with the results in (Pit et al., 2000), for the capillary
hexadecane flow, although the slip length values reported in (Cheng and
Giordano, 2002), are much smaller. In general, the experimental evidence
given in (Cheng and Giordano, 2002), indicates a monotonic increase of
the slip length with the molecular size but for channel height h < 300
nm; above this value the no-slip theory seems to be valid according to the
results of (Cheng and Giordano, 2002). This dependence on the molecular
structure is shown in Figure 10.22 (right), indicating also that there is some
weak dependence of the slip length on the channel height in the slip regime.
However, this effect may be associated with the uncertainties in measuring
the very small values of h.

Other experiments with larger microchannels for pressure-driven flows
revealed boundary slip for water, in contrast to the aforementioned results
of (Cheng and Giordano, 2002). For example, in (Tretheway and Meinhart,
2002), microPIV (300-nm diameter fluorescent polystyrene spheres) was
used to measure velocity profiles of water in a 30 × 300µm channel. The
channel surfaces were treated with a 2.3 nm OTS layer. The velocity pro-
files were measured in a 25×100µm plane to within 450 nm of the channel
wall. A slip velocity of about 10% of the maximum velocity was measured,
which corresponds to slip length of about 1 µm. This is a very large value
for the slip length, of the order of magnitude that is typically encountered
in polymer flows. For the untreated glass surface, which is hydrophilic, no-
slip conditions were observed. Similar reults were also reported in (Choi
et al., 2003), in smaller hydrophobic microchannels of 0.5 µm and 1 µm
height. The channels were 500 µm wide and 9 mm long, while the sur-
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faces were coated with OTS layers to make them hydrophobic. In both the
experiments of (Tretheway and Meinhart, 2002) and (Choi et al., 2003),
roughness was negligible. The slip length was found to depend linearly on
the shear rate with b = 30 nm at a shear rate of 105 s−1 for hydrophobic
surfaces, while for hydrophilic surfaces b = 5 nm at the same shear rate.
The corresponding slip velocity was of order 3 mm/s for the hydrophobic
case and 0.5 mm/s for the hydrophilic case.

In MD simulations the slip length predicted is typically much lower due
to the substantial pressure imposed, which can modify the wetting prop-
erties of the surface. Specifically, MD simulations with hexadecane were
performed in (Stevens et al., 1997), and dependence on the strength of the
liquid–wall interaction was established similar to that in the experiments.
However, a realistic representation of the surface, i.e., to account accu-
rately for the glass or sapphire or other surfaces tested experimentally, is
not available. In (Cieplak et al., 2001), MD simulations were performed for
a simple molecule as well as a chainlike molecule. They were described by
a shifted Lennard–Jones potential for two atoms for the former and for ten
atoms for the latter. The consecutive atoms along the chain were tethered
by the finitely extensible nonlinear elastic potential (FENE) used often in
polymer modeling; it has the form

VFENE = −κ/2r2
0 log[1 − (r/r0)2], (10.6)

where κ = 30ε and r0 = 1.5σ. The crucial wall–fluid interaction was mod-
eled by a distinct Lennard–Jones potential of the form

Vw = 16ε[(r/σ)−12 − cFS(r/σ)−6],

where cFS determines the wall type, so that cFS = 1 corresponds to a
thermal (attractive) wall and cFS = 0 corresponds to a specular (repulsive)
wall. The narrowest channel simulated had dimensions of 13.6σ × 5.1σ ×
12.75σ, with the the last dimension denoting the distance between the two
walls (channel height).

The results for Couette flow in (Cieplak et al., 2001), suggest that the slip
length is independent of the type of flow or the channel height, but that it is
a strong function of the wall type. When cFS = 0 there is a relatively large
slip (about 10σ), but for cFS = 1 the slip length is equal to the negative of
the distance between the wall and the second layer (about −1.7σ). In the
case of a chain molecule, the slip length depends more strongly on the value
of cFS, and for cFS = 1/4 the slip length is 20.6σ, in qualitative agreement
with the MD simulation results of (Stevens et al., 1997) for hexadecane and
also with the experimental results of (Pit et al., 2000).

Similar results were reported in (Priezjev and Troian, 2004), for shear
polymer films in a Couette flow with a gap height of 24.57σ. In particular,
N -mer polymer chains with N up to 16 were simulated for various lev-
els of shear rate γ̇. The scaling law obtained in the earlier simulations of
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(Thompson and Troian, 1997) for N = 1, see equation (1.2), was extended
for polymer chains; that is, the normalized slip length is given by

b

b0
s

=
(

1 − γ̇

γ̇c

)−1/2

(10.7)

for shear rates γ ≥ 5 × 10−3τ−1; γc is the critical level of shear rate above
which divergence behavior is observed. It was also found that beyond N =
10 the molecular weight dependence of the slip length is mostly associated
with the bulk viscosity.

Also, in (Barrat and Bocquet, 1999), MD simulations were performed
with a Lennard–Jones potential of the form

VLJ = 4ε[(r/σ)−12 − cij(r/σ)−6],

where cij controls the type of interaction. The interactions between fluid
atoms were defined by cFF = 1.2, while the fluid–solid interaction coefficient
cFS was varied between 0.5 and 1. For cFS = 0.9 a contact angle of 100◦ is
obtained, whereas for cFS = 0.5 a contact angle of 150◦ is obtained, which
is close to the case of mercury on a glass surface, a flow configuration
studied in the experiments of (Chuarev et al., 1984) with mercury flowing
through glass capillaries. For this hydrophobic case a slip length of about
15 molecules was computed, whereas for the 100◦ case the no-slip condition
was valid all the way to the wall boundary. Taking into account that the
molecule size is about 0.25 nm, the maximum computed slip length in the
MD simulations of (Barrat and Bocquet, 1999) is about 4 nm, which is still
much smaller than any of the experimental data, especially for hydrophobic
surfaces.

10.5.2 Conceptual Models of Slip
We have seen that the MD simulations systematically underpredict the
slip length deduced from the various experiments either based on force
curves in the surface force apparatus or based on the flowrate measured
in capillaries and microchannels. Specifically, the MD simulations predict
a slip length roughly ten times smaller than in the experiments, and such
a large discrepancy implies that there are some other physical phenomena
not included in the simulation. Here we present some of the physical models
that have been proposed in the literature that can justify the large values
of slip length and the origin of slippage.

1. Molecular slippage: This theory first appeared in the Russian liter-
ature and is due to Tolstoi (1952); it was analyzed more thoroughly in
(Blake, 1990). It provides a link between the mobility of the molecules in
the first few layers closer to the wall with the interfacial energy associated
with the liquid–solid interface. Therefore, it relates directly the contact
angle to the slip length.
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2. Gaseous film: This model was first suggested by (Ruckenstein and Ra-
jora, 1983) and was also discussed by (Vinogradova, 1999). It assumes that
there may be a film of gas at the interface between the solid surface and
the liquid. The origin of this film may be due to external dissolved gases
up to metastable concentrations. According to (deGennes, 2002), this gas
film nucleates bubbles preferentially near the wall at contact angles greater
than 90◦, i.e., on hydrophobic surfaces. This mechanism can take place
above a threshold in shear rate, a fact consistent with the experimental
observations. Evidence of nanobubbles on a hydrophobic glass surface in
water using an atomic force microscope was reported in (Tyrrell and At-
tard, 2002). Another possibility, consistent with MD simulations that reveal
a depletion of the first layer of molecules, is that a flat vapor bubble is gen-
erated at the solid–liquid interface due to thermal fluctuations. In either
case, the gaseous film is assumed to be small, e.g., less than 0.5 nm.

A simple mathematical model was proposed by (deGennes, 2002) for this
case. He assumed that the gas in the gap is in the molecular regime (since
the mean free path satisfies λ � h, where h is the film thickness), and thus
the only collisions are with the wall. Correspondingly, a molecule leaving
the liquid has a Gaussian velocity distribution for the tangential velocity
component with the corresponding peak at the slip velocity vs. Denoting
by ρ,m the density and molecular mass of the gas, respectively, the average
momentum transmitted to the solid by the gas is mvs, and thus the shear
stress σ at the wall is

σ = mvs
ρ

m
v̄y = ρvsv̄z,

where (ρ/m)v̄z is the average number of collisions with the wall, and the
normal to the surface average velocity v̄z is

v̄z =
vth√
2π

with vth =
√

kT/m.

On the other hand, σ = µ∂v/∂z = µvs/b, and thus by comparing with the
above expression, we obtain the slip length

b = −h +
µ

ρv̄z
≈ µ

ρv̄z
,

where the thickness h of the gaseous film is assumed negligible. Upon sub-
stitution of typical values for water vapor in the above expression, we obtain
a slip length of a few microns, which is clearly much higher than any of
the available experimental data. We note that the model of de Gennes
shows that the slip length increases with the viscosity and thus with the
molecular weight, which is consistent with the measurements in (Cheng
and Giordano, 2002).

3. Viscosity model: This model, proposed by (Vinogradova, 1999), is
inspired by the slip mechanism in polymer melts. It provides a connec-
tion between the slip length and a decrease in viscosity within a very thin
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FIGURE 10.23. Slip length versus temperature in prewetting transition for dif-
ferent values of the chemical potential µ. (Courtesy of O.I. Vinogradova.)

boundary layer δ close to a hydrophobic surface. Assuming a bulk viscosity
µb and a near-wall viscosity µs, then the slip length is

b = δ

(
µb

µs
− 1

)
.

This expression shows that there are two mechanisms for obtaining a large
slip length, i.e., either by increasing δ or by increasing the viscosity ratio
in the bulk and the surface. For example, for µb/µs = 21 and δ = 10 nm,
a slip length of b = 200 nm can be obtained, but a more realistic viscosity
ratio is µb/µs = 3, which corresponds to b = 20 nm.

The above arguments suggest that there may be another mechanism in
place that produces thick films (i.e., large δ), and that is why in some ex-
periments large values of the slip length have been reported. To this end, in
(Andrienko et al., 2003), a new model that accounts for prewetting transi-
tion was developed. It takes into consideration the structure of the binary
mixture in the region near the solid surface and allows for a temperature
dependence of the thickness in the form δ ∝ − ln(|Tw − T |), where Tw is
the wetting temperature of the surface.

The governing equation for this case is obtained in terms of the order
parameter Φ, which is defined as

Φ =
n1 − n2

n1 + n2
,

where ni denotes the number density of each species. This order parameter
changes very fast very close to the interface, but it is almost constant in
the bulk. The viscosity of the binary mixture can then be expressed as a
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linear combination of its two components, i.e.,

µm(z) = µs
1 + Φ(z)

2
+ µb

1 − Φ(z)
2

.

The thermodynamics of the binary mixture are described via a free-energy
functional plus other contributions to account for surface effects. The corre-
sponding semigrand potential proposed in (Andrienko et al., 2003), is given
by

U(Φ) =
1
σ3

∫
dV

(
k

2
σ2(∇Φ)2 + f(Φ) − µΦ

)
+ Ψs,

where σ is a length scale characteristic of the molecule size, f(Φ) is the
Helmholtz free-energy density, Ψs is the surface energy, and µ is the chem-
ical potential. The governing equation is then obtained by minimizing the
above functional to obtain

k
∂2Φ
∂z2 +

Φ
2

− 1
2
T ln

1 + Φ
1 − Φ

+ µ = 0, (10.8)

where T is the temperature. This is a boundary value problem, which was
solved in (Andrienko et al., 2003), for a channel with identical walls located
sufficiently far from each other so that the film layers do not overlap. The
solution of the above equation reveals a prewetting transition that depends
on the temperature; it is sudden, and it jumps from a thin film to a thick
film (first-order transition). For thin films a small slip length is obtained,
but for thick films a large slip length is obtained that also depends on
the chemical potential. This is shown in Figure 10.23, which is taken from
(Andrienko et al., 2003), and is in nondimensional units (the molecular size
σ is employed in the nondimensionalization). When a thick film is obtained
the corresponding slip length depends on temperature, while below the
threshold for transition the slip length is independent of the temperature.

4. No-shear/no-slip patterning: This model was first considered in
(Philip, 1972), in an attempt to explain slip in porous media. The main idea
is to consider the liquid–solid interface segmented into aternating stripes
of no-slip and no-shear and deduce an effective slip length from this static
configuration. This model was advannced more recently by (Lauga and
Stone, 2003) who extended some of the exact solutions in (Philip, 1972),
and hypothesized the existence of small bubbles attached to the wall as
providers of the slip and thus the corresponding stress-free condition. As
was already mentioned, there is direct experimental evidence by AFM of
the existence of such nanobubbles; see, for example, (Tyrrell and Attard,
2002). In rough surfaces or surfaces with tiny cracks, air pockets may ex-
ist that act as stress-free local boundaries. Therefore, the proposed model
is that of surface heterogeneities that lead to an effective or equivalent
macroscopic slip.

The two basic configurations, a longitudinal and a transverse one, con-
sidered in the works of (Philip, 1972) and (Lauga and Stone, 2003), are
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FIGURE 10.24. Longitudinal (a) and transverse (b) models of no-shear stripes.

shown in the sketch of Figure 10.24 for a capillary. Semianalytical Stokes
flow solutions can be obtained for these geometries, and the effective slip
length be can be obtained in terms of the ratios δ = h/H and L = H/R
and the capillary radius R. This effective slip length is defined indirectly
from the flow rate as follows: Let us assume that the partial slip condition
is applied everywhere, then the velocity profile is

u(r) =
1 − r2

4
+

b

2R
,

and correspondingly the nondimensional flowrate is

Q =
π

8

(
1 +

4b

R

)
.

Solving for the effective slip length, we obtain

b =
R

4

(
8Q

π
− 1

)
.

Therefore, by obtaining the flowrate for a given configuration, we can then
obtain the effective slip length from above (Lauga and Stone, 2003).

For the longitudinal configuration, (with m no-shear bands with half-
angle α) shown in Figure 10.24, an exact solution was obtained in (Philip,
1972) for the velocity distribution

u(r, θ) = −R2

4µ

∂p

∂r

[
1 − (r/R)2 + (4/m)�

(
cos−1

(
cos(M)

cos(mα/2)

)
− M

)]
,
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where M = −im/2 ln(reiθ/R) and � implies imaginary part. The corre-
sponding effective slip length, bl, for this case is

bl

R
=

2
m

ln (sec(mα/2)) =
L

π
ln (sec(δπ/2)) .

For the configuration with the transverse no-shear stripes the solution is
a bit more complicated, but four asymptotic limits were obtained for the
slip length bt in (Lauga and Stone, 2003), in terms of the slip percentage δ
and the separation between slip stripes L, as follows:

1. bt/R ∝ δ/4 for δ → 0 and L fixed.

2. bt/R ∝ [4(1 − δ)]−1 for δ → 1 and L fixed.

3. bt/R ∝ (L/(2π)) ln (sec(δπ/2)) for L → 0 and δ fixed.

4. bt/R ∝ [4(1 − δ)/δ]−1 for L → ∞ and δ fixed.

For a small percentage of slip, the above limits suggest that the effective
slip length decreases faster (quadratically) to zero for longitudinal stripes
compared to linear decrease for transverse slip stripes. For a large per-
centage of slip the opposite is true. Also, for small separation between slip
stripes (L → 0) we have that bl = 2bt. These two configurations represent
the two extreme idealized cases, since in reality we expect a random dis-
tribution of no-shear pockets mixed with no-slip pockets. In addition, the
dependence of the slip length of the shear rate can also be included in this
model by assuming that the inhomogeneities (e.g., nanobubbles) are elon-
gated at large values of shear rate, hence effectively increasing the relative
no-shear to no-slip regions.

10.5.3 Reynolds–Vinogradova Theory for Hydrophobic
Surfaces

In this section, we derive analytical solutions for the steady-state flow be-
tween two curved hydrophobic surfaces following the work of (Vinogradova,
1995; Vinogradova, 1996). This theory is an extension of Reynolds lubrica-
tion theory appropriate for slip surfaces.

The theory is valid for general curved surfaces, but for simplicity here
we show the main steps in the solution for two spherical rigid bodies of
radii R1 and R2. The distance h between the two bodies is small compared
to the radii, and contact is allowed only at a single point. We also assume
that a hydrophilic surface is characterized by b = 0. A schematic of the
setup is shown in Figure 10.25; a cylindrical coordinate system is employed
in deriving the solution. The relative velocity is v = |v1 − v2|, where the
spheres move along the line connecting their centers with velocities v1 and
v2.
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FIGURE 10.25. Geometry and notation for two spheres approaching each other.

The surfaces of the two bodies (upper and lower, respectively) can be
described by paraboloid of revolution, i.e.,

Z = h +
1
2

r2

R1
+ O(r4) and Z = −1

2
r2

R2
+ O(r4),

and introducing a shifted coordinate z = Z+r2/(2R2) and Re = R1R2/(R1+
R2), we can represent the two surfaces in a new coordinate system as

z = h +
1
2

r2

Re
+ O(r4) and z = O(r4).

The governing equation is Reynolds’s lubrication equation, assuming that
the characteristic length is the gap between the two particles, i.e.,

µ
∂2vr

∂z2 =
∂p

∂r
,

while in the z-direction we have that ∂p/∂z = 0, which implies that the
pressure is a function of r only. The boundary conditions correspond to slip
on the lower body, characterized by b2 = b, while on the upper surface we
assume that b1 = b(1 + k), where k characterizes the specific type of the
interaction. Specifically,

• k = −1 corresponds to a hydrophilic upper surface.

• k = 0 corresponds to a hydrophobic upper surface.

• k → ∞ corresponds to a bubble upper surface.

In addition, k can take any other value between −1 and ∞ to represent
other types of interaction and surfaces. We note that contrast to the stan-
dard Reynolds problem, where the only length scale present is the gap h,
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here we have two additional length scales, namely b and b(1 + k). So the
boundary conditions on the lower surface are

vz = 0 and vr = b
∂vr

∂z

and those on the upper surface are

vz − rvr

Re
= −v and vr = −b(1 + k)

∂vr

∂z
.

The solution of the above Reynolds equation with the aforementioned
boundary conditions yields

vr(r, z) =
1
2µ

∂p

∂r

[
z2 − z

H(H + 2b(1 + k))
H + b(2 + k)

− bH(H + 2b(1 + k))
H + b(2 + k)

]
,

where H = h + r2/(2Re). The relative velocity v can be obtained from the
continuity equation

∂vz

∂z
+

1
r

∂(rvr)
∂r

= 0,

which by integration yields

v =
1
r

∂

∂r

[
(r

∂p

∂r
)

1
2µ

(
H3

3
− H3(H + 2b(1 + k))

2(H + b(2 + k))
− bH2(H + 2b(1 + k))

H + b(2 + k)

)]
.

This velocity is constant, and thus we can solve the above differential equa-
tion in terms of pressure by integrating twice and assuming that p = 0 at
r → ∞, and ∂p/∂r = 0 at r = 0 due to symmetry. The equation for the
pressure is then

p(r) = −3µRev

H2 p∗, (10.9)

consisting of two factors, namely, the Reynolds part and the correction
factor p∗ given by

p∗ =
2AH

BC
+

2H2

C − B

(
B − A

B2 ln(1 + B/H) − C − A

C2 ln(1 + C/H)
)

.

(10.10)
The constants A,B,C in this expression characterize the two surfaces; they
are given by

A = b(2 + k),

B = 2b(2 + k +
√

1 + k + k2),

C = 2b(2 + k −
√

1 + k + k2).

The resistance forces acting on the spheres are equal in magnitude and
are primarily due to the pressure, so the force can be computed exactly
from Fz =

∫∞
0 p2πrdr, to obtain

Fz = −6πµR2
ev

h
f∗, (10.11)
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FIGURE 10.26. Correction factor f∗ as a function of the gap to slip length ratio
for the three asymptotic cases discussed in the text.

consisting also of two factors, namely, the Reynolds part and the correction
factor f∗ given by

f∗ = − Ah

BC

− 2h

C − B

(
(B + h)(B − A)

B2 ln(1 + B/h)

− (C + h)(C − A)
C2 ln(1 + C/h)

)
. (10.12)

For the aforementioned three limiting cases, the above expression reduces
to

f∗ =
1
4
(1 +

3h

2b
[(1 + h/(4b)) ln(1 + 4b/h) − 1] for k = −1,

f∗ =
h

3b
[(1 + h/(6b)) ln(1 + 6b/h) − 1] for k = 0,

f∗ =
h

3b
[(1 + h/(3b)) ln(1 + 3b/h) − 1] for k → ∞.

These three cases are plotted in Figure 10.26 and show, as expected, that
the correction factor is always less than one; the no-slip case corresponds
to f∗ = p∗ = 1. Also, both correction factors depend on the length scale
ratios, namely h/b and h/[(k+1)b]. In the limit of very small gap, the case of
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f∗ → 0 (corresponding to k > −1) represents a configuration of two bubbles
approaching each other, while the case of f∗ → 1/4 (corresponding to
k = −1) represents the flow resistance for a hydrophilic sphere interacting
with a bubble.

In the standard Reynolds theory (f∗ = 1) the hydrodynamic resistance
is inversely proportional to the gap and diverges for h → 0. However, the
new physical result in the solutions of Vinogradova is for two hydrophobic
surfaces, i.e., k > −1 and h → 0, where the friction coefficient

f∗

h
= − 2

C − B
[(1 − A/B) ln B/h − (1 − A/C) lnC/h]

depends logarithmically on h and is inversely proportional to the slip length
b. The above result is valid for h � C < B. This dependence is more clearly
seen for the case in which A and C are approximately of the same order of
magnitude. In this case, (Vinogradova, 1995) has derived that

f∗

h
=

1
3b

ln
(

6b

h

)
,

which again shows the logarithmic dependence on the gap h.

The above formulation for two spheres has been extended to general
curved hydrophobic surfaces by (Vinogradova, 1996). The results are very
similar to those of the case of two spheres. For example, the resistance force
is given by

Fz = − 3πµv

hI1
√

I2
f∗, (10.13)

where f∗ is defined by the same expression of equation (10.12), but the
geometry is now described by the curvatures of the two surfaces as follows:

I1 =
1
2

[
1

R−
1

+
1

R+
1

+
1

R−
2

+
1

R+
2

]
,

I2 =
1
4

[
1

R−
1 R+

1
+

1
R−

2 R+
2

+ sin2 φ

(
1

R+
2 R+

1
+

1
R−

2 R−
1

)
+ cos2 φ

(
1

R−
2 R+

1
+

1
R+

2 R−
1

)]
.

Here R+ and R− denote the maximum and minimum principal radii of
the surface, and thus I1 and I2 are the mean and Gaussian curvatures
of the effective surface, respectively. Also, φ defines the orientation of the
two coordinate systems attached to the two surfaces. For example, we can
consider the interaction of a sphere with a plane, a case typical in the surface
force apparatus, in which case we obtain I1 = 1/R and I2 = 1/(4R2).
Similarly, we can model two crossed cylinders for which R+

2 , R+
1 → ∞ and

φ = π/2, so the two invariants are

I1 =
1
2

(
1

R−
2

+
1

R−
1

)
and I2 =

1
4R−

2 R−
1

.
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The reader can try to determine the two invariants for the case of two
hydrophobic cylinders with aligned axes for which φ = 0.

The analytical models of Vinogradova have been used with success in fit-
ting the force curves in several SFA measurements, e.g., (Zhu and Granick,
2001; Zhu and Granick, 2002), but the expression for f∗ does not depend
on the shear rate. However, in several SFA experiments it was shown con-
vincingly that there is a strong dependence of the response on the driving
speed, and thus these data do not agree with Vinogradova’s theory (Spikes
and Granick, 2003). To this end, a new model was proposed by (Spikes
and Granick, 2003) based on the observation that the experimental results
may represent onset of slip at a fixed shear stress τco rather than slip at a
constant slip length b. Because in the SFA a sphere interacts with a plane,
the surface shear stress is zero at the center and also away from it with
maximum values in between; see Figure 10.19. This, in turn, implies that
there exists an annular region around the contact point where slip occurs.
The proposed new model in (Spikes and Granick, 2003), combines both
this critical shear stress and the slip at constant b, so the shear stress when
boundary slip occus is

τc = τco +
µ

b
vs.

The corresponding pressure gradient for the case of one slippery surface
only is

dp

dr
= − min

{
6µWr

h3 ,

(
6µWr

h3 − 6b

(h + 4b)

(
−τco

h
+

3µWr

h3

))}
,

where min denotes the minimum of the two quantities, and W is the squeeze
velocity; h is the gap height at radial distance r. The influence of τco may
not be realized in some applications, including cases in which it is constant,
as in microchannel pressure-driven or Couette flow. However, it provides
a correction for low shear stress configurations and also for the surface
force apparatus and the atomic force microscope as well as in surfaces with
roughness.




