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Foreword by Chih-Ming Ho

Fluid flow through small channels has become a popular research topic
due to the emergence of biochemical lab-on-the-chip systems and micro
electromechanical system fabrication technologies, which began in the late
1980s. This book provides a comprehensive summary of using computa-
tional tools (Chapters 14–18) to describe fluid flow in micro and nano
configurations. Although many fundamental issues that are not observed
in macro flows are prominent in microscale fluid dynamics, the flow length
scale is still much larger than the molecular length scale, allowing for the
continuum hypothesis to still hold in most cases (Chapter 1). However, the
typical Reynolds number is much less than unity, due to the small trans-
verse length scale, which results in a high-velocity gradient. For example,
a 105 sec−1 shear rate is not an uncommon operating condition, and thus
high viscous forces are prevalent, resulting in hundreds or thousands of ψ
hydrodynamic pressure drops across a single fluidic network. Consequently,
it is not a trivial task to design micropumps that are able to deliver the re-
quired pressure head without suffering debilitating leakage. Electrokinetic
and surface tension forces (Chapters 7 and 8) are used as alternatives to
move the embedded particles and/or bulk fluid. The high viscous damping
also removes any chance for hydrodynamic instabilities, which are essential
for effective mixing. Mixing in micro devices is often critical to the overall
system’s viability (Chapter 9). Using electrokinetic force to reach chaotic
mixing is an interesting research topic. In these cases, the electrical prop-
erties, e.g., dielectric constants, rather than the viscosity determine the
efficiency of transport.

The National Nano Initiative, established first in the USA (www.nano.gov)
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and subsequently in many other countries, has pushed the length scale
range of interest from microns down to nanometers. Flows in these regimes
start to challenge the fundamental assumptions of continuum mechanics
(Chapter 1). The effects of the molecules in the bulk of the fluid versus
those molecules in proximity to a solid boundary become differentiated
(Chapter 10). These are extremely intriguing aspects to be investigated
for flows in small configurations. The demarcation between the continuum
and the noncontinuum boundary has yet to be determined and inevitably
will have a tremendous influence on the understanding of small-scale fluid
behavior as well as system design.

The ratio between the size of the channel and that of the molecule is not
the only parameter that validates the continuum assumption. In biologi-
cal applications, for example, molecules with large conformation changes,
electrical charges, and polar structures are frequently encountered. These
variables make it impossible to determine whether a flow can be considered
a continuum based only on a ratio of sizes (Chapter 11). When a contin-
uum flow of a Newtonian fluid is assumed, molecular effects are defined by
the governing equations of traditional fluid mechanics. Interactions among
fluid molecules are expressed by a physical constant, which is viscosity.
The no-slip condition represents the interactions between the fluid and the
solid surface molecules. Both viscosity and the no-slip condition are con-
cepts developed under the framework of continuum. Deviations from the
bulk viscosity and the no-slip condition can lead to other results due to the
breakdown of the continuum assumption (Chapters 2 and 10).

In the nanoflow regime, not many molecules are situated far away from
the channel wall. Therefore, the motion of the bulk fluid is significantly
affected by the potential fields generated by the molecules near the solid
wall. Near the surface, the fluid molecules do not flow freely. At a distance
of a few fluid molecule layers above the surface, the flow has very different
physical constants from the bulk flow. The surface effects are strong not
only in nano configurations (Chapter 10); even in microfluidic devices, the
performance, e.g., surface fouling, is dependent on the surface property. We
frequently spend more time on modifying the surface properties than on
designing and fabricating devices. As a result of our limited understanding
of fluidic behavior within nanoscale channels (Chapters 10 through 13),
many vital systematic processes of today’s technology are arduously, yet
imperfectly, designed. Delivering and stopping a picoliter volume of fluid to
a precise location with high accuracy as well as the separation and mixing of
nano/micro particles in a fluid medium of high ionic concentration remains
a challenging task. By furthering the understanding of fluid interactions in
the nano world, many of the interesting mysteries and challenges that have
puzzled scientists will be revealed.

June 2004, Los Angeles, California, USA Chih-Ming Ho
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In the early 1990s, microchannel flow experiments at the University of
Pennsylvania by the groups of H. Bau and J. Zemel revealed intriguing
results for both liquids and gases that sparked excitement and new interest
in the study of low Reynolds number flows in microscales. Another influ-
ential development at about the same time was the fabrication of the first
microchannel with integrated pressure sensors by the groups of C.M. Ho
(UCLA) and Y.C. Tai (Caltech). While the experimental results obtained
at the University of Pennsylvania indicated global deviations of microflows
from canonical flows, pointwise measurements for gas flows with pressure
sensors, and later with temperature sensors, revealed a new flow behavior
at microscales not captured by the familiar continuum theory. In microge-
ometries the flow is granular for liquids and rarefied for gases, and the walls
“move.” In addition, other phenomena such as thermal creep, electrokinet-
ics, viscous heating, anomalous diffusion, and even quantum and chemical
effects may become important. Most important, the material of the wall
and the quality of its surface play a very important role in the momentum
and energy exchange. One could argue that at least for gases the situa-
tion is similar to low-pressure high-altitude aeronautical flows, which were
studied extensively more than 40 years ago. Indeed, there is a similarity
in a certain regime of the Knudsen number. However, most gas microflows
correspond to a low Reynolds number and low Mach number, in contrast
to their aeronautical counterparts. Moreover, the typical microgeometries
are of very large aspect ratio, and this poses more challenges for numer-
ical modeling, but also creates opportunities for obtaining semianalytical
results. For liquids no such analogy exists and their dynamics in confined
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microgeometries, especially at the submicron range, is much more complex.
The main differences between fluid mechanics at microscales and in the

macrodomain can be broadly classified into four areas:

• Noncontinuum effects,

• surface-dominated effects,

• low Reynolds number effects, and

• multiscale and multiphysics effects.

Some of these effects can be simulated with relatively simple modifica-
tions of the standard numerical procedures of computational fluid dynam-
ics. However, others require new simulation approaches not used typically
in the macrodomain, based on multiscale algorithms. For gas microflows,
compressibility effects are very important because of relatively large den-
sity gradients, although the Mach number is typically low. Depending on
the degree of rarefaction, corrections at the boundary or everywhere in the
domain need to be incorporated. Increased rarefaction effects may make
the constitutive models for the stress tensor and the heat flux vector in
the Navier–Stokes equations invalid. On the other hand, working with
the Boltzmann equation or with molecular dynamics implementation of
Newton’s law directly is computationally prohibitive for complex microge-
ometries. The same is true for liquids, since atomistic simulation based on
Newton’s law for individual atoms is restricted to extremely small volumes.
Therefore, mesoscopic and hybrid atomistic–continuum methods need to be
employed for both gas and liquid microflows to deal effectively with devi-
ations from the continuum and to provide a link with the large domain
sizes. Most important, microflows occur in devices that involve simultane-
ous action in the flow, electrical, mechanical, thermal, and other domains.
This, in turn, implies that fast and flexible algorithms and low-dimensional
modeling are required to make full-system simulation feasible, similar to
the achievements of the 1980s in VLSI simulation.

There has been significant progress in the development of microfluidics
and nanofluidics at the application as well as at the fundamental and simu-
lation levels since the publication of an earlier volume of this book (2001).
We have, therefore, undertaken the “nontrivial” task of updating the book
in order to include these new developments. The current book covers length
scales from angstroms to microns (and beyond), while the first volume
covered scales from one hundred nanometers to microns (and beyond).
We have maintained the emphasis on fundamental concepts with a mix
of semi-analytical, experimental, and numerical results, and have outlined
their relevance to modeling and analyzing functional devices. The first two
co-authors (GK and AB) are very pleased to have a new co-author, Prof.
N.R. Aluru, whose unique contributions have made this new volume pos-
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sible. We are also grateful to Springer, and in particular to Senior Editor
in Mathematics Dr. Achi Dosanjh, who gave us this opportunity.

The majority of the new developments are in Chapters 7 through 18,
most of which contain totally new material. In addition, all other Chapters
(1 through 6) have been modified, and in some cases new material has also
been added. We have divided the material into three main categories by
subject:

1. Gas Flows (Chapters 2–6).

2. Liquid Flows (Chapters 7–13)

3. Simulation Techniques (Chapters 14–18)

The last category also contains two Chapters (17 and 18) on low-dimensional
modeling and simulation, in addition to chapters on multiscale modeling
of gas and liquid flows. The entire material can be used in a two-semester
first- or second-year graduate course. Also, selected chapters can be used
for a short course or an undergraduate-level course.

In the following we present a brief overview of the material covered in
each chapter.

In Chapter 1 we provide highlights of the many concepts and devices that
we will discuss in detail in the subsequent chapters. For historic reasons,
we start with some prototype Micro-Electro-Mechanical-Systems (MEMS)
devices and discuss such fundamental concepts as breakdown of constitutive
laws, new flow regimes, and modeling issues encountered in microfluidic and
nanofluidic systems. We also address the question of full-system simulation
of microsystems and introduce the concept of macromodeling.

In Chapter 2 we first present the basic equations of fluid dynamics for
both incompressible and compressible flows, and discuss appropriate nondi-
mensionalizations. Subsequently, we consider the compressible Navier–Stok-
es equations and develop a general boundary condition for velocity slip. The
validity of this model is assessed in subsequent chapters.

In Chapter 3 we consider shear-driven gas flows with the objective of
modeling several microsystem components. In order to circumvent the dif-
ficulty of understanding the flow physics for complex engineering geome-
tries, we concentrate on prototype flows such as the linear and oscillatory
Couette flows in the slip, transition, and free-molecular flow regimes, and
flow in shear-driven microcavities and microgrooves.

In Chapter 4 we present pressure-driven gas flows in the slip, transition
and free molecular flow regimes. In the slip flow regime, we first validate
simulation results based on compressible Navier–Stokes solutions employing
various slip models introduced in Chapter 2. In addition, we examine the
accuracy of the one-dimensional Fanno theory for microchannel flows, and
we study inlet flows and effects of roughness. In the transition and free-
molecular regime we develop a unified model for predicting the velocity
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profile and mass flowrate for pipe and duct flows.
In Chapter 5 we consider heat transfer in gas microflows. In the first sec-

tion we concentrate on the thermal creep (transpiration) effects that may
be important in channels with tangential temperature gradients on their
surfaces. We also study other temperature-induced flows and investigate
the validity of the heat conduction equation in the limit of zero Knudsen
number. In the second and third sections we investigate the combined ef-
fects of thermal creep, heat conduction, and convection in pressure-, force-,
and shear-driven channel flows.

In Chapter 6 we consider rarefied gas flows encountered in applications
other than simple microchannels. In the first section, we present the lubri-
cation theory and its application to the slider bearing and squeezed film
problems. In the second and third sections, we consider separated flows
in internal and external geometries in the slip flow regime in order to in-
vestigate the validity of continuum-based slip models under flow separa-
tion. In the fourth section, we present theoretical and numerical results for
Stokes flow past a sphere including rarefaction effects. In the fifth section
we summarize important results on gas flows through microfilters used for
capturing and detecting airborne biological and chemical particles. In the
last section, we consider high-speed rarefied flows in micronozzles, which
are used for controlling the motion of microsatellites.

In Chapter 7 we present basic concepts and a mathematical formula-
tion of microflow control and pumping using electrokinetic effects, which
do not require any moving components. We cover electroosmotic and elec-
trophoretic transport in detail both for steady and time-periodic flows, and
we discuss simple models for the near-wall flow. We also present dielec-
trophoresis, which enables separation and detection of similar size particles
based on their polarizability.

In Chapter 8 we consider surface tension-driven flows and capillary phe-
nomena involving wetting and spreading of liquid thin films and droplets.
For microfluidic delivery on open surfaces, electrowetting and thermocap-
illary along with dielectrophoresis have been employed to move continuous
and discrete streams of fluid. A new method of actuation exploits optical
beams and photoconductor materials in conjunction with electrowetting.
Such electrically or chemically defined paths can be reconfigured dynam-
ically using electronically addressable arrays that respond to electric po-
tential, temperature, or laser beams and control the direction, timing, and
speed of fluid droplets. In addition to the above themes, we also study bub-
ble transport in capillaries including both classical theoretical results and
more recent theoretical and experimental results for electrokinetic flows.

In Chapter 9 we consider micromixers and chaotic advection. In mi-
crochannels the flow is laminar and steady, so diffusion is controlled solely
by the diffusivity coefficient of the medium, thus requiring excessive a-
mounts of time for complete mixing. To this end, chaotic advection has been
exploited in applications to accelerate mixing at very low speeds. Here, we
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present the basic ideas behind chaotic advection, and discuss examples of
passive and active mixers that have been used in microfluidic applications.
We also provide effective quantitative measures of characterizing mixing.

In Chapter 10 we consider simple liquids in nanochannels described by
standard Lennard–Jones potentials. A key difference between the simula-
tion of the fluidic transport in confined nanochannels and at macroscopic
scales is that the well-established continuum theories based on Navier–
Stokes equations may not be valid in confined nanochannels. Therefore,
atomistic scale simulations are required to shed fundamental insight on
fluid transport. Here we discuss density distribution, diffusion transport,
and validity of the Navier–Stokes equations. In the last section we discuss
in detail the slip condition at solid–liquid interfaces, and present experi-
mental and computational results as well as conceptual models of slip. We
also revisit the lubrication problem and present the Reynolds–Vinogradova
theory for hydrophobic surfaces.

In Chapter 11 we focus on water and its properties in various forms; this
is one of the most actively investigated areas because of its importance in
nature. The anomalies that exist in the bulk properties of water make it
very interesting and challenging for research, and a vast deal of literature
is already available. Even though water has been studied for more than
100 years now, its properties are far from understood. With the advances
in fabrication of nanochannels that are only a few molecular diameters in
critical dimension, the properties of water in confined nanochannels have
recently received a great deal of attention. In this chapter, after introducing
some definitions and atomistic models for water, we present the static and
dynamic behavior of water in confined nanochannels.

In Chapter 12 we discuss the fundamentals and simulation of electroos-
motic flow in nanochannels. The basic theory was covered in Chapter 7,
so here the limitations of the continuum theory for electroosmotic flow in
nanochannels are identified by presenting a detailed comparison between
continuum and MD simulations. Specifically, the significance of the finite
size of the ions and the discrete nature of the solvent molecules are high-
lighted. A slip boundary condition that can be used in the hydrodynamic
theory for nanochannel electroosmotic flows is presented. Finally, the phys-
ical mechanisms that lead to the charge inversion and flow reversal phe-
nomena in nanochannel electroosmotic flows are discussed.

In Chapter 13 we focus on functional fluids and on functionalized devices,
specifically nanotubes. The possibility to target and precisely control the
electrooptical as well as the mechanical properties of microstructures in a
dynamic way using external fields has opened new horizons in microfluidics
research including new concepts and protocols for micro- and nanofabrica-
tion. On the more fundamental level, systematic studies of paramagnetic
particles or charged particles and their dynamics offer insight into the role
of Brownian noise in microsystems as well as conceptual differences be-
tween deterministic and stochastic modeling. This is studied in the first
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part of this chapter. In the second part of the chapter we study carbon
nanotubes and their properties. Carbon nanotubes with diameters as small
as 5–10 Å are comparable to the diameters encountered in biological ion
channels. By functionalizing carbon nanotubes, it is possible to tune the
surface properties of carbon nanotubes to investigate the function of a vari-
ety of ion channels. To enable such advances, it is important to understand
how water, ions, and various electrolytes interact with carbon nanotubes
and functionalized nanotubes.

In Chapter 14 we discuss representative numerical methods for continuum-
based simulations. The significant geometric complexity of flows in mi-
crosystems suggests that finite elements are more suitable than finite dif-
ferences, while high-order accuracy is required for efficient discretization.
To this end, we focus on spectral element and meshless methods in station-
ary and moving domains. We also discuss methods for modeling particu-
late microflows and focus on the force coupling method, a particularly fast
approach suitable for three-dimensional simulations. These methods rep-
resent three different classes of discretization philosophies and have been
used with success in diverse applications of microsystems.

In Chapter 15 we discuss theory and numerical methodologies for sim-
ulating gas flows at the mesoscopic and atomistic levels. Such a descrip-
tion is necessary for gases in the transition and free-molecular regimes.
First, we present the Direct Simulation Monte Carlo (DSMC) method, a
stochastic approach suitable for gases. We discuss limitations and errors in
the steady version of DSMC and subsequently present a similar analysis
for the unsteady DSMC. In order to bridge scales between the continuum
and atomistic scales we present the Schwarz iterative coupling algorithm
and apply it to modeling microfilters. We then give an overview of the
Boltzmann equation, describing in some detail gas–surface interactions,
and include benchmark solutions for validation of numerical codes and of
macromodels. A main result relevant to accurately bridging microdynam-
ics and macrodynamics is the Boltzmann inequality, which we also discuss
in the last section on lattice Boltzmann methods (LBM). These methods
represent a “minimal” discrete form of the Boltzmann equation, and they
are applicable to both compressible and incompressible flows; in fact, the
majority of LBM applications focuses on incompressible flows.

In Chapter 16 we discuss theory and numerical methodologies for sim-
ulating liquid flows at the atomistic and mesoscopic levels. The atomistic
description is necessary for liquids contained in domains with dimension of
fewer than ten molecules. First, we present the Molecular Dynamics (MD)
method, a deterministic approach suitable for liquids. We explain details of
the algorithm and focus on the various potentials and thermostats that can
be used. This selection is crucial for reliable simulations of liquids at the
nanoscale. In the next section we consider various approaches in coupling
atomistic with mesoscopic and continuum level. Such coupling is quite dif-
ficult, and no fully satisfactory coupling algorithms have been developed
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yet, although significant progress has been made. An alternative method is
to embed an MD simulation in a continuum simulation, which we demon-
strate in the context of electroosmotic flow in a nanochannel. In the last
section we discuss a new method, developed in the late 1990s primarily in
Europe: the dissipative particle dynamics (DPD) method. It has features of
both LBM and MD algorithms and can be thought of as a coarse-grained
version of MD.

In Chapter 17 we turn our attention to simulating full systems across
heterogeneous domains, i.e., fluid, thermal, electrical, structural, chemical,
etc. To this end, we introduce several reduced-order modeling techniques for
analyzing microsystems. Specifically, techniques such as generalized Kirch-
hoff networks, black box models, and Galerkin methods are described in
detail. In black box models, detailed results from simulations are used to
construct simplified and more abstract models. Methods such as nonlinear
static models and linear and nonlinear dynamic models are described un-
der the framework of black box models. Finally, Galerkin methods, where
the basic idea is to create a set of coupled ordinary differential equations,
are described. The advantages and limitations of the various techniques are
highlighted.

Finally, in Chapter 18 we discuss the application of these techniques to
several examples in microflows. First, we present circuit and device models
and their application to lab-on-a-chip systems. Then, we discuss reduced-
order modeling of squeezed film damping by applying equivalent circuit,
Galerkin, mixed-level, and black box models. Next, we present a compact
model for electrowetting. Finally, we summarize some of the software pack-
ages that are available for reduced-order simulation.

We are very grateful to Prof. Chih-Ming Ho who agreed to provide a
foreword to our book. We would like to thank all our colleagues from many
different countries who have allowed us to use their work in the previous
and this new and expanded edition of the book. We also want to thank Ms.
Madeline Brewster at Brown University for her assistance with all aspects
of this book, and our students who helped with formatting the figures, espe-
cially Vasileios Symeonidis, Pradipkumar Bahukudumbi, and Aveek Chat-
terjee. AB would like to thank his students I. Ahmed, P. Bahukudumbi,
Prof. P. Dutta, Dr. J. Hahm, H.J. Kim, S. Kumar, Dr. J.H. Park, and Prof.
C. Sert. The last author (NRA) would like to acknowledge the help of all
his students, especially Chatterjee, De, Joseph, and Qiao for letting him use
some of the results from their thesis work. NRA is very grateful to Profs.
Karniadakis and Beskok for the opportunity to co-author this book with
them. NRA would like to thank Profs. Dutton (Stanford), Hess (UIUC),
Karniadakis (Brown), Law (Stanford), Pinsky (Stanford), Senturia (MIT),
and White (MIT) for mentoring his career.

The first author (GK) would like to thank all members of his family
for their support during the course of this effort. The second author (AB)
would like to thank Carolyn, Sarah and Sinan for their continuous love,
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support and patience. In addition, AB would like to dedicate his work to
the memory of his parents, Güngör and Çetin Beşkök. Finally, NRA is
deeply indebted to all his family members, especially his parents, Subhas
and Krishna Aluru, his brother, Ravi, his wife, Radhika, and his daughter,
Neha, for their love, encouragement, and support.

Providence, Rhode Island, USA George Em Karniadakis
College Station, Texas, USA Ali Beskok
Urbana, Illinois, USA Narayan R. Aluru
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1
Basic Concepts and Technologies

In this chapter we highlight some of the concepts, devices, and modeling
approaches that we shall discuss in more detail in all subsequent chapters.
We have included a section on the pioneers of the field, and we present
some of the key results that have had great impact on the development
and the rapid growth of microfluidics and nanofluidics. Our emphasis is
on fundamental concepts such as breakdown of constitutive laws, new flow
regimes, and modeling issues encountered in flow microsystems. We also
discuss fluid–surface interactions for liquids, such as electrokinetic effects
and wetting, which become very important at very small scales. Finally, we
address the question of full-system simulation of micro-electro-mechanical
systems (MEMS) and introduce the concept of macromodeling.

1.1 New Flow Regimes in Microsystems

Micron- and submicron-size mechanical and biochemical devices are becom-
ing more prevalent both in commercial applications and in scientific inquiry.
Small accelerometers with dimensions measured in microns are being used
to deploy air bag systems in automobiles. Tiny pressure sensors for the tip
of a catheter are smaller than the head of a pin. Microactuators are moving
scanning electron microscope tips to image single atoms. Novel bioassays
consisting of microfluidic networks are designed for patterned drug delivery.
New fabrication techniques, such as surface silicon micromachining, bulk
silicon micromachining, LIGA (Lithographie Galvanoformung Abformung),
and EDM (Electro Discharge Machining) have been successfully applied to
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microfabrication in recent years, making these microdevices possible. The
capability to batch fabricate and automate these fabrication technologies
makes such microdevices inexpensive (Howe et al., 1990; Bryzek et al.,
1994; Reed, 1993; Trimmer, 1997). New nanofabrication techniques have
emerged exploiting the concept of self-assembly for submicron-size objects
(Whitesides and Grzybowski, 2002; Doyle et al., 2002).

Inherent in these new technologies is the need to develop the fundamen-
tal science and engineering of small devices. Microdevices tend to behave
differently from the objects we are used to handling in our daily life (Gad-
el-Hak, 1999; Ho and Tai, 1998). The inertial forces, for example, tend to
be quite small, and surface effects tend to dominate the behavior of these
small systems. Friction, electrostatic forces, and viscous effects due to the
surrounding air or liquid become increasingly important as the devices be-
come smaller. In general, properties (p) that are a function of the area of
interaction (A) decrease more slowly than properties that depend on the
volume (V ), as expressed by the “square-cube” law:

p1(A)
p2(V )

∝ L2

L3 ∝ 1
L

, (1.1)

where L is the characteristic dimension of the microdevice; a typical or-
der of magnitude is 106 m2/m3. Surface tension effects are dominant at
these scales, and micropumps and microvalves have been fabricated taking
advantage of this principle (Evans et al., 1997).

Typical early applications can be found in the micro- and nanoscale
design of computer components such as the Winchester-type hard disk drive
mechanism, where the read/write head floats 50 nm above the surface of the
spinning platter (Tagawa, 1993). The head and platter together with the
air layer in between form a slider bearing. The typical operating conditions
correspond to low values of both Reynolds and Mach number, e.g., less
than 0.6 and 0.3, respectively. The corresponding Knudsen number, which
expresses the relative size of the mean free path to the size of the microflow
domain, is relatively large. It is expected to increase further for the next
generation of devices, since the smaller the gap between the spinning platter
and the read/write head, the greater the recording capacity.

Turning now to micro-electro-mechanical systems (MEMS), one of the
first microfabricated products is a polysilicon, surface micromachined side-
driven motor; its fabrication, operation, and performance have been studied
extensively in (Mehregany et al., 1990; Tai et al., 1989; Trimmer, 1997). A
diagram of such a motor is shown in the sketch of Figure 1.1 along with
the characteristic dimensions. It creates a variable capacitance by means of
salient poles distributed along the periphery; a typical design may employ
12 stator poles and eight rotor poles. During operation, the shield (lower
surface), bearing, and rotor are electrically grounded, and only one stator
phase is excited at a given time. The motive torque has been determined
through step transient measurements and it is of order 10PN ·m. The axial
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FIGURE 1.1. Diagram of an electrostatically side-driven micromotor with typical
dimensions. The motor consists of a set of stator poles and rotor poles which are
excited sequentially, creating an electrostatic motive torque.

force is of order 10−7 N, which is much larger than the typical weight of the
motor, of order 10−10 N. Typical operating conditions for an angular speed
of ω = 5000 rad/sec show that the Reynolds number Re ≈ 1 based on the
gap between the base and the rotor (3µm) and that the Mach number M
is less than 0.1 based on the rotor tip speed (rotor radius is 60µm). Under
macroscale continuum conditions it is possible to have creeping flows that
result in small Reynolds number Re and Mach number M . However, in the
case of microflows, the Reynolds number Re is small due to the small length
scales of the microdevice rather than very small velocities. Therefore, higher
Mach numbers M could be achieved in microflows compared to the creeping
(i.e., very slow) continuum flows. Results from a steady-state axisymmetric
analysis reported in (Omar et al., 1992) showed that 75% of the viscous
drag is caused by the lower surface. However, that analysis did not include
slip effects, which may modify the viscous drag contribution.

A similar type of gas microflow occurs in another classic MEMS device,
the electrostatic comb microdrive (Tang et al., 1989), which is shown in
Figure 1.2. Electrostatic comb-drives are excellent resonant actuators that
produce large motions at low drive voltage. For typical operating conditions
with a resonance frequency of 75 kHz, the dimensions shown in the figure,
and with the gap between the stationary and movable comb arms of order
1µm, we calculate that Re = 0.74 and M = 0.014. Both the micromotor
and the comb-drive flows are sustained due to the motion of a thin layer
of polysilicon across the silicon substrate. In the simplest form, these flows
can be modeled by a shear-driven flow (see Chapter 3).

An electrostatic comb-drive is one of the most important first-generation
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FIGURE 1.2. Left: Diagram of a typical electrostatic comb-drive mechanism with
typical dimensions. Right: Actual electrostatic comb-drive. The resonator consists
of a central shuttle that is suspended by a cantilever beam so that it can move
horizontally. (Courtesy of D. Freeman.)

MEMS devices. It is driven by interdigitated capacitors, the electrostatic
combs. In a standard comb-drive, the capacitance varies linearly with the
displacement, resulting in an electrostatic force that is independent of the
position of the moving fingers, except at the end of the travel, where the
force becomes large (full overlap). An approximate equation for the driving
electrostatic force Fe on each of the moving fingers is

Fe =
εhV 2

d
,

where V is the voltage, h is the height of the fingers (direction perpendicular
to the page in Figure 1.2), d is the gap, and ε = 8.85 × 10−12 C2/Nm2.
This formula does not include the effect of the width of the fingers, but
accurate simulations performed in (Shi, 1995) show that the variation is
almost linear. The magnitude of this force is very small; for example, for
h = 1 µm; d = 2.5µm, and V = 40 V the above formula gives Fe = 5.7
nN, which is smaller than the more accurate value 6.3 nN obtained with a
boundary element simulation in (Shi, 1995).

We now turn to the flow analysis of the comb-drive shown in Figure 1.2,
for which detailed measurements were obtained by Freeman using computer
microvision (Freeman et al., 1998). Specifically, stroboscopic illumination
was used to obtain images at evenly spaced phases during a sinusoidal ex-
citation. The displacements between the images were obtained using algo-
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FIGURE 1.3. Magnitude and phase measurements of the comb-drive using com-
puter microvision techniques. (Courtesy of D. Freeman.)

rithms originally developed for machine vision, and they were subsequently
integrated to produce a time series for which the magnitude and phase of
the motion was determined (see Figure 1.3). The frequency response was
fit by a second-order system with mass m, dashpot damping coefficient C,
and spring stiffness k. The quality factor defined as

Q =

√
km

C

was found to be Q = 27, and the best frequency for resonance was f0 = 19.2
kHz. The mass parameter was derived from the geometry with density 2300
kg/m3 resulting in m = 50.06 ng. The stiffness was obtained from the mass
and measured resonant frequency resulting in k = 0.729 N/m.

In order for this system to be simulated accurately, the damping forces,
which are primarily due to fluid motion, i.e., the viscous drag forces, should
be computed accurately. A full three-dimensional simulation of this system
was performed for the first time by (Ye et al., 1999) using the FastStokes
program, which is based on boundary element methods and precorrected
FFTs. A total of 23,424 panels were employed in their simulation, as shown
in Figure 1.4. For kinematic viscosity of ν = 0.145 cm2/sec and density
ρ = 1.225 kg/m3, FastStokes predicted a drag force of 207.58 nN and cor-
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FIGURE 1.4. Dimensions and boundary element discretization employed in the
comb-drive three-dimensional simulation using the FastStokes program. (Courtesy
of W. Ye and J. White.)

responding quality factor Q = 29.1. These predictions are very close to
the experimental values. Simple steady or unsteady models based on Cou-
ette flow (see Chapter 3) overpredict the Q factor by almost 100%. The
estimated Knudsen number in this case was Kn ≈ 0.03, and the Reynolds
number was Re ≈ 0.02, so rarefaction and nonlinearities were apparently
second-order effects compared to very strong three-dimensional effects. The
complete simulation of this problem requires models for the electrostatic
driving force, flow models as above, and also mechanical models to inves-
tigate possible vibrational effects because of the very small width of the
moving fingers. This mixed domain simulation requirement for the comb-
drive is representative in the field of MEMS (see Section 1.7 and Chapters
17 and 18 for issues in full-system simulation of MEMS devices).

Another application area is microdevices that involve particulate flows for
sorting, analysis, and removal of particles or cells from a sample, with both
liquid and gas microflows (Ho, 2001; Green and Morgan, 1998; Telleman
et al., 1998; Wolff et al., 1998; Yager et al., 1998). Examples of two different
devices for cell sorting are shown in Figure 1.5 (Telleman et al., 1998).
The device on the left is based on microfluorescent activated cell sorting
(µFACS), while the device on the right is based on micromagnetic activated
cell sorting (µMACS). In the former, the targeted cells are labeled with
fluorescent antibodies, and as they pass through an optical sensor a valve is
activated, letting the desired cells collected at one outlet. However, there is
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FIGURE 1.5. Diagrams of particle separators in microflows based on microflu-
orescent activated cell sorting (µFACS; left) and micromagnetic activated cell
sorting (µMACS; right). (Courtesy of S. Lomholt.)

always a residual amount of undesired cells, and thus the process should be
repeated using multiple µFACS devices. In the second device, the targeted
cells are labeled with paramagnetic antibodies, and only the desired cells
reach the collection outlet. The typical size of the channels is 100 µm, and
the cells are about 5 to 10 µm (Lomholt, 2000). The carrying fluid and the
buffers are neutral liquids for living cells. Similar devices exist for removing
particles from gases, e.g., an airstream for environmental applications. In a
device presented in (Yager et al., 1998), multisized particles of up to 10 µm
were removed at various stages. Such particulate microflows require special
numerical modeling to deal efficiently with the multiple moving surfaces,
i.e., cells or particles present in the domain (see Section 14.3.2).

Microparticles, from 20 nm to about 3µm can also be used to fabricate
microdevices, such as pumps and valves, which in turn can be used for mi-
crofluidic control. Several studies have focused on fabricating self-assembled
structures using paramagnetic particles carried by liquids in microchannels
(Hayes et al., 2001; Doyle et al., 2002). The ability to form supraparticle
structures and precisely control their arrangement and motion externally
by magnetic fields could lead to many novel applications such as micro-
optical filters and gratings, but also to new materials and new micro- and
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FIGURE 1.6. Colloidal micropumps using 3-micron silica microspheres. (a) Lobe
movement of a gear pump. (b) Peristaltic pump. The channel is 6 microns, and
the motion is induced by optical traps. (Courtesy of D. Marr.)

nanofabrication protocols (Furst et al., 1998; Hayes et al., 2001; Whitesides
and Grzybowski, 2002).

Colloidal micropumps and colloidal microvalves are already in existence
and have been used for active microfluidic control. For example, in (Terray
et al., 2002), latex microspheres were manipulated by optical traps to pump
fluids. These devices are about the size of a human red blood cell; see
Figure 1.6. These colloidal micropumps are based on positive-displacement
pumping techniques and operate by imparting forward motion to small
volumes of fluid. The two micropumps shown in Figure 1.6 induce motions
of 2 to 4 µm/s with corresponding flow rate of 0.25 nl/hour; see (Terray
et al., 2002) for details.

1.2 The Continuum Hypothesis

Important details of the operation of micromachines involve complex dy-
namical processes and unfamiliar physics. The dynamics of fluids and their
interaction with surfaces in microsystems are very different from those in
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large systems. In microsystems the flow is granular for liquids and rarefied
for gases, and the walls “move.” In addition, other phenomena such as ther-
mal creep, electrokinetics, viscous heating, anomalous diffusion, and even
quantum and chemical effects may be important (Chan et al., 2001). In
particular, the material of the wall is very important in the dynamics; for
example, a simple graphite submicron bearing exhibits complex vibrational
modes and interacts differently with the fluid than does a diamondoid sub-
micron bearing. Similarly, for gas microflows the material surface, i.e., its
type and roughness, determines the fluid-wall interactions, which lead to
definition of thermal and momentum accommodation coefficients (see Sec-
tion 2.2.2).

Such interaction with the wall material can be studied with molecular
dynamics (MD) simulations; see Section 16.1. In a typical molecular dy-
namics simulation, a set of molecules is introduced initially with a random
velocity for each molecule corresponding to a Boltzmann distribution at
the temperature of interest. The interaction of the molecules is prescribed
in the form of a potential energy, and the time evolution of the molec-
ular positions is obtained by integrating Newton’s equations of motion.
Realistic intermolecular potentials are constructed by modeling the atom–
atom interaction potential using relatively simple equations, such as the
Lennard–Jones potential

V (r) = 4ε

[( r

σ

)−12
−
( r

σ

)−6
]

,

written for a pair of two atoms separated by distance r. The Lennard–Jones
potential incorporates the shape effects by an anisotropic repulsive core
and anisotropic dispersion interactions. For an appropriate choice of these
parameters a reasonable description of real liquids is possible. For example,
using ε/kB ≈ 120 K, where kB is Boltzmann’s constant and σ ≈ 0.34 nm,
a reasonable description of liquid argon can be obtained; see Section 16.1
for more details.

In Figure 1.7 we plot results from a molecular dynamics simulation of
(Koplik et al., 1989) that shows a large density fluctuation very close to
the wall. Specifically, the fluid is governed by a Lennard–Jones potential,
and there is no net flow. The total number of atoms in this simulation
is 27,000. The geometry is a three-dimensional periodic channel made of
two atomic walls with 2,592 atoms each of FCC lattice type. The size of
the channel is 51.30 × 29.7 (in the plane) × 25.65 (out of plane), with all
dimensions in molecular units; i.e., the atom diameter is 1.0. The density
profile is obtained by binning the atomic positions in 170 slabs parallel
to the walls, and the overall density is 0.8 units, while the temperature
is kept at 1.0 units. In Figure 1.8 we show a snapshot of the flow in the
near-wall region to demonstrate the layering phenomenon, where the fluid
atoms are organized in horizontal layers parallel to the wall atomic layers.
This layering is responsible for the large density fluctuations very near to
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FIGURE 1.7. Density profile of Lennard–Jones fluid in a channel made of two
atomic walls. The length dimensions are in molecular units (diameter of a
molecule is 1.0). (Courtesy of J. Koplik and J. Banavar.)

the wall. While in liquids this effect extends only a few atom diameters
from the wall, in gases the wall–fluid interaction extends over much greater
length, and this has to be accounted for explicitly.

The amount of slip revealed in the above MD simulations depends strongly
on the wall type and its modeling, which is determined by the strength of
the liquid–solid coupling and the wall–liquid density ratio, among others. A
shear-driven (Couette) microflow was simulated by (Thompson and Troian,
1997) in a channel with height h = 24.57σ using a truncated Lennard–
Jones potential, which was set to zero for r > rc = 2.2σ. The wall–liquid
interaction was also modeled with a Lennard–Jones potential but with dif-
ferent energy and length scales εw and σw, respectively. The liquid density
was described by ρ = 0.81σ−3, and its temperature was maintained at
T = 1.1kB/ε. A very wide range of values of shear rate γ̇ was investigated
in (Thompson and Troian, 1997), leading to both linear and nonlinear
responses. The shear rate was scaled with the characteristic time of the
Lennard–Jones potential

τ =

√
mσ2

ε
,

where m is the mass of the molecule. A linear velocity profile was obtained
in the bulk of the flow, in accordance with Navier–Stokes solutions, sug-
gesting that the dynamic viscosity was constant (Newtonian fluid).

Results from these MD simulations showed an intriguing response. In
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FIGURE 1.8. Snapshot of the Lennard–Jones fluid near a wall. The wall atoms
are denoted by crosses, and fluid atoms by circles. This layered structure of
the fluid molecules in close proximity with the wall is responsible for the density
fluctuations shown in the previous figure. (Courtesy of J. Koplik and J. Banavar.)

particular, at low values of the shear rate, a slip velocity proportional to γ̇
was obtained with corresponding values of the slip length b ranging from 0 to
about 17σ. The slip length increases as the wall energy εw decreases or the
wall density ρw increases. This is the linear response, and it is consistent
with previous investigations. However, beyond 17σ a strongly nonlinear
response was observed with the slip length b diverging beyond a critical
value of the shear rate γ̇c. The results of MD simulations of (Thompson
and Troian, 1997) are summarized in Figure 1.9 in a normalized form and
for various conditions. The dashed line represents a best fit to the data in
the form

bs

b0
s

=
[
1 − γ̇

γ̇c

]α

, (1.2)

where the exponent α = −1/2 is specific for the conditions that were tested
in (Thompson and Troian, 1997), but may be different for other conditions.
Such results suggest that at high shear rates and even for Newtonian flu-
ids the liquid behavior in the near-wall vicinity is non-Newtonian; see also
equation (10.7). At values of shear rate close to a critical value, such non-
Newtonian behavior may propagate into the flow, and in that case even
small variations in the wall surface may have a significant effect. It is not
clear whether the conditions employed in MD simulations can match the
experimental conditions. Experiments in submicron channels and gaps us-
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FIGURE 1.9. Summary of results from MD simulations reported in (Thompson
and Troian, 1997). The normalized slip length is plotted against the normalized
shear rate. All data collapse into a universal curve as shown; τ is a relaxation
time scale. (Courtesy of S. Troian.)

ing the surface force apparatus (see Section 10.5) have revealed a slip length
much larger than what is predicted by MD simulations, often by an order
of magnitude!

The question of validity of the continuum approach arises also in partic-
ulate flows, especially in applications involving nanoparticles. A systematic
MD study was undertaken by (Drazer et al., 2002) for a colloidal spherical
particle through a nanotube containing a partially wetting fluid. They used
a generalized Lennard–Jones liquid of the form

VFS(r) = 4ε

[( r

σ

)−12
− cFS

( r

σ

)−6
]

,

where cFS is an attractive strength that controls the wetting properties
of the fluid–wall system. Full wetting corresponds to cFS = 1, while poor
wetting corresponds to cFS � 1. Drazer et al. demonstrated that the MD
simulations are in good agreement with the continuum simulations of (Bun-
gay and Brenner, 1973) despite the large thermal fluctuations present in
the system. This is true even for very small particles of order 2 nm. In
Figure 1.10 we plot comparisons of MD and continuum simulations, first
reported in (Drazer et al., 2002), for different values of the nanotube radius
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FIGURE 1.10. Mean sphere velocity in a microtube as a function of the radii
ratio. Points correspond to MD simulations of Drazer et al. (2002) and the solid
line the continuum results of Bungay & Brenner (1973). The error bars denote
temporal fluctuations. (Courtesy of J. Koplik.)

R and particle radius a and cFS = 1. The fact that the continuum slightly
overpredicts the mean particle velocity was attributed by Drazer et al. to
the transverse random motion of the particles in the MD simulation. At
later times it is possible for the particle to execute an intermittent stick-slip
motion, especially for poorly wetting fluid–wall systems. For cFS ≤ 0.7 the
particle is eventually adsorbed to the tube wall, and in the stick regime
almost all the fluid atoms between the particle and the wall have been
squeezed out. This total depletion of fluid atoms would require an infi-
nite force in the continuum limit. This phenomenon is also encountered in
capillary drying, in which liquid is suddenly ejected from the gap formed
between two hydrophobic surfaces when the width falls below a critical
value (Lum et al., 1999). The robustness of continuum calculations in this
context has been demonstrated also in (Israelachvili, 1992a; Vergeles et al.,
1996) for spheres approaching a plane wall; see also Section 10.5.

1.2.1 Molecular Magnitudes
In this section we present relationships for the number density of molecules
n, mean molecular spacing δ, molecular diameter d, mean free path λ, mean
collision time tc, and mean-square molecular speed c̄ for gases.

The number of molecules in one mole of gas is a constant known as
Avogadro’s number 6.02252× 1023/mole, and the volume occupied by a
mole of gas at a given temperature and pressure is constant irrespective of
the composition of the gas (Vincenti and Kruger, 1977). This leads to the
perfect gas relationship given by

p = nkB, T (1.3)
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where p is the pressure, T is the temperature, n is the number density of
the gas, and kB is the Boltzmann constant (kB = 1.3805 × 10−23 J/K).
This ideal gas law is valid for dilute gases at any pressure (above the sat-
uration pressure and below the critical point). Therefore, for most of the
microscale gas flow applications we can predict the number density of the
molecules at a given temperature and pressure using equation (1.3). At
atmospheric pressure and 0oC the number density is n ≈ 2.69 × 1025 m−3.
If we assume that all these molecules are packed uniformly, we obtain the
mean molecular spacing as

δ ∝ n−1/3. (1.4)

Under standard conditions the mean molecular spacing is δ ≈ 3.3 × 10−9

m.
The mean molecular diameter of typical gases, based on the measured

coefficient of viscosity and the Chapman–Enskong theory of transport prop-
erties for hard sphere molecules (Chapman and Cowling, 1970), is of order
10−10 m (see Table 1.1 for various thermophysical properties of common
gases). For air under standard conditions, d ≈ 3.7 × 10−10 m (Bird, 1994).
Comparison of the mean molecular spacing δ and the typical molecular
diameter d shows an order of magnitude difference. This leads us to the
concept of dilute gas where δ/d � 1. For dilute gases, binary intermolecu-
lar collisions are more likely than simultaneous multiple collisions. On the
other hand, dense gases and liquids go through multiple collisions at a given
instant, making the treatment of intermolecular collision processes more
difficult. The dilute gas approximation, along with the molecular chaos
and equipartition of energy principles, leads us to the well-established ki-
netic theory of gases and formulation of the Boltzmann transport equation
starting from the Liouville equation. The assumptions and simplifications
of this derivation are given in (Sone, 2002; Cercignani, 1988; Bird, 1994).
In Section 15.4 we present an overview of the Boltzmann equation and
some benchmark solutions appropriate for microflows, and in Section 15.5
we explain the BBGKY hierarchy that leads from the atomistic to the con-
tinuum description.

Momentum and energy transport in a fluid and convergence to a ther-
modynamic equilibrium state occur due to intermolecular collisions. Hence,
the time and length scales associated with the intermolecular collisions are
important parameters for many applications. The distance traveled by the
molecules between collisions is known as the mean free path λ. For a
simple gas of hard spherical molecules in thermodynamic equilibrium the
mean free path is given in the following form (Bird, 1994):

λ = (2
1
2 πd2n)−1. (1.5)

For example, for air at standard conditions, λ ≈ 6.5 × 10−8 m.
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TABLE 1.1. Thermophysical properties of typical gases used in microdomain
applications at atmospheric conditions (298 K and 1 atm).

The gas molecules are traveling with speeds proportional to the speed of
sound. The mean-square molecular speed of gas molecules is given in
(Vincenti and Kruger, 1977):

c =
√

3p

ρ
=

√
3RT , (1.6)

where R is the specific gas constant. For air under standard conditions
this corresponds to 486 m/s. This value is about three to five orders of
magnitude greater than the typical average speed in microscale gas flows.

With regard to the time scales of intermolecular collisions, we can ob-
tain an average value by taking the ratio of the mean free path to the
mean-square molecular speed. This results in tc ≈ 10−10 seconds for air
under standard conditions. This time scale should be compared to a typi-
cal scale in the microdomain to determine the validity of thermodynamic
equilibrium.

In engineering practice, it is convenient to lump all the molecular effects
to space-averaged macroscopic or continuum-based quantities, such as the
fluid density, temperature, and velocity. It is important, however, to de-
termine the limitations of these continuum-based descriptions. Specifically,
we ask:

• How small should a sample size be so that we can assign it mean
properties?

Gas Density Dynamic Thermal Thermal Specific Mean
Viscosity Con- Diffusivity Heat Free

ductivity Path
[kg/m3] [kg/(m s)] [W/(m K)] [m2/s] [J/(kg K)] [m]

Air 1.293 1.85E-5 0.0261 2.01E-5 1004.5 6.111E-8

N2 1.251 1.80E-5 0.0260 2.00E-5 1038.3 6.044E-8

CO2 1.965 1.50E-5 0.0166 1.00E-5 845.7 4.019E-8

O2 1.429 2.07E-5 0.0267 2.04E-5 916.9 6.503E-8

He 0.179 1.99E-5 0.150 1.60E-4 5233.5 17.651E-8

Ar 1.783 2.29E-5 0.0177 1.93E-5 515.0 6.441E-8
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• At what scales will the statistical fluctuations be significant?

It turns out that sampling a volume that contains 10,000 molecules results
in 1% statistical fluctuations in the averaged quantities. Based on that, for
air at standard conditions the smallest sample volume that will result in
1% statistical variations is about 3.7 × 10−22 m3. If we try to measure the
macroscopic gradients (like velocity, density, and temperature) in three-
dimensional space, one side of our sampling volume will be about 65nm.

A key nondimensional parameter for gas microflows is the Knudsen
number, which is defined as the ratio of the mean free path over a char-
acteristic geometric length or a length over which very large variations of
a macroscopic quantity may take place. The Knudsen number is related to
the Reynolds and Mach numbers as follows:

Kn ≡ λ

L
=
√

γπ

2
M

Re
. (1.7)

In complex microgeometries where three-dimensional spatial gradients are
expected, definitions of instantaneous macroscopic values and their gradi-
ents become problematic for flows with Kn > 1 as the concept of macro-
scopic property distribution breaks down. However, for microchannels with
large aspect ratio (width to height), we can perform spanwise space aver-
aging to define an averaged velocity profile, and thus define the equivalent
macroscopic quantities.

Rarefaction effects become more important as the Knudsen number
increases and thus pressure drop, shear stress, heat flux, and corresponding
mass flowrate cannot be predicted from flow and heat transfer models based
on the continuum hypothesis. On the other hand, models based on kinetic
gas theory concepts are not appropriate either, except in the very high
Knudsen number regime corresponding to near vacuum conditions or very
small clearances. The appropriate flow and heat transfer models depend
on the range of the Knudsen number. A classification of the different flow
regimes is given in (Schaaf and Chambre, 1961):

• for Kn ≤ 10−2 the fluid can be considered as a continuum, while

• for Kn ≥ O(10) it is considered a free-molecular flow.

A rarefied gas can be considered neither an absolutely continuous medium
nor a free-molecular flow in the Knudsen number range between 10−2 and
10. In that region, a further classification is needed, i.e.,

• slip flow (10−2 < Kn < 0.1), and

• transition flow (0.1 < Kn < 10).

This classification is based on empirical information and thus the limits
between the different flow regimes may depend on the problem geometry.
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FIGURE 1.11. Limits of approximations in modeling gas microflows. L (vertical
axis) corresponds to the characteristic length and n/n0 is the number density
normalized with corresponding atmospheric conditions. The lines that define the
various Knudsen number regimes are based on air at isothermal conditions at
T = 273 K. Statistical fluctuations are significant below the line L/δ = 20.

This separation in different regimes is plotted in Figure 1.11, where we de-
fine the various flow regions as a function of the characteristic length scale
L in microns, and also the number density. In addition, we have included a
line that corresponds to L/δ = 20, below which statistical fluctuations are
present; this line corresponds to 1% fluctuations in macroscopic measure-
ments.

In many fluid-mechanical applications an analogy between different ge-
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ometric scales and dynamic conditions can be obtained by invoking the
concept of dynamic similarity. This enables us to determine the perfor-
mance of a fluidic device by experimenting on a scaled prototype under
similar physical conditions, characterized by a set of nondimensional pa-
rameters, such as the Reynolds, Mach, Prandtl, and Knudsen numbers. It
is therefore appropriate to pose this question for gas microflows:

• Are the low-pressure rarefied gas flows dynamically similar to the gas
microflows?

The answer to this question depends on the onset state of statistical fluctu-
ations and also on wall surface effects. For example, at standard conditions
for air, the value of the Knudsen number Kn = 1 is obtained at about
a 65 nm length scale. For smaller length scales, corresponding to higher
Knudsen number regimes, the average macroscopic quantities cannot be
defined. However, for low-pressure flows, for example, at 100 Pa and 270
K, the 1% statistical scatter limit sets in at about L ≈ 0.65µm, since
δ ∼ p−1/3. However, at this low-pressure condition, Kn = 1 corresponds
to the characteristic length of about 65µm. This length scale is two orders
of magnitude larger than the one at the onset of the statistical scatter at
these conditions. Therefore, macroscopic property distributions can be de-
fined without any significant statistical fluctuations. Hence, for dynamic
similarity approaches for gas microflows to be valid, the onset of statisti-
cal scatter should be carefully considered. Also, Figure 1.11 shows a dense
gas region where the Kn = 0.1 line crosses the 1% statistical scatter line.
For dense gas flows in this region, the Navier–Stokes equations are valid,
but the results show large statistical deviations due to the onset of the
Brownian motion.

1.2.2 Mixed Flow Regimes
In the examples of Section 1.1, the gas flow cannot be modeled based on
the continuum hypothesis. The mean free path of air, which at standard
atmospheric conditions is about 65 nm, is comparable to the characteristic
geometric scale, and therefore microscopic effects are important. For ex-
ample, in the case of computer hard drives, the load capacity predicted by
the continuum Reynolds equations without slip is in error by more than
30% (Fukui and Kaneko, 1988; Alexander et al., 1994). This deviation of
the state of the gas from continuum is measured by the Knudsen number
Kn. For the micromotor, using a length scale of L = 3µm (the gap be-
tween rotor and the base) and assuming that the operation conditions are
atmospheric, we obtain the value Kn = 0.022. For the magnetic disk drive
(slider bearing) the Knudsen number is Kn = 1.3, and in ultralow clear-
ances corresponding to increased recording capacity, the Knudsen number
is well above unity. Also, in other capillary flows, such as in helium leak
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FIGURE 1.12. Typical MEMS and nanotechnology applications in standard at-
mospheric conditions span the entire Knudsen regime (Continuum, slip, transi-
tion, and free-molecular flow). Here h denotes a characteristic length scale for the
microflow.

detection microdevices and mass spectrometers, the Knudsen number may
achieve values up to 200 (Tison, 1993).

The operation regimes of typical microsystems at standard temperature
and pressure are shown in Figure 1.12. MEMS devices operate in a wide
range of flow regimes covering the continuum, slip, and transition flow.
Further miniaturization of MEMS device components and applications in
the emerging field of nano-electro-mechanical systems (NEMS) (Craighead,
2000; Ho, 2001) would result in higher Knudsen numbers, making it neces-
sary to study mass, momentum, and energy transport in the entire Knudsen
regime.

1.2.3 Experimental Evidence
An experimental illustration of the taxonomy described in Figure 1.11 is
provided in Figure 1.13, where we plot data obtained by S. Tison at the
National Institute of Standards (NIST) (Tison, 1995) at very low pressures
in a pipe of diameter 2a = 2 mm (a is the radius) and length L = 200
mm. Both inlet and outlet pressures were varied in the experiment, with
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FIGURE 1.13. Variation of mass flowrate as a function of (P 2
in − P 2

out). The data
are for rarefied gas flow experiments conducted by S. Tison at NIST (Kn is based
on the exit pressure).

the corresponding Knudsen number varied from almost 0 to 200. In this
log-log plot, we can easily identify three distinct flow regimes, although the
corresponding values at the boundaries between the different flow regimes,
are somewhat different from the aforementioned ones (Schaaf and Chambre,
1961). In particular, the slip flow regime extends up to Kn = 0.6 and
the transition regime up to Kn = 17. It is interesting to notice the very
slow variation of mass flowrate in terms of the pressure difference in the
transition regime. The form of the plot in Figure 1.13 also suggests that
a nonlinear pressure drop exists in this rarefied pipe flow. This was also
verified in the slip flow experiments of (Sreekanth, 1969) in pipes with a
diameter of 2 inches at low pressures.

The experimental data of Figure 1.13 are for a relatively large pipe, but
at reduced variable pressure, so that a wide range of Knudsen numbers
is covered. However, similar trends have been observed in microchannels.
Specifically, the pressure distribution along the microchannel was measured
by using a surface micromachined system with a number of sensors as part
of the surface (Liu et al., 1993; Pong et al., 1994). A nonlinear pressure
distribution was clearly demonstrated in these experiments. Scaling of the
mass flowrate with the difference of pressure squares is characteristic of
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FIGURE 1.14. Variation of mass flowrate as a function of (Pin − Pout). Linear
pressure drop is obtained in the high Knudsen number flow regime (i.e., Kn > 17).

compressible low Reynolds number flows in long channels. To demonstrate
this more clearly we replot the same data as mass flowrate versus linear
pressure drop, which would be more appropriate for an incompressible pipe
flow. This is shown in Figure 1.14, where we see that in this form there
are no particular trends or correlations, except in the free-molecular flow
regime, where the pressure drop is linear, in accordance with the free-
molecular flow theory, see (Kennard, 1938), p. 304.

Systematic experiments that show significant deviations from continuum
behavior in microchannel flows were performed (starting in 1988) at the
University of Pennsylvania (Pfahler et al., 1991). Figure 1.15 shows results
from these first experiments. In particular, the ratio of Poiseuille number
obtained experimentally over the Poiseuille number obtained theoretically
for two different theoretical approaches is plotted. The ratio is defined as

C∗ =
(Po)exp

(Po)th
, (1.8)

where the Poiseuille number is

Po = CfRe

with Cf the friction factor and Re the Reynolds number. For flow in a cir-
cular pipe the theoretical value is (Po)th = 64, and for a two-dimensional
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FIGURE 1.15. Ratio of the Poiseuille number obtained experimentally normal-
ized by the Poiseuille number obtained theoretically (equation (1.8)). The dashed
line corresponds to normalization with no-slip theory and the solid line to slip
theory. Here triangles and circles correspond to the nitrogen and helium flow in
a 0.51µm microchannel, respectively. (Courtesy of H. Bau.)

channel (Po)th = 96. The data are from the experiments of (Harley et al.,
1995) for a microchannel of 0.51µm deep; this is case (JH6) studied in Sec-
tion 4.1.2. The inlet pressure varied from 1.1 MPa to 3.5 MPa, and the
exit pressure was atmospheric. The Mach number was kept below 0.02 for
all experiments and the Knudsen number ranged from 0.004 to 0.373. It is
interesting to see that the velocity slip effect is more pronounced in the low
Reynolds number regime. This is consistent with the fact that the Knudsen
number scales inversely proportionally to the Reynolds number (see equa-
tion (1.7)). For example, for Re = 0.012 the inlet Knudsen number was
0.025 and the outlet Knudsen number was 0.373.

For liquids the noncontinuum behavior is more difficult to detect. It is
manifested as anomalous diffusion, i.e., different diffusion in the near-wall
region than in the bulk, and is associated with the rheology of the liq-
uid. Early studies by (Debye and Cleland, 1959) with paraffin in porous
Vycor glass indicated the presence of a slipping adsorbed thin layer. This
could either increase or decrease the pressure drop compared to the con-
tinuum behavior; both C∗ < 1 and C∗ > 1 were measured. A possibility
of permanent structural modification of water in a very thin film was re-
ported in (Derjaguin, 1970), but such results have been largely rejected.
In a follow-up study (Derjaguin et al., 1983), it was demonstrated that
C∗ ≈ 2.5 for sebacine-amyl ester within a thickness of 12 nm, and 100 nm
for nitrobenzene. This high viscosity was attributed to an ordered bound-
ary phase. However, careful experiments by (Israelachvili, 1992b) using the
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FIGURE 1.16. Results for silicone oil. Ratio of the Poiseuille number obtained
experimentally over the Poiseuille number obtained theoretically (equation (1.8)).
Channels with different sizes (cross-sections) are tested as shown in the legend.
(Courtesy of H. Bau.)

atomic force microscope (AFM) showed that water films as thin as 2nm
(corresponding to approximately ten molecular diameters) have continuum-
like diffusion characteristics. We have already seen in Figure 1.7 that large
density fluctuations occur below ten molecular diameters, and thus in that
region it is possible to have C∗ � 1. Water is a seemingly simple fluid, but
its numerical modeling is quite difficult; its static and dynamic behavior
deserves a separate study, as we present in Chapter 11.

The work of Bau and collaborators (see (Bau and Pfahler, 2001), and
references therein) included experiments with different types of liquids in
microducts with diameter from 0.48 to 40µm. Specifically, systematic ex-
periments with isopropyl alcohol, silicone oil, and distilled water were con-
ducted. A typical result for silicone oil is shown in Figure 1.16, where C∗ is
plotted against the Reynolds number. For the small channels and for low
Reynolds number, C∗ < 1 is observed, but for larger channels, C∗ > 1 is
observed. In general, the deviation of C∗ from the theoretical value C∗ = 1
(using continuum theory) is of order 20% for all cases tested. A history of
the research efforts in establishing the no-slip condition as well as concep-
tual models of slip in liquids are discussed in Section 10.5.
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1.3 The Pioneers

A systematic research effort in micromechanics in the context of MEMS
devices, i.e., fabrication and operation, began in the late 1980s. Richard
Feynman, in his prophetic lecture in 1959 “There’s plenty of room at the
bottom,” described new vistas and novel new applications in microscale
science and engineering. In a follow-up lecture in 1983 at the Jet Propulsion
Laboratory, Feynman revisited this subject, anticipating some of today’s
standard MEMS technologies such as the sacrificial-layer method of making
silicon micromotors, the use of electrostatic actuation, and the importance
of friction and contact sticking in such devices. Both lectures are included
in (Trimmer, 1997), where other classical and seminal papers in MEMS
and micromechanics up to 1990 can be found.

Fundamental work in microflows started much earlier. In 1846, Poiseuille
published the first paper describing flow in tubes with diameters ranging
from 30µm to 150µm (Poiseuille, 1846). His studies with liquids led to the
well-known relationship between flowrate, pressure drop, and tube geom-
etry, although he seemed to be unaware of the viscosity concept at that
time. In 1909, Knudsen studied gas flows through glass capillary tubes in
the transition and free molecular flow regimes (Knudsen, 1909). In these
experiments, the volumetric flowrate normalized with the inlet to exit pres-
sure difference (Q̇/(Pi − Po) showed a minimum at Kn ≈ 1, when plotted
against the average pressure in the capillary. This counter intuitive behav-
ior is known as the Knudsen’s paradox or Knudsen’s minimum. The first
known experiment of flow in a microchannel was performed by Gaede in
1913, who placed two parallel plates 4 µm apart (Gaede, 1913). Gaede found
that the flowrate of hydrogen decreases about 50% from the free-molecular
value while passing through a minimum and then rising with increasing
pressure levels. In long capillaries, the difference between the minimum
and the free-molecular value is only 5 to 8%, as also seen in Figure 1.17.
Although Knudsen’s minimum is measured in smooth capillaries, crimped
tubes do not exhibit this behavior (Tison, 1993). Therefore, rarefied flows
behave differently in pipes and channels, and the surface conditions can
be important in gas transport in the transitional and free-molecular flow
regimes.

Driven by the growing number of microsystem applications, a number of
experimental studies with microchannels were conducted in the late 1980s
both for gases and liquids. The first recent experimental study of microflows
using micromachined channels was reported in (Pfahler et al., 1991; Harley
et al., 1995), in the Reynolds number range 0.50 ≤ Re ≤ 20. For gases, the
Knudsen number was 0.001 ≤ Kn ≤ 0.363 for hydraulic channel diameter
DH = 8µm and channel length 11 mm. The corresponding Mach number at
the inlet was very small, but at the exit it reached in some cases the value
M = 0.7, corresponding to substantial pressure drop. The reported skin
friction reduction due to apparent slip of the flow was confirmed in other
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FIGURE 1.17. Mass flowrate normalized with its free-molecular value versus
Knudsen number. Gas flow in smooth capillary tubes exhibits Knudsen’s min-
imum around Kn = 1, but crimped tubes do not exhibit a minimum (Tison,
1993).

similar experimental studies with gases (Liu et al., 1993; Pong et al., 1994;
Arkilic et al., 1994) using different microfabrication techniques to make the
microchannels. In particular, the paper in (Liu et al., 1993), describes the
first-ever fabricated microchannel with several in situ pressure sensors as
an integral part of the microchannel.

One particular set of highly accurate data, which can be used for val-
idation of theory and simulations in microflows, was obtained by Breuer
and collaborators (Arkilic and Breuer, 1993; Arkilic et al., 1994; Arkilic,
1997). A schematic of the microchannel used in the measurements is shown
in Figure 1.18. It has length L = 7.5 mm, width W = 52.25µm, and height
H = 1.33µm. Examination of scanning electron microscope (SEM) images
showed that the height was uniform and that the roughness was below 65
nm. The pressures at the inlet and outlet are measured, as well as the
temperature of a small tank where the mass is accumulated. One set of
measurements for argon flow is shown in Figure 1.19; plotted is the mass
flowrate versus the inlet-to-outlet pressure ratio. The exhaust pressure was
kept at 101 kPa. Theoretical predictions based on no-slip and slip theory
are also included in the plot, and they reveal a clear rarefaction effect. These
measurements have been used by Breuer and collaborators (Arkilic et al.,
1994) to obtain values of tangential momentum accommodation coefficients
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FIGURE 1.18. Schematic of the channel used in high resolution measurements of
mass flowrate (Arkilic, 1997). The channel height is H and the channel length is
L. This is a dual-tank accumulation technique, coupled to high precision control
of temperature and pressure fluctuations in the system. (Courtesy of K. Breuer.)

in silicon microchannels (see Section 2.2.2 for the details). The resolution
of this mass flow system is down to 10−12 kg/sec. The system has also good
rejection of common-mode noise (usually due to microthermal fluctuations
in the testing environment) and can be adapted to measure mass flows at
any range with any working fluid, including liquids.

An important and exciting result on the experimental side has been the
development of techniques that can measure velocity profiles accurately
in microchannels, e.g., using micro-particle-image velocimetry (microPIV)
(Meinhart et al., 1999; Santiago et al., 1998). In Figure 1.20 we plot such
measurements in a 30 µm ×300µm channel for Stokes flow (Meinhart et al.,
1999). The two-dimensional velocity field is measured using micron resolu-
tion PIV. The spatial resolution, defined by the size of the first interroga-
tion window, is 13.8µm ×0.9µm. A 50% overlap between the interrogation
spots yields a velocity vector spacing of 450 nm in the wall-normal direc-
tion near the wall. This high spatial resolution is made possible by using
relatively low particle concentrations in the flow, and by incorporating a
specialized interrogation algorithm to increase the signal to noise ratio.
This algorithm averages in time a series of particle image correlation func-
tions, and searches the time-averaged correlation function to determine the
location of the displacement signal peak (Meinhart et al., 2000).

A three-dimensional particle-tracking technique was developed by (Kihm
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FIGURE 1.19. Mass flowrate versus pressure ratio for argon microflow. The solid
line denotes slip-flow theory, the dash-dot no-slip theory, and the crosses the
measurements. The flow is accumulated in a chamber attached to the outlet as
shown in Figure 1.18. (Courtesy of K. Breuer.)

et al., 2004) to investigate nanoparticle motion near a solid surface using
the Ratiometric Total Internal Reflection Microscopy (R-TIRFM) tech-
nique. This allowed three-dimensional reconstruction of particle trajectories
by combining two-dimensional lateral tracking techniques with R-TIRFM
for tracking vertical particle motions. Using R-TIRFM, they were able to
measure motions of fluorescence-coated polystyrene spheres of 200±20 nm
diameter (specific gravity 1.05). Figure 1.21 shows Brownian motion of a
single particle suspended in water at 293 K. Figure 1.21 (upper) shows the
time history of three-dimensional particle locations over 67 imaging frames,
recorded for a duration of 2.23 seconds. The symbols in the upper plot show
particle–surface locations closest to the bottom glass surface. Figure 1.21
(lower) shows lateral displacement of particles in the x-y plane and ver-
tical displacements in the z-direction. The results indicate horizontal and
vertical resolutions of approximately 200 nm and 50 nm, respectively.

Biomimetic concepts can play an important role in designing function-
alized devices at microscales; see Chapter 13. Self-assembly is a field that
originated in organic chemistry, but it has had a great impact on micro- and
nanofabrication of complex structures thanks to the pioneering studies of
Whitesides and his collaborators (Whitesides and Grzybowski, 2002). Self-
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FIGURE 1.20. MicroPIV measurements. Shown is a time-averaged velocity vector
field of Stokes’ flow through a 30×300 µm channel. (Courtesy of C.D. Meinhart.)

assembly is one of the few practical methods for making nanostructures; it
is simple and can use a wide range of materials, in contrast to other tech-
niques, e.g., micromachining, stereolithography, three-dimensional printing,
or holographic lithography.

Self-assembly is the autonomous organization of components into differ-
ent structures without human intervention. It is classified as static self-
assembly or dynamic self-assembly. In the former type, systems are at
equilibrium and do not dissipate energy, e.g., folded proteins and molecular
crystals. In the latter type, interactions between the members of the assem-
bly occur only if energy is dissipated, e.g., oscillating and reaction–diffusion
reactions and bacteria swarms. (Whitesides and Grzybowski, 2002). Self-
assembly requires that the components be mobile, and therefore a flu-
idic environment can accommodate this requirement. Correspondingly, self-
assembly is typically driven by van der Waals, electrostatic, magnetic, cap-
illary, and entropic interactions.

An example of fabrication of a functionalized microdevice using self-
assembly exploiting capillary interactions is shown in Figure 1.22, taken
from (Jacobs et al., 2002). Specifically, unpackaged GaAs/GaAlAs LEDs
with a chip size of 280 µm ×200 µm are used as components, which are
assembled on a cylindrical solder substrate. To induce the LEDs to assem-
ble into a well-defined array, 113 solder-based receptors were fabricated on
the substrate. The surface of the liquid solder wets and adheres to the back
side of the LEDs. The components were suspended in water and agitated
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(b)

FIGURE 1.21. Manual tracking of Brownian motion of a single 200 nm particle
suspended in water at 293 K. Upper: History of three-dimensional locations over
67 imaging frames recorded for the duration of 2.23 s; and Lower: History of its
x-y-z directional displacements. (Courtesy of K.D. Kihm.)

gently initially. The driving force for the assembly is due to the minimiza-
tion of free energy of the solder–water interface. Figure 1.22 shows a fully
addressable cylindrical display, but other planar arrays were also fabricated
with this approach on a much larger area. The one shown in the figure has
eight columns of eight receptors interleaved with seven columns of seven
receptors on the bottom electrode that connect to 15 rows of crossing cop-
per wires on the top electrode. To test the functionality of the display with
all its interconnects, a potential of 2 V was applied between the top and
substrate electrodes. Solder-based assembly is appropriate for connecting
components electrically and also provides mechanical strength.
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FIGURE 1.22. Scanning electron micrographs (SEM) of a cylindrical display.
(A) Images of LEDs that assembled into a regular array. (B) Display after
self-alignment of the top electrode. (C to E) Photographs of the operating display
performing different functions. (Courtesy of G.M. Whitesides.)

1.4 Modeling of Microflows

We consider in this book gas, liquid, and particulate microflows and present
governing equations, simplified models, and efficient numerical methods
that can be used in simulations. Specifically, modeling of microflows is dis-
cussed in Chapters 2 to 9 based on continuum or quasi-continuum approx-
imations. Because of the unfamiliar physics involved, detailed simulations
are required, and this necessitates either using atomistic (particle-based)
simulations or adding correction terms to the macroscopic full simulation
methods. For example, in the slip flow regime it is reasonable to employ
the Navier–Stokes equations modified at the wall surface with appropriate
velocity slip and temperature jump conditions.

In Chapter 2 we present continuum-based velocity slip and temperature
jump models for gas microflows, in conjunction with the appropriate gov-
erning equations for the slip and transitional flow regimes.

The fundamental assumption in this analysis is the dynamic simi-
larity of microflows with rarefied flows encountered in a low-pressure
environment.

This assumption is justified theoretically based on the analysis of the Boltz-
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mann equation for small Reynolds number and Knudsen number (Sone,
2002). Based on this assumption, gas microflows are simulated subject to
slip boundary conditions. In order to demonstrate the effects of rarefaction
and slip in microgeometries we compare these findings with the continuum
no-slip solutions whenever possible. In gas microflows we encounter four
important effects:

• rarefaction,

• compressibility,

• viscous heating, and

• thermal creep.

In particular, we investigate the competing effects of compressibility and
rarefaction, which result in a nonlinear pressure distribution in microchan-
nels in the slip flow regime. Curvature in pressure distribution is due to
the compressibility effects, and it increases with increased inlet to outlet
pressure ratios across the channels. The effect of rarefaction is to reduce
the curvature in the pressure distribution. This finding is consistent with
the fact that the pressure distribution becomes linear as the free-molecular
flow regime is reached (Kennard, 1938). The viscous heating effects are due
to the work done by viscous stresses (dissipation), and they are impor-
tant for microflows, especially in creating temperature gradients within the
domain even for isothermal surfaces. The thermal creep (transpiration) phe-
nomenon is a rarefaction effect. For a rarefied gas flow it is possible to start
the flow with tangential temperature gradients along the channel surface.
In such a case the gas molecules start creeping from cold toward hot (Ken-
nard, 1938; Kruger et al., 1970). Thermal creep effects can be important in
causing variation of pressure along microchannels in the presence of tan-
gential temperature gradients (Fukui and Kaneko, 1988). This mechanism
is also significant for transport through porous media in atmospheric con-
ditions (Loeb, 1961; Vargo and Muntz, 1996). Other temperature-induced
flows are studied in Section 5.2.

Modeling of liquids in microdomains, see Chapters 7–9, requires a dif-
ferent approach. In mesoscopic scales a continuum description suffices (see
Chapter 14), whereas in submicron dimensions atomistic modeling is re-
quired (see Chapter 16). We have already discussed slip phenomena in
liquids in Section 1.2; however, other phenomena may be present, for ex-
ample:

• wetting,

• adsorption, and

• electrokinetics.
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FIGURE 1.23. Transmission electron micrographs showing continuum behavior in
a nanotube of large-diameter (left) and non-continuum behavior in a nanotube
of diameter about ten times smaller (right). These two images demonstrate a
dramatically different degree of interaction between fluid/wall for the two cases.
(Courtesy of C.M. Megaridis, A.G. Yazicioglu and Y. Gogotsi.)

The wetting of the solid surfaces by liquids can be exploited in microflu-
idics to determine precisely defined routes based on surface tension gradi-
ents and different types of surfaces, i.e., hydrophobic or hydrophilic. Control
can be accomplished via active contaminants or thermally; see Chapter 8.
Wetting may also affect flow and performance of a MEMS device by al-
tering its mechanical response or even blocking flow channels. While there
exist macroscopic descriptions of wetting, they do not fully incorporate
effects such as hysteresis (Dussan, 1979; deGennes, 1985), layering, and
monolayer spreading (Heslot et al., 1989; Jin et al., 1997). Hysteretic ef-
fects can have a dramatic effect on the value of the contact angle and the
strength of surface tension. In modeling wetting phenomena it is important
to incorporate the possible deformation of the solid in wetting processes,
since local regions of high stress can produce distortions of the elastic solid
(Shanahan, 1988), e.g., the elastomeric walls used in some patterned drug
delivery applications.

Adsorption is important in interactions of liquids with nanoporous ma-
terials such as glasses. The boundary conditions for fluid flow are very
sensitive to the type and amount of adsorption on the walls of a MEMS
device. Liquids confined in microgeometries exhibit a supercooling of the
liquid–solid phase transition, which can be quite substantial and depends
strongly on the geometry of the pores (Tell and Maris, 1983). Anomalous
diffusion has been observed experimentally, and it is manifested as either
suppression of the diffusion coefficient by two orders of magnitude at the
boundary (Dozier et al., 1986), or an enhancement by an order of mag-
nitude over the bulk (D’Orazio et al., 1989). The key parameter in such
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surface–bulk interactions is the degree of pore filling.
An intriguing flow regime has been discovered by Megaridis and his col-

laborators, see (Megaridis et al., 2002; Ye et al., 2004; Naguib et al., 2004),
in nanotubes containing multiphase flow at high pressure, see Figure 1.23.
The left figure shows a transmission electron microscope image of a fluid-
filled multi-walled closed carbon nanotube synthesized using a hydrother-
mal procedure. The nanotube contains a stable liquid membrane bordered
by two gas bubbles. Note the well-defined menisci separating the gas and
liquid phases. On the right a much smaller nanotube is shown, about ten
time less in diameter. This three-walled carbon nanotube, which was pro-
duced using arc evaporation, has been subsequently filled with water via
high-temperature high-pressure treatment in an autoclave. The fluid inter-
faces are no longer smooth, as in the larger nanotube. The liquid molecules
appear to form a long chain, with dry areas visible close to the wall. Amor-
phous carbon is present on the nanotube wall exterior. The graphene sheets
seen in the lower portion of the micrograph belong to larger carbon nan-
otubes, which, however, are void of fluids. The walls of the nanotubes
are made of carbon (graphene) layers, but the gaps in between the car-
bon atoms do not allow water to seep through. Only hydrogen can escape
through these very fine pores. This explains why these multilayered walls
can contain the fluid contents at such high pressures for quite some time.
For the larger nanotube, the volume of the liquid inclusion is about 10−18

liters, and the pressure difference across the liquid is in the range of 1–
3 MPa. The double meniscus bounding the liquid in the larger nanotube
shows good wettability of the inner carbon walls by the water-based fluid;
it can be possibly described by continuum-based simulations, see Chapter
14. However, on the smaller nanotube the noncontinuum behavior requires
atomistic simulations, see Chapter 16. The closed-end tube is typical of
samples made through a hydrothermal process (Libera and Gogotsi, 2001;
Ye et al., 2004). These nanotube samples were frequently found to contain
a high-pressure multicomponent fluid showing curved interfaces separat-
ing the liquid from the gas phase. The heating experiments performed in
(Megaridis et al., 2002), reported an array of dynamic interface phenomena
visualized in real time in the nanotube interior.

Another very interesting multiphase flow at nanoscales is shown in Figure
1.24. The cross-flow device is a T-junction consisting of two nanochannels,
one containing water and the other hexadecane plus 2% Span80. Because
the two fluids are immiscible, an instability is formed. The pictures show
the resulting patterns of water in oil emulsions in the outlet channel. The
complexity varies dramatically as a function of the pressure applied to
the input channels, as indicated in Figure 1.24. Each of these streams is
generated spontaneously and is continuously moving as more droplets are
formed. This regime too can be described by quasi-continuum approxima-
tion.

Electrokinetic effects are important in microfluidics; they provide a means
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of maintaining a certain level of flowrate with practically uniform profiles;
see Chapter 7. They were first discovered in experiments with porous clay
(Reuss, 1809; Wiedmann, 1852). The basic mechanism is based on the
interaction of an ionized solution with static charges on dielectric surfaces
such as glass. A high concentration of ions is present next to the wall
with strong electrostatic forces. If a voltage difference is applied along a
microchannel, flow is initiated very close to the wall within a distance
of less than 100 nm. This situation can be modeled with a slip velocity
proportional to the electric field, and a continuum approach suffices to
describe this flow.

1.5 Modeling of Nanoflows

Fluid flows in nanometer scale channels and pores, referred to as nanoflows,
play an important role in determining the functional characteristics of many
biological and engineering devices and systems. In this section, we first
introduce a few applications in which nanoflows play an important role and
then discuss issues in modeling nanoflows. In Chapters 10–13 we present
fundamental aspects of nanoflows.

Ionic channels are naturally occurring nanotubes found in the membranes
of all biological cells (Hille, 2001). They are defined as a class of proteins,
and each channel consists of a chain of amino acids folded in such a way that
the protein forms a nanoscopic water-filled pore controlling the transport
of ions in and out of the cell, and in and out of compartments inside cells
like mitochondria and nuclei, thereby maintaining the correct internal ion
composition that is crucial for cell survival and function. Each channel car-
ries a strong and steeply varying distribution of permanent charge, which
depends on the particular combination of channel and prevalent physiolog-
ical conditions. The narrowest diameter of an ion channel can vary from a
few angstroms to tens of angstroms. For example, shown in Figure 1.25 is
a gramicidin ion channel, which is one of the smallest ion channels, with a
critical diameter of 4 Å and a length of 25 Å. Many ion channels have the
ability to selectively transmit or block a particular ion species, and most
exhibit switching properties similar to electronic devices. Malfunctioning
channels cause or associate with many diseases, and a large number of
drugs act directly or indirectly on ion channels. The possibility to incor-
porate ion channel structures in electronic circuits as sensing, memory, or
even as computational elements opens up exciting new opportunities and
great challenges. Given the physiological importance of ion channels, it is
important to understand the flow of water and electrolytes in naturally ex-
isting nanoscopic pores in the presence of a strong permanent charge; see
Chapters 12 and Section 13.2.

Another application in which nanoflows are gaining considerable at-
tention is the translocation of deoxyribonucleic acid (DNA) through a
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nanopore. Functional analysis of the genome will require sequencing the
DNA of many organisms, and nanometer–scale pores are being explored
for DNA sequencing and analysis. The characteristic that makes nanopores
useful for analysis of DNA or other individual macromolecules is that the
scale of the pores is the same as that of the molecules of interest. For exam-
ple, the diameter of single-stranded DNA (ssDNA) is approximately 1.3 nm,
while the diameter of the narrowest restriction in α-haemolysin protein, the
most commonly used organic pore for DNA analysis, is approximately 1.5
nm (Nakane et al., 2003; Kasianowicz et al., 1996). Although natural ion
channels have many desired properties for sensing and analysis of macro-
molecules, they usually work only in carefully controlled conditions and are
difficult to integrate with other components of a device. As a result, there
has been a significant amount of work devoted to building robust and easy-
to-integrate sensing and analysis devices based on synthetic nanopores (Li
et al., 2001). Figure 1.26 shows the schematic of a nanopore-based DNA
sequencing system. The basic idea is that as a DNA molecule is pulled
through the nanopore immersed in an electrolyte solution by an external
electric field, the partial charges on the DNA, which are different for differ-
ent DNA sequences, will change the electric current through the pore. The
observed current variation will serve as a signature to differentiate various
DNA sequences. The diameter of the nanopore must be sufficiently small
(typically less than 5 nanometers) so that the electric current can be sen-
sitive to the DNA molecule passage. Since a nanopore device needs only a
few DNA molecules to obtain reliable results, it can be much cheaper and
faster compared to the traditional fluorescence-based detection schemes, in
which much of the time and cost are devoted to making copies and purify-
ing the DNA molecules so as to obtain a reasonable signal-to-noise ratio.

Another emerging application in which nanoflows are gaining importance
is that of molecular gates (Kuo et al., 2003a; Kuo et al., 2003b). Nanoporous
membranes can be used to interface vertically separated microfluidic chan-
nels to create a truly three-dimensional fluidic architecture, as shown in
Figure 1.27. Such hybrid three-dimensional architectures can be used for
gateable transfer of selected solution components between vertically sepa-
rated microfluidic channels. For example, by adjusting the voltages applied
at the terminals, and by controlling the polarity and density of the sur-
face charges of the nanopores, vertical transport of analyte through the
nanopores can be controlled precisely. Integration of such fluidic circuits
into a single chip can thus enable very complicated fluidic and chemical
manipulations. Bohn and colleagues (Kuo et al., 2003b) have also shown
that even when operated in a passive mode, without external manipula-
tion, the nanochannels can separate solutions in different layers and inhibit
mixing while the fluidic manipulations are performed in each of the mi-
crochannels. The diameter of the cylindrical pores is usually on the order
of 10 to 100 nm. In nanopores, flow occurs in structures of the same size as
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physical parameters that govern the flow. For example, in molecular gates,
the Debye length (see Figure 1.27), which characterizes the length scale
of ionic interactions in a solution, can be comparable to the diameter of
the pore (Kuo et al., 2001). In microflows, the Debye length is negligible
compared to the channel diameter. As a result, the flow characteristics in
nanochannels can be different compared to the flows in microchannels; see
Chapter 12.

Even though we have discussed only three examples in which nanoflows
play an important role in determining the characteristics of the system,
there are a number of other applications such as fuel cell devices, drug deliv-
ery systems, chemical and biological sensing and energy conversion devices,
and a number of other nanodevices in which nanoflows are important and
need to be understood in great detail. With advances in nanofabrication
techniques, it is now possible to fabricate devices with diameters ranging
from a few angstroms to few hundred nanometers. Such advances make
it possible to understand fundamental physical mechanisms in nanoflows
through a detailed comparison between experimental and theoretical stud-
ies.

The study of nanoflows has attracted significant attention in recent years,
since the fundamental issues encountered in nanoflows can be different from
those of microflows and macroflows for of the following reasons:

1. The surface-to-volume ratio is very high in nanofluidic systems.

2. The critical channel dimension in nanoflows can be comparable to
the size of the fluid molecules under investigation.

3. Density fluctuations over interatomic distances can be important in
nanoflows, while they can be largely neglected at larger scales.

4. Transport properties such as the diffusion coefficient and viscosity
can be different in confined nanoflows.

5. The interaction of the fluid with the surface (e.g., hydrophilic versus
hydrophobic) can have a profound influence on the flow characteris-
tics in nanochannels.

6. The validity of the continuum theory can be questionable for confined
nanoflows.

7. The issue of boundary conditions at solid–liquid interfaces at nanoscales
is not very well understood.

8. Anomalous behavior has been observed in nanoflows.

In this book, we discuss a number of fundamental issues encountered in
nanoflows. Much of the new physics encountered in nanoflows can be under-
stood by studying simple fluids (such as Lennard–Jones liquids) in confined
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nanochannels. In Chapter 10, we discuss simple fluids in nanochannels. In
Chapter 11, we discuss the static and dynamic properties of water confined
in nanochannels. Finally, in Chapter 12, we discuss electroosmotic flow in
confined nanochannels.

1.6 Numerical Simulation at All Scales

While the first part (Chapters 2–6) and second part (Chapters 7–13) ad-
dress physical modeling issues of gas flows and liquid flows, respectively,
at all scales, the third part of the book is devoted to descriptions of differ-
ent numerical methods. A summary of possible simulation approaches at
the atomistic and continuum levels for both gas and liquid microflows is
shown in Figure 1.28. In this book we present in some detail the atomistic
approaches (DSMC, MD, DPD, Lattice Boltzmann) and representative dis-
cretizations for the continuum approaches (spectral elements and meshless
methods). Specifically, Chapter 14 describes continuum-based approaches,
while Chapters 15 and 16 describe atomistic-based approaches.

Some of these algorithms, even for the continuum, have been used ex-
tensively in simulating microflows, such as the direct simulation Monte
Carlo method (DSMC), while others have only recently been applied to
this field, e.g., meshless methods. The force coupling method for partic-
ulate microflows that we present in Section 14.3.2 is an example of an
efficient method for a very difficult problem involving many moving inter-
faces. We selected these methods carefully, taking into account the interdis-
ciplinary character of microsystems applications, where full-system simu-
lation requires simultaneous solutions of fluidic, electrical, mechanical, and
thermal domains. Therefore, suitable methods for microsystems should be
very efficient but also very accurate, since new and unfamiliar physics in
the microdomain requires resolution-independent simulation studies. They
should also be very flexible, especially in the context of moving domains,
and therefore meshless methods seem a good candidate.

In Chapter 15 we present atomistic methods for gas microflows and
nanoflows. We start with the most popular approach, direct simulation
Monte Carlo (DSMC), for steady and unsteady flows, and summarize prac-
tical guidelines that need to be followed in simulations of rarefied gases. We
then discuss techniques of coupling DSMC with continuum descriptions,
and we analyze microfilters as an example. We also include an overview of
the Boltzmann equation as well as benchmark solutions in the slip flow and
transitional regimes, that could be useful to the reader for validation of ex-
perimental and numerical results. Finally, we present the lattice Boltzmann
method, which solves the Boltzmann equation fast but in a constrained sub-
space. This method too could be a very effective tool for simulating flows
in complex microgeometries.

In Chapter 16 we present atomistic methods for liquid microflows and
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nanoflows. We provide the general formulation of the molecular dynamics
(MD) method as well as specific subsections on different types of potentials,
thermostats, and practical guidelines for data analysis as well as sources
for available software. We then discuss multiscale modeling, i.e., coupling
of atomistic and continuum descriptions, and we apply an embedding mul-
tiscale method to electroomostic flows at nanoscales. A new method, dis-
sipative particle dynamics (DPD), is presented last; it is a stochastic MD
approach for modeling liquid flows at the mesoscopic level, and it is a po-
tentially very effective tool for multiscale modeling of liquids.

1.7 Full-System Simulation of Microsystems

MEMS and microfluidic systems are characterized by the presence of mul-
tiple energy domains like mechanical, electrical, magnetic, and thermal, as
shown in Figure 1.29. These devices are often integrated with components
such as electronics, optics, and other micromechanical components to create
integrated systems, thereby adding more energy domains and complexity
to the system. A generic example of a largely simplified microfluidic system
is shown schematically in Figure 1.30. This system is made up of a microp-
ump, a microflow sensor, and an electronic control circuit. The electronic
circuit may be used to adjust the pump flowrate so that a constant flow is
maintained in a microchannel. The simulation of the complete system re-
quires models for the micropump, the microflow sensor, and the electronic
components associated with the control circuit. Another example of an in-
tegrated system is the large-scale integration of microfluidic channels on a
chip. Quake and colleagues (Thorsen et al., 2002) designed and fabricated
high-density microfluidic chips that contain plumbing networks with thou-
sands of micromechanical valves and hundreds of individually addressable
chambers (see Figure 1.31). These fluidic devices are analogous to electronic
integrated circuits fabricated using large-scale integration. These integrated
microfluidic networks are used to construct the microfluidic analogue of a
comparator array and a microfluidic memory storage device whose behavior
resembles random-access memory.

The design complexity and functionality complexity of microsystems and
nanosystems can exceed the complexity of VLSI systems. More than three
decades ago, VLSI simulation was considered a formidable task, but today
VLSI systems are simulated routinely thanks to the many advances in CAD
and simulation tools achieved over that period. It is clear that similar and
even greater advances are required in the microsystems field in order to
make full-system simulation of microsystems a reality in the near future.
This will enable the microsystems community to explore new pathways of
discovery and expand the role and influence of microsystems at a rapid
rate.

There are broadly two levels of simulation in the field of microsystems.
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1. Physical Level: At this level, the full behavior of the continuum is
captured by means of highly meshed 3D simulations. These simula-
tions involve many degrees of freedom. This level is primarily divided
into process, material, and structural modeling. Multiple-energy do-
mains (thermal, chemical, electrical, mechanical, etc.), large ampli-
tude motions, and inherent nonlinearities (e.g., forces on capacitor
plates; squeeze film damping) make physical-level simulation very
complicated. Physical-level models, although very accurate, are com-
putationally very expensive, and it is impractical to use them in the
iterative microsystem design process.

2. System Level: In practice, every microdevice is connected to a full
system (see, e.g., Figure 1.30). The use of highly comprehensive phys-
ical models at this level makes the simulations slow and computation-
ally expensive. System level modeling requires low-order behavioral
models of the various components of the system, which are electronic,
micromechanical, fluidic, optical, chemical, biological, etc. In the gen-
eral case, these system-level models are represented as a network of
lumped elements analogous to the electric circuit components. More
generally, they are represented as a small set of coupled ordinary dif-
ferential equations that can be easily integrated in time. The results
of detailed numerical simulations (with their enormous number of
degrees of freedom) have to be projected onto spaces spanned by a
very small number of appropriately chosen dynamical variables used
in the system-level simulation.

In order to develop a system-level simulation framework, that is suffi-
ciently simple, accurate, and robust, all processes involved need to be sim-
ulated at a comparable degree of accuracy and integrated seamlessly. That
is, circuits, semiconductors, springs and masses, beams and membranes, as
well as the flow field need to be simulated in a consistent and compatible
way and in reasonable computational time! There are two well-known ap-
proaches for system-level simulation of microsystems. In the first approach,
reduced-order models or macromodels for microdevices are combined with
circuit simulation tools. In the second approach, the full-physics-based sim-
ulation tools for microdevices are directly combined with the circuit simula-
tion tools. Since circuit simulation tools play an important role in system-
level modeling, a brief description of circuit simulation tools is provided
before we discuss the two approaches in more detail.

Circuit simulation is today a mature subject, and various software pack-
ages exist for design purposes. The program SPICE, which is an acronym
for Simulation Program with Integrated Circuit Emphasis, was developed
in the 1970s at UC Berkeley (Nagel and Pederson, 1973), and since then
it has become the unofficial industry standard among integrated circuit
(IC) designers. SPICE is a general-purpose simulation program for circuits
that may contain resistors, capacitors, inductors, switches, transmission
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lines, etc., as well as the five most common semiconductor devices: Diodes,
BJTs, JFETs, MESFETs, and MOSFETs. SPICE has built-in models for
the semiconductor devices, and the user specifies only the pertinent model
parameter values. However, these devices are typically simple and can be
described by lumped models, i.e., combinations of ordinary differential
equations and algebraic equations. In some cases, such as in submicron
devices, even usual semiconductor devices, e.g., MOSFET, simple model-
ing is not straightforward, and it is rather art than science to transfer from
basic PDEs to approximated ODEs and algebraic equations.

1.7.1 Reduced-Order Modeling
Reduced-order models or macromodels are often considered as a link be-
tween physical and systems level-modeling, as shown in Figure 1.32. In this
level of modeling, the prime focus is model-order reduction, i.e., to reduce
the number of degrees of freedom present in the physical level simulation
to many fewer degrees of freedom. Reduced-order modeling essentially acts
as a link between physical and system levels by projecting the results of
detailed numerical simulations (physical level) onto spaces spanned by a
very small number of appropriately chosen dynamical variables used in the
system-level simulation. Reduced-order models are generally characterized
by the following attributes (Senturia et al., 1997):

1. They are generally analytical, rather than numerical, permitting the
designer to reason about the effects of design changes (dimensions
and material properties) without having to resimulate at the physical
level.

2. They have a minimal number of degrees of freedom.

3. Both large- and small-amplitude excitations are represented.

4. They incorporate correct dependencies on device geometry and con-
stitutive properties.

5. They should accurately capture both quasi-static and dynamic be-
havior.

6. They should be expressible in a simple-to-use form, i.e., an equation,
a network analogy, or a small set of coupled ODEs.

7. They should be easy to connect to system–level simulators.

8. They should be sufficiently accurate when compared with experi-
ments on suitable test devices and with fully meshed 3D simulations.

9. They should account for correct explicit energy conservation and dis-
sipation behavior.



1.7 Full-System Simulation of Microsystems 41

To clarify the concept of a macromodel or a reduced model, we give
a specific example, taken from (Senturia et al., 1997), for a suspended
membrane of thickness b deflected at its center by an amplitude d under
the action of a uniform pressure force p. Let us also denote by 2a the length
of the membrane, by E the Young’s modulus, and by νp the Poisson ratio.
The form of the pressure-deflection relation can be obtained analytically,
for example, by employing power series assuming a circular thin membrane.
This can be extended to more general shapes and nonlinear responses, for
example,

p =
C1b

a2 +
C2f(νp)

a4

E

1 − νp
d3,

where C1 and C2 are dimensionless constants that depend on the shape
of the membrane, and f(νp) is a slowly varying function of the Poisson
ratio. This function is determined from detailed finite-element simulations
over a range of length a, thickness b, and material properties νp and E.
Such “best-fits” are tabulated and are used in the simulation according to
the specific structure considered, without the need for solving the partial
differential equations governing the dynamics of the structure.

One of the simplest approaches for reduced-order modeling is to recast
mechanical systems into electrical systems, so that mechanical systems can
be integrated into SPICE. This can be understood more clearly by consid-
ering the analogy of a mass–spring–damper system driven by an external
force with a parallel-connected RLC circuit with a current source. In this
example, mass corresponds to capacitance, dampers to resistors, springs to
inductive elements, and forces to currents. An effort has already been made
to produce equivalent RLC circuits for microflows such as the squeezed gas
film in silicon accelerometers, which we discuss in detail in Chapter 18. A
variety of other sophisticated and complicated approaches, such as gener-
alized Kirchhoffian networks, black box models, and Galerkin techniques,
can be used for generation of reduced-order models and these are discussed
in detail in Chapter 17. The application of various reduced-order methods
for simulation of microflows is presented in Chapter 18.

1.7.2 Coupled Circuit/Device Modeling
For highly nonlinear behavior of microsystems, the development of sim-
ple, easy–to–use, and accurate reduced-order models can be challenging.
In such cases, simulation based on full-physics models of all the energy
domains contained in the microsystem may become necessary. Coupled
circuit/device modeling refers to the simultaneous simulation of different
functional units of the microsystem. The concept of a coupled circuit and
device simulator has proved to be extremely beneficial in the domain of in-
tegrated circuits. Since the first of such simulators, MEDUSA (Engl et al.,
1982), became available in the early 1980s, there has been significant work
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addressing coupled simulation. These activities have focused on improved
algorithms, faster execution speeds, and applications. Today, commercial
CAD vendors also support a mixed circuit–device simulation capability
(Technology Modeling Associates, 1997; Silvaco International, 1995).

An effective hierarchical strategy for a full-system simulation employing
the coupled circuit–device simulator for microfluidic applications is illus-
trated in Figure 1.33. This simulator supports compact models for the elec-
tronic components and available macromodels for microfluidic devices. In
addition, full-physics models are available for the microfluidic components
that can be utilized when detailed and accurate modeling is required. As an
example, specific components such as microvalves, pumps, and flow sensors
are shown in Figure 1.33. However, the list for the flow domain is much
broader and could include networks of microchannels, micronozzles, as well
as more complex flow systems such as a gas microturbine. The coupling
of the circuit and microfluidic components is handled by imposing suitable
boundary conditions on the fluid solver. This simulator allows the simu-
lation of a complete microfluidic system including the associated control
electronics. A coupled circuit/device modeling tool, CODECS (acronym
for Coupled Device and Circuit Simulator), provides a truly mixed-level
description of both circuits and devices. This program was developed at
UC Berkeley (Mayaram and Pederson, 1987), and it employs combinations
of both ODEs and PDEs with algebraic equations. CODECS incorporates
SPICE3, the latest version of SPICE written in C (Quarles, 1989), for
the circuit simulation capability. The multirate dynamics introduced by
combinations of devices and circuits is handled efficiently by a multilevel
Newton method or a full-Newton method for transient analysis, unlike the
standard Newton method employed in SPICE. CODECS is appropriate
for one-dimensional and two–dimensional devices, but other developments
have produced efficient algorithms for three-dimensional devices as well
(Mayaram et al., 1993).

In coupled-domain problems, such as flow–structure, structure–electric,
or a combination of both, there are significant disparities in temporal and
spatial scales. This, in turn, implies that multiple grids and heterogeneous
time-stepping algorithms may be needed for discretization, leading to very
complicated and consequently computationally prohibitive simulation al-
gorithms. The main disadvantage of a full-system simulation approach is
the high computational cost involved. The principal cost comes from solv-
ing the three–dimensional time–dependent flow equations in complex ge-
ometric domains, in transition regimes, and with unfamiliar physics. It is
therefore important to obtain a fundamental understanding of microflows
and nanoflows first in order to construct low–dimensional models similar
to what has been done in flows at large scales (see, for example, (Berkooz
et al., 1993; Deane et al., 1991; Ball et al., 1991)), and second to explore
new design concepts based on new physics.
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FIGURE 1.24. T-junction flow of water and hexadecane (2% Span80) in sub-
micron channels. Depending on the relative pressure in the channels, different
patterns of droplets are formed due to an instability. (Courtesy of S. Quake and
T. Thorsen.)
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FIGURE 1.25. Front view of a gramicidin ion channel. Only the protein with the
nanoscopic pore is shown. The diameter of the pore is 4 Å, and the length is
25 Å.
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FIGURE 1.26. A schematic diagram of a nanopore–based DNA sequencing de-
vice.
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FIGURE 1.27. A schematic diagram of the crossed microfluidic channels sep-
arated by a nanometer-diameter capillary array interconnect. Upper right: the
cross-sectional schematic of the nanocapillary. Lower right: schematic diagram
showing the relative sizes of the channel diameter (denoted by a) and the Debye
length (denoted by k−1) of the electrolyte solution. (Courtesy of P.W. Bohn.)

FIGURE 1.28. Summary of simulation methods for liquid and gas microflows. MD
refers to molecular dynamics, and DPD refers to dissipative particle dynamics.
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FIGURE 1.29. Energy domains in MEMS/microfluidics.
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FIGURE 1.30. Block diagram of a generic microfluidic system. The flow sensor
senses the flowrate which is controlled by the electronic circuit controlling the
pump.
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FIGURE 1.31. (A) Mask design for the microfluidic memory storage device. The
chip contains an array of 25 × 40 chambers, each of which has a volume of 250
pl. Each chamber can be individually addressed using the column and row mul-
tiplexors. The contents of each memory location can be selectively programmed
to be either blue dye (sample input) or water (wash buffer input). (B) Purging
mechanics for a single chamber within a selected row of the chip. Each row con-
tains three parallel microchannels. A specific chamber is purged as follows: (i)
Pressurized fluid is introduced into the purge buffer input. (ii) The row multi-
plexor directs the fluid to the lower channel of the selected row. (iii) The column
multiplexor releases the vertical valves of the chamber, allowing the pressurized
fluid to flow through the chamber and purge its contents. (C) Demonstration of
microfluidic memory display: Individual chambers are selectively purged to spell
out “C I T”. (Courtesy of S. Quake.)
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FIGURE 1.32. Simulation levels in microsystem design.
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FIGURE 1.33. The coupled circuit–fluidic device simulator. Microfluidic systems,
including the control electronics, can be simulated using accurate numerical mod-
els for all microcomponents.
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2
Governing Equations and Slip Models

In this chapter we first present the basic equations of fluid dynamics both
for incompressible and compressible flows, and discuss appropriate nondi-
mensionalizations for low-speed and high-speed flows. Although most of the
flows encountered in microsystems applications are typically of low speed,
micropropulsion applications may involve high-speed supersonic flows (see
Section 6.6). Subsequently, we consider the compressible Navier–Stokes
equations and develop a general boundary condition for velocity slip. This
applies to a regime for which Kn < 1, and it corresponds to a second-order
correction in Knudsen number. It improves Maxwell’s original first-order
formula, which is limited to Kn ≤ 0.1. The validity of this model is assessed
in Chapter 4 with DSMC data, linearized Boltzmann equation solutions,
as well as with experimental results. A more rigorous derivation of the gov-
erning equations from the Boltzmann equation is given in Section 15.4.2.

2.1 The Basic Equations of Fluid Dynamics

Consider fluid flow in the nondeformable control volume Ω bounded by
the control surface ∂Ω with n the unit outward normal. The equations
of motion can then be derived in an absolute reference frame by applying
the principles of mechanics and thermodynamics (Batchelor, 1998). They
can be formulated in integral form for mass, momentum, and total energy,
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respectively, as

d

dt

∫
Ω

ρdΩ +
∫

∂Ω
ρv · n dS = 0, (2.1a)

d

dt

∫
Ω

ρvdΩ +
∫

∂Ω
[ρv(v · n) − nσ] dS =

∫
Ω

fdΩ, (2.1b)

d

dt

∫
Ω

EdΩ +
∫

∂Ω
[Ev − σv + q] · n dS =

∫
Ω

f · vdΩ. (2.1c)

Here v(x, t) = (u, v, w) is the velocity field, ρ is the density, and E = ρ(e+
1/2v ·v) is the total energy, where e represents the internal specific energy.
Also, σ is the stress tensor, q is the heat flux vector, and f represents all
external forces acting on this control volume. For Newtonian fluids, the
stress tensor, which consists of the normal components (p for pressure) and
the viscous stress tensor τ , is a linear function of the velocity gradient, that
is,

σ = −pI + τ, (2.2a)
τ = µ[∇v + (∇v)T ] + ζ(∇·v)I, (2.2b)

where I is the unit tensor, and µ and ζ are the first (absolute) and second
(bulk) coefficients of viscosity, respectively. They are related by the Stokes
hypothesis, that is, 2µ + 3ζ = 0, which expresses local thermodynamic
equilibrium. (We note that the Stokes hypothesis is valid for monoatomic
gases but it may not be true in general.) The heat flux vector is related to
temperature gradients via the Fourier law of heat conduction, that is,

q = −k∇T, (2.3)

where k is the thermal conductivity, which may be a function of tempera-
ture T .

In the case of a deformable control volume, the velocity in the flux term
should be recognized as in a frame of reference relative to the control sur-
face, and the appropriate time rate of change term should be used. Con-
sidering, for example, the mass conservation equation, we have the form

d

dt

∫
Ω

ρdΩ +
∫

∂Ω
ρvr · n dS = 0,

or ∫
Ω

∂ρ

∂t
dΩ +

∫
∂Ω

ρvr · n dS +
∫

∂Ω
ρvcs · n dS = 0,

where vcs is the velocity of the control surface, vr is the velocity of the
fluid with respect to the control surface, and the total velocity of the fluid
with respect to the chosen frame is v = vr + vcs. The above forms are
equivalent, but the first expression may be more useful in applications in
which the time history of the volume is of interest.
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Equations (2.1a) through (2.1c) can be transformed into an equivalent
set of partial differential equations by applying Gauss’s theorem (assuming
that sufficient conditions of differentiability exist), that is,

∂ρ

∂t
+ ∇·(ρv) = 0, (2.4a)

∂

∂t
(ρv) + ∇·[ρvv − σ] = f , (2.4b)

∂

∂t
E + ∇·[Ev − σv + q] = f · v. (2.4c)

The momentum and energy equations can be rewritten in the following
form by using the continuity equation (2.4a) and the constitutive equations
(2.2a), (2.2b):

ρ
Dv

Dt
= −∇p + ∇·τ + f , (2.5a)

ρ
De

Dt
= −p∇·v − ∇·q + Φ, (2.5b)

where Φ = τ · ∇v is the dissipation function and D/Dt = ∂/∂t + v · ∇ is
the material derivative.

In addition to the governing conservation laws, an equation of state is
required. For ideal gases, it has the simple form

p = ρRT, (2.6)

where R is the ideal gas constant defined as the difference of the constant
specific heats; that is, R = Cp − Cv, where Cv = ∂e

∂T |ρ and Cp = γCv with
γ the adiabatic index. For ideal gases, the energy equation can be rewritten
in terms of the temperature, since e = p/(ρ(γ−1)) = CvT , and so equation
(2.5b) becomes

ρCv
DT

Dt
= −p∇·v + ∇·[k∇T ] + Φ. (2.7)

The system of equations (2.4a; 2.5a), (2.6), and (2.7) is called compressible
Navier–Stokes equations, contains six unknown variables (ρ,v, p, T ) with
six scalar equations. Mathematically, it is an incomplete parabolic system,
since there are no second-order derivative terms in the continuity equation.

A hyperbolic system arises in the case of inviscid flow, that is, µ = 0
(assuming that we also neglect heat losses by thermal diffusion, that is,
k = 0). In that case we obtain the Euler equations, which in the absence of
external forces or heat sources have the form

∂ρ

∂t
+ ∇·(ρv) = 0, (2.8a)

∂(ρv)
∂t

+ ∇·(ρvv) = −∇p, (2.8b)

∂E

∂t
+ ∇·[(E + p)v] = 0. (2.8c)
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This system admits discontinuous solutions, and it can also describe the
transition from a supersonic flow (where |v| > cs) to subsonic flow (where
|v| < cs), where cs = (γRT )1/2 is the speed of sound. Typically, the tran-
sition is obtained through a shock wave, which represents a discontinuity
in flow variables. In such a region the integral form of the equations should
be used by analogy with equations (2.1a)–(2.1c).

2.1.1 Incompressible Flow
For an incompressible fluid, where Dρ/Dt = 0, the mass conservation (or
continuity) equation simplifies to

∇·v = 0. (2.9)

Typically, when we refer to an incompressible fluid we mean that ρ =
constant, but this is not necessary for a divergence-free flow; for example,
in thermal convection the density varies with temperature variations. The
corresponding momentum equation has the form:

ρ
Dv

Dt
= −∇p + ∇· [µ[∇v + (∇v)T ]

]
+ f , (2.10)

where the viscosity µ(x, t) may vary in space and time. The pressure p(x, t)
is not a thermodynamic quantity but can be thought of as a constraint that
projects the solution v(x, t) onto a divergence-free space. In other words,
an equation of state is no longer valid, since it will make the incompressible
Navier–Stokes system overdetermined.

The acceleration terms can be written in various equivalent ways, so that
in their discrete form, they conserve total linear momentum

∫
Ω ρv dΩ and

total kinetic energy
∫
Ω ρv · v dΩ in the absence of viscosity and external

forces. In particular, the following forms are often used:

• Convective form: Dv/Dt = ∂v/∂t + (v · ∇)v,

• Conservative (flux) form: Dv/Dt = ∂v/∂t + ∇·(vv),

• Rotational form: Dv/Dt = ∂v/∂t − v × (∇×v) + 1/2∇(v · v),

• Skew-symmetric form: Dv/Dt = ∂v/∂t + 1/2[(v · ∇)v + ∇·(vv)].

The incompressible Navier–Stokes equations (2.9), (2.10) are written in
terms of the primitive variables (v, p). An alternative form is to rewrite
these equations in terms of the velocity v and vorticity ω = ∇×v. This
is a more general formulation than the standard vorticity-streamfunction,
which is limited to two dimensions. The following system is equivalent to
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equations (2.10) and (2.9), assuming that ρ,µ are constant:

ρ
Dω

Dt
= (ω · ∇)v + µ∇2ω in Ω, (2.11a)

∇2v = −∇×ω in Ω, (2.11b)
∇·v = 0 in Ω, (2.11c)

ω = ∇×v in Ω, (2.11d)

where the elliptic equation for the velocity v is obtained using a vector
identity and the divergence-free constraint. We also assume here that the
domain Ω is simply connected. An equivalent system in terms of velocity
and vorticity is studied in (Karniadakis and Sherwin, 1999). The problem
with the lack of direct boundary conditions for the vorticity also exists
in the more often used vorticity-streamfunction formulation in two dimen-
sions.

Finally, a note regarding nondimensionalization. Consider the free-
stream flow U0 past a body of characteristic size D in a medium of dy-
namic viscosity µ as shown in Figure 2.1. There are two characteristic
time scales in the problem, the first one representing the convective time
scale tc = D/U0, and the second one representing the diffusive time scale
td = D2/ν, where ν = µ/ρ is the kinematic viscosity. If we nondimensional-
ize all lengths with D, the velocity field with U0, and the vorticity field with
U0/D, we obtain two different nondimensional equations corresponding to
the choice of the time nondimensionalization:

Incompressible High-Speed Flows:

∂ω

∂t∗c
+ ∇·(vω) = (ω · ∇)v + Re−1∇2ω,

Incompressible Low-Speed Flows:

∂ω

∂td∗ + Re∇·(vω) = Re(ω · ∇)v + ∇2ω,

where t∗c and t∗d are the nondimensionalized time variables with respect to tc
and td, respectively, and Re = U0D/ν is the Reynolds number. Both forms
are useful in simulations, the first in high Reynolds number simulations
(e.g., micronozzles, Section 6.6), and the second in low Reynolds number
flows (e.g., microchannels).

In many microflow problems the nonlinear terms can be neglected, and
in such cases the governing equations are the Stokes equations, which
we can cast in the form

−ν∇2v + ∇p/ρ = f in Ω, (2.12a)
∇·v = 0 in Ω, (2.12b)

along with appropriate boundary conditions for v.
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FIGURE 2.1. A schematic of free-stream flow past a microprobe in a viscous
fluid.

2.1.2 Reduced Models
The mathematical nature of the Navier–Stokes equations varies depending
on the flow that we model and the corresponding terms that dominate in
the equations. For example, for an inviscid compressible flow, we obtain the
Euler equations, which are of hyperbolic nature, whereas the incompressible
Euler equations are of hybrid type corresponding to both real and imag-
inary eigenvalues. The unsteady incompressible Navier–Stokes equations
are of mixed parabolic/hyperbolic nature, but the steady incompressible
Navier–Stokes equations are of elliptic/parabolic type. It is instructive, es-
pecially for a reader with not much experience in fluid mechanics, to follow
a hierarchical approach in reducing the Navier–Stokes equations to simpler
equations so that each introduces one new concept.

Taking as an example the incompressible Navier–Stokes equations (2.9),
(2.10), a simpler model is the unsteady Stokes system. This retains all the
complexity but not the nonlinear terms; that is,

∂v

∂t
= −∇p/ρ + ν∇2v + f

∇·v = 0.

The Stokes system [equations (2.12a) and (2.12b)] is recovered by drop-
ping the time derivative. Alternatively, we can drop the divergence-free
constraint and study the purely parabolic scalar equation for a variable u,
that is,

∂u

∂t
= ν∇2u + f. (2.13)

This equation expresses unsteady diffusion and includes volumetric source
terms. If we instead drop all terms on the right-hand side of (2.10), as well
as the divergence-free constraint, we obtain a nonlinear advection equation.
Finally, by dropping the time derivative in the parabolic equation (2.13),
we obtain the Poisson equation,

−ν∇2u = f,

which is encountered often in MEMS (micro electro mechanical systems),
e.g., in electrostatics.
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2.2 Compressible Flow

The flow regime for Kn < 0.01 is known as the continuum regime, where
the Navier–Stokes equations with no-slip boundary conditions govern the
flow. In the slip flow regime (0.01 ≤ Kn ≤ 0.1) the often-assumed no-
slip boundary conditions seem to fail, and a sublayer on the order of one
mean free path, known as the Knudsen layer, starts to become dominant
between the bulk of the fluid and the wall surface. The flow, in the Knud-
sen layer cannot be analyzed with the Navier–Stokes equations, and it
requires special solutions of the Boltzmann equation (see Section 15.4 and
also (Sone, 2002)). However, for Kn ≤ 0.1, the Knudsen layer covers less
than 10% of the channel height (or the boundary layer thickness for exter-
nal flows), and this layer can be neglected by extrapolating the bulk gas
flow towards the walls. This results in a finite velocity slip value at the
wall, and the corresponding flow regime is known as the slip flow regime
(i.e., 0.01 ≤ Kn ≤ 0.1). In the slip flow regime the flow is governed by the
Navier–Stokes equations, and rarefaction effects are modeled through the
partial slip at the wall using Maxwell’s velocity slip and von Smoluchowski’s
temperature jump boundary conditions (Kennard, 1938).

For example, it may, however, be misleading to identify the flow
regimes as “slip” and “continuum,” since the “no-slip” boundary con-
dition is just an empirical finding, and the Navier-Stokes equations
are valid for both the slip and the continuum flow regimes. Neverthe-
less, this identification was first made for rarefied gas flow research
almost a century ago, and we will follow this terminology throughout
this book.

In the transition regime (Kn ≥ 0.1) the constitutive laws that define the
stress tensor and the heat flux vector break down (Chapman and Cowling,
1970), requiring higher-order corrections to the constitutive laws, resulting
in the Burnett or Woods equations (Woods, 1993). It is also possible to use
the Boltzmann equation directly, which is valid at the microscopic level
(see Section 15.4). The Burnett and Woods equations are derived from
the Boltzmann equation based on the Chapman–Enskog expansion of the
velocity distribution function f , including terms up to Kn2 in the following
form:

f = f0(1 + aKn +bKn2), (2.14)

where a and b are functions of gas density, temperature, and macroscopic
velocity vector, and fo is the equilibrium (Maxwellian) distribution function
(Chapman and Cowling, 1970):

f0 =
(

m

2πkBT0

)3/2

exp
(

− mv2

2kBT0

)
, (2.15)
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v
m v

FIGURE 2.2. A plot of the Maxwellian distribution showing the most probable
velocity and the mean thermal velocity, equation (2.15).

which is plotted in Figure 2.2. Here m is the molecular mass, kB is the
Boltzmann constant, T0 is the temperature, and v is the mean thermal ve-
locity of the molecules. The zeroth–order solution of equation (2.14) is the
equilibrium solution, where flow gradients vanish; i.e., the viscous stress
tensor and the heat flux vector vanish, giving the Euler equations (Chap-
man and Cowling, 1970). Therefore, Kn ≡ 0 corresponds to the Euler
equations. This is a singular limit in transition from the Navier–Stokes
equations to the Euler equations, where the infinitesimally small viscosity
(or heat conduction coefficient) vanishes.
Remark: In this book Kn = 0 is commonly used to indicate the no-slip
flow limit, and hence in the rest of this work Kn = 0 indicates a limit that
Kn → 0, but never Kn ≡ 0!

The first-order solution in Kn yields the Navier–Stokes equations, and
the second-order solution in Kn yields the Burnett equations. The Woods
equations have a different form in the high-order corrections of the stress
tensor and heat flux terms (Woods, 1993; Welder et al., 1993).

We rewrite here equations (2.4b), (2.4c) for compressible flows in two
dimensions:
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∂

∂t

⎛⎜⎜⎝
ρ

ρu1
ρu2
E

⎞⎟⎟⎠ +
∂

∂x1

⎛⎜⎜⎝
ρu1

ρu2
1 + p + σ11

ρu1u2 + σ12
(E + p + σ11) · u1 + σ12 · u2 + q1

⎞⎟⎟⎠

+
∂

∂x2

⎛⎜⎜⎝
ρu2

ρu1u2 + σ21
ρu2

2 + p + σ22
(E + p + σ22) · u2 + σ21 · u1 + q2

⎞⎟⎟⎠ = 0, (2.16)

where the two velocity components are denoted by (u1, u2) ≡ (u, v) in the
Cartesian coordinate system (x1, x2) ≡ (x, y).

Remark: The conservation equations (2.16) are valid for continuum as
well as for rarefied flows. However, the viscous stresses (σij) and the heat
flux (qi) have to be determined differently for different flow regimes (see
ection 15.4.2). Specifically, the thermal stresses

∂2T

∂xi∂xj
− 1

3
∂2T

∂x2
k

δij

in the momentum equation (derived from the Boltzmann equation) are not
included in the Newtonian law for fluids. Similarly, the term in the energy
equation

∂2ui

∂x2
j

is not present in the Fourier law. These terms are derived in the asymp-
totic analysis of the Boltzmann equation in the limit of small deviation
from equilibrium (Sone, 2002). For small Knudsen number flows and with
O(M) ∼ O(Kn), the thermal stress in the momentum equation can be ab-
sorbed in the pressure term. However, if the Reynolds number of the system
is large or the temperature variation is not small, then the thermal stress
cannot be included in the pressure term. In this case, these extra terms
have to be included explicitly in the governing equations, which are differ-
ent from the above compressible Navier–Stokes equations (Sone, 2002). To
this end, also the work of (Myong, 1998) may be consulted. He derived ther-
modynamically consistent hydrodynamic models for high Knudsen number
gas flows, valid uniformly for all Mach number flows and satisfying the
second law of thermodynamics.

2.2.1 First-Order Models
By first-order models we refer to the approximation of the Boltzmann equa-
tion up to O(Kn), i.e., the compressible Navier-Stokes equations. The con-
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stitutive laws from equations (2.2a) and (2.2b) are

σNS
ij = −µ

(
∂uj

∂xi
+

∂ui

∂xj

)
+ µ

2
3

∂um

∂xm
δij − ζ

∂um

∂xm
δij , (2.17)

where µ and ζ are the dynamic (first coefficient)) and bulk (second coeffi-
cient) viscosities of the fluid, and δij is the Kronecker delta. The heat flux is
determined from Fourier’s law (equation (2.3)). This level of conservation
equations defines the compressible Navier–Stokes equations.

In the slip flow regime, the Navier–Stokes equations (2.16), (2.17) are
solved subject to the velocity slip and temperature jump boundary condi-
tions given by

us − uw =
2 − σv

σv

1
ρ(2RTw/π)1/2 τs +

3
4

Pr(γ − 1)
γρRTw

(−qs), (2.18)

Ts − Tw =
2 − σT

σT

[
2(γ − 1)
γ + 1

]
1

Rρ(2RTw/π)1/2 (−qn), (2.19)

where qn, qs are the normal and tangential heat flux components to the
wall. Also, τs is the viscous stress component corresponding to the skin
friction, γ is the ratio of specific heats, uw and Tw are the reference wall
velocity and temperature, respectively. Here Pr is the Prandtl number

Pr =
Cpµ

k
.

Equation (2.19) was proposed by Maxwell in 1879. The second term in
(2.19) is associated with the thermal creep (transpiration) phenomenon,
which can be important in causing pressure variation along channels in
the presence of tangential temperature gradients (see Section 5.1). Since
the fluid motion in a rarefied gas can be started with tangential temper-
ature variations along the surface, the momentum and energy equations
are coupled through the thermal creep effects. In addition, there are other
thermal stress terms that are omitted in classical gas dynamics, but they
may be present in rarefied microflows, as we discuss in Section 5.1. Equa-
tion (2.19) is due to von Smoluchowski (Kennard, 1938); it models tem-
perature jump effects. Here σv, σT are the tangential momentum and
energy accommodation coefficients, respectively (see Section 2.2.2).
After nondimensionalization with a reference velocity and temperature,
the slip conditions are written as follows:

Us − Uw =
2 − σv

σv
Kn

∂Us

∂n
+

3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂T

∂s
, (2.20a)

Ts − Tw =
2 − σT

σT

[
2γ

γ + 1

]
Kn
Pr

∂T

∂n
, (2.20b)
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where the capital letters are used to indicate nondimensional quantities.
Also, n and s denote the outward normal (unit) vector and the tangential
(unit) vector.

Remark: Note that while the second term on the right-hand side of equa-
tion (2.20b) (thermal creep effect) appears to be O(Kn2), it actually cor-
responds to a first-order expansion (in Kn) of the Boltzmann equation. So
both velocity jump and thermal creep are derived from an O(Kn) asymp-
totic expansion of the Boltzmann equation (Sone, 2002).

To determine fully the momentum and energy transport in microdomains,
we need the following nondimensional numbers:

• Reynolds number: Re = ρuh
µ ,

• Eckert number: Ec = u2

Cp∆T , and

• Knudsen number: Kn = λ
h .

However, it is possible to introduce a functional relation for Knudsen num-
ber and Eckert number in terms of the Mach number

M =
u√

γRT0
.

The Knudsen number can be written in terms of the Mach number and
Reynolds number as

Kn =
µ

hρ(2RTw/π)1/2 =
√

πγ/2
M

Re
, (2.21)

while the Eckert number can be written as

Ec = (γ − 1)
T0

∆T
M2, (2.22)

where ∆T is a specified temperature difference in the domain, and T0 is
the reference temperature used to define the Mach number. Using these
relations for Ec and M , the independent parameters of the problem are
reduced to three:

• Prandtl number Pr, Reynolds number Re, and Knudsen
number Kn.

2.2.2 The Role of the Accommodation Coefficients
Momentum and energy transfer between the gas molecules and the surface
requires specification of interactions between the impinging gas molecules
and the surface. A detailed analysis of this is quite complicated and requires
complete knowledge of the scattering kernels (see Section 15.4). From the
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macroscopic viewpoint, it is sufficient to know some average parameters in
terms of the so-called momentum and thermal accommodation coefficients
in order to describe gas–wall interactions. The thermal accommodation
coefficient (σT ) is defined by

σT =
dEi − dEr

dEi − dEw
, (2.23)

where dEi and dEr denote the energy fluxes of incoming and reflected
molecules per unit time, respectively, and dEw denotes the energy flux if
all the incoming molecules had been reemitted with the energy flux cor-
responding to the surface temperature Tw. The perfect energy exchange
case corresponds to σT = 1. A separate thermal accommodation coefficient
can be defined for the effects of gas–surface interactions on transitional, ro-
tational, and vibrational energies of the molecules. Experimental evidence
indicates that under such interactions the transitional and rotational en-
ergy components are more affected compared to the vibrational energy
of the molecules (Schaaf and Chambre, 1961). However, such refinements
cannot be applied to macroscopic models, since the rarefaction effects are
treated by solving the continuum energy equation with the temperature
jump boundary condition. DSMC models (see Section 15.1) can be more
flexible in employing various molecule–wall collision models for different
modes of energy transfer, as we show in Section 15.4.

The tangential momentum accommodation coefficient (σv) can be
defined for tangential momentum exchange of gas molecules with surfaces

σv =
τi − τr

τi − τw
, (2.24)

where τi and τr show the tangential momentum of incoming and reflected
molecules, respectively, and τw is the tangential momentum of reemitted
molecules, corresponding to that of the surface (τw = 0 for stationary
surfaces).

• The case of σv = 0 is called specular reflection,

where the tangential velocity of the molecules reflected from the walls is
unchanged, but the normal velocity of the molecules is reversed due to the
normal momentum transfer to the wall. In this case there is no tangential
momentum exchange of fluid with the wall, resulting in zero skin friction.
This is a limit of inviscid flow, where viscous stresses are zero. Hence

∂us

∂n
→ 0 as σv → 0,

and equation (2.20b) becomes obsolete, since the Euler equations require
only the no-penetration boundary condition in this limit.

• The case of σv = 1 is called diffuse reflection.
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TABLE 2.1. Thermal and tangential momentum accommodation coefficients for
typical gases and surfaces (Seidl and Steinheil, 1974; Lord, 1976).

Gas Surface σT σv

Air Al 0.87–0.97 0.87–0.97
He Al 0.073
Air Iron 0.87–0.96 0.87–0.93
H2 Iron 0.31–0.55
Air Bronze 0.88–0.95
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FIGURE 2.3. Tangential momentum accommodation coefficient σv (TMAC) ver-
sus Knudsen number obtained from mass flowrate measurements for argon (left)
and for nitrogen (right). (Courtesy of K. Breuer.)

In this case the molecules are reflected from the walls with zero average
tangential velocity. Therefore, the diffuse reflection is an important case
for tangential momentum exchange (and thus friction) of the gas with the
walls.

The tangential momentum and thermal accommodation coefficients de-
pend on the gas and surface temperatures, local pressure, and possibly the
velocity and the mean direction of the local flow. They are usually tabu-
lated for some common gases and surfaces; see Table 2.1 and for details
(Seidl and Steinheil, 1974; Lord, 1976). Diffuse reflection is likely to occur
for rough surfaces. The values of σv and σT are not necessarily equal, as
shown in Table 2.1. Typically, it takes a few surface collisions for a molecule
to adopt the average tangential momentum of the surface, but it takes more
surface collisions to obtain the energy level of the surface. Under laboratory
conditions, values as low as 0.2 have been observed (Lord, 1976). Very low
values of σv will increase the slip on the walls considerably even for small
Knudsen number flows due to the (2−σ)/σ factor multiplying the velocity
slip and temperature jump equations.

Measurements or direct computation of accommodation coefficients are
very difficult to obtain. The accommodation coefficients for microchannel
flows were measured indirectly using the first-order (Arkilic et al., 2001)
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and second-order slip flow theories (Maurer et al., 2003; Colin et al., 2004).
Measurements of accommodation coefficients in (Arkilic et al., 2001) were
obtained in the microchannel described in Chapter 1 (see Figure 1.18).
Using high-resolution measurements for the mass flowrate and plotting it
against the inverse pressure, the slope was computed, and based on the slip
theory equations (see Chapter 4), the tangential momentum accommoda-
tion coefficient (TMAC) was obtained. The results of such measurements
for argon and nitrogen are plotted in Figure 2.3 as a function of the Knud-
sen number. The measured value is σv ≈ 0.80 for nitrogen or argon or
carbon dioxide in contact with prime silicon crystal in the slip and early
transitional flow regime (0 < Kn ≤ 0.4). It is observed that σv is less than
unity, and independent of Kn in that range (Arkilic, 1997; Arkilic et al.,
2001). Lower accommodation coefficients are possible due to the low surface
roughness of prime silicon crystal.

(Maurer et al., 2003) presented experimental results for helium and ni-
trogen flow in 1.14 µm deep 200 µm wide glass channel covered by an
atomically flat silicon surface. Flow behavior in the slip and early transi-
tion regimes was investigated for channel-averaged Knudsen numbers of 0.8
and 0.6 for helium and nitrogen flows, respectively. Using the flowrate data
and a second-order slip model represented by equation (2.42), TMAC val-
ues of 0.91±0.03 for helium, and 0.87±0.06 for nitrogen were obtained. The
authors also estimated the upper limit of slip flow regime as Kn = 0.3±0.1,
where Kn is based on the channel height. In a separate study, (Colin et al.,
2004) presented experimental results for nitrogen and helium flow in a series
of silicon microchannels fabricated using deep reactive ion etching (DRIE).
Using mass flowrate and the corresponding pressure drop data, and the
second-order slip model by (Deissler, 1964), they reported TMAC values of
0.93 for both helium and nitrogen. These authors reported breakdown of
the first-order slip model for Kn ≥ 0.05, and of the second-order theory of
Deissler for Kn ≥ 0.25, where Kn was based on the channel depth. These
limits are unusually low compared to the values commonly accepted in the
literature. A comparison between the experiments of (Colin et al., 2004)
and (Maurer et al., 2003) shows that the uncertainty in the channel depth
was ±0.1 µm for Colin’s channels, where it was 0.02 µm for Maurer’s chan-
nels. In addition, the fabrication methods and the channel aspect ratios
in these studies were different. These are certainly some of the reasons for
the differences between the measurements of TMAC values by these two
groups.

Finally, we note that

• It is possible to predict the (pressure–driven) channel flowrate in the
early transition flow regime, using a second–order slip solution of the
Navier–Stokes equations. However, this procedure may create erro-
neous velocity profiles, as shown in Figures 4.11 and 4.17.

We caution the reader about these limitations of the second-order theory
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FIGURE 2.4. Profile of a polysilicon mirror surface; scan area 10×10 µm. (Cour-
tesy of C. Liu.)

in the context of validation efforts using integral (e.g., mass flowrate versus
pressure drop) measurements.

Roughness plays a very important role in microscales, but it is difficult
to quantify its effect. In practice, it can be characterized using an atomic
force microscope (AFM) for nonconductive surfaces, scanning tunnelling
microscope (STM) for conductive surfaces, WYCO interferometer for op-
tical nondestructive evaluation, and scanning electron microscope (SEM).
Micron–scale roughness can be produced by wet chemical etching. A typical
surface profile for a polysilicon mirror surface is shown in Figure 2.4.

The effects of roughness are difficult to analyze theoretically or numer-
ically, but some progress has been made. (Richardson, 1973) considered a
periodically modulated (rough) wall and applied a shear stress-free bound-
ary condition. He showed analytically that the no-slip boundary condition
is actually a consequence of surface roughness. In a systematic molecular
dynamics study, (Mo and Rosenberger, 1990) investigated the effects of
both periodic and random roughness with amplitude A. They found that
as the roughness height (amplitude) A increases compared to the mean free
path λ, the velocity slip at the wall decreases. Specifically, they proposed
a criterion for the no-slip condition to be valid based on the ratio λ/A.
If this ratio is of order unity, that is, if the roughness height is smaller
but comparable to the mean free path, then the no-slip condition is satis-
fied. Otherwise, significant slip at the wall is present, which for atomically
smooth walls occurs if the global Knudsen number, i.e., the ratio λ/h (with
h the channel height), is finite. In summary, it was concluded that:
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• For a microchannel flow with atomically smooth walls, if the global
Knudsen number Kng = λ/h is less than 0.01, then the no-slip con-
dition at the walls is valid (h is the channel height).

• For a microchannel flow with atomically rough walls, if the local
Knudsen number Knl = λ/A is of order unity, then the no-slip con-
dition at the walls is valid (A is the roughness height).

• Otherwise, in both smooth or rough walls, there is significant velocity
slip at the walls.

In another study, (Li et al., 2002) considered surface roughness effects
on gas flows through long microtubes. They treated the rough surface as a
porous film covering an impermeable surface. In the porous film region they
used the Brinkman-extended Darcy model, and they employed a high-order
slip model in the core region of the microtubes. Solutions in these two dif-
ferent regions of the tube were combined by matching the velocity slip and
the shear stress at the porous-core flow interface. This enabled derivation
of expressions for the pressure distribution in microtubes, including the slip
effects.

2.3 High-Order Models

The conservation equations (2.16) are still valid for larger deviations from
the equilibrium conditions; however, the stress tensor (and heat flux vector)
have to be corrected for high-order rarefaction effects. The general tensor
expression of the Burnett level stress tensor is

σB
ij = −2µ

∂ui

∂xj
+

µ2

p

[
ω1

∂uk

∂xk

∂ui

∂xj
+ ω2

(
D

Dt

∂ui

∂xj
− 2

∂ui

∂xk

∂uk

∂xj

)

+ ω3R
∂2T

∂xi∂xj
+ ω4

1
ρT

∂p

∂xi

∂T

∂xj
+ ω5

R

T

∂T

∂xi

∂T

∂xj

+ ω6
∂ui

∂xk

∂uk

∂xj

]
, (2.25)

where a bar over a tensor designates a nondivergent symmetric tensor, i.e.,

fij = (fij + fji)/2 − δij/3fmm.

Similar expressions are valid for the heat flux qB
i (Zhong, 1993). The co-

efficients ωi depend on the gas model and have been tabulated for hard
spheres and Maxwellian gas models (Schamberg, 1947; Zhong, 1993). Since
the Burnett equations are of second order in Kn, they are valid in the early
transition flow regime. However, fine-grid numerical solutions of certain
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FIGURE 2.5. Control surface for tangential momentum flux near an isothermal
wall moving at velocity Uw.

versions of the Burnett equations result in small wavelength instabilities.
The cause of this instability has been traced to violation of the second law
of thermodynamics (Balakrishnan, 2004). Using the Chapman–Enskog ex-
pansion and the Bhatnagar–Gross–Krook model of the collision integral,
Balakrishnan (2004) derived the BGK–Burnett equations, and reported
that the entropy-consistent behavior of the BGK–Burnett equations de-
pends on the moment closure coefficients and approximations of the total
derivative terms ( D

Dt ) in equation (2.25). In the following we use the exact
definition of the total derivative instead of the Euler approximation most
commonly used in hypersonic rarefied flows (Zhong, 1993). Numerical so-
lutions of the Burnett equations for sevearal gas microflows can be found
in (Agarwal et al., 2001; Agarwal and Yun, 2002; Xu, 2003; Lockerby and
Reese, 2003; Xue et al., 2003).

Since the Burnett equations are obtained by a second-order Chapman–
Enskog expansion in Kn, they require second-order slip boundary condi-
tions. Such boundary conditions were derived by (Schamberg, 1947); how-
ever, numerical experiments with aerodynamic rarefied flows (Zhong, 1993)
showed that Schamberg’s boundary conditions are inaccurate for Kn > 0.2.
Similar second-order slip boundary conditions have also been proposed in
(Deissler, 1964) and (Sreekanth, 1969). Detailed discussions of performance
of these second-order slip models will be presented in Sections 4.1.3 and
4.2, with comparisons of the DSMC and the linearized Boltzmann results
against the analytical predictions for the velocity profile.

2.3.1 Derivation of High-Order Slip Models
Maxwell’s derivation of equation (2.19) is based on kinetic theory. A sim-
ilar boundary condition can be derived by an approximate analysis of the
motion of gas in isothermal conditions. We write the tangential momentum
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flux on a surface s located near the wall (see Figure 2.5) as

1
4
nsmv̄us,

where ns is the number density of the molecules crossing surface s, m is
the molecular mass, v̄ is the mean thermal speed defined as

v̄ = (8/πRT )0.5,

and us is the tangential (slip) velocity of the gas on this surface. If we
assume that approximately half of the molecules passing through s are
coming from a layer of gas at a distance proportional to one mean free path
(λ = [µ(RTπ/2)

1
2 /p]) away from the surface, the tangential momentum flux

of these incoming molecules is written as

1
4
nλmv̄λuλ,

where the subscript λ indicates quantities evaluated one mean free path
away from the surface. Since we have assumed that half of the molecules
passing through s are coming from λ away from this surface nλ = 1

2ns, the
other half of the molecules passing through s are reflected from the wall
(see Figure 2.5), and they bring to surface s a tangential momentum flux
of

1
4
nwmv̄wur,

where the subscript w indicates wall conditions and the number density nw

is equal to 1
2ns. The average tangential velocity of the molecules reflected

from the wall is shown by ur. For determination of ur we will use the def-
inition of tangential momentum accommodation coefficient σv. Assuming
that σv (in percentage) of the molecules are reflected from the wall diffusely
(i.e., with average tangential velocity corresponding to that of the wall uw),
and (1 − σv) (in percentage) of the molecules are reflected from the wall
specularly (i.e., conserving their average incoming tangential velocity uλ),
we have

ur = (1 − σv)uλ + σvuw.

Therefore, the total tangential momentum flux on surface s is written as

1
4
nsmv̄us =

1
4
nλmv̄λuλ +

1
4
nwmv̄w [(1 − σv)uλ + σvuw] .

Since we have assumed that the temperatures of the fluid and the surface
are the same, the mean thermal speeds are identical (i.e., v̄s = v̄λ = v̄w);
this is a rather strong assumption in our derivation. The number density
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ns of molecules passing through the surface is composed of nλ and nw. We
have assumed that nλ = nw = 1

2ns, which is approximately true if there is
no accumulation or condensation of gas on the surface. Using the tangential
momentum flux relation, the mean tangential velocity of the gas molecules
on the surface, called slip velocity, is

us =
1
2
[uλ + (1 − σv)uλ + σvuw]. (2.26)

Schaaf and Chambre (1961) have written this expression as an average tan-
gential velocity on a surface adjacent to an isothermal wall. Our derivation
results in the same relation with approximately similar assumptions. Notice
that instead of obtaining the slip information uλ one mean free path away
from the wall, a fraction of λ may be used; see (Thompson and Owens,
1975). Using a Taylor series expansion for uλ about us, we obtain

us =
1
2

[
us + λ

(
∂u

∂n

)
s

+
λ2

2

(
∂2u

∂n2

)
s

+ · · ·
]

+
1
2

{
(1 − σv)

[
us + λ

(
∂u

∂n

)
s

+
λ2

2

(
∂2u

∂n2

)
s

+ · · ·
]

+ σv · uw

}
,

where the normal coordinate to the wall is denoted by n. This expansion
results in the following slip relation on the boundaries:

us − uw =
2 − σv

σv

[
λ

(
∂u

∂n

)
s

+
λ2

2

(
∂2u

∂n2

)
s

+ · · ·
]

. (2.27)

After nondimensionalization with a reference length and velocity scale
(such as free-stream velocity), we obtain

Us − Uw =
2 − σv

σv

[
Kn

(
∂U

∂n

)
s

+
Kn2

2

(
∂2U

∂n2

)
s

+ · · ·
]

, (2.28)

where we have denoted the nondimensional quantities with capital let-
ters. By neglecting the higher-order terms in the above equation we re-
cover Maxwell’s first-order slip boundary condition (2.19) in nondimen-
sional form. Similarly, if we truncate the above equation to include only up
to second-order terms in Kn, we obtain

Us − Uw =
2 − σv

σv

[
Kn

(
∂U

∂n

)
s

+
Kn2

2

(
∂2U

∂n2

)
s

]
. (2.29)

We will use this equation for comparison of various slip models in Section
2.3.3 and in Section 4.2 .

Equation (2.26) excludes the thermal creep terms of equation (2.19),
since isothermal conditions are assumed in its derivation. For nonisothermal
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flows, the thermal creep effects are included to equation (2.26) separately,
resulting in the following relation:

us =
1
2
[uλ + (1 − σv)uλ + σvuw] +

3
4

Pr(γ − 1)
γρRTw

(−qs).

For the temperature jump boundary condition, a derivation based on
the kinetic theory of gases is given in (Kennard, 1938). We propose the
following form for the high-order temperature jump condition by analogy
with equation (2.28):

Ts − Tw =
2 − σT

σT

[
2γ

γ + 1

]
1

Pr

[
Kn

(
∂T

∂n

)
s

+
Kn2

2

(
∂2T

∂n2

)
s

+
Kn3

6

(
∂3T

∂n3

)
s

+ · · ·
]

, (2.30)

which can be rearranged by recognizing the Taylor series expansion of Tλ

about Ts to give a bf temperature jump boundary condition similar to
equation (2.26) as

Ts =
(

(2 − σT )
Pr

2γ

(γ + 1)
Tλ + σT Tw

)/(
σT +

2γ

(γ + 1)
(2 − σT )

Pr

)
. (2.31)

Here Tλ is the temperature at the edge of the Knudsen layer, i.e., one mean
free path (λ) away from the wall.

2.3.2 General Slip Condition
The expansion originally given in (Schaaf and Chambre, 1961) is of first or-
der in Kn. However, for higher Knudsen numbers, second-order corrections
to these boundary conditions may become necessary. The velocity slip near
the wall is coupled with the first and second variations of the tangential
velocity in the normal direction to the wall. Numerical implementation of
the slip formula in this form is computationally difficult. Therefore, further
simplification of (2.28) without changing the second-order dependence on
Kn is desired. For this purpose we assume that the transition from no-slip
flow to slip flow occurs smoothly. Thus, a regular perturbation expansion
of the velocity field in terms of Kn is defined in equation (2.32) below,
where the no-slip Navier–Stokes velocity field is denoted by U0(x, t), and
corrections to the velocity field due to different orders of Kn dependence
are denoted by Ui(x, t) (i = 1, 2, 3 . . .). We then have

U = U0 + Kn U1 + Kn2 U2 + Kn3 U3 + O(Kn4). (2.32)

This substitution enables us to rewrite the Navier–Stokes equations for
different orders of Kn dependence in the following form:
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O(1) :
∂U0

∂t
+ (U0 · ∇)U0 = −∇P0 + Re−1∇2U0; (2.33)

O(Kn) :
∂U1

∂t
+ (U1 · ∇)U0 + (U0 · ∇)U1 = −∇P1 + Re−1∇2U1;

O(Kn2) :
∂U2

∂t
+ (U0 · ∇)U2 + (U2 · ∇)U0 + (U1 · ∇U1)

= −∇P2 + Re−1∇2U2;

O(Kn3) :
∂U3

∂t
+ (U0 · ∇)U3 + (U3 · ∇)U0 + (U2 · ∇)U1

+(U1 · ∇)U2 = −∇P3 + Re−1∇2U3.

The boundary conditions for these equations are obtained similarly by sub-
stitution of the asymptotic expansion into the slip boundary condition for-
mula:

O(1) : U0|s = Uw, (2.34)

O(Kn) : U1|s =
2 − σ

σ
(U ′

0)
∣∣∣∣
s

,

O(Kn2) : U2|s =
2 − σ

σ

(
1
2
U ′′

0 + U ′
1

)
|s,

O(Kn3) : U3|s =
2 − σ

σ

(
U ′

2 +
1
2
U ′′

1 +
1
6
U ′′′

0

) ∣∣∣∣
s

,

where U ′
i , U ′′

i , and U ′′′
i denote first, second, and third derivatives of the ith-

order tangential velocity field along the normal direction to the surface.
A possible solution methodology for slip flow with high-order boundary

conditions can be the solution of the Navier–Stokes equations ordee by
order. However, this approach is computationally expensive, and there are
numerical difficulties associated with accurate calculation of higher-order
derivatives of velocity near walls with an arbitrary surface curvature.

We propose a formulation where the governing equations are directly
solved without an asymptotic expansion in velocity, as mentioned above.
The objective is to establish a methodology to develop slip boundary con-
ditions accurate up to the second-order terms in Kn. First, we introduce a
new slip boundary condition

Us − Uw =
2 − σv

σv

Kn
1 − B(Kn) Kn

(
∂U

∂n

)
, (2.35)

where B(Kn) is an empirical parameter to be determined. For a general
choice of B(Kn), equation (2.35) is first-order accurate in Kn, provided
that |B(Kn)| < 1. However, for the continuum flow regime (Kn → 0.0)
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the parameter B(Kn) has a definite value. This value can be used to make
equation (2.35) second-order accurate in Kn for finite Kn. For the rest of
the Kn values, B(Kn) can be curve-fitted accurately using the solutions of
corresponding numerical models (i.e., Navier–Stokes and DSMC models)
for the entire Kn range (0.0 < Kn < ∞). Equation (2.35) suggests finite
corrections for slip effects for the entire Kn range, provided that B(Kn) ≤ 0.
It is possible to obtain the value of the parameter B(Kn) for small Kn,
especially for the slip flow regime, by Taylor series expansion of B(Kn)
about Kn = 0. We thus obtain

B(Kn) = B|0 +
dB

dKn

∣∣∣∣
0

Kn + · ·· = b + Kn c + · · ·. (2.36)

Assuming that |B(Kn)| < 1, we expand equation (2.35) in geometric
series, including also the expansion given in equation (2.36) for B(Kn).
This results in

Us − Uw =
2 − σv

σv
Kn

∂U

∂n
[1 + bKn +(b2 + c)Kn2 + · ··]. (2.37)

Next, we substitute the asymptotic expansion for the velocity field (equa-
tion (2.32)) to the general slip condition given above, and rearrange the
terms as a function of their Knudsen number order. This results in

O(1) : U0|s = Uw; (2.38)

O(Kn) : U1|s =
2 − σv

σv
(U ′

0)|s;

O(Kn2) : U2|s =
2 − σv

σv
(bU ′

0 + U ′
1)|s;

O(Kn3) : U3|s =
2 − σv

σv
(U ′

2 + bU ′
1 + (b2 + c)U ′

0)|s.

Comparing these equations with the conditions obtained from the Taylor
series expansion in equation (2.35) order by order, we obtain that the two
representations are identical up to the first-order terms in Kn. To match
the second-order terms we must choose the parameter b as

b =
(

1
2

U ′′
0

U ′
0

)
s

=
1
2

[(
∂ω
∂n

)
0

ω0

]
s

. (2.39)

The quantities U ′
0 and U ′′

0 for an arbitrary curved surface denote first and
second derivatives of the tangential component of the velocity vector along
the normal direction to the surface, corresponding to a no-slip solution.
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• The parameter b in equation (2.39) is the ratio of the vorticity flux
to the wall vorticity, obtained in no-slip flow conditions. The value of
b for simple flows can be found analytically.

Similarly, third-order terms in Kn can be matched if c is chosen as

c =
1
U ′

0

(
1
2
U ′′

1 +
1
6
U ′′′

0 − b2 − bU ′
1

)
. (2.40)

However, the third-order-accurate slip formula is computationally more
expensive, since it requires the solutions for the U1 field. We can obtain a
second-order-accurate slip formula by approximating equation (2.35) as

Us − Uw =
2 − σv

σv

Kn
1 − B Kn

∂U

∂n
=

2 − σv

σv

Kn
1 − bKn

∂U

∂n
+ O(Kn3), (2.41)

where b is the high-order slip coefficient given in equation (2.39). The error
for equation (2.41) is O(Kn3), i.e.,

Error = c U ′
0 Kn3 .

Truncated geometric series containing only O(Kn2) terms could have also
been used to implement the new second-order slip-boundary condition (see
equation (2.37)). The error in this case is also O(Kn3), and is given as

Errorg.s. = [U ′
2 + bU ′

1 + (b2 + c]U ′
0)Kn3 .

Since we do not know the magnitude of the U ′
1 and U ′

2 terms, it is dif-
ficult to decide which approach is better. However, we believe that using
equation (2.41) is better, since this equation keeps the original form sug-
gested in (2.35). Also for separated flows, equation (2.41) gives no slip at
the separation or reattachment points (as predicted from the first-order
slip formula), since the shear stress (therefore ∂U

∂n = 0) is zero at these
points. However, the truncated geometric series (equation (2.37)) will give
multiplication of infinitesimally small wall shear stress (τwall = µ∂U

∂y → 0.0)

with large b (b = U ′′
o

2U ′
o

→ ∞, since U ′
o → 0). This may result in a velocity

slip at the separation point based on some numerical truncation error in
the calculations.

In this section we have developed various second- and higher-order slip
conditions for gas microflows. We note that the Navier–Stokes equations
require only the first-order slip conditions, and the second-order slip models
should be used strictly for the second-order equations, such as the Burnett
or Woods equations. Throughout this book we will utilize the second-order
slip conditions routinely for the Navier–Stokes equations. This can be jus-
tified by the following arguments:
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TABLE 2.2. Coefficients for first- and second-order slip models.

Author C1 C2

Cercignani (Cercignani and Daneri, 1963) 1.1466 0.9756
Cercignani (Hadjiconstantinou, 2003a) 1.1466 0.647

Deissler (Deissler, 1964) 1.0 9/8
Schamberg (Schamberg, 1947) 1.0 5π/12

Hsia and Domoto (Hsia and Domoto, 1983) 1.0 0.5
Maxwell (Kennard, 1938) 1.0 0.0

Equation (2.29) 1.0 −0.5

• In the small Reynolds number limit, i.e., Re � Kn � 1, asymptotic
analysis of the Boltzmann equation shows that a consistent set of
governing equations and boundary conditions up to O(Kn2) is the
Stokes system with second-order slip boundary conditions; see Section
15.4.2 and for details (Sone, 2002; Aoki, 2001).

• Rarefaction effects both in the aforementioned limit as well as in the
limit of Re ∼ O(1) → M ∼ O(Kn) come in only through the bound-
ary condition. This has been proven rigorously using the Boltzmann
equation in (Sone, 2002).

• The high-order boundary conditions proposed include Maxwell’s first-
order slip conditions (2.19), (2.19) as the leading-order term. Hence,
these results are correct up to O(Kn) in the slip flow regime, irre-
spective of the formal order of the utilized slip conditions.

• The general boundary condition for slip (equation (2.43)) converges to
a finite value for large Kn, unlike the first-order Maxwell’s boundary
condition.

2.3.3 Comparison of Slip Models
For isothermal flows with tangential momentum accommodation coefficient
σv = 1, the general second-order slip condition has the nondimensional
form

Us − Uw = C1 Kn
(

∂U

∂n

)
s

− C2 Kn2
(

∂2U

∂n2

)
s

, (2.42)

where (∂/∂n) denotes gradients normal to the wall surface. The coefficients
C1 and C2 are the slip coefficients. Typical values of the slip coefficients
developed by different investigators are shown in Table 2.2.

We will apply the second-order slip boundary conditions given above for
channel flows in Chapter 4 to examine their accuracy in representing the
flow profile, including the velocity slip predictions. According to Sreekanth
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(Sreekanth, 1969), Cercignani’s second-order boundary conditions should
be used only for evaluating the flow states far from the wall, and these
conditions should not be used to evaluate space integrals in regions extend-
ing close to the walls. Sreekanth reports good agreement of second-order
slip boundary conditions with his experimental results for Kn as high as
Kn = 1.5 (Sreekanth, 1969). However, Sreekanth used a different second-
order slip coefficient (C2 = 0.14) than the original ones shown in Table 2.2.
He also reports a change of the first slip coefficient (C1) from 1.00 to 1.1466
as the Knudsen number is increased. First-order boundary conditions cease
to be accurate, according to Sreekanth’s study, above Kn > 0.13. More re-
cent studies also show that Maxwell’s slip boundary condition breaks down
around Kn = 0.15 (Piekos and Breuer, 1995).

Implementation of second-order slip boundary conditions using equation
(2.29) requires obtaining the second derivative of the tangential velocity
in the normal direction to the surface (∂2U/∂n2), which may lead to com-
putational difficulties, especially in complex geometric configurations. To
circumvent this difficulty we have proposed in the previous section the fol-
lowing general velocity slip boundary condition.

Us − Uw =
2 − σv

σv

[
Kn

1 − bKn
(
∂U

∂n
)s

]
, (2.43)

where b is a general slip coefficient. Notice that the value of b can be
determined such that for |bKn | < 1 the geometric series obtained from the
boundary condition of equation (2.43) matches exactly the second-order
equation (2.29), and thus for slip flow the above boundary condition is
second-order accurate in the Knudsen number.

An alternative way of implementing the slip boundary condition is to use
equation (2.26) derived directly from the tangential momentum flux anal-
ysis. Such a boundary condition has not been tested before, so in Section
4.1.3 we will determine the region of its validity, and in particular at what
distance from the wall it should be applied, i.e., λ or Cλ, where C �= 1 (see
Figure 2.5 and (Thompson and Owens, 1975)).

As regards the accuracy of two velocity slip boundary conditions, i.e.,
equation (2.26) versus equation (2.43), we can analyze the differences for
the two-dimensional pressure-driven incompressible flow between parallel
plates separated by a distance h in the slip-flow regime. Assuming isother-
mal conditions and that the slip is given by equation (2.26), the corre-
sponding velocity distribution is

U(y) =
h2

2µ

dP

dx

[
y2

h2 − y

h
− 2 − σv

σv
(Kn − Kn2)

]
. (2.44)

This is identical to the results obtained using equation (2.43) up to second-
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order terms in Kn, given below:

U(y) =
h2

2µ

dP

dx

[
y2

h2 − y

h
− 2 − σv

σv

Kn
1 + Kn

]
. (2.45)

This equivalence can be seen by expanding the last term in equation (2.45)
as a geometric series expansion in terms of powers of Kn. The leading error
in equation (2.45) is therefore proportional to

h2

2µ

∣∣∣∣∂P

∂x

∣∣∣∣ Kn3,

where h is the microchannel height.

Remarks: We summarize here observations that will aid in evaluating the
proper application and limitations of the slip boundary conditions given by
equations (2.42) and (2.43).

1. The first-order slip boundary condition should be used for Kn ≤
0.1 flows. Since rarefaction effects gradually become important with
increased Kn (regular perturbation problem), inclusion of second- and
higher-order slip effects into a Navier–Stokes–based numerical model
is neither mathematically nor physically inconsistent.

2. Using the high-order slip boundary conditions with the Navier–Stokes
equations can lead to some physical insight. For example, using equa-
tion (2.42) for pressure-driven flows with various slip coefficients from
Table 2.2 results in different velocity profile and flowrate trends. All
the models in Table 2.2, with the exception of equation (2.29), result
in increased flowrate due to the second-order slip terms. Although
this is a correct trend for flowrate, the velocity distribution predicted
by these models become erroneous with increased Kn, as shown in
Figures 4.11 and 4.17. This indicates that solely using the high-order
slip correction in the transition flow regime is insufficient to predict
the velocity profile and the flowrate simultaneously. In Section 4.2, we
address this problem by introducing a rarefaction correction param-
eter that leads to a unified flow model for pressure-driven channel
and pipe flows, when combined with the general slip condition (equa-
tion (2.43)). The unified model predicts the correct velocity profile,
flowrate, and pressure distribution in the entire Knudsen regime (see
Section 4.2 for details).

3. Steady plane Couette flows have linear velocity profiles, which result
in ∂2U/∂n2 = 0. Therefore, the high-order slip effects in equations
(2.42) and (2.43) diminish for plane Couette flows. In Section 3.2, we
demonstrate a generalized slip model for linear Couette flows that is
valid for Kn ≤ 12.
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4. As a final remark, interfacial interactions between the gas and surface
molecules may result in inelastic reflections, due to the long-range in-
teraction forces between the gas and surface molecules. Consequently,
the gas molecules may condense and then evaporate after a certain
time. This results in deposition of a thin layer of gas molecules on
the surface. Using Langmuir’s theory of adsorption, Myong (2004) ex-
plained the accommodation coefficient concept, and studied velocity
slip for both monatomic and diatomic molecules. He has shown that
the Langmuir model recovers Maxwell’s first-order slip conditions,
and he also described equation (2.43) in the context of the Langmuir
model (Myong, 2004).



3
Shear-Driven Flows

In this chapter we consider shear-driven gas microflows with the objec-
tive of modeling a certain class of flows encountered in microsystems. For
example, the flow between the rotor and base plate of a micromotor and
the flow between the stationary and movable arms of a comb-drive mech-
anism are shear-driven microflows (see Figures 1.1 and 1.2, respectively).
In order to circumvent the difficulty of understanding the flow physics for
complex engineering geometries, we concentrate on prototype flows such as
the linear Couette flow, and flow in shear-driven microcavities and grooved
microchannels. First, we present analytical and numerical results for steady
Couette flow in the slip flow regime. This is followed in Section 3.2 by the
development and validation of an empirical model for steady Couette flow
in the transition and free-molecular flow regimes. In Section 3.3, we present
simulation results and analysis for oscillatory shear-driven flows in the en-
tire Knudsen regime. The last two sections include flows in prototype com-
plex geometries, such as the microcavity, and grooved microchannel flows.

3.1 Couette Flow: Slip Flow Regime

Shear-driven flows are encountered in micromotors, comb mechanisms, and
microbearings. In the simplest form, the linear Couette flow can be used as
a prototype flow to model such flows driven by a moving plate. Since the
Couette flow is shear-driven, the pressure does not change in the stream-
wise direction. Hence, the compressibility effects become important for
large temperature fluctuations or at high speeds. Considering this, we first
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present an analysis of incompressible Couette flow with slip.
The velocity profile for incompressible Couette flows with slip can be

obtained by considering a two-dimensional channel extending between y =
0 to y = h, with the top surface moving with a prescribed velocity U∞.
By integrating the momentum equation (2.10) assuming no dependence
on the streamwise direction, the following velocity profile is obtained in
nondimensional form,

U

U∞
=

y/h + 2−σv

σv
Kn

1 + 2 2−σv

σv
Kn

+
3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
, (3.1)

where ∂Ts/∂x is the tangential temperature gradient along the surfaces
due to the thermal creep effects, and Ec is the Eckert number defined as
(Ec = M u2

Cp∆T ). The linear velocity profile of the Couette flow makes it
impossible to incorporate high-order slip effects using equation (2.42), since
∂2U/∂n2 = 0. Therefore, high-order rarefaction effects cannot be captured
unless the first-order slip coefficient C1 is modified as a function of Kn. In
Section 3.2, we present a high-order slip model for Couette flows that is
valid in the transition and free molecular flow regimes. In deriving the veloc-
ity profile in equation (3.1), we utilized C1 = 1.0. However, more accurate
values for the slip coefficient have been determined using the Boltzmann
equation, DSMC, and molecular dynamics simulations. For example, the
theoretical model derived in (Ohwada et al., 1989b), using linearized Boltz-
mann equation for hard-sphere molecules predicts C1 = 1.111, for Kn ≤ 0.1
for linear Couette flows.

The volumetric flowrate per channel width can be found by integrating
equation (3.1)

Q̇

U∞h
=

1
2

+
3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
. (3.2)

The first term is independent of the Knudsen number, while the second term
is due to the thermal creep effects, which can result in change of the flowrate
in the channel. In Section 5.1 we will present heat transfer analysis of
shear-driven microflows, including the thermal creep effects corresponding
to various prescribed heat flux conditions.

Once the analytical solution for the velocity distribution is known, the
ratio of the skin friction coefficient for shear-driven slip flows and no-slip
flows is given by

Cf

Cf0

=
1

1 + 2 2−σv

σv
Kn

, (3.3)

where Cf ≡ τw/(1
2ρU2

∞), with τw the wall shear stress. The above equation
is obtained for constant mass flow rate in the channel; hence the con-
tribution of thermal creep is neglected. If the thermal creep effects were
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considered, the driving velocity U∞ should have been modified in order to
keep the volumetric flowrate of slip and no-slip flows the same.

For compressible shear-driven flows, an analytical solution can also be
obtained given the simplicity of the geometry. In order to include the com-
pressibility effects we must also specify the thermal boundary conditions.
For the following analysis, we assumed that the upper plate temperature is
specified to be T∞, while the bottom plate is adiabatic. Also for simplifica-
tion, viscosity and thermal conductivity are assumed to vary linearly with
temperature (i.e., k ∼ µ ∼ T ), and the Prandtl number is fixed. In this case
it is possible to obtain the friction coefficient (see page 313 in Liepmann
and Roshko, 1957):

Cf0 = 2
1 + Prγ−1

3 M∞2

Re
, (3.4)

where M∞ is the Mach number based on the upper plate velocity and
temperature, and Re is the Reynolds number based on the channel height.

We performed a series of simulations with the program µFlow, which is
based on high-order discretization (see Section 14.1 for details) to explore
the compressibility effects in shear-driven flows. One set of simulation re-
sults corresponds to top plate temperature T∞ = 300K and Reynolds num-
ber Re = 5. The simulations are performed using nine spectral elements
with sixth-order polynomial expansions per direction in each element. The
Mach number M∞ is specified by varying the driving velocity of the top
plate U∞. Correspondingly, rarefaction effects are specified through the
Knudsen number, since

Kn∞ =
√

π
γ

2
M∞
Re

. (3.5)

The variation of friction coefficient as a function of Mach number and
corresponding Knudsen number is shown in Figure 3.1. The friction co-
efficient of no-slip compressible flow increases quadratically, in agreement
with equation (3.4), well above the constant value of the corresponding
incompressible flow. The no-slip compressible flow simulations match the
theoretical results exactly. For rarefied flows, slip effects change the friction
coefficient significantly. Compressible slip flow results are denoted by open
circles in Figure 3.1. It is seen that the compressible slip flow results corre-
spond to small deviations from the incompressible slip flow results obtained
from

Cf =
2

Re

[
1

1 + 2 2−σv

σv
Kn

]
. (3.6)

In linear Couette flow the pressure is constant, and therefore compress-
ibility effects are due to the temperature changes only. As M∞ increases,
the temperature difference between the two plates gets larger due to vis-
cous heating. Thus, compressibility effects become significant. It is seen in
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FIGURE 3.1. Variation of skin friction as a function of M and Kn for Couette
flow. (Re = 5, T∞ = 300 K). Lines and symbols denote analytical and numer-
ical results, respectively. Compressible no-slip results denoted by L&R are from
(Liepmann and Roshko, 1957).

Figure 3.1 that significant deviations from incompressible flows (with either
slip or no-slip) are obtained for M∞ > 0.3. In particular, we investigated a
case in which the bottom plate is kept at Tw = 350K while the top plate
is kept at T∞ = 300K. The friction coefficient of this case is also given
in Figure 3.1. The results are shown by solid and open triangles for the
no-slip and the slip cases, respectively. The trend is different from the adi-
abatic bottom plate case. The no-slip results show small variation of Cf as
a function of M , while for slip flows Cf is reduced significantly as Kn is
increased.

The density variation across the channel for compressible no-slip as well
as slip flows is shown in Figure 3.2 (left) for the case with adiabatic bottom
wall. Here, we normalized the density variation by the top plate density of
the no-slip case (solid line). The no-slip cases exhibit large density vari-
ations for relatively large values of M∞. Since the pressure is constant,
density variation across the channel is due to the drastic change in temper-
ature, which is attributed to viscous heating. However, density variations
are reduced in slip flows. There are two reasons for this behavior:

1. The shear stress is reduced due to slip, reducing the viscous heating
effects, i.e., work done by viscous stresses in the energy equation.

2. A temperature jump exists at the driving (top) plate; there is no
temperature jump on the bottom plate, since it is adiabatic.

We also included the variation of velocity in the channel (normalized
with the driving plate velocity) in Figure 3.2 (right). It is seen that the lin-
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FIGURE 3.2. Couette flow: Density variation (left) and velocity variation (right)
across the channel for various values of Mach number M and Knudsen number
Kn; L = h is the height of the channel (Re = 5, T∞ = 300 K).

ear velocity profile for the incompressible flows is modified for compressible
no-slip flows (solid lines); for the range of simulations performed here the
deviations from linear profile is small. This is expected, because the com-
pressible no-slip flow friction coefficient for M∞ = 0.863 is only 10% larger
than the corresponding incompressible flow. However, the velocity profiles
for the compressible slip flow given in Figure 3.2 (right) show significant
reduction in the slope of velocity, which explains the large reduction in the
friction coefficient.

3.2 Couette Flow: Transition and Free-Molecular
Flow Regimes

In this section, we analyze plane Couette flows in the transition and free-
molecular flow regimes. Following (Bahukudumbi et al., 2003), we present
empirical models for velocity distribution and shear stress, developed using
the linearized Boltzmann equation solutions and extensive direct simulation
Monte Carlo (DSMC) results.

3.2.1 Velocity Model
We consider rarefied gas flow between two infinite parallel plates, sepa-
rated by a distance L. The plates are maintained at the same uniform
temperature Tw, and they are moving with a uniform velocity of ±U . We
investigate steady one-dimensional plane Couette flow induced between the
plates subject to the following assumptions:
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• The gas molecules are hard spheres of uniform size, and they undergo
diffuse reflections with the surfaces (σv = 1).

• The plate velocity is small compared to the mean thermal velocity.
Hence the compressibility effects, temperature fluctuations, and vis-
cous heating effects are negligible.

Based on these, the velocity field in the slip flow regime is given as

uc(Y ) =
2UY

1 + 2 2−σv

σv
C1 Kn

, (3.7)

where Kn = λ/L, and Y = y/L. Utilizing this solution with C1 = 1.111, it
has been shown that equation (3.7) is valid for Kn ≤ 0.25 (Marques et al.,
2000).

Steady flow calculations in (Sone et al., 1990) using the linearized Boltz-
mann equation indicate that the bulk flow velocity profile is essentially
linear for all Knudsen numbers. However, a kinetic boundary layer (Knud-
sen layer) on the order of a mean free path starts to become dominant
between the bulk flow and solid surfaces in the transition flow regime. The
velocity distribution and other physical variables are subject to appreciable
changes within the Knudsen layer, which can be predicted only by solution
of the Boltzmann equation. In order to validate Sone’s linearized Boltz-
mann solutions, (Bahukudumbi et al., 2003) performed a series of hard-
sphere DSMC simulations at various Knudsen numbers and wall speeds. In
these simulations, solid surfaces were maintained at 273 K, and they were
assumed to be fully accommodating (σv = 1). Argon with molecular mass
m = 6.63 × 10−26 kg and hard-sphere diameter dhs = 3.66 × 10−10 m was
simulated. Since the collision diameter for hard-sphere molecules is inde-
pendent of the relative velocity of the colliding molecules, the viscosity de-
pendence on temperature is in the form of µ0 ∝ T 0.5

0 . This trend is slightly
different from a more reliable variable hard-sphere model (VHS), which has
viscosity dependence on temperature in the form of µ0 ∝ T 0.81

0 for argon
molecules. However, it is noted that DSMC simulations for hard-sphere and
variable hard-sphere molecules yield similar results when the flow is isother-
mal. Simulations were performed for a wide range of Knudsen and Mach
numbers. A minimum of 20 cells across the channel width was used in the
simulations, and the domain discretization always ensured a minimum of 3
cells per mean free path. With this discretization, 10,000 hard-sphere parti-
cles were utilized, and the results were sampled for 1.0×106 time steps. The
simulation time step was one-fifth of the mean collision time (λ/

√
2RT0).

These sets of parameters are sufficient to obtain accurate DSMC results
(Chen and Boyd, 1996).

In Figure 3.3, velocity profiles for linear Couette flow in the upper half
of the channel at three different Knudsen numbers are presented, where
k = (

√
π/2)Kn is the rescaled Knudsen number. The linearized Boltzmann
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FIGURE 3.3. Velocity profiles for linear Couette flow in the upper half of the
channel at rescaled Knudsen numbers k = 0.1, 1.0, and 10.0. The wall speed
corresponds to M = 0.05.

solutions (triangles) and DSMC (circles) agree quite well, and they both
predict essentially linear velocity distribution in the bulk flow region with
significant slip effects for increased Kn. Knudsen layers are also visible
in this plot, and they become dominant especially in the transition flow
regime. The nondimensional results are valid for any monoatomic hard-
sphere dilute gas. Figure 3.3 also shows the velocity distribution predicted
using Maxwell’s first-order slip model (dashed lines). These analytical re-
sults are obtained using Equation (3.7) with C1 = 1.111, and the first-order
slip solution is reasonable for Kn ≤ 0.1.

• The velocity profile for incompressible Couette flow remains essen-
tially linear in the entire Knudsen regime. Therefore, high-order slip
conditions that utilize the second- or higher-order derivatives of the
velocity field cannot predict the desired slip corrections.

In order to develop an engineering model for these flows, (Bahukudumbi
et al., 2003) introduced a modified slip coefficient (C1) for equation (2.42),
and similarly for equation (3.7) in the following form:

C1 = β0 + β1 tan−1(β2 Knβ3), (3.8)

where βi (i = 0, 1, 2, 3) are empirical constants that are obtained by com-
paring the slope of the velocity profile, obtained by the linearized Boltzmann
solution in (Sone et al., 1990), with that obtained from equation (3.7), using



86 3. Shear-Driven Flows

C1. This velocity slip coefficient (C1) is in essence a correction term applied
to extend the validity of the original first-order slip boundary condition. In
this model, the values of βi were determined as β0 = 1.2977, β1 = 0.7185,
β2 = −1.1749, and β3 = 0.5864, using a least square fit to the linearized
Boltzmann solutions presented in (Sone et al., 1990).

Figure 3.3 also presents the predictions obtained by the new model (solid
lines). Unlike the first-order model, the new model accurately matches the
velocity profile in the bulk flow region for a wide range of Knudsen numbers.
It must be noted that the new model fails to predict the velocity distribu-
tion in the Knudsen layer. This is expected, since the model is based on the
Navier–Stokes equations, and the velocity profiles cannot be different from
a linear profile for Couette flows. For Kn < 0.1, presence of the Knudsen
layers can be neglected by extrapolating the bulk flow toward the wall.
When Kn > 1, the Knudsen layer occupies the entire channel.

The results presented in Figure 3.3 are obtained for M = 0.05, and they
exhibit rarefaction effects alone. Although the compressibility and viscous
heating effects are insignificant for low-speed flows, they become important
for nonisothermal as well as high-speed flows, where viscous heating creates
temperature variations in the domain, as discussed in Section 3.1. Figure 3.4
shows the compressibility effects on Couette flow velocity distribution. The
results are obtained using hard-sphere DSMC at various wall speeds. The
new velocity model and the linearized Boltzmann solution in (Sone et al.,
1990); exhibit significant deviations from the hard-sphere DSMC simulation
results when M > 0.3. In order to extend the velocity model for M > 0.3, a
slip boundary condition that couples the velocity and temperature fields is
necessary, as presented in (Schamberg, 1947). For the range of simulations
performed here, the maximum deviation of the new velocity model from
the DSMC results is around 7% when M = 0.5, and the deviation is 14%
when M = 1.0.

3.2.2 Shear Stress Model
The shear stress for Couette flows exhibits two distinct behaviors in the
continuum and free-molecular flow regimes. Using the classical constitutive
laws employed in the Navier–Stokes equations, the shear stress for plane
Couette flow is given by

τcont = µ
dU

dy
= −µ

2U

L
, (3.9)

where the viscosity µ = (2RTw/π)1/2ρ0λ does not depend on pressure, and
the minus sign is due to direction of the shear stress on the fluid. So, in the
hydrodynamic approximation the shear stress is proportional to the velocity
gradient, and this representation is also valid in the slip flow regime with
the appropriate velocity slip corrections. In the free-molecular flow regime,



3.2 Couette Flow: Transition and Free-Molecular Flow Regimes 87

uc/Uwall

Y

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Current model
Boltzmann
DSMC, M =0.05
DSMC,M =0.3
DSMC, M =0.7
DSMC, M =1.0

FIGURE 3.4. Couette flow velocity distribution in the upper half of the channel
at k = 1.0, at various wall speeds.

the shear stress is proportional to the density and relative velocity of the
plates, and it is given by (Kogan, 1969)

τ∞ = −ρ0U

√
2RTw

π
. (3.10)

In the free-molecular flow regime, the shear stress is due to the tangential
momentum exchange between the two plates that interact via the imping-
ing and reflecting molecules. We note that this behavior is independent of
(∂u/∂y); hence, a free-molecular shear stress exists even if ∂u/∂y → 0.

An analytical expression was derived by (Cercignani, 1963) for the shear
stress using different molecular interaction models, i.e.,

πxy =
τ

τ∞
= − a1 Kn2 +a2 Kn2

a1 Kn2 +a3 Kn+a4
, (3.11)

a1 = 1.3056, a2 = 2π, a3 = 7.5939, a4 = π,

where πxy is the shear stress normalized with the free molecular shear
stress. The values of the coefficients a1, a2, a3, and a4 in equation (3.11)
depend on the molecular interaction model used, and here we present the
coefficients corresponding to the hard-sphere molecules. (Sone et al., 1990)
have obtained accurate numerical solutions for shear stress in the entire
Knudsen regime. They also developed the following analytical solution valid
for Kn → 0, using perturbation expansions
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πxy = − γ1π Kn
2(1 + 2C1 Kn)

, γ1 = 1.270042, C1 = 1.111.

(Bahukudumbi and Beskok, 2003) presented a shear stress model, similar
in form to the result of (Cercignani, 1963), as follows:

πxy = − aKn2 +2bKn
aKn2 +cKn +b

, (3.12)

a = 0.5297, b = 0.6030, c = 1.6277,

where the coefficients a, b, and c are obtained by a least squares fit to the
linearized Boltzmann solution of (Sone et al., 1990). It is important to test
the model for uniform convergence to the correct continuum (Kn → 0)
and free-molecular (Kn → ∞) limits. A Taylor series expansion of the new
model in the above-mentioned limits is given by

τ

τ∞
= πxy = 1 +

2b − c

a

1
Kn

+
−b − (2b−c

a )c
a

1
Kn2 + O(Kn−3)

as Kn → ∞, (3.13)

τ

τcont
= πxy = 1 +

a − 2c

2b
Kn +

(2c−a
b )c − 2a

2b
Kn2 +O(Kn3)

as Kn → 0, (3.14)

where the coefficients of the O(Kni) terms (i = . . . ,−2,−1, 1, 2, . . .) are
corrections to the shear stress due to different orders of Kn dependence. It
can be seen that the coefficient of the O(Kn) term in the expansion for Π
is a−2c

2b = −2.2601 ≈ −2C1 = 2.222. Comparing equation (3.14) with the
asymptotic theory in (Sone et al., 1990), for the continuum limit, we obtain
that the two representations are similar up to second-order terms in Kn.

In Figure 3.5, we compare the normalized shear stress πxy predicted by
the new model with the hard-sphere DSMC results, linearized Boltzmann
solution of (Sone et al., 1990), and 4-moment solution of (Gross and Zier-
ing, 1958). All solutions uniformly approach to the free-molecular flow shear
stress limit as Kn → ∞. However, the asymptotic solution of Sone (derived
for Kn → 0) systematically deviates from the linearized Boltzmann and
DSMC results for Kn > 1.0. Differences between the current hard-sphere
DSMC results and the linearized Boltzmann solution are almost invisible
in the plot, and any discrepancy in the numerical values can be attributed
to the statistical nature of the DSMC. The new model has a maximum



3.2 Couette Flow: Transition and Free-Molecular Flow Regimes 89

k

−π

10-2 10-1 100 101 102

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Current model
Asymptotic solution
Linearized Boltzmann
4-moment method
Free-molecular limit
DSMC

xy

FIGURE 3.5. Variation of normalized shear stress with the rescaled Knudsen
number k.

deviation of 0.3% from the linearized Boltzmann solution, while the dis-
agreement is about 1% for the solution of (Cercignani, 1963) and 0.7% for
the empirical model in (Veijola and Turowski, 2001).

Results presented in Figure 3.5 were obtained for a Mach number M =
0.05 flow. The shear stress variation as a function of the wall speed using
hard-sphere DSMC simulations results in deviations from this model. The
maximum increase observed in the magnitude of the shear stress is about
6% as the Mach number is increased from 0.05 to 1.0 (Bahukudumbi et al.,
2003).

In another study, (Lockerby and Reese, 2003) presented numerical solu-
tions of Burnett equations for linear Couette flows using the no-slip, first-
order slip (2.19) and second-order slip (2.42) boundary conditions. Their
shear stress results for high-speed Couette flows at M = 3 are shown in Fig-
ure 3.6, where the Burnett predictions using various boundary conditions
are compared with the DSMC computations of (Nanbu, 1983). It is clearly
seen that the first-order slip condition is valid up to Kn = 0.1, while the
second-order slip condition (2.42) is ineffective for this flow (see Remark 3
at the end of Section 2.3.3).

Remark: We presented empirical models for velocity distribution and
shear stress for engineering analysis of shear-driven gas flows encountered
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Comparison of DSMC results with Burnett solutions using various boundary
conditions. (Courtesy of J.M. Reese.)

in microsystems. The new velocity model is based on a generalized slip coef-
ficient, and it uniformly converges to the first-order slip model for Kn ≤ 0.1
flows, while it accurately matches the DSMC and the linearized Boltzmann
results in the transition and the free-molecular flow regimes. Validity of the
velocity model was established for Kn ≤ 12. The new shear stress model
is valid in the entire Knudsen regime, and it is asymptotically consistent
in the continuum (Kn → 0) and free-molecular flow (Kn → ∞) regimes.
These models are valid for monoatomic dilute hard-sphere gases, and are
restricted to low subsonic M ≤ 0.3, nearly isothermal flows, since extreme
compressibility effects and viscous heating are neglected in their derivation.

3.3 Oscillatory Couette Flow

Oscillatory Couette flow is the simplest approximation for time-periodic
shear-driven gas flows encountered in several microsystem applications,
such as microaccelerometers, inertial sensors, and resonant filters. Oscilla-
tory Couette flow can also be interpreted as a variation of Stokes’s second
problem (Batchelor, 1998). This classical problem has been investigated
extensively using continuum-based flow models for Kn ≤ 0.1 (Veijola and
Turowski, 2001); however, rarefaction effects in the transition and free-
molecular flow regimes have not been studied in detail.

Let us consider rarefied gas flow between two infinite parallel plates that
are at a distance L apart, where the top plate oscillates harmonically with
frequency (ω) in the lateral (flow) direction, and the bottom plate is sta-
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tionary. The two plates are maintained at the same temperature Tw = 273
K. The gas is initially at rest; it has an equilibrium number density n0 and
equilibrium temperature Te that is equal to the wall temperature Tw. For a
given set of parameters, the oscillatory rarefied Couette flow can be charac-
terized by the Knudsen (Kn), and Stokes (β) numbers. The Stokes number
represents balance between the unsteady and viscous effects. It can also be
interpreted as the ratio of the diffusion and oscillation characteristic time
scales, and it is defined as

β =

√
ω L2

ν
=
(

L2/ν

1/ω

)1/2

, (3.15)

where ν is the kinematic viscosity.

3.3.1 Quasi-Steady Flows
In this Section, we present extensions of the steady flow velocity and shear
stress models in Section 3.2 to include oscillatory Couette flows. This par-
ticular approach will be valid for

• any Stokes number flow in the slip flow regime (Kn < 0.1),

• quasi-steady flows for Kn < 12.

We define the quasi-steady conditions as the flow, where the velocity ampli-
tude distribution always passes through (y/L, u/u0) = (0.5, 0.5), resulting
in a linear velocity distribution with equal amounts of slip on the oscillating
and stationary walls. Our observations have shown that such conditions are
typically achieved when β ≤ 0.25.

Velocity Model

For oscillatory Couette flows, the momentum equation reduces to the fol-
lowing form:

∂u(y, t)
∂t

= ν
∂2u(y, t)

∂y2 . (3.16)

An analytical solution of the above equation can be obtained for oscillatory
flows with a specified frequency ω and amplitude U0, as shown in (Sherman,
1990). For a sinusoidal velocity excitation, a velocity response of the form
u(y, t) = �{V (y) exp(jωt)} is expected, where the symbol � denotes the
imaginary part of a complex expression, and V (y) is the amplitude governed
by

jωV (y) = ν
∂2V (y)

∂y2 . (3.17)
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Alternatively, we can write this as

∂2V (y)
∂y2 − ψ2V (y) = 0, (3.18)

where ψ =
√

jω
ν is the complex frequency variable, and j =

√−1. The
generalized solution of the above equation can be written in the following
form,

V (y) = A1 sinh(ψy) + A2 cosh(ψy), (3.19)

where the constants A1 and A2 are determined by applying the boundary
conditions. The complex variable ψ can be expressed in terms of the Stokes
number, since

ψ =

√
jβ2

L2 .

Utilizing the slip boundary condition (2.42) with C2 = 0, and the gen-
eralized slip coefficient C1 from equation (3.8), we obtain the following
time-dependent velocity distribution:
u(y, t) (3.20)

= �
[(

U0
sinh(

√
jβY ) +

√
jβC1 Kn cosh(

√
jβY )

(1 + jβ2C2
1 Kn2) sinh(

√
jβ) + 2

√
jβC1 Kn cosh(

√
jβ)

)
exp(jωt)

]
,

where Y = y/L and Kn = λ/L. This is a general solution for the velocity
profile that captures the no-slip solution simply by setting Kn = 0, and the
first-order slip solution by setting C1 = 1.111 in equation (3.20). Therefore,
the above equation is expected to be valid for any Stokes number flow in
the continuum and slip flow regimes, since it uniformly captures these well-
explored limits.

Figure 3.7 shows variation of the normalized velocity amplitude between
the two surfaces. We compare the DSMC results with the predictions of the
extended slip model for (a) quasi-steady flows in the entire Knudsen regime,
and (b) slip flows for a wide range of Stokes numbers (β ≤ 7.5). The veloc-
ity amplitudes are obtained by measuring the magnitude of the maximum
velocity at different cross-flow (Y = y/L) locations. Note that the gener-
alized velocity model given by equation (3.20) converges to the first-order
slip model for Kn < 0.1. Hence, only the predictions of the extended slip
model are shown in the figure. For quasi-steady flows, the velocity ampli-
tude distribution always passes through (y/L, u/u0) = (0.5, 0.5) resulting
in a linear velocity distribution with equal amounts of slip on the oscillat-
ing and stationary walls. The extended slip model accurately matches the
DSMC velocity profile for a wide range of Knudsen numbers (Kn ≤ 12).
However, it fails to predict the Knudsen layers that are captured by the
DSMC results, as expected. The extended slip model is also valid for high
Stokes number flows in the continuum and slip flow regimes due to the
use of the Navier–Stokes equations in its derivation. Figure 3.7(b) shows
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FIGURE 3.7. Velocity amplitudes for (a) quasi-steady and (b) low Kn cases.

that the DSMC results accurately capture the slip-flow limit even for large
Stokes numbers. For high Stokes number flows there are deviations from
the linear velocity profile, and the velocity amplitude distribution loses its
symmetry beyond β = 1.0 for Kn = 0.1 flow. High Stokes number cases
(β ≥ 5) result in bounded Stokes layers, where the flow is confined to a
near wall region. Significant velocity slip can be observed with increased
Stokes number beyond the quasi-steady flow limit, while the slip velocity
for quasi-steady flows is independent of the Stokes number, as can be de-
duced by comparing the β ≤ 1.0 cases with the β ≥ 5 cases in Figure
3.7(b).

Figure 3.8 shows the dynamic response characteristics for Kn = 0.1 and
β = 5.0 flow. Snapshots of velocity distribution at different times are shown
in Figure 3.8(a). With the exception of the velocity slip, the dynamics
are similar to those of no-slip continuum flows. The velocity distribution
predicted by the extended slip model and the DSMC simulations are in
good agreement, despite a slight phase difference between the DSMC and
the model. In the context of this work,

• the phase angle is defined as the fraction of the time period by which
the solution felt at any streamwise position lags or leads the reference
velocity solution imposed on the oscillating wall.

A general representation of the velocity solution at an arbitrary location Y
is given by

u(Y, t) = u0 sin(ωt + Ψ), (3.21)

where Ψ is the phase angle. Expanding and rearranging equation (3.21),
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we obtain

u(Y, t) = u0 [sin (ω t) cos Ψ + cos (ω t) sin Ψ] (3.22)
= A (Y ) sin (ω t) + B (Y ) cos (ω t) ,

where
A (Y ) = u0 sin Ψ, B (Y ) = u0 cosΨ. (3.23)

The phase angle can then be determined from equation (3.23) as

Ψ (Y ) = tan−1
[
B (Y )
A (Y )

]
, (3.24)

where the coefficients A and B are determined from the DSMC results,
using a χ-square fit. In addition, a theoretical expression for the phase
angle of the extended slip model of (Bahukudumbi and Beskok, 2003) is
also presented in (Park et al., 2004).

Figure 3.8(b) shows the velocity time history at various streamwise lo-
cations (y/L) in the flow domain. The velocity solutions at different y/L
locations exhibit reduced amplitudes and different phase angles. Note that
the peak values of the velocity solution in Figure 3.8(b) correspond to the
velocity amplitudes in Figure 3.7. In Figure 3.8(c), the phase angle pre-
dicted by the extended slip model and DSMC show similar trends. How-
ever, the initial deviation at y/L ≥ 0.9, due to the Knudsen layer effects,
offsets the DSMC results from the model solution. The phase angle varia-
tion is essentially linear in most of the domain, except within the Knudsen
layers near the walls. The wave propagation speed c′ (phase speed) can be
computed from the phase angle variation using the relation

c′ = ω

/(
∆Ψ
∆Y

)
. (3.25)

Consequently, the phase speed, computed using the above definition, is
constant in the region of linearly varying phase angle. The extended slip
model predicts a wave propagation speed of c′ = 1.770, which is in good
agreement with the corresponding DSMC prediction of c′ = 1.790. The
classical Stokes second problem without the stationary wall also predicts
a very similar wave propagation speed, c′ = 1.777. The phase speed is not
constant near the walls due to the presence of Knudsen layers. In addition,
the phase speed decays near the stationary wall, due to the interference
between the incident and reflected solutions. The normalized velocity am-
plitude, plotted in log-scale in Figure 3.8(d), shows exponential decay in
the amplitude with small alterations when y/L ≤ 0.1, due to the presence
of the stationary wall. It can be seen that the slip model results and DSMC
solution are consistent.
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FIGURE 3.8. Details of the flow dynamics for Kn = 0.1 and β = 5.0.

Shear Stress Model

In this section, we extend the shear stress model developed for plane Cou-
ette flows in Section 3.2.2 to predict the shear stress on the oscillating
wall. Our main assumption is that quasi-steady oscillatory flows should be-
have more or less like the steady Couette flow. Hence, an effective viscosity
derived from the steady Couette flow results can be used as the viscosity
coefficient for the quasi-steady oscillatory flows, an assumption that we val-
idate later using the DSMC data. Therefore, using the new velocity model
for steady flows and the shear stress model given by equation (3.12), we
define an “effective viscosity” as

µe =
τc

duc

dy

=
µ0

2
aKn +2b

aKn2 +cKn+b
(1 + 2C1 Kn), (3.26)

where the subscript c indicates plane Couette flow, and uc is the plane
Couette flow velocity profile given by equation (3.7) with the slip coef-
ficient C1. The coefficients a, b, and c are due to the shear stress model
given in (3.12). For quasi-steady oscillatory flows, we employ this “effective
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FIGURE 3.9. Time history of the normalized shear stress at the laterally oscil-
lating wall, predicted by the model of equation (3.27) and the unsteady DSMC
simulations at (a) Kn = 2.5, β = 0.1 and (b) Kn = 2.5, β = 0.25.

viscosity” coefficient, and define the shear stress at the oscillating plate as

(τ)qs = µe
du(y, t)

dy

∣∣∣∣∣
y=L

=
µ0U0

2h

aKn +2b

aKn2 + cKn +b
(1 + 2C1 Kn) (3.27)

×�
[(√

jβ(
cosh(

√
jβ) +

√
jβCmKn sinh(

√
jβ)

(1 + jβ2C2
m Kn2) sinh(

√
jβ) + 2

√
jβCm Kn cosh(

√
jβ)

)
exp(jωt)

]
.

Figure 3.9 shows the shear stress time history at the oscillating wall, nor-
malized with its continuum value. Predictions of the current model and
DSMC results are also presented for Kn = 2.5 flow at β = 0.1 and 0.25
conditions. There is a difference of very small magnitude in the shear stress
between the β = 0.1 and 0.25 cases at Kn = 2.5. The above model accu-
rately predicts the shear stress magnitude on the oscillating wall, and it
also matches the DSMC results for a wide range of Kn values under quasi-
steady flow conditions (β ≤ 0.25).

3.3.2 Unsteady Flows
In this section we present time-periodic oscillatory Couette flows in the
transition and free-molecular flow regimes at relatively large Stokes num-
bers. Therefore, the quasi-steady approximation is no longer valid, and
“bounded Stokes layer”–type behaviors are observed. We also discuss the
physical aspects, such as the penetration depth, wall shear stress, and slip
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FIGURE 3.10. Effect of β in transition flow regime.

velocity variations, as well as the energy dissipation and damping char-
acteristics of oscillatory Couette flows. Computational details about the
unsteady DSMC method can be found in Section 15.1.2.

Transition Flow Regime

Figure 3.10 shows the effect of Stokes number on the velocity amplitude
in the transition flow regime. At fixed Kn, the slip velocity increases with
increasing β. For Kn = 1.0, it can be seen that beyond β = 0.25 the quasi-
steady approximation breaks down. We observe a “bounded Stokes layer”
type of behavior for β ≥ 5 in both figures. Comparing the Kn = 1.0 and
Kn = 2.5 cases, we find that the slip velocity increases with increasing Kn
at constant β. For a fixed Kn, the Stokes layer thickness decreases with
increasing β, as expected.

The effect of Kn on the velocity amplitude for moderate Stokes number
conditions is shown in Figure 3.11. It can be seen that the slip velocity
magnitude on the oscillating wall increases with increasing Kn for a fixed
Stokes number. For β = 1.0, quasi-steady flow behavior is observed for
Kn = 0.1, since the velocity amplitude distribution is linear and passes
through (y/L, u/u0) = (0.5, 0.5). Hence, the quasi-steady flow approxima-
tion also depends on Kn, as can be deduced by comparison of Figures 3.10
and 3.11. The most interesting observation in Figure 3.11 is the emergence
of a “bounded rarefaction layer” with increasing Kn. By this term we em-
phasize that this behavior is due to the rarefaction effects alone, and not
to the influence of the Stokes number, which is kept constant. Transition
to this “bounded rarefaction layer” occurs even at moderate Stokes num-
ber flows (see Figure 3.11(a)) by increasing Kn. However, these effects are
more pronounced when the Stokes number increases, as can be deduced by
comparing Figures 3.11 (a) and (b).
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FIGURE 3.11. Effect of Knudsen number Kn for moderate values of the Stokes
number β.

Figures 3.12, 3.13, and 3.14 show the dynamic response of the system
for moderate and high Stokes number flows in the transition flow regime
(Kn = 1.0, β = 2.5; Kn = 1.0, β = 5.0, and Kn = 5.0, β = 2.5). Here,
we will not present detailed discussions of the dynamic system response
for the individual cases, since the behavior is qualitatively similar to that
of Figure 3.8. Comparing Figures 3.12(a) and 3.13(a), we observe that
a more pronounced Stokes layer forms by increasing the Stokes number.
Alternatively, comparing Figures 3.12(a) and 3.14(a), we observe a more
pronounced “bounded rarefaction layer” when Kn is increased. In all three
cases, reduced velocity amplitudes and different phase angles are observed
at different streamwise locations. Note that while the phase angle reaches
210◦ at y/L = 0 in Figure 3.12(c), the same value is reached at y/L ≈ 0.75
in Figure 3.13(c), and at y/L ≈ 0.8 in Figure 3.14(c). This indicates that
the phase speed, defined in equation (3.25), increases with increasing β and
Kn. It is also worthwhile to compare the level of statistical scatter between
these three results. Statistical scatter in Figure 3.12(d) is insignificant, since
the normalized velocity amplitude does not drop below 1% of the solution.
However, with increasing β and Kn, the normalized velocity amplitude
drops below 1% outside the “bounded layers,” and the statistical scatter
becomes important, as can be observed in Figures 3.13(d) and 3.14(d).

Free-Molecular Regime

In this section, we follow (Park et al., 2004), to derive the velocity distri-
bution and shear stress for oscillatory Couette flows in the free-molecular
flow limit (Kn ≥ 10). Our objectives are to provide a theoretical solution to
compare and validate the DSMC results, and enhance our understanding
of flow physics in this regime. As the Knudsen number is increased, inter-
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FIGURE 3.12. Details of the flow dynamics for Kn = 1.0 and β = 2.5.

molecular collisions become negligible compared to the molecule/surface
collisions. Therefore, the flow can be modeled using the collisionless Boltz-
mann equation

∂ f

∂ t
+ η

∂ f

∂ y
= 0, (3.28)

where f is the velocity distribution function and η is the cross-flow (y)
component of the molecular velocity. Due to the simple geometry, f changes
only in the cross-flow direction, and there are no external force fields. We
assume that both top and bottom walls are fully diffusive, and a sinusoidal
excitation is exerted on the top wall (y = L). The boundary conditions for
equation (3.28) are

f(y = 0) = f0 =
κ3

π3/2 exp
[−κ2 (ξ2 + η2 + ζ2)] ; η > 0, (3.29a)

f(y = L ; uw) =
κ3

π3/2 exp
[
−κ2

(
ξ2 + (η − uw)2 + ζ2

)]
; η < 0, (3.30a)
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FIGURE 3.13. Details of the flow dynamics for Kn = 1.0 and β = 5.0.

where uw = u0 sin (ω t) and κ =
√

m
2 kB Te

. Here Te is the initial equilibrium

temperature, kB is the Boltzmann constant, and ξ and ζ are the stream-
wise and spanwise components of the molecular velocity, respectively. Dif-
fuse reflections of gas molecules from the surfaces require that the reflected
molecules have a Maxwellian distribution f0, characterized by the veloc-
ity and temperature of the plates. Here, we assume that the amplitude of
velocity oscillations is less than the speed of sound. This enables lineariza-
tion of the collisionless Boltzmann equation and the boundary conditions.
Following the work of Sone, the velocity distribution function can be de-
composed into its equilibrium and fluctuating components as follows (Sone,
1964; Sone, 1965):

f = f0 (1 + φ) , (3.31)

where φ is the normalized fluctuation. We can obtain the linearized forms
of the Boltzmann equation and the boundary conditions by substituting
equation (3.31) into equations (3.28), (3.29a), and (3.30a) and neglecting
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FIGURE 3.14. Details of the flow dynamics for Kn = 5.0 and β = 2.5.

all the higher order terms in φ, i.e.,

∂ φ

∂ t
+ η

∂ φ

∂ y
= 0, (3.32a)

φ0 = φ (y = 0) = 0; η > 0, (3.32b)

φL = φ (y = L) = 2κ2ξ uw; η < 0. (3.32c)

The streamwise component of the velocity u and the shear stress τ are
defined as follows:

u =
∫

ξ φ f0 dξ dη dς, (3.33a)

τ = ρ0

∫
ξη φ f0 dξ dη dς, (3.33b)

where
∫

(· · · ) dξ dη dζ shows integration over the velocity space, and ρ0
is the mean density given by ρ0 = n0m, with n0 being the equilibrium
number density and m being the molecular mass. By taking the Laplace
transform of equation (3.32a) and the boundary conditions (3.32b, 3.32c),
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we calculate the integral formulations of the velocity and shear stress given
by equations (3.33a) and (3.33b). The Laplace transformed variables φ̂, û,
and τ̂ are given as

φ̂ = φ̂L exp
[
− s

η
(y − L)

]
= 2κ2ξûw exp

[
− s

η
(y − L)

]
; η < 0, (3.34a)

û =
∫

ξφ̂f0 dξ dη dζ, (3.34b)

τ̂ = ρ0

∫
ξηφ̂f0 dξ dη dζ, (3.34c)

where s is the Laplace transformation variable. After eliminating φ̂ from
equations (3.34a), (3.34b), and (3.34c), we obtain integral formulations for
û and τ̂ as follows:

û =
κ√
π

∫ ∞

0
ûw exp

(
− s

η′′ (L − y) − κ2η
′′2

)
dη

′′
, (3.35a)

τ̂ = ρ0
κ√
π

∫ ∞

0
ûw η

′′
exp

(
− s

η′′ (L − y) − κ2η
′′2

)
dη

′′
, (3.35b)

where ûw is the transformed function of uw. Finally, the inverse Laplace
transform provides u and τ as functions of y and t:

u(y, t) =
u0√
π

∫ ∞

κ(L−y)
t

sin

[
t − κ(L − y)

η′

]
exp(−η

′2) dη
′
, (3.36a)

τ(y, t) =
ρ0u0√

π

∫ ∞

κ(L−y)
t

η
′
sin

[
t − κ(L − y)

η′

]
exp(−η

′2) dη
′
. (3.36b)

The gas velocity ũw,g(t) and shear stress on the oscillating (top) wall are
calculated as

ũw,g(t) = u(L, t) =
u0√
π

∫ ∞

0
sin(ωt) exp(−κ2η

′′2) dη
′′

=
u0

2
sin(ωt) = uw,g sin(ωt), (3.37a)

τ̃w = τ(L, t) =
ρ0u0√

π

∫ ∞

0
η

′′
sin(ωt) exp(−κ2η

′′2) dη
′′

=
1

2
√

π

ρ0u0

κ
sin(ωt) = τw sin(ωt). (3.37b)

The magnitude of gas velocity on the oscillating plate and the correspond-

ing shear stress are uw = u0
2 and τw = 1

2ρ0u0

√
2kBTw

π , respectively. This
shows that
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• for oscillatory Couette flows, the magnitude of the gas velocity and
shear stress on the oscillating surface reach the same asymptotic limit
as their steady counterpart when Kn → ∞.

Validation of the DSMC results in the free-molecular flow regime is pre-
sented in Figure 3.15. We compare the normalized velocity amplitudes
obtained from the DSMC with the solution of the linearized collisionless
Boltzmann equation at different Stokes numbers. The free-molecular solu-
tion plotted in this figure is obtained from equation (3.36a). Overall, a very
good agreement between the DSMC results and the free-molecular solution
is obtained. The DSMC results in Figure 3.15(a) show statistical scatter
associated with a high Knudsen number simulation. However, agreement
between the theory and simulations is remarkable in Figures 3.15(b–d).

In Figures 3.16 and 3.17, we compare the dynamic response of the flow
obtained from the DSMC results and the collisionless Boltzmann equation
solutions for the Kn = 10, β = 1.0, and Kn = 10, β = 2.5 cases. Predictions
of the velocity profiles, phase angles, and the slip velocities are presented
in the figures. As observed in Figure 3.17(a), both methods capture the
“bounded rarefaction layer” equally well. Due to the onset of statistical
scatter outside this layer, we plotted the DSMC phase angle only for y/L ≥
0.65 in Figure 3.17(c). Nevertheless, the DSMC and Boltzmann solutions
match remarkably well within the bounded layer, confirming the accuracy
of the DSMC results.

Basic Characteristics

In the following we present results for the penetration depth, shear stress,
slip velocity, and viscous dissipation as functions of the Knudsen and Stokes
numbers.

Penetration Depth Variation

It is important to note that the bounded Stokes and rarefaction layers ob-
served in the results create a new length scale in the problem. This new
length scale is related to the thickness of the Stokes/rarefaction layers, and
becomes particularly important for high values of Kn or β. The Stokes
layer thickness (δ ≈ √

ν/ω), also referred to as the “penetration depth,”
is defined as the distance from the moving wall where the velocity ampli-
tude decays to 1% of its excitation value ( u

u0
= 0.01). Most of the flow is

confined within this layer, and the moving wall no longer interacts with
the stationary wall. For these cases, the characteristic length scale of the
problem should be based on the penetration depth δ, rather than the sep-
aration distance between the two plates. This would require redefinition of
the nondimensional parameters Kn and β, based on the penetration depth

(Kn′ = λ
δ , β′ =

√
ωδ2

ν ). However, there are no relations for variation of δ

as a function of Kn and β. Hence, a priori estimation of the penetration
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FIGURE 3.15. Velocity amplitudes for the free-molecular flow regime.

depth is not possible. For the sake of consistency, Kn and β are defined
using the plate separation distance throughout this work. Hence, no switch
is made in the characteristic length scale. However, change in the char-
acteristic length scale has physical implications. For example, the actual
Knudsen number for these cases can be found by Kn′ = Kn L/δ. Figure
3.18 shows variation of the normalized penetration depth (δ/L) with Kn
and β. For the cases not shown in this figure, the solution does not attenu-
ate enough to observe a “bounded layer.” The penetration depth decreases
with increasing β, as expected. The penetration depth approaches different
values in the free-molecular limit for different Stokes numbers. For fixed β,
the penetration depth decreases by increasing Kn, reflecting the “bounded
rarefaction layer” concept introduced in (Park et al., 2004). It can be seen
from Figure 3.18 that δ

L ∝ 1
Kn for a given β. This figure also clarifies the

need for redefinition of the characteristic length scale for high β and Kn
flows.
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FIGURE 3.16. Details of the flow dynamics for Kn = 10 and β = 1.0.

Shear Stress Variation

In Figure 3.19, we present the effects of Kn and β on the wall shear stress
using the DSMC results. We plot the shear stress normalized with the
free-molecular and continuum shear stress values, to show that the DSMC
results uniformly approach the correct asymptotic limits. We also com-
pare the DSMC results with our empirical model for quasi-steady oscil-
latory flows given by equation (3.27). Good agreement between the em-
pirical model and the DSMC results are observed for quasi-steady flows
(β ≤ 0.25). Beyond the quasi-steady flow regime there is a significant in-
crease in the shear stress magnitude, especially for low Kn values. This
is expected, since the shear stress is proportional to the velocity gradient,
which increases with β, especially due to the formation of bounded Stokes
layers. In the free-molecular flow limit, the shear stress reaches the same
asymptotic limit of the steady plane Couette flow regardless of the Stokes
number, as shown in equation (3.37b). In Figure 3.19, we observed simi-
lar behavior in the DSMC results. Interestingly, the DSMC data reached
the asymptotic shear stress value in the transition flow regime for large
Stokes number cases. This behavior is a manifestation of our definition of
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FIGURE 3.17. Details of the flow dynamics for Kn = 10 and β = 2.5.

Kn, which is constant irrespective of β. If we consider changing the char-
acteristic length scale from the distance between the two plates (L) to
the penetration length (δ), we would observe that the effective Knudsen
numbers for such cases are indeed in the free-molecular flow regime. For
example, for the Kn = 2.5, β = 7.5 case, the penetration depth δ is equal
to 0.15L (see Figure 3.18). Hence, the effective Knudsen number for this
case is about Kn′ ≈ 17, which corresponds to a free-molecular regime.

Slip Velocity Variation

Here we present the slip velocity variation as a function of the Knudsen and
Stokes numbers. We simply present the slip amplitude variations, since the
flow is time-periodic and there are no phase differences between the wall
oscillation frequency and the slip velocity response. Figure 3.20 shows Kn
and β effects on the slip amount on the moving wall. We had to determine
the slip velocity by extrapolation of the DSMC cell-center velocities onto
the oscillating wall. For low Knudsen flows, slip velocity increases with
increasing β. This is due to the increased velocity gradients near the wall.
For a fixed β, the slip amount increases by increasing Kn. Noticeably, all
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slip values reach the limit of 0.5u0 for high Kn values, as theoretically
predicted in Section 3.3.2.

Energy Dissipation

Characterization of energy dissipation in laterally oscillating microstruc-
tures is important for designing several microsystem components, such
as the microcomb drive mechanisms. The MEMS community utilizes the
“quality (Q) factor” concept, which is the ratio of the total energy of the
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FIGURE 3.20. Rarefaction and Stokes number effects on the slip velocity at the
moving wall.

system to the dissipated energy per cycle. In the laterally oscillating plate
problem, the energy dissipation per cycle is due to the viscous dissipation
(work done by the viscous forces), which is given as

D =
1
ω

∫ 2π

0
τw(ωt)uw,g(ωt)d(ωt). (3.38)

Therefore, accurate characterization of the shear stress (τw) and gas ve-
locity (uw,g) on the wall as functions of the Knudsen and Stokes numbers
is required to estimate the energy dissipation. For quasi-steady oscillatory
Couette flow in the continuum flow regime, the energy dissipation per cycle
is

Dc =
π

ω
U2

(µ

L

)
. (3.39)

Using this value as a reference, we define

D∗ = Dc/D(Kn, β), (3.40)

where D(Kn, β) is the energy dissipation per cycle obtained using the
DSMC results as a function of β and Kn. Figure 3.21 displays the ef-
fects of Kn and β on D∗. Owing to the smaller viscous dissipation due to
the rarefaction effects, D∗ increases as Kn is increased. We also observe
that D∗ decreases with increasing β in the slip flow regime. This is due to
the enhanced shear stress with increased β. However, such influence of the
Stokes number is drastically reduced with increasing Kn, since both the
gas velocity and the shear stress on the wall are reduced by increasing Kn
(see Figures 3.19 and 3.20).

Assuming that the viscous dissipation for free molecular flows can be
obtained using eqution (3.38), it is possible to predict the behavior of D∗ in
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FIGURE 3.21. Rarefaction and Stokes number effects on the normalized dissipa-
tion parameter D∗.

the free-molecular flow regime using the analytical solution of the linearized
Boltzmann equation. Since, τcont/τ∞ = 5π

8 Kn, and uw,g = 0.5u0, we obtain

D∗ =
5π

16
Kn, as Kn → ∞. (3.41)

Therefore, D∗ continuously increases with increasing Kn. For example,
Kn = 10 flow in Figure 3.21 reaches D∗ = 39.27 regardless of the Stokes
number. The figure shows that the Stokes number dependence of D∗ is
important until Kn ≈ 1. For higher Kn values, D∗ can be predicted using
equation (3.41).

3.3.3 Summary
In this section, time-periodic Couette flows are studied systematically in
the entire Knudsen regime and a wide range of Stokes numbers using the
unsteady DSMC method. Simulations show that the quasi-steady flow con-
ditions, which result in linear velocity distribution with equal velocity slip
on the oscillating and stationary surfaces, diminish beyond a certain Stokes
number. Although this limit also depends on Kn, β ≤ 0.25 can be taken as
the limit for quasi-steady flows. The empirical models presented in Section
3.3.1 are valid in this regime for Kn ≤ 12, and they can be easily substituted
in place of the DSMC simulations. For moderate Stokes number flows, the
aforementioned empirical model is valid only in the slip flow regime.
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For high Stokes number flows, we observed formation of “bounded Stokes
layers,” where the stationary wall no longer interacts with the flow. In the
slip flow regime, this results in the classical Stokes’s second problem with
velocity slip. Once again, the empirical model in Section 3.3.1 is valid in this
regime, where the wave speed is constant outside the Knudsen layer, and
the velocity amplitude decays exponentially as a function of the distance
from the oscillating surface. However, there are small deviations from this
behavior within the Knudsen layer. Such deviations are captured by the
DSMC, but they cannot be modeled using continuum-based approaches.
In the transition and free-molecular flow regimes we observed that the
solution decay is not exactly exponential and the wave speed is no longer
constant. These are interesting deviations, which are also validated using
the analytical solution of the linearized collisionless Boltzmann equation in
the free-molecular flow limit. In all simulations, the results have consistently
shown that the slip velocity and wave propagation speed increase with
increased Kn and β.

An interesting behavior is observed when Kn is increased while the Stokes
number is fixed. For such cases, the slip velocity increases, and a bounded
layer with a finite penetration depth is formed after a certain value of Kn.
This is named the “bounded rarefaction layer” (Park et al., 2004). The
penetration depth for this layer is a function of both Kn and β, and it be-
comes a new length scale in the problem. For such cases, it is necessary to
redefine the Knudsen number based on the penetration depth, rather than
the separation distance between the two plates. However, without a priori
knowledge of the penetration depth it is not possible to predetermine Kn
in the simulations. In order to remain consistent, we kept the characteristic
length scale of the problem as the plate separation distance. However, the
reader can use Figure 3.18 to estimate the actual Knudsen number based
on the penetration depth. Due to this switch in the length scales, we ob-
served that the shear stress on the oscillating wall reaches the asymptotic
free-molecular limit at earlier Kn values. Solution of the linearized colli-
sionless Boltzmann equation in the free-molecular flow limit indicates that
the shear stress and the slip velocity amplitude for oscillatory Couette flows
are identical to those of the steady plane Couette flows. This interesting
finding is also confirmed by DSMC results (Park et al., 2004).

3.4 Cavity Flow

We now address rarefaction effects in a microcavity, where the flow is driven
by the moving upper wall. The results presented here were obtained by Nie,
Doolen, and Chen (1998) using the lattice Boltzmann method (see Section
15.5). The cavity size is 40×40 in lattice units. The upper wall moves with
a constant velocity U0 from left to right, while the other three walls are
at rest. The Reynolds number and the Mach numbers are both very small
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and less than 10−3. A similar study using the (entropic) lattice Boltzmann
method has been performed by (Ansumali, 2004); see also Section 15.5.

In Figure 3.22 we plot the streamlines for a small Knudsen number Kn =
0.00485 and a larger Knudsen number Kn = 0.388. We see that the effect of
rarefaction is to push the center of the vortex towards the moving wall. This
was studied by (Nie et al., 1998) more systematically for a range of values of
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Knudsen number, and their results are shown in Figure 3.23. The distance
of the vortex center from the lower wall along with the mass flux between
the lower wall and the vortex center are plotted. We see that in the slip flow
regime the vortex center moves upward rapidly, but then it stabilizes for
Kn ≥ 0.3. The corresponding mass flux has a nonmonotonic trend. Initially,
it increases due to larger area, but then rarefaction effects are strong and
dominate, so the circulation motion is not as intense and the mass flux drops
significantly. It is also interesting to examine the pressure contours in the
microcavity. This is shown in Figure 3.24, obtained by Nie et al. In the slip
flow regime the pressure contours are circular arcs centered on the corners
of the moving lid. However, in the transition regime the pressure contours
become almost vertical lines. The symmetry around the x = 20 plane is
due to the low Reynolds number. Other work reported in (Hou et al., 1995)
shows that for low Knudsen numbers, as the Reynolds number increases
the vortex actually moves toward the lower wall, in obvious contrast with
the low Reynolds number limit.

3.5 Grooved Channel Flow

Flow in a micromotor or a microbearing is more complicated than the
linear Couette flow. We consider a two-dimensional shear-driven grooved
channel flow (Figure 3.25) in order to model the geometric complexity of
these microdevices. The presence of grooves complicates the geometry, and
an analytical solution for this flow does not exist. The flow separates and
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Flow
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FIGURE 3.25. Schematic of a grooved channel. This geometry is a prototype for
modeling geometric complexity and flow reversal encountered in complex micro-
geometries.

starts to recirculate in the grooves even for small Reynolds number flows. In
the numerical model we assumed that the top wall is moving with a speed
U∞, and both surfaces are kept at the same temperature (300 K). We also
assumed that the geometry repeats itself along the flow direction. There-
fore, the flow is periodic, and only a section of the channel is simulated. In
the simulations the Reynolds number is fixed (Re = 5.0), and the Knudsen
number is increased by decreasing the channel gap. Therefore, the top wall
speed U∞ is increased to keep the Reynolds number constant, resulting in
an increased flow Mach number according to equation (3.5). The domain is
discretized with 12 elements of sixth-order polynomial expansions in each
direction, per element.

The streamwise velocity variation across the middle of the channel, nor-
malized by the top wall velocity (U∞), is given in Figure 3.26. The flow
separates due to the presence of the groove and starts to recirculate. This
recirculation zone is seen as negative streamwise velocity (i.e., U

U∞
≤ 0).

Figure 3.26 shows a reduction in the separation zone for slip flows compared
to the no-slip case (Kn = 0). The slope of the velocity profile at the top
wall is decreased due to the velocity slip effects, resulting in reduction of the
shear stress on the top wall. We also see that the net volumetric flowrate,
which is proportional to (

∫ h

0 Udy), is decreased as the Kn is increased.
In order to identify the limitations and accuracy of an incompressible

model, we compare the results of the incompressible model, with the com-
pressible model for the same Reynolds and Knudsen numbers. We present
the variation of mass flowrate in the channel versus the drag on the top
channel wall, both normalized with their no-slip incompressible counter-
parts in Figure 3.27. Drag reduction due to rarefaction effects is seen. For
example, for Kn = 0.128 flow, about 30% drag reduction is observed com-
pared to the no-slip case. Both models predict a reduction in mass flowrate
for slip flow. This is due to the reduction in the volumetric flowrate as seen
in Figure 3.26. The mass flowrate predicted by the incompressible model
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FIGURE 3.26. Streamwise velocity distribution along the center of the grooved
channel. y = 0 corresponds to the lower boundary of the grooves, and y = h
corresponds to the top wall.

FIGURE 3.27. Variation of mass flowrate versus drag force for the grooved chan-
nel, normalized with values of the corresponding incompressible no-slip model.

is less than the mass flowrate predicted by the compressible model. This is
due to the inability of the incompressible model to predict the variations
in fluid density.

The temperature contours for no-slip and slip (Kn = 0.086) flows are
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given in Figure 3.28. The increase in temperature in the middle of the
channel is due to viscous heating resulting from large shear stresses in this
low Reynolds number flow. The viscous heating effect for slip flow is less
than that of no-slip flow due to the reduction in the shear stresses. The
temperature of the gas at the wall is different from the prescribed wall tem-
perature. Since the temperature of the fluid is higher in the middle of the
channel, the channel loses heat. Therefore, the gas temperature is higher
than the surface temperature due to the temperature jump. This may cre-
ate a problem for gas microflow temperature measurements. Although the
change in the temperature due to the viscous heating seems to be small in
magnitude, the gradients in temperature (as seen by the contour density
in Figure 3.28) can be quite large due to the small length scales associated
with the microflows.



4
Pressure-Driven Flows

In this Chapter we present models for pressure-driven gas flows in the slip,
transition, and free-molecular flow regimes. We are particularly interested
in microchannel, pipe, and duct flows, since such flows have primary engi-
neering importance, and they also allow analytical solutions due to their
simple geometry. In the first section, we present analysis in the slip flow
regime. This is followed by an analysis in the transition and free-molecular
flow regimes. In particular, in Section 4.2.2 we develop a unified flow model
that can accurately predict the volumetric flowrate, velocity profile, and
pressure distribution in the entire Knudsen regime for pipes and ducts, as
well as the Knudsen minimum.

4.1 Slip Flow Regime

In this section, we present pressure-driven isothermal adiabatic flows. While
the adiabatic flows are treated using Fanno flow theory, the isothermal flows
are studied using compressible Navier–Stokes equations subject to the slip
models presented in Chapter 2. We give comparisons of the numerical re-
sults with the available experimental data. Due to some scatter in exper-
imental measurements, we further validate the continuum-based slip flow
results, using the DSMC method and solutions of the linearized Boltzmann
equation (see Chapter 15). This approach enables pointwise comparisons
between the fundamentally different atomistic and continuum simulation
models. Finally, we discuss the surface roughness effects and present results
of inlet flow simulations.
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4.1.1 Isothermal Compressible Flows
We consider two-dimensional isothermal flow between two parallel plates
of length L, separated a distance h apart, where L/h � 1. The flow is
sustained by a pressure drop from inlet (i) to outlet (o) of the channel
(∆P = Pi − Po). Since the channel thickness h is fixed, the equation of
conservation of mass can be simplified as

ρiui = ρouo,

where ρ and u denote the channel averaged density and velocity, respec-
tively. The momentum equation in the streamwise direction results in

(Pi − Po)h − 2Lτ = Ṁ(uo − ui). (4.1)

The pressure, density, and velocity are averaged across the channel at re-
spective streamwise locations. The shear stress (denoted by τ) is also av-
eraged, but along the streamwise direction. The mass flowrate (per unit
channel width) is denoted by Ṁ .

If we divide the momentum equation by (hPo), we obtain

(Pi − Po)
Po

=
∆P

Po
= 2

L

h

τ

Po
+

Ṁ(uo − ui)
hPo

,

where ∆P/Po represents the nondimensional pressure drop. Concentrating
on the term Ṁ/hPo = (ρouo)/Po and using the continuity equation (uo =
uiρi/ρo) and the equation of state for an ideal gas (ρi/ρo = Pi/Po, assuming
isothermal conditions), we obtain

∆P

Po
= 2

L

h

τ

Po
+

ρououi

Po

(
Pi

Po
− 1

)
.

Since Po = ρoRT , and c2
s = γRT , where cs is the speed of sound, the above

equation can be simplified as

∆P

Po
= 2

L

h

τ

Po
+ γMoMi

∆P

Po
, (4.2)

where M denotes the Mach number at respective locations. Rearranging,
we obtain

∆P

Po
(1 − γMoMi) = 2

L

h

τ

Po
.

Without further simplification we see that the inertial terms in the mo-
mentum equation (right-hand side of equation (4.1)) can be neglected if
γMoMi � 1. To this end, we note that:



4.1 Slip Flow Regime 119

1. In microchannels with L
h ≈ 103 to 104, relatively large pressure drops

can be sustained for small Mach number flows.

2. Since the Mach number in microflows is usually small, the inertial
effects are small. Therefore, we expect semianalytic formulas based
on balancing the pressure drop with drag on the channel walls to
work reasonably well. (This is not true for micronozzles; see Section
6.6.)

3. If the diffusion term is simplified by approximating the wall shear
stress as τ to µu/h and recognizing µ/Po to λ/cs, we obtain

∆P

Po
(1 − γMoMi) ≈ 2

L

h
Mo Kno . (4.3)

The above relation indicates the relative importance of compressibil-
ity effects in the slip flow regime.

In order to identify the relative importance of inertial terms in the mo-
mentum equation compared to the diffusion terms, we compare their re-
spective magnitudes:

ρu∂u
∂x

µ∂2u
∂y2

≈ ρu2/L

µu/h2 =
ρuh

µ

(
h

L

)
= Re

(
h

L

)
.

A similar estimate can be obtained by taking the ratio of inertial terms to
diffusion terms in equation (4.3) as

∆P
Po

(γMoMi)
L
h Mo Kno

≈ Mi

Kno

h

L

∆P

Po
≈ Mi

Kni

h

L

∆P

Pi
≈ h

L
Re

∆P

Pi
,

where we have used

Kno =
Pi

Po
Kni, and Kn ≈ M

Re
,

in order to arrive at the third and the fourth equations, respectively. There-
fore, the above two estimates are similar, with the exception of the term

∆P

Pi
=

Pi − Po

Pi
,

which is always smaller than unity. This analysis verifies that for relatively
low Re flows (Re ≤ O(1)) in large aspect ratio channels (L/h � 1) the
inertial effects in the momentum equation can be neglected. Under such
conditions the momentum equation in the streamwise direction is reduced
to the familiar form
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dP

dx
= µ

∂2u

∂y2 . (4.4)

This equation results in the following analytical solution for the streamwise
velocity profile:

U(y) =
h2

2µ

dP

dx

[
y2

h2 − y

h
+

2 − σv

σv
(Kn2 − Kn)

]
, (4.5)

where we have used the high-order boundary condition (equation (2.26)).
Notice that the second-order correction, which is typically omitted in other
works, has the opposite sign compared to the first-order term; its contribu-
tion may be significant, especially for high Kn flows. We will examine this
in Section 4.1.3.

The corresponding mass flowrate is computed from

Ṁ = ρ

∫ h

0
U(y)dy,

where ρ = P/RT , assuming we can still treat the rarefied gas as an ideal
gas. Expressing the Knudsen number at a location x as a function of the
local pressure, i.e., Kn = Kno Po/P , where the subscript “o” refers to outlet
conditions, we obtain

Ṁ =
h3P 2

o

24µRTL
[(Π2 − 1) + 12

2 − σv

σv
(Kno(Π − 1) − Kn2

o loge Π)], (4.6)

where we have defined Π ≡ Pi/Po as the pressure ratio between inlet and
outlet. The corresponding flowrate without rarefaction effects is given by

Ṁns =
h3P 2

o

24µRTL
(Π2 − 1). (4.7)

Therefore, the increase in mass flowrate due to rarefaction can be expressed
as

Ṁ

Ṁns
= 1 + 12

2 − σv

σv

Kno

Π + 1
− 12

2 − σv

σv
Kn2

o
loge Π
Π2 − 1

. (4.8)

It is seen from this formula that the effect of the second-order correction
is to reduce the increase in mass flowrate due to first-order slip. This is
in disagreement with the experimental data, since in the transition flow
regime, the flow rate increases faster than predictions of the first-order slip
theory. This inconsistency will be addressed in Sections 4.1.3 and 4.2.2.

Having obtained the mass flowrate, we can write the corresponding pres-
sure distribution along the channel as

1 − P̃ 2 + 12
1 − σv

σv
Kno(1 − P̃ ) + 12

2 − σv

σv
Kn2

o loge(P̃ )

= B(L − x), (4.9)
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where B is a constant such that P̃ (0) = Π. Here we have defined P̃ = P/Po,
i.e., the pressure at a station x normalized with the outlet pressure. The
above equation provides an implicit relation for P̃ ; the pressure distribution
for a first-order boundary condition is obtained explicitly by neglecting the
second-order terms (O(Kn2)) in equation (4.9).

The formula for the flowrate has been tested directly using experimental
data reported in (Arkilic et al., 1997), as well as simulation results obtained
using the program µFlow (see Section 14.1). In Figure 4.1 we plot the
normalized flowrate

M∗ =
Ṁ24µRTL

h3P 2
o

versus the pressure ratio Π. Three cases are included, corresponding to
no-slip compressible air flow (lower curve; equation (4.7)), rarefied air flow
(middle curve; equation (4.6)), and rarefied helium flow (upper curve; equa-
tion (4.6)). The open circles correspond to microchannel experimental data
in (Arkilic et al., 1997), and solid circles denote the corresponding numerical
simulation results of rarefied helium flow. It is seen that there is a signif-
icant mass flowrate increase, especially for helium flow due to rarefaction
(Kn = 0.165), and that in this range there are no significant deviations
between the formula and the simulations; the latter correspond to solu-
tions of full compressible Navier–Stokes equations with rarefaction effects
expressed via equation (2.26).

The differences between simulation, experiments, and analysis are eval-
uated more accurately by computing the ratio of slip mass flowrate to the
corresponding no-slip flowrate predicted by equation (4.8) as a function
of pressure ratio in Figure 4.2. Microchannel helium flow experiments in
(Arkilic et al., 1997), show a maximum of 10% deviation from the first-
order theoretical curve. The deviations are more significant especially for
low pressure ratio cases. The gain in the mass flowrate due to slip effects
is reduced as the pressure ratio is increased. This is a trend expected by
equation (4.8) as well. However, due to significant scatter in the experimen-
tal data, it is difficult to determine the slope of this decrease. Comparison
of the high-order formula with the first-order formula shows about 8% de-
viations for small pressure ratios; the deviations are reduced for higher
pressure ratio cases. The numerical predictions for helium flow are consis-
tent with the high-order formula. Both the rarefied air flow (Kn = 0.075)
and the no-slip air flow show deviations from the high-order formula, es-
pecially for high pressure ratios. The numerical predictions show less mass
flowrate than that predicted by the formula. The reason is the pronounced
compressibility effects caused by the inertial terms in the Navier–Stokes
equations, which were neglected in the derivation of equation (4.8).

Next we examine the pressure distribution along a channel; the experi-
mental results in (Liu et al., 1993; Pong et al., 1994), show a nonlinear pres-
sure distribution. In Figure 4.3 (left) we plot the pressure distribution for
air flow for different values of pressure ratios Π obtained from simulation.
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FIGURE 4.1. Variation of normalized mass flowrate as a function of pressure
ratio. The experimental data (MIT) are from (Arkilic et al., 1994).
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FIGURE 4.2. Variation of mass flowrate normalized with no-slip mass flowrate
as a function of pressure ratio. The experimental data (MIT) are from (Arkilic
et al., 1994).
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TABLE 4.1. Data for air flow simulations for various channel dimensions.

Case h(µm) Re Kno Π Mi Mo

1 0.923 3.367 0.0 2.574 0.091 0.247
0.923 4.144 0.075 2.576 0.116 0.279

2 0.615 1.522 0.0 2.583 0.064 0.168
0.615 2.036 0.110 2.585 0.083 0.198

3 0.226 0.208 0.0 2.587 0.026 0.063
0.226 0.378 0.300 2.586 0.041 0.093

Also included in the plot are the pressure distributions for corresponding
compressible no-slip flows. The curvature in pressure distribution is more
pronounced for the no-slip compressible flows than for rarefied flows.

• Therefore, rarefaction effects reduce the curvature in pressure distri-
bution.

For rarefied air flow (Kn = 0.3) presented in Figure 4.3, the curvature in
pressure distribution is more pronounced for high pressure ratios. For cases
with Π ≤ 1.2, the pressure drop is practically linear, resembling an incom-
pressible flow. To identify the effect of rarefaction in reducing the curvature
effects in pressure distribution we plot deviations from the linear pressure
drop (i.e., corresponding incompressible flow) for Π = 2.58 in Figure 4.3
(right). The outlet pressure in these simulations is fixed to be atmospheric.
The Knudsen number is varied by changing the channel thickness (h). Cor-
responding values of h, Re (based on mass flowrate per channel width), Kno,
and inlet and outlet Mach numbers (Mi and Mo, respectively) are given in
Table 4.1. It is clear that the stronger the rarefaction effects, the smaller
the deviation from the linear pressure distribution (compare cases 3, 2, and
1). This finding contradicts the conclusions in (Pong et al., 1994), where
the deviation from linear distribution for helium microflow is reported to
be larger than the corresponding pressure distribution for nitrogen. This
was attributed to the increase in the rarefaction effects for helium flow
compared to the nitrogen flow. The curvature in pressure distribution for
no-slip compressible flow increases with increasing inlet Mach number. For
the same pressure ratio, the wider channel (case 1) corresponds to higher
mass flowrate than the other cases. It also has larger inlet and outlet Mach
numbers at the channel centerline, resulting in larger curvature even for
the no-slip case compared to the other cases. The simulations also show a
shift of the locus of maximum deviation from linear profile toward the inlet
of the channel as the rarefaction effects are increased.

In Figure 4.4 we present the variation of velocity slip along the channel
walls normalized with centerline velocity at the channel inlet. Due to the
pressure drop along the channel, the local mean free path increases, re-
sulting in an increase in the local Kn. Also, the density along the channel
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FIGURE 4.3. Left: Pressure distribution for different pressure ratios along the
center of microchannels for air flow. Right: Deviation from linear pressure drop
for Π = Pi/Po = 2.58 air flow. Cases 1, 2, and 3 correspond to different channel
thickness given in Table 4.1.
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FIGURE 4.4. Velocity slip variation on channel surface for cases described in
Table 4.1.

decreases, and thus the average velocity in the channel increases toward
downstream to conserve mass. These two effects together increase the slip
velocity along the channel walls, as seen in Figure 4.4.

To investigate the compressibility and rarefaction effects further, the de-
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FIGURE 4.5. Left: Deviation from linear pressure drop for air and helium flows
(h = 0.65 µm, Π = Pi/Po = 3.5, Po = 1 atm). Right: Deviation from linear pres-
sure drop for Π = Pi/Po = 2.02, nitrogen flow (h = 1.25 µm); circles correspond
to experimental data of (Pong et al., 1994).

viation from linear pressure distribution for helium and air flows in iden-
tical channels with identical inlet and outlet conditions corresponding to
pressure ratio Π = 3.5 is given in Figure 4.5 (left). Here we see that un-
like the experimental findings, the curvature in the pressure distribution
for helium is less pronounced compared to the air microflow. This trend
should be expected, since for the same pressure ratio and outlet pressure,
the local Mach number for helium flow is smaller than the Mach number
for air flow. Also, the rarefaction effects for helium flow are larger than
those of the air flow due to the relatively large mean free path of helium
molecules compared to air. The finding from the simulation results that
rarefaction causes the opposite effect than compressibility is also evident
from the analytical expression (equation (4.9)). This is shown in Figure 4.5
(right), where we plot the analytical predictions taking into account first-
and second-order Knudsen number effects. The simulation results for nitro-
gen flow of Kn = 0.156 corresponding to the experiments of (Pong et al.,
1994) are also included. We see that the pressure distribution agrees with
the high-order curve. The discrepancies are due to the neglected inertial
terms in equation (4.9). Also included in the plot are the experimental data
for nitrogen taken from (Pong et al., 1994). We see that the trends of ex-
perimental data and the simulations are qualitatively the same. They both
predict smaller deviations from linear pressure drop than the correspond-
ing no-slip flow. There are quantitative differences such as the maximum
deviation location from linear pressure drop, which is at X/L ≈ 0.4 for the
experiments, and X/L ≈ 0.55 for the simulation.

Remark: Before we end this section, we comment on the limitations of the
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analytic formulas given in equations (4.6) and (4.7). First, the second-order
corrections to the flowrate and pressure distribution are negligible in the
slip flow regime, and equivalent first-order slip formulas can be obtained by
simply neglecting the Kn2 terms in these formulas. Second, derivation of
these formulas is based on the additional assumptions that density and pres-
sure across the channel at any streamwise location are constant. Thermal
effects are also completely neglected. Due to these limitations the analytic
formulas can be applied to low Mach number flows (typically Mo ≤ 0.10).
In our simulations we have detected density variations across the channel,
especially for large pressure drop cases of nitrogen and air flows. By evalu-
ating the relative importance of inertial terms compared to the cross flow
diffusion terms ( ≈ Reh

l ) using the aspect ratio L/h = 20, and for the
Reynolds number range reported in Table 4.1, the difference between the
analytic formula predictions and the solution of full Navier–Stokes equa-
tions is approximately 20%. Finally, we also note that entrance effects for
pressure-driven flows, e.g., through microfilters and short channels, are ad-
dressed in Section 6.5.

4.1.2 Adiabatic Compressible Flows – Fanno Theory
In this section we use the Fanno flow theory to analyze compressible adia-
batic gas flows. Most of the microsystem components are fabricated using
silicon as the base material. Since silicon is a good heat conductor, the
isothermal flow assumption presented in the previous section is more rele-
vant for many silicon-based microsystem components. However, for insula-
tor materials, such as glass, approximate adiabatic flow conditions may be
valid. Therefore, study of compressible adiabatic gas flows may be useful
in applications that utilize insulator materials.

We will compare the experimental data in (Harley, 1993; Harley et al.,
1995), obtained under almost isothermal flow conditions, with the adiabatic
Fanno flow theory. Although the isothermal and adiabatic flows show sig-
nificant differences for high Mach number flows, Fanno flow analysis can
predict the general trends of the experimental results, enabling approxi-
mate analysis for many engineering applications.

In the experiments of (Harley et al., 1995), about an order of magnitude
pressure drop is imposed through a microchannel of length 10.9 mm. Since
the temperature was almost constant, about an order of magnitude change
in the inlet to outlet density ratio was observed. This case corresponds to
severe compressibility effects, which may eventually result in a choked flow.
Such large pressure drops and even flow choking may become relevant in
analysis of micronozzles for aerospace applications (see Section 6.6).

The approximation is based on one-dimensional adiabatic constant-area
flow, i.e., the so-called Fanno flow, conditions. The experimental data re-
ported in (Harley, 1993), are summarized in Table 4.2. The Fanno flow
equations can be derived by using a friction factor (f̄ = 1

L

∫ L

0 fdx) aver-
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FIGURE 4.6. Mach number (left) and density (right) variation along the channel
as a function of x

L
for inlet conditions of Table 4.2 (the legend refers to the inlet

Mach number).

aged over the channel of length L. The Fanning friction factor at any point
in the channel can be evaluated as a function of local conditions at station
x,

f(x) =
τs(x)

1
2ρ(x)U(x)2

,

where τs (τs = µ∂U
∂y ) is the shear stress on the wall. Since the mass flux

(ρU) in the channel is constant, the Fanning friction factor can be assumed
to be a function of dynamic viscosity only, i.e., µ(T ), assuming ∂U

∂y /U is
approximately a constant. Since the dynamic viscosity variations can be
obtained from Sutherland’s law, the Fanning friction factor f essentially
becomes a function of temperature. In particular,

µ

µo
=
(

T

To

)3/2
To + 110
T + 100

,

where T and To are the local and reference temperatures, respectively, and µ
and µo are the local and reference dynamic viscosities, respectively. There-
fore, for small temperature changes reported in the experiments (see Table
4.2) the friction factor is approximately constant. Similarly, the Reynolds
number in the channel (Re = ρUD

µ ) is a function of temperature, and be-
comes approximately constant for small temperature variations.

The Mach number variation in the channel for Fanno flow can be ob-
tained for specified friction factor as see (Thompson, 1988), equation (6.34):

dM2

dx
=

γM4(1 + γ−1
2 M2)

1 − M2

4f

D
. (4.10)
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FIGURE 4.7. Pressure ratio ( P
Pin

) variation along the channel as a function of x
L

for inlet conditions of Table 4.2.

This equation, integrated from inlet state (Min) to any station x down-
stream of the channel, gives

4f̄x

D
=

γ + 1
2γ

loge

[
M2

in(1 + γ−1
2 M2)

M2(1 + γ−1
2 M2

in)

]
+

(M2 − M2
in)

γM2M2
in

. (4.11)

The variation of Mach number in the channel as a function of the inlet
Mach number and 4f̄x

D is found by plotting equation (4.11) for specified
Min values. Once the Mach number variation in the channel is known, the
corresponding pressure ratio ( P

Pin
) and the density ratio ( ρ

ρin
) variations

along the channel can be calculated by using the following relations:

P

Pin
=

Min

M

[
(1 + γ−1

2 M2
in)

(1 + γ−1
2 M2)

] 1
2

,

ρ

ρin
=

Min

M

[
(1 + γ−1

2 M2)
(1 + γ−1

2 M2
in)

] 1
2

. (4.12)

The Mach number variation along the channels is given in Figure 4.6
(left) as a function of x

L for three different inlet conditions reported in
(Harley, 1993). Very steep variation of the Mach number is observed toward
the exit of the channel. This variation becomes steeper as the inlet Mach
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TABLE 4.2. Experimental data in microchannels from (Harley, 1993). DH is the
hydraulic diameter, and all the f and f̄ factors denote Fanning friction factors
as noted. Also, Po is the Poiseuille number; see Section 1.2.

Case JP9 JH6 JH6
Width µm 92.40 96.60 96.60
Depth µm 4.44 0.51 0.51

DHµm 8.47 1.01 1.01
Length mm 10.90 10.90 10.90

Gas N2 N2 He
Pin (kPa) 800 3398 3115
Pout (kPa) 102.8 101.2 91.93
ρin ( kg

m3 ) 9.16 38.57 5.05
ρout ( kg

m3 ) 1.18 1.14 0.15
Tin (C) 21.11 23.65 23.92
Tout (C) 21.2 23.7 23.99
Vin (m

s ) 3.9 0.19 0.18
Vout (m

s ) 30.5 6.55 6.05
Re 17.324 0.433 0.0462
Min 0.0117 0.00057 0.00018
Mout 0.0915 0.01965 0.00598
Knin 0.001 0.002 0.0002
Knout 0.008 0.067 0.209

Knexperiment 0.008 0.066 0.214
Knaverage 0.0022 0.0096 0.00096

f̄exp 4.4 215 1820
f̄fanno 4.0 205 1763

Po
Re 5.18 220 2063

fslip 5.147 214 2057
4f̄L
D 5129 2,215,253 18,501,616

(4f̄
D Lchoke) 5210 2,217,097 19,043,788

L
DH

1287 10797 10797

number gets smaller. However, the change in the Mach number of the flow
is very small at the inlet section of the channel. The density ratio ( ρ

ρin
)

variation in the channel is given in Figure 4.6 (right). Even if the Mach
number variation is small for about 60% of the channel length, a density
variation of 20% is obtained in about 35 to 40% of the channel length. The
pressure ratio ( P

Pin
) variation is given in Figure 4.7, where the curvature in

the pressure distribution can be seen.
The estimated Fanning friction factor (f̄fanno), experimental Fanning

friction factor (f̄exp), and the theoretical friction factor for laminar incom-
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pressible flows (Po
Re ) are given in Table 4.2. The experimental friction factor

(f̄exp) is calculated by using both the adiabatic flow model (equivalent
to the Fanno flow approximation), and the isothermal flow model for all
three cases. The differences in the two predictions are negligible. For the
JP9 case, the friction factor f and the Poiseuille number (Po) are inde-
pendent of the Reynolds number. However, for cases 2 and 3 there is a
steep trend of decreasing Poiseuille number (Po) with decreasing Reynolds
number (Harley, 1993). The reason for this trend may be associated with
the portion of the channel JP6 being in the early transitional flow regime
(Kn > 0.1). The theoretical values are calculated assuming laminar, fully
developed, incompressible flows, where the Fanning friction factor is given
as

f =
Po
Re

.

Here the Poiseuille number (Po) is a parameter that depends on the chan-
nel’s cross sectional geometry, and it is independent of the Reynolds number
of the flow. Values of Po are given as a function of the ratio of the chan-
nel depth to the channel width (see equation (54) in (Harley, 1993)). The
theoretical values of friction factor are based on the incompressibility as-
sumption, because calculations for the friction factor of compressible flows
are not available. The theoretical values of the friction factor are greater
than the experimental predictions for all of the cases. There are three main
reasons for this trend:

• compressibility effects,

• rarefaction effects, and

• two-dimensionality effects.

Here both the predicted and the experimental friction factors are based on
one-dimensional arguments.

In order to compensate for compressibility effects, we predicted the aver-
age Knudsen number in the channel by numerically integrating the density
ratio variation, assuming constant temperature throughout the channel.
The average Kn values and the predicted Fanning friction coefficient (fslip)
are also given in Table 4.2. It is seen that the predictions overestimate the
friction factor compared to the experimental values for case 1 and case
3. However, the predictions for case 2 are quite close to the experimental
values. The reason for the discrepancies in the results is due to the use of
theoretical (incompressible) Poiseuille number Po for calculating fslip.

The values of parameter 4f̄L
D and the corresponding values for the chok-

ing length (Lchoke) are also given in Table 4.2. It is seen that slightly longer
channels with the same inlet conditions would have choked the flow. Chok-
ing of the microchannels can be a significant disadvantage for applications,
limiting the flowrate.
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Finally, the one-dimensional theory used in this section predicts only the
cross-section averaged quantities. Since the velocity, density, and pressure
variations in the cross-flow direction are neglected, the current approach
should be used only as a first approximation.

4.1.3 Validation of Slip Models with DSMC
In Section 4.1.1 we compared the continuum-based numerical models with
existing experimental data in microflows. Although the experimental data
show trends consistent with the slip flow theory, the uncertainties in the ex-
perimental measurements are relatively large, and pointwise measurements
are not available with the exception of results reported in (Liu et al., 1993;
Pong et al., 1994). Therefore, we will use the DSMC method (see Section
15.1) to examine the validity of the slip models proposed in Section 2.3.

The results we present in the next few figures are for a microchannel with
aspect ratio (L/h = 20) and inlet to exit pressure ratio Π. The Knudsen
number at the channel outlet is 0.20. The discretization with the µFlow
program involves ten elements in the flow direction and two elements in
the cross-flow direction, employing sixth-order polynomial expansions per
direction in each element. Convergence is verified by increasing the order of
the polynomial expansions while keeping the number of spectral elements
fixed. In addition, we monitor the residuals of the global conservation of
mass and momentum. The results presented in these runs conserve mass
and momentum with 0.01% error. The DSMC results are performed for the
case Π = 2.28 with 24,000 cells, of which 600 cells are in the flow direction
and 40 across the channel; a total of 480,000 molecules are simulated. The
results are sampled (time-averaged) for 1.0 × 105 time steps. Convergence
is also verified by monitoring mass balance; maximum errors are less than
1%.

Diffuse reflection (σv = 1.0) is assumed for the interaction of gas molecules
with the channel walls. The value of the accommodation coefficient σv is
an important factor, since the slip amount is significantly affected by small
variations in σv due to the factor (2−σv)/σv. For example, σv = 0.9 (com-
pared to unity) results in a 22% increase in the slip amount. The DSMC
simulations are performed for a nominal value of σv = 1.0. To investi-
gate the effective value of σv in the simulation we record the values of the
tangential momentum of impinging (τi) and reflected (τr) gas molecules at
every time step. Based on these values and the tangential momentum of gas
corresponding to that of the wall τw, we compute σv = (τi − τr)/(τi − τw).
The calculated average value is σ̄ = 0.99912 (with standard deviation of
σrms = 0.01603). Thus, we can use these DSMC results to examine the va-
lidity of the slip boundary conditions given in equation (2.28) with σv = 1.
To this end, we examined several forms where slip information Cλ away
from the surface is utilized (see equation (2.26)). We have determined that
the best agreement with the DSMC results is achieved by obtaining the
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FIGURE 4.8. Comparisons of Navier–Stokes and DSMC predictions. Left: Den-
sity variation along the channel. Simulation conditions are for Π = 2.28 and
Mo = 0.19. Right: Pressure variation along the channel for pressure ratio
Π = 2.28. The solid line corresponding to µFlow Kno = 0.2 prediction is in-
distinguishable from the DSMC results.

slip information λ away from the surface (C = 1).
The density distribution (normalized with the inlet density) along the

channel for the case Π = 2.28 predicted by DSMC and µFlow is shown in
Figure 4.8 (left). Good agreement between the microscopic and macroscopic
simulations is achieved. The corresponding centerline pressure distribution
along the channel is plotted in Figure 4.8 (right). The pressure distribution
is nonlinear, as expected for a compressible channel flow. As has been shown
earlier, rarefaction and compressibility are competing effects in determining
the curvature of the pressure distribution. While compressibility makes the
curvature more pronounced, rarefaction makes the variation more linear.
This is also verified in Figure 4.8 (right) by comparison of slip-based Navier–
Stokes results with the no-slip results.

Velocity profiles for Π = 2.28, normalized with the reference inlet velocity
at three different x/L locations, are shown in Figure 4.9. The DSMC and
µFlow results are in good agreement. The velocity profiles obtained by
both methods are parabolic. The velocity slip variation along the channel
wall is shown in Figure 4.10. Both the DSMC method and µFlow predict
similar magnitudes.

To examine the accuracy of the results obtained with DSMC, we compare
them with solutions of the linearized Boltzmann equation in the slip flow
regime obtained in (Ohwada et al., 1989a), for Kn = 0.1. In Figure 4.11
the velocity distribution obtained by both methods is plotted normalized
with the local average velocity. The differences of DSMC and linearized
Boltzmann predictions are almost indistinguishable. We can then use these
profiles to examine the accuracy of the analytic solutions obtained using
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FIGURE 4.9. Velocity profiles predicted by the Navier–Stokes and DSMC simu-
lations at various x/L locations. The inlet is located at x/L = 0.0.

various slip boundary conditions. We write all proposed models in the fol-
lowing general form:

Us − Uw = C1 Kn
(

∂U

∂n

)
s

− C2 Kn2
(

∂2U

∂n2

)
s

, (4.13)

where the first-order (C1) and second-order (C2) slip coefficients are given
in Table 2.2.

The velocity distribution for an isothermal flow in a long channel (h/L �
1) of thickness h is predicted by the second-order slip boundary conditions
in the following form:

U(x, y) = −dP

dx

h2

2µ

[
−
( y

h

)2
+
( y

h

)
+ C1 Kn +2C2 Kn2

]
,

where Kn is the local Knudsen number, and it varies in the streamwise
direction. Hence, the velocity profile is a function of both x and y. The
corresponding volumetric flowrate also increases along the channel as the
density is decreased from the inlet to the exit. The local volumetric flowrate
is

Q̇(x) = −dP

dx

h3

2µ

(
1
6

+ C1 Kn+2C2 Kn2
)

. (4.14)
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FIGURE 4.10. Slip velocity along the channel wall as predicted by the
Navier–Stokes and DSMC simulations.
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FIGURE 4.11. The velocity distribution normalized with the local average ve-
locity in half of a microchannel (left). The linearized Boltzmann solution is from
(Ohwada et al., 1989a). Error in the solution of the Navier–Stokes equations with
various slip flow models at Kn = 0.1 (right). For the legend see Table 2.2.
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Using this, we can find a local average velocity, which is used to normalize
the local velocity distribution. This is the best choice for normalization of
the velocity profile, making the magnitude of the nondimensional velocity
distribution O(1) for any Kn value. This normalized velocity distribution
is given as

U∗(y, Kn) ≡ U(x, y)
Ū(x)

=

(−( y
h )2 + y

h + C1 Kn +2C2 Kn2)
1
6 + C1 Kn +2C2 Kn2 , (4.15)

where Ū is the average (across the channel) velocity. The velocity profiles
obtained by the various slip boundary conditions and the corresponding de-
viations from the linearized Boltzmann solution of (Ohwada et al., 1989a),
are shown in Figure 4.11. The error is positive if the model (4.15) overpre-
dicts the velocity at a given point and is negative if the velocity is under-
predicted. More specifically, for the slip velocity prediction, the model given
by equation (2.29) gives the best agreement with the linearized Boltzmann
solution, followed by the first-order model, while Schamberg’s boundary
condition performs the worst (see Table 2.2). Hsia and Domoto’s coeffi-
cients give the most accurate description of the centerline velocity, while
Schamberg’s model once again performs the worst. The maximum errors
in Schamberg’s model for centerline and velocity slip predictions are about
0.035 and 0.16 units, respectively. The error units are defined as

E = UModel − ULB,

and they are not normalized with UModel since it changes as a function of
y. The model of equation (2.29) has the smallest overall deviations of at
most 0.035 units from the linearized Boltzmann solution ULB.

The second-order slip coefficients cited in Table 2.2 are all positive, with
the exception of our model, which corresponds to a Taylor series expan-
sion of the velocity profile including the second-order terms. Therefore, our
model uses both the slope of the local velocity profile and the change in
the slope in order to predict (extrapolate) the slip velocity near the wall.
The volumetric flowrate (equation (4.14)) calculated by other models gives
enhancement of the volumetric flowrate compared to the first-order predic-
tions. This is consistent with the experimental data and it is due to the
positive contribution of the second-order slip coefficient.

• In the model of equation (2.29) the second-order slip contribution
leads to a reduction in the volumetric flowrate compared to the first-
order model.

• Other models with second-order slip conditions can predict flowrate
accurately, but only at the expense of accuracy in the velocity profile.

This will be demonstrated further in Section 4.2, where we examine in
detail flowrate modeling issues for a wide range of Kn.
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Remark: The second-order slip boundary condition given by equation
(2.29) is based on equation (2.26), where terms higher than (∂2U/∂n2) are
neglected. Solutions of Navier–Stokes equations for long channels result
in parabolic velocity profiles, with vanishing contribution for derivatives
higher than two (see Section 4.2.1). Therefore, the boundary conditions
given by equations (2.29) and (2.26) are identical for this problem. Imple-
mentation of our second-order model in the slip flow regime was performed
by obtaining the necessary slip information at a distance λ away from the
surface. For flows with higher Knudsen number in the transition regime we
switch our model to the general boundary condition (2.43), the validity of
which we investigate in detail in Section 4.2.

4.1.4 Effects of Roughness
Surface roughness in the slip flow regime has been studied in (Li et al.,
2002), where the rough surface was represented as a porous film based
on the Brinkman-extended Darcy model, and the core region of the flow
utilized velocity slip to model the rarefcation effects. Then the velocity so-
lution and the shear stress from the core and the porous regions of the flow
were matched at the pore-region/flow interface, enabling derivation of ex-
pressions for the pressure distribution in microtubes, including rarefaction
effects.

In the following we describe a different approach to modeling surface
roughness. The pressure drop in channels with rough walls depends criti-
cally on the shape and size of the roughness. For random roughness, the
pressure drop should depend on the statistical characteristics of the walls,
which are expressed by the correlation function of surface inhomogeneities.
A particularly effective method has been developed by Meyerovich and his
group on how to extract this dependence at the limit of very large Knudsen
numbers (Meyerovich and Stepaniants, 1994; Meyerovich and Stepaniants,
1997). In this description, the transport coefficients, such as mobility, dif-
fusion, effective relaxation time, and mean free path along the walls, are
expressed directly via the parameters of the correlation function of surface
roughness. The main idea is to perform a nonlinear coordinate transfor-
mation, assuming that the boundary can be described by a single-valued
function. The transformed equation, e.g., Stokes flow equation, acquires
extra random terms, which depend on the boundary roughness. This is
demonstrated in Figure 4.12 for a microchannel with rough walls. All vari-
ables are transformed in the new coordinate system, including the trans-
port coefficients (here the kinematic viscosity), which are renormalized. In
this particular example, L is the channel height, and the inhomogeneities
are small and random and are described by ξ1(x, z) and ξ2(x, z) for the
lower and upper wall, respectively. Also, ξ1, ξ2 � L have zero mean, i.e.,
〈ξ1〉 = 〈ξ2〉 = 0. The transformation essentially shifts the rough boundary
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to the bulk and makes it flat. It is given by

Y =
L[y − 1/2[ξ2(x, z) − ξ1(x, z)]]

L − [ξ1(x, z) + ξ2(x, z)]
.

The work of Meyerovich has addressed mostly high Knudsen numbers, since
the theory for small Knudsen numbers has not been developed yet. This is
the most difficult regime, since it requires simultaneous account for bulk and
boundary scattering, including the interference between bulk and boundary
scattering.

Computationally, it is possible to study the additional pressure drop due
to inhomogeneities for prototype roughness in microchannels and interwall
correlations. For example, it is possible to generate two identical rough
walls and shift one with respect to the other. When this shift is zero,
the inhomogeneities from different walls are perfectly correlated with each
other. With increasing shift, this correlation will gradually decrease and
will disappear when the shift becomes much larger than the correlation
length. The dependence of the flow parameters on this shift will mimic the
dependence on the interwall correlation of inhomogeneities.

We have used the µFlow program as well as the DSMC approach to pre-
dict the additional pressure drop due to regularized roughness in long mi-
crochannels. We have considered geometries with in-phase and out-of-phase
types of roughness, as shown in Figure 14.1. Typical results are summarized
in Figure 4.13. We compare the total pressure as well as the deviation from
a linear drop for different roughness types and with a corresponding smooth
channel. For all these cases the mass flowrate was maintained constant and
the Reynolds number was Re = 0.44, while the Knudsen number at the
outlet of the channel was Kn = 0.17. We see that in order to match the
pressure drop of the rough channels, the viscosity in the smooth channel
should increase by about 18.7%; this case corresponds to Re = 0.37 and
Kn = 0.2 at the exit of the channel. Continuum flows do not depend on
the details of the roughness, but for rarefied flows, as the Knudsen number
increases, the roughness effect becomes more significant. In other words,
microflows have “memory” in that they remember their trajectory and
specific path, which is geometry-dependent. With respect to the latter, the
results we obtained are inconclusive, and new computations are required
to support this concept.

4.1.5 Inlet Flows
We consider next the flow between stationary parallel plates at the in-

let of a microchannel as a prototype developing flow. In this analysis the
compressibility effects are neglected, and the effect of rarefaction on devel-
oping flows is presented. A uniform velocity profile is specified at the inlet.
Gampert analyzed the inlet flows using a vorticity-streamfunction formula-
tion and presented results for different values of the Reynolds and Knudsen
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FIGURE 4.12. Sketch illustrating the canonical transformation. As an example,
the (linear) Stokes equation in the continuum limit is transformed.
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FIGURE 4.13. Upper: Channel with “regularized” wall roughness. Lower: Total
pressure distribution (left) and deviations from linear pressure drop (right) for
rough and smooth channels. The flowrate is constant for all cases. The case
described as “smooth 1.187” corresponds to smooth channel flow with 18.7%
enhanced viscosity compared to all other cases.

numbers as well as accommodation coefficients (Gampert, 1976). Here, we
present simulation results at Re = 20. In Figure 4.14 (left) we plot the ve-
locity slip along the wall for Kn = 0.03 obtained by using both the first- and
high-order slip flow boundary conditions. It is seen that the slip effects are
very dominant at the inlet of the channel, and both results predict velocity
slip of about 50% of the incoming velocity U∞. However, these effects are
reduced well below 10% in the developed region of the flow. It is evident
from the plot that the slip velocity experiences a very steep change from
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FIGURE 4.14. Developing flow in microchannel: Velocity slip (left) and variation
of high-order slip coefficient b as a function of the streamwise location parameter
ζ (Kn = 0.03, Re = 20).

the inlet to approximately a distance in the streamwise direction equal to
the channel height and achieves an asymptotic value corresponding to the
fully developed profile approximately four channel heights downstream (for
Re = 20 flow). The high-order slip effects reduce the velocity slip compared
to the first-order predictions. The value of the high-order slip coefficient (b)
is obtained using equation (2.39).

Figure 4.14 (right) shows the variation of high-order slip parameter b as
a function of the parameter

ζ = 1 − 1
1 + 1.2x̄

(where x̄ = x/h, and h is the half channel width) determining the stream-
wise location. In Figure 4.15 we plot several streamwise velocity profiles
close to inlet for Kn = 0.03 (solid line) and no-slip (dashed line) flows. For
various values of ζ close to the inlet (ζ ≤ 0.75) the maximum velocity is off
centerline until a fully developed profile is established. We also see from the
plot that the value of the maximum velocity is always smaller in the case
of the slip flow. This behavior of maximum velocities off the centerline can-
not be obtained if the convective terms are linearized as in (Sparrow et al.,
1962). These results agree with the computations reported in (Gampert,
1976); however, in that work the maximum values were underpredicted by
more than a factor of two compared to the present results. The reason for
this discrepancy may be due to imposition of the incorrect boundary con-
dition (equation (8) in (Gampert, 1976)) close to the inlet. We also verified
the grid independence of our results by performing higher-resolution sim-
ulations. The flow at the channel entrance is fully two-dimensional. The
cross-flow velocity variation as a function of ζ is shown in Figure 4.15. The
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FIGURE 4.15. Streamwise (left) and cross-flow (right) velocity profiles at various
streamwise locations specified by ζ. Kn = 0.03 (solid lines), and no-slip (dashed
lines) cases.

cross-flow component of the velocity decreased for the slip flows compared
to the continuum flows. Finally, the pressure distribution along the center-
line of the channel is plotted in Figure 4.16. The centerline pressure drop is
parabolic very close to the channel inlet and tends to a linear form at about
x
h = 2.5 (ζ = 0.75) for both slip and no-slip flows. High-order slip effects
in pressure distribution are negligible at the centerline of the channel. A
comparison of the slopes of the no-slip and slip flow pressure distributions
show that a reduction in the pressure drop is obtained in these simulations,
where the mass flowrate at the channel inlet is specified.

4.2 Transition and Free-Molecular Regimes

In this section we concentrate on transition and free-molecular flow regimes
with the objective of developing unified flow models for pipe and duct flows.
These models are based on a velocity scaling law, which is valid for a wide
range of Knudsen number. Simple no-slip and slip-based descriptions of
flowrate in channels and pipes are corrected for effects in transition and free-
molecular flow regimes with the introduction of a rarefaction coefficient. We
follow here the analysis first presented in (Beskok and Karniadakis, 1999).

A number of investigators have considered semianalytical and numerical
solutions of the linearized Boltzmann equations for rarefied flow between
two parallel plates or a pipe in both transition and free-molecular regimes.
Starting with the pioneering work of Cercignani and his associates, the
Knudsen’s minimum has been rigorously explored (Cercignani and Daneri,
1963). In such studies, simplifications for the collision integral based on the
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FIGURE 4.16. Pressure distribution along the centerline for slip flow, using
first-order (b = 0), and high-order (b = b(x)) slip boundary conditions, and
no-slip flow as a function of X = x

h
.

BGK model (Bhatnagar et al., 1954) (see also Section 15.4) were extensively
used. Other investigators have derived solutions based on the hard-sphere
and Maxwellian models for the collision integral (Huang et al., 1997; Sone,
1989; Ohwada et al., 1989a), and have also obtained solutions in cylindri-
cal geometry (Loyalka and Hamoodi, 1990) and ducts with various cross
sections (Aoki, 1989). Similar approaches have also been used successfully
in modeling gas film lubrication in the transition regime (see Section 6.1
and (Fukui and Kaneko, 1988; Fukui and Kaneko, 1990)).

Before we start developing velocity and flowrate scaling models, we ex-
amine the validity of continuum-based slip models in the transition flow
regime. In Figure 4.17 we present the velocity profiles obtained by the
DSMC and linearized Boltzmann solutions at Kn = 0.6. The model based
on equation (2.29) is indicated as “Model A,” and the one based on equa-
tion (2.43) is indicated as “Model B.” We have also included models by
Cercignani, Deissler, Maxwell, Schamberg, and Hsia and Domoto (see Ta-
ble 2.2). Model B does very well in the center of the channel but gives
slight deviations near the walls. The maximum deviation of the model is
observed at the slip location, where Model A is somewhat better. However,
Model A gives larger errors than Model B toward the centerline of the chan-
nel. The errors in Maxwell’s first-order boundary condition and the other
second-order models are larger than the errors of either model A or B. The
maximum error occurs near the wall with 0.32 units of overestimation us-
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FIGURE 4.17. Nondimensionalized velocity distribution in half of a microchannel
(left). The linearized Boltzmann solution is from (Ohwada et al., 1989a). Error
in the solution of the Navier–Stokes equations with various slip flow models at
Kn = 0.6 (Right).

ing Schamberg’s boundary conditions. The models by Cercignani and by
Deissler are almost identical for this case, and therefore only one is shown
in the figure. The reason for all the models crossing at Y = (y/h) = 0.2 in
Figure 4.17 is an artifact of nondimensionalization of the velocity profiles
with the average velocity Ū . Due to equation (4.15), we have U/Ū = 1 at
y/h = 0.2 for every slip model.

We now turn our attention to the flowrate in microducts. It is known
from Knudsen’s and Gaede’s experiments in the transition flow regime that
there is a minimum in the flowrate in pipe and channel flows at about
Kn ≈ 3 and Kn ≈ 1, respectively. This behavior has been investigated by
many researchers both theoretically (Cercignani and Daneri, 1963; Cercig-
nani, 1963; Loyalka and Hamoodi, 1990; Ohwada et al., 1989a; Polard and
Present, 1948; Kogan, 1969) and experimentally (Tison, 1993). It was first
shown by Knudsen that in the free-molecular flow regime in pipes a diffusive
transport process proportional to the pressure gradient but independent of
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FIGURE 4.18. Variation of normalized flowrate in a channel as a function of
Knudsen number. Comparisons are made between DSMC results and various
solutions of the linearized Boltzmann equation.

density is observed. Accordingly, the free-molecular mass flowrate in pipes
of diameter 2a and length L is (Kennard, 1938)

ṀFM =
4
3
a3 ∆P

L

√
2π

RT
. (4.16)

Deviation from this behavior is expected for finite–length pipes (i.e., a �
L � λ) by a factor (1 − Ca/L) (up to first order in a/L) due to end
effects (Polard and Present, 1948), where C is a constant. However, for free-
molecular flow in two-dimensional very long channels where h � λ � L,
the flowrate increases asymptotically to a value proportional to

(1/π)
1
2 loge(Kn)

in the limit Kn → ∞ (Cercignani, 1963; Huang and Stoy, 1966). This
logarithmic behavior is attributed to the degenerate geometry of the two-
dimensional channel (Kogan, 1969). For finite-length two-dimensional chan-
nels, the flowrate tends toward a finite limit (see the discussion of D.R.
Willis at the end of (Cercignani, 1963)). For ducts, the flowrate tends to-
ward a finite limit, resembling the pipe flow behavior. This has been doc-
umented in the experiments of (Gaede, 1913) and verified by linearized
Boltzmann solutions (Sone and Hasegawa, 1987).

The variation of flowrate in a channel as obtained by DSMC simulations
in the transition and early free-molecular flow regimes is shown in Figure
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4.18. The volumetric flowrate data are presented at the average Knudsen
number in the channel (corresponding to the mean pressure P between the
inlet and outlet), and it is nondimensionalized in the form

Q̄ =
Q̇P

−dP
dx h2(RT0)

1
2
,

where Q̇ is the volumetric flowrate per unit width of the channel, h is
the channel height, T0 is reference temperature, and R is the specific gas
constant. The DSMC data is incorporated in the figure by plotting the
mass flowrate data as a function of average Kn in the channel, since

Ṁ ∼ Q̇P̄ .

The error bars in the plot correspond to maximum fluctuations in the global
mass balance and statistical scatter in pressure gradient (dP/dx), which is
used here as an accuracy criterion. Knudsen’s minimum is clearly captured
by the DSMC results at Kn ≈ 1.0. The DSMC solution is compared with
the semianalytic solutions of (Cercignani and Daneri, 1963), where the
linearized Boltzmann equations are solved with the BGK model. Also, a
comparison with numerical solutions of (Huang et al., 1997) is shown. These
solutions were obtained from the linearized Boltzmann equations with the
BGK model using the discrete ordinate method; see also (Siewert, 2000).
The integrals involved were approximated by various orders (n) of Gauss
quadrature. It is seen that Cercignani and Daneri’s results are recovered as
(n) is increased. The current DSMC results match the Boltzmann solution
quite well up to Kn = 2. Beyond this value, the DSMC results follow the
seventh-order quadrature solution of (Huang et al., 1997), and subsequently
become asymptotic to a constant value in the free-molecular flow regime,
rather than increasing logarithmically. The reason for deviations of the
DSMC data from the theoretical solution for infinitely long channels is the
finite length of the channel (L/h = 20) used in these simulations.

4.2.1 Burnett Equations
The governing conservation equations were given in Chapter 2, e.g., equa-
tion (2.16). In the transition regime the Burnett equations govern the ther-
mal fluidic transport. The stress tensor for the Burnett equations is given
in Section 2.3. To simplify this stress tensor we consider a very long channel
of length L and height h, so that

ε ≡ h/L � 1.

We also neglect any temperature gradients in the gas. Under such con-
ditions the Burnett equations can be simplified considerably, resulting in
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terms including O(1) up to O(ε5). Here we present the results of this ex-
pansion including the O(ε) terms. In the following analysis, Kn0 and M0
refer to Knudsen and Mach numbers evaluated at the outlet.

The streamwise component of the Burnett momentum equation in a long
channel including O(ε) terms is
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Similarly, the cross-flow Burnett momentum equation including O(ε)
terms is
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Neglecting the O(ε) terms, the x- and y-momentum equations are reduced
to (in dimensional form)

∂p

∂x

[
1 − (ω2/3 + ω6/12)

µ2

p2

(
∂u

∂y

)2
]

= µ
∂2u

∂y2 + O(ε),

∂p

∂y
+ (ω6/12 − 2ω2/3)

∂

∂y

[
µ2

p

(
∂u

∂y

)2
]

= O(ε).

Furthermore, assuming a Maxwellian gas model for which the coefficients
(ω1, ω2, ω6) = (10/3, 2, 8) (from (Schamberg, 1947)) and nondimensional-
izing with the reference exit conditions (p0, u0), we obtain

Px
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Similarly, for the y-momentum equation we obtain
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where the nondimensionalized variables are denoted by capital letters.
It is clear that the M2

0 Kn2
0(p/p0)2 term is relatively small for low Mach

number flows in the early transition regime (i.e., Kn < 1). In this case, for
flow in a very long channel the Burnett equations reduce to

Px = Uyy, (4.17a)

Py =
4
3

√
γπ

2
Kn0 M0

(
p0

p

)
UyUyy. (4.17b)

Therefore, the streamwise Burnett equation is reduced to the form ob-
tained in the Navier–Stokes limit. On the other hand, the cross-flow mo-
mentum equation (4.17b) shows that the pressure gradient in that direction
is balanced by the Burnett normal stresses, which in the case of continuum
are identically zero for a flat surface. The cross-flow momentum equation
agrees with the simplified set of equations for Couette flow in the transition
regime obtained in (Schamberg, 1947). Results obtained from simulations
employing the full Burnett equations do not show any significant devia-
tions from the semianalytical results we have obtained for microchannel
flows (Balakrishnan et al., 1999; Agarwal et al., 2001; Agarwal and Yun,
2002; Xu, 2003).

4.2.2 A Unified Flow Model
In this section we will develop a unified flow model that predicts velocity
profiles, pressure drop, and mass flowrate in channels, pipes, and arbitrary
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aspect ratio rectangular ducts in the entire Knudsen regime. Our approach
is divided into two main steps: First, we will analyze the nondimensional
velocity profile to identify the shape of the velocity distribution. Then,
we will obtain the magnitude of the average velocity, and hence obtain
a prediction for the flowrate. The proposed unified model also predicts
Knudsen’s minimum.

Velocity Scaling

From the DSMC results and solutions of the linearized Boltzmann equa-
tion, it is evident that the velocity profiles remain approximately parabolic
for a large range of Knudsen number (see Figure 4.19). This is also consis-
tent with the analysis of the Navier–Stokes and Burnett equations in long
channels, as documented in Section 4.2.1. Based on this observation, we
model the velocity profile as parabolic in the entire Knudsen regime, with
a consistent slip condition. We write the dimensional form for velocity dis-
tribution in a channel of height h,

U(x, y) = F
(

dP

dx
,µ0, h, λ

)[
−
( y

h

)2
+
(y

h

)
+ Us

]
,

where F ((dP/dx),µ0, h, λ) shows functional dependence of velocity on the
pressure gradient, viscosity, channel height, and local mean free path. The
temperature is assumed to be constant, and therefore the dynamic viscosity
is also a constant. Here Us is the velocity slip, and it satisfies equation
(2.43), which after substitution in the above equation (assuming Uw = 0)
yields

U(x, y) = F
(

dP

dx
,µ0, h, λ

)[
−(

y

h
)2 + (

y

h
) +

(
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)
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]
.

Assuming this form of velocity distribution, the average velocity in the
channel (Ū = Q̇/h) can be obtained as

Ū(x) = F
(

dP

dx
,µ0, h, λ

)[
1
6

+
(

2 − σv

σv

)
Kn

1 − bKn

]
.

By nondimensionalizing the velocity distribution with the local average
velocity the dependence on local flow conditions (F ((dP/dx),µ0, h, λ)) is
eliminated. Therefore, the resulting relation is a function of Kn and y only.
Assuming σv = 1 (for simplicity), we obtain

U∗(y, Kn) ≡ U(x, y)/Ū (x) =

[
− (

y
h

)2 + y
h + Kn

1−b Kn
1
6 + Kn

1−b Kn

]
. (4.18)

A similar analysis has been performed by (Piekos and Breuer, 1995). They
used the first-order slip boundary conditions and subsequently separated
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FIGURE 4.19. Velocity profile comparisons of the model (equation (4.18)) with
DSMC and linearized Boltzmann solutions (Ohwada et al., 1989a). Maxwell’s
first-order boundary condition is shown with dashed lines (b = 0), and the general
slip boundary condition (b = −1) is shown with solid lines.

this equation into an x-dependent contribution and a y-dependent contri-
bution to investigate the breakdown of slip flow theory. However, here we
will keep the form of equation (4.18) in the following analysis. Equation
(4.18) solely describes the shape of the velocity distribution, but it does
not properly model the flowrate. Flowrate modeling requires additional
corrections, as shown in the subsection below.

In Figure 4.19 we plot the nondimensional velocity variation obtained
in a series of DSMC simulations for Kn = 0.1, Kn = 1, Kn = 5, and
Kn = 10. We also included the corresponding linearized Boltzmann solu-
tions obtained in (Ohwada et al., 1989a). It is seen that the DSMC velocity
distribution and the linearized Boltzmann solutions agree quite well. We
can now use equation (4.18) and compare with the DSMC data by varying
the parameter b, which for b = 0 corresponds to Maxwell’s first-order and
for b = −1 to the second-order boundary condition in the slip regime only.
Here we find that for b = −1 equation (4.18) results in an accurate model



4.2 Transition and Free-Molecular Regimes 149

0.01 0.05 0.1 0.5 1 5 10
0

0.5

1

1.5

FIGURE 4.20. Velocity scaling at wall and centerline of the channels for slip and
transition flows. The linearized Boltzmann solution of (Ohwada et al., 1989a) is
shown by triangles, and the DSMC simulations are shown by points. Theoretical
predictions of velocity scaling for different values of b, and Hsia and Domoto’s
second-order slip (large dashed line) boundary condition are also shown (Hsia
and Domoto, 1983).

of the velocity distribution for a wide range of Knudsen number. From the
figure, it is clear that the velocity slip is slightly overestimated with the
proposed model for the Kn = 1 case. To obtain a better velocity slip, we
varied the value of the parameter b by imposing, for example, b = −1.8 for
the Kn = 1 case. Although a better agreement is achieved for the velocity
slip, the accuracy of the model in the rest of the channel is destroyed.

In Figure 4.20 we show the nondimensionalized velocity distribution
along the centerline and along the wall of the channels for the entire Knud-
sen number regime considered here, i.e., 0.01 ≤ Kn ≤ 30. We included
in the plot data for the velocity slip and centerline velocity from 20 dif-
ferent DSMC runs, 15 for nitrogen (diatomic molecules) and 5 for helium
(monatomic molecules). The differences between the nitrogen and helium
simulations are negligible, and thus this velocity scaling model is inde-
pendent of the gas type. The linearized Boltzmann solution of (Ohwada
et al., 1989a) for a monatomic gas is also shown in Figure 4.20 by triangles.
This solution closely matches the DSMC predictions. Maxwell’s first-order
boundary condition (b = 0) (shown by a solid line) erroneously predicts
a uniform nondimensional velocity profile for large Knudsen number. The
breakdown of slip flow theory based on the first-order slip boundary con-
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dition is realized around Kn = 0.1 and Kn = 0.4 for the wall and the cen-
terline velocity, respectively. This finding is consistent with the commonly
accepted limits of the slip flow regime (Schaaf and Chambre, 1961). The
prediction using b = −1 is shown by small dashed lines. The corresponding
centerline velocity closely follows the DSMC results, while the slip velocity
of the model with b = −1 deviates from DSMC in the intermediate range
for 0.1 < Kn < 5. One possible reason for this is the effect of the Knudsen
layer, a sublayer that is present between the viscous boundary layer and
the wall, with a thickness of approximately one mean free path. For small
Kn flows the Knudsen layer is thin and does not affect the velocity slip
prediction too much. For very large Kn flows, the Knudsen layer covers
the entire channel. However, for intermediate Kn values both the fully de-
veloped viscous flow (boundary layer) and the Knudsen layer exist in the
channel. At this intermediate range, approximating the velocity profile to
be parabolic neglects the Knudsen layers. For this reason, the model with
b = −1 results in 10% error of the velocity slip at Kn = 1. However, the
velocity distribution in the rest of the channel is described accurately for
the entire flow regime.

For a comparison we also included similar predictions by the second-order
slip boundary condition of (Hsia and Domoto, 1983) (large dashed line).
The form of their boundary conditions is similar to Cercignani’s, Deissler’s,
and Schamberg’s, and they all become invalid at around Kn = 0.1. This
boundary condition performs worse than even the first-order Maxwell’s
boundary condition for large Kn. Only the general slip boundary condi-
tion given by equation (2.43) predicts the scaling of the velocity profiles
accurately.

Flowrate Scaling

In the previous section we analyzed the shape of the velocity profile. Since
we have normalized the velocity profile with the local mean velocity, the
above analysis cannot predict the volumetric flowrate. In this section we
analyze the volumetric flowrate variation in the entire Knudsen regime.

The volumetric flowrate in a channel is a function of channel dimensions,
fluid properties (µ0, λ), and pressure drop, and it can be written as

Q̇ = G
(

dP

dx
,µ0, h, λ

)
.

For a channel of height h, using the Navier–Stokes solution and the general
slip boundary condition (2.43) we obtain

Q̇ = − h3

12µ0

dP

dx

[
1 +

6Kn
1 − bKn

]
, (4.19)

where Kn = λ/h.
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FIGURE 4.21. Volumetric flowrate (per channel width) per absolute value of the
pressure gradient in [m3/(sPa)] as a function of Kn for nitrogen flow. The solid
line represents the proposed model.

The flowrate for the continuum and free-molecular flows are both linearly
dependent on dP/dx (Kennard, 1938), and thus we choose to normalize the
flowrate with the pressure gradient. This quantity is computed based on the
DSMC simulations and is shown in Figure 4.21 for nitrogen. For comparison
we present the Q̇/|dP/dx| predictions obtained using Maxwell’s first-order
slip boundary condition (b = 0, dashed lines) and the general slip boundary
condition (b = −1, dashed-dotted lines). In both cases the predictions are
erroneous. The general slip boundary condition performs the worst for it is
asymptotic to a constant value, while the DSMC data show a considerable
increase with Kn. The first-order boundary condition follows the DSMC
data, however with a significant error.

The slip model (2.43) gives good agreement with DSMC data and the lin-
earized Boltzmann solutions for the nondimensional velocity profile, but it
does not predict correctly the flowrate. This is expected, since the Navier–
Stokes equations are invalid in this regime. In fact, the dynamic viscosity,
which defines the diffusion of momentum due to the intermolecular colli-
sions, must be modified to account for the increased rarefaction effects. The
kinetic theory description for dynamic viscosity requires

µ0 ≈ λv̄ρ,

where v̄ is the mean thermal speed. Using mean free path λ in this rela-
tion is valid as long as intermolecular collisions are the dominant part of
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momentum transport in the fluid (i.e., Kn � 1). However, for increased
rarefaction, the intermolecular collisions are reduced significantly, and in
the free-molecular flow regime, only the collisions of the molecules with
the walls should be considered. Therefore, in free-molecular channel flow
the diffusion coefficient should be based on characteristic length scale h
(channel height) and thus µ ≈ hv̄ρ (Polard and Present, 1948). Since the
diffusion coefficient is based on λ in slip or continuum flow regimes and
h in the free-molecular flow regime, we propose to model the variation of
diffusion coefficient with the following hybrid formula:

µ ≈ ρv̄

[
1

1
h + 1

λ

]
= ρv̄λ

[
1

1 + Kn

]
,

which can be simplified to

µ(Kn) = µo

[
1

1 + Kn

]
, (4.20)

where µ0 is the dynamic viscosity of the gas at a specified temperature and
µ is the generalized diffusion coefficient. The variable diffusion coeffi-
cient model presented above is based on a simple analysis. Another point
of view is to consider the ratio of intermolecular collisions of the molecules
(fg) to the total number of collisions per unit time (i.e., sum of intermolec-
ular and wall collisions fg + fw). Following (Thompson and Owens, 1975),
the frequency of wall collisions in a channel section is (with width w, height
h, and length dx)

fw =
1
4
nv̄2(h + w)dx.

The intermolecular collision frequency in the flow volume is

fg =
v̄

λ
nhw dx,

where v̄ is the mean thermal speed and n is the number density. Assuming
that w � h, the ratio of intermolecular collisions to total collisions becomes

fg

fg + fw
=

1
1 + 1

2Kn
. (4.21)

This analysis resulted in a correction to the continuum-based flowrate mod-
els, similar to the variable diffusion coefficient model presented earlier, with
the only difference of 1

2 in front of the Kn term.
In general, the increased rarefaction effects in our flowrate model can

be taken into account by introducing a correction expressed as rarefaction
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coefficient Cr(Kn), which is a function of Knudsen number. The flowrate
is then obtained as

Q̇ = − h3

12µ

dP

dx

[
1 +

6Kn
1 − bKn

]
=

− h3

12µ0

dP

dx

[
1 +

6Kn
1 − bKn

]
Cr(Kn), (4.22)

where Cr(Kn) is a general function of Knudsen number. A possible model
for Cr is suggested by the aforementioned analysis (equations (4.20) and
(4.21)) in the form

Cr(Kn) = 1 + α Kn, (4.23)

where α is a parameter. If we assume that α is constant in the entire
Knudsen regime, the flowrate in the slip flow regime will be erroneously
enhanced, resulting in

Ṁ

ṀC
= 1 + (6 + α)Kn+O(Kn2),

where ṀC corresponds to continuum mass flowrate. This model becomes
inaccurate for a nonzero value of α in the slip flow regime. Moreover, in the
free-molecular flow regime, for very long channels (L � λ � h) there are
no physical values for α, since the flowrate increases logarithmically with
Kn. For finite-length channels the flowrate is asymptotic to a constant
value proportional to loge(L/h) (see Figure 4.18). Therefore, for finite-
length two-dimensional channel flows, the coefficient α should smoothly
vary from zero in the slip flow regime to an appropriate constant value in
the free-molecular flow regime. It is difficult to verify this variation using
the DSMC simulations due to the statistical scatter of the DSMC method.
However, progress can be made if we assume an approximate value of α,
which we denote by ᾱ, and determine the value of it for a specific gas in
a finite-length channel. Such an analysis has been performed for nitrogen
flow in a channel of length to height ratio L/h = 20, resulting in ᾱ = 2.2.

Using this approximate value we compare the predictions of the model
for mass flowrate versus DSMC results. By integrating equation (4.22) from
the inlet to the outlet of the channel, we derive an expression for the mass
flowrate per unit width:

Ṁ =
h3Po

24µoRTo

∆P

L

[
(Π + 1) + 2[6

2 − σv

σv
+ ᾱ] Kno

+ 12
2 − σv

σv

b + ᾱ

Π − 1
Kn2

o loge(
Π − bKno

1 − bKno
)
]

,(4.24)
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FIGURE 4.22. Variation of mass flowrate (per pressure drop ∆P ) as a function
of exit Knudsen number in the channel. Knudsen’s minimum is captured by the
model at Kn ≈ 1. Comparisons with the DSMC data as well as the continuum
and slip models are included.

where the subscript o refers to the outlet conditions, Π = Pi/Po (inlet-to-
outlet pressure ratio), and L is the channel length. The comparison of the
corrected model with the DSMC data is given in Figure 4.22. The model
predicts Knudsen’s minimum obtained by the DSMC calculations quite
accurately at Kn ≈ 1.0. Consistent with the DSMC solutions, the model
predicts a flowrate independent of Kn for the free-molecular flow limit.
However, this constant flowrate for larger Kn is slightly (13%) lower than
the DSMC predictions. For comparisons with the model and the DSMC
data, we also plot the flowrate obtained by the continuum and the first-
order slip models in Figure 4.22. The continuum model behaves like 1/Kn
and gives the wrong variation, while the slip flow model yields flowrate val-
ues three times less than the DSMC calculations. Systematic investigations
to test the accuracy of the mass flowrate formula for different values of the
tangential momentum accommodation coefficient σv indicate that the error
in the prediction does not exceed 15%.

The corresponding free-molecular mass flowrate of the new model can
be calculated using an asymptotic expansion of equation (4.24) in 1/Kn as
Kn → ∞. The result is independent of both the Knudsen number and the
pressure ratio (since Kno → ∞, (Π − 1)/(bKno) � 1), i.e.,

ṀFM =
h2

12

( π

2RT

) 1
2 ∆P

L

[
ᾱ

(
1 − 6

b

)]
. (4.25)
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Having obtained the mass flowrate, the corresponding pressure distribution
along the channel can be obtained as

P̃ 2 − 1 + 2(6 + ᾱ)
2 − σv

σv
Kn0(P̃ − 1)

+ 2(6b + ᾱ)
2 − σv

σv
Kn2

0 loge

(
P̃ − bKno

1 − bKno

)
= B

(
1 − x

L

)
, (4.26)

where B is a constant such that P̃ (0) = (Pi/Po) = Π. Here we have defined

P̃ (x) = P (x)/P0,

i.e., the pressure at a station x normalized with the exit pressure. The above
equation provides an implicit relation for P̃ . The pressure distribution for
a first-order boundary condition is obtained explicitly by neglecting the
second-order terms O(Kn2) in the above pressure equation.

We also examine the differences in pressure between DSMC and µFlow
predictions by plotting the curvature in the pressure distribution, i.e., the
deviation from the corresponding linear pressure drop (P − PIC)/(Po)) in
Figure 4.23, where PIC denotes the pressure of corresponding incompress-
ible flow. The µFlow simulation using the slip boundary condition (2.26)
predicts larger curvature in pressure distribution than the DSMC results.
The pressure distribution obtained by the first-order boundary condition
is shown by dashed lines and lies between the µFlow and DSMC results.
Our second-order slip model without the correction of the rarefaction co-
efficient (Cr = 1 + ᾱ Kn) gives identical results to µFlow predictions.
The corresponding continuum (no-slip) pressure distribution is also given
in the figure. The reduction in the curvature of the pressure distribution
with rarefaction is clearly demonstrated. Finally, the model, including the
rarefaction coefficient Cr(Kn) shown by solid lines, gives results closest to
the DSMC solution. This demonstrates the ability of the new model in
predicting the pressure distribution for channel flows. At higher Knudsen
number, the curvature in the pressure distribution is much smaller, with
linear pressure drop observed as Kn → ∞.

Model for Pipe and Duct Flows

The asymptotic value of flowrate for pipe and duct flows at high Knudsen
number is constant, and this offers the possibility of obtaining a model for
the rarefaction coefficient Cr(Kn) and in particular the coefficient α. The
objective is to construct a unified expression for α(Kn) that represents the
transition of α from zero in the slip flow regime to its asymptotic constant
value in the free-molecular flow regime. We will verify the velocity and
new flowrate models using available experimental data for pipes (S. Tison,
NIST, private communications) as well as numerical results obtained in
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FIGURE 4.23. Deviations from linear pressure drop for nitrogen channel flow
(Π = 2.28, Kno = 0.2). Comparison of µFlow with the DSMC predictions and
the new slip model (b = −1, ᾱ = 2.2).

(Loyalka and Hamoodi, 1990; Sone and Hasegawa, 1987), for pipe and duct
flows, respectively.

Pipe Flow

First, we derive a similar model for the pipe flow. Assuming a parabolic
velocity profile with the slip amount given by (2.43), it is possible to obtain
the following equation for the nondimensionalized velocity scaling in a pipe
flow:

U∗(r, Kn) =
U(x, r)
U(x)

=

[
− (

r
a

)2 + 1 + 2 Kn
1−b Kn

1
2 + 2 Kn

1−b Kn

]
, (4.27)

where a is the pipe radius, and the Knudsen number is defined as Kn =
λ/a. We compare the nondimensional velocity scaling with the linearized
Boltzmann solution of (Loyalka and Hamoodi, 1990) in Figure 4.24. The
general slip coefficient is found to be b = −1 as before, consistent with the
velocity profiles given in (Loyalka and Hamoodi, 1990), for cases Kn = 0.1,
Kn = 1.0, and Kn = 10. The velocity profiles predicted with the first-order
slip model and the general slip model (2.43) are also shown in Figure 4.24.
It is seen that the first-order model gives erroneous velocity distributions
in the transitional and free-molecular flow regimes. For example, for the
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FIGURE 4.24. Velocity profile scaling in rarefied pipe flows (nondimensional).
The first-order model corresponds to b = 0, and the general slip model corre-
sponds to b = −1. The dots correspond to the linearized Boltzmann solution of
(Loyalka and Hamoodi, 1990).

Kn = 10 case an almost uniform velocity distribution is predicted. However,
the model of equation (2.43) predicts accurately the velocity distribution
in most of the pipe with a small error in the velocity slip.

Next, we compare the flowrate model corrected as before by the rarefac-
tion coefficient Cr(Kn) in a similar form obtained for channel flows with

Cr(Kn) = 1 + α Kn .

The volumetric flowrate for a pipe is

Q̇ = −πa4

8µo

dP

dx
(1 + α Kn)

[
1 +

4Kn
1 − bKn

]
, (4.28)

and the corresponding mass flowrate is

Ṁ =
πa4Po

16µoRTo
∆P

L
[(Π + 1) + 2(4 + α)Kno (4.29)

+
8(α + b)
Π − 1

Kn2
o loge

(
Π − bKno

1 − bKno

)]
.
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Since b = −1 is already determined from the linearized Boltzmann so-
lution, the only parameter to be determined in the model is α. However,
α should vary from zero in the slip flow regime to a constant asymptotic
value (αo) in the free-molecular flow regime. It is possible to obtain the
constant asymptotic value of α (as Kn → ∞) by using the theoretical mass
flowrate in the free-molecular flow regime given by equation (4.16) and the
asymptotic value for the mass flowrate obtained by (4.30) while Kn → ∞,
as

αKn→∞ ≡ αo =
(

64
3π(1 − 4

b )

)
. (4.30)

We can also compare the results with the formula derived by (Knudsen,
1909), which we normalize here with the corresponding free-molecular flow
limit of equation (4.16):

ṀKn

ṀFM
=

3π

64Kn
+
(

1 + 2.507(1/Kn)
1 + 3.095(1/Kn)

)
, (4.31)

where Kn is computed at the average pressure P = (Pi + Po)/2. The
constants 2.507 and 3.095 are taken from (Loeb, 1961), where details of
derivation of Knudsen’s formula are presented. The same formula has also
been used in (Tison, 1993), and (Loyalka and Hamoodi, 1990).

Due to the lack of detailed experimental data, we do not have exact
values for the pressure ratio Π, and thus we cannot use equation (4.30)
directly. Instead, we approximately integrate the volumetric flowrate equa-
tion (4.28) by multiplying it by the average density in order to obtain
the mass flowrate. The flow conditions are evaluated at an average state.
For example, the average pressure is defined as P = (Pi + Po)/2 so that
(dP/dx) = ∆P/L, and Kn is evaluated at P . The corresponding mass
flowrate becomes

Ṁ = − πa4P

8µoRT

∆P

L
(1 + α Kn)

[
1 +

4Kn
1 − bKn

]
. (4.32)

Nondimensionalizing this relation with the theoretical free-molecular flow
limit (4.16), we obtain the following relation

Ṁ

ṀFM
=

3π

64Kn
(1 + αKn)

(
1 +

4Kn
1 − bKn

)
. (4.33)

Comparison of equations (4.31) and (4.33) shows that both models predict
the same limit in the free-molecular flow regime (Kn → ∞) if the value of
αo is chosen according to equation (4.30) (αo = 1.358 for pipe flows, i.e.
a � λ � L).

Knudsen’s formula is often used to describe the flow for the entire flow
regime, including the slip flow regime. Considering that

ṀC

ṀFM
=

3π

64
Kn,
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Knudsen’s formula can be written for the slip flow regime (Kn ≤ 0.1) as

ṀKn

ṀC
= 1 +

64Kn
3π

(
2.507
3.095

)
+ O(Kn2),

where the subscript “C” stands for continuum predictions. This relation
shows that Knudsen’s formula is not accurate for the slip flow regime, since
the first-order variation of flowrate from the corresponding continuum limit
should be

Ṁslip

ṀC
= 1 + 4Kn.

If we used a constant α in the entire flow regime, the model would have
resulted in an incorrect form similar to Knudsen’s model in the slip flow
regime. In order to obtain the variation of α as a function of Knudsen
number for the transitional flow regime, we can solve for α from equation
(4.33) to obtain

α =
64 Ṁ

ṀFM

3π(1 + 4Kn
1−bKn

)
− 1

Kn
,

where Ṁ is the flowrate data obtained numerically or experimentally (and
normalized with ṀFM). The 1/Kn behavior in this analytical expression
makes it difficult to predict the value of α for small Kn. Therefore, we
must rely on accurate numerical or experimental data. For this purpose
we use linearized Boltzmann solutions of (Loyalka and Hamoodi, 1990)
and experimental data of S. Tison (NIST, private communications). In
Figure 4.25 we present the variation of α as a function of Kn (symbols).
The value of α is initially small (close to zero), and it gradually increases
with Kn, reaching a constant value in the free-molecular flow regime. The
physical meaning of this behavior is that the dynamic viscosity remains the
standard diffusion coefficient in the early slip flow regime. The value of α
increases slowly with Kn in the slip flow regime, and therefore the effect
of change of the diffusion coefficient is second-order in Kn. For this reason
the experimental slip flow results are accurately predicted by the slip flow
theory, which does not require change of the diffusion coefficient length
scale from λ to channel height h. Variation of α as a function of Kn found
by the numerical and experimental data can be represented accurately with
the following relation:

α = α0
2
π

tan−1
(
α1Kn

β
)

, (4.34)

where α0 is determined to result in the desired free-molecular flowrate using
(4.30) and α1 = 4.0, β = 0.4. This model is shown in Figure 4.25 with lines.
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FIGURE 4.25. Variation of α as a function of Knudsen number. Analytical fit
to this variation is obtained by α = α0

2
π

tan−1(α1 Knβ), (α1 and β are free
parameters).

Note that the values for α1 and β are the same for both the experimental
and numerical results presented in the figure, and that these are the only
two undetermined parameters of the model.

In Figure 4.26 we present the flowrate variation as a function of Kn.
The data are obtained by the solution of linearized Boltzmann equations
by (Loyalka and Hamoodi, 1990) for a very long pipe, so that h � λ � L
is maintained for all values of Kn. Knudsen’s two-parameter model is also
presented. The experimental data presented in the figure were obtained
by Tison for helium flow in finite-length pipes (L/a = 200). There are
differences between the experimental and numerical data. For example,
the experimental data have not reached the corresponding free-molecular
flowrate limit. At Kn = 200, which is the highest Kn value in the exper-
iments, L ∝ λ, and therefore end effects are important and the expected
mass flowrate is less than the theoretical free-molecular flowrate (Polard
and Present, 1948). Since the analytical and experimental data show some
differences, in the case of the experiments we found the value of α0 = 1.19
by using the experimental data at Kn = 200. Also, for the linearized Boltz-
mann solution we obtained α0 = 1.358 using equation (4.30). The model’s
predictions for linearized Boltzmann solution and experimental data are
also presented in the figure. The model describes the variation of the data
very accurately, and it is successful in predicting the Knudsen’s minimum.
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FIGURE 4.26. Free-molecular scaling of Loyalka and Hamoodi’s linearized Boltz-
mann solutions (Loyalka and Hamoodi, 1990) and Tison’s experiments (Tison,
1993). Comparisons with the proposed model for both cases and Knudsen’s model
are also presented.

In Figure 4.27 we present the mass flowrate variation (normalized with
the corresponding no-slip value) as a function of Kn, up to Kn = 0.5. This
covers the slip and the early transitional flow regimes. We see that Knud-
sen’s model is not accurate in this regime. Linearized Boltzmann solutions
and experimental data both start with a slope of 4. Hence,

Ṁ

ṀC
= 1 + 4Kn +O(Kn2);

then the slope increases gradually with Kn. The model predicts this tran-
sition very accurately for the numerical and the experimental data. The
increase in slope was observed by (Sreekanth, 1969) and explained as a
change in the slip coefficient in Maxwell’s slip boundary conditions from
1.0 to 1.1466. If the change in the slope of the data is to be explained by an
increase in the slip coefficient, the velocity scaling results shown in Figures
4.24 and 4.19 should be affected. However, it is clearly seen that such an
effect is not present; a more appropriate explanation of the slope change
is the change in the diffusion coefficient with Kn as presented in Section
4.2.2.

Duct Flow

We present the extensions of the new model for duct flows in the entire
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FIGURE 4.27. Normalized flowrate variation in the slip and early transitional
flow regimes for pipe flows. Symbols correspond to the linearized Boltzmann
solutions of (Loyalka and Hamoodi, 1990) and experimental results of (Tison,
1993). Comparisons with the proposed model for both cases and Knudsen’s model
are also presented.

FIGURE 4.28. Variation of α as a function of Kn for various aspect ratio ducts.
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Knudsen regime. We consider flows in ducts with aspect ratio (AR = w/h ≡
width/height) of 1, 2, and 4. The data are obtained by linearized Boltz-
mann solution in ducts with the corresponding aspect ratios (Sone and
Hasegawa, 1987). Our previous analysis was valid for the two-dimensional
channels, where we reported flowrate per channel width. For duct flows,
three-dimensionality of the flow field (due to the side walls of the duct)
must be considered. In no-slip duct flows the flowrate formula developed
for two-dimensional channel flows is corrected in order to include the block-
age effects of the side walls. According to this, the volumetric flowrate in
a duct with aspect ratio AR for no-slip flows is (see (White, 1991), p. 120)

Q̇ = C(AR)
wh3

12µ

(
−dP

dx

)
,

where C(AR) is the correction factor given as

C(AR) =

⎡⎣1 − 192(AR)
π5

∞∑
i=1,3,5,...

tanh(iπ/2(AR))
i5

⎤⎦ . (4.35)

With this correction, aspect ratios of 1, 2, and 4 ducts correspond to
42.17%, 68.60%, and 84.24% of the theoretical two-dimensional channel
volumetric flowrate for no-slip flows, respectively. According to the new
model, the volumetric flowrate for rarefied gas flows in ducts is

Q̇ = C(AR)
wh3

12µ0

(
−dP

dx

)
(1 + α Kn)

(
1 +

6Kn
1 − bKn

)
,

where the correction factor C(AR) is independent of Knudsen number. The
variation of α as a function of Kn is calculated by using the correction fac-
tors (C(AR)), the linearized Boltzmann solutions in (Sone and Hasegawa,
1987), and our model. This variation is given in Figure 4.28. The rarefac-
tion coefficient (Cr(Kn) = 1 + α Kn) was introduced in order to model
the reductions in the intermolecular collisions of the molecules as Kn is
increased. In duct flows, both the height and the width of the duct are
important length scales, and comparison of these length scales to the local
mean free path is an important factor in the variation of α. It is seen in
Figure 4.28 that the transition in α occurs later for high aspect ratio ducts,
as expected.

Similar to the pipe flow case, an approximate analytical formula can be
derived to describe the mass flowrate in ducts of various aspect ratios as

Ṁ

ṀC
= C(AR)

(
1 + αKn

) [
1 +

6Kn
1 − bKn

]
,

where Kn is evaluated at average pressure as before. In Figure 4.29 we
present the variation of flowrate nondimensionalized with the correspond-
ing no-slip value as a function of Kn in the slip and early transitional flow
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FIGURE 4.29. Normalized flowrate variation in the slip and early transitional
flow regimes for various aspect ratio (AR) duct flows. Symbols are the linearized
Boltzmann solution of (Sone and Hasegawa, 1987). Comparisons with the pro-
posed model are also presented by lines.

TABLE 4.3. Parameters of the model for various aspect ratio duct flows. The only
free parameters are α1 and β, as α0 is determined from the asymptotic constant
limit of flowrate as Kn → ∞.

(AR) = w/h C(AR) α0 α1 β

1 0.42173 1.7042 8.0 0.5
2 0.68605 1.4400 3.5 0.5
4 0.84244 1.5272 2.5 0.5

regimes. The linear increase of the flowrate with Kn and complete descrip-
tion of rarefied duct flows with the introduction of the correction factor
C(AR) are observed. The slope of the nondimensionalized mass flowrate
increases gradually with Kn. This is attributed to the gradual change in
the rarefaction coefficient as presented in Figure 4.28.

For the free-molecular scaling of the data we nondimensionalized the
flowrate with

ṀFM =
h2w√
2RTo

∆P

L
,

which gives the correct order of magnitude for the flowrate. The exact value
of the free-molecular flowrate in rectangular ducts is given by (Thompson
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FIGURE 4.30. Free-molecular scaling of linearized Boltzmann solutions of (Sone
and Hasegawa, 1987) for duct flows of various aspect ratio. Comparisons with
the proposed model are also presented by lines corresponding to different aspect
ratios.

and Owens, 1975)

ṀFM(h, w) = ΓṀFM ,

where

Γ = h2w loge

⎛⎝ h

w
+

√
1 +

(
h

w

)2
⎞⎠+ w2h loge

(
w

h
+

√
1 +

(w

h

)2
)

− (h2 + w2)3/2

3
+

h3 + w3

3
.

Here, h and w denote the height and the width of the rectangular duct.
For the aspect ratios (AR) of 1, 2, and 4 the above relation results in
0.8387, 1.1525, and 1.5008 times the free-molecular mass flowrate ṀFM,
respectively.

Nondimensionalizing the model with the free-molecular mass flowrate
(ṀFM), we obtain

Ṁ

ṀFM
=

C(AR)
6Kn

(
1 + αKn

) [
1 +

6Kn
1 − bKn

]
.

In Figure 4.30 we present the variation of the nondimensionalized flowrate
as a function of Kn. The duct flow data are due to (Sone and Hasegawa,
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1987), and the two-dimensional channel data (shown by AR = ∞) are due
to Sone (for Kn ≤ 0.17) and Cercignani (Kn > 0.17) (Fukui and Kaneko,
1990). Comparisons are made against the linearized Boltzmann solutions.
For duct flows, good agreement of the model with the numerical data in the
entire flow regime is obtained. The model is also able to capture Knudsen’s
minimum accurately. The parameters used in the model are given in Table
4.3. Note that αo is determined from the asymptotic constant limit of
flowrate (4.36) as Kn → ∞.

4.2.3 Summary
In Section 4.2.2, we developed a unified flow model that can accurately
predict the volumetric flowrate, velocity profile, and pressure distribution in
the entire Knudsen regime for pipes and rectangular ducts. The new model
is based on the hypothesis that the velocity distribution remains parabolic
in the transition flow regime, which is supported by the asymptotic analysis
of the Burnett equations in section 4.2.1. The general velocity slip boundary
condition (equation (2.43)) and the rarefaction correction factor (equation
(4.23)) are the two primary components of this unified model.

• The general slip boundary condition (equation (2.43)) gives the cor-
rect nondimensional velocity profile, where the normalization is ob-
tained using the local channel averaged velocity. This eliminates the
flowrate dependence in modeling the velocity profile. For channel
flows, using equation (2.39), we obtain b = −1 in the slip flow regime.
Evidence based on comparisons of the model with the DSMC and
Boltzmann solutions shows that b = −1 in the entire Knudsen regime.

• In order to model the flowrate variations with respect to the Knud-
sen number Kn, we introduced the rarefaction correction factor as
Cr = 1 + α Kn. This form of the correction factor was justified using
two independent arguments: first, the apparent diffusion coefficient;
and second, the ratio of intermolecular collisions to the total molec-
ular collisions. We must note that α cannot be a constant. Physical
considerations to match the slip flowrate require α → 0 for Kn ≤ 0.1,
while α → α0 in the free molecular flow regime. The variation of α
between zero and a known α0 value is approximated using equation
(4.34), which introduced two empirical parameters α1 and β to the
new model.

Therefore, the unified model employs two empirical parameters (α1 and
β) and two known parameters b = −1 and α0. Although this empiricism
is not desired, the α value in Cr varies from zero in the slip flow regime
to an order-one value of α0 as Kn → ∞. Finally, the model is adapted
to the finite aspect ratio rectangular ducts using a standard aspect ratio
correction given in equation (4.35).



5
Thermal Effects in Microscales

In this chapter we consider heat transfer in gas microflows. In the first sec-
tion we concentrate on the thermal creep (transpiration) effects that may
be important in channels with tangential temperature gradients on their
surfaces. For example, a microchannel surface with a prescribed heat flux is
subject to temperature variations along its surface, and this results in ther-
mal creep flow. We analyze thermal creep with numerical simulations to
demonstrate the main concept, and subsequently we describe a prototype
experiment. In the second and third sections we study other temperature-
induced flows and investigate the validity of the heat conduction equation
in the limit Kn → 0. In the fourth and fifth sections we investigate the com-
bined effects of thermal creep, heat conduction, and convection in pressure-,
force-, and shear-driven channel flows.

5.1 Thermal Creep (Transpiration)

It is possible to start rarefied gas flows due to tangential temperature gradi-
ents along the channel walls, where the fluid starts creeping in the direction
from cold toward hot. This is the so-called thermal creep or transpiration
phenomenon. We explain this counterintuitive effect with the following ex-
ample: Consider two containers filled with the same gas that are kept at
the same pressure

P1 = P2
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but at different temperatures

T1 > T2.

If these two containers are connected with a relatively thick channel (λ �
h), the equilibrium condition requires no-flow in the channel. If the chan-
nel thickness (h) becomes comparable to the mean free path (λ), rarefied
gas effects have to be taken into account. In such a case the local equi-
librium mechanism is very complex, and interaction of the gas molecules
with the walls must also be considered. Here, we consider free-molecular
flow conditions (i.e., λ � h) to simplify the discussion. In this flow regime,
the intermolecular collisions are negligible compared to the interaction of
molecules with the surfaces. If we assume that molecule–wall interactions
are specular (i.e., σv = 0), then the following analysis is valid. We assume
that the density of the fluid is proportional to the number density (number
of molecules per unit volume),

ρ ∝ n,

and the temperature of the fluid is proportional to the square of average
molecular speed,

T ∝ c̄2.

The mass fluxes at the hot and the cold ends of the channel are

mn1c̄1 and mn2c̄2,

respectively; here m is the mass of the gas molecules. Then

mn1c̄1

mn2c̄2
≈ ρ1

ρ2

(
T1

T2

)0.5

=
P1

P2

(
T2

T1

)0.5

=
(

T2

T1

)0.5

≤ 1,

where we have used the equations of state

P = ρRT and
P1

P2
= 1.

The above analysis indicates a flow creeping from cold to hot. Osborne
Reynolds was the first to realize this phenomenon, and he coined the term
thermal transpiration (Reynolds, 1879). At about the same time, Maxwell
developed independently a theory for thermal creep. In the early 1900s,
Knudsen built a molecular compressor based on the thermal transpiration
idea by connecting a series of tubes with constrictions arranged between
each tube (Knudsen, 1910a; Knudsen, 1910b). The constrictions were very
small, so that the rarefaction effects became important in the constrictions.
By heating the same side of these constrictions to very high temperatures
(773 K), Knudsen was able to maintain considerable pressure gradients
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(Loeb, 1961). According to (Ebert and Albrand, 1963), Gaede also de-
scribed a thermal pump in his unpublished notes. Other developments in
thermal creep driven vacuum pumps can be found in (Vargo et al., 1998).

A detailed derivation of thermal creep boundary condition for rarefied
flows with λ < h is given in (Kennard, 1938; Loeb, 1961). It can also be
derived directly from the Boltzmann equation (see Section 15.4.2). In order
to accommodate the thermal creep effects, the wall velocity is enhanced
with the following term:

Uc =
3
4

µR

P

∂T

∂s
, (5.1)

where Uc is the creep velocity, and ∂T
∂s is the tangential temperature gra-

dient along the surface. Therefore, the high-order velocity slip boundary
condition is modified as

Us =
1
2

[(2 − σ)Uλ + σUw] + Uc.

The velocity profile for a pressure-driven channel flow of thickness h,
including the thermal creep effects, is then given by equation (4.5) with
(5.1) added on to the right-hand side. Integrating this profile, we obtain
the mass flowrate:

Ṁ = − h3P

12µRT

dP

dx

[
1 + 6

2 − σv

σv
(Kn − Kn2)

]
+

3
4

µh

T

dT

dx
. (5.2)

We conclude that thermal creep can change the mass flowrate in a chan-
nel. If the pressure gradient and the temperature gradient along the channel
walls act along the same direction, the flowrate is decreased; otherwise, the
flowrate is increased.

• Therefore, it is possible to have nonzero flowrate in a microchannel
even in the case of zero pressure gradient.

5.1.1 Simulation Results
An interesting aspect of thermal creep is that it causes zero net mass
flowrate in channels where thermal creep and pressure gradient balance
each other. To demonstrate this we simulated air flow in microchannels of
various dimensions connecting two tanks kept at different conditions with

• Temperatures at 300 K and 400 K, and

• Knudsen number at Kn = 0.365, 0.122, 0.052.

The pressure in both tanks is initially atmospheric. Thermal creep effects
cause pumping of the fluid toward the hot tank, increasing the pressure
in the hot tank and lowering the pressure in the colder one. This pressure
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TABLE 5.1. Pressure differences due to the thermal creep effects obtained by
numerical simulation and from the analytical formula.

Gas Kn ∆Panaly(Pa) ∆Pnumer(Pa)
Air 0.052 342.0 336. 0
Air 0.122 1482.0 1409.0
Air 0.365 9151.0 8832.0

difference eventually starts flow in the middle of the channel in the direction
from hot to cold (high pressure to low pressure), resulting in zero average
mass flowrate in the channel as the steady state is reached. For zero net
mass flowrate, equation (5.2) can be written as

dP

dx
=
(

9µ2R

h2P

) dT
dx

1 + 6[ 2−σ
σ (Kn − Kn2)]

.

It is possible to integrate this equation approximately using average val-
ues of viscosity (µ̄), pressure (P̄ = P1+P2

2 ), and Knudsen number (Kn),
resulting in

P1 − P2 ≈
(

9µ̄2R

h2P̄

)
(T1 − T2)

1 + 6
(

2−σ
σ

(
Kn − Kn

2
)) , (5.3)

where viscosity and Knudsen number are evaluated at average temperature
(T̄ = T1+T2

2 ) and average pressure (P̄ ). Equation (5.3) shows that the
pressure drop between two tanks can be increased by either decreasing the
channel thickness (h) or the average pressure (P̄ ). In other words:

• Thermal creep effects can be significant in rarefied flows where the
pressure is low or in microflows in atmospheric pressures where the
typical dimensions are on the order of a micron or lower.

The steady-state pressure distribution along the channel center and in
the reservoirs, normalized with atmospheric pressure (initial pressure at
both tanks), is given in Figure 5.1 for three different channel sizes. It is
seen that the pressure change due to thermal creep for high Kn flows is
nonnegligible. In Table 5.1, we compare the pressure differences predicted
by equation (5.3) with the numerical values obtained by simulations; the
agreement is very good.

The above numerical experiment describes an unsteady problem for
which the relevant time scales are governed by two different transient pro-
cesses. The first transient process is due to the fluid starting to creep along
the channel surface. As time goes on, the creeping fluid layer starts inter-
acting with the stagnant fluid layers above it, creating a boundary layer
similar to the impulsively started wall problem, the so-called Rayleigh prob-
lem (Batchelor, 1998). Of course, formation of the boundary layer creates
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FIGURE 5.1. Normalized pressure variation along the channel center and reser-
voirs for different rarefaction parameters (P0 = 1 atm). Triangles and circles show
the location of calculation points.

shear stresses, which, in turn, activate the velocity slip mechanism (Ken-
nard, 1938). This is the initial transient process with time scale

t ∝ h2

ν
.

Considering microchannels with typical height of about one micron, this
transient is very fast.

The second time scale of the problem corresponds to the time it takes
to get from initial transients to a steady-state solution where the net mass
flowrate is zero. This time scale is based on the creep velocity and tank
dimensions. In particular, this time scale increases as the tank size is in-
creased. In the limit where the tanks are reservoirs of infinite dimensions,
the fluid steadily creeps from the cold to the hot tank, and the pressure at
the two reservoirs remains practically the same.

Figure 5.2 shows the flow field for early times as well as for a steady-state
behavior. A uniform flow is obtained in the channels initially (past the end
of the aforementioned first process). As more fluid is introduced into the
hot tank, the pressure there increases while the pressure at the cold tank
decreases. Initially, the pressure built up by this process is not sufficient
to reverse the flow in the middle of the channel, and more fluid is being
transported into the hot tank (see Figure 5.2 (a)). When the pressure in the
hot tank is sufficiently high to overcome the flow due to thermal creep, the
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FIGURE 5.2. Demonstration of the thermal creep effects: Flow field for early
times (a), and steady-state solution (b) (Kn = Knav = 0.365).
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FIGURE 5.3. Proposed experimental apparatus for studying thermal creep ef-
fects.

net mass flowrate across the channel becomes zero, and the steady solution
is obtained; this is shown in Figure 5.2 (b). A single streamline passing
through the channel center is also shown in the plot. It is seen that the
fluid recirculates in the channel and there is no net flow to either tank.

This pumping effect of thermal creep has been exploited by (Sone et al.,
1996b), who designed a channel with periodic ditches, similar to the grooved
channel of Figure 3.25 but with the groove present on both walls. They
imposed a periodic temperature variation, whereby the temperature decays
linearly on the groove side, but it increases linearly on the channel wall.
This device produces a unidirectional flow with maximum mass flowrate
at Kn ≈ 0.3, and it works both for channels as well as pipes. While the
original studies in (Sone et al., 1996b), were based on DSMC, subsequently
an experiment was conducted to verify the pumping effect (Sone et al.,
2001).

5.1.2 A Thermal Creep Experiment
The purpose of this experiment is to examine the importance of thermal
creep effects in microchannel flows. It is based on the numerical example
presented above, also in (Beskok et al., 1995), and ideas similar to Knud-
sen’s experiments (Loeb, 1961), but it differs from the early experiment of
(Vargo and Muntz, 1996), where porous diaphragms were used rather than
microchannels.

The objective is to test the thermal creep effects in an apparatus pre-
sented schematically in Figure 5.3. It consists of two reservoirs connected
through a series of microchannels made out of silicon. The typical dimen-
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sions of the microchannels should be 1µm thick, 100µm wide, and few
millimeters long. Using a series of microchannels increases the net flow
area without effectively increasing the channel area to perimeter ratio.

A possible experimental procedure is as follows: First, both of the pres-
sure release valves are open, and therefore, the system is in equilibrium with
the ambient conditions. Then, the pressure release valves are closed. The
temperature and the pressure of the system are recorded to ensure that the
two reservoirs are at identical thermodynamic state. Second, the reservoirs
are dipped into constant-temperature fluid baths at different temperatures
T1 and T2. The pressure and the temperature in the reservoirs should be
recorded in time. If the continuum hypothesis is valid, the pressure in the
reservoirs should be unchanged. If thermal creep effects are present, the
pressure in the cold reservoir should decrease, and the pressure in the hot
reservoir should increase. The experiments should run until a stationary
state is observed. The time scale of the experiment is directly related to the
size of the reservoirs. Therefore, the reservoirs should be designed as small
as possible. However, they should be large enough to maintain continuum
description for the gas in them (i.e., Kn < 0.001). It is possible to increase
the rarefaction effects in the experiments by performing the experiment at
lower pressures than atmospheric conditions. Therefore, a systematic study
of thermal creep as a function of Kn can be performed. Also, the temper-
ature of the fluid baths can be changed from one experiment to another
in order to verify the sensitivity of thermal creep to temperature gradients
for a given Kn.

5.1.3 Knudsen Compressors
Micromolecular compressors are useful for various microscale gas pumping
applications. For example, compressors pumping gas samples through mi-
cromass spectrometers can be used to detect pollutants and various chemi-
cal or biological agents. MEMS-based thermal transpiration Knudsen com-
pressors were proposed in (Pham-van-Diep et al., 1995), and in (Beskok
et al., 1995). The idea in (Pham-van-Diep et al., 1995), is based on uti-
lization of a cascade of multiple stages to obtain large pressure variations.
Each stage consists of an array of capillaries and a connector section. The
temperature increase imposed along the capillary pumps the gas from cold
toward the hot direction, resulting in pressure increase in the capillary sec-
tion. The gas is cooled in the connector section, and thus the temperature
drops to the value corresponding to the inlet of the capillary section. This
creates periodically repeatable temperature variations in each stage of the
compressor. Since the pressure in the connector section drops only slightly,
it is possible to have a net pressure built up with multistage units.

Large-scale Knudsen compressors have low volumetric flowrate and inef-
ficient energy usage; however, their microscale counterparts eliminate these
disadvantages and result in low-power gas-pumping systems with nonmov-
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ing components. (Vargo et al., 1998) built a microvacuum pump delivering
5×1014 molecules per second with a pump volume of 0.16mL at inlet pres-
sure of 10mTorr and power input of 28.5mW. Another micro pump with
the same flowrate was built to operate at 1mTorr. It required a volume
of 13.9mL and power input of 2.4W. A tenfold decrease in the inlet pres-
sure resulted in almost a hundred times increase in the power input and
the volume of the system. The flow in the capillary section of the Knud-
sen compressor is in transition or free-molecular flow regime, and thus the
capillary radius is small, and thermal transpiration effects are dominant in
this section. However, the dimensions of the connector section are consider-
ably larger than the local mean free path, so that slip or continuum flow is
present in this section. In the compressor built by Vargo et al., the capillary
and the connector radii were 0.225µm and 10.795 mm, respectively. The
bottleneck in the design of a Knudsen compressor is usually in determining
the dimensions of the connector section, which becomes a limitation for
low-pressure applications where the mean free path is already quite large.

In the experiments of Vargo et al., the maximum temperature variation in
one stage of the compressor was about 20 to 30 K, with average temperature
of 282 K. The inlet pressure and the working gas were varied. Good device
performance for pressures as low as 1 mTorr was reported. Finally, Vargo et
al. have developed a numerical model for predicting flowrate and pressure
buildup in Knudsen compressors operating in the transition flow regime.
The numerical predictions were validated using the experimental data, and
the new algorithm was employed to study compressor performance under
various flow conditions.

5.2 Other Temperature-Induced Flows

In addition to the flow induced by thermal creep, which is an O(Kn) effect,
there are other possibilities for setting up a flow in rarefied flows in the
absence of any external forces, e.g., gravity. Here we list a few representative
cases and provide a short explanation:

• thermal stress slip flow,

• nonlinear thermal stress flow,

• flow induced around the edge of a heated plate, and

• flow induced by a temperature discontinuity.

Most of these cases were discovered by Sone, Aoki, and their collaborators
by analyzing the Boltzmann equation (see Section 15.4.2). They are most
probably present in microsystem flows, but they are difficult to isolate and
be detected as individual effects. Here we give a brief summary for each
following the work in (Sone, 2002; Sone, 2000).
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FIGURE 5.4. Flow domain showing the temperature discontinuities at the upper
and lower walls. (Courtesy of K. Aoki.)

The thermal stress slip flow is an O(Kn2) effect, and it is derived fol-
lowing a consistent second-order expansion in Kn of the Boltzmann equa-
tion. In that case, in addition to the thermal creep that is present in the
first-order expansion of the boundary terms, there is a correction term for
the slip velocity proportional to the normal gradient of the temperature.
A nonuniform normal gradient can cause a slip velocity even if the bound-
ary is isothermal. To explain this in more detail, we follow the argument
of Sone (see Section 15.4.2 and (Sone, 2002)). Let us consider a gas be-
tween two eccentric circular cylinders with different uniform temperatures
T1 and T2. No thermal creep flow is induced; however, there is, in general,
a nonuniform normal temperature gradient on each cylinder, that is,

∂2T

∂xi∂xj
nitj �= 0,

where ni and tj are components of the unit vectors in the normal and
tangential directions, respectively. A global flow is then set up circulating
between the cylinders along the clockwise direction if the temperature of the
outside cylinder T2 is higher. This phenomenon was discovered by (Sone,
1972), who termed it “thermal stress slip flow.”

The nonlinear thermal stress flow is an O(Kn) effect and was dis-
covered by (Kogan et al., 1976) as a new type of convection. When the
temperature gradient in a gas is so large that its nonlinear effect is not
negligible, the thermal stress does not balance by itself and remains in the
momentum equation (see momentum equations in Section 15.4.2). This
causes a flow when the distance between isothermal lines or surfaces varies
along them. In this flow, in contrast to the thermal creep flow and thermal
stress slip flow, a solid boundary plays only an indirect role in setting up
the isothermal contours.
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FIGURE 5.5. Flow induced in the lower half of the domain for T2/T1 = 2. The
scale

√
u2 + v2/

√
2RT1 = 0.02 is indicated next to the plots. The upper plot

corresponds to Kn = 0.2 and the lower plot to Kn = 0.02. (Courtesy of K. Aoki.)

The flow induced around the sharp edge of a heated plate cannot
be predicted by the asymptotic analysis of the Boltzmann equation as in
the previous two cases. This phenomenon was discovered more recently in
numerical and experimental work by (Aoki et al., 1995) and (Sone and
Yoshimoto, 1997). If a uniformly heated plate is placed in the middle of
gas contained in a tank of uniform temperature, flow is induced around the
edge of the plate for a wide range of Knudsen number. There is no flow
induced by thermal creep, since the temperature is uniform everywhere.
The induced velocity scales approximately as O(

√
Kn).

Lastly, flow induced by a temperature discontinuity has been stud-
ied by (Aoki, 2001), who set up a flow in a square enclosure, half of which
is at temperature T1 and the other half at temperature T2 (see Figure 5.4).
A flow is induced from the colder to the hotter part along the one wall with
the discontinuity at the middle, and this sets up a global circulating flow
(see Figure 5.5). The maximum flow speed tends to a constant value at low
Kn values and decays for Kn ≥ 0.1.

5.3 Heat Conduction and the Ghost Effect

We examine here the possible breakdown of the heat conduction equation
in the limit that Kn → 0. This phenomenon was studied by (Sone et al.,
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1996a) and shows a fundamental inconsistency in the momentum and en-
ergy (Navier–Stokes) equations. We consider a gas at rest contained in a
tank. According to the continuum description, the gas temperature field is
described by the heat conduction equation, i.e., the energy equation with
all the convective terms absent. Below, we follow the argument of (Sone,
2002; Sone, 2000), that demonstrates that the heat equation is not always
appropriate, e.g., in microscales.

Let us consider the energy equation in the continuum limit and examine
only the relevant terms (for a monoatomic gas) as follows:

5
2
ρui

∂(RT )
∂xi

= · · · +
∂

∂xi

(
k

∂T

∂ki

)
, (5.4)

where k is the thermal conductivity. The corresponding heat conduction
equation for a gas at rest is

∂

∂xi

(
k

∂T

∂xi

)
= 0.

The thermal conductivity (k) of a gas is a function of its mass as well
as its temperature. Specifically, k (divided by the density of the gas) is
proportional to the mean free path with the proportionality coefficient a
general function of temperature, i.e.,

k

ρ
= F

(
T

T0

)√
2RTRλ.

Therefore, in the energy equation the conduction term divided by the den-
sity is O(λ). For a gas flow of the order of the mean free path (λ), which
is neglected in classical gas dynamics, its convection term is of the same
order as the conduction term and cannot be neglected. More specifically,
the order of magnitude for the convection term is

Convection ∝ O(ρV RT/L),

and the order of magnitude for the conduction term is

Conduction ∝ O(ρ(RT )3/2λ/L2),

where V and L are, respectively, the characteristic flow speed of the gas
and the length scale of variation of the temperature of the gas. Thus, the
two terms are comparable when

V ∝ O(
√

RTλ/L) ∝ O(Kn).

The question then is whether there are flows of such magnitude; however,
we have already seen in this section that both the thermal creep flow and
the nonlinear thermal stress flow are possible candidates. These flows are
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always present, even at extremely small Knudsen numbers, unless all sur-
faces in the device have uniform temperature and all temperature isocon-
tours are parallel. These two conditions are difficult to satisfy simultane-
ously except in the trivial case of two infinite plates at exactly uniform
temperatures with no end effects! Therefore, according to (Sone, 2002) the
heat-conduction equation is inappropriate for describing the temperature
field of a stationary gas in the continuum limit.

Sone termed this the “ghost effect” in the sense that something that does
not exist in the world of a gas in the continuum limit has a finite effect in
the molecular world. In (Sone, 2000) an example of the ghost effect is given
for a channel with small periodic temperature variation at the two walls.
No experiments in microscales have reported the ghost phenomenon, and it
is difficult to assess its practical significance; nevertheless, it is a significant
result from the fundamental principles point of view.

5.4 Heat Transfer in Poiseuille Microflows

It is possible to create Poiseuille flow in a microchannel using either a
pressure drop or a body force. Although the continuum descriptions for
both cases are similar, kinetic theory predictions and statistical simulations
for force-driven flows show that the Navier–Stokes solutions fail to predict
the important temperature minimum effects, even for Kn ≈ 0.01 flows with
M < 0.1 (Zheng et al., 2002). Therefore, we divide this section into two
parts, addressing the pressure- and force-driven flows separately.

5.4.1 Pressure-Driven Flows
Heat transfer in pressure-driven gas microflows has important engineering
applications. There have been several studies of microflows under constant
wall temperature and heat flux conditions. For example, thermally devel-
oping slip flows under constant heat flux have been presented for circu-
lar and rectangular microchannels in (Ameel et al., 1997; Yu and Ameel,
2002), respectively. A similar problem is studied at the entrance of a con-
duit by including the heat transfer within the Knudsen layers (Chen and
Xu, 2002). Thermally developing flows in circular tubes under constant
wall temperature have been studied in the slip flow regime (Larrodé et al.,
2000). The constant-temperature convective heat transfer under hydrody-
namically and thermally fully developed conditions is considered for vari-
ous geometries and flow regimes, such as slip flow in rectangular channels
(Tunc and Bayazitoglu, 2002) and flow in two-dimensional channels for
0 < Kn ≤ 10 (Simek and Hadjiconstantinou, 2002).

In this section, we neglect gas compressibility effects and present an
analytical treatment of heat transfer for pressure-driven flows. We consider
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the slip flow regime where the continuum description is valid. Such results
were first obtained by (Inman, 1964), who showed that reduced heat transfer
rates are obtained in the presence of slip flow. Specifically, Inman obtained
the following equation for the Nusselt number Nu for constant heat flux q
at the wall

1
Nu(Kn)

=
17
140

− 9 Kn +48Kn2

35(1 + 6Kn)2
+

γ

γ + 1
Kn
Pr

, (5.5)

where the Nusselt number is defined as

Nu ≡ qDH

k∆T
.

Here DH is the hydraulic diameter (DH = 2 × (2h) = 4h for a channel of
total width 2h), and ∆T is the temperature difference between the wall and
the bulk of the fluid. Also, Nu(Kn = 0) = 8.235 is the value corresponding
to no-slip conditions. The above equation is based on Maxwell’s first-order
slip condition and neglects the effect of thermal creep.

Next, we analyze the combined effects of convection and thermal creep.
The momentum equation subject to slip boundary conditions with a spec-
ified tangential temperature variation (see equation (2.19)) can be solved
analytically. The rarefaction effects on momentum transfer can be inves-
tigated either by analyzing the volumetric flowrate increase in a pressure-
driven channel or by analyzing the change in the skin friction coefficient
for a fixed volumetric flowrate, under an appropriately specified pressure
gradient. The nondimensional velocity distribution in a channel extending
from y = −h to y = h is obtained as

U(y/h) =
Re
2

∣∣∣∣∂p

∂x

∣∣∣∣ [1 −
( y

h

)2
+ 2

(
2 − σv

σv

)
Kn

1 + 1
2 Kn

]
+

3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
, (5.6)

where ∂Ts

∂x denotes the tangential temperature variation along the chan-
nel surface, and we defined Kn = λ/h, with h the half-channel width.
Given this parabolic velocity profile we obtain the coefficient of high-order
boundary condition from equation (2.39) to be b = − 1

2 . Correspondingly,
the volumetric flowrate Q̇ through the channel, in nondimensional form,
becomes

Q̇ =
4
3

+ 4
(

2 − σv

σv

)
Kn

1 + 1
2 Kn

+
3
π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
, (5.7)

since |∂P
∂x | = 2

Re . The leading-order variation in the volumetric flowrate
under fixed ∂p

∂x is linear in Kn due to velocity slip, and quadratic in Kn due
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to thermal creep effects (for fixed Eckert number). However, since Kn ∝
M/Re and Ec ∝ M2, then we see that the thermal creep term is linear in
Kn, i.e., proportional to Kn /M .

In order to maintain zero average flowrate in a channel under a prescribed
pressure gradient for an incompressible flow, the following condition should
be maintained:

∂p

∂x
=

9
2π

(γ−1)
γ Kn2 ∂Ts

∂x

Ec(1 + 3(2−σv

σv
) Kn
1+ 1

2 Kn)
. (5.8)

In this case, if
∂Ts

∂x
> 0,

the flow creeps from cold to hot along the channel surface, where a positive
pressure gradient creates back-flow in the middle of the channel (Kennard,
1938; Loeb, 1961). With regard to the effects of thermal creep on Fanning
friction coefficient of the flow for a fixed volumetric flowrate, the ratio of
the friction coefficient of a slip surface Cf to the friction coefficient Cf0 of
a no-slip surface is given by

Cf

Cf0

=
1 − 3

πQ̇
Kn2 Re

Ec
∂Ts

∂x

1 + 3 2−σv

σv
( Kn
1+ 1

2 Kn)
. (5.9)

It is seen that for fixed flowrate Q̇, Eckert number Ec, and Reynolds
number Re, the ratio of Fanning friction coefficients of slip flow to the
no-slip flow changes significantly by varying the Knudsen number Kn. For
flows without thermal creep effects (i.e., ∂Ts

∂x = 0.0), the extra terms in
the numerator of equation (5.9) are absent, and the formula is further
simplified; see more details in (Beskok and Karniadakis, 1992; Beskok and
Karniadakis, 1994).

The above analytical results can be used to validate computer programs
for microfluidic applications. Here we present computations obtained with
the spectral element program µFlow. Comparisons are performed up to
Kn = 0.15, and the results are presented in Figure 5.6. The dashed line and
the solid line show the drag reduction predicted by the first- and high-order
slip flow theory without thermal creep effects, respectively. The triangles
correspond to numerical predictions with high-order slip flow theory, and
the circles correspond to numerical predictions with high-order slip flow
theory including in this case the thermal creep effects (here Ec = 1.0,
Re = 1.0, and ∂Ts

∂x = 1.0). The differences between the analytical and
numerical results are negligible.

The aforementioned simplified analysis can also be used to explain the
drag reduction observed in the experiments reported in (Pfahler et al.,
1991). For comparison, the experimental results are also plotted in Figure
5.6. The ratio predicted from equation (5.9) for Kn = 0.088 corresponding
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FIGURE 5.6. Ratio of Fanning friction coefficients of slip flow to no-slip flow in a
pressure-driven channel. (Parameters for thermal creep contribution are Ec = 1.0,
Re = 1.0, and ∂Ts

∂x
= 1.)

to the helium flow (case JP9 in (Pfahler et al., 1991)) is 0.79 in reasonable
agreement with the measured value 0.8 to 0.85. The nitrogen flow gives a
slightly greater drag reduction of about 0.86 compared to the theoretical
predictions of 0.9 for Kn = 0.04. Our predictions assume accommodation
coefficient σv = 1 and that compressibility effects in the channels are ne-
glected. Thus, the Knudsen number variation in the channels due to com-
pressibility effects is not taken into account, and the Knudsen number is
calculated by taking the arithmetic average of the inlet and outlet Knudsen
numbers of the microchannel. Furthermore, isothermal flow conditions are
assumed, and thermal creep effects are neglected. For channel thicknesses
significantly smaller, corresponding to Kn > 0.1, the experimental results
show a strong dependence of the ratio of drag coefficients on the Reynolds
number, which is not predicted by the above analysis.

Regarding heat exchange in microdomains, it is interesting to note that
the viscous heating terms are quite significant; see also (Hadjiconstantinou,
2003b), for a discussion on shear work on solid boundaries for Kn ≤ 3. For
example, if the reference temperature T0 is taken to be the room tem-
perature and the specified temperature difference of the domain ∆T is
small, the viscous heating effects become nonnegligible for M ≥ 0.05 (see
equation (2.22)). An analytical solution of general heat convection prob-
lem for steady and thermally fully developed planar microchannel flows
under specified uniform heat flux (q̇) on the boundaries can be obtained by
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FIGURE 5.7. Variation of tangential temperature gradient (∂Ts
∂x

) along the sur-
face of a pressure-driven channel as a function of Mach number for different levels
of heat fluxes (q̇) (Re = 1.0, ∆T = 1K, and T0 = 300 K).

decomposing the temperature profile into two parts,

T (x, y) =
∂Ts

∂x
x + θ(y), (5.10)

where ∂Ts

∂x x and θ(y) show the axial and cross-flow temperature variations,
respectively. The coordinates x and y are also nondimensionalized here
with the reference length scale. A global energy balance in the domain with
an insulated top surface and a specified constant heat flux on the bottom
surface gives the following relation for the tangential temperature gradient
along the channel:

∂Ts

∂x
=

1
RePrQ̇

(
q̇ +

8
3
EcPr

)
. (5.11)

The corresponding cross-flow temperature distribution in the channel is

θ(y) = RePr
∂Ts

∂x

(
B

y2

2
− y4

12

)
− EcPr

y4

3
+ Cy + D, (5.12)

where
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M=0.000
M=0.007
M=0.034
M=0.067
M=0.088
M=0.101

FIGURE 5.8. Variation of temperature profiles in a pressure-driven channel flow
for continuum and rarefied flows, with specified heat flux on the bottom surface
(Y = −1), as a function of Mach number (Re = 1.0 and Pr = 0.7).

B = 1 + 2
(

2 − σv
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)
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1 + 1
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(γ − 1)
γ

Kn2 Re
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,

C = RePr
∂Ts

∂x

(
1
3

− B

)
+

4
3
EcPr,

D = θ0 − 2γ

γ + 1
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Pr

q̇ +
5
3
EcPr − RePr

∂Ts

∂x

(
3
2
B − 5

2

)
,

with θ0 the reference temperature. The modifications to the coefficients B
and D due to Kn shows the thermal creep, velocity slip, and temperature
jump effects. The continuum solution is recovered as the rarefaction effects
diminish (i.e., Kn → 0 ).

A quadratic equation for ∂Ts

∂x can be obtained by combining equations
(5.7) and (5.11). The solution for ∂Ts

∂x for specified heat fluxes is shown in
Figure 5.7 as a function of Mach number. Equation (2.22) is used to specify
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the Eckert number variation for both the continuum and the rarefied flow
cases. The Knudsen number variations are specified by equation (2.21). It
is seen that the heat flux required to maintain ∂Ts

∂x = 0 is the same for
both continuum and rarefied flow curves. The physical significance of this
result is that for a specified Mach number there is only a single value of
the heat flux required to compensate the viscous heating effects (see equa-
tion (5.11)). Another significant result is the reduction in the magnitude
of ∂Ts

∂x in rarefied flows, which implies that microchannels sustain smaller
tangential temperature gradients compared to the large-scale channels. Ex-
amining equation (5.7) and Figure 5.7, we see that the volumetric flowrate
of a heated microchannel increases due to thermal creep effects. However,
cooled microchannels allow less volumetric flowrate compared to the con-
tinuum case. If the rarefaction effects are increased further, the viscous
heating effects will dominate. Under this condition ∂Ts

∂x may become pos-
itive, which will result in increase of the volumetric flowrate beyond the
predictions of continuum theory even for cooled channels.

Temperature profiles under different heat flux conditions are shown in
Figures 5.8 and 5.9. The temperature jump diminishes if both surfaces of
the channel are insulated (see Figure 5.9, top). In this case, the max-
imum temperature occurs near the walls, where shear stresses are more
dominant and the tangential temperature variation becomes positive (see
Figure 5.7). This suggests significant changes in the volumetric flowrate
of the microchannel, which is the main reason for the differences in the
temperature profiles of two cases. Thermal creep in a microchannel can be
avoided if the channel is carefully cooled at a cooling rate of q̇ = − 8

3PrEc
(see equation (5.11)); this results in constant temperature along the chan-
nel wall. The temperature distribution for a microchannel, without thermal
creep effects, is also given in Figure 5.9 (bottom). This result suggests that
the temperature of the insulated surface will be greater than its counterpart
modeled by the continuum theory.

The analytical results presented for pressure-driven and shear-driven
channels (Section 5.5) are also verified with numerical simulations. Since
the temperature variation is in the form of a fourth-order polynomial, con-
vergence of the numerical scheme to the exact solution can be obtained
with very coarse discretizations. Typically, fourth-order polynomial expan-
sion in µFlow simulation is sufficient to resolve the spatial variations; see
Section 14.1.

Remark: The analytical results presented in this section are based on the
incompressibility approximation. Therefore, they are valid for small tem-
perature and pressure variations in the microchannels. Small temperature
variations can be a good approximation, but it has been shown experi-
mentally that the pressure drop in microchannels could be large. In the
experiments of (Pfahler et al., 1991), a total pressure drop of about one
order of magnitude is reported. Even though the inlet Mach numbers of
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FIGURE 5.9. Temperature profiles in a pressure-driven channel flow for contin-
uum and rarefied flows as a function of Mach number. The top row shows the
insulated channel, and the bottom row shows specified heat flux that counter-
balances the viscous heating effects, so that overall, ∂Ts/∂x = 0, and therefore
there are no thermal creep effects; Re = 1.0 and Pr = 0.7.

the flows are very small, exit Mach numbers up to M = 0.70 have been
observed. For such situations, the flow in the microchannels cannot be as-
sumed incompressible, and thus the above analysis will not be strictly valid.
In general, it is theoretically inconsistent (Aoki, 2001) to use the incom-
pressible flow model with slip boundary conditions caused by rarefaction
but the analysis here is meant to highlight approximately the heat transfer
effects.

5.4.2 Force-Driven Flows
It is possible to drive channel flows using a body force. The force- and
pressure-driven flows are hydrodynamically similar. In either case, the pres-
sure gradient or the force field will be balanced by the viscous shear on the
channel walls, and for compressible flows part of the force will be used to
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accelerate the fluid in the streamwise direction. However, the two driving
forces are very different at the microscopic level. The external force accel-
erates individual particles, while the pressure gradient induces a collective
flow (Zheng et al., 2002). The energy equation for these two cases also shows
some differences. For example, the pressure creates a cooling effect by flow
expansion (the first term on the right-hand side in equation (2.7)), while
the body force affects the kinetic energy of the sytstem (Panton, 1984).
For pressure-driven compressible flows the expansion cooling negates the
viscous heating (last term in equation (2.7)), while viscous heating may
play a crucial role in force-driven flows.

(Zheng et al., 2002) performed extensive DSMC and Navier–Stokes stud-
ies of pressure- and force-driven Poiseuille flows in the slip flow regime,
and compared these with each other and with the kinetic theory predic-
tions. They have shown that the compressible Navier–Stokes equations do
not predict the correct flow physics for the force-driven flow case even for
Kn = 0.01 flows. Specifically, the Navier–Stokes solutions failed to predict
the central minimum in the temperature profile and the nonconstant pres-
sure distribution. In Figure 5.10 we present the temperature distribution
predicted across the channel using the DSMC and Navier–Stokes solutions.
The temperature distribution predicted by the Navier-Stokes solution gives
a temperature maximum in the center of the channel, while the DSMC and
the kinetic theory predicts two off-center maxima, with a local temperature
minimum at the center of the channel. The inability of the Navier–Stokes
equations to predict this behavior indicates a global failure, which can-
not be corrected by modifications of the transport coefficients, equation
of state, or the slip/jump boundary conditions. (Zheng et al., 2002) have
shown that such discrepancies between the DSMC and Navier-Stokes pre-
dictions do not exist for the pressure-driven Poiseuille flow.

The temperature minima can also be predicted using the entropic lattice
Boltzmann method (LBM), specifically the so-called minimal kinetic model;
see Section 15.5. In this nonisorthermal case, the entropic LBM does a good
job in capturing the correct temperature variation. Here we present results
of (Ansumali et al., 2003), who performed an extensive study of this flow
using the 16-velocity minimal kinetic model. The Knudsen number was
varied from Kn = 0.001 to Kn = 0.5, while the Mach number was varied
from Ma = 0.01 to Ma = 0.3. Some typical simulation results are presented
in Figure 5.4.2. Similar to the DSMC results of (Zheng et al., 2002), the
minimal kinetic model predicts the temperature minimum. Some important
conclusions, which we can draw from the results of (Ansumali et al., 2003)
in Figure 5.4.2 are:

• Even at very low Mach numbers, where the flow is often assumed to
be isothermal, the temperature variations can be nonnegligible. For
example, the simulation results predict that at Ma = 0.12,Kn = 0.2,
the temperature variation can be as large as 7 K within a distance of
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FIGURE 5.10. Temperature profile across a microchannel for the force-driven
Poiseuille flow. The curve with the error bars is the DSMC, while the solid line
shows the Navier–Stokes results. (Courtesy of A.L. Garcia.)

a few microns.

• The amplitude of the deviation from the isothermal condition is a
function of the Knudsen and the Mach number. The deviation in-
creases as the Knudsen or the Mach number increases.

• At a fixed Knudsen number, changing the Mach number does not
lead to any qualitative change in the temperature profile.

• At a fixed Mach number the influence of the increase of the Knudsen
number is to increase the depth of temperature minimum.

• At a fixed Mach number, as the Knudsen number is increased, the
(two symmetric) maxima in the temperature profile move near to the
wall.

5.5 Heat Transfer in Couette Microflows

In this section a two-dimensional channel extending from y = 0 to y = h is
considered. The flow is driven by moving the top wall of the channel with
a specified velocity U0. Thus, this case can be a prototype for a microrotor.
Assuming a two-dimensional fully developed flow, the Navier–Stokes equa-
tions can be simplified to give linear velocity distribution in the channel.
This can be written in nondimensional form

u

U0
= U(y/h) =

y/h + 2−σv

σv
Kn

1 + 2 2−σv

σv
Kn

+
3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
. (5.13)
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FIGURE 5.11. Temperature profile across the channel as a function of the Knud-
sen and the Mach numbers. In the figure, the Knudsen number increases going
from left to the right, while the Mach number increases going from the bottom to
the top. The dimension of the simulated channel was L/W = 20. The Knudsen
and Mach numbers (Kn, M) used in the simulations were: Plot F1: (0.001, 0.01),
Plot F2: (0.001, 0.02), Plot F3: (0.001, 0.05), Plot F4: (0.20, 0.01), Plot F5:
(0.20, 0.05), Plot F6: (0.20, 0.12), Plot F7: (0.45, 0.01), Plot F8: (0.45, 0.04), Plot
F9: (0.45, 0.17), respectively. (Courtesy of I. Karlin and S. Ansumali.)

The corresponding volumetric flowrate per channel width is

Q̇ =
1
2

+
3
2π

(γ − 1)
γ

Kn2 Re
Ec

∂Ts

∂x
. (5.14)

It is seen that thermal creep effects result in change of the flowrate of the
channel. The ratio of friction coefficients of the shear-driven slip flow to a
continuum flow is given by

Cf

Cf0

=
1

1 + 2 2−σv

σv
Kn

. (5.15)

The above equation is obtained for constant mass flowrate in the channel. If
thermal creep effects are considered, the driving velocity Uo of the channel
must be modified to keep the volumetric flowrate constant. Therefore, the
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FIGURE 5.12. Variation of tangential temperature gradient (∂Ts
∂x

) along the sur-
face of a shear-driven channel as a function of Mach number for different levels of
heat fluxes (q̇). Dashed line: continuum; solid line: rarefied. (Re = 1.0, ∆T = 1K,
and T0 = 300 K).

thermal creep effects are not included in the derivation of equation (5.15).
Heat convection analysis for a steady and thermally fully developed

shear-driven microchannel is obtained by decomposing the temperature
profile into two parts, as given in equation (5.10). The channel is assumed
to have an insulated top surface and a bottom surface with a specified
heat flux (q̇). With this decomposition, the temperature variation across
the channel becomes a third-order polynomial given by

θ(y) =
A

6
y3 +

B

2
y2 −

(
A

2
+ B

)
y + C, (5.16)

where

A =
RePr∂Ts

∂x

1 + 2Kn
,

B =
RePrKn ∂Ts

∂x

1 + 2Kn
+

3
2∂Ts

∂x

(γ − 1)
γ

Kn2 Re2Pr
Ec

(
∂Ts

∂x

)2

− EcPr
(1 + 2Kn)2

,

C = θ0 − 2γ

γ + 1
Kn
Pr

q̇,

and
∂Ts

∂x
=

2
RePrQ̇

[
q̇ +

EcPr
(1 + 2Kn)2

]
. (5.17)



5.5 Heat Transfer in Couette Microflows 191

FIGURE 5.13. Variation of temperature profiles in a shear-driven channel flow
for continuum and rarefied flows, with specified heat flux at the bottom surface,
as a function of Mach number. Y = 0 corresponds to a stationary wall, and Y = 1
corresponds to a moving wall (Re = 1.0 and Pr = 0.7).

A quadratic equation for ∂Ts

∂x can be obtained by combining equations
(5.14) and (5.17). The solution for ∂Ts

∂x for specified heat fluxes is shown in
Figure 5.12 as a function of Knudsen number. Equation (2.22) is used to
specify the Eckert number variation for both the continuum and the rar-
efied cases. The Knudsen number variations are also specified by equation
(2.21). It is seen that the heat flux required to maintain ∂Ts

∂x = 0 for a spec-
ified Mach number is smaller in microchannels compared to the continuum
case. The viscous heating effects are more dominant in the continuum case
compared to microscales; see also (Wendl and Agarwal, 2002). This leads
to different results for cooled and heated channels with respect to thermal
creep effects.

Variation of temperature profiles across the channel is given in Figure
5.13 as a function of Mach number. Both the continuum and the rarefied
flow cases are presented. Here, the nondimensional heat flux of q̇ = ±1
is specified at the bottom surface of the channel. The temperature jump
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FIGURE 5.14. Variation of temperature profiles in a shear-driven channel flow
for continuum and rarefied flows. The top row shows insulated channels, and the
bottom row shows cooled channels with equation (5.18) such that there are no
thermal creep effects (i.e., ∂Ts

∂x
= 0). Re = 1.0 and Pr = 0.7.

effects are clearly seen in the rarefied flow case. In a microchannel the
temperature of the insulated surface is less than that of the continuum
predictions for heated channels, while the opposite is true for cooled chan-
nels. The effects of thermal creep on volumetric flowrate of the channel
depends on the direction that the flow is sheared by the top surface, and
whether the channel is cooled or heated. As long as the driving velocity U0
is in the same direction with increasing ∂Ts

∂x , the volumetric flowrate of the
channel will increase due to the thermal creep effects.

The temperature jump diminishes if both surfaces of the channel are
insulated (see Figure 5.14, top). For this case, the viscous heating effect
in a microchannel is less than the continuum prediction. Therefore, the
temperature differences of top and bottom surfaces are relatively small in
microchannels compared to the continuum case. It is also possible to specify
heat flux on the boundaries that will cancel the viscous heating effects. This
case gives zero tangential temperature gradient on the microchannel walls.
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The heat flux necessary to maintain this condition is

q̇ = − EcPr
(1 + 2Kn)2

. (5.18)

The temperature variation for a microchannel without thermal creep ef-
fects is also given in Figure 5.14 (bottom). This result suggests that the
temperature of the insulated surface will be smaller than its counterpart
modeled by the continuum theory.

Remark: The results presented in this section assume small temperature
and pressure fluctuations compared to the reference pressure and temper-
ature. However, planar shear-driven channels have zero pressure gradient.
Thus, the only limitation on the incompressibility assumption is small tem-
perature fluctuations, which is satisfied, since ∆T ≈ O(1) in this study.



6
Prototype Applications of Gas Flows

In this chapter we consider rarefied gas flows encountered in applications
other than simple microchannels. In the first section, we consider the lu-
brication theory, focusing mainly on the slider bearing and squeezed film
problems. The slider bearing problem is relevant for magnetic storage units,
where the head levitates about 50 nm above the media, corresponding to
transition flow regime. The squeezed film flows are important for design
of micromechanical accelerometers, where the gas is used as the damp-
ing medium, and the desired frequency response is obtained by controlling
carefully the gas pressure.

In the second and third sections, we consider separated flows in inter-
nal and external geometries in the slip flow regime. To this end, we em-
ploy continuum modeling in conjunction with slip effects. The objective
of this study is to investigate the validity of continuum-based slip models
under flow separation. Such conditions are encountered in typical compo-
nents of microsystems such as microchannels and microprobes, as well as
in low-pressure applications, e.g., flow inside instruments operating at high
altitude.

In the fourth section, we present theoretical and numerical results for
Stokes flow past a sphere. We review the classical Stokes drag for external
flows, and include rarefaction effects in the slip flow regime. We present drag
formulas for the pressure-driven flow past a stationary sphere confined in
a pipe. We verify these with numerical simulations in the slip flow regime,
which shows drastic variations in the drag coefficient as a function of the
Knudsen number, and the cylinder/sphere blocking ratio. The continuum
flow (Kn → 0) results of this section are equally applicable to liquid flow
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past solid, electrically neutral spheres.
In the fifth part we summarize recent findings on gas flows through mi-

crofilters. Such devices are utilized for capturing and detecting airborne
biological and chemical particles as well as for environmental monitoring
applications.

In the last section, we consider high-speed rarefied flows in micronozzles,
which are used for controlling the motion of microsatellites and nanosatel-
lites. Nozzles with a throat as small as 20 µm have been fabricated with
outlet Mach number exceeding four!

6.1 Gas Damping and Dynamic Response of
Microsystems

The design of some MEMS devices requires good understanding of dynamic
response characteristics of the system under various actuation conditions.
This response can be analyzed by different methods, ranging from the most
simplistic mass–spring–damper lumped analysis to the coupled interaction
models, which resolve both the geometric and physical complexity of the
problem (see Section 18.2). Since most of the MEMS devices work under
ambient conditions, the gas behavior can have significant effects in the
dynamic response of these systems. Modeling of gas damping effects is
difficult for the following reasons:

• Geometric complexity of MEMS devices,

• Compressibility effects resulting in complicated frequency response,
and

• Onset of rarefaction effects in micron- and submicron-scale clear-
ances.

An example demonstrating the geometric complexity of MEMS is the Dig-
ital Micromirror Device of Texas Instruments (DMD) shown in Figure 6.1.
The DMD is a MEMS device used in Digital Light Processing applications,
and it consists of half a million (848×600) to over one million (1280×1024)
micromirror pixels. The top left figure shows an SEM picture of nine mir-
rors, while the underlying hinge structure hidden below the mirrors is shown
in the top right plot. The SEM images of the mirror substructure for several
pixels and a close-up view of a single mirror substructure are presented in
the bottom left and right figures, respectively. The DMD has 16µm×16µm
pixel geometry with 1µm pixel separation. Each mirror oscillates ±10 de-
grees with a response time of 15 µs.

The DMD is packaged in a mostly nitrogen environment under ambient
conditions. The presence of gas affects the device performance significantly.
A typical response of a row of 840 19 µm size mirror array subject to a
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FIGURE 6.1. Texas Instruments Digital Micromirror Device. The upper left view
shows nine mirrors, while the upper right view shows the central mirror removed
to expose the underlying structure. The lower right shows a close-up view of the
mirror substructure, and the lower left view shows several pixels with the mirror
removed. (Courtesy of Texas Instruments.)

step pulse under various air pressures is shown in Figure 6.2. Operation
in atmospheric pressure results in the desired fast optical response, while
reductions in pressure correspond to oscillatory response with slower time
decay. The decay rate is an indication of the gas damping effects, which
are reduced with decreased pressure. Since the DMD dimensions are fixed
and the reference pressure is reduced, the lower pressure data correspond
to increased Knudsen regimes, indicating a strong rarefaction effect on the
dynamic response of the DMD mirror.

Similarly, the micromotors rotating on a substrate or microcomb drives
(discussed in Section 1.1) oscillating with very high frequencies also expe-
rience gas damping effects. Although the primary motion in such devices
is lateral, depending on the allowable degrees of freedom, up and down
motion and tilting in the pitch and yaw angles are also possible (Freeman
et al., 1998). Also, MEMS torsion mirrors with high frequency pitch oscil-
lations experience significant squeezed film effects (Pan et al., 1998). In this
section, we will address the fluid-mechanical aspects of various types of mo-
tion experienced by moving MEMS components, which can be summarized
as one or a combination of the following:

1. Lateral motion between two surfaces: oscillatory Couette flow (see
Section 3.3).

2. Normal oscillations between two surfaces: squeezed film.
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FIGURE 6.2. Dynamic response of the DMD mirrors subject to a step pulse
under various air pressures. (The data were obtained by Dr. Larry Hornbeck
(1988); Courtesy of Texas Instruments.)

3. Lateral motion with slight inclination: slider bearing.

4. Pitch-angle oscillatory motion between two plates: squeezed film.

All of these situations, with the exception of the first case, can be analyzed
using the Reynolds equation for thin-film lubrication presented below.

The first case corresponds to fluid motion between oscillating parallel
plates. Detailed analysis of this motion and the associated damping char-
acteristics in the entire Knudsen regime were presented in Section 3.3.
In oscillatory Couette flows, the lateral plate motion does not generate
streamwise pressure variations. Hence, this case cannot be described by the
Reynolds equation. In contrast to the squeezed film and the slider bear-
ing problems, there will be no lift. We identify this case as the oscillatory
Couette flow, which is a variation of the classical Stokes second problem
(Batchelor, 1998) (flow over a laterally oscillating surface) with inclusion
of a wall over a thin fluid gap of ho. The lateral vibrations of comb-drives
(Section 3.3) and the corresponding viscous drag (damping) can be approx-
imately analyzed using the oscillatory Couette flow model. In its simplest
form, the governing equation is reduced to

∂u

∂t
= ν

∂2u

∂y2 , (6.1)

where ν is the kinematic viscosity, and u is the streamwise velocity. For
oscillatory flows with a specified frequency ωo and corresponding boundary
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conditions u = Uo exp (iω0t) and u = 0 on the oscillating and stationary
surfaces, respectively, an analytic solution of the above equation can be
found in (Panton, 1984; Sherman, 1990). The results can be summarized
as a function of the normalized penetration distance given by

Y =
y√
ν/ω

.

If the normalized penetration distance between the two walls is Y > 7,
then the plates are sufficiently away from each other, and thus they do not
interact. Equation (6.1) can also be solved using various slip conditions.
A study of damping models for laterally moving microstructures with gas
rarefaction effects can be found in Section 3.3 and in (Veijola, 2000; Park
et al., 2004).

6.1.1 Reynolds Equation
Background material for thin-film lubrication theory can be found in (Sz-
eri, 1998). For squeezed film or slider-type applications, the Navier–Stokes
equations are reduced to the Reynolds equation (Sherman, 1990):

∇ ·
[(

ρh3

µ

)
∇p

]
= 12

∂(ρh)
∂t

+ 6∇ · (ρhUo), (6.2)

where ρ and p are the local gas density and pressure, respectively. The local
film thickness is h, µ is the dynamic viscosity, t is time, and Uo is the lateral
velocity of the moving plate. The first and second terms on the right-hand
side correspond to the normal and lateral plate motions, respectively.

Derivation of the Reynolds Equation

The Reynolds equation is derived starting from the Navier–Stokes equa-
tions presented in Chapter 2. For simplicity, we analyze two plates with a
small gap between them. The upper plate is placed at a slight angle with
respect to the lower plate, while the latter is moving from left to right
with velocity Uo, as shown in Figure 6.3. For simplicity, we assume that
the plate length L is much larger than the plate separation distance ho
and that the angle of inclination α is small. We also assume that the plate
width W in the spanwise direction is larger than ho, and that the plate
motion is solely in the x direction, as shown in Figure 6.3. Therefore, the
flow is two-dimensional in the (x, y) plane. Details of the derivation of the
Reynolds equation can be found in (Panton, 1984). Here, we briefly outline
this derivation and discuss the underlying assumptions and limitations.

The ratio of the inertial forces to the viscous forces in the Navier–Stokes
equations is given by

ρu∂u/∂x

µ∂2u/∂y2 ≈ ρU2
o/L

µUo/h2
o

=
ρUoL

µ
·
(

ho

L

)2

= R∗. (6.3)
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FIGURE 6.3. A schematic view for the slider bearing problem.

Therefore, the inertial forces can be neglected with respect to the viscous
forces if R∗ ≡ Re · (ho

L

)2 � 1. In most MEMS applications, due to the very
small Reynolds number (Re = ρUoL

µ ) of the flow and the small ho/L ratio,
this condition is satisfied. A comparison of the streamwise and the cross-
flow momentum equations reveals that pressure variation across the channel
is very small compared to the pressure variation along the streamwise di-
rection. Similarly, the cross-flow velocity (v) is negligible compared to the
streamwise velocity component (u). Hence, the leading-order steady-state
solution is determined from the streamwise momentum equation simplified
in the following form:

dp

dx
= µ

∂2u

∂y2 . (6.4)

This equation is identical to the fully developed channel flow equation.
However, in the slider problem, equation (6.4) is an approximation valid
for R∗ � 1. Here, the flow is not fully developed but varies slowly in the
streamwise direction due to gradual changes in the channel area. Since

∂u

∂x

/
∂u

∂y
≈ ho

L
� 1,

the streamwise velocity is a function of y only to the leading-order approx-
imation. The velocity distribution u(y) is obtained by integrating equation
(6.4) using either the no-slip or slip boundary conditions. If temperature
variations in the system are neglected, the density becomes a function of
pressure, which varies mainly in the streamwise direction. Using the ve-
locity distribution and the local density (ρ), the following equation for the
mass flowrate (per channel width) is obtained for no-slip flows:

Ṁ =
1
2
Uoρh − h3ρ

12µ

dp

dx
. (6.5)

Since the flow is assumed isothermal, the density can be written as a func-
tion of the pressure using the equation of state ρ = p/RT . In equation
(6.5), the left-hand side is constant, but the right-hand side is a function
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of x. Furthermore, the mass flowrate is a function of the pressure gradient,
which is unknown. Taking the gradient of (6.5), we obtain the Reynolds
equation for one-dimensional steady flow, i.e.,

∂

∂x

(
h3p

dp

dx

)
= 6µ

∂

∂x
(phUo) . (6.6)

Since the spatial variation of the channel height (h) is known, the pressure
is the only unknown in this equation. The boundary conditions correspond
to ambient pressure at the two ends of the slider bearing geometry, shown in
Figure 6.3. The terms in parentheses on the left and right of equation (6.6)
are proportional to the mass flowrate per channel width (divided by RT )
in plane Poiseuille and Couette flows, respectively. Furthermore, in this
form the Reynolds equation neglects the spatial variations across the slider
bearing. Hence, a two-dimensional problem is reduced to a one-dimensional
equation for pressure.

The Reynolds equation can be nondimensionalized by normalizing the
pressure using the ambient pressure po, and the length scales in the x and
y directions with channel lengths L and ho, respectively. This results in
(Alexander et al., 1994)

∂

∂X

(
H3P

dP

dX

)
= Λ

∂

∂X
(PH) , (6.7)

where X = x/L, H = h/ho, P = p/po and

Λ =
6µUoL

poh2
o

is the bearing number.
The Reynolds equation gives good results for low-speed flows. For high-

speed flows, viscous heating may affect the isothermal flow approximation,
and thus some deviations from the predictions of the Reynolds equation are
expected. Due to the small length scales of MEMS devices, typical surface
speeds correspond to low subsonic flow conditions, and therefore viscous
dissipation is negligible. However, very high angular speeds present in cer-
tain MEMS devices can lead to near-sonic conditions. We conclude then
that the analysis presented here will be invalid for cases with significant
heat transfer and viscous dissipation effects.

Reynolds Equation in the Slip Flow Regime

For gas microflows the rarefaction effects can be incorporated into the
Reynolds equation using the first-order velocity slip condition. The fol-
lowing equation has been obtained (Burgdorfer, 1959):

∂

∂X

([
1 + 6

2 − σv

σv
Kn
]

H3P
dP

dX

)
= Λ

∂

∂X
(PH) , (6.8)
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where Kn = λ/h is the local Knudsen number. This relation is valid strictly
in the slip flow regime (Kn < 0.1). Since for air, λair � 65 nm under
ambient conditions, a gap height of ho = 0.6µm is the smallest clearance
for which equation (6.8) can be used. Although this is a reasonably small
clearance for many MEMS applications, it does not cover all applications.
For example, the distance between the read/write head and the media in
current computer hard disk drives is of order 50 nm. The design goal of
the next generation hard disk drives is to reach a read/write density of
100Gbit/in2, which requires 5 to 10 nm separation distance between the
head and the media. Hence, the current hard drives already operate in the
transition flow regime, while the next-generation drives will push this limit
toward the free-molecular flow regime. Therefore, successful design of such
microfluidic systems requires development of lubrication equations valid in
a wide range of Knudsen number.

Reynolds Equation in the Transition Flow Regime

Gas lubrication effects had been a primary interest for scientists long before
the advent of the MEMS technology. For example, the work of (Burgdorfer,
1959) was motivated by lubrication characteristics in the slip flow regime.
Similarly, (Hsia and Domoto, 1983) performed a series of experiments for
0.04 ≤ Kn ≤ 2.51 using different gases in order to change the mean free
path, with bearing gaps of 0.075µm ≤ ho ≤ 1.6µm. These authors also de-
rived a second-order slip boundary condition given in Table 2.2, and com-
pared experimental results with the predictions of the Reynolds equation
employing their second-order slip model for a Winchester type slider mech-
anism. In the analysis of Hsia and Domoto, the second-order slip model
based on the continuum approximation was applied at the limit of the
transition flow regime. Although a reasonable match between the numer-
ical and experimental results for integral quantities like the bearing load
capacity was obtained, deviations in the squeezed film damping character-
istics between the slip and the transition flow regimes exist. For example,
the streamwise momentum equation (6.4) is based on the continuum-based
constitutive models of viscous stress tensor. This is the starting point of
the (Navier–Stokes-based) Reynolds equation, and it should be modified in
the transition flow regime, using the viscous stress tensor of the Burnett
equations given in equation (2.25). An alternative approach is to utilize
Grad’s 13-moment equations (Grad, 1949), as demonstrated in (Chan and
Sun, 2003).

The squeezed film problem can be thought of as a combination of pressure-
driven and shear-driven flows. Therefore, one can foresee the differences
between the Navier–Stokes and Burnett level analyses by separately ana-
lyzing the pressure- and shear-driven flow conditions. In Section 4.2.1 we
presented the asymptotic analysis of pressure-driven flows in large aspect
ratio channels under isothermal conditions as a function of ε = ho/L → 0.
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This resulted in a modified streamwise momentum equation, which could
be reduced to the Navier–Stokes level only for low subsonic (M � 1)
isothermal flows in large aspect ratio channels. One important deviation
here is in the cross-flow momentum equation, where we have shown that
the pressure variation in this direction is balanced by the viscous normal
stresses of the Burnett equations (see Section 4.2.1). Since the (Navier–
Stokes-based) Reynolds equation neglects the pressure variations in the
cross-flow direction, we may expect some deviations between the Burnett-
and Navier–Stokes-based models. However, these deviations are propor-
tional to the Mach number in equation (4.17b), and thus they can be
neglected for most low Mach number applications.

The linear Couette flow in the transition flow regime has been inves-
tigated in (Schamberg, 1947), using the Burnett equations. Schamberg
showed that the streamwise momentum equation can be reduced to the
Navier–Stokes level, resulting in linear velocity variation across the chan-
nel under negligible heat transfer and compressibility effects (Schamberg,
1947). However, the velocity distribution must be subject to a second-order
slip condition (see also Section 3.2). Recalling that

• the flowrate of linear Couette flow is independent of the Knudsen
number,

we can conclude that for low-speed isothermal flows in long channels,
the Reynolds equation with second-order slip corrections is similar to the
Reynolds equation derived using the Burnett equations. Hence, the agree-
ment of experimental and numerical results presented by Hsia and Domoto
in integral quantities can be explained. Fukui and Kaneko (1988) have
shown that the second-order (slip based) Reynolds equation is valid for
Kn ≤ 1. This is expected, since the Burnett equations and the correspond-
ing second-order slip models are derived via a second-order Chapman–
Enskog expansion, which is a perturbation expansion in Kn, and it is valid
for Kn < 1.

Generalized Reynolds Equation

A generalized gas film lubrication analysis can be obtained using the Boltz-
mann equation, which is valid in the entire Knudsen regime. Based on this
idea, Fukui and Kaneko analyzed gas film lubrication using the linearized
Boltzmann equations (Fukui and Kaneko, 1988; Fukui and Kaneko, 1990),
and presented their results as a function of the local inverse Knudsen num-
ber

D =
√

π

2Kn
= DoPH, (6.9)

where Do = poho/(µ
√

2RTo) is the characteristic inverse Knudsen number
defined using the minimum film thickness (ho) and the ambient pressure
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(po). The primary assumptions in linearizing the Boltzmann equations are
(see also Section 15.4):

1. Small flow velocities and thermal fluctuations; hence, local isotropic
equilibrium conditions are assumed.

2. Small lubrication film thickness and small cross-flow velocity compo-
nents.

Based on these two assumptions, the following nondimensional Reynolds
equation is obtained (Fukui and Kaneko, 1988):

d

dX

[(
QP (DoPH)

dP

dX
− QT (DoPH)P

dTw

dX

)
PH3 − ΛPH

]
= 0, (6.10)

where QP (DoPH) and QT (DoPH) show the relative volumetric flowrate of
pressure-driven and thermal creep channel flows, normalized by the no-slip
Poiseuille flowrate. The last term in equation (6.10) corresponds to the lin-
ear Couette flow volumetric flowrate, which is independent of the Knudsen
number. The thermal creep flow QT (DoPH) is present under tangential
temperature gradients, as shown in Section 5.1. The dTw

dX term in equa-
tion (6.10) is the nondimensional temperature variation along the surface.
Since the thermal creep effects are present only under surface temperature
gradients, the term QT (DoPH) is zero for isothermal surfaces.

DSMC studies of slider bearing flows were presented in (Alexander et al.,
1994). For low subsonic slider motion, good agreement between the DSMC
and the predictions of equation (6.10) is shown. One peculiar difference
between the results of the Reynolds equation and DSMC is in the load-
carrying capacity of the slider bearing for high-speed flows. For near-sonic
conditions, calculation of pressure on the slider surface using the ideal gas
law agreed well with the Reynolds-equation-based calculations. However,
the load capacity calculated from the time-averaged change in the mo-
mentum of particles striking the wall predicted 20% lower load capacity.
This difference was attributed to the increased nonequilibrium effects for
high-speed rarefied gas flows (Alexander et al., 1994).

The Reynolds equation derived from the linearized Boltzmann equation
has a striking resemblance to the Navier–Stokes-based Reynolds model.
Both models utilize the mass flowrate of linear Poiseuille and Couette flows
(divided by RT ). This enables a generalized Reynolds equation, with smooth
transition between the continuum (Kn → 0) and the free-molecular flow
(Kn → ∞) limits. Fukui and Kaneko obtained a uniformly valid Reynolds
equation by employing the Boltzmann solutions for QP and QT for different
Knudsen number regimes (Fukui and Kaneko, 1988; Fukui and Kaneko,
1990). A uniform approximation of QP is given in (Alexander et al., 1994):

QP (Kn) ≈ 1 +
3
√

πA

D
+

6√
πD

log
(

1 +
B

√
π

2D

)
, (6.11)
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where A = 1.318889 and B = 0.387361. The above equation is asymptot-
ically correct in the no-slip and free-molecular flow limits. However, the
model looses its accuracy in the transition flow regime with nominal error
of ±5%. Also, equation (6.11) does not include the accommodation coeffi-
cient dependence on the flowrate. Fukui and Kaneko developed a database
using analytical and numerical approximations for QP and QT valid for var-
ious Knudsen number regimes and accommodation coefficients (Fukui and
Kaneko, 1990). They employed this database in the generalized Reynolds
equation. Also, Veijola et al. (1998) developed a uniform approximation for
Fukui and Kaneko’s database, including the effects of the accommodation
coefficients in the following form:

QP (D,σv) =
D

6
+

1
σ1.34

v

√
π

ln
(

1
D

+ 4.1
)

+
σv

6.4

+
1.3(1 − σv)

1 + 0.08D1.83 +
0.64σvD0.17

1 + 1.2D0.72 ,

where QP (D,σv) is the Poiseuille flowrate, not normalized with the contin-
uum flowrate (D → ∞) limit, and σv is the accommodation coefficient. The
above formula is valid for D ≥ 0.01 and 0.7 ≤ σv ≤ 1 with maximum error
of ±1%. Another important contribution of this work is its inclusion of pos-
sible differences in the accommodation coefficients on the top and bottom
walls of the slider geometry. This feature allows the study of sliders with
metal and silicon top and bottom surfaces, respectively, corresponding to
different accommodation coefficients (Veijola et al., 1998).

Previous models for the generalized Reynolds equation predict the pres-
sure distribution and load capacity on the slider. However, it is impossible
to predict the skin friction distribution and viscous drag on the runner
(stationary) and slider (moving) surfaces, which are important in predict-
ing the pitch and roll moments. In addition, accurate prediction of viscous
forces enables robust head suspension design and calculation of actuator
power consumption. To address this need, Bahukudumbi and Beskok (2003)
developed a modified Reynolds equation to accurately predict the velocity
and shear stress distribution, pressure profile, and load capacity in slider
bearings for a wide range of Knudsen numbers (Kn ≤ 12). Their approach
is a superposition of the unified Poiseuille flow model of Section 4.2.2 with
the linear Couette flow model of Section 3.2. Neglecting the thermal creep
effects QT , the one-dimensional generalized Reynolds equation becomes

∂

∂X

[
QpH

3P
dP

dX

]
= Λ

∂

∂X
(PH) , (6.12)

where Qp is due to the pressure-driven flow, and it is dependent on the
local Kn. Following the model presented in Section 4.2.2, we have

QP =
Q̇P

Qcon
=
[
1 +

6Kn
1 + Kn

]
(1 + α Kn), (6.13)
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where α is the rarefaction parameter. In Section 4.2.2 we determined α
using the volumetric flowrate for duct and pipe flows as a function of Kn. In
this section, we choose α by matching the volumetric flowrate data for two-
dimensional pressure-driven flows in the entire Knudsen regime, obtained
from the solutions of the linearized Boltzmann equation. Therefore, the
current modified Reynolds equation (6.12) is identical to that of Fukui and
Kaneko (1988). However, there is an important difference between the two
approaches. The model presented in (Bahukudumbi and Beskok, 2003), is
able to predict the local velocity profile and shear stress. For example, the
local velocity distribution for Poiseuille flow is given by

uP (y) = − h2

2µo

dp

dx
(1 + αKn)

[
Kn

1 + Kn
+
(

y

h

)
−
(

y

h

)2]
. (6.14)

This results in the desired volumetric flowrate in equation (6.13). Figure 6.4
shows the normalized velocity profiles (U∗) for k =

√
π/2 Kn = 0.1, 1.0,

and 10.0 flows, where the velocity profiles are normalized by
(√

RT
2

h
Pa

dp
dx

)
.

This way of normalization preserves both the magnitude and shape of the
velocity profile, as shown in the figure. Consistent with the approach of
Section 4.2.2, the velocity profiles uniformly match the linearized Boltz-
mann solutions obtained in (Ohwada et al., 1989a). This empirical unified
model also predicts the shear stress, as demonstrated in (Bahukudumbi
and Beskok, 2003).

Figure 6.5 compares the Poiseuille flow-rate coefficient (Qp) calculated
using the linearized Boltzmann equation, continuum, first- and second-
order slip flow models. The model developed in (Bahukudumbi and Beskok,
2003) is shown by Qcurr. We must note that the free-molecular flow solution
between the two parallel plates results in a logarithmic increase in the
flowrate. Although this behavior is questionable, all the aforementioned
models utilized the same flowrate database, which is the current industry
standard for air-bearing design. In the following, we present the lubrication
results for several different slider configurations.

In Figure 6.6 (a), we present the solution of the generalized Reynolds
equation for a slider bearing with minimum magnetic spacing of 50 nm at
ambient conditions, and compare the results with the DSMC simulations in
(Alexander et al., 1994), which was obtained for a slider bearing of length
L = 5 µm and a slider speed U0 = 25 m/s, resulting in bearing number
Λ = 61.6 and M = 0.08. As evident from Figure 6.6, very good agreement
is found between the generalized Reynolds equation and the DSMC results.
The pressure profile predicted by the first-order slip model exhibits signifi-
cant deviations from the DSMC data. Predictions using a second-order slip
model (not shown on the figure) also result in considerable errors (Liu and
Ng, 2001). In Figure 6.6 (b), we consider a slider bearing with an identi-
cal geometric configuration as in case (a). However, the bearing number
is increased to Λ = 758 by increasing the plate speed to sonic conditions
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FIGURE 6.6. Slider bearing pressure profiles for different Knudsen number and
bearing number combinations. The DSMC results are from (Alexander et al.,
1994), and the Fukui and Kaneko data are from (Fukui and Kaneko, 1988). The
“Current model” in the figure is from (Bahukudumbi and Beskok, 2003).

(M = 1.0). Surprisingly, the pressure distributions predicted by different
models are very similar. This is because of the high bearing number. Since
the bearing number is the ratio of the Couette and Poiseuille flow rates,
the Couette flow is dominant at high Λ values. In Figure 6.6 (c), we con-
sider highly rarefied gas flow with Kno = 4.167 and a high Λ = 1264 value.
Under these conditions, the minimum magnetic spacing is ho = 15 nm and
the Mach number corresponding to the platter speeds is M = 0.5. The
next-generation hard drives with ultrahigh storage densities would require
slider bearings with a similar configuration as in case (c). Again, the so-
lution of the generalized Reynolds equation is in good agreement with the
DSMC data.
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In summary, the generalized Reynolds equation for multidimensional
problems is given by

∇ · [(QP (DoPH)∇P − QT (DoPH)P∇Tw

)
PH3] (6.15)

= Λ · ∇(PH) + S
∂(PH)

∂t∗
,

where Λ is the bearing number vector defined by the lateral and stream-
wise components of the slider plate velocity, and t∗ is the nondimensional
time normalized with a characteristic frequency ωo in case of time-harmonic
excitation of the slider plate. The squeeze number S is given by

S =
12µωoL

2

ph2
o

.

The generalized Reynolds equation is analogous to the Navier–Stokes based
model given in equation (6.2), and we presented several different ways to
model the QP term in equation (6.15).

The Reynolds equation in the free-molecular flow regime employs the
free-molecular flow solution between two parallel plates, which increases
logarithmically as the inverse Knudsen number D apporaches 0 (Fukui and
Kaneko, 1988):

QP (D) → (−1/
√

π) log D.

We have shown in Section 4.2 that the volumetric flowrate obtained by the
linearized Boltzmann equations in microducts reaches finite asymptotic val-
ues in the free-molecular flow regime; see also (Sone and Hasegawa, 1987).
The distinction between the two-dimensional channel and rectangular duct
flows can be seen in Figure 4.30. This striking difference brings up the
question of the finite dimension effects on the slider problem:

• Does the finite width (W ) of the device make the flowrate behave
more like a duct flow than a channel flow?

• What are the effects of the finite slider length (L) for high Kn trans-
port?

• What are the finite length and width effects on Knudsen’s minimum?

We can identify multiple operation conditions in the transition and free-
molecular regimes using the relative ratios of λ to h, W , and L. However,
such studies require extensive analysis of the finite length slider problem us-
ing the Boltzmann equation or DSMC. Data for internal rarefied gas flows
through finite-length channels and orifices can provide guidance in deter-
mining these finite-length scale effects (see Section 15.4 and also (Sharipov
and Sleznev, 1998)).
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6.1.2 Squeezed Film Effects in Accelerometers
Squeezed gas film effects in microaccelerometers have been studied by var-
ious researchers (van Kampen, 1995; da Silva et al., 1999; Veijola, 1999;
Chen and Kuo, 2003). In a series of papers, Veijola et al. employed the
generalized Reynolds equation to study rarefaction effects on the dynamic
response of microaccelerometers (Veijola et al., 1995a; Veijola et al., 1995b;
Veijola et al., 1998). A lumped parameterization of the micromechanical
accelerometer shown in Figure 6.7 leads to the mass–spring–damper sys-
tem represented in the following form (see also Chapter 17 and Section
18.2):

M
d2x

dt2
+ γ

dx

dt
+ κx = Fext,

where M is the mass, κ and γ are the spring and damping coefficients, x is
the displacement of the mass, and t is time. The driving force Fext includes
the applied acceleration, electrostatic, and gas damping force effects. The
electrostatic force depends on the proximity between the seismic mass and
the substrate (h), and it is determined by

Fe =
εA(∆V )2

2h2 ,

where ε is the dielectric constant of the gas, A is the plate area, and ∆V
is the electric potential difference between the moving mass and the fixed
electrode. (A similar expression was used for the force in comb-drives, see
Section 1.1.) The gas damping forces are obtained using the linearized
Reynolds equation assuming small normal motion, small pressure vari-
ations, and also isothermal conditions under various reference pressures
(Veijola et al., 1995a). The linearized Reynolds equation for oscillatory
normal motion of the micromechanical accelerometer shown in Figure 6.7
is (Veijola et al., 1995a)

poh
2

12µe
∇2P − ∂P

∂t
=

∂h

∂t
, (6.16)

where µe is the effective viscosity coefficient that models the local (lin-
earized) rarefaction effects on the volumetric flowrate QP .

For rectangular surfaces and normal-only motion, equation (6.16) is
solved analytically, and the result is formulated as a mechanical admittance.
This admittance is approximately implemented as an electric equivalent
circuit. The accelerometer model is a combination of this damping circuit
and the equivalent circuit of the mass–spring system. Efficient time- and
frequency-domain accelerometer simulations can be performed with the cir-
cuit simulation program APLAC, similar to SPICE, discussed in Chapter
18. More details of the lumped parameterization and the equivalent elec-
tric circuit model of the mechanical structure, including the squeezed gas
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FIGURE 6.7. Cross-section of a micromechanical accelerometer. The cantilever
beams support the moving mass, which forms two varying capacitances with the
thin film electrodes. The cross-section is not drawn to scale. (Courtesy of T.
Veijola.)

film effects are given in Chapter 17. The simulated steady-state frequency-
domain response of the system was compared with experimental measure-
ments, and a transient time-domain response to a step acceleration was
also obtained. The results point to the following behavior in the frequency
domain as a function of the actuation frequency:

• Below a certain frequency identified as the cut-off frequency, the gas
has enough time to flow away from the closing gap, inducing dissipa-
tion to the system. However, above this frequency the gas is trapped
in the gap, and it is squeezed between the moving plates, introducing
a springlike behavior with low dissipation.

This behavior is shown in Figure 6.8 for three different reference pres-
sure conditions. The maximum amplitude of the system is a strong function
of the base pressure, especially for high frequency excitations. The maxi-
mum amplitude of the frequency response of the system increases with the
increased base pressure, and the shift in the phase of the system shows
transition from mostly dissipative gas film behavior toward the springlike
gas response. The cut-off frequency is defined as the frequency at which
the dissipative and spring effects of gas are equal to each other. Figure 6.9
shows the transient time-domain response of the system to a step accel-
eration of 0.5 g applied for 0.5 ms under various pressures. The response
of the system at 30 Pa shows slowly damped oscillations at the resonance
frequency. However, higher pressure of 300 Pa eliminates these oscillations,
and the mass reaches its final position within 3 ms. The distinction between
these two cases is a good indication of gas damping effects as a function of
the base pressure (for fixed geometry). Of course, these results can also be
represented as a function of the reference Knudsen number. Using the ref-
erence gap size between the seismic mass and the substrate as 3.95µm, we
find the reference Knudsen numbers in these simulations to be Kn = 60, 6,
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FIGURE 6.8. Simulated accelerometer amplitude and phase responses at different
pressures. (Courtesy of T. Veijola.)

and 0.6 for P = 30, 300, and 3000 Pa, respectively. Therefore, Figures 6.8
and 6.9 both show the rarefaction effects on gas film damping. These results
qualitatively agree with the time response of the DMD given in Figure 6.2.

The rarefaction effects in (Veijola et al., 1995a), were incorporated into
the linearized Reynolds equation (6.16) using an effective viscosity model
defined as

µe =
µo

1 + f(Kn)
, (6.17)

where µo is the tabulated viscosity coefficient of the gas, and f(Kn) is
a function that models the flowrate changes with respect to the no-slip
Poiseuille flow. The function f(Kn) is obtained either by asymptotic ana-
lytical solutions at a certain Knudsen regime or via a curve fit to the vol-
umetric flowrate of linearized Boltzmann solutions. The flowrate relations
used by Veijola have similarities to our unified flowrate model presented
in Section 4.2. The effective viscosity model adopted by Veijola employing
data in (Fukui and Kaneko, 1988), is also similar to the model introduced
in Section 4.2.2 using the concept of rarefaction coefficient.



6.1 Gas Damping and Dynamic Response of Microsystems 213

0 2 4 6 8

  0

 100

 200

 300
APLAC 6.21 User: HUT Circuit Theory Lab.  Oct 25 1994

Accelerometer transient response

x

[nm]

Time [ms]

30 Pa 

300 Pa 

3000 Pa 

FIGURE 6.9. Simulated accelerometer displacement step response at pressures
30, 300, and 3000 Pa. The parameters are the same as in the frequency domain
simulation in Figure 6.8. (Courtesy of T. Veijola.)

Squeezed Film Damping in Complex Geometries

Complex geometries are a challenge for accurate numerical modeling of
squeezed film damping effects in various microsystems. A simplified rect-
angular capacitive accelerometer with holes in the middle portion was sim-
ulated by Veijola et al., who solved the two-dimensional Reynolds equation
with a finite difference method (Veijola et al., 1995b). The ambient pressure
conditions were specified in the hole region, where air is free to escape. This
approach could be used for engineering modeling purposes, and it gives very
reasonable results for thin structures. In the case of thick seismic mass, the
hole(s) will act as finite-length flow suction/ejection channels (depending
on the motion) with considerable pressure variations through the thick hole
region. Figure 6.10 shows the simulated pressure distribution in the air gap
of a tilting rectangular accelerometer with a hole in its middle. The tilt-
ing of the plate creates asymmetric pressure distribution in the system.
The results are obtained by finite differences on a mesh of 22 × 22 grid
points. The effect of the number of holes on the steady-state frequency
and transient time responses of the system is shown in Figure 6.11. In the
simulations, the base pressure is 1900 Pa, and the reference gap width is
2µm. The transient time response to a step acceleration applied for 10 µs
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FIGURE 6.10. Simulated pressure distribution in the air gap of an accelerometer.
In this example there is a hole in the middle of the rectangular plate, and the
plate is tilting, which creates an asymmetric pressure distribution. (Courtesy of
T. Veijola.)

is shown in the top figure. The case without holes experiences oscillations
corresponding to the springlike response, and the 3-hole case gives an over-
shoot due to the lack of sufficient damping. However, the 2-hole case gives
the optimum response, reaching steady conditions with in 300µs (Veijola
et al., 1995b). The steady frequency response of the system presented in the
bottom figure also shows drastic variations in the amplitude and phase of
the system. The maximum amplitude is shifting toward the low frequencies
with increased number of holes. The cut-off frequency indicating the phase
shift of the system from a mostly dissipative gas film behavior toward the
springlike gas response also decreases with the increased number of holes
(Veijola et al., 1995b).

6.2 Separated Internal Flows

In this section we investigate rarefied internal flows subject to separation.
Such conditions are encountered in complex networks of microchannels
where the flow is forced to turn or expand (Lee et al., 2000). As a pro-
totype geometry we consider the backward-facing step studied extensively
in continuum fluid dynamics (see (Kaiktsis et al., 1996), and references
therein). The objective here is to investigate the validity of slip models
considered in Chapter 2. The sudden changes in the flow conditions in the
backward-facing step result in significant variations of the mean free path
of the gas molecules (λ ∝ 1/P ), with corresponding variations in the wall
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FIGURE 6.11. Simulated step (top) and frequency (bottom) responses of an
accelerometer. The number of holes in the mass greatly affects the damping
properties and the settling time. (Courtesy of T. Veijola.)

shear stress affecting the velocity slip directly (Us ∼ ∂U/∂n). In contrast to
the straight channel flow, cross-flow variations are significant here, so that
the rarefaction effect is truly two-dimensional. In addition, the change of
characteristic length scale from the inlet channel height to the larger length
downstream presents extra difficulties in choosing the proper scaling.

We first investigate compressibility effects in backward-facing step flow
and compare with corresponding incompressible flow simulations. The ge-
ometry used in this study is given in Figure 6.12 along with a typical
spectral element discretization (see Section 14.1). It corresponds to S/h =
0.467, where S is the step height and h is the height of the channel.
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FIGURE 6.12. Backward-facing step geometry. Spectral element discretization
with 52 elements and tenth-order polynomial expansions in each direction (see
Chapter 14).

FIGURE 6.13. Variation of nondimensionalized separation distance XR/S (S
is the step height) as a function of ReṀ for incompressible, compressible, and
rarefied flows. For the rarefied flow simulations Kno = 0.04 based on the channel
exit conditions.

The high-order program µFlow that solves the compressible Navier–Stokes
equations with and without slip at the wall is employed (see chapter 2).
The computational domain is discretized with 52 spectral elements, where
each element is further discretized with Nth-order polynomial expansions
in each direction; here we use N = 10.

In Figure 6.13 we present the variation of nodimensionalized separation
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distance (XR/S) as a function of Reynolds number ReṀ for no-slip flows,
where ReṀ is based on the mass flowrate (Ṁ) per unit width (W ) of the
channel

ReṀ =
Ṁ

Wµ
.

For comparison purposes the predictions of incompressible version of µFlow
are also included in Figure 6.13. For large pressure ratios, locally transonic
conditions are achieved. It is seen in Figure 6.13 that the separation dis-
tance increases nonlinearly with increased ReṀ , unlike the case of incom-
pressible flow. The differences between the incompressible and compress-
ible simulations become more dominant as the mass flowrate is increased
further, corresponding to cases in which locally transonic conditions are
achieved.

In Figure 6.13 we also include predictions of µFlow for rarefied flows
with Kno = 0.04. Here the value of the Knudsen number Kn is based on
exit conditions. In the simulations we used the slip model given by equation
(2.26), where the slip information is obtained at a distance λ away from the
wall surface. The exit pressure of the channels and the channel thickness h
were fixed in the simulations. Therefore, the value of Knudsen number Kno
is constant at the exit of the channel for all cases. However, the distribution
of Kn varies from simulation to simulation as the inlet to exit pressure
ratio is varied. One limitation in the compressible flow simulations is the
possibility of choking the flow in the channels. Here, we limit the simulations
to subsonic cases, i.e.,

M̄ =
Ū√
γRT̄

≤ 1,

where the overbar conditions indicate quantities averaged across the chan-
nel. Therefore, the maximum possible Kn in the simulations can be esti-
mated by

Kn =
λ̄

h
=

µ̄

ρ̄h(RT̄2/π)
1
2

=
(γπ

2

) 1
2 µ̄

Ū ρ̄h

Ū

(γRT̄ )
1
2

=
(γπ

2

) 1
2 M̄

ReṀ

. (6.18)

For a nonnegligible separation region we need ReṀ ≥ 10, and thus for
M̄ ≤ 1, the maximum possible value is Kn ≤ 0.1.

Next, we simulate nitrogen flow in a backward-facing step using the
DSMC method (see Section 15.1). The DSMC simulations employed a to-
tal of 28, 000 equally spaced cells (700 cells in the streamwise and 40 cells
in the cross flow direction). The simulations employed 420,000 simulated
molecules, and the results are sampled for 1 × 105 time steps. Numerical
convergence is verified by monitoring the mass balance, with the maxi-
mum errors being approximately 1%. Inlet section to the channel is also
included in the simulation, with the inlet located at x/h = 0.86. A uniform
flow stream corresponding to M = 0.45 approaches the inlet of the channel
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TABLE 6.1. Abbreviation, location, and corresponding symbols for the stream-
wise cuts taken in the step geometry. The TW and BW locations correspond
to the DSMC cell centers adjacent to the walls, and can be treated as the wall
quantities.

Abbreviation Description Location Symbol
BW Bottom Wall y/h = 0.01675 Solid Triangle
BC Bottom Center y/h = 0.25 Hollow Square
C Center y/h = 0.48325 Hollow Circles

CE Center of Entrance y/h = 0.75 Solid Circles
TW Top Wall y/h = 0.9875 Solid Circles

with a free-stream static temperature of T = 330 K. All wall surfaces are
maintained at 300 K. The Reynolds number of the simulations based on
the mass flowrate per unit width is ReṀ = 80, the Knudsen number at the
channel outlet is Kno = 0.04, and the Prandtl number is Pr = 0.7. The
temperature fields obtained by the DSMC program and µFlow are shown
in Figure 6.14. The temperature of the gas molecules in the DSMC are de-
termined by combination of the translational, rotational, and vibrational
energy of the diatomic nitrogen molecules. Since the overall gas temper-
ature is not far from ambient, the vibrational energy mode is negligible
here. The temperature contours calculated by both methods are quantita-
tively the same. Elevated temperatures occur near the recirculation zone
(2.8 ≤ x ≤ 4.5). This phenomenon can be attributed to the viscous dissi-
pation effects, i.e., the term

∂

∂xj
(σjiui)

in equation (2.16). A detailed analysis of viscous dissipation terms in the
Navier–Stokes equations may be necessary for quantification of the viscous
heating effects. The flow separation and recirculation zones predicted by
the continuum and atomistic simulations agree well. The flow is locally
transonic at the step expansion. This is due to the acceleration of the fluid
and reduction of the static temperature of the fluid near the step expansion.

In Figures 6.15 and 6.16 we plot the streamwise variations of the pressure
and streamwise velocity, obtained at five different y/h locations. The val-
ues of pressure and velocity are nondimensionalized with the corresponding
freestream dynamic head and the local sound speed, respectively. The spe-
cific y/h locations are selected to coincide with the DSMC cell centers to
avoid interpolation or extrapolation of the DSMC data, and are given in
Table 6.1. In Figures 6.15 and 6.16 we first observe an increase in static
pressure at C and TW locations near the entrance at x/h = 0.86. Such
an increase in pressure is accompanied with deceleration of the fluid near
the walls, while a sudden decrease of fluid temperature near the walls is
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Re=80, Kno=0.05, Mi=0.55, Pr=0.7

FIGURE 6.14. Temperature contours and streamlines obtained by the DSMC
and continuum slip flow simulations.

obtained (see Figure 6.14). Such temperature decrease indicates large heat
transfer to the channel surfaces, which are kept at isothermal conditions
(at 300 K). Relatively large temperature jump and velocity slip occur in
this region.

After the entrance section, the pressure drops very rapidly with corre-
sponding fluid acceleration. The pressure drop in this section (1.2 < x/h <
1.5) is almost uniform across the channel, as seen in Figure 6.15. We also
identify that the velocity increases along the channel, similar to a compress-
ible straight channel flow. In this section the fluid temperature at the center
of the entrance region (CE) decreases substantially, reaching a minimum
at around x/h = 2.0. This is accompanied with acceleration of fluid in the
streamwise direction, representing transformation of thermal energy into
kinetic energy. Around the step expansion we also observe an increase in
the cross-flow component of velocity. Therefore, the thermal energy trans-
formation affects both the streamwise and the cross-flow velocities.

The sudden expansion in the geometry creates adverse pressure gradients
across the entire cross section (see Figure 6.15) until x/h = 3.25 at BW,
and x/h = 3.65 at TW. Due to the adverse pressure gradients, the flow
at the bottom wall (BW) separates and reattaches at x/h = 2.8, before
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FIGURE 6.15. Pressure distribution along backward-facing channel at five se-
lected locations. Predictions of both DSMC (symbol) and µFlow (lines) are pre-
sented (see Table 6.1 for description of the symbols).

the pressure gradient at the bottom wall becomes zero (at x/h = 3.25).
The early reattachment under slightly adverse pressure gradients is due to
the compressibility effects, where conversion of thermal energy into kinetic
energy enhanced the tangential momentum of the fluid.

Beyond x/h = 3.65, favorable pressure gradients are established. The
flow goes through a developing region, followed by a typical compressible
channel flow behavior far downstream in the channel, as shown in Figure
6.15 for x/h > 4.2. In contrast to the low Mach number flows, a decrease
in the temperature of the fluid near the center of the channel is observed.
This shows that the thermal energy of the fluid is converted into kinetic
energy, and there is considerable heat transfer from the walls to the fluid.

Detailed observations on separated internal flows, and comparisons of
the continuum-based slip flow simulations with the DSMC, can be found
in (Beskok, 2001). DSMC predictions for a backward-facing step in the slip
and transition flow regimes can be found in (Xue and Chen, 2003). Both
studies indicate substantial separation zones for Kn ≤ 0.1 flows. In their
studies, Xue and Chen (2003) did not observe flow separation for Kn > 0.1.
They attributed this to the rarefaction effects. However, this behavior may
be due to the reduction in the Reynolds number of the flow, described
by equation (6.18). Increasing the Knudsen number to the transition flow
regime (Kn > 0.1) requires ReṀ < 10, since M̄ ≤ 1. However, the separa-
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FIGURE 6.16. Streamwise velocity distribution along the backward-facing chan-
nel at five selected locations (normalized with the speed of sound). Predictions
of both DSMC (symbol) and µFlow (lines) are presented (see Table 6.1 for a
description of the symbols).

tion zone becomes quite small for ReṀ < 10 flows, even in the continuum
flow regime.

6.3 Separated External Flows

In this section, we present simulations of slip flow past a circular cylinder,
as a prototype of an external flow around a microprobe. Uniform flow past
a cylinder with a slip surface has also been studied in (Gampert, 1978), for
attached flows using an approximate boundary layer analysis. Following
(Beskok and Karniadakis, 1994), we simulate both attached and separated
flows; the simulations are performed at two values of Knudsen number:
Kn → 0 (corresponding to the no-slip) and Kn = 0.015, at Re = 10.
Separation of flow is observed with a small circulation bubble; the slip
flow direction is reversed inside the separation zone. In Figure 6.17 we plot
the magnitude of velocity slip distribution along the cylinder periphery for
Reynolds number Re = 1 (attached flow; triangles) and Re = 10 (separated
flow; circles). The velocity slip increases with the Reynolds number, but
it decreases substantially in the separated (almost stagnant) region. This
velocity slip is proportional to the shear stress τs, which is plotted in Figure
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FIGURE 6.17. The magnitude of velocity slip distribution along the periphery
of a circular cylinder at Kn = 0.015. Triangles, Re = 1; 0 degrees corresponds to
the rear stagnation point. Circles, Re = 10; 0 degrees corresponds to the front
stagnation point.

FIGURE 6.18. Distribution of tangential stresses along the upper and lower
surfaces of circular cylinder at Re = 10 and Kn = 0 (triangles, no-slip case),
Kn = 0.015 (circles), Kn = 0.015 and slip coefficient b = 10 (squares). Solid and
blank symbols show upper and lower surfaces, respectively. Shear stresses are
zero at about θ = 147◦, where the flow separates.



6.3 Separated External Flows 223

FIGURE 6.19. Distribution of viscous normal stresses along the cylinder periph-
ery at Re = 10 and Kn = 0 (triangles, no-slip case), Kn = 0.015 (circles), and
Kn = 0.015 and slip coefficient b = 10 (squares).

6.18 for the case of Re = 10. From this plot it is evident that separation
occurs at an angle approximately 147◦ from the front stagnation point.

A simulation corresponding to the high-order slip boundary condition is
also included (squares). The high-order expansion coefficient b is taken to
be a constant (b = 10.0) for convenience. For the range of Knudsen number
(0 < Kn ≤ 0.015) investigated, no difference in the separation angle is
observed between the slip and no-slip flow cases. For comparison of shear
stress variations, we also plot in Figure 6.18 the shear stresses corresponding
to the no-slip case. As expected, a reduction in skin friction is obtained
especially in the front part of the cylinder where the flow accelerates.

For incompressible flows over flat no-slip surfaces the viscous normal
stress components τn are identically zero. However,

• in slip surfaces the viscous normal stresses achieve finite values and
increase substantially proportional to the Knudsen number.

This effect is demonstrated in Figure 6.19, where we plot the viscous normal
stress distribution around the cylinder periphery. In this case, the viscous
normal stresses for no-slip flow are nonzero due to the curvilinear boundary.
However, they are considerably smaller compared to the slip flow even for
this relatively small value of Knudsen number (Kn = 0.015). Levels of
the pressure distribution are also reduced compared to the no-slip case
in agreement with the results of (Gampert, 1978). The reduction in the
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pressure levels is balanced by the increase in the viscous normal stresses.
Therefore:

• The total normal stresses (i.e., combined pressure and viscous normal
stresses) do not vanish as the rarefaction effects increase (Gampert,
1978).

6.4 Flow Past a Sphere: Stokes Flow Regime

In this section, we present analytical and numerical results for flow past
a sphere in the Stokes flow regime (Re → 0). We will examine both the
unbounded external flow and the sphere-in-a-pipe flow problems. The re-
sults in the continuum flow regime are equally applicable to the gas and
liquid flows. However, the slip flow results are relevant to the gas flows.
The external flow problem may be useful in estimating the drag force on
airborne microparticles; see Section 14.3.2. The sphere-in-a-pipe problem
is a prototype rarefied gas dynamics problem. Large-scale, low-pressure ap-
plications of this flow configuration are commonly used in spinning rotor
gauge (SRG) devices (Fremerey, 1985), where damping of an electromag-
netically supported rotating sphere is used for pressure, viscosity, molecular
weight, and rate of molecular impingement measurements (Fremerey, 1982).
A spherical particle moving in a pipe is also observed in Coulter counter de-
vices (Ito et al., 2003). However, particle surface charge and electric double
layer play an important role in these cases (see Section 7.5 for details).

6.4.1 External Flow
For external flow past a sphere in the Stokes flow regime (Re → 0), the
drag on the sphere is given by the Stokes drag:

FD = 6πµUR, (6.19)

where µ is the absolute viscosity of the fluid, U is the external flow velocity,
and R is the sphere radius. Nondimensionalizing the drag by the dynamic
head and the cross-sectional area of the sphere gives the drag coefficient
CD:

CD =
FD

1
2ρU2πR2

=
12µ

ρUR
=

12
Re

, (6.20)

where ρ is the fluid density, and Re = ρUR
µ . This classical result shows that

the drag coefficient for the sphere is inversely proportional to the Reynolds
number in the Stokes flow regime (Re → 0). For Re ≈ 1, corrections to the
Stokes formula due to increased inertial effects are necessary. A well-known
approximation for this case is given by Oseen (Batchelor, 1998).
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In the slip flow regime (Kn ≤ 0.1), the total drag on the sphere is given
by (Barber and Emerson, 2002)

FD = 6πµUR

(
1 + 4 2−σ

σ Kn
1 + 62−σ

σ Kn

)
. (6.21)

The total drag can be decomposed into three components due to the skin-
friction, viscous normal stresses and the pressure drag.

Skin-friction drag:

FSF = 4πµUR

(
1

1 + 62−σ
σ Kn

)
.

Drag force due to the viscous normal stresses

FSN = 4πµUR

(
4 2−σ

σ Kn
1 + 62−σ

σ Kn

)
.

Pressure or form drag:

FPD = 2πµUR

(
1 + 4 2−σ

σ Kn
1 + 6 2−σ

σ Kn

)
.

We note that despite the geometric differences between a sphere and a cylin-
der, a substantial drag force due to the viscous normal stress is observed
for both geometries for increased Kn values.

6.4.2 Sphere-in-a-Pipe
For a sphere located along the axis of the pipe, we consider the cases of a
moving sphere in a stationary pipe, and Poiseuille flow past a stationary
sphere in a pipe. The flow is axisymmetric for both cases. Considering the
sphere diameter D and pipe diameter H, the moving sphere case results in
the following total drag force (Haberman and Sayre, 1958):

FD =
6πµUR

(
1 − 0.75857(D

H )5
)(

1 − 2.1050D
H + 2.0865(D

H )3 − 1.7068(D
H )5 + 0.72603(D

H )6
) , (6.22)

while the pressure-driven flow past a stationary sphere-in-a-pipe results in

FD =
6πµUR

(
1 − 2

3 (D
H )2 − 0.20217(D

H )5
)(

1 − 2.1050D
H + 2.0865(D

H )3 − 1.7068(D
H )5 + 0.72603(D

H )6
) , (6.23)

where U is the sphere velocity in equation (6.22), and it is the pipe maxi-
mum velocity in equation (6.23).
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FIGURE 6.20. Variation of the normalized total drag coefficient for a confined
sphere-in-a-pipe as a function of the Knudsen number in the slip flow regime. Re-
sults for various blockage ratios (H/D) are presented. (Courtesy of R.W. Barber
and D.R. Emerson.)

Flow past a stationary sphere in a pipe has been investigated by (Liu
et al., 1998) using µFlow and DSMC simulations. In a later study, Barber
and Emerson (2001) presented numerical results for the same problem us-
ing continuum-based slip models. Figure 6.20 presents the drag coefficient
variation as a function of the Knudsen number for various H/D ratios. For
convenience, the results are normalized by the drag coefficient of the exter-
nal Stokes flow in equation (6.20). The drag force increases with decreasing
H/D, due to the increased blockage effects. In the continuum flow limit,
there is a tenfold increase in the drag force for H/D = 2. However, the
drag force increases by a factor of two for H/D = 40. Numerical results in
(Barber and Emerson, 2002) for Kn = 0.1 flow at H/D = 2 show about
50% drag reduction due to the slip flow effects. However, for H/D = 40,
drag reduction due to velocity slip is about 10%.

In Figure 6.21 we present the normalized total drag coefficient variation
as a function of the blockage ratio H/D for a sphere confined in a pipe
in the continuum (Kn = 0) and slip flow Kn = 0.1 regimes (Barber and
Emerson, 2004). The analytical solution of (Haberman and Sayre, 1958)
is also shown in the figure. The results clearly indicate that velocity slip
reduces the blockage effects, and drag reduction due to the rarefaction is
more dominant for large blockage ratios (small H/D).

Wen and Lai (2003) presented analytical solutions for the cases of a
sphere moving along the centerline of a micropipe, and a sphere moving
parallel to the centerline of a micropipe. Analytical solutions of the Stokes
equations with first-order slip boundary condition are obtained using the
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FIGURE 6.21. Variation of the normalized total drag coefficient for a confined
sphere in a pipe as a function of the blockage ratio (H/D). Results for no-slip
and Kn = 0.1 flows are shown. (Courtesy of R.W. Barber and D.R. Emerson.)

streamfunction method for the former case, while the method of reflections
is utilized for the latter case. This enabled analytical expressions for the
resultant force on the sphere, pressure drop over the sphere, and terminal
velocity of the sphere (Wen and Lai, 2003).

6.5 Microfilters

Gas microfilter systems can be used for filtering and detection of airborne
biological and chemical entities and for environmental monitoring applica-
tions. Recent advancements in microfabrication technologies enabled devel-
opment of sufficiently thin filters that are strong enough to provide useful
flowrates under large pressure drops (Chu et al., 1999). Motivated by these
developments, several research groups have investigated gas flows through
microfilter systems (Yang et al., 1999b; Yang et al., 2001; Mott et al.,
2001). Analysis of gas flows through microfilters requires consideration of
rarefaction, compressibility, and geometric complexity effects.

The geometric complexity of microfilters is very important. In the sim-
plest form, the microfilters are very short channels or sudden constrictions
in the flow field. Therefore, simple analysis based on the fully developed
flow assumption cannot be used. Furthermore, the filter holes have com-
plicated shapes, such as rectangular, hexagonal, circular, elliptic, or square
cross-sections. The filters may also have geometric variations along the fil-
ter thickness, sharp or smooth inlets and exits. For example, the side-wall
geometry is shown to affect the overall pressure drop across the microfilter



228 6. Prototype Applications of Gas Flows

devices (Yang et al., 2001).
Empirical formulas for pressure drop in conventional filters were obtained

in earlier studies (Weighardt, 1953; Derbunovich et al., 1998). However,
these scaling laws were valid for high Reynolds number flows (Re � 100),
and they cannot be applied to microfilters (Yang et al., 2001). The initial
work on microfilters was done by (Kittilsland et al., 1990), who fabricated
a filter that consisted of two silicon membranes with holes. By changing
the membrane separation distance, they were able to build filters for sepa-
ration of particles as small as 50 nm. Later, (Yang et al., 1999b) developed
a MEMS-based microfilter using a micron-thick silicon-nitride membrane
coated with Parylene, which was used both to control the opening area
of the filter and to provide strength. Experimental and numerical studies
have shown that the flow in the microfilters depends strongly on the open-
ing factor β (the ratio of the hole area to the total filter area). The power
requirements and the pressure drop through the microfilters have also been
studied in (Yang et al., 1999b). It has been shown that

• the power dissipation is a function of the opening factor, the ratio of
the filter thickness to hole diameter, and the Reynolds number.

(Yang et al., 1999b) were able to fit their experimental and numerical
simulation data to an empirically determined scaling law, given in the fol-
lowing (Yang et al., 1999b):

κ = β−2
(

t

h

)0.28(73.5
Re

+ 1.7
)

, (6.24)

where κ is the pressure drop nondimensionalized with the dynamic head,
i.e.,

κ =
∆P

1
2ρ∞U2∞

,

and h and t are the hole diameter and thickness of the filter, respectively.
For three-dimensional cases the Reynolds number is defined as

Re =
ρ∞U∞h

µβ
,

where the subscript ∞ indicates upstream conditions. For a two-dimensional
geometry the opening factor becomes the ratio of the hole opening length
to the center-to-center filter separation distance L (β = h/L), resulting in

Re =
ρ∞U∞L

µ
.

Using the scaling law presented by equation (6.24) leads to higher pressure
drops than the experimentally determined values. The assumptions and the
parameters utilized in development of this scaling law were:
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1. 2-D geometry,

2. Opening factor: 0.1 < β < 0.45,

3. t/h ratio: 0.08 < t/h < 0.5,

4. Reynolds number: 1 < Re < 100,

5. Knudsen number: 0.005 < Kn < 0.015.

In a follow-up study, (Yang et al., 2001) proposed the following modified
scaling law based on detailed studies of the filter geometry, experimental
data, and three-dimensional numerical simulations:

κ = β−2
(

3.5
t

h
+ 3

)(
10
Re

+ 0.22
)

. (6.25)

Although most of the experimental data fit this relation, there were some
deviations for low Reynolds number flows. This scaling law did not ex-
plicitly incorporate the rarefaction effects as a function of the Knudsen
number.

(Mott et al., 2001) employed two-dimensional DSMC to study gas trans-
port through microfilters in the slip and early transition flow regimes. They
have shown that Yang’s model becomes inaccurate in the transition flow
regime and also for high Reynolds number flows. Based on the experimen-
tal data of (Yang et al., 2001) and their DSMC results, (Mott et al., 2001)
proposed the following modified scaling law, which includes the Knudsen
number as an additional parameter:

κ = β−2
(

3.5
t

h
+ 3

)(
10
Re

+ 0.22
)[

0.0577
0.0577 + Kn

]
. (6.26)

The assumptions and parameters in their model were:

1. 2-D geometry,

2. Opening factor; β = 0.25,

3. t/h ratio: 3,

4. Reynolds number; 0.2 < Re < 1,

5. Knudsen number; 0.0309 < Kn < 0.233.

It is noteworthy to mention that the t/h ratio used in Mott’s studies was
substantially larger than the values presented in (Yang et al., 1999b; Yang
et al., 2001).

The scaling laws presented in equations (6.24)–(6.25) are developed start-
ing from the fully developed Poiseuille flow assumption with added pressure
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FIGURE 6.22. Left: Schematic view of the microfilter (filter front and
cross-sectional views). Right: Schematic view of a simplified two-dimensional fil-
ter model. Various length scales are identified in the figure.

drop corrections due to the inlet and exit effects. (Mott et al., 2001) de-
scribe the evolution of these scaling laws, including the slip flow corrections
given as a function of the Knudsen number in equation (6.26). The coef-
ficients used in equations (6.24)–(6.26) are modified from the predictions
given by simplified analytical models in order to match the experimental
and numerical data (Yang et al., 1999b; Yang et al., 2001; Mott et al.,
2001).

Ahmed and Beskok (2002) studied gas flows through a microfilter array
using µFlow. Isothermal conditions for the filter surface were assumed. A
schematic view of a rectangular microfilter array is shown in Figure 6.22. In
their study the filter width (w) was significantly larger than the filter height
(h), so that the flow was approximated as two-dimensional. Considering
that the filter holes repeat in a periodic fashion, they simulated gas flow
through only one hole by imposing periodicity conditions in the spanwise
direction. (see Figure 6.22). In addition, h/t = 1.5 and β = h/L = 0.6 were
used; these dimensions are labeled in Figure 6.22 (right). Using this fixed
aspect ratio geometry, they varied the reference length scale (L), creating
a series of geometrically similar filters ranging from L = 6 µm to L = 1 µm
(hence, h varied from 3.6 µm to 0.6 µm).

Figure 6.23 shows a comparison of numerical results with the scaling
laws of (Yang et al., 2001) and (Mott et al., 2001). The results are pre-
sented as a function of a new parameter κ′, which is defined in the figure.
Significant scatter in the data is observed using Mott’s model, while a con-
stant offset is observed using Yang’s model. Ahmed and Beskok’s numerical
solutions have consistently shown smaller pressure drops than the values
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FIGURE 6.23. Comparisons of simulations of Ahmed and Beskok (2002) with
the empirical scaling laws developed by (Mott et al., 2001) indicated by M, and
(Yang et al., 2001) indicated by Y.

reported in (Yang et al., 2001). The reason for this was attributed to the
smoothened filter geometry shown in Figure 6.22. This filter model had fi-
nite radius of curvature at the inlet and exit sections. The smooth entrance
and exit shape with finite radius of curvature (r/h = 0.1) reduced the
pressure drop at these locations, resulting in a reduced pressure drop com-
pared to the experiments and numerical calculations of (Yang et al., 2001).
Strong dependence of the data on the side-wall shape has been demon-
strated in (Yang et al., 2001), by comparisons of numerical simulations
with the experimental data. In addition to the differences in the side-wall
shapes, three-dimensional flow effects can also be a possible explanation for
the differences between Yang’s model and results by (Ahmed and Beskok,
2002). Here we must mention that the inability to match Mott’s scaling
law can be due to the extremely small opening factor (β = 0.25) and large
(t/h) ratio used in Motts’s studies. The simulation parameters in (Ahmed
and Beskok, 2002), were closer to those of Yang’s experiments than the
values used by Mott et al.

Using the simulation data, a modified relation for the scaling law was
developed, as shown in Figure 6.24. Since the (t/h) ratio is fixed and a
finite radius of curvature at the channel inlet and exit (r/h = 0.1) are
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FIGURE 6.24. Modified scaling law that fits the data from numerical simulations
in (Ahmed and Beskok, 2002).

utilized, the following scaling law was obtained:

κ = 2.833β−2
(

10.0
Re

+ 0.22
)

. (6.27)

For a general filter geometry, the constant 2.833 should be a function of
(t/h) and (r/h). One also expects an explicit Knudsen number dependence
in the model, which requires further studies beyond the slip flow regime
(Kn > 0.1). Filter performance in the transition flow regime can be investi-
gated using the DSMC method (Mott et al., 2001; Aktas et al., 2001; Aktas
and Aluru, 2002), as we discuss in Section 6.5.3.

6.5.1 Drag Force Characteristics
The drag force has two components: viscous- and form-drag. The viscous-
drag is due to skin friction distribution on the body in the streamwise
direction. The form-drag is due to the differences between the fore and aft
pressure distributions on the body, in the streamwise direction. Due to the
symmetry of the filter geometry and steady flow, there are no lift forces.
In the top and bottom plots of Figure 6.25, we plot the slip and no-slip
form-drag and viscous-drag data as a function of the Reynolds number.
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FIGURE 6.25. Form-drag (upper) and viscous-drag (lower) variation in microfil-
ters as a function of the Reynolds number.

A comparison between the no-slip and slip data for the 1-micron versus
6-micron cases shows enhanced drag reduction in the smaller geometry,
where the Knudsen number is higher. Hence, drag reduction increases by
rarefaction. This is an important result, which indicates that the microfil-
ters have the potential to allow more mass flowrate than their macroscale
counterparts under fixed inlet and exit pressure conditions, and hence they
require less power to operate.

Further examination of Figure 6.25 shows that for a fixed geometry,
both the viscous and form-drag increase with the Reynolds number. The
increase is mostly linear for low Reynolds numbers and starts to increase
faster than linearly for Re > 10. We also observed that the viscous-drag
is consistently about 50% of the form-drag. This is important in designing
microfilter devices, because large drag forces may lead to bursting of thin
filter-membranes.
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6.5.2 Viscous Heating Characteristics
Work done by the viscous stresses usually becomes important for high-speed
flows. For example, in the case of the micronozzles viscous heating effects
cannot be neglected. In fact, work done by the viscous stresses causes heat
generation, which acts as a volumetric source term in the energy equation.
The viscous heating is characterized by∫

CS
(njτji) · ui ds,

where τji represents (ij)th component of the viscous stress tensor, nj cor-
responds to the jth component of the outward surface normal, ui shows
the ith component of the velocity on the control surface (CS) with differ-
ential area ds. Figure 6.26 shows the viscous heating as a function of the
Reynolds number for various filter sizes. Smaller filters have shown sub-
stantial viscous heating effects. For example, for the 1-micron filter with
Re = 6.95 (M = 0.51), the viscous heating can be as large as 1.2 W/m. In
order to keep the Reynolds number within a certain range, the inlet flow
speeds are increased substantially, which in return increase the Mach num-
ber for small filter dimensions. A comparison of the viscous heating effects
shown in Figure 6.26 with the reference exit Mach numbers reveals that
the viscous heating effects are important for high-speed flows. Furthermore,
increase in the viscous-heating as a function of the Reynolds number (or
Mach number, due to the increase in the reference speed) seems to be faster
than linear.

6.5.3 Short Channels and Filters
In this section we summarize rarefied flow through microfilters and short
channels following the DSMC analysis in (Aktas et al., 2001; Aktas and
Aluru, 2002). In Figure 6.27 we present the geometry, where the physical
filter surfaces are indicated with the bold lines (G and J). The length and
height of the filter channel are denoted by lc and hc, respectively. The
geometry includes an input region of length lin and an output region of
length lout. Periodic boundary conditions are applied on surfaces C, D, E,
and F to simulate a periodic array of filter elements. Dimensions of various
filter elements used in this work are listed in Table 6.2.

Constant-pressure boundary conditions are applied along the surfaces A
and B. The temperature of the input and output streams are kept at 300 K.
In the simulations of (Aktas et al., 2001), the outlet pressure (at B) is held
at atmospheric conditions, while the input pressure is varied to investigate
the flowrate dependence on the inlet to exit pressure difference. In the
following results, we present only the cases in which a pressure difference
of 0.3 atm is applied across the filter elements. The specifics of the DSMC
are presented in (Aktas et al., 2001; Aktas and Aluru, 2002). In summary,
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FIGURE 6.26. Viscous heating per unit filter width.
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FIGURE 6.27. Description of the filter geometry studied in (Aktas et al., 2001).

nitrogen flow is simulated using DSMC for 10 ps time steps and diffuse
reflection boundary conditions. The number of particles are consistent with
the requirements given in Section 15.1. The flow is simulated for 1.8 µs
before the time averaging started. The flow is sampled and time-averaged
for 0.6 to 1.7 µs depending on the flow speed, where longer time averaging
is employed for low subsonic flows.
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TABLE 6.2. Dimensions of the filters and the corresponding flow rates at
∆P = Pin − Pout = 0.3 atm.

Filter 1 Filter 2 Filter 3 Filter 4 Filter 5
hc(µm) 1 1 0.2 1 0.05
lc(µm) 1 5 1 10 1
hp(µm) 5 5 1 5 1
lin(µm) 4 6 4 4 4
lout(µm) 7 7 5 7 7
Knout 0.54 0.54 2.7 0.54 11
DSMC Flowrate(

m3

sm2

)
16.2 6.10 2.59 3.26 0.682

Flowrate using
equation (4.6)(

m3

(sm2)

) 32.9 6.58 2.47 3.29 0.432

Estimated Re 5.7 2.1 0.18 1.1 0.048
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FIGURE 6.28. Pressure (a), streamwise velocity (b) variations along the midline
of the channel (line p1–p2 of Figure 6.27) for filters 1, 2, and 4.

Effect of Channel Length

Dependence of the flow characteristics on channel length was investigated
using filters 1, 2, and 4, which have identical channel height (1 µm), but
different channel lengths (1, 5 and, 10 µm) (see Table 6.2). A pressure
difference of 0.3 atm was applied through these filter elements in all sim-
ulations. In Figure 6.28, we present the pressure (a) and channel center
velocity (b) variation along the midline of the channel (line p1–p2 of Fig-
ure 6.27). To facilitate comparisons between the different cases, the x and
y axes are shifted so that the center point for each channel is at x = y = 0.

The pressure drop in filters 1, 2, and 4 is shown in Figure 6.28 (a). Filter
1 has the smallest lc/hc ratio of the studied cases. Thus, the presence of

(a) (b)
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undeveloped flow can be easily observed in the left figure. For this filter,
the pressure drop is nonlinear and extends beyond the membrane channel.
The flows in filters 2 and 4 exhibit typical developing compressible flow
for large sections of the channel, which results in almost linear pressure
drop, and a smoothly increasing velocity profile. The nonlinear pressure
distribution, which is observed in compressible channel flows with large
pressure drop, is not observed due to the small input-to-output pressure
ratio. As a result, it can be concluded that for these filters the pressure
distribution is very close to linear, unless the filter length-to-height ratio
introduces undeveloped flows.

Flowrate Comparisons

From a system designer’s point of view, the flowrate obtained from a filter is
one of its most important characteristics. It is necessary to know when and
to what extent simple analytical formulas are adequate, when the Navier–
Stokes solvers are valid, or when the DSMC approach is required. Here,
DSMC results are compared with the analytical results for rarefied long-
channel flows in order to gain insight into validity of simple analytical
formulas. Volumetric flowrate at the inlet of the channels is found using the
mass flowrate equation (4.6) by considering only the first-order slip effects
(see Section 4.1.1). Predictions from this analytical relation as well as the
volumetric flowrates obtained from the DSMC simulations are presented in
Table 6.2.

For filters 1, 2, and 4, the simulated flowrates are smaller than the an-
alytical estimates by 50.8%, 7.3%, and 0.9%, respectively. The analytical
formula will tend to overestimate the flowrate because it ignores the en-
trance effects, and to underestimate the flowrate because it assumes a fully
developed flow. For filters 1, 2, and 4, the analytical estimates of flowrate
are larger than that of the DSMC predictions. This indicates that the
entrance effects are dominant, and they result in a decreased flowrate. In-
spection of the Knudsen number at their outlets show that filters 3 and
5 are in the transition and free-molecular flow regimes, respectively. For
filters 3 and 5, the flowrates obtained by the DSMC are larger than those
calculated using the analytical formula by 4.8% and 57.9%, respectively.
This difference can be attributed to the rarefaction effects. The slip veloc-
ity and the rarefaction effects are underestimated by the two-dimensional
analytical model. For Kn > 0.10, disagreements between the continuum
and DSMC predictions are expected. These simulations support the result
that for Kn < 0.10, the analytical approach is adequate for membranes
with long channels, and that in other cases, Navier–Stokes solvers with slip
boundary conditions will be adequate. For Kn > 0.10, DSMC simulations
are necessary to capture the rarefaction effects in short channels. In the case
of long channels, the unified model outlined in Section 4.2 can be used.
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FIGURE 6.29. Slip velocity on channel walls normalized with the local mean
velocity vo (line p7–p8 of Figure 6.27).

Effects of the Accommodation Coefficients

Incomplete accommodation is observed on very clean and smooth sur-
faces, or for cases in which the surface atoms are much heavier than the
gas molecules (see Section 2.2.2). Microfabrication techniques can provide
methods to engineer the surface material for achieving lower accommoda-
tion coefficients. To predict the effects of incomplete accommodation, flow
characteristics in microfilters are simulated using the Cercignani–Lampis
model for surface scattering (see Section 15.4). For the simulations, tangen-
tial and normal energy accommodation coefficients are taken to be equal
(σt = σn = σ) and uniform on all physical surfaces (G and J in Figure
6.27). Simulations for filter 1 are performed using σ = 0.75 and σ = 0.5.
The reduction in the accommodation coefficients results in various changes
in the flow. We observe in Figure 6.29 that incomplete accommodation in-
creases the slip velocities on channel surfaces; this is also the case on the
filter membrane surface, i.e., lines p4–p9 and p5–p10 in Figure 6.27. The
ratios of the slip velocity for σ = 0.75 and σ = 0.5 to the slip velocity for
fully accommodating surfaces (σ = 1) are 2.5 and 3.5, respectively.

The averge velocity obtained for filter 1 at σ = 1.0, σ = 0.75, and σ =
0.5 are 16.2, 18.0, and 19.5 m2/s), respectively. Therefore, the volumetric
flowrates for σ = 0.75 and σ = 0.5 are 11% and 20% larger than that
for the σ = 1.0 case, while the average velocity obtained for filter 3 at
σ = 1.0, σ = 0.75, and σ = 0.5, are 2.59, 4.35, and 5.74 m2/s), respectively.
Therefore, the volumetric flowrates for σ = 0.75 and σ = 0.5 are 65%
and 120% larger than that for the σ = 1.0 case. These results indicate
that for a given value of σ, the flowrate of filter 3 increases by a much
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larger percentage compared to the increase in flowrate of filter 1. The weak
dependence of flowrate on accommodation coefficients for filter 1 can be
explained by its small length-to-height ratio, which results in losses due to
the flow entrance effects. However, for filter 3, with larger length-to-height
ratio, the flowrate is limited by the interaction of the gas with the walls,
and an increase in the slip velocity increases the flowrate. The large increase
in the flowrate for low values of incomplete accommodation can be utilized
to design more efficient filters.

6.5.4 Summary
Gas flows through microfilters and short channels show significant dif-
ferences compared to the flows through long microchannels, (see Section
4.1.1). Microfilters often experience rarefaction, compressibility, and vis-
cous heating effects simultaneously. Since typically Re < 100, the inertial
and viscous forces are equally important. For example, simulations per-
formed in the 1 < Re < 15 range have shown that the values of viscous-
drag are about 50% of the form-drag. In addition, the filters have vari-
ous thicknesses, cross-sectional areas, side-wall shapes, and surface rough-
nesses. DSMC simulations have shown strong dependence of the volumetric
flowrate on the accommodation coefficients and the length-to-height ratio
of the filters. Despite the diverse geometric characteristics and complicated
physics of microfilter flows, the general form of the scaling laws presented
in equations (6.24)–(6.26) is useful. Similar scaling models, with different
coefficients determined by numerical simulations and validated by careful
experiments, can be employed for further developments.

6.6 Micropropulsion and Micronozzle Flows

The development of microspacecraft by NASA was motivated by the de-
sire to reduce launch masses, to increase launch rates, and reduce mission
risk (Mueller, 1997). A microspacecraft may contain only a single instru-
ment. If a fleet of several microspacecraft are launched instead of a single
larger spacecraft, mission flexibility is greatly increased, and the loss of
one or more microvehicles would not render the mission unsuccessful. The
microspacecraft could also be very useful for the next generation of global
positioning system and other low Earth orbit communicating systems.

Three different classes of microspacecraft have been proposed by (Mueller,
1997) depending on their size, mass, and power ranges. Class I spacecraft
have mass in the range 4–20 kg and use mostly conventional hardware
components with some possible MEMS components. The power density for
Class I is of order 1 W/kg, and characteristic dimensions are in the range of
0.3–0.4 m. Class II microspacecraft are based on MEMS components, and
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FIGURE 6.30. Sketch and typical dimensions in microns of a micronozzle.

they have mass of 1 kg and characteristic dimensions of order 10 cm. They
have extremely miniaturized propulsion systems, both for delta-v maneu-
vers and for altitude control. Finally, Class III refers to microspacecraft
with mass less then 1 kg and characteristic dimensions of order 3 mm or
less.

The most important component for such microspacecraft is the propul-
sion system, which in the new mission scenarios plays an even more impor-
tant role than previously. For example, propulsion capability is required on
board the microspacecraft to adjust its trajectory. This points to the need
for low thrust and quick response. The latter is expressed quantitatively
by the impulse bit (Ibit). This is the minimum impulse obtained once the
thruster is given the command to fire, and it is the integrated thrust over
the faster valve cycle time.

There are a number of micropropulsion designs built or proposed that
are reviewed by (Mueller, 1997) and (London, 1996). They range from ion
engines to hall thrusters to pulse plasma thrusters. These technologies have
been used mostly in the macro domain, but cold gas thrusters have been
recently miniaturized successfully, and similar plans exist for microplasma
thrusters (microPPTs) (Gulczinski et al., 2000). In particular, the cold gas
thruster offers a low Ibit and a thrust in the range from 1 µN to 0.2 N
(Bayt, 1999).

6.6.1 Micropropulsion Analysis
Micropropulsion subsystems consist primarily of thrusters, but they also
contain other MEMS components such as valves, tanks, and pressure reg-
ulators. In this section, we consider the performance of a micronozzle that
primarily determines the performance of the micropropulsion system. A
micronozzle has a converging section, a throat, and an expanding section
similar to the De Laval nozzles used in macro domain applications (see Fig-
ure 6.30). The value of Reynolds number at the nozzle throat is important,
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FIGURE 6.31. Micronozzle fabricated using the deep reactive ion etching tech-
nique (DRIE). The throat thickness is 19 µm and the depth is 308 µm. (Courtesy
of K. Breuer.)

since it determines the viscous flow losses. It is defined as

Ret =
ρtcsdt

µ0
,

where cs is the speed of sound, dt is the throat diameter, and the subscript
“0” refers to stagnation conditions. It is proportional to the stagnation
pressure p0, i.e.,

Ret ∼ p0dt

Tn
0

where the exponent (n) depends on the gas type. For low values of Ret the
efficiency of the nozzle is low, and since the targeted low values of thrust are
obtained readily at low Reynolds number, this becomes a difficult design
problem. Let us consider the thrust force given by

Ft ∝ p0 At,

where At is the throat area. If the throat is circular, then At ∼ d2
t , and

thus to obtain lower thrust levels, say by a factor of 100, the nozzle size has
to be reduced by a factor of 10. On the other hand, the Reynolds number
scales linearly with the diameter, and thus the induced losses are not as
great.

However, if the micronozzles are planar, fabricated by deep reactive ion
etching (DRIE) techniques (see Figure 6.31), then the thrust scales also
linearly with the characteristic dimensions, and so does the Reynolds num-
ber. Therefore, reducing the thrust by a factor of 100 will also reduce the
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Reynolds number by a factor of 100, and this will result in large inef-
ficiencies. For an extruded (two-dimensional) nozzle, such as the DRIE-
fabricated micronozzle, we can write the thrust in terms of the Reynolds
number as follows:

Ft ∼ ṀVexit ∼ ReµHVexit,

where Re = Ṁ
µH , and H is the height of the nozzle (large dimension). In such

nozzles we can increase the stagnation pressure p0 in order to increase the
Reynolds number. To maintain a constant value of the thrust, according to
the above equation the dimensions of the nozzle should be proportionally
decreased. The net gain is higher efficiency, which means that the amount
of propellant needed for a given mission decreases, and this leads to a
reduction of system mass. This approach increases significantly the ratio of
thrust to propulsion system mass with a reduction in scales.

With regard to the operating regime, the high-pressure DRIE-fabricated
micronozzle of (Bayt, 1999; Bayt and Breuer, 2000), is in the Reynolds
number range of order 1000, and the Knudsen number is less than 0.03. The
corresponding thrust levels are of order 10 mN. Lower-level thrusts would
require low chamber pressures, which would lead to lower Reynolds number
and higher Knudsen number. For thrust levels of 1 mN, for example, the
Reynolds number range is 100 to 1000 and the Knudsen number can have
values of order 1. In the following, we examine such effects and the resulting
performance of micronozzles.

An alternative expression for the thrust is given by

Ft = Ṁ · Isp · g0,

where
Isp =

Vexit

g0

defines the intrinsic specific impulse (secs), and g0 = 9.80 m/sec2 is the
gravitational acceleration at sea level. Isp is the primary performance in-
dicator of the micronozzle; as Isp increases, less propellant is required to
achieve a given thrust. The thrust Ft can be computed at the exit (e) of
the nozzle from

Ft =
∫

(ρeU
2
e + pe)dA.

Another measure of efficiency is the discharge mass efficiency, CD, which is
the ratio of the actual mass to the ideal mass discharged assuming inviscid
state, i.e., no losses.

An interesting limit of the specific impulse is obtained if we consider the
free-molecular flow (Kn → ∞), as in the work of Ketsdever et al. (1998).
In free-molecular flow, the thrust is obtained from

(Ft)FM =
p0

2
At =

n0kBT0

2
At,
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where n0 is the stagnation number density, T0 is the stagnation temper-
ature, and At is the nozzle area at the throat. The corresponding free-
molecular mass flow rate through the nozzle is

(Ṁ)FM = m
n0v̄

4
At = m

n0At

4

√
8kBT0

πM
,

where v̄ is the average thermal speed of the propellant molecules, and m is
the mass of the propellant molecule. We then obtain the specific impulse
in the limit of free-molecular flow as

(Isp)FM =
(Ft)FM

(Ṁ)FM g0
=

√
π
2

kB
M T0

g0
.

We can compare this value to the maximum possible value of Isp by con-
sidering the limit in equilibrium expansion, i.e.,

(Isp)L =

[
2γ

γ−1

(
kB
M

)
T0

]1/2

g0
,

and form the ratio
(Isp),FM

(Isp)L

=
[
π(γ − 1)

4γ

]1/2

.

This ratio is equal to 0.474 for γ = 1.4 and 0.562 for γ = 1.67.
This analysis has motivated Ketsdever et al. (1998) to design and opti-

mize a free-molecule microresistojet (FMMR); see Figure 6.32. The FMMR
is based on the transfer of energy into the propellant gas through molecu-
lar collisions with thin-film heated elements. The inlet conditions into the
expansion slot correspond to a Knudsen number of approximately one. It
was found in (Ketsdever et al., 1998), that the intrinsic Isp of the FMMR is
about 60% of the intrinsic efficiency of a typical micronozzle. However, the
proposed FMMR operates at very low stagnation pressures (50 to 500 Pa),
and from the systems-efficiency point of view this may be advantageous,
since, for example, the common problem of microvalve leakage is avoided.
An FMMR has been fabricated, and heat transfer and total power input
data have been obtained and presented in (Ketsdever et al., 2000a). For
highly rarefied flows, small expansion ratios are preferable to avoid large
shear losses. Different propellants can be used in FMMR, and the above
equation shows that Isp is highest for helium, followed by ammonia and
water vapor and then by argon. Specifically, DSMC results for argon re-
ported in (Ketsdever et al., 1998), show that a thrust of 1

4 mN is obtained
at Isp ≈ 45 sec. In the experiments presented in (Ketsdever et al., 1998),
argon was used as propellant, and the plenum pressure was 50 Pa. The
thrust chip was fabricated using DRIE with 40 expansion slots of w = 100
µm.
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FIGURE 6.32. Diagram of the free molecule microresistojet. The width of the
expansion slot w is much less than the mean free path in the stagnation chamber;
w = 100 µm. (Courtesy of A. Ketsdever.)

FIGURE 6.33. Free-molecule microresistojet: Specific impulse as a function of
Knudsen number for argon. (Courtesy of A. Ketsdever.)
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TABLE 6.3. Typical operating conditions and propulsion characteristics for dif-
ferent micronozzles.

Fabrication p0 (psi) Throat Re Ft (mN) Isp

(µm) (secs)
DRIE (Bayt, 1999) 85 19 3492 9.91 66.63
Conventional
(Grisnik et al., 1987) 3.32 640 3000 9.65 61.96
KOH
(Janson and Helvajian, 1997) 25 250 3258 9 < 56

A typical result for the specific impulse obtained using DSMC (Ketsde-
ver et al., 1998) is shown in Figure 6.33 at two different temperatures
as a function of Knudsen number. A comparison is made with results
from a micronozzle with a 20 µm throat, and inlet and outlet have ratios
16.8 and 19.8, respectively. The micronozzle results were obtained with
the continuum-based program GASP (Aerosoft Inc., Blacksburg Virginia,
1996), which solves the compressible Navier–Stokes equations. GASP over-
predicts values of specific impulse Isp, since rarefaction effects typically
cause lower values of Isp.

6.6.2 Rarefaction and Other Effects
There are several phenomena that affect the performance of micronozzle,
including rarefaction, viscosity, three-dimensionality, roughness, nonequi-
librium, and plume contamination. The relative effect of a specific phe-
nomenon depends primarily on the thrust level targeted. Therefore, to make
these contributions clearer we will refer to specific designs available in the
literature.

We start with the DRIE-fabricated planar micronozzles of (Bayt, 1999)
and (Bayt and Breuer, 2000). A baseline configuration has a nozzle throat of
20 µm, expansion ratio 25:1, etch depth 300 µm, and a nozzle divergence
angle of 20◦. In the ideal case of no losses, such a thruster operating at
stagnation pressure of p0 = 100 psi will produce thrust of Ft = 7 mN at
specific impulse Isp = 75 secs, while at p0 = 14.7 psi the thrust reduces
to Ft = 1 mN. However, these ideal operating points will be affected by
losses. For example, viscous losses could be substantial at p0 = 14.7 psi,
where the corresponding Reynolds number is 300, and less so at p = 300
psi, where the corresponding Reynolds number is 2040. In fact, significant
performance degradation was reported in (Bayt, 1999; Bayt and Breuer,
2000), for Re ≤ 1500 for most of the designs that they tested with nitrogen
as the propellant. Table 6.3 (taken from (Bayt, 1999)) summarizes results
of different micronozzles at similar thrust levels and in the same Reynolds
number range.

The nozzles fabricated by (Bayt and Breuer, 2000) were planar (see Fig-
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FIGURE 6.34. Mass discharge coefficient: comparisons between DSMC results
(circles) and experimental results in (Bayt and Breuer, 2000). (Courtesy of M.
Ivanov.)

ure 6.31), while the ones presented by (Grisnik et al., 1987) were axisym-
metric, and the one by (Janson and Helvajian, 1997) had a square throat.
In all cases a high Reynolds number is achieved, and the chamber pres-
sure is relatively high. This, in turn, implies that the rarefaction effects
are not dominant, with the possible exception in the results of (Grisnik
et al., 1987) corresponding to low stagnation pressure. However, in these
experiments the characteristic length scale is large, which implies reduced
values of Knudsen number as well.

Despite the continuum operating regime, both DSMC and Navier–Stokes
simulations overpredict significantly the thrust efficiency as well as the mass
discharge coefficient. This is shown in Figures 6.34 and 6.35 for a nozzle
with 34 µm throat and 7:1 expansion ratio fabricated by (Bayt, 1999)
and (Bayt and Breuer, 2000). The computational results in (Markelov and
Ivanov, 2001), utilized both two-dimensional and three-dimensional simu-
lations with the program SMILE, which is described below. Independent
two-dimensional simulations based on compressible Navier–Stokes equa-
tions performed in (Bayt, 1999) gave similar results.

More specifically, a comparison between two- and three-dimensional re-
sults by (Markelov and Ivanov, 2001) shows a decrease of the discharge
coefficient from 99.6% to 89.3%, and of thrust efficiency from 87.1% to
80.6%. However, in addition to these adverse three-dimensionality effects
there are other physical factors and experimental uncertainties that con-
tribute to this large overprediciton by simulation. The following is a list of
possible effects investigated systematically in (Bayt, 1999):

• Roughness,
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Re

FIGURE 6.35. Thrust coefficient defined as the ratio of actual to ideal thrust
force: comparisons between DSMC results (circles/squares) and experimen-
tal results in (Bayt and Breuer, 2000). The solid square corresponds to a
three-dimensional simulation. (Courtesy of M. Ivanov.)

• Transition to turbulence,

• Nonequilibrium, and

• Outflow conditions.

The main question regarding roughness is whether it can induce shocks.
This was examined by (Bayt, 1999) by considering the Mach number based
on the roughness height h, where

Mh ∝ Reh · Knh .

Therefore, if the product Reh · Knh is greater than one, then shocks may
form. In the experiments of Bayt, Reh ranges from 0.1 to 10, and Kn varies
between 0.1 and 5, and thus it is possible for this product to be greater
than one. However, for a shock to appear, the roughness height h has to be
larger than the height of the subsonic region, which does not seem to be
the case for Bayt’s nozzles, as corresponding simulations show. In addition,
transition to turbulence does not seem to occur, since the critical Reδ∗

for supersonic boundary layers is 250 (based on momentum thickness δ∗),
which is much larger than the Reδ∗ of the experiments. In Section 15.4,
we will show the effects of roughness corresponding to different models on
micronozzle performance.

The effects of nonequilibrium and associated “frozen losses” may come
about because of the short length of the nozzles, which results in a short
residence time for particles. There are two time scales associated with this
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process. The first relates to the relaxation time, which is the time for gas
particles to reach equilibrium. It is defined as

tr = nAcc̄,

where n is the number density of the gas, Ac is the collisional cross-sectional
area, and c̄ =

√
3RT is the mean molecular speed. At standard conditions

tr ≈ 1 nanosecond, and the residence time from the throat to exit is about
2 microseconds for a typical micronozzle tested by (Bayt, 1999; Bayt and
Breuer, 2000), so in this case the flow is in equilibrium. However, in the
supersonic portion of the nozzle the relaxation time could be comparable
to residence time for some conditions, and this may lead to strong nonequi-
librium effects. This, in turn, translates into losses of thermal energy, which
is converted into kinetic energy as the gas expands. Similar effects can be
induced by rotational nonequilibrium associated with a second time scale,
the rotational relaxation rate. This time scale may also be comparable to
the residence time and is larger inside the boundary layer. A rotational
frozen flow could have 15% less kinetic energy.

Finally, the effect of exit losses and of outflow boundary conditions may
be quite pronounced. Ivanov et al. (1999) have considered the effect of ex-
trapolated boundary conditions used at the outflow and noted a 5–10% loss
in efficiency if the plume is not modeled explicitly; similar results were ob-
tained for large nozzles where back-flow may occur (plume contamination)
(Gatsonis et al., 2000). Clearly, standard extrapolation boundary condi-
tions are questionable in micronozzles, with the core of inviscid flow rela-
tively small compared to external aerodynamics applications, where such
outflow boundary conditions are employed routinely.

We now turn to micronozzles with lower thrust level (< 1 mN). These
nozzles correspond to lower pressures, and therefore rarefaction effects have
to be accounted for in simulations. In general, in this regime, continuum
approaches overpredict the specific impulse even for high Reynolds num-
bers of order 1000. We start by considering the Rothe nozzle, which is
similar to the nozzle shown in the sketch of Figure 6.30, but it has a throat
of 2.5–5 mm and a chamber pressure less than 1 atm, with the Reynolds
number in the range 55 to 550. The subsonic and supersonic portions of the
Rothe nozzle are cones with half-angles 30◦ and 20◦, respectively, and with
longitudinal radius of curvature at the throat equal to half of the throat
radius. The gas in Rothe’s experiments was nitrogen at T = 300 K. In
this axisymmetric nozzle, measurements of temperature and density were
obtained along the centerline and along the radial directions at various sta-
tions (Rothe, 1971). At Re < 150, the exit temperature was increasing due
to viscous shear force, causing the thermalization of flow energy. Although
this is not strictly a micronozzle, the availability of detailed experimental
results (Rothe, 1971) has made this a benchmark case for validating DSMC
programs before other micronozzles are tested.

In the following we present simulations performed by (Ivanov et al., 1999)
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FIGURE 6.36. Rothe nozzle (Ret = 270): density isocontours based on atomistic
(solid lines: SMILE) and continuum (dashed lines: GASP) simulations. (Courtesy
of M. Ivanov.)

for throat Reynolds numbers in the range 120–270. The DSMC program
SMILE developed by Ivanov and collaborators combines majorant and free
cell schemes (see also Section 15.1). Each cell has its own interaction pa-
rameter that governs local collisions via an adaptive scheme. It employs
two different grids, one for collisions and another one for sampling the gas
dynamics parameters, with the latter having fewer cells than the former. In
addition, other features such as spatial weights for axisymmetric domains
that distribute molecules closer to the axis, adaptive and asynchronous
domain decomposition, and particle doubling make SMILE a particularly
effective program for simulating micronozzle flows. The last feature in-
troduces successively an increased number of particles, so it accelerates
convergence to stationary states.

The density contours obtained with SMILE for Ret = 270 are plotted
in Figure 6.36 (Ivanov et al., 1999). The dashed lines show corresponding
results from the program GASP (Aerosoft Inc., Blacksburg Virginia, 1996)
based on the compressible Navier–Stokes equations. Corresponding Mach
line contours and differences between continuum and rarefied flows are
shown in Figure 6.37. In Figure 6.38 a comparison is included with Rothe’s
experimental data that shows good agreement with the simulations but
deviations from the ideal case.

Ivanov et al. (1999) have also examined the performance of a micronozzle
with an about 27-micron throat and 15◦ diverging half-angle. It was de-
signed so that at p0 = 10 atm gave 1 mN thrust at stagnation temperature
T0 = 297 K. The stagnation pressure was varied from 1 to 10 atm, and cor-
respondingly, the Reynolds number varied from 130 to 1300. This tenfold
increase in Ret results in specific impulse efficiency change from 90% to 95%
compared with the ideal case. A typical result obtained by Ivanov et al. is
shown in Figure 6.39 in terms of the specific impulse along the micronozzle
axis. Again, comparisons between continuum and atomistic predictions are
made, similar to those for the results for the Rothe nozzle. Simulations pre-
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FIGURE 6.37. Rothe nozzle (Ret = 270): Mach isocontours based on atomistic
(solid line: SMILE) and continuum (dashed line: GASP) simulations. (Courtesy
of M. Ivanov).

FIGURE 6.38. Temperature distribution along the Rothe nozzle axis based on
atomistic (SMILE) and continuum (GASP) simulations (Ret = 270). (Courtesy
of M. Ivanov.)

dict that Isp is greater than the ideal for low Reynolds number (Ret = 130),
which is a nonphysical result. Even at large pressures there seems to be a
large effect of rarefaction. For low pressure, the maximum Isp occurs up-
stream of the nozzle exit. As pointed out by Ivanov et al.(1999), this is due
to relatively long diverging section which leads to excessive viscous losses.
A shorter expansion nozzle would be advantageous, and would also reduce
back-flow contamination due to plume at the nozzle exit.
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Part II:
Liquid Flows



7
Electrokinetic Flows

Rapid developments in microfabrication technologies have enabled a vari-
ety of microfluidic systems consisting of valves, pumps, and mixers to be
utilized effectively for medical, pharmaceutical, defense, and environmental
monitoring applications. Examples of such applications are drug delivery,
DNA analysis/sequencing systems, and biological/chemical agent detection
sensors on microchips. These microfluidic systems require seamless integra-
tion of sample collection, separation, biological and chemical detection units
with fluid pumping, flow control elements, and the necessary electronics on
a single microchip. The reliability and compliance of these components are
important for successful design and operation of the entire microfluidic
system. In particular, subsystems like microvalves and micropumps with
moving components are complicated to design and fabricate, and they are
prone to mechanical failure due to fatigue and fabrication defects.

In this chapter, we review and explore ideas of microflow control ele-
ments using electrokinetic flow control schemes, which do not require any
moving components. We cover electroosmotic and electrophoretic trans-
port in detail. We also present dielectrophoresis, which enables separation
and detection of similar size particles based on their polarizability. Theo-
retical treatments of these electrokinetic transport mechanisms are kept at
an introductory level for brevity. For further information, the reader is re-
ferred to classical textbooks (Probstein, 1994; Hunter, 1981; Melvin, 1987;
Righetti, 1983; Shaw, 1980; Westermeier, 1990; Pohl, 1978). Other reviews
of electrokinetically driven liquid microflows can be found in (Stone et al.,
2004; Gad-El-Hak, 2001; Nguyen and Wereley, 2003; Morgan and Green,
2003). Also, in Chapter 12 we focus on electroosmotic flows in nanochan-
nels.
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7.1 Electrokinetic Effects

The electrokinetic phenomena can be divided into the following four cate-
gories (Probstein, 1994):

• Electroosmosis is the motion of ionized liquid relative to the station-
ary charged surface by an applied electric field.

• Electrophoresis is the motion of the charged surfaces and macro-
molecules relative to the stationary liquid by an applied electric field.

• Streaming potential is the electric field created by the motion of ion-
ized fluid along stationary charged surfaces (the opposite of electroos-
mosis).

• Sedimentation potential is the electric field created by the motion
of charged particles relative to a stationary liquid (the opposite of
electrophoresis).

Electrokinetic effects are important for micro- and nanoscale transport ap-
plications. For example, electroosmosis enables fluid pumping and flow
control using electric fields, eliminating the need for mechanical pumps
or valves with moving components. Furthermore, comparisons between the
electroosmotically and pressure-driven flows reveal several important differ-
ences. First, the volumetric flowrate (per channel width) in electroosmotic
flows varies linearly with the channel height (h), enabling useful flowrates in
microchannels and nanochannels with low-driving electric fields. However,
the flowrate (per unit width) in pressure-driven flows varies as the cube of
the channel height (h3). This requires unrealistically large pressure drops,
making pressure-driven flows impractical for nanochannel applications. Sec-
ond, the velocity profiles for electroosmotic flows are (mostly) uniform
(plug-like), while the pressure-driven flow velocity profiles are parabolic.
This difference has significant effects in species transport and dispersion in
microfluidic applications (see Section 7.5.3).

Typical physical and electrochemical conditions employed in electroki-
netic flows are presented in Table 7.1. Since we are mostly interested in
bulk fluid and particle/species transport, we cover electroosmotic and elec-
trophoretic transport in detail. We also present dielectrophoresis, which
enables separation and detection of similar-size particles based on their
polarizability.

In the rest of this section we present a brief review of historical devel-
opments and recent research on electrokinetic flows. Liquid flows in capil-
lary porous systems under the influence of external electric fields have at-
tracted the attention of many scientists since the discovery of electrokinetic
transport (Reuss, 1809). In 1870, Helmholtz developed the electric double
layer theory, which relates the electrical and flow parameters for electroki-
netic transport. Electroosmosis has been used for chemistry applications
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Parameter Parameter range
Typical channel thickness, h (µm) 0.01 ∼ 300
Electrolyte concentration, no (mM) 10 ∼ 0.001

Debye length, λD (nm) 1 ∼ 100
Zeta potential, ζ (mV) ±1 ∼ ±100

Electric field, E (V/mm) 1 ∼ 100
Electroosmotic Velocity, U (mm/s) < 2

Reynolds number, Re 10−4 ∼ 1

TABLE 7.1. Typical physical and electrochemical parameters utilized in elec-
trokinetically driven phenomena.

since the late 1930s. Modern theoretical developments include solution of
mixed electroosmotic/pressure-driven flows in very thin two-dimensional
slits (Burgreen and Nakache, 1964; Ohshima and Kondo, 1990), as well as
in thin cylindrical capillaries (Rice and Whitehead, 1965; Lo and Chan,
1994; Keh and Liu, 1995). In 1952, Overbeek proposed irrotationality of
internal electroosmotic flows for arbitrarily shaped geometries (Overbeek,
1952). This was followed by the ideal electroosmosis concept, i.e., elec-
troosmotic flow in the absence of externally imposed pressure gradients,
which results in the similarity between the electric and velocity fields un-
der specific outer field boundary conditions (Cummings et al., 2000). Also,
Santiago has shown that ideal electroosmosis is observed for low Reynolds
number steady flows. However, unsteady or high Reynolds number flows
violate this condition (Santiago, 2001). The analytical solution of unsteady
electroosmotic flows obtained in Section 7.4.2 confirms these predictions.

Next we review some of the experimental work; (Molho et al., 1998)
presented measurements of electroosmotically driven microcapillary flows,
and they have shown that Joule heating (see Section 7.4.6) and the cor-
responding changes in fluid viscosity are secondary effects compared to
the streamwise pressure gradients. (Paul et al., 1998) have used a caged
dye fluorescence technique to capture the flow patterns in mixed elec-
troosmotic/pressure driven microchannel flows. (Cummings et al., 1999)
have used microparticle image velocimetry (µPIV) techniques to obtain
velocity distribution in straight channels and cross-flow junctions. (Kim
et al., 2002) have also developed a µPIV technique to measure mixed
electroosmotic/pressure-driven flows in cross-flow and T-junctions. (Singh
et al., 2001) developed unilamellar liposome particles to trace microflows.
Unlike the traditional latex flow marker, these contain fluorescent material
both in the core and at the surface of the marker; hence this technique
provides higher fluorescence intensity. (Herr et al., 2000) reported velocity
and dispersion rate measurements for electroosmotic flows through cylin-
drical capillaries with nonuniform surface-charge distribution. They have
used various surface materials as well as polymeric coatings to obtain dif-
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ferent surface-charge distributions by modifying the local zeta potential.
Experiments performed using the caged-dye fluorescence technique indi-
cated strong dependence of fluid velocity and dispersion rate on the surface
charge distribution (Herr et al., 2000). In electrokinetic flows, fluid disper-
sion may also be caused by a mismatch in the electroosmotic flow rate and
electric field. It can also be induced by Joule heating (see Section 7.4.6).

There have been several studies on numerical simulation of electroos-
motic transport. (Yang and Li, 1998) developed a numerical algorithm
based on the Debye–Hückel linearization and studied electrokinetic effects
in pressure-driven liquid flows. (Patankar and Hu, 1998) developed a finite-
volume technique and studied electroosmotic injection at the intersection
of two channels. Their numerical results for Re > 1 flows showed sig-
nificant inertial effects, which is in agreement with the theoretical work
of (Santiago, 2001). (Bianchi et al., 2000) used a finite-element method
to model electroosmotic flow in a T-channel junction. Beskok and col-
leagues have developed a spectral element algorithm for solution of mixed
electroosmotic/pressure-driven flows in complex geometries (Dutta et al.,
2002a; Dutta et al., 2002b). Aluru and coworkers developed meshless meth-
ods as well as compact methods to study steady electroosmotic flows in
complex microchannel geometries (Mitchell et al., 2000; Qiao and Aluru,
2002). They also investigated the validity of the Poisson–Boltzmann equa-
tion in nanochannels using molecular dynamics (MD) simulations and cou-
pled these MD results with a modified hydrodynamic continuum model;
see Chapter 12 and also (Qiao and Aluru, 2003b; Qiao and Aluru, 2003d),
for details.

7.2 The Electric Double Layer (EDL)

Electrokinetic phenomena are present due to the electric double layer (EDL),
which forms as a result of the interaction of ionized solution with static
charges on dielectric surfaces (Hunter, 1981). For example, when silica is
in contact with an aqueous solution, its surface hydrolyzes to form silanol
surface groups. These groups may be positively charged as Si-OH+

2 , neutral
as Si-OH, or negatively charged as Si-O−, depending on the pH value of
the electrolyte solution. If the channel surface is negatively charged (such
as in the case of deionized water), the positive ions are attracted toward
the surface, and the negative ions are repelled from the surface, keeping the
bulk of the liquid, far away from the wall, electrically neutral. A schematic
of ion distribution in the buffer solution is shown in Figure 7.1. The ions of
opposite charge cluster immediately near the wall, forming the Stern layer,
a layer of typical thickness of one ionic diameter. The ions within the Stern
layer are attracted to the wall with very strong electrostatic forces; hence
they are immobilized near the charged surface, as demonstrated also by
molecular dynamics studies (Lyklema et al., 1998). Immediately after the
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Stern layer there forms the diffuse layer, where the ion density variation
obeys the Boltzmann distribution, consistent with the derivation based on
statistical-mechanical considerations (Feynman et al., 1977). Hence, the
EDL consists of two distinct zones: Stern and diffuse layers. The extent of
the EDL can be approximately predicted by the Debye length (λD), which
is defined as the distance from the wall, where the electrokinetic poten-
tial energy is equal to the thermal energy. The Debye length depends on
the molar concentration of the ionized fluid, and its thickness λD can be
estimated using the Debye–Hückel parameter (ω):

ω =
1

λD
=

√
e2Σiniz2

i

εεokBT
, (7.1)

where n is the concentration, kB is the Boltzmann constant, e is the electron
charge, z is the valence, T is the temperature, εo is the dielectric permittiv-
ity of vacuum, and ε is the dielectric constant of the solvent. The subscript
i indicates the ith species. Using equation (7.1) and assuming symmetric
electrolyte at no = 1.0 × 10−2, 1.0 × 10−5, and 1.0 × 10−6M(≡ Mole/liter),
we obtain Debye lengths of λD = 3 nm, 100 nm and 300 nm, respectively.

Ion distribution due to the EDL can be characterized using an electroki-
netic (electric) potential ψ. Since the oppositely charged ions in the Stern
layer shield some of the electric charges on the surface, the electrokinetic
potential drops rapidly across the Stern layer. The value of ψ at the edge
of the Stern layer is known as the zeta potential (ζ). For most practical
cases, we can employ the zeta potential to describe electrokinetic flows
rather than the wall potential ψ0 (See Figure 7.1). Ion distribution in the
diffuse layer results in a net electric charge, which can be related to the
electrokinetic potential as follows:

∇2ψ =
−ρe

εεo
. (7.2)

The electric charge density ρe is given by

ρe = F
∑

zini, (7.3)

where F is Faraday’s constant. Here we emphasize that:

• The net electric charge contained in the diffuse layer is the primary
reason for electrokinetic effects, where charged ions or particles can
be mobilized by externally applied electric fields.

If we assume a symmetric electrolyte of equal valence that is in equilibrium
with the charged surface, equation (7.3) leads to a Boltzmann distribution,
resulting in the Poisson–Boltzmann equation

∇2(ψ∗) = β sinh(αψ∗), (7.4)
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FIGURE 7.1. Schematic diagram of the electric double layer (EDL) next to a
negatively charged solid surface. Here ψ is the electrokinetic potential, ψo is the
surface electric potential, ζ is the zeta potential, and y is the distance measured
from the wall. The Debye length and the EDL thickness are shown by λD and
EDL, respectively.

where ψ∗(= ψ/ζ) is the electrokinetic potential normalized with the zeta
potential ζ, and α is the ionic energy parameter given by

α = ezζ/kBT. (7.5)

At 20◦C, α = 1 corresponds to 25.4 mV. The variable β relates the ionic
energy parameter α and the characteristic channel length (flow dimension)
h to the Debye–Hückel parameter ω in equation (7.1) as follows:

β =
(ωh)2

α
.

We must note that for small zeta potential (ζ ≤ 25 mV), it is possible to
linearize the right-hand side of the Poisson–Boltzmann equation (7.4) via
a Taylor series expansion. This results in the Debye–Hückel approximation

∇2(ψ∗) = βαψ∗. (7.6)

In equation (7.4), we presented the Poisson–Boltzmann equation in non
dimensional form. Let us consider a two-dimensional channel and assume
that the zeta potential ζ is known, and that it remains constant along the
channel. Under these conditions equation (7.4) can be simplified in the
following form:

d2ψ∗

dη2 = β sinh (αψ∗) , (7.7)
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where η = y/h and h is the half-channel height. Multiplying both sides of
this equation by (2dψ∗

dη ), and integrating with respect to η, the following
relation is obtained:

dψ∗(η)
dη

=

√
β

α
[2 cosh(αψ∗) − 2 cosh(αψ∗

c )]
1
2 , (7.8)

where both the electric potential and its spatial gradient at point η are
represented as a function of the electric potential at the channel center
(i.e., ψ∗

c = ψ∗
η=0).

(Burgreen and Nakache, 1964) obtained an analytical solution of (7.7)
in terms of an elliptic integral of the first kind. Their work presents the
potential distribution as a function of the Debye length λD and the ionic
energy parameter α. It was shown by (Dutta and Beskok, 2001a) that for
α ≥ 1 and λD � h the electric potential in the middle of the channel
is practically zero. Hence, as ψ∗

c → 0 the last term in equation (7.8) is
simplified, and using the identity cosh(p) = 2 sinh2(p/2)+1, equation (7.8)
can be integrated once more, resulting in the solution

ψ∗(η∗) =
4
α

tanh−1
[
tanh

(α

4

)
exp

(
−
√

αβ η∗
)]

, (7.9)

where η∗ is the distance from the wall (i.e., η∗ = 1 − |η|).
In Figure 7.2, a numerical solution of the electroosmotic potential distri-

bution as a function of various α and β values is presented. The left and
right figures show the potential distributions for α = 1 and α = 10, respec-
tively, for various values of β. For α = 1 and β < 100 the EDL is quite
thick, and it covers the entire channel. As the value of β is increased, the
electric double layer is confined to a zone near the channel walls, resulting
in sharp variations in the electric potential. Comparisons of α = 1 and
α = 10 cases at the same value of β show faster decay of the electroosmotic
potential for increased values of α.

7.2.1 Near-Wall Potential Distribution
The potential distribution in equation (7.9) can also be represented as a
function of the near-wall parameter χ = y′ω, where y′ = h − y is the
distance from the wall, and ω is the Debye–Hückel parameter given by
equation (7.1). Since ωh =

√
αβ, the near-wall scaling parameter (χ) and

the nondimensional distance from the wall (η∗ = 1− η) can be represented
in terms of each other (i.e., χ =

√
αβη∗). Based on this, equation (7.9) can

be simplified to

ψ∗ =
4
α

tanh−1
[
tanh

(α

4

)
exp (−χ)

]
. (7.10)

It is clear that the inner layer scaling of the potential distribution is inde-
pendent of β for λD � h. In Figure 7.3 the near-wall potential distribution
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FIGURE 7.2. Variation of normalized electroosmotic potential ψ∗ across half of
a channel for various values of α and β.

is presented as a function of χ for several α values. We observe that the
electroosmotic potential decays to zero with increased χ for all these cases.
The decay rate can be quantified by presenting a logarithmic plot of the
electroosmotic potential in the near-wall region as a function of χ, as shown
in Figure 7.3 (right). A careful examination of Figure 7.3 (right) shows ex-
ponential decay of the electroosmotic potential with slope −1 for χ > 2.
This result can be easily verified by expanding equation (7.10) for χ > 2,
where tanh (α/4) ≤ 1, and exp(−χ) � 1. Under these conditions

ψ∗(χ) ≈ 4
α

tanh
(α

4

)
exp (−χ). (7.11)

In analogy to the 99% boundary layer thickness in traditional fluid me-
chanics, an effective EDL thickness (δ99) can be defined as the distance
from the wall (in terms of λD) at which the electroosmotic potential decays
to 1% of its original value (Dutta and Beskok, 2001a). The effective EDL
thickness as a function of the ionic energy parameter α is presented in Ta-
ble 7.2. We can calculate the value of δ99 in terms of the η∗ coordinates by
dividing the value of δ99 given in Table 7.2 by

√
αβ.

TABLE 7.2. Variation of the effective EDL thickness δ99 and the EDL displace-
ment thickness δ∗ as a function of the ionic energy parameter α. The values of
δ99 and δ∗ are given in terms of the Debye length λD.

α 1 3 5 7 10
δ99 4.5846 4.439 4.2175 3.9852 3.6756
δ∗ 0.98635 0.891567 0.75670 0.627027 0.47731
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FIGURE 7.3. Electrosmotic potential distribution within the electric double layer
(left) and its logarithmic scaling (right) as a function of the inner-layer scale
χ = ωy′.

7.3 Governing Equations

Assuming incompressible Newtonian fluid with constant viscosity, the bulk
fluid motion is governed by the incompressible Navier–Stokes equations

ρf

(
∂u
∂t

+ (u · ∇)u
)

= −∇p + µ∇2u + fEK, (7.12)

where p is the pressure, u is a divergence-free velocity field (∇ · u = 0)
subject to the no-slip boundary conditions on the walls, ρf is the fluid
density, and fEK is the electrokinetic body force. A general equation for
the electrokinetic force per unit volume is given by (Stratton, 1941)

fEK = ρeE − 1
2
E · Eεo∇ε +

εo
2

∇
(

ρf
∂ε

∂ρf
E · E

)
, (7.13)

where E is the externally applied electric field. The last term shows permit-
tivity variations with density, and it is especially important at liquid/gas
interfaces as well as in ionized gas flows (Stratton, 1941). For our purposes,
we will assume an incompressible medium with constant electric permit-
tivity. Hence we consider only the contribution of the first term (ρeE).

The species conservation equation for a multicomponent fluid, in the
absence of chemical reactions, can be expressed as

∂ni

∂t
+ ∇ · ji = 0, (7.14)

where ni is the concentration of the ith species flux, given by

ji = −Di∇ni + ni[u + µEK,iE], (7.15)
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where Di is the diffusion coefficient and µEK is the electrokinetic mobility.
The first term on the right-hand side corresponds to molecular diffusion flux
due to the concentration gradient, while the second term corresponds to
convection due to bulk fluid motion with velocity u. The following term rep-
resents transport due to the electrokinetic effects. In general, the electroki-
netic mobility (µEK) includes both the electroosmotic and electrophoretic
effects (Cummings, 2001; Ermakov et al., 1998). Mobility is related to the
electrokinetic migration velocity uEK by

uEK = µEKE, (7.16)

and it depends on the physical and chemical properties of the particle or
surface and the suspending fluid.

The electroosmotic mobility for infinitesimally thin EDL is given by the
Helmholtz–Smoluchowski relation (Hunter, 1981)

µEO =
−ζε

µ
, (7.17)

where ζ is the zeta potential. Using the electroosmotic mobility, we obtain
the Helmholtz–Smoluchowski electroosmotic velocity (also indicated as uHS
in equation (7.24))

uEO = µEOE =
−ζε

µ
E. (7.18)

The negative sign is due to the use of surface zeta potential. For exam-
ple, for a negatively charged surface (ζ < 0), the EDL will be positively
charged, and the resulting electroosmotic motion will be toward the cath-
ode, as shown schematically in Figure 7.4. To give an idea of the typical
mobility magnitudes, we present in Figure 7.5 the electroosmotic mobility
of sodium tetraborate buffer as a function of the buffer concentration (Sadr
et al., 2004). The experiments were performed in fused silica and quartz
microchannels, with heights ranging from 5µm to 25µm, under electric
fields E ≤ 4.8 kV/m and buffer concentration (C) of 0.19 ≤ C ≤ 36 mM.
The experimental results indicate significant variations in the electroos-
motic mobility as a function of the buffer concentration, consistent with
the theoretical predictions in (Conlisk et al., 2002).

The electrophoretic mobility for spherical colloidal particles with uniform
zeta potential is (Hunter, 1981)

µEP =
2ζε

3µ
, (7.19)

where the 2/3 coefficient is appropriate for infinitesimally thin EDL con-
ditions. The reader is referred to (O’Brien and White, 1978), for further
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FIGURE 7.4. A schematic view of electroosmotic and electrophoretic transport
processes.

FIGURE 7.5. Electroosmotic mobility variation as a function of molar concentra-
tion (C) for sodium tetraborate buffer (Sadr et al., 2004). Experimental results
are shown by squares, while the theoretical predictions are indicated by ×. (Cour-
tesy of A.T. Conlisk.)

details about the electrophoretic mobility and its relation to the zeta po-
tential and the particle charge. For most practical applications, the elec-
trophoretic mobility is determined experimentally, and for a given electric
field, it results in an electrophoretic migration velocity of

uEP = µEPE. (7.20)

Based on this, a positively charged particle (ζ > 0) that is free to move
will migrate towards the cathode, as schematically shown in Figure 7.4.
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7.4 Electroosmotic Flows

Electroosmotic flow is generated due to the interactions of ions in the EDL
with an externally applied electric field (E). Nonzero ion density within
the EDL results in net ion migration toward the oppositely charged elec-
trode, dragging the viscous fluid with it. This effect is characterized by the
electroosmotic body force term in the Navier–Stokes equation (7.12). The
externally applied electric field can be represented as

E = −∇φ,

where φ is the electrostatic potential. Assuming the laws of electrostatics,
the potential obeys

∇ · (σ∇φ) = 0, (7.21)

where σ is the electric conductivity. The right-hand side of the equation is
zero, since the electric charge density (ρe) contained in the EDL is already
included in equation (7.2). The external electric field is subject to the in-
sulating boundary conditions (∇φ ·n = 0) on the walls. The zeta potential
is assumed to be uniform for all surfaces.

The main simplifying assumptions and approximations are as follows:

1. The fluid viscosity is independent of the shear rate; i.e., Newtonian
fluid is assumed.

2. The fluid viscosity is independent of the local electric field strength.
This condition is an approximation. Since the ion concentration and
the electric field strength within the EDL are increased, the viscosity
of the fluid may be affected. However, such effects are neglected in
the current analysis, which considers only dilute solutions; in Chapter
12 we consider such effects for nanochannels.

3. The Poisson–Boltzmann equation (7.4) is valid. Hence the ion con-
vection effects are negligible.

4. The solvent is continuous, and its permittivity is not affected by the
overall and local electric field strength.

5. The ions are point charges.

7.4.1 Channel Flows
In this section mixed electroosmotic/pressure-driven flows in straight mi-
crochannels are analyzed for channel heights (h) much smaller than the
channel width (W ). Therefore, the flow can be treated as two-dimensional,
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FIGURE 7.6. Schematic view of a mixed electroosmotic/pressure-driven flow
channel. The inlet and exit portions of the channel have negligible electroosmotic
effects.

as shown in Figure 7.6. For simplicity, fully developed steady flow with no-
slip boundary conditions is assumed. The streamwise momentum equation
is

∂p

∂x
= µ

∂2u

∂y2 + ρeEx, (7.22)

where u is the streamwise velocity and Ex = −dφ/dx. Using equation (7.7)
and (7.4) for ρe we obtain

∂p

∂x
= µ

∂2u

∂y2 − εEx
d2ψ

dy2 . (7.23)

This equation is linear, and thus we can decompose the velocity field into
two parts:

u = uPois + uEO,

where uPois corresponds to the pressure-driven channel flow velocity (i.e.,
plane Poiseuille flow), and uEO is the electroosmotic flow velocity. In the
absence of externally imposed pressure gradients, uPois = 0. Hence, the
viscous diffusion terms are balanced by the electroosmotic forces. This leads
to the Helmholtz–Smoluchowski electroosmotic velocity uHS (Probstein,
1994):

uHS = −ζεEx

µ
. (7.24)

From nondimensionalizing equation (7.23), the streamwise momentum
equation becomes

∂P ∗

∂ξ
=

∂2U

∂η2 +
d2ψ∗

dη2 , (7.25)

where, U = u
uHS

, P ∗ = p
µuHS/h , and ξ = x/h. Here the pressure is normal-

ized by viscous forces rather than the dynamic head, consistent with the
Stokes flow formulation (see Section 2.1).
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In the case of zero net pressure gradient we integrate equation (7.25) to
obtain (Burgreen and Nakache, 1964)

U(η) = 1 − ψ∗(η). (7.26)

Figure 7.2 (right vertical axis) shows the velocity variation in pure elec-
troosmotic flows for various values of α and β. As shown in the plot, in the
limit of small Debye lengths the electroosmotic potential ψ∗ decays very
fast within the thin electric double layer, and a uniform pluglike velocity
profile is obtained in most of the channel. The plug flow behavior has been
observed in various experiments (Paul et al., 1998; Herr et al., 2000).

For the mixed electroosmotic/pressure-driven flows, the superposition
principle for linear equations is used to obtain the following nondimensional
velocity profile (Dutta and Beskok, 2001a):

U(η) = −1
2

dP ∗

dξ

(
1 − η2)+ 1 − ψ∗(η), (7.27)

where dP ∗
dξ corresponds to the pressure gradient in the mixed electroos-

motic/pressure-driven flow regime. Substituting the solution for ψ∗ from
equation (7.9), we obtain an analytical formula for the velocity distribution.
In Figure 7.7 velocity profiles under various pressure gradients are shown.
The case for dP ∗

dξ = 0 corresponds to a pure pluglike flow, and the cases
dP ∗
dξ < 0 and dP ∗

dξ > 0 correspond to flow with favorable and adverse
pressure gradients, respectively.

In order to obtain the mass flowrate, we integrate the velocity and
the electroosmotic potential distribution across the channel (see equation
(7.27)). This can be cumbersome in the η-coordinate system, where ψ∗

is a function of both α and β, but in the χ-coordinate system, ψ∗ is a
function only of α. In (Dutta and Beskok, 2001a), the electric double layer
displacement thickness defined δ∗ was in analogy with the boundary layer
displacement thickness in fluid mechanics in the following form:

δ∗ =
∫ χ̂

0
ψ∗dχ, (7.28)

where χ̂ is a large enough distance to include variations in ψ∗ as observed
from Figure 7.3. For example, χ̂ ≈ 10 is sufficient to accurately define δ∗.
Typical values of δ∗ as a function of α are presented in Table 7.2.

• The physical meaning of δ∗ is that it expresses the volumetric flowrate
defect due to the velocity distribution within the EDL.

Integration of the ψ∗ term in equation (7.27) is performed using equation
(7.28), where∫ 1

−1
ψ∗dη = 2

∫ 1

0
ψ∗dη =

2√
αβ

∫ χ̂

0
ψ∗dχ =

2δ∗
√

αβ
.
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The resulting volumetric flowrate per channel width, normalized by huHS,
becomes

Q̇ = −2
3

dP ∗

dξ
+ 2

(
1 − δ∗

√
αβ

)
. (7.29)

Since most of the microfluidic experiments are performed by imposing a
certain amount of pressure drop along the microchannel, we use equation
(7.29) to correlate the volumetric flowrate with the imposed pressure drop.
Also, for applications with specified volumetric flowrate, one can always
obtain the resulting pressure variation along the channel using equation
(7.29).

The shear stress on the wall for the mixed electroosmotic/pressure-driven
flow region is found by differentiating (7.27) with respect to η, and utilizing
equation (7.8), which results in

τ∗
w =

√
β

α

√
2 cosh(α) − 2 cosh(αψc) − dP ∗

dξ
. (7.30)

This is an implicit exact relation under the assumptions of our analysis,
which requires ψ∗

c . Assuming that ψ∗
c = 0 (valid for α ≥ 1 and λD � h),

the following approximate relation can be found:

τ∗
w =

√
β

α

√
2 cosh(α) − 2 − dP ∗

dξ
. (7.31)

The first term on the right-hand-side is due to the variation of velocity
within the EDL, while the second term is due to the parabolic velocity
profile. The shear stress in the mixed electroosmotic/pressure-driven flow
region is enhanced due to the presence of the EDL.

The aforementioned analytical results can be used to validate the numer-
ical computations. In the following we demonstrate the mixed electroos-
motic/pressure-driven flows in a channel that is made out of two different
materials. The first material exhibits negligible electroosmotic effects, and
it is used at the entry and exit portions of the channel. The second mate-
rial, on the other hand, exhibits strong electroosmotic effects, and it is used
in the middle section of the channel. This configuration is shown in Figure
7.6. It may be possible to fabricate such a microchannel by using different
materials on various portions of the channel surface. In practice, it is also
possible to obtain variations in the wall potential due to contamination in
the capillary walls, variations in the wall coating, or gradients in the buffer
pH, as discussed in Section 7.4.7. Therefore, the proposed configuration
has some practical relevance, and it is a suitable testbed to study mixed
electroosmotic/pressure-driven flows.

In the simulations, volumetric flowrate at the channel entrance is speci-
fied, and the corresponding velocity and pressure distributions in the rest
of the channel are calculated (Dutta et al., 2002b). In order to eliminate the
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channel entrance effects, a parabolic velocity profile at the inlet with a max-
imum inlet velocity of Uin = uin/uHS is specified. It is possible to generate
the desired pressure gradients in the mixed electroosmotic/pressure-driven
zone using specific values of Uin. The numerical simulations are performed
for Re = 0.005, where Re is based on the average channel velocity and the
channel half-height. In the results that follow, the streamwise electric field
strength and the EDL properties are constant at α = 1 (corresponding to
ζ = 25.4 mV) and β = 10,000. Therefore, the Debye length in the simula-
tions is one-hundredth of the channel half-height. The entire flow domain,
including the EDL, is resolved in the simulations.

Figure 7.7 presents the nondimensional pressure distribution along the
channels for various values of Uin. This numerical modeling employs zero
gauge pressure at the channel outlet. Therefore, all numerical results show
zero gauge pressure at the exit. The entrance and exit portions of the chan-
nels are purely pressure-driven, and the electroosmotic forces are present
only for 3.1 ≤ ξ ≤ 6.2. The effective electric field is in the positive stream-
wise direction. Using equation (7.29) we estimate the theoretical value of
Uin, which results in a desired pressure gradient in the mixed region. For
example, the theoretical value of Uin = 1.485 for α = 1 and β = 10,000
gives zero pressure gradient in the mixed electroosmotic/pressure-driven
flow region.

The corresponding velocity profiles across the channel at ξ = 4.5 are
presented in Figure 7.7 (right plot). A pluglike velocity profile is observed
for Uin = 1.485, as predicted by the theory. Setting Uin = 2.5 corresponds
to a favorable pressure gradient case, which is a combination of a pluglike
flow with a parabolic profile in the bulk of the channel. The corresponding
pressure variation shown on the left indicates significant pressure drop at
the entrance and exit portions of the channel. However, in the mixed zone,
the pressure drop is relatively low due to the electroosmotic pumping.

The adverse pressure gradient case of Uin = 0.5 is an electrokinetically
driven micropump. For this case, the inlet and the exit pressures are the
same, corresponding to a laboratory-on-a-chip device that is exposed to
atmosp pressure at both ends. The entire flow is driven by the electrokinetic
forces, which overcome the drag force within the entire channel system. The
pressure drop at the inlet and exit portions of the channel (ξ ≤ 3.1 and
ξ ≥ 6.2) is due to the shear stress. A micropump must be able to raise
the system pressure in order to drive the flow. The electroosmotic pump is
doing precisely this. The net pressure gradient is positive within the pump,
as shown in Figure 7.7. Here we note that:

• In a purely electroosmotic system, pluglike velocity profiles with zero-
pressure gradient will be obtained. In the case of Uin = 0.5, the ad-
verse pressure gradient is present to overcome the pressure drop at
the inlet and exit sections.

Therefore, any mixed flow system should exhibit a behavior similar to the
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simulation results presented in Figure 7.7. The velocity profile for this case
indicates a combination of plug and adverse pressure gradient channel flow
behavior, and the net volumetric flowrate is positive, as shown in Figure
7.7.

For a closed system it is possible to create large pressure gradients using
electroosmotic forces. This can be used for actuation of micropistons or
microbellows mechanisms. Such a configuration is simulated by closing the
exit of the channel. Due to the presence of electroosmotic forces, the pres-
sure rises linearly within the electroosmotic region, as shown in Figure 7.8.
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This pressure rise is accompanied by the electroosmotic flow near channel
walls and a reverse flow in the middle of the microchannel, as shown in
Figure 7.8.

7.4.2 Time-Periodic and AC Flows
In this section we present an overview of the AC electroosmotic flows and
time-periodic electroosmosis, where the flow is driven by an alternating
electric field. The primary difference between these two flows is that in
AC electroosmosis the electric field is nonuniform, and it creates a nonzero
time-averaged flow (Morgan and Green, 2003), while the time-periodic elec-
troosmosis utilizes a uniform electric field, and results in zero time-averaged
flow (Dutta and Beskok, 2001b).

AC Electroosmosis

AC electroosmosis is an important electrokinetic effect that can be utilized
for particle manipulation and separation, as well as for flow pumping, and
mixing enhancement applications. An advantage of AC electroosmosis is
observed in designing electroosmotic pumps. Although DC electroosmotic
pumps utilize large electric fields (see Table 7.1), AC electroosmotic pumps
utilize low voltages (< 10 V) due to the close proximity of the electrodes,
and they can maintain flowrates on the order of 1 to 10 mm3/s (see Chapter
8 in Morgan and Green, 2003). For particulate flows, AC electroosmosis is
often accompanied by dielectrophoresis (see Section 7.6).

AC electroosmosis is observed when an AC electric field is applied on two
electrodes that are placed next to each other, as shown in Figure 7.9. Elec-
tric field lines near the electrode surfaces display tangential components,
especially in the vicinity of the two electrodes. Interactions of the tangen-
tial electric field with the induced charges on each electrode (schematically
shown on the figure with + and − signs) result in AC electroosmotic force
and fluid flow. Since the tangential electric field is larger near the two neigh-
boring edges of the electrodes, the electroosmotic velocity is also large at
these locations, and the velocity decays away from these neighboring edges.
Here we must note that changing the electrode polarity in Figure 7.9 does
not change the direction of the AC electroosmotic force. Therefore, AC
electroosmosis results in unidirectional flow. In a series of papers, Green
and coworkers presented experimental measurements, theoretical analysis,
and numerical simulation of AC electroosmotic flows (Green et al., 2000;
Gonzalez et al., 2000; Green et al., 2002). The experimental results have
shown that AC electroosmosis is effective in the 10 Hz to 100 kHz fre-
quency range, after which electrothermal/Joule heating effects (Section
7.4.6) become dominant. The electric field frequency greatly affects the
electroosmotic velocity. For example, using a field of 1.25 V at electrolyte
conductivity of 8.6 mS/m, velocity magnitudes of 75, 300, and 50 µm/s
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FIGURE 7.9. Schematic diagram for AC electroosmosis. The tangential electric
field (Et) near the neighboring electrodes interacts with induced charges (qe)
on the electrodes and creates electroosmotic force and velocity in the horizontal
direction, shown by the qeEt vector. Changing the electrode polarity does not
alter the flow direction. The figure is adopted from (Morgan and Green, 2003).

were measured 5 µm away from the electrode edge at 100 Hz, 2 kHz, and
20 kHz, respectively (Green et al., 2000). Numerical modeling of these cases
resulted in quantitatively consistent predictions only after the numerical re-
sults were corrected by a scaling factor of 0.24 (see Figure 8.9 in Morgan
and Green, 2003). Green and coworkers also reported that for increased
conductivity of the fluid, the AC electroosmosis can be overwhelmed by
the increased dielectrophoretic effects.

Time-Periodic Electroosmosis

Unlike the steady electroosmotic flows, time-periodic or unsteady electroos-
mosis has been addressed in relatively few publications. For example, nu-
merical results for impulsively started electroosmotic flow have been re-
ported in (Dose and Guiochon, 1993). Analytical solutions of starting elec-
troosmotic flows for a number of geometries, including the flow over a flat
plate and two-dimensional microchannel and microtube flows, have been
presented in (Soderman and Jonsson, 1996). Effects of a sinusoidally alter-
nating electric field superimposed onto a steady electroosmotic flow have
been reported in (Barragan and Bauza, 2000). Time-periodic electroos-
motic flows can be combined with steady electroosmotic or pressure-driven
flows to induce temporal and spatial flow modifications. This has the po-
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tential to produce continuous-flow chaotic mixers (see Chapter 9).
In the rest of this section, we study channel flows driven by time-periodic

axial electric fields. Although we are essentially dealing with an AC electric
field, we assume that the external electric field obeys the laws of electrostat-
ics. Furthermore, the ion distribution in the EDL region is determined by
the zeta potential and the ion density of the buffer solution, which are both
constants. Hence, the electrokinetic potential ψ is not affected by the oscil-
latory external electric field. Neglecting the channel entry and exit effects,
the flow is fully developed. Hence, we do not expect any streamwise velocity
gradients. This enables us to neglect the inertial terms in the Navier–Stokes
equations (7.12), resulting in the unsteady Stokes equation. In the absence
of externally imposed pressure gradients, the flow is driven purely due to
the electrokinetic effects. Following (Dutta and Beskok, 2001b), the mo-
mentum equation can be simplified as

ρf
∂u

∂t
= µ

∂2u

∂y2 + ρeEx sin(Ωt), (7.32)

where Ex is the magnitude, and Ω is the frequency of the unsteady external
electric field E. We note here that due to the straight channel geometry, the
cross-stream velocity and electric field components are zero, and equation
(7.32) is used to determine the streamwise velocity component due to the
time-periodic electric field. The electric charge density ρe can be expressed
as

ρe = −2noez sinh
(

ezψ

kBT

)
= −2noez sinh(αψ∗), (7.33)

Assuming that the EDL thickness is much smaller than the channel-half
gap, the electroosmotic potential variation can be written as a function of
the distance from the wall (χ = y/λD), using equation (7.10). Utilizing the
Deby–Hückel parameter (ω), we can rewrite the electroosmotic body force
on the fluid in the following form:

−2noezEx sin Ωt =
ω2µuHS

α
sin Ωt, (7.34)

where uHS = −εζEx/µ, is the Helmholtz–Smoluchowski velocity. Therefore,
equation (7.32) can be written as

ρf
∂u

∂t
= µ

∂2u

∂y2 +
ω2µuHS

α
sinh(αψ∗) sin(Ωt). (7.35)

We are interested in the solution of the above equation under no-slip and
symmetry boundary conditions on the wall and the channel center, respec-
tively. Nondimensionalization of equation (7.35) using characteristic time
(1/Ω) and length (λD) results in the following equation:

ρfuHSΩ
∂U

∂θ
= µuHSω2

[
∂2U

∂χ2 +
sin(θ)

α
sinh(αψ∗)

]
, (7.36)
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where θ = Ωt is the nondimensional time, χ = y/λD is the nondimensional
distance, and U = u/uHS is the nondimensional velocity. Rearranging the
dimensional components in equation (7.36) results in the following equa-
tion:

∂U

∂θ
=

1
κ2

[
∂2U

∂χ2 +
sin(θ)

α
sinh(αψ∗)

]
, (7.37)

where κ =
√

Ωλ2
D/ν is a normalized parameter that is a function of the

Debye length (λD), the kinematic viscosity, and the electric field excitation
frequency.

• The parameter κ can be interpreted as the ratio of the Debye length
λD to a diffusion length scale (lD), based on the kinematic viscosity
and the excitation frequency.

This diffusion length scale can be estimated from the unsteady Stokes equa-
tions using dimensional analysis as lD ≈ √

ν/Ω. Hence, the diffusion length
scale is related to the Debye length and κ in the following form:

lD ≈ λD/κ.

Time-periodic solution of equation (7.37) is obtained using the separa-
tion of variables technique (Dutta and Beskok, 2001b). Here we summarize
the basic results. Time-periodic velocity distributions across the channel
for three different κ values are shown in Figure 7.10 at time θ = π/2.
These results are obtained for a channel half-height h = 100λD. Since the
electroosmotic forces are confined within the EDL, the dynamics of fluid
motion in the bulk of the channel are mostly determined by an unsteady
diffusion process. Therefore, the magnitude of the channel half-height (h)
relative to the diffusion length scale (lD) plays an important role in deter-
mining the dynamics of the bulk flow region. For the κ = 0.001 case, the
diffusion length scale (lD = 1000λD) is an order of magnitude larger than
the channel half-height (100λD). This results in a quasi-steady velocity dis-
tribution that resembles the “plug velocity” obtained in steady electroos-
motic flows, as shown in Figure 7.10. On the other hand, for κ = 0.01 the
channel half-height and the diffusion length scales are of the same order of
magnitude, and the bulk flow velocity deviates from the plug profile. For
κ = 0.1 the velocity becomes practically zero in the channel center at any
time, as shown in Figure 7.11.

For the κ = 0.01 case, there is vorticity in the entire bulk flow region (see
Figure 7.10). From the κ = 0.01 and κ = 0.1 cases, we see that the time-
periodic electroosmotic flows are rotational when the diffusion length scale
is comparable to or less than the channel half height (lD ≤ h). The vorticity
is put into the problem on the walls, and its magnitude alternates in time
due to the time fluctuations of the external electric field. Unlike the steady
electroosmotic flows, vorticity diffuses deeper into the channel, while its
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FIGURE 7.10. The velocity distribution of time-periodic electroosmotic flow for
various values of κ at time θ = π/2. Here, the ionic energy parameter α equals 5.
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FIGURE 7.11. The velocity distribution for time-periodic electroosmotic flows at
different times. Here, κ = 0.1 and the ionic energy parameter α equals 5.0.
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value on the wall is cyclically changing. The high-frequency excitation case
(κ = 0.1) presented in Figure 7.11 shows exponentially damped vorticity
waves traveling into the bulk flow domain, penetrating the channels as
much as 80 Debye lengths. A discussion on vorticity creation mechanisms
for unsteady electroosmotic flows is given in (Santiago, 2001).

The velocity profiles presented in Figure 7.11 resemble the classical solu-
tion of a flat plate oscillating in a semi-infinite flow domain, also known as
Stokes’s second problem. In Figure 7.12, time-periodic electroosmotic ve-
locity profiles are compared with the solution of Stokes’s second problem.
Unlike the time-periodic electroosmotic flow, the fluid is driven here by an
oscillating plate with velocity uw = uHS sin(tΩ), where Ω is the frequency
of the plate oscillations and uHS is the amplitude of the plate velocity. The
governing equation for Stokes’s second problem becomes

ρf
∂u

∂t
= µ

∂2u

∂y2 , (7.38)

and the system is subjected to the following boundary conditions:

u(y = 0, t) = uHS sin(tΩ),
u(y → ∞, t) = 0.

These equations yield the following similarity solution (Panton, 1984):

U(χ, θ) = exp
[
− κχ√

2

]
sin

[
θ − κχ√

2

]
, (7.39)

where U is the velocity normalized with uHS, similar to our solution of time-
periodic electroosmotic flow. The solution for both equations is practically
the same for χ ≥ δ99 (See Figure 7.12). Therefore, the bulk flow dynamics
are adequately described by the Stokes solution for a flat plate oscillating
with frequency Ω and amplitude uHS. However, the velocity distribution
within the effective electric double layer (χ ≤ δ99) differs from the Stokes
solution significantly, since the velocity on the wall needs to obey the no-
slip condition at all times. A zoomed view of the velocity distribution of
Figure 7.12 is presented in Figure 7.13.

We note that the Stokes solution in the bulk flow and the analytical
solution outside the effective EDL thickness match without any phase lag.
This enables us to conclude that the Stokes solution with a prescribed wall
velocity of uHS sin(tΩ) can be used to describe the bulk flow region for
sufficiently large κ values, showing that

• the instantaneous Helmholtz–Smoluckowski velocity is the appropriate
wall slip condition for time-periodic electroosmotic flows.

We must note that this claim is also valid for low-frequency (small κ) flows,
as can be deduced from Figure 7.10 by extending the velocity profiles from
the bulk flow region on to the wall.

In summary:
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• The flow dynamics are determined by a normalized parameter κ,
which can be interpreted as the ratio of the EDL thickness λD to
a characteristic diffusion length scale lD. Based on the values of κ
and the half channel height, various flow conditions, ranging from
the oscillatory plug flow to flows resembling the flat plate oscillating
in a semi-infinite domain with velocity uHS sin (tΩ) (Stokes’s second
problem) are observed.

• For large values of κ there are similarities between Stokes’s second
solution and the analytical solution in the bulk flow region. This
leads to identification of the instantaneous Helmholtz–Smoluchowski
velocity as the appropriate electroosmotic slip condition for time-
periodic flows.

7.4.3 EDL/Bulk Flow Interface Velocity Matching Condition
In this section, we present the velocity matching condition between the EDL
and the bulk flow regions. This is important in assessing the interaction of
high-vorticity fluid in the EDL with the vorticity of the bulk flow region.
It seems that the often-used Helmholtz–Smoluchowski velocity (7.24) as
the “matching condition” at one Debye length (λD) away from the wall is
inadequate for the following two reasons:

• First, such a matching condition should be implemented at the ef-
fective EDL thickness (δ99λD), which is considerably larger than the
Debye length.

• The second limitation arises due to the variation of the bulk velocity
across the EDL.

If we examine the velocity distribution at the edge of the EDL in Fig-
ures 7.13 and 7.14, it is clear that the matching velocity changes with the
velocity gradient of the bulk flow region. Hence, the appropriate velocity
matching condition (umatch) at the edge of the EDL (y = δ99λD) should
become

umatch = λδ99
∂u

∂y
|w + uHS, (7.40)

where ∂u
∂y |w corresponds to the bulk flow gradient obtained on the wall. The

appropriate matching distance is taken to be the effective EDL thickness
(δ99λD). Here, the first term in (7.40) corresponds to a Taylor series expan-
sion of bulk flow velocity at the edge of the EDL from the wall. Equation
(7.40) is analogous to slip velocity in rarefied gas flows given in Section 2.3.
It is noteworthy to mention that for finite Debye layers with large bulk flow
gradients, the velocity matching using equation (7.40) will give considerable
deviations from the Helmholtz–Smoluchowski prediction.
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FIGURE 7.14. A magnified view of the velocity distribution in a mixed electroos-
motic/pressure-driven flow near a wall for α = 1, β = 10,000. Extrapolation of
the velocity using a parabolic velocity profile with constant slip value UHS on the
wall are shown by the solid lines. The analytical solution is shown by the dashed
lines.

7.4.4 Slip Condition
The electroosmotic forces are concentrated within the EDL, which has an
effective thickness on the order of 1 nm to 100 nm. On the other hand, the
microchannels utilized for many laboratory-on-a-chip applications have a
typical height of 100 µm to 1 µm This two to five orders of magnitude
difference in the EDL and the channel length scales is a great challenge
in numerical simulation of electroosmotically driven microflows. Therefore,
it is desired to develop a unified slip condition, which incorporates the
EDL effects by specifying an appropriate velocity slip condition on the
wall. Examining Figures 7.13 and 7.14, and equation (7.40), it is seen that
the bulk velocity field extended onto the wall has a constant slip value
equivalent to uHS. Hence,

• the appropriate slip condition at the wall is the Helmholtz–Smoluchowski
velocity uHS, even for finite EDL thickness conditions.

For a general numerical algorithm, implementation of slip velocity uHS at
the walls overpredicts the volumetric flowrate, since the velocity distribu-
tion within the EDL is neglected. This flowrate error can be corrected by
subtracting 2δ∗/

√
αβ (in nondimensional form) using the EDL displace-

ment thickness δ∗ given in Table 7.2. For engineering applications with
α = 1 and β = 10,000, corresponding to a 0.1 mM buffer solution in a
6 µm glass channel, the error in the conservation of mass equation due to
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this slip condition is about 4.5%.
With regard to the errors in the momentum equation, neglecting shear

stresses due to the velocity distribution within the EDL, given by equation
(7.31), will be in gross error. In the next section we present a method
that can be used to predict the extra drag force due to the EDL, in the
postprocessing stage of computations.

7.4.5 A Model for Wall Drag Force
For steady incompressible flows, conservation of linear momentum in inte-
gral form is given by ∫

Γ
vρv · n dΓ = Fsur + Fbody, (7.41)

where Fsur and Fbody are the net surface and body forces, respectively. The
control surface is shown by Γ, and the outward unit normal is denoted by n.
Depending on the device geometry and the control volume, one must prop-
erly apply equation (7.41), which also includes the electrokinetic body force
terms. In this section, we propose a method to calculate the additional drag
force due to the electrokinetic effects at the postprocessing stage. Hence, we
first solve the flow system using the Helmholtz–Smoluchowski slip velocity
uHS, and then calculate the total drag force by superposition of the calcu-
lated hydrodynamic drag with the cumulative effects of the electroosmotic
body forces concentrated on domain boundaries.

The additional drag force acting on a control volume due to the elec-
trokinetic effects can be expressed as

FEK =
∫

CV
ρeE dΩ.

Substituting ρe from the Poisson–Boltzmann equation and E = −∇φ, we
obtain

FEK =
∫

CV
ε∇2ψ

[
∂φ

∂n
en +

∂φ

∂l
el +

∂φ

∂s
es

]
dΩ,

where n, l, and s are the normal, streamwise and spanwise coordinates, re-
spectively, and dΩ = dnds dl. This volume integral is complicated to evalu-
ate in general. However, some simplifications can be made when λD/h � 1.
Also, for a general complex geometry, we further assume that the radius of
curvature R is much larger than the Debye length λD. The latter condition
is required to exclude application of the forthcoming procedure in the vicin-
ity of sharp corners. Based on these assumptions, ∇2ψ can be approximated
to be d2ψ

dn2 . Also, ∂φ
∂n ≈ 0 across the entire EDL, which is approximately valid

due to the small EDL thickness and the no-penetration boundary condition
of the externally applied electric field on the surfaces. This enables us to
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separate the volume integral into the following two components:

FEK = ε

[∫ 2h

0

d2ψ

dn2 dn

] ∫ W

0

∫ L

0

[
∂φ

∂l
el +

∂φ

∂s
es

]
dl ds,

where L and W are the streamwise and spanwise lengths of the domain,
respectively. Also, for a general geometry we assumed the separation dis-
tance between the two surfaces to be 2h. The second integral in the above
equation can be obtained in the postprocessing stage from the solution of
the electrostatic problem. Numerical solution for the first integral requires
resolution of the EDL region, which requires enhanced near-wall resolu-
tion and results in the numerical stiffness. However, this integral can be
evaluated analytically in the following form:

∫ 2h

0

d2ψ

dn2 dn =
∫ 2h

0
d
dψ

dn
=

ζ

h

[
dψ∗

dη

]1

−1
= 2

ζ

h

√
β

α

√
2 cosh(α) − 2.

Hence, the contribution of FEK can be evaluated as

2ε
ζ

h

√
β

α

√
2 cosh(α) − 2

∫ W

0

∫ L

0

[
∂φ

∂l
el +

∂φ

∂s
es

]
dl ds.

Therefore, the additional drag force due to the electrokinetic effects can
be calculated in the postprocessing stage, under the approximation of de-
coupling between the directions of the electroosmotic and external electric
fields. This approach is valid for λD/h � 1 and λD/R � 1. The primary
advantage is that we do not need to resolve the flow and the corresponding
electroosmotic body forces in the EDL region. Hence, there is no need to
solve for the Poisson–Boltzmann equation, and the numerical stiffness in
the momentum equation is reduced.

7.4.6 Joule Heating
Large electric fields utilized in electrokinetic flows often result in Joule
heating, due to the electrical current and the resistivity of the electrolyte.
Using Ohm’s law, Joule heating can be characterized as a volumetric heat
source

q̇ =
I2

σ
,

where σ is the electric conductivity, and I is the electric current density.
In absence of fluid flow, I = σ‖E‖, and hence q̇ = σ‖E2‖. However, in
the presence of fluid flow, current density should also include the charge
convection effects (Tang et al., 2004a). Therefore, for electroosmotic flows,

I = ρeuEO + σ‖E‖,
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where ρe is the charge density, and uEO is the axial electroosmotic flow ve-
locity. We must note that the (ρeuEO) term can be substantial for thick/over-
lapping EDL situations. However, for thin EDL cases, electric current den-
sity variations are confined to a very thin region, since the net charge
density (ρe) vanishes outside the EDL region. Therefore, we can assume
q̇ ≈ σ‖E2‖ in the entire channel domain. Analysis of Joule heating in elec-
troosmotic flows and dielectrophoresis can be found in (Tang et al., 2004a;
Tang et al., 2004b; Sinton and Li, 2003), and (Morgan et al., 1999).

Joule heating has adverse effects on microfluidic device performance. For
example, local temperature increases result in local reductions in the abso-
lute viscosity of the fluid. If we neglect temperature-dependent variations of
any other properties, then the local viscosity reductions lead to increased
electroosmotic slip velocity. For constant volumetric flowrate such local
variations are compensated by onset of local pressure-driven flow. There-
fore, under substantial Joule heating, it will not be possible to maintain
pluglike velocity distribution in electroosmotic flows. This adversely affects
the species transport, and it results in enhanced dispersion (see Section
7.5.3). However, we must note that miniaturization of device components
reduces Joule heating and its adverse effects for the following reasons:

• First, large electric field gradients can be achieved with relatively
smaller potential differences between the electrodes; hence ‖E‖ is
reduced.

• Second, reduction in volume reduces the total heat generation.

• Third, increased surface area to volume ratio enhances heat loss to
the environment through heat conduction.

7.4.7 Applications
In this section, we present microfluidic applications of electroosmotic flows.
We first present suppression of electroosmosis, which becomes important in
certain applications. Then we present mixing enhancement with electroos-
motic flows, followed by electroosmotic flow control examples.

Suppression of Electroosmosis with Zeta Potential Modifications

Although electroosmosis is an attractive technique for microfluidic pump-
ing, it may need to be suppressed or modified for certain applications, such
as the capillary isoelectric focusing (IEF) and on-chip IEF, by altering the
zeta potential. This can be obtained by various techniques, including poly-
mer coatings and embedded surface electrodes. There are two basic poly-
mer coating techniques: static and dynamic coating. The static coating is
based on covalent bonding between the coating material and capillary sur-
face, but dynamic coating relies on ionic interactions (Horvath and Dolnik,
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2001; Righetti et al., 2001). Dynamic coating is an active field of research
in chemistry. (Liu et al., 2000) utilized different polymer bilayers, such as
a cationic layer of polybrene and, an anionic layer of dextran sulphate,
to change the direction and magnitude of the flow. Both of these coat-
ings are shown to reproduce electroosmotic flow for a wide range of pH.
In a hydrodynamically driven capillary zone electrophoresis, electroosmotic
flow needs to be suppressed. Kaniansky and coworkers worked on eight dif-
ferent electroosmotic flow suppressors and have shown influences of these
on electrophoretic separation efficiencies at different pH values (Kaniansky
et al., 1997). Ramsey and coworkers have developed a microfluidic device
to detect Escherichia coli (E. coli) using pure electrophoretic transport.
They were able to suppress electroosmosis, using poldimethylacrylamide
(McClain et al., 2001). (Barker et al., 2000) have used polyelectrolyte mul-
tilayers to alter the electroosmotic flow direction in polystyrene and acrylic
microfluidic devices. They were able to achieve complex flow patterning,
and flow in the opposite directions of the same channel.

Embedded surface electrodes can also be used to locally alter the zeta
potential. Schasfoort et al. have built microchannels using conducting ma-
terial, and have covered these with a thin layer of insulator. They have
shown that the electroosmotic mobility can be altered by applying electro-
static potential on the walls (Schasfoort et al., 2001). A similar approach
for direct zeta potential control has also been implemented in (Buch et al.,
2001).

Active Mixing Using Electroosmotic Flows

Mixing in microfluidic systems is difficult due to the minute inertial ef-
fects (Re � 1) and small molecular diffusion coefficients (Sc � 1). Con-
vective/diffusive mixing in microscales requires large length and/or time
scales; see Chapter 9. Given these limitations, electroosmotically induced
mixing has attracted the attention of several research groups. Jacobson et
al. have developed parallel and serial mixing mechanisms using microcap-
illary networks (Jacobson et al., 1999).

In a series of experiments, Santiago and coworkers have observed an elec-
trokinetic instability for flows that are practically in the Stokes flow regime
(Oddy et al., 2001; Chen and Santiago, 2002; Chen et al., 2003). Their ex-
tensive studies have shown that the electrokinetic instability is due to the
conductivity gradients in the fluid, imposed either by the concentration or
temperature gradients. In Figure 7.15, we present the time evolution of the
electrokinetic flow instability in a microchannel of lenth, 40 mm, width, 1
mm and depth, 100 µm. The image area shown in the figure is 1 mm in the
vertical direction and 3.6 mm in the streamwise direction. The channel is
filled with two streams of 10 mM HEPES-buffered aqueous solution. The
top stream (shown by gray) also included potassium chloride, which in-
creased its conductivity to 50 µS/cm, while the bottom stream (shown by
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black) had conductivity of 5 µS/cm. This created a conductivity gradient
in the spanwise direction. It has been found that the electrokinetic instabil-
ity initiates after applying a critical electric field in the streamwise direc-
tion (perpendicular to the conductivity gradients). Figure 7.15 (a) shows
time evolution of the electrokinetic instability for a streamwise (horizontal)
electric field of 50 V/mm. These experimental results show rapid growth
of small-amplitude waves, resulting in fast stirring of the initially distinct
buffer streams. Reproduction of dynamics from simplified two-dimensional
nonlinear numerical computations are also shown in Figure 7.15. The nu-
merical model reproduces the main features of the instability observed in
experiments, including the wave number and time scales. However, the two-
dimensional approximation shows this rapid mixing at a lower field value
of 17.5 V/mm. Details of this electrokinetic instability physics are given in
(Lin et al., 2004). Considering the extensive use of electrokinetically driven
flows in recent microflow applications, electrokinetic instability can be uti-
lized to design efficient micromixers. For example, the work described in
(Oddy et al., 2001), has demonstrated that time-periodic electroosmotic
flows obtained by oscillatory electric fields can potentially result in fast
mixing.

The possibility of local and temporal zeta potential variations has opened
a new direction for extensive flow control and mixing enhancement applica-
tions. Erickson and Li have simulated microfluidic mixing induced by elec-
troosmotic flow with local zeta potential variations, resulting in enhanced
mixing efficiency (Erickson and Li, 2002). Qian and Bau (2002) have de-
veloped a theoretical model that induces chaotic mixing by electroosmotic
stirring. For details on chaotic advection and mixing, see Chapter 9, where
we also present some details about the chaotic electroosmotic stirrer (Qian
and Bau, 2002).

Electroosmotic Flow Control

Electroosmotic forces can be selectively applied for flow control in complex
microgeometries either by utilization of local electric fields or by modifica-
tion of surface zeta potential (ζ). In this section, we will primarily study
flow control in flow junctions using multiple electric fields by keeping the
zeta potential unaltered.

The simulations are performed for a dielectric material of ζ = −25.4
mV and half-channel-height of h = 3µm, corresponding to λD/h = 0.01.
The magnitude of the externally imposed electric field ‖Eo‖ corresponds
to 950 V/cm, resulting in a Helmholtz–Smoluchowski velocity of uHS = 1.6
mm/s. We assumed that the buffer solution is water and the ion concentra-
tion density is no = 0.1 mM. The Reynolds number based on the average
channel velocity and half-channel height is Re = 0.005. These simulation
parameters are selected according to the data given in (Hunter, 1981). Here
we must note that for Re = 0.005, we practically have Stokes flow with
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FIGURE 7.15. Time evolution of electrokinetic flow instability. (a) Experimental
results show instability mixing of HEPES-buffered 50 µS/cm (gray) and 5µS/cm
(black) conductivity streams under a horizontally applied static electric field of 50
V/mm. (b) Computational results reproduce the main features of the instability
observed in the experiments. (Courtesy of H. Lin, M.H. Oddy, and J.G. Santiago.)

electroosmotic body forces, where the inertial forces are negligible and the
velocity field is insensitive to the Reynolds number. Therefore, paramet-
ric studies as a function of the Reynolds number are not necessary in the
Stokes flow limit.

Cross-Flow Junctions: The cross-flow junction of two microchannels has
many important applications in electrophoretic separation (Polson and
Hayes, 2000; Culbertson et al., 2000), serial and parallel mixing (Jacob-
son et al., 1999), and species-transport control (Cummings et al., 1999). In
this section, we apply two different electric fields in a cross-flow junction
to demonstrate the flow behavior as a function of the applied electric field
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strength. The externally imposed electric potential is determined by equa-
tion (7.21) subject to the specified electric potential at the entrance/exit
of the branches, and zero flux conditions on the walls. The electric field is
constant and one-dimensional at the entry and exit regions of the channel.
However, near the cross-junction the electric field is two-dimensional. In
Figure 7.16 we show the electric field lines obtained in the cross-junction
under various horizontal and vertical electric field strengths. The figure
shows equipotential contours with dashed lines and the electric field lines
with solid lines. The electric field lines are orthogonal to the equipoten-
tial lines. For the equal horizontal and vertical electric field strength case,
shown in the top figure, the electric field lines are symmetric with respect
to the F-G plane. The electric field lines and equipotential contours for
the case of horizontal electric field being twice the vertical electric field
(Ehor = 2Ever) is shown in the bottom figure. Under bias electric field, the
electric potential distribution is no longer symmetric. Interaction of two
electric fields in the cross-junction creates dips in the electric field lines
near points F and G. The curvature in the electric field lines near these
corners are physical, and similar qualitative trends exist in numerical re-
sults obtained for a T-junction under bias electric field (Mitchell et al.,
2000), and cross-flow junctions (Patankar and Hu, 1998).

In Figure 7.17 (top) we show the velocity vector field and the streamlines
obtained for equal horizontal and vertical electric fields. The inlet channels
A and B are subjected to equal flow rates. Uniform, i.e., pluglike, velocity
profiles are observed in all branches, with localized two-dimensional flow in
the cross-junction. The velocity distribution within the EDL is also visible
in the figure. The streamlines clearly show that the flow entering from inlet
A turns toward outlet channel D, and the flow entering from B leaves from
outlet C. Comparison of the streamlines with electric field lines given in
Figure 7.16 (top) shows similarities between the velocity and the electric
fields in the bulk flow region. Since the flow is driven by the electroosmotic
forces, the pressure is uniform in the entire flow system. These results agree
qualitatively with the experimental µ−PIV results (Cummings et al., 1999)
for equal horizontal and vertical electric field strengths, presented in Figure
7.18.

In Figure 7.17 (bottom) we show the velocity vectors and the streamlines
obtained using a bias electric field with horizontal field being twice the ver-
tical field (Ehor = 2Ever). Inlet conditions to sections A and B satisfy pure
electroosmotic flow in each branch. Comparison between the streamlines
and the electric field lines shown in Figure 7.16 (bottom) reveals similari-
ties between the velocity and the electric fields in the bulk flow region. In
Figure 7.17 (bottom) the velocity vectors at exit branch C show uniform
plug profile of magnitude 2uHS, similar to that of inlet branch A, while the
exit branch D reaches a uniform plug profile of magnitude uHS, similar to
that of inlet branch B. Under the bias electric field, the cross-flow junction
creates unique opportunities for flow control. If we examine the stream-
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FIGURE 7.16. Electric field lines (solid) and equipotential contours (dashed) in
a cross-junction geometry, under various electric fields. Top: Ehor = Ever = Eo;
Bottom: Ehor = 2Ever = 2Eo.

lines in the figure, it is clear that 50% of the fluid leaving from channel C
is coming from inlet channel A. This is required by the bias electric field
strength and conservation of mass in the microfluidic system. Using this,
we conclude that it is possible to control the amount of fluid in exit chan-
nel C that is coming from inlets A and B by controlling the ratio of the
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FIGURE 7.17. The streamlines and velocity vectors for pure electroosmotic flow
in a cross-flow junction (only 25% of the vectors are shown for clarity of the
figure). Top: Ehor = Ever = Eo; Bottom: Ehor = 2Ever = 2Eo.
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FIGURE 7.18. The µ−PIV velocity measurements of electroosmotic flow in a
cross-flow junction, where Ehor = Ever. (Courtesy of E. Cummings.)

horizontal to vertical electric fields (Ehor/Ever). The ratio of the flowrates
from inlets A and B at the exit channel C can be written in the following
form:

Q̇AC

Q̇BC
=

Ehor

Ever
− 1, (7.42)

where Q̇ shows the flowrate, and the subscripts AC and BC show the
contributions of flow from inlets A and B to the total flowrate in channel
C, respectively. The above formula is subject to the restriction

Q̇A = Q̇C = Q̇AC + Q̇BC (7.43)

due to the mass conservation requirements.
In summary:

• Locally imposed electroosmotic forces in the Stokes flow regime enable
linear flowrate control in the branches of a microchannel network sys-
tem. This linear response can be utilized in the design of various elec-
troosmotically actuated micropump/valve systems and flow switches.
For example, the cross-flow junction geometry presented above can
be used for dispensing a precise amount of fluid from one channel to
another in the absence of valves or pumps with moving components.

Array of Circular and Square Posts: Measurements of electroosmotic flow in
arrays of circular and square posts have been obtained by Cummings in the
absence of externally imposed pressure gradients, by maintaining zero ele-
vation difference between the upstream and downstream reservoirs (Cum-
mings, 2001). The microfluidic system consisted of uniformly distributed
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FIGURE 7.19. Electrokinetic speed contours in an array of circular posts at 45◦

with respect to the applied electric field of 2 V/mm. (Courtesy of E. Cummings.)

post arrays that are isotropically etched in glass with a thermally bounded
glass cover slip. The circular posts have diameter 93 µm and the square
post dimensions are 104µm, with center-to-center separation of 200 µm.
Phosphate-buffered saline solution of 1 mM, resulting in buffer pH = 7.7
is used. An external electric field was applied in various angles to the post
arrays, and the electric field value was kept low to avoid particle dielec-
trophoresis. MicroPIV measurements of the velocity field were performed,
and the results were presented in the form of a simulated interferogram
(Cummings, 2001).

Figure 7.19 shows an electrokinetic speed field in an array of circular
posts at a 45◦ angle with respect to the applied electric field of 2 V/mm.
The flow is from lower left toward upper right. Lines of constant gray
scale are contours of constant speed. The magnitude of speed at any point
can be estimated by counting and interpolating the fringes starting at a
stagnation point. The interferogram fringe spacing in the figure corresponds
to 24.5µm/s, and the stagnation points on each post is at 45◦ and 225◦

from the horizontal axis, aligning with the applied electric field.
Figure 7.20 shows an electrokinetic streamwise velocity field in an array

of square posts. The electric field is applied from left to right at a value 1
V/mm, creating flow in the electric field direction. The interferogram fringe
spacing in the figure corresponds to 9.8µm/s. The uniform flow between
the top and bottom posts is pure electroosmotic flow. Two-dimensional flow
is observed in the region between the two posts, where the flow expands
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FIGURE 7.20. Electrokinetic streamwise velocity contours in an array of square
posts. The electric field is from left to right (1 V/mm). (Courtesy of E. Cum-
mings.)

and contracts; the velocity contours are symmetric in this zone.
In the flow examples given above, the EDL is infinitesimally small com-

pared to the flow dimensions, and the total pressure is constant at the entry
and exit ports. Hence, the flow conditions obey the ideal electroosmosis re-
quirements (Cummings et al., 2000), with the following result:

• The flow field outside the EDL is proportional to the external electric
field. Therefore, the bulk flow is potential flow.

The velocity and speed contours presented in Figures 7.19 and 7.20 closely
follow the numerical solution of potential flow past circular and square
array posts, as demonstrated in (Cummings, 2001).

7.5 Electrophoresis

Electrophoresis is the process of inducing motion of charged particles rel-
ative to a stationary liquid using an applied electric field, where the liq-
uid acts as a conducting medium. The velocity at which charged parti-
cles/molecules move toward the anode or cathode is known as the elec-
trophoretic migration velocity. This motion is determined by a balance be-
tween the net particle charge under the EDL shielding and the opposing
viscous drag. Therefore, electrophoretic migration velocity is proportional
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to the applied electric field and the net charge of the particle, and it is
inversely proportional to the viscosity of the liquid.

A particle in viscous fluid experiences strong hydrodynamic interactions.
Assuming Stokes flow around a spherical particle of radius a, the veloc-
ity field around the particle decays as (a/r), r being the radial distance
away from the particle. This gives very long interaction distances for parti-
cle/particle and particle/fluid interactions; see Section 14.3.1. However, in
electrophoretic motion, this interaction distance scales as (a/r)3, provided
that the material properties, sizes, and zeta potentials of particles are the
same, and the EDL thickness relative to the particle radius is very small
(λ/a � 1). (Reed and Morrison, 1976) studied hydrodynamic interactions
in electrophoresis, and obtained analytical solutions for two spherical par-
ticle interactions. Here we summarize approximate results for two particles
moving along and normal to their line of centers. In the first case, the
electrophoretic mobility (µEP) is

µEP =
uEPµ

εζoE
=

1 + ζ1
ζo

(
a
H

)3
1 +

(
a
H

)3 ,

where H is the center-to-center particle separation, and subscripts o and
1 identify the two particles. The electrophoretic mobility of two particles
moving normal to their line of centers is

µEP =
uEPµ

εζoE
=

1 − 1
2

ζ1
ζo

(
a
H

)3
1 − 1

2

(
a
H

)3 .

These approximate relations are valid for large separation distances, and
uEP and E vectors are in the same direction. The terms in the denominator
are corrections due to the electric field in the presence of particles, and the
numerator terms are due to the particle/particle interactions. A striking
outcome of these approximate results (equally valid for the analytical/exact
results) is that there are no particle/particle interactions if the particle
size and zeta potential are the same. For particle size or zeta potential
mismatch, the interactions decay like (a/d)3. These conditions enable a
similarity between the electric field and the velocity field, so that the flow
outside the EDL region obeys potential flow conditions, which also satisfy
the Stokes equations. Implications of this result are quite important:

• Electrophoretic particle motion does not disturb the surrounding fluid
to a great extent (Reed and Morrison, 1976).

Therefore, one can model the steady particle motion using a simple mobility
concept, where the particle velocity can be found by

uEP = µEPE.
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The reader is referred to (Swaminathan and Hu, 2004), for results on par-
ticle interactions in electrophoresis due to inertial effects.

The mobility concept can also be applied to a large number of parti-
cles and dilute species. Reed and Morrison (1976) compared their findings
with several experimental results. They reported that for the thin EDL
cases, mobilities of groups of particles remain constant for a wide range
of particle concentrations. In the following section, we will review the gov-
erning equations for charged species transport and present experimental
results and numerical modeling efforts for electrophoresis using the afore-
mentioned mobility concept.

7.5.1 Governing Equations
A detailed formulation of electrophoretic transport can be found in (Er-
makov et al., 1998). In this section, we will present a simpler model that is
based on the electric neutrality (i.e., ρe = 0 ) and uniform electric conduc-
tivity (σ) assumptions. Using these simplifications, the species transport
equation is reduced to (Palusinski et al., 1986; Ermakov et al., 1998)

∂ni

∂t
+ ∇(niu + niuEP,i) = Di∇2ni, (7.44)

where uEP,i = µEP,iE is the electrophoretic migration velocity. The electric
field (E) is determined using equation (7.21), and the Poisson–Boltzmann
equation (7.4) is solved for the electrokinetic potential. The fluid velocity u
is found by solution of the incompressible Navier–Stokes equations (7.12),
subject to the electrokinetic body force terms (ρeE) and the no-slip bound-
ary condition on channel surfaces. This formulation ignores interaction of
the charged species with ions in the EDL region (where the net electric
charge is nonzero), and possible zeta potential changes.

A simplification of this model neglects the electrokinetic forces in the
EDL region, and replaces them with the Helmholtz–Smoluchowski slip con-
dition (7.24) to drive the flow. This approach greatly simplifies the prob-
lem of mesh generation and the numerical stiffness associated with the
resolution of the thin EDL region. In addition, solution of the Poisson–
Boltzmann equation is also not required. Despite these simplifications, the
electroosmotic slip velocity (7.24) should be calculated, and imposed as the
boundary condition on dielectric surfaces. In flows with complex-geometry,
this approach requires imposing spatially varying slip velocity on every grid
point on the channel surface, which may not be trivial, depending on the
numerical solution methodology.

Other assumptions and simplifications used in this simplified formulation
are (Ermakov et al., 1999):

• Sample concentration is small compared to the buffer concentration,
and the buffer concentration and buffer pH value are uniform.
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• Conductivity of the solution (σ) is uniform throughout the liquid
volume.

• Concentration of the buffer solution is large enough so that the EDL
thickness on channel walls is negligible, compared to the channel di-
mensions.

• The temperature of the solution is uniform, and Joule heating is
insignificant (for details on Joule heating see Section 7.4.6).

• Thermophysical parameters, such as the diffusion coefficients, fluid
viscosity, electrokinetic mobilities, and dielectric properties are con-
stant.

Despite its limitations, the simplified model is employed by most re-
search groups for modeling the electrophoretic transport (Palusinski et al.,
1986; Ermakov et al., 1992; Grateful and Lightfoot, 1992; Ermakov et al.,
1994; Ermakov et al., 1998; Ermakov et al., 2000; Giridharan and Krish-
nan, 1998; Krishnamoorthy and Giridharan, 2000). However, this model
requires revisions for finite EDL effects, observed in low ionic concentra-
tions in nanoscale channels. Such revisions should incorporate local charge
distribution effects on electrophoretic transport; see Chapter 12. In ad-
dition, isoelectric focusing (IEF), which utilizes pH gradients, cannot be
modeled using the current formulation. Numerical modeling of isoelectric
focusing can be found in (Baygents et al., 1997; Mosher and Thormann,
2002).

7.5.2 Classification
Electrophoresis is one of the most extensively utilized techniques for sep-
aration and/or characterization of charged particles, as well as biological
molecules (Tseng and Chang, 2001; Kleparnik et al., 2001; Saur et al.,
2001). For example, proteins, amino acids, peptides, nucleotides, and polynu-
cleotides can be separated using electrophoretic techniques. Electrophoresis
can be divided into three major categories. These are the moving-boundary,
steady-state, and zone electrophoresis (Melvin, 1987).

Moving-boundary electrophoresis is a widely used technique in commer-
cial and laboratory setups, where the solution containing positively and
negatively charged particles is subjected to electric fields, and the particles
move toward the oppositely charged electrode. This results in motion of
the solution boundary, which is commonly detected using Schleiren optical
techniques.

Steady-state electrophoresis is obtained when the positions of separated
components do not change in time. Steady-state electrophoresis is com-
monly observed in isoelectric focusing (IEF) applications. In IEF, charged
particles migrate under electrophoretic forcing and pH gradients to a lo-
cation in the buffer, where they experience zero net charge. This location
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FIGURE 7.21. Isoelectric focusing of proteins PE, APC, and GFP in a 2 cm
×300 µm ×5 µm PDMS microchannel. Three proteins are completely resolved
with band thicknesses below 100 µm, and the GFP is subfractionated into two
bands. (Courtesy of P. Dutta and C.F. Ivory.)

is known as the isoelectric point (Righetti, 1983; Macounova et al., 2000;
Macounova et al., 2001; Cabrera et al., 2001). In Figure 7.21 we present
isoelectric focusing of three different proteins in a polydimethyl siloxane
(PDMS) microchannel (Horiuchi et al., 2003). The results, obtained in 5
minutes in a 25 V/cm electric field, show separation of phycoerythrin (PE),
allophycocyanin (APC), and green fluorescent protein (GPF) mixture with
band thickness below 100 µm. The GFP has three constituents with very
close focusing points, and the figure shows that the method enables subfrac-
tionation of GFP into two bands (on the right side of the figure). Overall,
the IEF can be used to separate as well as concentrate charged species
under pH gradients. The design shown in (Horiuchi et al., 2003), has the
advantage of having approximately 4,500 theoretical bands of 300 µm in a
2 cm channel, enabling detection and concentration of a large number of
species.

Zone electrophoresis utilizes a supporting medium to hold the sample,
while an external electric potential is applied at the end of the supporting
media. Typically, filter paper, cellulose, cellulose-acetate, and gel are used
as the supporting media (Westermeier, 1990).

Capillary electrophoresis is applied in capillaries and microchannels (Janos,
1999). It has utmost potential for development of automated analytical
equipment with fast analysis time and on-line detection possibilities. To-
day, many separation techniques rely on combined capillary electrophoresis
and electroosmotic flow to pump solutes toward the detector. Through a set
of experiments, (Polson and Hayes, 2000) demonstrated flow control using
external electric fields in capillary electrophoresis. (McClain et al., 2001)
have developed a microfluidic array for E. coli detection, which utilized
pure electrophoretic transport.

In the following, we demonstrate numerical simulations of electrophoretic
motion in a microchannel. The electrode configuration and channel surface
conditions are consistent with the schematic shown in Figure 7.4. The elec-
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tric field is from left to right, the zeta potential on the channel surface
is negative (ζ < 0), and the sample is positively charged. Simulation pa-
rameters are chosen such that the electroosmotic mobility of the buffer
is twice the electrophoretic mobility of the sample (µeo = 2µep), and the
Debye length is (1/100) of the channel height. The electric field gener-
ates pure electroosmotic flow with Helmholtz–Smoluchowski velocity (uHS)
given by equation (7.18), resulting in Re = 0.03 and Pe = 500 flow. Fig-
ure 7.22 shows sample motion with an initial Gaussian distribution under
electrophoresis and electroosmosis. Since we assume a positively charged
sample, the electrophoretic motion is toward the cathode (right), which is
augmented by the electroosmotic flow in the same direction. Figures (a–c)
show snapshots of sample contours at various times. The sample maintains
its initial distribution in the bulk flow region. In Figure (d), we present the
sample distribution along the channel center at various times. Minute diffu-
sion effects are visible for this Pe = 500 flow. Figure (e) shows the velocity
distribution across the channel, which corresponds to the pluglike velocity
distribution of “pure electroosmotic flows.” It is this pluglike velocity that
maintains the initial sample distribution in the bulk flow region, as shown
in Figures (a–c). Velocity distribution within the EDL region is visible in
Figure (e), where the velocity rapidly decays from the bulk flow value in
the edge of the EDL region to zero on the wall. Hence, we observe slower
sample motion within the EDL region. This generates a retardation and
smearing of sample distribution near the walls due to the mixed convec-
tive/diffusive transport. The effect of convective/diffusive transport on the
cross-section-averaged sample shape is known as the Taylor dispersion; see
the next section. In most electrokinetic flow applications, the EDL thickness
is three to five orders of magnitude smaller than the channel height. Hence,
the EDL/electrophoresis interactions become negligible with increased dis-
parities between the EDL and channel length scales. For such cases, the
retarded sample in the vicinity of walls quickly diffuses due to the small
diffusion length scales that are on the order of the Debye length. Hence,
sample transport in electroosmotic flows in straight channels experiences
“minimal” Taylor dispersion effects.

7.5.3 Taylor Dispersion
Taylor dispersion has adverse effects in identifying the species type using
capillary electrophoresis measurements. The electrophoretic motion of the
sample experiences both convection and diffusion effects. For the cases in
which the radial diffusion (or diffusion across the microchannel) is more
dominant than the axial diffusion of the species Pe � 1, we can analyze
the species transport equation to obtain a cross-sectionally averaged species
transport equation in the following form (see (Probstein, 1994), Section 4.6,
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FIGURE 7.22. Numerical simulation results of electrophoretic transport in a mi-
crochannel under electroosmotic flow. Figures (a–c) show concentration contours
at various times, while (d) shows the sample distribution along the channel center,
and (e) shows the streamwise velocity distribution for “pure electroosmotic flow.”
The velocity is normalized with the Helmholtz–Smoluchowski velocity (7.18), and
simulations are performed for Re = 0.03, Pe = 500, and λ/h = 0.01 conditions.

for details):

∂n̄

∂t
+ U

∂n̄

∂x
= De

∂2n̄

∂x2 , (7.45)

where n̄ is the cross-section-averaged species concentration, U is the channel-
averaged velocity, and De is the effective diffusion coefficient. For pressure-
driven cylindrical capillary flows, the effective diffusion coefficient becomes

De = D
Pe2

48
, (7.46)

where Pe = Ua/D is the Peclet number based on the capillary radius (a),
and D is the species-molecular diffusion coefficient. This relation is valid
specifically for Pe � 7. For moderate Pe values the streamwise diffusion
cannot be neglected to obtain the “Taylor–Aris dispersion coefficient”

De = D

(
1 +

Pe2

48

)
. (7.47)
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We must emphasize that the aforementioned results are valid for pressure-
driven capillary flows. For the pure electroosmotic flow shown in Figure
7.22, the effective diffusion coefficient can be written as

De = D(1 + αoPe2),

where αo depends on the channel geometry, ratio of the EDL thickness to
the channel hydraulic diameter, and the channel surface zeta potential. For
pure electroosmotic flow in a tube or a two-dimensional channel, the value
of αo is approximately given by (Griffiths and Nilson, 1999)

4
αo

≈ 192 +
4

(λ∗
D)3/2 +

8
(λ∗

D)2
, (7.48)

where λ∗
D is the Debye length (see equation (7.1) normalized with the tube

radius or the channel half-height. This equation is valid for small surface
potential, since it is derived from the solution of the Debye–Hückel equa-
tion (7.6). In the limit of large Debye length (λ∗

D � 1), the EDL on both
sides of the channel (or tube) overlaps, resulting in a parabolic velocity
profile for the pure electroosmotic flow. For such cases, equation (7.48)
gives αo → 48, as expected. For large zeta potential, the effective diffusion
coefficients in a tube or a two-dimensional channel have been presented
in (Griffiths and Nilson, 2000). Dispersion coefficients for pure electroos-
motic flows in various cross-section channels were presented in (Zholkovskij
et al., 2003). In a subsequent work, hydrodynamic dispersion for mixed
electroosmotic/pressure-driven flows in arbitrary cross-section channels was
presented for electric double layers that are much smaller than the channel
dimensions (Zholkovskij and Masliyah, 2004). This study was valid for a
relatively small contribution of the pressure-driven flow.

In Figure 7.23, we demonstrate electrophoretic transport under mixed
electroosmotic and pressure-driven flow conditions. The electrochemical
conditions for this case are identical to those presented in Figure 7.22,
with the exception of the favorable pressure gradient imposed on the bulk
flow by regulating the channel flowrate. We have deliberately increased the
mass flowrate in the channel by a factor of two. Analysis of the electroos-
motic flow for mixed electroomostic/pressure-driven flows was presented in
Section 7.4.2. In Figure 7.23, we show snapshots of sample contours at var-
ious times. Although the initial sample distribution was uniform across the
channel, due to the mixed electroosmotic/pressure-driven flow, the sample
distribution across the channel quickly becomes parabolic. This parabolic
profile is constantly stretched as the material points move with different
streamwise velocities. Hence, Taylor dispersion effects are dominant for this
flow. Here we must note that in addition to the convective transport due to
the local velocity field, the sample also experiences electrophoretic trans-
port, as shown by equation (7.44). In Figure (d), we present the sample
distribution along the channel center at various times at which diffusion ef-
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FIGURE 7.23. Numerical simulation results of electrophoretic transport in a mi-
crochannel under mixed electroosmotic/pressure-driven flow. Figures (a–c) show
concentration contours at various times, while (d) shows the sample distribution
along the channel center, and (e) shows the streamwise velocity distribution. The
velocity is normalized with the Helmholtz–Smoluchowski velocity of equation
(7.18), and simulations are performed for Re = 0.03, Pe = 500, and λ/h = 0.01
conditions.

fects are visible. Figure (e) shows the velocity distribution across the chan-
nel for mixed electroosmotic/pressure-driven flows. The velocity profile is
merely a superposition of pure electroosmotic flow with pluglike velocity
distribution and a parabolic velocity profile of pressure-driven flow. Sharp
velocity variation across the EDL is also visible in the figure.

The initial sample shape plays a key role in determining the species type
using capillary electrophoresis. If we can prescribe the sample shape at the
entry of the capillary, it is possible to determine the sample shape at any
time (and place) in the channel. For example, an injection with a Gaussian
distribution (with σo initial standard deviation) can be written as

n̄(x, 0) =
n̄o

σo
√

2π
exp

(
− x2

2σ2
o

)
.

Solution of equation (7.45) using this initial distribution results in (Bharad-
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waj et al., 2002)

n̄(x, t) =
n̄o

σ̄
√

2π
exp

(
− (x − Ut)2

2σ̄2

)
,

where, σ̄2 = σo2 + 2tDe. Therefore, knowing the initial distribution of the
injection, we can easily deduce the electrophoretic mobility of the species
using µEP = U/E, where U = x/t is found by measuring the location (x)
of the sample at a given time (t). Noise associated with the initial sample
shape or satellite sample droplets creates difficulties in identification of the
sample type using this technique. To this end, there have been numerous
experimental and numerical studies on initial sample focusing. For exam-
ple, (Ermakov et al., 1999) utilized electroosmotic flow in a cross-channel
to focus and pinch the sample for electrophoretic detection in a straight
channel. Due to the convective–diffusive transport nature of electrophoretic
detection, channel length plays an important role. One way to fit a very long
channel in a microchip is to use spiral or serpentine channels, which result
in severe dispersion effects due to the channel curvature. Several studies
were conducted to understand and eliminate this effect by modification of
the channel geometry (Molho et al., 2001; Dutta and Leighton, 2002), as
well as local modifications of the channel zeta potential (Qiao and Aluru,
2003a). In addition, there have been efforts to modify the hydrodynamic
dispersion in pressure-driven or mixed electroosmotic/pressure-driven flows
by modification of the channel geometry (Dutta and Leighton, 2001; Dutta
and Leighton, 2003).

The results presented in Figures 7.22 and 7.23 characterize electrophoretic
transport in simple channels. Similar techniques can be implemented in
complex microchannel networks to enable flow and species transport con-
trol applications. (Ermakov et al., 1998) have developed a two-dimensional
numerical model for electroosmotic/electrophoretic transport and species
diffusion, which enabled them to analyze electrokinetic transport in two
basic chip elements: cross-channel geometry for sample focusing and injec-
tion, and T-channel for sample mixing. Numerical results of electrokinetic
sample focusing, injection, and separation steps are compared with the
experimental data (Ermakov et al., 1999). We must note that the results
shown in Figures 7.22 and 7.23 differ from the numerical approach in (Er-
makov et al., 1998), since the EDL region is fully resolved in the results
presented here using spectral element discretization; see Section 14.1.

Finally, most practical applications of electrokinetically driven flows may
experience variations in the wall charge (and hence the zeta potential) or
variations in the channel cross-section. For example, proteins and peptides
in capillary zone electrophoresis adsorb on the capillary walls, changing
the zeta potential. This mismatch on the zeta potential locally changes
the electroosmotic flow, and pressure-driven flow is initiated to conserve
mass (see Figure 7.7). Since the flow conditions vary axially in the channel
and there may be secondary flows, Taylor dispersion increases and be-
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comes nonuniform. Such conditions have been investigated by Ghosal in
a series of papers. Electroosmotic flow in a straight channel of arbitrary
cross-sectional geometry and wall charge distribution is solved using the
lubrication approximation (Ghosal, 2002c), while stepwise zeta potential
variations are presented in (Ghosal, 2002a). Analyte adsorption and the
corresponding changes in the flow pattern and the analyte dispersion are
presented in (Ghosal, 2002b; Ghosal, 2003).

7.5.4 Charged Particle in a Pipe
Electrophoretic motion of a spherical colloidal particle moving along the
axis of a pipe has been studied by (Keh and Anderson, 1985) using the
method of reflections. Assuming thin EDL on the particle and the pipe sur-
faces, the electrophoretic velocity of the particle is given up to the O (

d
D

)8
terms as

uEP =
εE(ζp − ζw)

µ

(
1 − 1.28987

(
d

D

)3

+ 1.89632
(

d

D

)5

− 1.02780
(

d

D

)6
)

,

where d and D are the sphere and pipe diameters, respectively. The zeta
potentials on the particle and wall surfaces are shown by ζp and ζw, respec-
tively. The minus sign in front of ζw characterizes the electroosmotic flow.
For example, for a negatively charged surface, the EDL will be positively
charged, and the electroosmotic motion will be toward the cathode. At the
same time, a positively charged particle will also move toward the cathode
(in the electric field direction), and the electroosmotic flow will enhance
the particle migration speed. The equation above can be utilized to char-
acterize blockage effects of the pipe on particle velocity. To a leading order,
d
D = 0.5 gives 16% variation in the electrophoretic velocity. This becomes
important in nanoflow applications. For example, the nanotube-Coulter-
counter (Ito et al., 2003), utilized to determine the size and surface charge
of the nanoparticles, should require such corrections when the particle size
becomes comparable to the nanotube diameter. Another case that may
need further attention is the blockage effects under finite EDL thickness,
where the EDL from the pipe surface and that from the sphere overlap.

7.6 Dielectrophoresis

Dielectrophoresis is the motion of polarizable particles that are suspended
in an electrolyte and subjected to a spatially nonuniform electric field (Pohl,
1978). The particle motion is produced by the dipole moments induced
on the particle and the suspending fluid due to the nonuniform electric
field. When the induced dipole moment on the particles is larger than
that of the fluid, the particles move toward regions of high electric field
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density. This is known as positive dielectrophoresis. In the case of the fluid
being more polarizable than the particles, the particles move away from
the high electric field density, which is known as negative dielectrophoresis
(Cummings and Singh, 2000).

The time-averaged dielectrophoretic force is given by

FDEP = 2πr3εm�[K(ω)]∇‖Erms‖2, (7.49)

where Erms is the rms electric field, r is the particle radius, εm is the
dielectric permittivity of the medium, ω is the electric field frequency, and
�[K(ω)] indicates the real part of the Clausius–Mossotti factor (K(ω)),
which is a measure of the effective polarizability of the particle, given by
(Morgan et al., 1999)

K(ω) =
(ε∗

p − ε∗
m)

(ε∗
p + 2ε∗

m)
, (7.50)

where ε∗
p and ε∗

m are the complex permittivities of the particle and the
medium, respectively. The complex permittivity is defined by

ε∗ = ε − √−1
σ

ω
, (7.51)

where ε is the permittivity, and σ is the conductivity of the dielectric
medium.

Ignoring the Brownian motion, the buoyancy force, and the motion of
the buffer solution, the equation of motion for a suspended particle can be
written as

mp
dv
dt

= FDEP − Fd,

where Fd is the instantaneous drag force acting on the particle. For particle
sizes smaller than 10 µm in buffer solutions with viscosity close to that of
water, the Reynolds number based on the particle size is smaller than unity.
Hence, the inertial effects on particle motion can be neglected. If we assume
a dilute solution, so that particles do not interact and spherical particles
with radius r, we can use Stokes’s formula for the drag force:

Fd = 6πµrv,

where µ is the dynamic viscosity and v is the velocity of the particle. Since
the inertial effects are negligible, one can assume that the instantaneous ve-
locity of a particle v is proportional to the instantaneous dielectrophoretic
force. This results in the dielectrophoretic velocity of a particle given by
(Morgan et al., 1999)

v =
r2εm�[K(ω)]∇‖Erms‖2

3µ
. (7.52)

Since the surface area of the particle is proportional to r2,
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FIGURE 7.24. A 50 kHz AC electric signal induces electric polarization on human
leukemia cells and moves them to the center of four spiral electrodes, while the
normal cells are trapped on the electrode surfaces. (Courtesy of P. Gascoyne and
X. Wang.)

• the dielectrophoretic particle velocity is proportional to the surface
area of the particle.

Further examination of equation (7.52) also reveals that the particle veloc-
ity is determined by the square of the rms electric field. Therefore,

• dielectrophoresis can be maintained by either DC or AC electric fields.

Positive or negative dielectrophoresis (i.e., motion of particles toward
or away from the large electric field gradients) is obtained according to
whether Re[K(ω)] > 0 or Re[K(ω)] < 0. These properties of dielec-
trophoresis enable highly controlled selective microfluidic particle/cell sep-
aration methodologies.

7.6.1 Applications
In the rest of this chapter we will present various biomedical and mi-
crofluidic applications of dielectrophoresis. Green and Morgan were the
first to show that it is possible to separate a population of nanoparticles
(latex beads of 93 nm) into two subpopulations due to the differences in
their dielectrophoretic properties, by using microfabricated electrode arrays
(Green and Morgan, 1997). This initiated many applications of separation
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of small, yet similar-size, particles with different biological properties, in-
cluding chromosomes, viruses, DNA, and other macromolecules. For exam-
ple, Gascoyne et al. were able to separate human breast cancer cells from
blood using (AC electric field) dielectrophoretic separation (Gascoyne and
Wang, 1997). Their technique utilized the frequency dependence of dielec-
trophoretic (DEP) properties of blood and cancer cells and worked in the
following sequence: First, trapping and accumulation of both blood and
cancer cells on microfabricated dielectric affinity chambers (electrodes) us-
ing DEP collection at 500 kHz. Second, reducing the DEP collection to
50 kHz, where the blood cells are released and only the cancer cells are
trapped on the electrodes. This is followed by washing the released blood
cells with pressure-driven flow, where the blood cells are convected down-
stream, while the cancer cells remained on the electrode tips (Gascoyne
and Wang, 1997).

In a somewhat different subsequent design, Gascoyne and Wang used four
spiral microfabricated electrodes for dielectrophoretic separation of human
leukemia cells from the normal cells. Figure 7.24 shows the leukemia cells
concentrated toward the center of four spiral electrodes. In this design the
normal cells are trapped on the electrode surfaces, and human leukemia
cells are washed toward the center. Several other applications of dielec-
trophoresis can be found in (Gascoyne et al., 1992; Markx and Pethig,
1995; Markx et al., 1996; Fiedler et al., 1998; Cheng et al., 1998; Morgan
et al., 1999).

In a series of papers Gascoyne and coworkers have also utilized combined
dielectrophoretic/gravitational field flow fractionation for cell separation
on microfabricated electrodes (DeGasperis et al., 1999; Yang et al., 1999a;
Yang et al., 2000). The gravitational field flow fractionation utilizes balance
between the vertically applied dielectrophoretic forces and the gravitational
forces for levitation of different particles to different heights in a miniatur-
ized channel flow system. The bulk flow is pressure-driven in the axial
direction, and it splits into two different outlet ports at a desired channel
height, separating the heavier particles in the bottom exit port from the
lighter ones in the top exit port. This particle separation system is free
from any moving mechanical components.

Most of the dielectrophoretic applications utilize AC electric fields. How-
ever, as we have stated earlier in the chapter, it is possible to utilize a DC
electric field. In this case the Clausius–Mossotti factor given by equation
(7.50) is real, and there is no frequency dependence in the electrophoretic
force. Cummings and Singh built arrays of insulated circular and square
posts without embedded electrodes (as shown earlier in Figures 7.19 and
7.20). The flow is driven by electrodes outside the post arrays with a DC
electric field at a desired angle to the post row orientation (Cummings and
Singh, 2000). Under a weak electric field, dielectrophoretic effects are over-
whelmed by the electrokinetic effects and diffusion, since dielectrophore-
sis is a second-order effect in the applied electric field. When the electric
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field is increased, two additional distinct flow phenomena are observed.
The first occurrs when dielectrophoresis starts to dominate diffusion over
a certain magnitude of electric field, where “filaments” of low and high
particle concentration appear in the flow. Depending on the angle between
the electrodes and the post arrays as well as the shape of the posts (cir-
cular or square), flow with various concentration gradients is observed,
which is identified as filamentary dielectrophoresis (Cummings and Singh,
2000; Cummings, 2001). The second phenomenon occurs at higher electric
fields, where dilectrophoresis is comparable and greater than the advection
and electrokinetic effects. These experiments have shown “trapping” of re-
versibly immobilized particles near the insulator surfaces, and this flow
regime is identified as trapping dielectrophoresis (Cummings and Singh,
2000; Cummings, 2001). Figure 7.25 shows particle fluorescence image of
filamentary (upper plot) and trapping (lower plot) dielectrophoresis in ar-
rays of circular posts. Other experiments of Cummings, obtained under
DC electric fields, were used to systematically analyze the electrokinetic,
filamentary dielectrophoretic, and trapping dielectrophoretic transport in
complex microgeometries (Cummings, 2001).

The experimental results in (Cummings and Singh, 2000; Cummings,
2001), can also be used for verification of numerical models for electrokinetic
and dielectrophoretic transport. The simulation domain is periodic; hence,
it is free of external boundary conditions, with the exception of the imposed
electric field, which is determined by Laplace’s equation.

In a combined experimental and numerical study, Ho and coworkers uti-
lized AC filamentary dielectrophoresis to induce chaotic mixing in a micro-
channel (Deval et al., 2002). Their mixer consisted of a straight channel
with two grooves on the top and bottom surfaces, see Figure 9.9 in Section
9.3. They have applied ± 10 V AC electric field on the groove surfaces to
induce weak dielectrophoretic forces on the particles flowing through the
channel. Although the flow was laminar and two-dimensional, particle tra-
jectories exhibited chaotic motion that enhanced mixing in this continuous-
flow mixer.

An interesting nanotechnology application of DEP has been demon-
strated by Velev and coworkers in self-assembly of microscale wires using
metallic nanoparticles (Hermanson et al., 2001; Bhatt and Velev, 2004).
Figure 7.26 (a) shows an optical micrograph obtained during the wire
growth process. Due to the DEP, the gold nanoparticles are highly con-
centrated at the end of the wire tip, which enable extension of the wire
in the electric-field gradient direction. The authors reported wire growth
exceeding 50 micrometers per second with lengths on the oder of 5 mil-
limeters. They have used planar electrodes and AC electric fields ranging
from 50 to 200 V at frequencies 50 to 200 Hz. The wires are automatically
assembled using 15 to 30 nm diameter gold particles, and the wires exhib-
ited good ohmic conductance. Wire thickness can be controlled, resulting
in high surface-to-volume ratio structures. The assembly process is simple
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and self-repairing, and the wires automatically form electrical connections
to conductive islands or particles, as shown in Figure 7.26. These properties
make the microwires promising for wet electronic and bioelectronic circuits
(Hermanson et al., 2001; Bhatt and Velev, 2004).

(Jones et al., 2001) utilized dielectrophoresis to create water droplet vol-
umes ranging from microliters down to nanoliters. They have shown that
dielectrophoresis provides a means for manipulation of small water vol-
umes, against overwhelmingly strong surface tension and capillary effects.
Their method enables rapid motion of water in capillaries with smooth
substrates, and creation of multiple nanoliter droplets in less than 0.1 s. A
great potential of this method is that droplet motion across a substrate for
diagnostics, mixing, separation, and dispensing purposes is possible. How-
ever, the foremost advantage of this new method is “division of an initial
liquid inventory into discrete droplets before processing, which avoids sam-
ple cross contamination” (Jones et al., 2001). In addition to the DEP and
the opposing capillary and surface tension effects (see Chapter 8), wetting,
transient fluid motion, Joule heating (see Section 7.4.6), and RF discharge
are also important. More research is required for further understanding and
accurate modeling of this phenomenon (Jones, 2001). In other work, Velev
and coworkers described dielectrophoretic manipulation of freely suspended
droplets in a liquid–liquid microfluidic system (Velev et al., 2003). Unlike
the previous work, this new approach eliminates droplet contact with the
electrodes by suspending the droplets in an immiscible fluid. They have
reported manipulation and mixing of micro to nanoliter volume droplets.
These microfluidic devices can be utilized in a range of applications, in-
cluding the synthesis of new materials and development of biological mi-
croassays (Velev et al., 2003).
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FIGURE 7.25. Particle fluorescence image of filamentary (upper) and trapping
(lower) dielectrophoresis. Regions of high particle concentration emit intense flu-
orescence. The flow is from top to bottom produced by an applied field of 25
V/mm and 100 V/mm, for the upper and lower figures, respectively. The circular
posts have diameter 33 µm with center separation of 63 µm. (Courtesy of E.
Cummings.)
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FIGURE 7.26. Optical micrograph of a growing microwire. Contours show
nanoparticle concentration around the wire (a). The microwires generate com-
plex connections with conductive islands (b), which is achieved by electric field
disturbance imposed by the conductive surfaces. (Courtesy of O. Velev.).



8
Surface Tension-Driven Flows

Capillary phenomena involving wetting and spreading of liquid thin films
and droplets have been studied for a long time for modeling of classical en-
gineering applications such as coating and lubrication. This same body of
theoretical and experimental knowledge can be of great use in microfluidic
research and design. For microfluidic delivery on open surfaces, electrowet-
ting and thermocapillary along with dielectrophoresis have been employed
to move continuous or discrete streams of fluid, for example droplets along
specified paths on glass surfaces (Sammarco and Burns, 1999; Kataoka and
Troian, 1999; Lee et al., 2002). A new method of actuation exploits opti-
cal beams and photoconductor materials in conjunction with electrowet-
ting (Ichimura et al., 2000). Such electrically or lithographically defined
paths can be reconfigured dynamically using electronically addressable ar-
rays that respond to electric potential, temperature, or laser beams and
control the direction, timing, and speed of fluid droplets. Mixing two flu-
ids in T-junctions creates interesting structures that can be manipulated
in a controlled fashion. An example is shown in Figure 8.1, which shows
droplet breakup by extensional flow, i.e., a flow in which fluid elements
are only stretched in a network of T-junctions. Specifically, water slugs are
broken into droplets in oil, a scaled-up version of the experiment shown
in Figure 1.24. Here the microchannels have a rectangular cross-section
50µm × 25µm. Exploiting this concept, one can produce more than a few
hundred droplets per second. The size of the droplets can be controlled by
the lengths of the arms of the corresponding T-junction (Link et al., 2004).

In this section, we study microfluidic transport mechanisms based on
capillary phenomena, taking advantage of the relative importance and sen-
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FIGURE 8.1. Droplet breakup by extensional (i.e., stretched) flow in T-junctions.
(Courtesy of D.A. Weitz.)

sitivity of surface tension in microscales. In particular, we will study how
temperature, electric potential, and light can affect the value and possibly
the sign of surface tension, which is the dominant driving force in the cases
we consider in this section. Its strong dependence on the type of surface
material can be exploited to design scalable and controllable wet circuits
for diverse functions in microdomains. A related topic, important both for
engineering and biomedical applications, is bubble transport in microducts;
we study this topic in some detail in the last section of this chapter. For
background reading on the fundamental concepts presented in this chapter
and for a more mathematical treatment we recommend to the interested
reader the book (deGennes et al., 2004), and also the classical book on
physicochemical hydrodynamics of (Levich, 1962) (Chapters 7 to 12).

8.1 Basic Concepts

We review some basic concepts from fluid mechanics that we will use in the
following sections. We need to know how droplets are created, how they
are transported, and the governing equations for droplets and thin films in
general, under various conditions.

First, we discuss droplet formation, since in most applications we need to
create and transport droplets. A long cylinder of liquid in air (e.g., water jet
emanating from a tap) is unstable and breaks up into small droplets. This
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instability was first studied by Lord Rayleigh, who found that infinitesimal
axisymmetric disturbances grow exponentially if their wavelength λ exceeds
a critical value, which is equal to the circumference of the undisturbed jet
(radius R0), i.e., if

λ/(2πR0) > 1.

Similarly, if the same column of liquid resides on a solid surface with a
contact angle θ between the liquid and the surface, a similar hydrodynamic
instability appears if

λ/(2πR0) >
√

1 − cos θ.

Another situation, often encountered in microfluidics is the case of a liquid
column trapped between two parallel plates. Unlike the two aforementioned
cases, this case is hydrodynamically stable irrespective of the value of the
wavelength λ. This, in turn, implies that it is very difficult to create droplets
in a confined environment unlike the open surfaces where droplets are cre-
ated spontaneously by hydrodynamic instabilities. Details of the theoretical
derivation for these cases can be found in (Isenberg, 1992). In applications,
if we transport microdroplets over an open area, evaporation may be very
high, so often a cover glass is used to prevent this. However, due to the
aforementioned enhanced hydrodynamic stability, creating droplets from
a liquid column sandwiched between two plates requires large amounts of
energy.

We now discuss some useful concepts and the governing laws related
to surface tension. Surface tension, denoted by γ, is force per unit length.
For a system at equilibrium in the presence of an interface of area A, it
contributes γA to the system’s energy. Correspondingly, the work done on
the system to change the interface (for relatively small changes in the sys-
tem dynamics) is γδA. Surface tension can have either positive or negative
values, reflecting the fact that it is associated with the free energy of the
system, which can increase or decrease. When a liquid is in contact with a
gas, the surface tension is positive. For example, the surface tension between
water and air at 20◦ is 72.8 dyn/cm, or 72.8 mN/m in SI units; it depends
strongly on impurities and on the temperature. The surface tension of a
liquid decreases linearly with temperature in the range from the melting
point to the boiling point. For example, for the liquid polydimethylsiloxane
(PDMS), a silicone oil, an empirical fit to available data was obtained in
(Darhuber et al., 2003), as follows:

γ(T ) = 21.5 − 0.06T mN/m,

where T is in degrees Celsius. This indicates that the variation of surface
tension with temperature is linear; also, the thermal coefficient dγ/dT is
constant in the range of 0◦ to 100◦, unlike the dynamic viscosity of liquids,
which also decreases with temperature, but nonlinearly.

Surface tension is created by intermolecular cohesive forces. Liquid mole-
cules that are close to a liquid–gas interface and interact with gas molecules
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experience a cohesive force directed toward the bulk of the liquid and away
from the interface. This imbalance of forces creates an apparent contraction
and a corrugation of the interface. For interactions with other media such
as solids or other liquids, the surface tension sign depends on many other
factors and can be either positive or negative. For immiscible liquids we
have γ > 0; for example, for an oil–water interface, γ = 20 mN/m or
(dyn/cm) at 20◦. Typical values of surface tension for different substances
interacting with air or water are listed in Table 8.1.

The presence of an interface creates a jump in the pressure, which can
be easily computed for systems in equilibrium; it depends on the surface
tension and the deformation of the interface. Following (Batchelor, 1998),
we compute a tension force at a small segment dx on the interface lying in
a plane (x-y) as follows:

−γ

∫
n × dx,

where n is the normal vector to the surface at the point described by
z = ζ(x, y). Upon substituting n = ∇ζ, we obtain

γ

∫ (
∂ζ

∂x
dy − ∂ζ

∂y
dx

)
= γ∇2

2ζδA, (8.1)

where ∇2 denotes the two-dimensional Laplacian operator. We see that
the curvature of the interface determines the value of the force, which is
equal to a pressure of magnitude γ∇2

2ζ acting on the infinitesimal surface
δA. We can rewrite the above expression in terms of reference-independent
variables by introducing the principal radii of curvature, i.e.,

∇2
2ζ =

1
R1

+
1

R2
,

and hence we can express the pressure jump at the interface induced by
the surface tension as

∆p = γ

(
1

R1
+

1
R2

)
. (8.2)

This equation is usually referred to as the Laplace–Young equation.
We note here that in the absence of equilibrium, i.e., in moving interfaces,

the full stress balance equation should be employed instead, which has the
form

σ
(1)
ij ηj − σ

(2)
ij ηj = −γ

∫ (
1

R1
+

1
R2

)
ηi, (8.3)

where σ
(n)
ij denotes the stress tensor in medium (n), and ηi is the normal

unit vector. Also, the radius Ri is positive if its center of curvature is on
the side toward the direction defined by ηi. Some known examples in which
the equilibrium equation is realizable are bubbles and droplets, which are
spherical. In this case R1 = R2 = R, and thus ∆p = 2γ/R.
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FIGURE 8.2. Capillary flow in a micropipe.
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FIGURE 8.3. Surface tension balance at equilibrium.

We have assumed here that the effect of gravity is negligible; this is valid
if the radius of the microbubble is less than the characteristic length scale
ls =

√
γ
ρg . For pure water bubbles (at room temperature) we get ls ≈ 2.5

mm; thus all microbubbles are spherical. Similarly, for a silicone oil droplet
we have that ls ≈ 1.5 mm, and thus micron-size oil droplets are spherical
as well. The Bond number defined as

Bo ≡ L2

l2s
, (8.4)

where L is a characteristic length (here the bubble diameter), determines
the relative importance of gravity. For Bo ≤ 10−3 the effects of gravity can
be neglected.

When gravity is important, the condition for equilibrium at points be-
longing to the interface is

ρgz − γ

(
1

R1
+

1
R2

)
= C, (8.5)

which expresses hydrostatic equilibrium with C a constant. The radii of
curvature are taken positive if the centers of curvature are located on the gas
side of the interface. This equation is useful in studying the rise of a liquid
in a micropipe partially immersed in a liquid. In particular, depending on
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FIGURE 8.4. A sketch illustrating the definition of the contact angle. Panel
(a) corresponds to a wetting surface (θ < 90◦), and panel (b) corresponds to a
nonwetting surface (θ > 90◦).

the liquid–pipe interaction, the free surface of the liquid may rise or fall
into the pipe. This phenomenon is called capillarity. We can compute the
height of liquid rise H by a simple hydrostatic balance following the sketch
of Figure 8.2. The hydrostatic pressure is ∆p = ρgH, and for a micropipe
of radius r we assume that the radius of curvature is R = r/ cos θ, where θ
is the contact angle; see below. Therefore, equilibrium implies that

ρgH =
2γ cos θ

r
,

and thus the rise of liquid is inversely proportional to the micropipe radius.
For example, for a 10-micron glass pipe, there may be a rise of water of up
to about 100 microns.

As we have seen in the example of Figure 8.2, the contact angle θ is a
significant factor in capillarity. When a liquid droplet is in contact with a
solid surface, the value of the contact angle reflects the type of interaction
between the liquid and the solid. The shape of a small liquid droplet on
a homogeneous substrate is usually a spherical cap. The contact angle is
approximately constant if there are no impurities, temperature gradients,
or surface defects, and it is determined by the Laplace–Young equation
(8.2). The point (or line) of contact, as shown in the sketch of Figure 8.3,
is subject to three different surface tensions. Because of equilibrium at the
contact point (or line), we have

γsg = γls + γgl cos θ, (8.6)

where γsg denotes the surface tension between solid and gas, γls between
liquid and solid, and γgl between gas and liquid. This equation is often
referred to as Young’s law.

• When 0 < θ < 90◦, we say that the liquid is partially wetting or that
the solid is hydrophilic.
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Substance Air Water

◦C
dyn/cm

γ or
mN/m

dyn/cm
γ or

mN/m
Water 10 74.2

20 72.8
30 71.2
40 69.6

Benzene 20 28.9 35
Ethyl ether 20 17 10.7
Glycerol 20 63.4 < 0
Mercury 20 487 375
n-Hexane 20 18.4 51.1
n-Octane 20 21.8 50.8
Olive Oil 20 20
Silicone Oil (PDMS) 25 20

TABLE 8.1. Surface tension values for some liquids ( 1 mN/m = 1 dyn/cm).

• When θ > 90◦, the liquid is nonwetting, and thus the solid is called
hydrophobic.

• When θ = 0, we have complete wetting.

A schematic is shown in Figure 8.4. In the following we will present a more
general version of this equation.

8.2 General Form of Young’s Equation

The triple-line force balance expressed in equation (8.6) is valid for simple
cases, but it is inadequate in describing situations in which internal bulk
forces in the droplet are present, e.g., due to gravity or electric fields. In
such cases these bulk forces have to be balanced against the interfacial
forces. An effective approach to obtaining the governing equations is to
consider the total energy of the system and minimize it in order to obtain
equilibrium solutions. Such procedures have been developed and applied in
(deGennes, 1985; Dussan, 1979; Digilov, 2000), and also in (Shapiro et al.,
2003a); here we follow the analysis of (Shapiro et al., 2003a), which is
directly applicable to microfluidic problems.

The starting point is to assume that the droplet is spherical, character-
ized fully by its radius R and the contact angle θ. Other system parameters
will depend on the specific application, e.g., gravity, temperature, voltage.
Having the energy E = E(R, θ) as a function of two independent variables,
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at equilibrium we have that dE(R, θ) = 0, and thus

∂E

∂R
dR +

∂E

∂θ
dθ = 0.

Neglecting any evaporation, the above equation states that at equilibrium,
if the contact angle increases, then the radius must also change. Specifically,
assuming a constant droplet volume, this implies that the radius should
decrease. This volume v also depends on R, θ, and thus dv = ∂v

∂RdR+ ∂v
∂θ dθ.

From geometric considerations we have that, v = πR3(2/3 − (3/4) cos θ +
(1/12) cos 3θ), and since volume is constant

dv = 0 ⇒ dR = R

(
−2 cos2(θ/2) cot(θ/2)

2 + cot θ

)
dθ = Rq(θ) dθ, (8.7)

where the last equation defines the function q(θ). By substituting equation
(8.7) into the equilibrium equation (dE = 0), we obtain the generalized
Young’s equation:(

− 2 + cos θ

2πR2 sin θ

)(
∂E

∂R
Rq(θ) +

∂E

∂θ

)
= 0. (8.8)

This equation can accommodate modeling of any energy function with mul-
tiple contributions due to interfacial effects, temperature or voltage effects,
gravity, etc. In the case in which E contains contributions only due to
interfaces between gas–liquid–solid, we recover the standard Young equa-
tion (8.6). To illustrate this we compute this interfacial energy, assuming
constant surface tensions, from

Ei = γglAgl + (γls − γsg)Als,

where Agl = 2πR2(1 − cos θ) is the surface area of the gas–liquid interface
and Als = πR2 sin2 θ is the surface area of the liquid–solid interface. The
interfacial potential energy is then

Ei = R2[2πγgl(1 − cos θ) + π sin2 θ(γls − γsg)]. (8.9)

By substituting equation (8.9) into the generalized Young’s equation (8.8),
we obtain the classical Young’s equation (8.6).

If gravity is important, then the total energy of the system consists of
the interfacial as well as the gravitational potential energy. The latter is
given by Eg = R4ag(θ), where ag(θ) is a shape function. This expression
was derived in (Shapiro et al., 2003a), using scaling arguments, where the
shape function was also calculated. The total energy in this case is

E = Ei + Eg = R2[2πγgl(1 − cos θ) + π sin2 θ(γls − γsg)] (8.10)

+R4 2π

3
ρg(3 + cos θ) sin6(θ/2).
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By minimizing this energy, as before, we obtain the corresponding Young
equation with gravity

cos θ − γsg − γls

γgl
+

R2ρg

γgl

(
cos θ/3 − cos(2θ)

12
− 1

4

)
= 0.

We see that in this case the contact angle depends on the radius R of the
droplet, unlike the case without gravity.

8.3 Governing Equations for Thin Films

We have already presented some basic concepts for droplet formation and
equilibrium equations involving surface tension as the dominant mecha-
nism. We will present more modeling details in the following sections, but in
the current section we deal with thin films. The evolution equation of a liq-
uid film on a solid surface is derived from the incompressible Navier–Stokes
equations. The fundamental assumption is that the mean thickness is much
smaller than the characteristic length of the interfacial disturbance, the so-
called long-wave approximation. Let us denote by z the direction along the
film thickness. Then the equation for the film thickness z = h(x, t) in two
dimensions is

µht +
1
2
[
h2(fx + γx)

]
x

+
1
3
{
h3[(fz − Φh)x + γhxxx]

}
x

= 0, (8.11)

where µ is the viscosity. Here, fx and fz denote external interfacial forces,
and Φh is a potential evaluated at the liquid–air interface, i.e., at z = h.
Physically, the terms in the above equation represent the action: external
forces, surface tension and its nonuniformity, gravity, and viscous damping,
respectivbely starting from the second term. Specifically, the potential Φh

may include any conservative force, e.g., gravity, centrifugal forces, or van
der Waals forces. In the case of an isothermal film with constant surface
tension, the above equation reduces to (Oron, 2001)

µht − 1
3
ρg(h3hx)x +

1
3
γ(h3hxxx)x = 0, (8.12)

which expresses a balance of viscous damping, gravity, and capillary forces.
This is a nonlinear equation for diffusion enhanced by a dissipation term
due to surface tension. It is stable, which implies that any disturbance
imposed at the interface will decay very fast and the film will return ito its
original shape. On the other hand, a change in the sign of the gravity term
leads to a very unstable system, the well-known Rayleigh–Taylor instability,
which will eventually lead to rupture of the thin film.

The van der Waals forces between an apolar liquid and a solid can be
modeled by a standard Lennard–Jones potential of the form

Φ = α3h
−3 − α9h

−9,
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where αj are the positive Hamaker coefficients. A different potential appro-
priate also for rough solid substrates, derived in (Oron and Bankoff, 1999),
is

Φ = α3h
−3 − α4h

−4.

A simpler potential for apolar liquids is

Φ =
α

6π
h−3,

where positive α corresponds to an attractive force, while negative α corre-
sponds to a repulsive force driving the interface toward a flat profile. In the
case of constant surface tension and neglecting gravity, the above potential
leads to the following film evolution equation:

µht +
1
6π

α(h−1hx)x +
1
3
γ(h3hxxx)x = 0. (8.13)

This equation generates solutions with very small wavelength at least ini-
tially, due to van der Waals forces. However, asymptotically, surface tension
acts to cut off the smaller scales and stabilize the interface (Williams and
Davis, 1982). The attractive van der Waals force included in the equation
establishes naturally a precursor film, which removes the stress singularity
encountered in problems with moving contact lines. Using different contact
line models to relieve the stress singularity leads to some differences in the
initial evolution of the thin film, but its asymptotic stability does not seem
to depend on the particular model. Thefore, using a flat precursor film or a
slip boundary condition or employing van der Waals forces will not change
the basic dynamics obtained in long-time integration (Diez et al., 2000;
Davis and Troian, 2003).

A more general equation regarding the upward thermocapillary spreading
of a Newtonian liquid film in an inclined plane with angle φ was derived in
(Oron et al., 1997), and also studied in (Davis and Troian, 2003), and it is
given by

ht+
(

τh2

2µ

)
x

−
[
ρg sin φh3

3µ

]
x

+∇·
[

h3

3µ
∇(−ρgh cos φ + γ∇2h + αh−3)

]
= 0,

(8.14)
where τ is the shear stress and x indicates the flow direction. The dy-
namic viscosity is assumed variable, since in some applications, such as
thermocapillary pumping, the viscosity may be changing due to tempera-
ture variation. We will discuss this topic in some detail in Section 8.5.

The process of dewetting of a solid surface is of great interest in microflu-
idic applications and has been the subject of many fundamental computa-
tional and experimental studies. Theoretical work supports the idea that
the dominant mechanism driving film evolution is the so-called spinodal
dewetting, and molecular dynamics simulations support this thesis (Koplik
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and Banavar, 2000); however, some experiments point to nucleation of holes
from defects of the surface. The governing equations in this case should in-
clude both gravity and capillary forces but also intermolecular repulsive
and attractive forces. The general equation (8.11) reduces in this case to

µht − 1
3
[
h3(ρgh − γhxx + Φ)x

]
x

= 0. (8.15)

Small disturbances usually decay fast, but when the van der Waals forces
overcome the stabilizing effect of gravity, rupture may take place.

The above modeling assumes isothermal conditions. However, surface
tension is a strong function of temperature. Assuming a constant ambient
temperature T∞, then if the temperature at the bottom of the film T0 is
greater than T∞, then the surface tension (difference) ∆γ is positive. On the
other hand, if T∞ > T0, then ∆γ > 0. The equation for the evolution of the
film thickness should now include the thermocapillary stress, so equation
(8.11) becomes

µht − 1
3
ρg(h3hx)x +

1
3
γ(h3hxxx)x +

αT ∆γ

2k
(h2hx)x = 0, (8.16)

where k, αT are the thermal conductivity and diffusivity, respectively. In
general, the effect of the thermocappilary stress is to produce an unstable
interface. However, thermocapillary stresses due to internal heat generation
have a stabilizing effect (Oron and Peles, 1998).

8.4 Dynamics of Capillary Spreading

In this section we consider isothermal conditions and examine in more
detail the spreading of liquids on homogeneous substrates with roughness as
well as heterogeneous substrates consisting of hydrophobic and hydrophilic
stripes. Of interest is the evolution of the spreading front, i.e., its location
and speed as a function of time. A classical result due to (Tanner, 1979)
concerns the spreading of a Newtonian liquid droplet on a homogeneous
smooth substrate. The radial advance r(t) of the liquid of volume V is

r(t) ∝
(

γ

µ
V 3t

)1/10

,

which shows a weak dependence on time. However, careful analysis shows
that a thin precursor film of molecular dimensions is advancing at a rate
proportional to

√
t, i.e., it follows standard diffusion dynamics.

In nonsmooth surfaces the spreading of liquids follows different dynamics,
since capillary wicking of small amounts of liquids into microgrooves occurs.
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FIGURE 8.5. Sketch for liquid spreading in a V microgroove.

Capillary wicking is a well-known phenomenon that has been studied ex-
tensively, first in the pioneering work of (Washburn, 1921). Also, (Romero
and Yost, 1996) performed a systematic analytical study of capillary flow
into a V-shaped microgroove. A typical configuration is shown in Figure
8.5 with the flow out of the page; the groove has height h0, the height of
the liquid is denoted by h(x, t), and the equilibrium contact angle is θ0.

The pressure drop along the groove is ∆p = p(x) − p0 = γκ(x), where
κ(x) is the curvature and p0 is the constant pressure above the liquid.
This expression is valid if the capillary number Ca = Uµ/γ � 1, which
implies that surface tension forces dominate over viscous forces. For a long
microgroove the curvature parallel to the flow direction is neglected, and
thus

κ(x) = − 1
R(x)

= − sin(α − θ) tan(α)
h(x, t)

,

computed from the sketch of Figure 8.5. Following a quasi-one-dimensional
flow analysis, Romero and Yost (1996) found that the flowrate is

Q = −h4(x, t)
µ

Γ(θ, α)
∂p

∂x
,

which is an expression similar to that for Poiseuille flow. Also, Γ(θ, α) is a
positive function that can be approximated numerically by

Γ(θ, α) ≈ Γ(α, α)
[
hc(θ, α)

h0

]3
[

Â(θ, α)
cot(α)

]1/2

,
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where hc is the height of the fluid at the middle of the groove given by

hc(θ, α) = h0

[
1 + cotα

cos(α − θ) − 1
sin(α − θ)

]
.

The constant Γ(α, α) was approximated analytically in (Romero and Yost,
1996), for the case (θ < α) as follows:

Γ(α, α) ≈ 1
6

cot3 α + 3.4 cot4 α + cot5 α

1 + 3.4 cot α + 4 cot2 α + 3.4 cot3 α + cot4 α
.

Finally, the function Â(θ, α) is related to the cross-sectional area A(x, t) of
the liquid inside the groove, i.e.,

A(x, t) = h2(x, t)Â(θ(x, t), α),

where

Â(θ, α) =
sin2(α − θ) tan α − (α − θ) + sin(α − θ) cos(α − θ)

tan2 α sin2(α − θ)
.

The following equation for the height of the liquid in the groove is derived
from the quasi one-dimensional continuity and momentum equations:

∂h2(x, t)
∂t

=
D

h0

∂

∂x

[
h2(x, t)

∂h(x, t)
∂x

]
, (8.17)

where the diffusion coefficient is D = γh0/µκ(θ0, α) with

κ(θ0, α) =
Γ(θ0, α) sin(α − θ0) tan α

Â(θ0, α)
.

This is a nonlinear diffusion equation for h2(x, t). The diffusion coefficient
is positive if α > θ0, which is equivalent to having a concave free surface;
for α < θ0 no capillary wicking takes place.

Equation (8.17) was solved in (Romero and Yost, 1996), using similarity
variables for various conditions. For the simple case h(0, t) = h0 we have

h(x, t) = h0Φ(η) and η =
x√
Dt

.

An approximate solution was obtained for this case in the form

Φ(η) = −1
2
η0(η − η0) − 1

6
(η − η0)2 − 1

108η0
(η − η0)3 + · · · ,

where η0 is the location where the solution goes to zero and stays zero. It
was found by (Romero and Yost, 1996) that for small positive values of
(α − θ0), we have η0 ≈ 2.272, while for large values of (α − θ0) the value of
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η0 can be increased up to 40%. The main result of the analysis of Romero
and Yost for V-grooves as well as grooves of more complex cross-sectional
areas is that diffusion dynamics dominate, and thus the leading edge (i.e.,
spreading front) of the fluid propagates as

x0(t) = η0(θ0, α)
√

Dt.

This expression shows that spreading increases proportionally with the
depth of the groove h0, since D ∝ h0. Also, the self-similar solution implies
that the free surface of the liquid spreading remains self-similar down-
stream.

Similar work was presented in (Darhuber et al., 2001), where the dy-
namics of capillary spreading along hydrophilic microstripes were studied
numerically and experimentally. The surface was smooth but was processed
chemically in order to create narrow hydrophilic stripes on a hydrophobic
background. Following an analysis similar to the work of (Romero and Yost,
1996), it was found that self-similar solutions also exist for the microstripes,
and these can be obtained from the equation

d

dη

(
Φ3 dΦ

dη

)
+

η

2
dΦ
dη

= 0,

where the similarity variables are defined in the same way as before. The
approximate self-similar solution in this case is

Φ(η) ≈ (1 − η/η0)1/3.

where η0 ≈ 0.87. Clearly, the spreading front advances as x(t) ∝ √
Dt,

where D = (64γh3
0)/(35µw2) with w the width of the microstripe. The

average streamwise velocity, however, is proportional to

U ∝ γw4

µ

1
x

.

Therefore, the spreading speed is proportional to w4 and decays down-
stream; experimental results with microstripes of widths varying from 200
to 800 µm verified the theoretical results; see (Darhuber et al., 2001), for
more details.

8.5 Thermocapillary Pumping

We now discuss capilary spreading in the presence of thermal gradients.
The development of thermocapillary stress at the air–liquid interface of a
thin film gives rise to fluid motion. Since dγ/dT is constant and negative
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(a) (b)

FIGURE 8.6. Schematic of the alternating SiO2/OTS microstripes in (a), and
visualizations of a silicone-oil film spreading on the patterned silicon wafer in
(b). The three interferograms were taken five minutes apart. (Courtesy of S.
Troian.)

for most liquids, by applying a constant thermal gradient a constant shear
stress is produced given by

τ =
dγ

dx
=

dγ

dT

dT

dx

along the x-direction from cold to hot regions. Such a spreading of the
fluid on a homogeneous substrate is subject to fingering-type instabilities
similar to the phenomena observed in flows driven by gravity or centrifugal
forces. In particular, the spreading front develops a capillary ridge, which
becomes unstable in the presence of infinitesimal disturbances of a certain
wavelength. The parallel small rivulets that form after the instability occurs
have a characteristic wavelength

λc = 18
(

2γh2
0

3τ

)1/3

∝ h0

(3Ca)1/3 ,

where h0 is the film thickness, and the capillary number Ca is defined here
as Ca = τh0/(2γ). In practice, this instability is realizable, but because of
surface defects or impurities the rivulets are not stationary, with a large
variation in the value of λc up to 30%; see (Kataoka and Troian, 1999),
and references therein.

In order to drive the flow along specified pathways it is possible to pattern
the surface with microstripes that have a different contact angle from that
of the rest of the surface. This was attempted in (Kataoka and Troian,
1999), where alternating stripes of bare or oxidized SiO2 coated with a
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bonded monolayer of octadecyltrichlorosilane (OTS) were patterned on a
wafer using a spin-coating technique; see the sketch of Figure 8.6. Of fun-
damental interest here is to examine whether the wavelength imposed by
fabrication dominates over the wavelength of the instability λc. In (Kataoka
and Troian, 1999), the thermocapillary spreading of a silicone oil was in-
vestigated on stripes varying from 100 µm to 500 µm. A typical result from
the experiments is shown in Figure 8.6 displaying visualizations of the sili-
cone oil on alternating 200 µm stripes subject to τ = 0.8 dyn/cm2. The film
thickness observed was less than 1 µm. Unlike spreading over homogeneous
substrates that requires a long incubation period, spreading over hetero-
geneous substrates is spontaneous, and the fluid is immediately channeled
into the hydrophilic stripes. The average speed of tips and troughs for the
flow visualization shown in Figure 8.6 was 2.60µm/s, and 1.73µm/s on
the hydrophilic stripe with the troughs advancing more slowly on the OTS
stripes. This is typically three orders of magnitude less than the induced
speed in an electrocapillary; see the next section. It was found in (Kataoka
and Troian, 1999), that on the patterned surface the periodicity of the
spreading front follows the periodicity imposed by the pattern unless the
width of the hydrophilic stripe is below about 50µm.

In general, for heterogeneous substrates the wetting of a liquid on a solid
is quite complex. If a liquid droplet is residing partially on a hydrophilic
stripe and partially on a hydrophobic patch, there may be a variation of
the contact angle along the contact line. Typically, the droplet may mi-
grate to regions with small contact angle. This was demonstrated in the
experiments of (Darhuber et al., 2000) with glycerol on patterned silicon
surfaces. The chemical modulation leading to alternating hydrophilic and
hydrophobic stripes was achieved using a self-assembled monolayer of oc-
tadecyltrichlorosilane (OTS) 3 nm in thickness. The contact angle of glyc-
erol on OTS was measured in (Darhuber et al., 2000), to be about 95◦,
while that on SiO2 was less than 5◦. The hydrophilic SiO2 stripes in the
experiments were 7 to 15 µm in width, while the width of the microstruc-
tures formed varied between 10 and 47µm. If the heterogeneous stripes are
much larger than the droplet radius, then the contact angle will take the
appropriate value defined by Young’s equation for the relevant stripe.

In (Gau et al., 1999), the equilibrium shape of a liquid droplet in contact
with a completely hydrophilic surface was examined as a function of the
liquid volume per unit length. It was found that if it exceeds a critical value,
the droplet forms a pronounced bulge along the contact line. In general,
the shape and distribution of liquid droplets on a microchannel wall depend
on the contact angle, the surface tension, and as the volume of liquid de-
posited. If the amount of liquid deposited on a relatively long microchannel
is subcritical, then the contact lines will stay within the hydrophilic stripe,
and it will behave as if the substrate were homogeneous; i.e., it is suscep-
tible to the natural instability we described earlier manifested as capillary
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FIGURE 8.7. Top view profiles of liquid droplets as a function of the liquid
volume for θ = 60◦ in (a) and θ = 30◦ in (b). (Courtesy of S. Troian.)

breakup. The critical value of the volume per unit length of the stripe is
(Darhuber et al., 2000)

V

l
≤ w2

4 sin2 θ

(
θ − 1

2
sin 2θ

)
,

where w is the channel width and the contact angle θ is measured in radians.
Exceeding the critical value of V/l will effectively increase the value of the
contact angle, and thus it may delay breakup, but it may create bulges, as
in the work of (Gau et al., 1999).

Such effects were studied by (Darhuber et al., 2000), who performed
numerical simulations using the program SURFACE EVOLVER, which is
based on energy minimization techniques; this program was developed by
(Brakke, 1992). The liquid surface was triangulated, and the total energy of
the system was expressed as a function of the vertices of the triangular el-
ements. Standard minimization techniques were employed (e.g., conjugate
gradients), and different boundary conditions were incorporated in the min-
imization process. Curved interfaces produce a pressure excess inside the
liquid (see equation (8.2)). Figure 8.7 shows profiles from the simulations
of Darhuber et al. for a single microdroplet residing on a 1µm × 8µm hy-
drophilic region for contact angles θ = 60◦ and θ = 30◦, while the rest
of the surrounding area is completely hydrophobic, i.e., θ = 180◦. For
the same volume of liquid, the smaller liquid with contact angle spreads
faster, as expected. As the volume of the microdroplet increases the liq-
uid fills up the stripe but remains confined within the stripe, although it
forms a bulge for the larger contact angle. This implies incomplete wet-
ting of the hydrophilic strip, which can be interpreted as surface energy
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imbalance between the liquid–vapor and the liquid–solid systems, with the
latter acquiring higher energy levels. The morphological features of liquid
microdroplets residing over heterogeneous substrates depend critically on
the surface tension value. In (Darhuber et al., 2000), parametric studies for
different surface tensions but constant liquid volume were also performed.
By reducing the surface tension, complete spreading of the microdroplet
over the hydrophilic patch is obtained. This is expected, since reduction in
the surface tension leads to a reduction of the corresponding contact angle;
see equation (8.6).

Using the above concepts, self-assembled monolayer chemistry was used
in (Zhao et al., 2001), to pattern surface-free energies in microchannel net-
works. In particular, it was found that when the pressure was maintained
at sufficiently low levels, the liquid followed the hydrophilic pathways but
above a threshold, the liquid crossed the boundary between the hydrophilic
and hydrophobic regions. Two liquid streams separated by a gas membrane
were transported side by side, allowing reactive components to be diffused
from one stream to the other. This type of configuration can be used as
a network of microchannels with “virtual” walls. The condition for rup-
ture of the virtual wall is that the angle θb at the hydrophilic–hydrophobic
boundary be equal to the (advancing) contact angle of the liquid on the
nonpolar surface θn. The maximum pressure that these virtual walls can
sustain for a straight stream is

∆Pmax =
2γ

h
sin(θn − 90◦),

where h is the film thickness. For curved pathways there is a limit on the
curvature of the flow determined by the virtual wall rupture condition and
the extra pressure difference due to curvature. An ultraviolet photopatter-
ing method was developed in (Zhao et al., 2001), to pattern surface-free
energies inside microchannels in situ within minutes, and applications for
gas–liquid reactions in microchips as well as for pressure-sensitive switches
were demonstrated. Virtual walls can lead to multiple and diverse function-
ality on microchips that may be difficult to achieve with other methods.

8.6 Electrocapillary

Similar to thermocapillary, where temperature is the controlling mecha-
nism, in electrocapillary, or electrowetting electric potential can be used
to change the surface tension and thus cause flow motion. Compared to
thermocapillary, electrocapillary is much more energy efficient (power con-
sumption is about 10 mW), and various applications have demonstrated
induced speeds over 100 mm/s, in contrast to less than about 1 mm/s in
thermocapillary. Some of the applications have demonstrated addressable
liquid handling, i.e., droplet routing but also droplet cutting and merging
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(Cho et al., 2003). Other applications include optical switches (Beni et al.,
1982), rotating micromotors (Lee and Kim, 2000), and liquid lenses (Kwon
and Lee, 2001). From the fundamental standpoint, electrowetting is the
low-frequency limit of the electromechanical response of an aqueous liquid
to an electric field. In contrast, dielectrophoresis can be thought of as the
high-frequency limit. (We note that, in general, the phenomenon of dielec-
trophoresis requires only a nonuniform field, and it exists also under DC
conditions.) An analysis of the two mechanisms and a related experiment
were reported in (Jones et al., 2003).

The basic electrowetting mechanism was discovered over a century ago
by (Lippmann, 1875), who observed that electrostatic charge may modify
capillary forces. This principle was introduced to microfluidics by (Mat-
sumoto and Colgate, 1990), who attempted to design micropumps based
on controlling surface tension using electric potentials. Perhaps the sim-
plest implementation is continuous electrowetting (CEW), which uses liquid
metal droplets (e.g., mercury) in a filler liquid, thus requiring two liquids
in the system. CEW exploits changes in the surface tension of the liquid
metal–liquid (electrolyte) system at the liquid–solid–gas interface. This is
demonstrated in the sketch of Figure 8.8(a) adopted from the work of (Lee
et al., 2002). Flow motion is induced due to the different surface tension at
the two menisci caused by the electric potential.

Two other forms of electrocapillary are electrowetting (EW) and electro-
wetting-on-dielectric (EWOD). Unlike CEW, these methods can be used
to move aqueous liquid in microchannels without the presence of a second
liquid medium, so the droplet in this case is in contact with air, just as
in thermocapillary. EW and EWOD exploit changes in the solid–liquid
surface tension, which in turn changes the contact angle. Specifically, in
EW an electrical double layer (EDL) is formed between the electrode and
aqueous solution that is between 1 nm and 10 nm thick. Applying a voltage
difference as shown in the sketch of Figure 8.8(b) may cause a hydrophobic
surface to behave like a hydrophilic one. In essence, the electric energy
counterbalances the free surface energy and lowers the surface tension γsl.
In EWOD there is no electric double layer, but the change in the energy
balance takes place in the hydrophobic dielectric layer; in (Lee et al., 2002),
a Teflon layer 0.8µm thick was used. The basic principle is demonstrated
in the sketch of Figure 8.8(c) adopted from the work of (Lee et al., 2002).

Thermodynamic analysis at the interface leads to the so-called Lipp-
mann’s equation

γ = γ0 − 1
2
cV 2, (8.18)

where V is the voltage difference, γ0 is the surface tension at zero voltage,
and c is the capacitance per unit area. This equation is applicable to all
three forms of electrowetting, but c relates to the EDL for CEW and EW,
and to the dielectric layer for EWOD. Also, for CEW, γ is the interfa-
cial surface tension between the two media, whereas for EW and EWOD,
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FIGURE 8.8. Electrocapillary principles for (a) continuous electrowetting; (b)
electrowetting, and (c) electrowetting-on-dielectric (Lee et al., 2002). (Courtesy
of C.-J. Kim.)

γ = γsl is the solid–liquid surface tension. In the following, we will derive
the generalized Young–Lippmann equation that governs equilibrium based
on energy minimization principles. An alternative derivation for constant
surface tension and neglecting gravity is obtained using Young’s equation
of equilibrium at the triple contact line (equation (8.6)) and substituting
the Lippmann equation (8.18) to get

cos θ = cos θ0 +
cV 2

2γgl
, (8.19)

where θ0 is the zero-voltage contact angle. We note the strong dependence
of the contact angle on the voltage, which may lead to a switch between
a hydrophobic and hydrophilic surface, and also its independence on DC
or AC current. The above equation is a special case of the generalized
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FIGURE 8.9. Electrowetting (EW) device with electric potential off (a) and on
(b) corresponding to a hydrophobic and hydrophilic lower surface, respectively
(Lee et al., 2002). (Courtesy of C.-J. Kim.)

Young–Lippmann equation that we will study in the next section.

A proof-of-concept experiment for EW was conducted in (Lee et al.,
2002), with a liquid droplet (Na2SO4) squeezed between an electrode and a
cover glass, as shown in the schematic of Figure 8.9, subject to about 1 volt.
Without the cover glass, microdroplets evaporate very quickly. The contact
angle on the cover glass (coated with a hydrophobic layer) is not changed,
but the wettability of the lower surface is changed by the electric potential.
The pressure difference inside the liquid droplet and the air (p − pa) can
be computed from Laplace’s equation, assuming a spherical geometry, to
obtain

p − pa = −γgl

d
(cos θ + cos θb),

where d is the microchannel height.
Similarly, a proof-of-concept experiment was conducted in (Lee et al.,

2002), to test EWOD. A water droplet was placed on a Teflon-coated sur-
face (hydrophobic), and it was demonstrated that upon applying a voltage
of about 100 V, the surface switched to hydrophilic, causing spreading of
the droplet. To compute the pressure build-up in this case we refer to the
schematic of Figure 8.10 adopted from (Lee et al., 2002). On the left end
of the meniscus, we have

pL − pa = −γgl

d
(cos θ + cos θb0) > 0,
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FIGURE 8.10. Electrowetting-on-dielectric (EWOD) device with electric poten-
tial on corresponding to a hydrophilic lower surface (Lee et al., 2002). (Courtesy
of C.-J. Kim.)

while on the right end of the meniscus, we have

pR − pa = −γgl

d
(cos θ + cos θb) < 0,

where d is the channel height, which is equal to the droplet height. The
pressure difference within the liquid droplet is then

pL − pR =
γgl

d
(cos θb − cos θb0),

which shows that the surface angle on the cover glass does not influence
the spreading process. Using the Young–Lippmann equation (8.19) we can
eliminate the contact angles alltogether to obtain

pL − pR =
cV 2

2d
=

ε0εV
2

2td
,

where t is the thickness of Teflon (1 µm in (Lee et al., 2002)), d = 10µm,
ε0 = 8.854×10−12 C/V is the vacuum permittivity, and ε = 2.0 is the Teflon
permittivity. As pointed out in (Lee et al., 2002), it is somewhat surprising
to see, at least for this application, that the surface tension is not present
in the above equation, although flow motion occurs due to surface tension
changes between the liquid and the solid! Clearly, if hysteresis effects are
present, then γsl will be involved explicitly in the above pressure equation.
With regards to efficiency, a large voltage is required in EWOD (about 100
volts compared to EW of about 1 volt) due to the relatively thick layer of
the Teflon dielectric layer. For a very thin dielectric layer on the order of
0.1 µm or less, the required voltage is about 20 volts (Lee et al., 2002).

In summary, the EW method is appropriate for electrolytes and is en-
ergetically quite efficient. In contrast, the EWOD method can handle any
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aqueous liquids, but it requires substantially higher voltage. Switching be-
tween hydrophobic and hydrophilic surfaces using electric potential is, in
principle, a reversible process, but other parasitic effects may affect re-
versibility. It was reported in (Verheijen and Prins, 1999), that charge trap-
ping may degrade the surface and affect electrowetting adversely. However,
it was recommended that silicone oil be used to treat the surface in order
to minimize the undesired contact angle hysteresis caused by the trapped
charge. Another limitation of electrowetting is the saturation in the change
of contact angle caused by applying an electrical potential. We discuss this
in the next section, but we first present a more rigorous derivation of the
Young–Lippmann equation.

8.6.1 Generalized Young–Lippmann Equation
The Young–Lippmann equation can be derived rigorously based on the
energy minimization equation that leads to the generalized Young equation
(8.8). To this end, following the analysis of (Shapiro et al., 2003a), we
consider a conducting liquid droplet residing on a dielectric solid and obtain
the total energy of the system. It consists of the interfacial energy given in
equation (8.9) as well as the dielectric energy stored in the solid and the
externally applied charging source. The latter is twice the energy stored in
the dielectric solid but with opposite sign. Therefore, we need to compute
the potential energy only in the very thin solid dielectric layer. An electric
field almost perpendicular to the surface area Als is proportional to the
voltage V and inversely proportional to the layer thickness h. The energy
stored in the solid dielectric is then

Ede =
1
2
εs(V/h)2hAls = πR2 εsV

2

2h
sin2 θ,

where εs is the dielectric constant of the solid. The total energy in this case
is then

E(R, θ) = R2 (π sin2 θ(γls − γsg − εsV
2/(2h)) + 2πγgl(1 − cos θ)

)
,

which upon minimization leads to the Young–Lippmann equation (Lipp-
mann, 1875)

cos θ − γsg − γls

γgl
− εs

V 2

2γglh
= 0. (8.20)

We note that this equation does not depend on the radius of the droplet R,
as in the standard Young equation that expresses triple-line force balance
(equation (8.6)).

The above analysis is not valid for apolar liquids, e.g., a silicone oil atop
a conducting solid surface. This case is analyzed in (Shapiro et al., 2003a),
assuming that the droplet is an insulator with dielectric constant εl. The
electric field varies in this case as V/R, so the stored electric energy is
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FIGURE 8.11. Contact angle saturation: The experimental data are taken from
four different devices (see (Moon et al., 2002)). The theoretical curves are taken
from (Shapiro et al., 2003a). They show energy-minimization-based results for
three different values of the electrical resistivity in the liquid. The middle value
is appropriate for water and closely matches the observed experimental results.
(Courtesy of B. Shapiro.)

1/2εlR
3(V/R)2ade(θ) ∝ R. Here, ade(θ) is the shape factor, which cannot

be computed analytically as for the previous cases; however, the following
empirical fit was developed in (Shapiro et al., 2003a):

ade(θ) ≈ 0.0592 + 0.0012θ + 0.0022 tan(1.71 − θ),

where θ is in radians. The following Young equation is obtained for this
case by energy minimization:

cos θ − γsg − γls

γgl
+ εl

V 2

2γglR

2 + cos θ

2π sin θ

(
ade(θ)q(θ) +

dade

dθ

)
= 0. (8.21)

The quantity q(θ) has been defined in equation (8.7). We note that there
is 1/R dependence in this equation, unlike all the other cases we have
presented so far. In general, the contact angle variation with the voltage is
very weak for dielectric droplets.

A more realistic model for the microdroplets is that of an imperfect
conductor residing on an imperfect insulator. This case was studied nu-
merically in (Shapiro et al., 2003a), and it leads to the contact angle sat-
uration phenomenon observed in experiments. Many physical mechanisms
can cause such saturation, including charge-trapping, liquid resistivity, and
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electrolysis. The model developed in (Shapiro et al., 2003a), identifies liquid
resistivity as the leading cause of contact angle saturation. For sufficiently
small θ the interfacial energy beats the electrical energy, and thus the total
energy goes to infinity; i.e., a minimum is never achieved around the com-
plete wetting state. This model agrees very well with the experimental data
reported in (Moon et al., 2002), where a single and a double layer of Teflon
and silicon dioxide were used for the solid dielectric layer. In Figure 8.11 a
comparison of the numerical results of Shapiro et al. is presented against
several sets of experimental data for a certain value of the solid-to-liquid
resistance. If the value of this ratio is infinity, then we recover the perfect
conducting droplet described by the standard Young–Lippmann formula;
however, no contact angle saturation is predicted for that case. The nondi-
mensional voltage used in the plot is defined as U = εsV

2/(hγgl), where
h is the thickness of the dielectric layer. Also, A0 measures the resistivity
ratio of solid to liquid.

8.6.2 Optoelectrowetting
Implementation of electrowetting for multichannel liquid networks requires
a large number of electrodes, often leading to a wiring bottleneck in two-
dimensional arrays. An alternative but conceptually similar approach is
optoelectrowetting (OEW), which was first studied in (Ichimura et al., 2000;
Chiou et al., 2003). The basic mechanism is shown in the sketch of Figure
8.12, where a photoconductive material is placed under the dielectric layer
of a standard electrowetting setup. The contact angle can still be computed
by the Young–Lippmann equation, i.e.,

cos θ = cos θ0 +
εV 2

2γd
,

where d is the thickness of the dielectric layer. In the dark state, i.e., no
light source, the frequency of the AC curent is controlled so that the photo-
conductor dominates, and thus through a voltage divider the voltage drop
will occur across the photoconducting layer. When a light source is present,
the conductivity of photoconductor increases by orders of magnitude, and
consequently, the voltage drop is mainly in the dielectric layer. The mate-
rial used in the experiments of (Chiou et al., 2003) was amorphous silicon
because of its low dark conductivity and visible light response. Its conduc-
tivity increased by almost two orders of magnitude with light intensity of
65 mW/cm2.

The liquid droplet in the demonstration experiments of (Chiou et al.,
2003) was deionized water, which was placed between a top hydrophobic
surface (indium tin oxide coated with Teflon), while the bottom surface of
amorphous silicon was also coated with Teflon. An electrode grid was placed
under the photoconducting layer. By applying light on one end of the mi-
crodroplet, the contact angle decreases and motion is induced. Velocities up
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FIGURE 8.12. Sketches illustrating the basic principle of light actuation of liquid
droplets (Optoelectrowetting). (Courtesy of M.C. Wu.)

FIGURE 8.13. Optoelectrowetting: Contact angle of a water droplet versus light
intensity (Chiou et al., 2003). (Courtesy of M.C. Wu.)

to 7 mm/s were recorded, which are much higher than velocities achieved
by thermocapillary but lower than standard electrowetting. The liquid mi-
crodroplet follows the path of the laser beam (4 mW power). A change in
contact angle up to 30◦ was demonstrated in (Chiou et al., 2003). However,
the saturation phenomenon encountered in conventional electrowetting was
present here too. In Figure 8.13 we plot the measured contact angle as a
function of the light intensity obtained in the experiments of (Chiou et al.,
2003). The results are in agreement with the Young–Lippmann formula if
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FIGURE 8.14. Sketch of bubble trains and details in the gap. Here V denotes
voltage, h is the annular gap size, ζb is the zeta potential, U0 is the bubble velocity,
and C0 is the KCL concentration.

we substitute V = 70 (rms value), d = 1 µm, ε = 4 × 8.854 × 10−12 F/m,
and γ = 73 N/m; the saturation angle is about 75◦.

This technique, which exploits light actuation combined with electrowet-
ting, enables a large number of electrodes to be addressed for multifunc-
tioning lab-on-a-chip operation without wiring bottlenecks.

8.7 Bubble Transport in Capillaries

Transport of long bubbles and organic liquid droplets is required in micro-
generators, microreactors, and drug delivery applications. The droplets, for
example, can be drugs, while air bubbles can be used as spacers to separate
samples along a pathway in a network of microchannels. The air bubbles
can also be used as pumps, e.g., as pistons that drive the flow, or as valves
as in ink-jet printers. The motion of droplets and bubbles in pipes has been
studied in the classical work of (Bretherton, 1961) and in many subsequent
papers; see, for example, (Ratulowski and Chang, 1989), and references
therein. In microfluidic applications it is interesting to determine the max-
imum speed of transporting bubbles in microchannels and to understand
the physical mechanisms that control this transport.

Let us consider a bubble in a micropipe immersed in a wetting liquid,
assuming also that gravity is negligible (i.e., small Bond number limit). The
bubble is then axisymmetric within the capillary, and a wetting annular
film is formed around the bubble and between the capillary walls. The film
thickness h is very small, so we can employ the standard lubrication limit
to approximate the flow in the film. Thus, the velocity profile is

u(y) = −γ

µ

∂3h

∂x3 y(y/2 − h),

where y is measured from the wall of the micropipe; also, the pressure is
constant across the film thickness but varies in the longitudinal direction x.
In the presence of (insoluble) surfactants the interface between the bubble
and the film behaves, as rigid wall, and thus in this case the velocity profile
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should be modified accordingly, i.e.,

u(y) = −γ

µ

∂3h

∂x3 y

(
y

2
− h

2

)
,

so it satisfies no-slip boundary conditions. Typically, the bubble is elongated
so the length to diameter ratio lb/d is grater than 1, and the bubble consists
of two caps and a middle parallel section, as shown in the sketch of Figure
8.14. If the bubble is symmetric, i.e., the front and back caps are identical,
then there is no capillary pressure difference, and thus the bubble is not
moving. Therefore, for mobile bubbles there is a large pressure in the back
cap and a smaller pressure in the front, and this pressure difference pushes
the bubbles into the annular liquid wetting film.

In order to estimate the corresponding pressure drop we employ the
Laplace–Young equation. The two curvatures in this problem are the cur-
vature in the caps, which is approximately 1/R (with R = d/2 the capillary
radius), and the film (axial) curvature hxx, which is nonzero in the transi-
tion regions, i.e., between the caps and the middle parallel section of the
bubble. Balancing the curvatures in the transition region, we obtain that

x ∝
√

Rh.

On the other hand, using the momentum equation and balancing viscous
stresses with pressure drop, we obtain the classical Bretherton scaling.
Specifically,

µU

h2 ∝ dp

dx
∝ γ

Rx
⇒ h2

Rx
∝ µU

γ
= Ca,

where the last equation defines the capillary number. Combining the above
two equations, we obtain

h ∝ RCa2/3 and x ∝ RCa1/3.

Typical bubble speeds are in the range of 1 µm/s to 1 mm/s, and thus for
aqueous solutions we have that the corresponding capillary number is 10−7

to 10−4. This, in turn, implies that using the above Bretherton scalings,
the film thickness is about 10,000 times smaller then the radius of the
micropipe R, while the transition layer is about 100 times less than R.

Bretherton has used asymptotic analysis to obtain accurate expressions
for the above scalings including the coefficients. The starting point is to
use the quasi-one-dimensional mass conservation equation

∂h

∂t
+

∂Q

∂x
= 0,

where Q = (γh3hxxx)/(3µ) is the flowrate across the film obtained from the
parabolic velocity profile. In the Lagrangian reference frame moving with
the bubble velocity we have that ht = −Uhx, and integrating the above
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equation from the middle point (where h → h∞) to the transition region,
we obtain

Ca−1h3hxx = 3(h − h∞).

Defining now h̃ = h/h∞ and ξ = (x/h∞)(3Ca)1/3, we obtain the Bretherton
equation

h̃3hξξξ = h̃ − 1. (8.22)

This nonlinear equation can be solved either analytically or numerically,
and its solutions need to be matched with the static solutions of the
Laplace–Young equation (8.2) at the ends of the transition region, i.e., at
the two caps. The solution is different at the two limits, i.e., as ξ → ±∞,
and this asymmetry at the back and front caps produces the pressure dif-
ference that drives the bubbles into the wetting annular liquid film.

The above solution gives the film thickness at the midsection of the
bubble h∞ = 0.64R(3Ca)2/3, and also the pressure difference between the
back and front caps

∆p = 10
R

γ
Ca2/3.

This equation has been modified for large values of capillary number,
10−1 > Ca > 10−2, in (Ratulowski and Chang, 1989), as follows:

∆p =
R

γ
[10Ca2/3 − 12.6Ca0.95],

but this correction is negligible for microfluidic applications, where the cap-
illary number is very small. The pressure estimate helps us in quantifying
the length scales in applications in which a train of spacer bubbles is used
to transport slugs or drops of liquid drugs. Clearly, the pressure drop ∆p
along the length L of the liquid slug is equal to the difference between the
pressure at the front cap and the pressure at the back of the leading bubble,
which is given by the above expression. We also have that

∆p

L
∝ µU

R2 ⇒ L ∝ RCa−1/3,

so the above scaling shows that the size of the liquid slug is about 100 times
the size of the micropipe radius. The aforementioned scalings are realizable
in experiments. However, surfactant contaminants, which are particularly
effective at low Ca, may affect the results. In (Ratulowski and Chang, 1990),
a comparison between theory and experiments is presented, and corrections
due to Marangoni traction at the liquid–air interface are proposed. Also, for
noncircular cross-section, the Bretherton–Chang theoretical solutions are
not valid, and numerical solutions should be obtained using the formulation
outlined in (Ratulowski and Chang, 1989).

Transport of microbubbles can be achieved either by pressure-driven or
electrokinetically driven flows. It may be more efficient to build up back
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pressure on the bubbles using the latter. However, it has been found in ex-
periments in (Takhistov et al., 2002), that air bubbles were stationary even
though the electrokinetic velocity was 1 mm/s. Therefore, it is important
to understand the physical mechanisms that are in place so that we can
modify them to induce bubble motion. Here, we follow the work of (Takhis-
tov et al., 2002), who developed the theory of asymmetric double layers.
The reason that the bubble may stay stationary despite the fast surround-
ing flow can be explained by simple scalings. Specifically, the electrokinetic
velocity ue is proportional to E, where E is the electric field, which scales
in inverse proportion to the cross-sectional area; hence, the flowrate is inde-
pendent of the cross-sectional area. This, in turn, implies that the flowrate
in the annular region (between the bubble and the capillary) is the same
as that behind the bubble, and thus there is no extra pressure buildup due
to the lack of liquid accumulation, so the liquid simply flows around it.

There are many possibilities of circumventing this difficulty, e.g., by dis-
turbing the gap flow and thus reducing the flowrate in the annular region.
This can be achieved by changing the conductivity of the film, i.e., by
adding appropriate ionic surfactants, which will cause the development of
an electric double layer (EDL) at the liquid–air interface in addition to the
EDL on the capillary wall. The relative size of these two EDLs is a major
factor in determining the motion of the bubble.

In the experiments of (Takhistov et al., 2002), air bubbles were created in
solutions of KCl/H2SO4 in a micropipe of diameter d = 2R = 0.55 mm and
length 3 cm. The glass walls were treated properly so that a positive zeta
potential ζc was produced, although typical glass surfaces are negatively
charged. A small amount (2 × 10−5 mol/l) of an anionic surfactant SDS
(sodium dodecyl sulfate) was used to create the interface EDL. Voltages
in the range of 10 to 120 volts were applied, and the concetration of KCl
varied from 10−6 to 10−2 l/m. The main finding of these experiments was
that there exists a window of operation parameters within which bubble
motion occurs, and it can reach even 3 mm/s for short bubbles. Specifically,
this window is defined by the voltage range (20 to 80 volts) and the KCl
concentration C0 (between 10−5 to 10−3 mol/l).

A summary of the results is shown in Figure 8.15, taken from (Takhistov
et al., 2002). The measured bubble velocity also depends on the aspect ratio
of the bubble lb/d, as shown in Figure 8.16, also taken from (Takhistov
et al., 2002). Overall, a strong dependence of the bubble velocity u0 is
obtained in terms of the applied voltage V , the electrolyte concentration
C0, and the bubble length lb. Below the critical value of C0 and above the
critical value of voltage, the electric current stops completely. In addition to
the experiment with the anionic surfactant, Takhistov et al. also conducted
experiments with a cationic surfactant, but no bubble motion was observed.

It is important to understand the reasons for this behavior, which pro-
duces a mobile versus a stationary bubble. Takhistov et al. argued that
the most dominant mechanism is the enhancement of the film conductivity
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FIGURE 8.15. Nondimensional bubble velocity expressed as the capillary number
Ca versus ion concentration for different values of voltage drop. (Courtesy of H.-C.
Chang.)

that the anionic surfactant produces. In particular, SDS introduces nega-
tive charges in the liquid–air interface, and thus a negative zeta potential
ζb is created, in contrast to the positive capillary potential ζb at the wall.
The corresponding electric double layers contain charge q of opposite sign,
and thus they drag the flow along opposite directions in the gap region
due to the corresponding force qE. If ζc = |ζb|, then the net flow in the
gap is zero and the bubble will move as in the case of the pressure-driven
flow, thus at rather low speeds. However, if |ζb| > ζc, then net reverse flow
occurs at the gap, which can cause liquid accumulation in the back of the
bubble and eventually an ejection of the bubble. In contrast, the addition of
a cationic surfactant will produce a positive ζb thus producing the opposite
effect from before, i.e., no bubble motion.

The above arguments are in general valid, but they do not explain the
observed window of bubble motion and specifically the upper and lower
limits. The EDL scales inversely proportional to the square root of the ion
concentration (see equation (7.1)), and thus at high ionic concentrations
the EDL almost vanishes. Therefore, the aforementioned mechanism for
flow reduction in the film gap is not there, and this explains the upper
limit in the window of Figure 8.15. On the other hand, at very low ionic
concentrations the two EDLs overlap, and while the two zeta potentials ζc

and ζb increase, ζc becomes greater than |ζb|. This change in the relative
strength of the potentials at the liquid–air interface and at the capillary
wall reverses the aforementioned flow reduction effect at the film gap, and
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FIGURE 8.16. Time history of the bubble velocity as a function of the bubble
length. C0 = 10−4 mol/l; V = 42 volts. (Courtesy of H.-C. Chang.)

the bubble moves much slower and eventually stops.

In summary, in transporting air bubbles in micropipes using electroos-
mosis, asymmetric electric double layers are desirable in order to produce
a flow reversal in the annular region around the bubble. This, in turn, will
cause a pressure buildup at the back of the bubble with an eventual forward
ejection of the bubble. This occurs in a certain range of ionic concentra-
tion, which causes significant enhancement of the conductivity of the film.
The resulting bubble velocities are of order 1 mm/s, but only for short
bubbles; longer bubbles (length to diameter around 5) may travel much
slower, at about 1 µm/s. These results, however, are not valid for noncircu-
lar microducts, since corners create complications such as very thick films,
which basically are responsible for much of the voltage drop in electrokineti-
cally driven flows. Therefore, for microchannels with general cross-sectional
shapes, pressure-driven flow may be more efficient in transporting bubbles.



9
Mixers and Chaotic Advection

Mixing is an old subject in fluid mechanics, and it is typically associated
with high-speed flows, since it occurs naturally due to turbulent diffusion.
For example, in channels with height above 1 cm, water flow is typically
turbulent for speeds of 10 cm/s or higher, and mixing occurs rapidly due
to turbulent fluctuations. In microchannels, the height is more than an
order of magnitude smaller, and thus the flow is laminar. Therefore, trans-
port is controlled solely by the diffusion coefficient D of the medium. In
many biological applications, e.g., mixing a stream of proteins in an aque-
ous buffer, the diffusion coefficient is very small, of order 10−10 m2/s, and
thus mixing by laminar diffusion is a very slow process. In order to enhance
mixing and thus reduce the corresponding time, various subcritical excita-
tion techniques have been developed, some of them resembling heat trans-
fer enhancement methods used in microelectronic cooling applications. A
more systematic procedure based on rigorous theory is to exploit the con-
cept of chaotic advection or Lagrangian chaos that can be achieved for
low Reynolds number flows or even for Stokes flows. In this chapter, we
present the basic ideas behind chaotic advection and give analytical solu-
tions for prototypical problems. We then discuss examples of passive and
active mixers that have been used in microfluidic applications. Finally, we
provide some quantitative measures of characterizing mixing based on the
concept of Lyapunov exponent from chaos theory as well as some conve-
nient ways to compute them.
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9.1 The Need for Mixing at Microscales

Mixing of fluids in microchannels is important in many applications, in-
cluding homogenization of solutions of reagents in chemical and biological
reactions, sequencing of nucleic acids, and drug solution dilution. Mixing
reduces longitudinal dispersion, which is important in determining perfor-
mance in pressure-driven chromatography, which is the transfer of fractions
from a separation column to a point detector, where it leads to peak broad-
ening (Stroock et al., 2002). G.I. Taylor has studied longitudinal dispersion
of a scalar in a pipe, demonstrating that the effective diffusion coefficient
is inversely proportional to the transverse diffusivity (see Section 7.5.3).
In microchannels the flow is laminar, with the typical Reynolds number
at least two orders of magnitude lower than the critical value for laminar-
to-turbulence transition. Mixing of tracers is then based on molecular dif-
fusion, with mixing times of order h2/D, where h is the channel height
and D is the molecular diffusivity. Even though h is less than 100µm in
most applications, tracers with large molecules have very small D, leading
to intolerably large mixing times. In Table 9.1 we present the molecular
diffusivity of some relevant substances in water. Diffusivities of solutions
containing large molecules (e.g., hemoglobin, myosin, or viruses) are typi-
cally two orders of magnitude lower than for most liquids. For example, at
room temperature myosin’s coefficient of diffusion in water is 10−11 m2/s,
which for h = 100µm requires a time of about 1000 s, which is unacceptable
in practice (Bau et al., 2001).

Solute D (×10−9 m2/s) Solute D(×10−9 m2/s)
Nitrogen 1.88 Oxygen 2.10
Hydrogen 4.50 Propane 0.97
Acetone 1.16 Hemoglobin 0.069
Ovalbumin 0.078 Fibrinogen 0.020

TABLE 9.1. Diffusivity D of different substances in water at 25◦.

The objective is therefore to achieve rapid mixing using the minimum
amount of space. More specifically, the objective of mixing is to maximize
the interfacial area in two coflowing fluids using the minimum amount of
space, time, or energy. As we will see in the next section, this implies
stretching of the interfacial area as much as possible. Mathematically, this
is expressed simply in terms of the Peclet number Pe. Relying on clasical
diffusion only, the mixing length L is proportional to hPe, where h is
the microchannel height. Achieving complete mixing using the concepts of
Lagrangian chaos or chaotic advection, as we will discuss in the next section,
leads to L ∝ h ln Pe. For solutions based on large molecules, the Peclet
number achieves high values, and hence the logarithmic scaling becomes
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very important.
Micromixers are devices that have been proposed and tested in microflu-

idics research to enhance mixing rates. In the literature, both the mixing
process and the mixing microdevices are characterized as either passive or
active. In particular, passive mixing refers to a process whereby the inter-
face follows the flow without any back effect on the flow (noninteracting
case), whereas active mixing involves interfaces interacting with the flow.
On the other hand, micromixers are also broadly classified as passive and
active or static and dynamic, respectively. Most of the active mixers involve
moving parts, and they expend additional energy resources, unlike the pas-
sive mixers. In terms of robustness, passive mixers are superior, but they
are topologically very complex and hence difficult to fabricate. In addition,
once they are incorporated in a microfluidic design they cannot be used for
any other function. Active micromixers are reconfigurable and simpler to
fabricate, although perhaps more complicated to operate.

The first generation of mixers sought to increase the mixing surface area
between two streams of fluids by splitting them into n substreams and re-
joining them again in a single stream at a certain location downstream.
This mixing method is called parallel lamination, and it can potentially
reduce the mixing time by a factor proportional to n2. Similarly, sequen-
tial lamination has been used based on vertical and horizontal splittings in
many stages, with the potential of reducing the mixing time by a factor of
4n−1, where n is the number of splitting stages. Passive mixers involve ap-
propriate geometric modifications, while active mixers rely on the unsteady
action of a stirring force using a mechanical, acoustic, magnetic, or elec-
troosmotic actuation (Bau et al., 2001; Oddy et al., 2001; Moroney et al.,
1991). A magnetohydrodynamic (MHD) mixer was designed and tested in
(Bau et al., 2001); it uses Lorentz forcing to produce cellular advection
patterns (with induced speed up to 1.5 mm/s), and this can enhance mix-
ing in microchannels. Such an MHD micromixer can be useful in biological
fluids that are partially conductive. However, the mixing rate achieved in
(Bau et al., 2001), for a steady magnetic field was only slightly faster than
linear, suggesting that no complete mixing was possible with this excita-
tion. A time-varying magnetic field could potentially increase the mixing
rate significantly. Good mixing with exponentially fast rate is achieved
if chaotic advection is implemented properly using either time-dependent
forcing or appropriate geometric modifications. We present some details of
this concept and examples in the following section, focusing in particular
on techniques that have the potential of achieving complete mixing. Rep-
resentative designs of both passive and active mixers are studied in some
detail in the special volume on mixing at microscales edited by (Ottino and
Wiggins, 2004).
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9.2 Chaotic Advection

Homogenization of a tracer by a flow involves two processes: stirring and
mixing. Stirring is the mechanical stretching of a material interface, while
mixing is the diffusion of a substance across this interface. Mathematically,
this process can be expressed by describing the passive advection of fluid
particles given by

dx

dt
= u(x, y, z, t),

dy

dt
= v(x, y, z, t),

dz

dt
= w(x, y, z, t), (9.1)

where v(x, y, z, t) = (u, v, w) is the velocity vector. When the flow is tur-
bulent, the particle paths described by equation (9.1) are chaotic. Research
in dynamical systems in the mid 1980s has shown that chaotic fluid par-
ticle motion can also be generated with simple velocity fields either two-
dimensionally with time-dependent excitation or three-dimensionally with
or without time dependence. This concept was introduced by (Aref, 1984),
who coined the term chaotic advection. Streamlines and pathlines in steady
three-dimensional flow coincide. However, they are not closed curves, and
they are not confined to smooth surfaces unless the Lamb vector ω × v is
nonzero everywhere in the field. In fact, in chaotic advection, particle paths
diverge exponentially in time, which is simply translated in practice to very
large residence time for fluid particles. This, in turn, offers the possibility
for enhanced transport in the mixing of two coflowing liquid streams, a
typical setup in applications. For unsteady flows, a necessary condition for
chaos is the crossing of streamlines at two consecutive time instants. This
is expressed mathematically by the concept of link twist maps (Wiggins
and Ottino, 2004).

The stirring and mixing of a passive scalar described by the nondimen-
sional concentration θ is governed by the advection–diffusion equation

∂θ

∂t
+ v · ∇θ = Pe−1∇2θ,

with Pe = UL/D is the Peclet number defined as the ratio of the diffu-
sion time (L2/D) to the advection time (L/U), where D is the molecular
diffusivity. With regard to numerical discretization of the above equation,
algorithms that work well for low Reynolds number but also for high Peclet
number are required. To this end, a semi-Lagrangian method can be used
to deal with the advection–diffusion equation (Xiu and Karniadakis, 2001).
It can effectively bypass the strict time-step restriction imposed in explicit
time-stepping integration, and it is stable for very large values of Pe.

Advection dominates for large values of the Peclet number, and a steep-
ening of concentration gradients occurs. However, at much later times
molecular diffusion smooths out these steep gradients. Of interest is the
characteristic time for which ∇θ is maximum, which we denote by tm. This
time can be estimated by equating the diffusion length ld ∝ √

Dt to the
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striation thickness (transverse dimension) of the tracer la associated with
advection. Stretching in applications achieving chaotic advection is a self-
similar process at small scales following a lognormal distribution. Here, we
refer to the average striation thickness in order to carry out the following
order-of-magnitude analysis.

Let us first consider a simple shear flow v = (γ̇y, 0), where γ̇ denotes
the deformation rate, and regular advection for which we have that la =
l0/
√

1 + (γ̇t)2. Therefore, the characteristic time tsm in this case is

tsm ∝ Pe1/3

γ̇
,

where Pe = γ̇l20/D and l0 denotes the initial thickness of the layer. On the
other hand, for a field with characteristic velocity and length scales U and
h that generates chaotic advection, the striation thickness of the tracer is
la = l0 exp(−λt). Here λ is the stretching rate of the tracer, equal to the
asymptotic value of the Lyapunov exponent (Ottino, 1997). In this case,
the characteristic time, tcam , for long times is estimated as

tcam ∝ L

U
ln Pe.

Comparison of the above estimates for the mixing time scale implies that
the diffusion time increases much faster as Pe increases in linear shear flow
compared to chaotic advection. It turns out that this is a general result
with the exception of the pure strain flow v = (γ̇x, γ̇y), which although
integrable (i.e., nonchaotic) also has mixing times proportional to lnPe.
This anomaly is a consequence of an exponential separation associated
with this flow and the infinite acceleration for |x| → ∞; for a detailed
explanation see (Jones, 1991).

The long mixing times imply long mixing lengths, which are impractical
in microfluidic applications. To this end, many efforts have been made
to design and operate effective mixers that exploit the chaotic advection
concept. One of the first theoretical designs suggested for general viscous
flows was based on twisted pipes, i.e., pipe segments that are not all in
the same plane (Jones et al., 1989). It is well known that in a curved pipe
a secondary motion is induced, giving rise to longitudinal vortices. The
flow of particles in a twisted pipe with a pitch angle χ is represented by a
sequence of Dean solutions augmented by a rotation of particles through an
angle −χ between the successive segments. The specific value of the angle
is very important, since it will make the system nonintegrable and generate
chaotic advection.

Perturbation solutions for the Dean flow have been derived in (Jones
et al., 1989). Referring to the sketch of Figure 9.1 and using polar coordi-
nates (r, φ) in the transverse x-y plane, we follow Dean’s formulation for
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FIGURE 9.1. Sketch of a twisted pipe and notation used in the Dean flow solu-
tion. This basic unit is composed of two 180◦ curved pipe segments of constant
curvature.

the streamfunction ψ and axial velocity w:

∇2w =
1
r

(
∂ψ

∂r

∂w

∂φ
− ∂ψ

∂φ

∂w

∂r

)
− C,

∇2ψ =
1
r

(
∂ψ

∂r

∂

∂φ
− ∂ψ

∂φ

∂

∂r

)
∇2ψ + 2Dew

(
sin φ

r

∂w

∂φ
− cosφ

∂w

∂r

)
.

Here De = W 2a3/(Rν2) is the Dean number with W the average axial
velocity, a the pipe radius, and R the radius of curvature of the bend.
Therefore, the Dean number is proportional to the square of the Reynolds
number. Also, C is a nondimensional pressure gradient defined by

C = − a2

RWµ

∂p

∂θ
.

The perturbation solution is obtained in a power series in De; at the lowest
order the standard Poiseuille flow for a straight pipe is recovered. The
first-order equations give the following equations for the particle motion

ẋ =
α

1152

[
h(r) + y2 h′(r)

r

]
, ẏ = − α

1152
xy

r
h′(r), θ̇ =

1
4
β(1 − r2),

(9.2)
where α = DeC

2, β = DeC/Re, and

h(r) =
1
4
(4 − r2)(1 − r2)2.

The angle θ is used to describe the three-dimensional motion of the flow
along the curved pipe together with the coordinates (x, y).
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Since the above equations are steady, the independent variable can be
changed from time t to angle θ to obtain

dx

dθ
=

c

1152
[
4 − 5x2 − 23y2 + x4 + 8x2y2 + 7y4] , (9.3)

dy

dθ
=

c

192
xy
[
3 − x2 − y2] , (9.4)

where c = α/β. These equations define the mapping of fluid particles from
one cross-section to another (Jones et al., 1989). They produce chaotic
solutions for the particle paths for certain ranges of the parameters c and
χ. For example, for c = 100 the most chaotic pattern is obtained if χ = 90◦,
but as χ → 180◦ a regular pattern is achieved. In (Jones et al., 1989), it
was shown that transverse chaotic transport occurs when

tan
χ

2
≤ sinh

πc

192
,

which provides a criterion for the design of the twisted pipe or other three-
dimensional channels in order to realize, at least partially, the effects of
chaotic advection on longitudinal dispersion. Finally, we note that the
stochastic patterns of the particle paths are similar to the instantaneous
ones seen in a corresponding turbulent flow, but with the important differ-
ence that in the chaotic advection these paths are stationary in time.

9.3 Micromixers

The first implementation of the twisted pipe concept in microfluidics was
presented in (Liu et al., 2000). A three-dimensional serpentine microchan-
nel was designed as shown in the sketch of Figure 9.2. The basic building
block is a “C-shaped” section; the planes of two successive such sections
are perpendicular to each other. The channel height is 300µm, and its total
length 7.5 mm. The microchannel was fabricated in a silicon wafer using
a double-sided KOH wet-etching technique. The mixing streams were phe-
nolphthalein and sodium hydroxide solutions, which typically mix fast com-
pared to other large-molecule solutions. In the experiments of (Liu et al.,
2000), after ten “C-shaped” sections at least 98% of the maximum intensity
of reacted phenolphthalein was observed. This mixing was superior to that
in a straight channel (a factor of 16 better) and about 60% better than in a
similar square-wave channel that has all “C-shaped” sections on the same
plane. However, full chaotic advection was established only at a relatively
high Reynolds number, i.e., Re = 70; this value is higher than in typical
microfluidic applications.

A passive chaotic mixer for microchannels that exploits the aforemen-
tioned “complete mixing” concept and verifies the logarithmic Peclet num-
ber dependence was developed by (Stroock et al., 2002). To generate trans-
verse secondary flows, microriblets similar to rifling in a gun barrel were
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FIGURE 9.2. Schematic of a serpentine channel used in the experiments of (Liu
et al., 2000).

FIGURE 9.3. A: Schematic of microchannel with riblets. B: Optical micrograph
showing the two streams flowing on either side of a clear stream. C: Fluores-
cent confocal micrographs at three different cross-sections showing the rotation
and distortion of a stream of fluorescent solution that was injected upstream.
h = 70 µm; w = 200 µm, α = 0.2, q = 2π/200 µm−1, θ = 45◦. (Courtesy of H.A.
Stone.)

placed on the floor of the channel at an oblique angle θ with respect to the
long axis y of the channel, as shown in Figure 9.3. They were fabricated
using two steps of photolithography. These microriblets, whose height is
typically less than 30% of the channel height, present an anisotropic re-
sistance to flow, with less resistance along the main flow direction than in
the orthogonal direction. A transverse component of the flow (along the
x-direction in the figure) is then produced that is initiated at the riblet
surface, with the flow circulating back across the top of the channel. Op-
tical micrographs used in the experiments of (Stroock et al., 2002) show
that the flow has helical trajectories, as shown in Figure 9.3(A).

A somewhat different design was also tested in the experiments of (Stroock
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et al., 2002); it uses V-grooves to make a structured surface, instead of
straight riblets, as shown in Figure 9.4. The objective here is to subject
the fluid to a repeated sequence of rotations and extensions in order to re-
alize stronger chaotic transport. This is effectively analogous to the baker’s
transformation, i.e., a repetitive action involving stretching, cutting, and
fusion that can, in principle, achieve the best achievable mixing (Ottino,
1997). In this design the shape of the grooves is changing along the flow in
each half-cycle, as shown in Figure 9.4. The efficiency of mixing is primarily
controlled by two parameters: the measure of asymmetry and the ampli-
tude of rotation of the fluid in each cycle. For symmetric microgrooves or
zero amplitude of rotation the flow becomes deterministic, but optimum
values for both parameters have been obtained experimentally. The degree
of mixing was quantified using the standard deviation of the intensity dis-
tribution in confocal images of the cross-section of the flow. The results
suggest that the V-grooves achieve mixing with zero standard deviation
only 1 cm downstream, while the microchannel with the straight riblets,
although effective, does not quite achieve complete mixing. These results
were obtained for a Peclet number range from 2 × 103 to 9 × 105, and they
confirmed the theoretical logarithmic dependence of the mixing length on
the Peclet number.

For applications, it was argued in (Stroock et al., 2002), that the mixing
of a stream of proteins in an aqueous buffer (D = 10−10 m2/s) with U = 1
cm/s and h = 100µm would require a channel of length L = 100 cm for
regular advection compared to L = 1 cm for chaotic advection achieved
using a V-grooved microchannel. This improvement simply reflects the dif-
ference in the linear versus logarithmic dependence on the Peclet number
for regular and chaotic advection, respectively.

The first active micromixer designed to exploit the good mixing of chaotic
advection was presented in (Evans et al., 1997). It attempted to establish
chaotic advection using a sink/source system, the so-called blinking vor-
tex, first presented in (Aref, 1984). Unmixed fluid is drawn into a mixing
chamber, and subsequently two sink/source systems are alternately pulsed.
Here we present a somewhat different concept and design, which was also
developed by the same research group at UC Berkeley. It is a pulsatile
micromixer based on a bubble micropump developed in (Deshmukh et al.,
2000). The use of pulsatile flow creates a greatly lengthened interface that
leads to faster mixing. A schematic of the bubble micromixer is shown in
Figure 9.5. Two pulsatile pumps are operated out of phase to mix two
streams of fluid in a mixing channel. Fluid 1 is pushed into the mixing
channel while fluid 2 is drawn from the inlet for half of the cycle, and the
process is reversed for the other half of the cycle. The pumps consist of a
bubble chamber and two check valves. When a bubble is created, it acts
as a piston and drives the fluid out. The check valves control the direction
of the fluid. When the bubble collapses, fluid is drawn in only from the



352 9. Mixers and Chaotic Advection

FIGURE 9.4. A: Schematic of microchannel with the V-grooves and of streamlines
showing the secondary induced motion at the two halves of the periodic array of
grooves. Here h = 77 µm, α = 0.23, q = 2π/100 µm−1. B: Confocal micrographs
of vertical cross-sections at different distances from the inlet. (Courtesy of H.A.
Stone.)

inlet. By cycling bubble generation and collapse, a net pumping action is
achieved. Steam bubbles can be generated by heat; upon heat removal the
steam condenses and the bubble collapses. Electrolysis bubbles can also be
used. This micromixer was fabricated using SOI (silicon on insulator) and
quartz wafers bonded together using epoxy. Bubbles were created using
polysilicon resistors on quartz, which act as heaters. The designs tested
in (Deshmukh et al., 2000), use 1 to 4 watts per pump, which is quite
inefficient. Another practical issue is that the valves and substrate, which
are made of bare silicon, sometimes stick together, since water is a poor
lubricant on silicon surfaces.

A novel concept of an active micromixer was introduced in (Volpert et al.,
1999). It is based on mixing a sequence of shear flows at different angles, and
it is called the “shear superposition micromixer,” or SSM. In contrast to the
pulsatile micromixer we described above, the SSM is a continuous through-
flow micromixer consisting of the main channel and three cross-flow side
channels. The side-channels produce a time-dependent shear flow in the
direction transverse to the main flow. The frequency of actuation in the
three side-channels increases downstream to accommodate the decreasing
scales that need to be further mixed downstream. A sketch of SSM and a
micrograph of the actual device is shown in Figure 9.6; a typical range of
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FIGURE 9.5. Schematic of the bubble micromixer. (Courtesy of D. Liepmann.)

the half-channel height is 50µm to 150 µm.
The flow from the side-channels is set to oscillate out of phase at phases

(0, π, 0), while both amplitudes and frequencies are different for the three
pairs. Both simulations and experiments were performed to evaluate the
performance of this mixer (Bottausci et al., 2004). In the experiment, ve-
locity profiles were measured using PIV, and also the mixing variance co-
efficient (MVC) was computed from photographs of the concentration field
(side views (x-y) only). Typical results for MVC are shown in Figure 9.7(a)
for the case in which only one side-channel is activated at 28 Hz. On the
horizontal axis, S denotes the base-2 logarithm of the number of small boxes
used to compute the mixing variance coefficient. The mixing variance co-
efficient, or MVC, is normalized such that a value of zero corresponds to
complete mixing, whereas a value of 0.25 corresponds to no mixing. The
experimental results are in agreement with the numerical predictions, but
at small scales the experiments show better MVC value; see Figure 9.7(a).
The quality of mixing decreases with the scale size. Figure 9.7(b) shows
numerical results for the MVC, with all three pairs of side-channels acti-
vated at oscillation frequencies of 26.025 Hz for the first, 59.34 Hz for the
second, and 92.925 Hz for the last side-channel. We see that overall, the
MVC values decreased compared to the actuation of the single side-channel
in Figure 9.7(a). This indicates significantly improved mixing and validates
the theory that the oscillation frequency should be increasing downstream.
Proper optimization techniques can be incorporated to select the set of
frequencies automatically for a given application.

In the next example, we consider the chaotic electroosmotic stirrer of
Qian and Bau (2002). The device consists of a spatially-periodic mixing



354 9. Mixers and Chaotic Advection

FIGURE 9.6. Schematic of the shear superposition micromixer and corresponding
micrograph of the actual device. (Courtesy of I. Mezic.)
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FIGURE 9.7. (a) Experimental measurements of MVC for an (x-y) plane and
numerical simulations for an (x-y) and a (y-z) plane for a single side-channel
activated. (b) Numerical simulations for all three pairs of side-channels activated.
(Courtesy of I. Mezic).

chamber, where the bottom and top surfaces each have two surface elec-
trodes that are covered with a thin insulator. The zeta potential on the
insulated surface can be altered by applying electrostatic potential on these
electrodes (Schasfoort et al., 2001); see also Section 7.4.7. It is possible to
create various flow patterns in the mixing chamber by using different zeta
potentials under horizontal electric field. For simplicity, Qian and Bau uti-
lized zeta potential combinations of ±ζ0, and obtained analytical solutions
of Stokes flow in the rectangular chamber using the thin EDL approxima-
tion (i.e., the Helmholtz–Smoluchowski slip velocity (equation (7.24)) is
assumed on electrode surfaces). Figure 9.8 shows four steady Stokes flow
patterns obtained under different zeta potentials (shown by patterns A,
B, C, and D). The arrows on the top and bottom of the mixing chambers
show the electroosmotic flow direction. The main idea in the electroosmotic
stirrer is to alter the zeta potential, and hence the flow patterns vary peri-
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FIGURE 9.8. Four different electroosmotic flow patterns obtained by zeta po-
tential alterations in (Qian and Bau, 2002). Arrows show the electroosmotic flow
direction on electrode surfaces. The flow is maintained by a steady horizontal
electric field.

odically to induce chaotic mixing. Although the flow is time-periodic here,
the particle paths for two-dimensional unsteady flow may become noninte-
grable, resulting in chaotic advection/mixing even in the Stokes flow regime.
We must indicate that the actual device requires precise control over the
zeta potential magnitude and the time scales for zeta potential alterations.
In addition, the results presented in (Qian and Bau, 2002), ignore possible
interactions between the insulated electrodes and the flow transients.

In Section 7.6 we have briefly described applications of dielectrophoresis
to mixing. The final example of this section describes one such micromixer
developed by (Deval et al., 2002). It is appropriate for microflows that
contain charged or polarizable particles that can move under the influence
of a nonuniform AC electric field. The spherical particles used in (Deval
et al., 2002), are polystyrene spheres, but in principle, bacteria or cells may
be present in the flow.

Assuming a spherical particle of radius a and conductivity σ subject to
an electric field with rms value Erms, the time-averaged force on the particle
is given by equation (7.49). The real part of the Clausius–Mossotti factor,
K(ω), is in the range [−1/2, 1], and thus both attractive and repulsive forces
can be induced simply by changing the frequency ω. The conductivity of
polysterene spheres is on the order of 10 mS/m, and correspondingly, the
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FIGURE 9.9. Top view of the DEP micromixer. (Courtesy of C.-M. Ho.)

FIGURE 9.10. The top left picture shows a nonactuated mixer with flat interface
and sharp intensity profile. The top right picture corresponds to a mixing regime.
The lower plot shows intensity profiles of mixing at the stations indicated on the
upper right plot. (Courtesy of C.-M. Ho.)

crossover frequency from attractive to repulsive induced forces is a few
MHz, with high frequencies generating negative forces. Therefore, particles
are attracted toward the electrodes at low frequencies and are pushed away
at higher frequencies. This is the principle that is exploited in the DEP
micromixer fabricated in (Deval et al., 2002). A top view of the micromixer
test section is shown in Figure 9.9. The chamber dimensions are 200×200×
25µm. The electric field is created by a 1–15 MHz, 10 V AC voltage applied
between selected pairs of micromachined electrodes located on the walls of
the two cavities. Visualizations of the particle motion revealed that as the
particles enter the first cavity, positive DEP forcing attracts them into the
low-velocity region, while frequency switching repels them back to the main
flow. The combined competing motion generates folding and stretching,
thereby producing enhanced mixing. Typical results are shown in Figure
9.10, with the background velocity being approximately 420µm/s.
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9.4 Quantitative Characterization of Mixing

In many experimental and numerical studies on micromixers mixing is
characterized only qualitatively by snapshots of a passive tracer or two
differently colored fluids. Clearly, crossing of streamlines is an indication of
chaotic mixing, but how exactly do we quantify the degree of mixing? The
Lyapunov exponent (LE) is a possible accurate measure, since it is related
to the stretching rate. It is defined by the equation

λ∞ = lim
t→∞

1
t

ln
d(t)
d(0)

, (9.5)

where d(t) is the distance between two points that are initially very close to
each other. An n-dimensional system has at most n LEs, and it is charac-
terized as chaotic if at least one of the LEs is positive. One of the problems
in applying the above definition in microfluidic systems is that we have
only a finite length and corresponding mixing time. In addition, it is quite
expensive to compute the LE from this definition, although it has been
applied with success in quantifying mixing in an active micromixer, similar
to the SSM presented earlier, in (Lee, 2002).

A more convenient measure for quantifying chaotic mixing is the finite-
time Lyapunov exponent (FTLE). It is given by a similar definition to the
one in equation (9.5) but without the limit t → ∞, i.e.,

λF (ξ, t) =
1
T

ln
d(t + T )

d(t)
. (9.6)

It clearly depends on the time t and also on the Lagrangian position ξ, and
it converges to LE as T → ∞. In addition, as shown in (Tang and Boozer,
1996), the FTLE satisfies the following equation:

λF (ξ, t) = λ̃(ξ)/t + f(ξ, t)/
√

t + λ∞, (9.7)

where λ̃(ξ) is a smooth function of geometry only, and the function f(ξ, t)
satisfies

lim
t→∞ f(ξ, t)/

√
t = 0.

Although the distribution of FTLE is strongly space- and time-dependent,
it has been shown in (Tang and Boozer, 1996), that the mean FTLE con-
verges very rapidly to the actual value of LE. Its effectiveness in micromix-
ers has been demonstrated in (Niu et al., 2003), for both active and passive
mixers.

The dimensionless advection time of the system, within which complete
mixing can be achieved, can be written in terms of the FTLE as

tn =
ln(2Ω) − 1

2λF
,
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FIGURE 9.11. Poincaré section of the twisted pipe (left) and FTLE contour at
χ = π/2; c = 100. (Courtesy of Y.K. Lee.)

where Ω = λF L2/D � 1 for micromixing. A criterion for complete mixing
was derived in (Niu et al., 2003), as follows:∫ tn

0

2λF (t)
ln(2λF (t)L2/D) − 1

dt = 1.

The above approach was used in (Niu et al., 2003), to analyze the twisted
pipe of (Jones et al., 1989), that we presented earlier, see equations (9.3)
and (9.4). In particular, FTLE contours in the (x,y) planes were computed
and compared to Poincaré sections for different values of the parameters χ
and c. Figure 9.11 (left) shows the Poincaré section for χ = π/2 and c = 100.
Clearly, mixing is poor in regions where islands appear. Figure 9.11 (right)
shows the FTLE contour for the same parameters, which is topologically
similar to the Poincaré section. The mean FTLE was computed for many
values of (χ, c), shown in Figure 9.12. The highest value corresponds to
best mixing, which is achieved at χ slightly greater than π/2. However, for
realistic values of the parameter c the twisted pipe turns out not to be a
very good mixer.

We now study the electroosmotic stirrer of Qian and Bau (2002), de-
scribed in the previous section, in order to quantify its mixing effectiveness.
Using the flow patterns shown in Figure 9.8 for half a period (T/2) each,
we obtain six different pattern combinations (A-B, A-C, A-D, B-C, B-D,
and C-D). We computed the FTLE for all of these patterns for nondimen-
sional periods of T = 4, 6, and 8, where T is normalized by the convective
time scale (based on the half-channel height and the electroosmotic slip
velocity from equation (7.24)). The variation of the FTLE, as a function
of time for T = 4, 6, and 8 is shown in Figure 9.13. For all the cases, the
initial particle location was at (x, y) = (0.5, 0.1), and the virtual particle
was initially offset by a distance of 10−5 (channel half-height). The results
show that the pattern B-C at T = 6.0 has the largest FTLE, corresponding
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FIGURE 9.12. Mean finite time Lyapunov exponent (FTLE) for the twisted pipe:
optimization study. (Courtesy of Y.K. Lee.)

to λF = 0.31, while for T = 8.0 and T = 4.0, λF = 0.2 and λF = 0.25,
respectively.

In Figure 9.14, we present the Poincaré sections obtained for pattern B-C
at periods T = 1, 2, 4, and 6. The Poincaré sections are obtained by tracking
the motion of 121 particles for 100 time periods. Islands of bad mixing zones
are observed for T = 1, 2 cases. The island boundaries, also known as the
Kolmogorov–Arnold–Moser (KAM) boundaries, separate the chaotic and
regular regions of the flow (Ottino, 1997). In the figure, we also present
the KAM boundaries, obtained by tracking 20 particles that were initially
located on the KAM boundaries, for 300 periods. We observe reduction in
the bad mixing zone with increasing T . For example, the islands disappear
for T ≥ 6. The Poincaré section for T = 8 is qualitatively similar to that
of the T = 6 case, and is not shown in the figure. Destruction of KAM
boundaries is desired for enhanced mixing, but is not a sufficient condition
for the best mixing case. For example, the FTLE for T = 6 is considerably
larger than that of the T = 8 case, and it corresponds to the best mixing
case among the flow patterns and frequency ranges studied in (Kim, 2004).
We must indicate that the FTLE values presented in Figure 9.13 were
obtained for particles that were outside the bad mixing zones.

Calculation of the FTLE is often computationally expensive, and it re-
quires accurate knowledge of the flow field. Qian and Bau (2002) have
shown that the flow solution often requires accuracy levels comparable to
the computer evaluation of the analytical solution. The same is true for
calculation of the Poincaré sections, especially for determination of the
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FIGURE 9.13. Time variation of FTLE for pattern B-C with T = 4, 6, and 8.
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FIGURE 9.14. Poincaré sections for pattern B-C at four different periods.
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KAM boundaries. However, we note that the Poincaré sections can be ob-
tained experimentally by long-time tracking of noninertial particles. Given
the computational difficulties of obtaining FTLE and Poincaré sections, it
is desirable to develop other computation- and experiment-friendly meth-
ods to quantify the mixing quality. Dispersion of particles that are initially
confined to a zone can be utilized to characterize mixing. In particular,
uniform dispersion of particles to the entire mixing region can be consid-
ered as a homogeneously mixed state. However, such observations need to
be quantified to obtain a reasonable measure of the mixing quality.

To this end, we employ the box counting method to quantify the rate
at which particles are dispersed by the flow into small uniform boxes (Liu
et al., 1994). In this method, selection of an appropriate box size is im-
portant, and it is related to the number of tracked particles. Jones rec-
ognized that a perfectly randomized population of particles has a Poisson
bin-occupancy distribution, and used this information to determine the box
size such that on average there was one particle per cell (Jones, 1991). If
the box size is chosen such that for a perfectly random distribution of N
particles, 98% of the boxes contain at least one particle, then the box size
s for a unit-square domain (of length 1 × 1) is approximately given by

s ≈ 2N−1/2.

Once the number of particles (N) is selected, the domain is divided into
boxes of size s, and the motion of each particle is calculated for a long time.
Then the dispersed particles in each box are counted, and a decision is made
regarding the mixing state of each box. For example, tracking 1600 particles
requires 400 boxes in the entire domain. This results in a maximum of 4
particles per box in a homogeneous mixing state (i.e., nmax = 4). For such
conditions one can define a Mixing index for each box (Mi) as

Mi =

⎧⎪⎨⎪⎩
ni

nmax
if ni ≤ nmax

1 if ni ≥ nmax,

where ni is the number of particles in box i. There will be empty boxes
in the domain for each overpopulated box (ni > nmax). Therefore, assum-
ing the overpopulated boxes well mixed is reasonable, since impact of this
decision is compensated by the low M values of underpopulated boxes in
the domain. Another alternative is to characterize particle dispersion by
assuming that boxes that contain at least one particle are well mixed (Liu
et al., 1994). This is useful, since it is practically impossible to observe a
homogeneous mixing state (ni = nmax) for all the boxes in the domain.
Using either definition for Mi, the total mixing index MT is defined as

MT =
1
N

N∑
i=1

Mi. (9.8)
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FIGURE 9.15. Time variation of the mixing index M for pattern B-C at T = 6
and T = 8, obtained using equation (9.8).

In Figure 9.15, we present the time variation of the mixing index for
pattern B-C at T = 6 and T = 8, using the method of Liu et. al (1994).
The mixing index for both cases increases exponentially at early times, then
reaches the asymptotic limit of unity. The mixing index for T = 6 reaches
its asymptotic limit much faster than in the T = 8 case, thus indicating
that the case T = 6 corresponds to a better mixer than the T = 8 case.
Overall, the behavior of MT for both cases is consistent with the FTLE
results, indicating that time variation of the mixing index can be utilized
as a consistent measure for monitoring mixing quality.

In order to demonstrate the relation between the dispersion of particles
and the mixing index we present in Figure 9.16 the time evolution of disper-
sion of 1600 particles using pattern B-C with T = 6 and T = 8. Snapshots
of dispersed particles are shown in the figure at the same nondimensional
time. Comparisons between the figures show that the T = 6 case is better
stirred than the T = 8 case, as also indicated in Figure 9.15.

Finally, we address mixing-efficiency quantifications using numerical so-
lutions of the species transport equation (see Section 14.1). Unlike the
previous methods that utilize the Lagrangian motion of pseudo-particles,
the species transport equation involves diffusion, and it can better match
the experimental mixing results. In both numerical simulations and exper-
iments (that utilize fluorescent dyes), it is possible to define an alternative
mixing index by dividing the flow domain into N boxes, and recording the
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FIGURE 9.16. Dispersion of 1600 particles as a function of time, obtained using
pattern B-C at T = 6 (left) and at T = 8 (right).

fluorescence intensity/concentration value in these boxes. Using this, an
alternative mixing index can be defined as

M =
1
N

√√√√ N∑
i=1

(
θi

θo
− 1

)2

, (9.9)

where θi is the concentration/fluorescence value in box i, and θo is the
mean concentration/fluorescence value of the mixture. This definition is
analogous to the Euclidean error norm, and measures deviations from a
perfect mix. Therefore, smaller M values show better mixing in the domain,
with M → 0 for a perfect mix. It is often useful to plot the time variation
of M (or M−1) in logarithmic scale, which enables accurate comparisons
between various mixing states.



10
Simple Fluids in Nanochannels

With the growing interest in the development of faster, smaller, and more
efficient biochemical analysis devices, nanofluidic systems and hybrid mi-
cro/nano fluidic systems have attracted considerable attention in recent
years. In nanoscale systems, the surface-to-volume ratio is very high, and
the critical dimension can be comparable to the size of the fluid molecules.
The influence of the surface and the finite-size effect of the various molecules
on fluid transport needs to be understood in detail, while such effects may
be largely neglected for liquid flows in macroscopic channels. In this chap-
ter, we discuss the analysis of simple fluids such as Lennard–Jones liquids
in confined nanochannels. A key difference between the simulation of the
fluidic transport in confined nanochannels, where the critical channel di-
mension can be a few molecular diameters, and at macroscopic scales is that
the well-established continuum theories based on Navier–Stokes equations
may not be valid in confined nanochannels. Therefore, atomistic scale sim-
ulations, in which the fluid atoms are modeled explicitly or semiexplicitly
and the motion of the fluid atoms is calculated directly, shed fundamental
insights on fluid transport. The most popular technique for atomistic sim-
ulation of liquid transport is molecular dynamics (MD), which is discussed
in detail in Chapter 16. After presenting some details on the atomistic
simulation of simple fluids, we discuss density profiles, diffusion transport,
and validity of the Navier–Stokes equations for simple fluids in confined
nanochannels. In the last section we discuss in detail the slip condition at
solid–liquid interfaces and present experimental and computational results
as well as conceptual models of slip. We also revisit the lubrication prob-
lem, first discussed in Chapter 7, and we present the Reynolds–Vinogradova
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FIGURE 10.1. A sketch of a nanochannel filled with a simple fluid. The filled
circles denote the channel wall atoms, and the open circles denote the fluid atoms.
The fluid atoms interact with each other by a Lennard–Jones potential VLJ,1, and
the fluid atoms interact with the wall atoms by a Lennard–Jones potential VLJ,2.

theory for hydrophobic surfaces.

10.1 Atomistic Simulation of Simple Fluids

Atomistic simulation of nanofluids has gained considerable attention over
the last two decades. Much of the existing literature has been devoted to
understanding “simple fluids” in nanochanels. Though there is no consensus
on the precise definition of a simple fluid in the literature, in most cases,
it is simply taken as a collection of atoms that interact via the Lennard–
Jones potential and the dynamics of which follow the classical mechanics
described by Newton’s law. In practice, some noble gases (e.g., argon) can
be modeled fairly accurately as a simple fluid. Figure 10.1 shows a schematic
of a nanochannel filled with a simple fluid.

The investigation of simple fluids, in contrast to the study of complex
fluids such as water (discussed in Chapter 11) or electrolytes (discussed
in Chapter 12), has many advantages. First, the computational cost of
atomistic simulation involving simple fluids is much lower compared to
that of complex fluids, since it is much cheaper to evaluate the Lennard–
Jones potential describing simple fluids compared to the evaluation of the
electrostatic interactions that are required in the study of most complex
fluids. Second, despite its simplicity, the investigation of simple fluids can
provide deep insight into the physics of fluid transport in nanochannels, and
such insight can guide the study of more complex fluids. For example, the



10.1 Atomistic Simulation of Simple Fluids 367

study of simple fluids indicated that the classical Navier–Stokes equations
breakdown in a channel as narrow as 4 fluid atomic diameters (Travis
et al., 1997), and later, a similar finding was reported for electroosmotic
transport in a silicon nanochannel that is also about 4 water diameters wide
(Qiao and Aluru, 2003b). Third, the investigation of simple fluid transport
provides data for the validation of theories describing fluid transport in
nanochannels. Due to the complicated interactions involved in complex
fluids, most of the nanofluid transport theories that have been developed
so far are limited to simple fluids.

As mentioned above, simple fluids can be described using a Lennard–
Jones (LJ) potential (LJ and other potentials are discussed in detail in
Section 16.1; here we quickly recap the salient features of the LJ potential
and introduce the reduced units that are used in this chapter) of the form

VLJ = 4ε

[(σ

r

)12
−
(σ

r

)6
]

, (10.1)

where ε, σ are the Lennard–Jones parameters that depend on the atoms
involved in the interaction. Note that:

1. ε is related to the interaction strength, and a higher ε corresponds to
a higher interaction energy between the atoms.

2. σ corresponds to the distance at which the potential between the two
atoms goes to zero, which can be approximately taken as the diameter
of a fluid atom.

Since the Lennard–Jones potential describes the interactions between non
polar molecules quite well (Talanquer, 1997) and the force corresponding to
the Lennard–Jones potential can be evaluated efficiently numerically, it is
the most popular interaction potential used in MD simulations. In the MD
simulation of Lennard–Jones fluids, the physical quantities are typically
computed using reduced units. Table 10.1 summarizes the units for various
quantities, e.g., length, temperature, and density. In the table, ε and σ
are as defined in equation (10.1), kB is the Boltzmann constant, and m
is the mass of a Lennard–Jones atom. Unless otherwise mentioned, all the
quantities are measured in reduced units in the next two sections.

The studies on Lennard–Jones fluids have indicated that depending on
the critical length scale of the channel (typically the channel width/height
or the diameter), the fluidic transport behavior (e.g., convection and diffu-
sion phenomena) can either deviate significantly from the classical contin-
uum theory prediction or be very similar to the transport of a bulk fluid
described by the classical theory. These observations follow from the fact
that when the fluid atoms are confined to molecular channels, the fluid
can no longer be taken to be homogeneous, and strong oscillations in fluid
density occur near the solid–fluid interface. Therefore, the dynamic behav-
ior of the fluid becomes significantly different from that of the bulk. Some
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TABLE 10.1. Units for various quantities in Lennard–Jones fluids.

Length σ Velocity (ε/m)1/2

Mass m Shear rate (ε/mσ2)1/2

Energy ε Stress ε/σ3

Time (mσ2/ε)1/2 Viscosity (mε)1/2/σ2

Number density σ−3 Diffusivity σ(ε/m)1/2

Temperature ε/kB
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FIGURE 10.2. Density profile of a Lennard–Jones fluid. Simulations are per-
formed in an 11-fluid-atomic-diameter channel.

significant results that have been observed when LJ liquids are confined in
nanochannels are summarized below.

10.2 Density Distribution

The strong density oscillations of fluid atoms near the fluid/solid interface is
a universal phenomenon, and it has been observed in almost all MD simula-
tions of nanofluidic flows and been verified experimentally (Chan and Horn,
1985; Zhu and Granick, 2002; Zhu and Granick, 2001). Figure 10.2 shows
the density profile of Lennard–Jones fluid atoms in a 11-fluid-diameter-wide
channel (see also Figure 1.7, which shows density fluctuations of an LJ liq-
uid in a larger channel). Density fluctuations near a channel wall can be ex-
plained using the concept of a radial distribution function (RDF). A radial
distribution function (or the pair correlation function), typically denoted
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FIGURE 10.3. Sketch of a typical radial distribution function (RDF) g(r). RDF
measures the probability density of finding a particle at a distance r from a given
particle (r = 0 corresponds to the position of the given particle).

by g(r), is a basic measure of the structure of a liquid. RDF measures the
probability density of finding a particle at a distance r from a given particle
position. Figure 10.3 is a sketch of a typical radial distribution function.
At a short distance from the given particle position, g(r) is essentially zero
because of the strong repulsion between the particles; i.e., particles cannot
get too close to each other. As r increases, g(r) shows a first peak, which
is mainly caused by the attractive interactions between the particles. At a
short distance from the first peak, a depletion of the particles is observed
because of repulsive forces, and this gives rise to a minimum in g(r). The
combination of the attractive and the repulsive forces between the particles
leads to the various peaks and valleys observed in the radial distribution
function shown in Figure 10.3. At a distance farther away from the given
particle position, the distribution of particles is no longer influenced by the
given particle, and g(r) approaches a constant. The fluid layering near the
channel wall is mainly induced by the structure of the fluid radial distri-
bution function and the structure of the solid wall. Here the position of
the solid wall is similar to the position of the given particle in the radial
distribution function, and the fluid density oscillations are similar to the
oscillations in the radial distribution function.

Simple fluids in nanochannels are inhomogeneous because of the strong
layering of fluid atoms near the channel wall. Classical fluid transport the-
ories do not account for the inhomogeneity of the fluid, and transport
parameters such as diffusivity and viscosity are strongly influenced by the
fluid layering in nanochannels (Thompson and Troian, 1997). Fluid lay-
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FIGURE 10.4. Density (upper panel) and velocity (lower panel) profiles in a
5.0σ-radius cylindrical pore for two separate runs with different wall–fluid inter-
actions. In the first run, εwf is 3.5 times larger than ε, and in the second run, εwf

is equal to ε. (Courtesy of J. Fischer.)

ering can be influenced by various parameters such as the wall structure,
fluid–wall interactions, and channel width, and these issues are discussed
below.

Effect of Fluid–Wall Interactions

The interaction between a fluid atom and a wall atom is usually mod-
eled by the Lennard–Jones potential. The Lennard–Jones parameters for
fluid–fluid and fluid–wall interactions are denoted by (ε, σ) and (εwf , σwf),
respectively. A higher εwf corresponds to a stronger interaction between
the fluid and the wall atoms. (Heinbuch and Fischer, 1989) found that the
fluid layering becomes stronger when εwf increases. Figure 10.4 shows the
number density and velocity profiles for two separate runs with different
fluid–wall interaction parameters in a 5.0-σ radius cylindrical pore. In the
first run, εwf is 3.5 times larger than ε, and in the second run, εwf is equal
to ε. In both runs, the average number density of the fluid in the pore is
0.8 and the temperature of the fluid is 0.835. Clearly, the layering effect is
much more distinct in the first run compared to the second run. This can
be explained by the fact that as εwf increases, the attractive force exerted
by the wall atoms on the fluid atoms increases, and the tendency of a fluid
atom to stay near the wall increases. A similar observation has been made
by (Thompson and Robbins, 1990) in their study of Couette flow in a slit
channel of width 12.8σ.

(Travis and Gubbins, 2000) further investigated the variation of the den-
sity profile in a nanochannel when the attractive part of the Lennard–Jones
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interaction is turned on and off by shifting the Lennard–Jones potential.
Specifically, the Poiseuille flow in a 4.0σ-wide slit channel was investigated
for three different systems, A, B, and C. In system A, fluid–fluid and fluid–
wall interactions are described by the purely repulsive part of the Lennard–
Jones, or Weeks–Chandler–Andersen (WCA) potential (see Section 16.1 for
details on WCA potential). In system B, the fluid–fluid and fluid–wall in-
teractions are described by the full 12-6 Lennard–Jones (including both
the attractive and the repulsive interactions) potential. In system C, the
fluid–fluid interactions are described by the WCA potential, and the in-
teractions between the fluid and the wall are described by the full 12-6
Lennard–Jones potential. Figure 10.5 (a) shows a comparison of the den-
sity profiles for the three different systems. It is observed that the presence
of attractive fluid–wall forces (system B and C) leads to the formation of
boundary liquid layers of higher density than in the case of repulsive wall–
fluid interactions (system A). It is also observed that the density of the
layers is higher in system C compared to that of system B. This can be
explained by the fact that compared to system B, the fluid atoms in system
C have a greater affinity for the wall atoms and less affinity for other fluid
atoms. In addition, the number of density peaks (i.e., the number of fluid
layers in the channel) is also different for the three systems. These results
indicate that the density distribution of fluid atoms in the channel is sensi-
tive to both the fluid–wall and fluid–fluid interactions, and care should be
taken in choosing the best potential to depict a particular fluidic system.
Figure 10.5 (b) shows the average number density of fluid atoms along the
channel length direction. We see that the fluids are highly structured in all
three systems. The density oscillates with a wavelength of order σ. Clearly,
the wall structure has been imposed upon the fluid. Similar behavior has
also been observed by (Zhang et al., 2001) in the simulation of n-decane
confined between two Au(111) surfaces.

Effect of Structure and Thermal Motion of the Wall Atoms

Smooth walls (Toxvaerd, 1981; Somers and Davis, 1992) as well as walls
with atomistic structure (Travis and Gubbins, 2000; Sokhan et al., 2001;
Somers and Davis, 1992) have been widely used in the MD simulation of
fluids confined in nanoscale channels. For a smooth wall, the wall–fluid po-
tential depends only on the normal distance between the fluid atom and the
channel wall, while for a wall with atomistic structure, the wall–fluid poten-
tial depends on the relative distance between the fluid atom and each atom
in the wall. Typically, only the first fluid layer is significantly influenced
by the wall structure, and the rest of the fluid layers are not significantly
affected by the structure of the wall. In many simulations, the wall atoms
are either frozen to their lattice sites (Heinbuch and Fischer, 1989; Zhang
et al., 2001) or constrained to their lattice sites by a spring (Thompson and
Robbins, 1990; Travis and Gubbins, 2000; Sokhan et al., 2001). The former
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(a)

(b)

FIGURE 10.5. Number density profiles across (a) and along (b) a 4.0σ-wide slit
channel for three different cases where the fluid–fluid and fluid–wall interactions
are modeled differently (System A: WCA system, filled circles, system B: LJ
system, open circles, and system C: WCA-LJ system, open triangles). (Courtesy
of K. P. Travis.)
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enables the use of a larger time step in MD, since the thermal vibration of
the solid atoms is not resolved, while the latter seems to be more realistic.
The thermal oscillation of wall atoms introduces further corrugations into
the potential felt by the fluid atoms near the wall, and therefore leads to a
reduced density oscillation near the channel wall (Thompson and Robbins,
1990; Sokhan et al., 2001).

Effect of Channel Width

The density oscillations in the channel also depend on the channel width.
Somers and Davis investigated the variation of density profiles in slit chan-
nels of different widths ranging from 2.0σ to 8.0σ (Somers and Davis, 1992).
Figure 10.6 shows the density profiles obtained with various channel widths.
The results indicate that for channel widths that can accommodate integral
fluid layers, e.g., 2σ, 2.75σ, and 4σ, distinct peaks in the density profile are
observed. For channel widths, such as 2.25σ and 3.25σ, the channel is wide
enough to accommodate distinct fluid layers: hence additional layers begin
to develop, and the new layers appear at channel widths of 2.5σ and 3.5σ.
When the channel width is 8σ, seven distinct peaks are observed, and as
the channel width increases further, more peaks are observed, but these
additional peaks are much weaker compared to the peaks very close to the
channel wall. For channels wider than 10σ, the fluid layers near the wall
are independent of the channel width, and the fluid in the central portion
of the channel behaves more like a bulk fluid.

Effect of Fluid Flow

The fluid flow is found to have negligible effect on the density distribu-
tion. (Bitsanis et al., 1987) conducted simulations on Couette flow in a
nanometer-slit pore using shear rates of 1010 to 1011 s−1 and found that
the density distribution is not significantly influenced by the flow; i.e., the
density profile in the channel in the presence of bulk transport of fluid is the
same as that obtained from an equilibrium MD simulation. This result was
also verified by other reported MD simulations. Since experimental tech-
niques or real processes that deal with fluid flow in nanopores are likely to
employ smaller shear rates than those that were employed in MD, we can
conclude that in simple fluids the density profile will be the equilibrium
density profile.

While all the results presented above on the calculation of density profiles
in nanochannels were based on MD simulations, the density profiles can also
be calculated using analytical methods. (Fischer and Methfessel, 1980) as
well as (Bitsanis et al., 1988) have used the Yvon–Born–Green (YBG) the-
ory (McQuarrie, 1973) of inhomogeneous fluids with the Fischer–Methfessel
approximation for the fluid pair-correlation functions (Fischer and Meth-
fessel, 1980) to calculate the density distribution of Lennard–Jones atoms
confined in a nanoscale channel. In order to obtain an equation for number
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FIGURE 10.6. Fluid density distribution in smooth-slit channels of different
widths. The results with reservoir are shown as a line, and the results with no
reservoir are shown as circles. A reservoir is introduced to simulate the Couette
flow. (Courtesy of H. T. Davis.)

density one has to approximate the pair correlation function, which is the
Fischer–Methfessel approximation. This is the only approximation needed,
and in this respect the YBG theory is superior to the free-energy theories.
The YBG theory has been shown to predict the fluid densities near smooth
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walls with good accuracy.

10.3 Diffusion Transport

Diffusion transport is typically important in most nanofluidic systems. This
can be understood by calculating the Peclet number, Pe = UL/D, which
measures the ratio of the bulk transport (convection) to the diffusion trans-
port. In most nanofluidic systems, the characteristic length L ranges from
a nanometer to a micrometer, and the bulk velocity ranges from a micro-
meter per second to a millimeter per second. For a fluid with a diffusivity of
D = 1.0× 10−9 m/s2, the Peclet number ranges from 10−6 to 1, indicating
that diffusion either dominates the transport or is as important as the bulk
transport.

The diffusion coefficient must be generalized in order to describe trans-
port in confined nanochannels. For homogeneous and equilibrium systems,
the diffusion coefficient can be calculated using either the Green–Kubo
equation

D =
1
3

∫ ∞

0
〈v(0) · v(t)〉 dt, (10.2)

where v is the atom velocity and 〈〉 denotes the ensemble average, or by
the Einstein equation

D =
1
6

lim
t→∞

〈[r(t0 + t) − r(t0)]2〉
t

, (10.3)

where r is the atom position. The Green–Kubo expression given in equa-
tion (10.2) is strictly valid only for homogeneous and equilibrium systems.
However, it is generally accepted that, at least for the calculation of the
average diffusivity in nanochannels, the Green–Kubo expression given in
equation (10.2) or the Einstein relationship given in equation (10.3) is ade-
quate. For example, Bitsanis and coworkers (Bitsanis et al., 1987) computed
pore-averaged diffusitives and found that the diffusivities under flow and
the equilibrium diffusivity agree within the limits of statistical uncertain-
ity. Moreover, the diffusivities calculated from the Green–Kubo formula
and the Einstein relationship agree quite well. It is important to note that
in the calculation of the diffusivities under flow, the drift contribution to
either equation (10.2) or equation (10.3) has to be excluded. In summary,
both the Green–Kubo formula and the Einstein relationship are widely
used in the calculation of diffusivity of fluids in nanochannels.

The diffusion of fluids confined in nanoscale channels has been studied
extensively in slit and cylindrical pores. In a slit pore, diffusion is different
in the direction parallel (the x- and y-directions) and normal (z-direction)
to the pore wall, especially for narrow pores. This is because, unlike the
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diffusion parallel to the pore wall, the diffusion in the direction normal
to the pore wall is inherently transient; i.e., in the long time limit, the
diffusivity in the direction normal to the pore wall is zero due to the geo-
metrical limit. To circumvent this problem, the diffusion in the z-direction
is usually characterized by a mean-square displacement ∆z2(t) that can be
calculated for a short time. In this section, we will discuss the results for
diffusion parallel to the pore wall (characterized by D‖ or Dx and Dy) and
the diffusion normal to the pore wall (characterized by ∆z2(t)) separately.

(Magda et al., 1985) studied diffusion in slit pores with smooth pore
walls using equilibrium MD simulations. Figure 10.7 shows the variation of
the pore-averaged diffusivity parallel to the pore (D‖) with the pore width.
The plot indicates that:

1. Even for the smallest pore width (h = 2), where the fluids are highly
confined, the fluid atoms maintain considerable mobility.

2. When the channel width is small (h < 4), the average D‖ in the
pore fluctuates with the channel width, and when the channel width
increases beyond h = 5, the average D‖ increases smoothly toward
the asymptotic bulk value.

3. For a channel width of h = 11.57, the average D‖ is almost the same
as the bulk diffusivity.

The second observation can be attributed to the average density varia-
tion with the change in channel width. As shown in Figure 10.7, when the
channel width is small (h < 4), the average density fluctuates with the
channel width, and when the channel width increases beyond h = 5, the
average density decreases smoothly toward the asymptotic bulk value. The
dependence of the diffusivity on density in the pore region is much weaker
compared to the quadratic dependence observed in the bulk (Levesque and
Verlet, 1970). This means that the variation of diffusivity with density fol-
lows a quadratic dependence as the pore width increases and the properties
of the confined fluid approach that of the bulk. However, when the pore
width is low (lower than 6σ), then the layering effect dominates and affects
the variation of diffusivity. This leads to a weaker dependence of diffu-
sivity on density for narrow pores. A possible explanation for this is the
structured, almost solid-like form of the density profile in narrow pores.

To investigate the effect of the local fluid density on the diffusivity par-
allel to the pore (D‖), the pore (h = 11.57) has been divided into five slices
parallel to the solid–liquid interface, and the diffusivity D‖ is calculated
inside each slice. Figure 10.8 shows the density profile and the diffusivity
in each slice. Clearly, even though there is a significant variation in the fluid
density, the diffusivity in each slice is within the statistical error of those of
the others. To understand this result in more detail, an empirical theory,
local average density method (LADM), has been developed to describe the
transport coefficient (e.g., diffusivity) of a fluid confined in a nanochannel
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FIGURE 10.7. Correlation of the pore-averaged diffusivity parallel to the wall
(D‖) with the average fluid density. Here h is the pore width (reduced unit);
ρave/ρbulk is the average density of the occupied pore volume divided by the
density of the bulk liquid. (Courtesy of H.T. Davis.)

FIGURE 10.8. Diffusivity as a function of the distance from the pore walls. Here
Di is the diffusion coefficient parallel to the pore walls averaged over the ith slice
parallel to the interface. The pore width is 11.57σ. (Courtesy of H.T. Davis.)

(Bitsanis et al., 1988). In the LADM theory, the diffusivity of the fluid at
a position r depends on the local average density ρ(r) of the fluid instead
of the local density ρ(r). The local average density at r is defined as the
average density inside a sphere with its center at r and with diameter equal



378 10. Simple Fluids in Nanochannels

FIGURE 10.9. Density and local average density profiles in an 8σ-wide slit pore.
(Courtesy of H.T. Davis.)

to the diameter of the fluid molecules σ, i.e.,

ρ(r) =
1

πσ3/6

∫
s<σ/2

ρ(r + s) d3s.

Figure 10.9 shows the local average density distribution in an 8.0σ chan-
nel (Bitsanis et al., 1988). Clearly, even though the oscillations in the local
fluid density are significant, the local average density shows very little oscil-
lation. This explains the small diffusivity variation in the pore (see Figure
10.8) even though there is a significant variation in the local fluid density.
From the above discussion, we can conclude that in confined nanopores
the parallel diffusivity at a given position is determined primarily by the
average density in the pore and not by the local density.

To investigate the effect of the wall structure on the diffusivity parallel to
the pore wall, (Somers and Davis, 1992) performed diffusivity calculations
by considering structured and smooth walls. Figures 10.10 (a) and (b) show
the variation of the diffusivity D‖ with the pore width for the structured
and smooth walls, respectively. The results for the smooth-pore wall (panel
(b)) agree qualitatively with those reported in (Magda et al., 1985), and the
results for the structured wall show some interesting differences from the
results for the smooth wall; i.e., as the pore width increases, the diffusivity
in the structured pore approaches the bulk value more slowly compared to
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the smooth wall. This can be explained by the added fluid ordering in the
structured pore. Figure 10.10 also shows the variation of the diffusivity with
bulk transport of the fluid. For both the smooth and structured pore walls,
the presence of Couette flow does not change the diffusivity noticeably for a
shear rate less than 0.20

√
ε/mσ2, but the diffusivity increases considerably

for shear rates higher than 0.20
√

ε/mσ2. It is likely that shear thinning may
be responsible for the observed increase in the diffusivity. Similar results
have also been observed by (Bitsanis et al., 1987). In addition, the inset
in Figure 10.10 (a) shows that the wall registry (characterized by the wall
registry index α) also affects the diffusivity significantly in narrow pores.
This is likely to be caused by the changed fluid structure when the wall
structure is varied. The wall registry is a measure of the variation in surface
roughness of the wall (Somers and Davis, 1992). When the axial coordinate
of the surface atoms on both the walls (i.e., the upper wall and the lower
wall of the slit) are the same, then the wall registry index α is 0. However,
when the upper wall atoms and the lower wall atoms are seperated by a
certain distance, then the wall registry index is nonzero.

As mentioned above, the diffusivity normal to the channel wall cannot
be defined using equation (10.2) or (10.3). However, it is possible to char-
acterize the diffusion process normal to the channel wall by a mean-square
displacement ∆z2(t) that can be calculated for a short time. Figure 10.11
shows the comparison of the mean-square displacement in the direction
normal (z-direction) and parallel to the channel wall (x- and y-directions)
for channel widths of 3.0σ and 4.0σ. Figure 10.11 indicates that:

1. After 2.0 ps, the diffusion process in the z-direction can be charac-
terized by a mean-square displacement.

2. The diffusion process in the z-direction is faster in the larger channel
(h = 4σ) compared to the smaller channel (h = 3σ).

3. For h = 4σ, the diffusion in the x- and y-directions is much faster
compared to the diffusion in the z-direction.

These results are not surprising, since the movement of the fluid atoms is
more confined in the direction normal to the channel wall compared to the
movement of the fluid in the direction parallel to the channel wall.

In the discussion so far, we have assumed that the fluid molecule size is
smaller than half of the slit pore width and that the diffusion is character-
ized by the normal-mode diffusion; i.e., the mean-square displacement of the
fluid molecules obeys the Einstein relationship. In the normal-mode diffu-
sion, one molecule can pass another molecule within the channel. However,
if the pore width decreases further and the pore is cylindrical, a molecule
cannot pass another molecule because of its large size relative to the pore
size, and the diffusion process is then characterized by a single-file diffu-
sion. The mean-square displacement of a fluid molecule due to single-file
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FIGURE 10.10. Diffusivity parallel to pore walls versus pore width (� - equi-
librium (α = 0), � - Couette flow). (a) Structured pores (inset: � - ratio of the
diffusivity in Couette flow and in equilibrium simulation (α = 0), � - ratio of
diffusivity in equilibrium for α = 0.71 and α = 0. See (Somers and Davis, 1992),
for the definition of the wall registry index α). (b) Smooth pores. (Courtesy of
H.T. Davis.)

diffusion can be expressed as

s2 = 2Bt0.5,

where B is the diffusion mobility. For the diffusion of methane, ethane,
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FIGURE 10.11. Comparison of the mean-square displacement parallel and normal
to the channel walls. (Courtesy of H.T. Davis.)

and ethylene through carbon nanotubes (see Section 13.2 for a discussion
on carbon nanotubes), (Mao and Sinnott, 2000) showed that there exists
a transition-mode diffusion for which the mean-square displacement of a
fluid molecule due to a single-file diffusion can be expressed as

s2 = 2Ctn.

Figure 10.12 shows the log-log plots of the mean-square displacement for
methane, ethane, and ethylene in a (10, 0) carbon nanotube (diameter: 0.8
nm). Clearly, the diffusion of methane is a normal-mode diffusion and the
diffusions of ethane and ethylene are transition-mode diffusions. Mao and
Sinnott further showed that the diffusion of ethane and ethylene in a (9, 0)
carbon nanotube (diameter: 0.72 nm) follows the single-file mode, while
the diffusion of methane is still in the normal mode. Such differences are
caused by the fact that the size of ethane and ethylene are larger compared
to methane; therefore, the methane molecules can pass one another in a
0.72-nm diameter, while ethane and ethylene molecules cannot pass each
other in such small-diameter tubes.

10.4 Validity of the Navier–Stokes Equations

In the continuum fluid transport theory governed by the Navier–Stokes
equations, it is assumed that the state variables (e.g., density and tempera-
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FIGURE 10.12. Log-log plot of the mean-square displacement for methane (a),
ethane (b), and ethylene (c) in a (10, 0) carbon nanotube (diameter: 0.8 nm).
(Courtesy of S. Sinnott.)



10.4 Validity of the Navier–Stokes Equations 383

0 1 2 3 4 5 6 7 8 9 10 11
0

0.1

0.2

0.3

0.4

0.5

0.6

Across channel (σ)

V
el

oc
ity

 (
re

du
ce

d 
un

it)

FIGURE 10.13. Velocity profile obtained from MD simulation of Poiseuille flow
in an 11-fluid-diameter channel. The solid line is a quadratic fit to the velocity
profile. The temperature of the fluid is set to 2.5, the average fluid density is 0.8,
and a constant force of 0.1 is applied on each fluid molecule to generate the flow.
All the variables are measured in reduced units.

ture) do not vary appreciably over the length and time scales comparable to
the molecular free path and molecular relaxation time. However, as shown
in Section 10.2, the fluid density near the solid–liquid interface can vary
significantly over intermolecular distances. While these local density oscil-
lations may not necessarily mean the breakdown of the continuum theory,
it is important to understand in detail how the continuum theory works
for fluids in confined nanochannels.

During the last several years, researchers have used MD simulations to
test the accuracy of Navier–Stokes equations in nanochannels (Koplik et al.,
1989; Koplik et al., 1987; Travis and Evans, 1996; Travis et al., 1997; Bitsa-
nis et al., 1987; Travis and Gubbins, 2000; Pozhar, 2000). In many of these
simulations, a Poiseuille flow with a constant force on each fluid molecule
is used as a prototypical problem. The continuum Navier–Stokes equations
predict a parabolic velocity profile across the channel for the Poiseuille
flow. The velocity profiles in slit channels as narrow as 10 molecular diam-
eters indicate that the deviation between continuum and MD predictions
is very small (Travis et al., 1997). Figure 10.13 shows the velocity pro-
file obtained from MD simulation of Poiseuille flow in an 11-fluid-diameter
channel and its quadratic fit. Clearly, the deviation of the velocity profile
from the Navier–Stokes equation is small. However, if the channel width
is smaller than 10 fluid diameters, the deviation of the MD velocity from
the continuum prediction becomes more significant (Travis and Gubbins,
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2000; Travis et al., 1997). For example, Figure 10.14 shows the velocity dis-
tribution for Poiseuille flow in a 4-fluid-molecule-diameter slit channel for
three systems (see Section 10.2 for a description of the potentials used in
the three systems) with different interaction potentials between fluid–wall
and fluid–fluid (Travis and Gubbins, 2000). For each system considered,
the velocity profile obtained from MD simulations is no longer parabolic
and deviates significantly from the Navier–Stokes prediction. Specifically,
for system A (we will discuss only the result for system A, since the results
for system B and system C are similar to that of system A), the velocity
decreases in the region 0.75 < |z| < 0.97 as we approach the channel cen-
ter, and there is a local maximum for the velocity located at |z| ≈ 0.95.
The corresponding strain rate profile is shown in Figure 10.15, and the
strain rate is zero at |z| ≈ 0.97 and |z| ≈ 0.2. The fluid viscosity inside the
channel, calculated by

µ(z) =
τxz(z)
γ(z)

, (10.4)

is shown in Figure 10.16. Note that in equation (10.4), τxz(z) is the shear
stress at position z, and a local, linear constitutive relationship between
the shear stress and the strain rate, on which the classical Navier–Stokes
equation is based, is assumed. We observe that the viscosity calculated by
equation (10.4) is negative in the region 0.75 < |z| < 0.97 and 0 < |z| < 0.2
and diverges at |z| ≈ 0.97 and |z| ≈ 0.2. This indicates that the viscosity in
such a narrow channel cannot be described by a local, linear constitutive
relation. Therefore, the classical Navier-Stokes equation is not valid for the
analysis of fluid flow in a 4.0-fluid-diameter slit channel.

For fluid flow in channels larger than 10 fluid molecular diameters, the
classical Navier–Stokes equation can be used to analyze the flow. However,
since the fluid can be highly confined in nanochannels, the fluid viscos-
ity may be significantly different from the bulk value. Despite the fact
that the fluid viscosity is an important parameter in determining the flow
characteristics, only a few papers have discussed the viscosity of fluids in
nanochannels systematically. (Bitsanis et al., 1990) have calculated the ef-
fective viscosity for Couette and Poiseuille flow in slit channels ranging
from 2 to 9.5 fluid molecular diameters. The effective viscosity is defined
in such a way that the Navier–Stokes equation using the effective viscosity
can predict the macroscopic observables correctly, e.g., the surface shear
stress in a Couette flow or the flowrate in a Poiseuille flow. Figure 10.17
shows the variation of the effective viscosity for Couette and Poiseuille flow
with the pore width. The plot indicates that:

1. The effective fluid viscosity is flow-dependent;

2. At small pore width, the effective viscosity increases dramatically;
and
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FIGURE 10.14. Velocity profiles in a 4.0-fluid-diameter slit channel for three
different systems. System A: WCA system, filled circles; system B: LJ system,
open circles and system; C: WCA-LJ system, open triangles. See Section 10.2 for
the definition of the three systems. (Courtesy of K.P. Travis.)

FIGURE 10.15. Strain rate profiles in a 4.0-fluid-diameter slit channel for three
different systems. System A: WCA system, filled circles; system B: LJ system,
open circles; and system C: WCA-LJ system, open triangles. (Courtesy of K.P.
Travis.)
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FIGURE 10.16. Shear viscosity in a 4.0-fluid-diameter slit channel for three dif-
ferent systems as calculated by equation (10.4). System A: WCA system, filled
circles, system B: LJ system, open circles and system C: WCA-LJ system, open
triangles. (Courtesy of K. P. Travis)

3. The effective viscosity converges toward the bulk viscosity as the pore
width increases.

The first observation originates from the definition of the effective viscosity
for the flow. The second observation is caused by the fluid layering near
the pore surface. As the pore width decreases, more fluid molecules are
observed within the fluid layers near the pore wall, where the movement
of the fluid molecules is highly confined, thus leading to a higher effective
viscosity.

Over the past decade, Pozhar has developed a rigorous statistical-mechan-
ics approach to nonequilibrium phenomena in strongly inhomogeneous flu-
ids (Pozhar, 1994; Pozhar, 2001; Pozhar, 2000). The approach relies on the
rigorous generalization of the Mori–Zwanzig projection operator technique
developed in the framework of the theory of dynamical systems. This ap-
proach, unlike the LADM method, has been realized for the most general
case of strongly inhomogeneous fluids. However, due to the complicated
nature of the theory, there have been very few applications of this method
for the analysis of fluid flow. Therefore, the accuracy of the theory has not
yet been rigorously established.
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FIGURE 10.17. Effective viscosities for Couette and Poiseuille flows versus pore
width. The viscosity of a homogeneous fluid at the pore average density is also
shown. The inset shows the variation of the pore-averaged self-diffusion coeffi-
cients. (Courtesy of H.T. Davis.)

10.5 Boundary Conditions at Solid–Liquid
Interfaces

In this section we revisit the question of slip at solid–liquid interfaces and
present an in-depth review of the experimental work as well as the concep-
tual models derived from these findings. We then present different mathe-
matical models that correct the no-slip condition and have been found to
represent the available experimental data reasonably well.

10.5.1 Experimental and Computational Results
The first experimental work to investigate the validity of the no-slip bound-
ary condition at a solid surface was conducted by Coulomb (1784), who
concluded that it was valid even at microscopic scales. About a century
later, Helmholtz and von Piotrowski (1860) found evidence of slip between
a solid surface and a liquid, and later, (Brodman, 1891) verified their re-
sults. However, Couette (1890) and others used glass tubes with grease
inside and concluded that the no-slip boundary condition is valid. It is
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FIGURE 10.18. Definition of slip length b. The inner boundary layer δ is explained
in the section on conceptual models of slip.

worth noting also that the experiments of Whetham (1890) that led to
the acceptance of the no-slip condition were made on hydrophilic surfaces
(Bonaccurso et al., 2003).

Navier (1823) was the first to model partial slip at the wall for liquids
well before Maxwell’s slip condition for gases (1879). Specifically, Navier’s
boundary condition at the wall is

vs = bn · (∇v + ∇T v
)
. (10.5)

An interpretation of the slip length b is shown in the sketch of Figure
10.18 for unidirectional flow over a flat wall. It is the distance behind the
solid–liquid interface at which the velocity extrapolates to zero.

The validation of slip boundary conditions continued in the beginning of
the twentieth century, focusing mostly on flow in capillaries. (Traube and
Whang, 1928) reported a four- to five-fold increase in flowrate of water in a
capillary treated with oleic acid. However, their results could be interpreted
either as boundary slip or simply as surface-tension-induced capillary rise.
In independent experiments with water flowing in capillaries treated with
paraffin, (Ronceray, 1911) also studied how changes in the surface tension
may affect the flowrate but concluded aganist the slip condition. The most
systematic study, perhaps, of this effect was undertaken by (Schnell, 1956),
who used water in glass capillaries (from 240 to of 800 µm) treated with
dimethyldichlorosilane (i.e., silicone) to make them hydrophobic. He found
that for a small pressure drop in the capillary the flowrate was lower in
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FIGURE 10.19. Schematic of the surface force apparatus (SFA).

the treated cases compared to the untreated ones, but at higher pressure
drop he observed the opposite. Interestingly, at velocities past the onset of
turbulence there was no discerible difference in flowrate. Overall, Schnell’s
experiments stood the test of time and are considered the first to prove con-
vincingly that a boundary slip occurs for hydrophobic (i.e., water-repellent)
surfaces. This result agrees with the physical intuition, i.e., that boundary
slip is larger in hydrophobic surfaces, since the attractive forces between
the liquid and the solid surface are less than for hydrophilic surfaces, and
thus the solid–liquid interface friction is reduced. At about the same time,
it was established by (Debye and Cleland, 1959) that boundary slip can
also occur in liquid hydrocarbons for flow through porous Vycor glass.

In the last few decades there has been a renewed interest in determining
the validity of the no-slip boundary condition for liquids due to the interest
in polymers and other complex fluids but primarily due to microfluidic
applications. In (Chuarev et al., 1984), both water and mercury were tested
in flow through glass capillaries of diameter less than 10 µm treated with
trimethylchlorosilane. It was found that for water with contact angles less
than 70◦ the no-slip condition was valid, but for higher hydrophobicity
increased flowrates were obtained corresponding to a slip length between 30
and 200 nm according to Navier’s formula of equation (10.5). For mercury,
a contact angle of more than 130◦ also led to boundary slip. These results
suffer, however, from the limitation in determining the capillary diameter
precisely as well as in controlling the homogeneity of the internal capillary
surface.

The effective use of the surface force apparatus (SFA) in the 1990s has led
to many interesting experimental results and detailed studies of boundary
slip with water and other substances. SFA employs a sphere in close prox-
imity to a plane, but other configurations are also possible, e.g., two crossed
cylinders. The two surfaces are approaching at a controlled speed, causing
drainage of the liquid placed within the sphere–plane gap; see sketch of
figure 10.19. Typically, an oscillation of small amplitude is imposed on the
sphere (or the plane), and the response force on the plane is recorded. The
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FIGURE 10.20. Slip length versus driving rate obtained in SFA experiments.
Sucrose solutions of different concentrations are used to change the viscosity:
19.2 mPa s (crosses); 38.9 mPa s (diamonds); 80.3 mPa s (triangles); taken from
(Craig et al., 2001). (Courtesy of V. Craig.)

ratio of the force component in-phase with the oscillation to the amplitude
of the oscillation gives the normal stiffness coefficient, while the correspond-
ing ratio for the out-of-phase component gives the damping coefficient.

In (Baudry et al., 2001), a drop of glycerol was placed between the two
surfaces with roughness of about 1 nm. The surfaces of the plane and
the sphere were coated with thiol and gold, respectively, in a first set of
experiments, and with thin cobalt film (for both sphere and plane) in a
second set of experiments; cobalt makes the surface hydrophilic, while thiol
makes it hydrophobic. The measured (advancing) contact angles for thiol
and cobalt were 94◦ and 62◦, respectively. The main finding, based on the
measured damping coefficient, was that at sphere–plane distances less than
300 nm the hydrophobic surface gave a large deviation from the no-slip
condition with slip length b ≈ 40 nm, while for the cobalt surface the slip
was zero. The molecular size of the glycerol molecule is 0.6 nm, so the slip
length is about 65 times the molecular diamater of glycerol. Interestingly,
at distances smaller than 5 nm, both hydrophobic and hydroplilic surfaces
gave the same response and it was assumed that at these small distances
the film did not behave like a liquid.

In (Craig et al., 2001), SFA measurements were also used to infer bound-
ary slip for water on sphere–plane surfaces with (advancing) contact angle
70◦. The silica sphere and the mica flat surface were coated with a layer
of gold and an additional layer of titanium to promote adhesion. Aqueous
solutions of sucrose at various concentration levels were used to control the
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viscosity magnitude. It was found that at low viscosity and low approach
rate of the surfaces, the no-slip condition was valid, whereas at higher vis-
cosities and shear rates boundary slip was observed. The corresponding
slip length was up to 18 nm, corresponding to the highest viscosity of the
aqueous solutions (80.3 mPa s) and varied nonlinearly with the driving rate
(up to 22 µm/s). A summary of these results is included in Figure 10.20.
In a follow-up experiment in (Bonaccurso et al., 2003), the effect of rough-
ness mounted on hydrophilic surfaces on the slip length was investigated.
Roughness with rms heights of 0.7 nm, 4 nm, and 12.2 nm was tested, and
the force curves showed clearly an enhanced slip at the wall as the rough-
ness increased. The particular slip length value depended on the way that
the data were fitted, but very large values of b were reported on the order
of hundreds of nanometers.

In (Zhu and Granick, 2001), SFA measurements with molecularly smooth
surfaces of mica were obtained for water (polar) and tetradecane (non
polar), an oil with low viscosity close to water. In particular, three dif-
ferent liquid–solid systems were considered with increasing contact an-
gle: (1) tetradecane against adsorbed surfactant; (2) tetradecane against a
methyl-terminated self-assembled monolayer (SAM), and (3) water against
a methyl-terminated SAM. In the last two cases a monolayer of octadecyl-
triethoxysiloxane (OTE) was used on which the (advancing) contact angle
of water was 110◦ and that of tetradecane was 44◦. It was found that for
cases (2) and (3) with the OTE layer causing partial wetting of the sur-
face, boundary slip was obtained for film thickness less than about 100 µm.
However, case (1) gave no slip at the solid interface. The results of (Zhu
and Granick, 2001) led to similar conclusions as in (Craig et al., 2001), in
that the slip length depends strongly on the approach (driving) rate and is
largest for water: the largest value is b ≈ 35 nm at shear rates about 103

s−1. Below a threshold value of the approach rate (and thus shear rate) the
no-slip boundary condition is valid.

The effect of roughness on boundary slip was examined in a follow-up
paper by the same researchers (Zhu and Granick, 2002). Roughnesses with
rms values up to 6 nm were fabricated using self-assembled OTE monolayers
and OTS (octadecyltrichlorosilane) layers. The advancing contact angle
was similar for all cases, but the receding contact angle was a decreasing
function of surface roughness. It was hypothesized that large roughness will
decrease the slip length, although cases with an increase in slip length have
also been reported (Bonaccurso et al., 2003; Ponomarev and Meyerovich,
2003). The results of (Zhu and Granick, 2002) are summarized in Figure
10.21, where atomic force microscopy images of roughness on a 3 µm ×3µm
area are also shown. The data of (Zhu and Granick, 2002) show that even
the case of largest slip length (b ≈ 35 nm) for water produces no slip at
the wall if the roughness rms height exceeds 6-nm. The critical shear rate
for onset of slip seems to depend linearly on the roughness rms height and
is independent of its wavelength. For 6-nm roughness a value of shear rate
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FIGURE 10.21. Effect of roughness and flow rate (or driving rate) on boundary
slip. Plots (a), (b) and (c) show images of roughness at 6 nm, 3.5 nm, and 2 nm,
respectively. Plot (d) shows the correction factor in the Reynolds–Vinogradova
theory (equation (10.11)), and plot (e) the corresponding slip length. Filled sym-
bols correspond to deionized water and open symbols to tetradecane. The various
curves correspond to roughness of: squares - 6 nm; circles - 3.5 nm; triangles - 2
nm; and diamonds – atomically smooth. (Courtesy of S. Granick.)

of 105 s−1 is required to cause onset of boundary slip. These results are in
disagreement with the results of (Bonaccurso et al., 2003) for hydrophilic
surfaces.

There has been some skepticism regarding the findings of boundary slip
based on the SFA measurements. However, similar conclusions were ob-
tained in (Bonaccurso et al., 2002), using a colloidal probe technique to
measure forces between hydrophilic surfaces (mica and glass) for water.
In particular, spherical borosilicate glass particles of radius 10 µm were
sintered to atomic force microscope (AFM) cantilevers. The hydrophilic
surface was periodically moved up and down, and the cantilever deflection
was measured optically. A slip length of up to 9 nm was measured for shear
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FIGURE 10.22. Normalized flowrate (left) and slip length versus channel height
for several fluids. (Courtesy of N. Giordano.)

rates of 104 s−1. Electrokinetic effects, which could render the data erro-
neous by causing an increase of the effective viscosity in the electric dou-
ble layer (EDL), were found insignificant. In another study in (Pit et al.,
2000), a novel technique was employed to test boundary slip for hexadecane
flowing over a hydrocarbon/lyophobic smooth surface. This technique was
adapted from an experimental setup used to investigate boundary slip in
polymers. In particular, fluorescent probes of the size of the hexadecane
molecules were used as traces in a capillary formed between two parallel
disks, only one of which was rotating. A combination of fluorescence re-
covery after photobleaching and total internal reflection at the solid–liquid
interface was employed to directly probe the velocity within 80 nm of a
solid wall. The surface was made of modified sapphire treated with OTS
(γ > 21 mJ/m2) and FDS (perfluorodecanetrichlorosilane, γ < 13 mJ/m2)
in order to change the interfacial energy in a controlled manner. It was
found that for the bare sapphire surface a slip length of 175 nm (±50 nm)
was obtained, while for a dense OTS layer the slip length was 400 nm (±100
nm) independent of the shear rate in the range from 200 s−1 to 2000 s−1.
For the FDS surface no boundary slip was observed. In agreement with
most of the other investigators, (Pit et al., 2000) also hypothesized that
roughness decreases slip, and thus it is in competition with the strength of
the fluid–surface interaction.

With regard to microfluidic applications directly involving microchan-
nels, it is not clear how much the slip boundary condition depends on the
way that the flow is driven, although the majority of the experimental
work clearly points to a strong dependence on the shear rate (an exception
is the work of (Pit et al., 2000)). In the work of Bau and collaborators
(Urbanek et al., 1993), a pressure-driven flow was considered, and bound-
ary slip was reported for channels with the smallest height of 20 µm and
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silicone oil as well as isopropol alcohol (see Figure 1.16 in Section 1.2). A
comprehensive study of pressure-driven flows was undertaken in (Cheng
and Giordano, 2002), with several fluids for very small microchannels fab-
ricated lithographically down to 40 nm. The channel width was 20 µm, and
the length was in the range of 100 to 900 µm; the roughness was about 0.5
nm. The flowrate was measured using a macroscopic capillary in series with
the outlet side of the sample, but for smaller flowrate values a microchannel
was fabricated and the flow was measured with photomicroscopy. One of
the surfaces of the channel was glass, and the other one was coated with
photoresist; no measurements of the contact angle were made.

In Figure 10.22 (left) the flowrate normalized by the theoretical predic-
tion for no-slip Poiseuille flow is plotted, taken from (Cheng and Giordano,
2002). Specifically,

αtheory =
h3w

12µL

(where h, w, L denote the height, width, and length of the microchannel) is
used in the normalization. We see that for all the liquids tested, the flowrate
increases except for water. In particular, hexadecane (the fluid with the
largest molecular size) exhibits the largest deviation from the no-slip theory.
This is in agreement with the results in (Pit et al., 2000), for the capillary
hexadecane flow, although the slip length values reported in (Cheng and
Giordano, 2002), are much smaller. In general, the experimental evidence
given in (Cheng and Giordano, 2002), indicates a monotonic increase of
the slip length with the molecular size but for channel height h < 300
nm; above this value the no-slip theory seems to be valid according to the
results of (Cheng and Giordano, 2002). This dependence on the molecular
structure is shown in Figure 10.22 (right), indicating also that there is some
weak dependence of the slip length on the channel height in the slip regime.
However, this effect may be associated with the uncertainties in measuring
the very small values of h.

Other experiments with larger microchannels for pressure-driven flows
revealed boundary slip for water, in contrast to the aforementioned results
of (Cheng and Giordano, 2002). For example, in (Tretheway and Meinhart,
2002), microPIV (300-nm diameter fluorescent polystyrene spheres) was
used to measure velocity profiles of water in a 30 × 300µm channel. The
channel surfaces were treated with a 2.3 nm OTS layer. The velocity pro-
files were measured in a 25×100µm plane to within 450 nm of the channel
wall. A slip velocity of about 10% of the maximum velocity was measured,
which corresponds to slip length of about 1 µm. This is a very large value
for the slip length, of the order of magnitude that is typically encountered
in polymer flows. For the untreated glass surface, which is hydrophilic, no-
slip conditions were observed. Similar reults were also reported in (Choi
et al., 2003), in smaller hydrophobic microchannels of 0.5 µm and 1 µm
height. The channels were 500 µm wide and 9 mm long, while the sur-
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faces were coated with OTS layers to make them hydrophobic. In both the
experiments of (Tretheway and Meinhart, 2002) and (Choi et al., 2003),
roughness was negligible. The slip length was found to depend linearly on
the shear rate with b = 30 nm at a shear rate of 105 s−1 for hydrophobic
surfaces, while for hydrophilic surfaces b = 5 nm at the same shear rate.
The corresponding slip velocity was of order 3 mm/s for the hydrophobic
case and 0.5 mm/s for the hydrophilic case.

In MD simulations the slip length predicted is typically much lower due
to the substantial pressure imposed, which can modify the wetting prop-
erties of the surface. Specifically, MD simulations with hexadecane were
performed in (Stevens et al., 1997), and dependence on the strength of the
liquid–wall interaction was established similar to that in the experiments.
However, a realistic representation of the surface, i.e., to account accu-
rately for the glass or sapphire or other surfaces tested experimentally, is
not available. In (Cieplak et al., 2001), MD simulations were performed for
a simple molecule as well as a chainlike molecule. They were described by
a shifted Lennard–Jones potential for two atoms for the former and for ten
atoms for the latter. The consecutive atoms along the chain were tethered
by the finitely extensible nonlinear elastic potential (FENE) used often in
polymer modeling; it has the form

VFENE = −κ/2r2
0 log[1 − (r/r0)2], (10.6)

where κ = 30ε and r0 = 1.5σ. The crucial wall–fluid interaction was mod-
eled by a distinct Lennard–Jones potential of the form

Vw = 16ε[(r/σ)−12 − cFS(r/σ)−6],

where cFS determines the wall type, so that cFS = 1 corresponds to a
thermal (attractive) wall and cFS = 0 corresponds to a specular (repulsive)
wall. The narrowest channel simulated had dimensions of 13.6σ × 5.1σ ×
12.75σ, with the the last dimension denoting the distance between the two
walls (channel height).

The results for Couette flow in (Cieplak et al., 2001), suggest that the slip
length is independent of the type of flow or the channel height, but that it is
a strong function of the wall type. When cFS = 0 there is a relatively large
slip (about 10σ), but for cFS = 1 the slip length is equal to the negative of
the distance between the wall and the second layer (about −1.7σ). In the
case of a chain molecule, the slip length depends more strongly on the value
of cFS, and for cFS = 1/4 the slip length is 20.6σ, in qualitative agreement
with the MD simulation results of (Stevens et al., 1997) for hexadecane and
also with the experimental results of (Pit et al., 2000).

Similar results were reported in (Priezjev and Troian, 2004), for shear
polymer films in a Couette flow with a gap height of 24.57σ. In particular,
N -mer polymer chains with N up to 16 were simulated for various lev-
els of shear rate γ̇. The scaling law obtained in the earlier simulations of
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(Thompson and Troian, 1997) for N = 1, see equation (1.2), was extended
for polymer chains; that is, the normalized slip length is given by

b

b0
s

=
(

1 − γ̇

γ̇c

)−1/2

(10.7)

for shear rates γ ≥ 5 × 10−3τ−1; γc is the critical level of shear rate above
which divergence behavior is observed. It was also found that beyond N =
10 the molecular weight dependence of the slip length is mostly associated
with the bulk viscosity.

Also, in (Barrat and Bocquet, 1999), MD simulations were performed
with a Lennard–Jones potential of the form

VLJ = 4ε[(r/σ)−12 − cij(r/σ)−6],

where cij controls the type of interaction. The interactions between fluid
atoms were defined by cFF = 1.2, while the fluid–solid interaction coefficient
cFS was varied between 0.5 and 1. For cFS = 0.9 a contact angle of 100◦ is
obtained, whereas for cFS = 0.5 a contact angle of 150◦ is obtained, which
is close to the case of mercury on a glass surface, a flow configuration
studied in the experiments of (Chuarev et al., 1984) with mercury flowing
through glass capillaries. For this hydrophobic case a slip length of about
15 molecules was computed, whereas for the 100◦ case the no-slip condition
was valid all the way to the wall boundary. Taking into account that the
molecule size is about 0.25 nm, the maximum computed slip length in the
MD simulations of (Barrat and Bocquet, 1999) is about 4 nm, which is still
much smaller than any of the experimental data, especially for hydrophobic
surfaces.

10.5.2 Conceptual Models of Slip
We have seen that the MD simulations systematically underpredict the
slip length deduced from the various experiments either based on force
curves in the surface force apparatus or based on the flowrate measured
in capillaries and microchannels. Specifically, the MD simulations predict
a slip length roughly ten times smaller than in the experiments, and such
a large discrepancy implies that there are some other physical phenomena
not included in the simulation. Here we present some of the physical models
that have been proposed in the literature that can justify the large values
of slip length and the origin of slippage.

1. Molecular slippage: This theory first appeared in the Russian liter-
ature and is due to Tolstoi (1952); it was analyzed more thoroughly in
(Blake, 1990). It provides a link between the mobility of the molecules in
the first few layers closer to the wall with the interfacial energy associated
with the liquid–solid interface. Therefore, it relates directly the contact
angle to the slip length.
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2. Gaseous film: This model was first suggested by (Ruckenstein and Ra-
jora, 1983) and was also discussed by (Vinogradova, 1999). It assumes that
there may be a film of gas at the interface between the solid surface and
the liquid. The origin of this film may be due to external dissolved gases
up to metastable concentrations. According to (deGennes, 2002), this gas
film nucleates bubbles preferentially near the wall at contact angles greater
than 90◦, i.e., on hydrophobic surfaces. This mechanism can take place
above a threshold in shear rate, a fact consistent with the experimental
observations. Evidence of nanobubbles on a hydrophobic glass surface in
water using an atomic force microscope was reported in (Tyrrell and At-
tard, 2002). Another possibility, consistent with MD simulations that reveal
a depletion of the first layer of molecules, is that a flat vapor bubble is gen-
erated at the solid–liquid interface due to thermal fluctuations. In either
case, the gaseous film is assumed to be small, e.g., less than 0.5 nm.

A simple mathematical model was proposed by (deGennes, 2002) for this
case. He assumed that the gas in the gap is in the molecular regime (since
the mean free path satisfies λ � h, where h is the film thickness), and thus
the only collisions are with the wall. Correspondingly, a molecule leaving
the liquid has a Gaussian velocity distribution for the tangential velocity
component with the corresponding peak at the slip velocity vs. Denoting
by ρ,m the density and molecular mass of the gas, respectively, the average
momentum transmitted to the solid by the gas is mvs, and thus the shear
stress σ at the wall is

σ = mvs
ρ

m
v̄y = ρvsv̄z,

where (ρ/m)v̄z is the average number of collisions with the wall, and the
normal to the surface average velocity v̄z is

v̄z =
vth√
2π

with vth =
√

kT/m.

On the other hand, σ = µ∂v/∂z = µvs/b, and thus by comparing with the
above expression, we obtain the slip length

b = −h +
µ

ρv̄z
≈ µ

ρv̄z
,

where the thickness h of the gaseous film is assumed negligible. Upon sub-
stitution of typical values for water vapor in the above expression, we obtain
a slip length of a few microns, which is clearly much higher than any of
the available experimental data. We note that the model of de Gennes
shows that the slip length increases with the viscosity and thus with the
molecular weight, which is consistent with the measurements in (Cheng
and Giordano, 2002).

3. Viscosity model: This model, proposed by (Vinogradova, 1999), is
inspired by the slip mechanism in polymer melts. It provides a connec-
tion between the slip length and a decrease in viscosity within a very thin
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FIGURE 10.23. Slip length versus temperature in prewetting transition for dif-
ferent values of the chemical potential µ. (Courtesy of O.I. Vinogradova.)

boundary layer δ close to a hydrophobic surface. Assuming a bulk viscosity
µb and a near-wall viscosity µs, then the slip length is

b = δ

(
µb

µs
− 1

)
.

This expression shows that there are two mechanisms for obtaining a large
slip length, i.e., either by increasing δ or by increasing the viscosity ratio
in the bulk and the surface. For example, for µb/µs = 21 and δ = 10 nm,
a slip length of b = 200 nm can be obtained, but a more realistic viscosity
ratio is µb/µs = 3, which corresponds to b = 20 nm.

The above arguments suggest that there may be another mechanism in
place that produces thick films (i.e., large δ), and that is why in some ex-
periments large values of the slip length have been reported. To this end, in
(Andrienko et al., 2003), a new model that accounts for prewetting transi-
tion was developed. It takes into consideration the structure of the binary
mixture in the region near the solid surface and allows for a temperature
dependence of the thickness in the form δ ∝ − ln(|Tw − T |), where Tw is
the wetting temperature of the surface.

The governing equation for this case is obtained in terms of the order
parameter Φ, which is defined as

Φ =
n1 − n2

n1 + n2
,

where ni denotes the number density of each species. This order parameter
changes very fast very close to the interface, but it is almost constant in
the bulk. The viscosity of the binary mixture can then be expressed as a
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linear combination of its two components, i.e.,

µm(z) = µs
1 + Φ(z)

2
+ µb

1 − Φ(z)
2

.

The thermodynamics of the binary mixture are described via a free-energy
functional plus other contributions to account for surface effects. The corre-
sponding semigrand potential proposed in (Andrienko et al., 2003), is given
by

U(Φ) =
1
σ3

∫
dV

(
k

2
σ2(∇Φ)2 + f(Φ) − µΦ

)
+ Ψs,

where σ is a length scale characteristic of the molecule size, f(Φ) is the
Helmholtz free-energy density, Ψs is the surface energy, and µ is the chem-
ical potential. The governing equation is then obtained by minimizing the
above functional to obtain

k
∂2Φ
∂z2 +

Φ
2

− 1
2
T ln

1 + Φ
1 − Φ

+ µ = 0, (10.8)

where T is the temperature. This is a boundary value problem, which was
solved in (Andrienko et al., 2003), for a channel with identical walls located
sufficiently far from each other so that the film layers do not overlap. The
solution of the above equation reveals a prewetting transition that depends
on the temperature; it is sudden, and it jumps from a thin film to a thick
film (first-order transition). For thin films a small slip length is obtained,
but for thick films a large slip length is obtained that also depends on
the chemical potential. This is shown in Figure 10.23, which is taken from
(Andrienko et al., 2003), and is in nondimensional units (the molecular size
σ is employed in the nondimensionalization). When a thick film is obtained
the corresponding slip length depends on temperature, while below the
threshold for transition the slip length is independent of the temperature.

4. No-shear/no-slip patterning: This model was first considered in
(Philip, 1972), in an attempt to explain slip in porous media. The main idea
is to consider the liquid–solid interface segmented into aternating stripes
of no-slip and no-shear and deduce an effective slip length from this static
configuration. This model was advannced more recently by (Lauga and
Stone, 2003) who extended some of the exact solutions in (Philip, 1972),
and hypothesized the existence of small bubbles attached to the wall as
providers of the slip and thus the corresponding stress-free condition. As
was already mentioned, there is direct experimental evidence by AFM of
the existence of such nanobubbles; see, for example, (Tyrrell and Attard,
2002). In rough surfaces or surfaces with tiny cracks, air pockets may ex-
ist that act as stress-free local boundaries. Therefore, the proposed model
is that of surface heterogeneities that lead to an effective or equivalent
macroscopic slip.

The two basic configurations, a longitudinal and a transverse one, con-
sidered in the works of (Philip, 1972) and (Lauga and Stone, 2003), are
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FIGURE 10.24. Longitudinal (a) and transverse (b) models of no-shear stripes.

shown in the sketch of Figure 10.24 for a capillary. Semianalytical Stokes
flow solutions can be obtained for these geometries, and the effective slip
length be can be obtained in terms of the ratios δ = h/H and L = H/R
and the capillary radius R. This effective slip length is defined indirectly
from the flow rate as follows: Let us assume that the partial slip condition
is applied everywhere, then the velocity profile is

u(r) =
1 − r2

4
+

b

2R
,

and correspondingly the nondimensional flowrate is

Q =
π

8

(
1 +

4b

R

)
.

Solving for the effective slip length, we obtain

b =
R

4

(
8Q

π
− 1

)
.

Therefore, by obtaining the flowrate for a given configuration, we can then
obtain the effective slip length from above (Lauga and Stone, 2003).

For the longitudinal configuration, (with m no-shear bands with half-
angle α) shown in Figure 10.24, an exact solution was obtained in (Philip,
1972) for the velocity distribution

u(r, θ) = −R2

4µ

∂p

∂r

[
1 − (r/R)2 + (4/m)�

(
cos−1

(
cos(M)

cos(mα/2)

)
− M

)]
,
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where M = −im/2 ln(reiθ/R) and � implies imaginary part. The corre-
sponding effective slip length, bl, for this case is

bl

R
=

2
m

ln (sec(mα/2)) =
L

π
ln (sec(δπ/2)) .

For the configuration with the transverse no-shear stripes the solution is
a bit more complicated, but four asymptotic limits were obtained for the
slip length bt in (Lauga and Stone, 2003), in terms of the slip percentage δ
and the separation between slip stripes L, as follows:

1. bt/R ∝ δ/4 for δ → 0 and L fixed.

2. bt/R ∝ [4(1 − δ)]−1 for δ → 1 and L fixed.

3. bt/R ∝ (L/(2π)) ln (sec(δπ/2)) for L → 0 and δ fixed.

4. bt/R ∝ [4(1 − δ)/δ]−1 for L → ∞ and δ fixed.

For a small percentage of slip, the above limits suggest that the effective
slip length decreases faster (quadratically) to zero for longitudinal stripes
compared to linear decrease for transverse slip stripes. For a large per-
centage of slip the opposite is true. Also, for small separation between slip
stripes (L → 0) we have that bl = 2bt. These two configurations represent
the two extreme idealized cases, since in reality we expect a random dis-
tribution of no-shear pockets mixed with no-slip pockets. In addition, the
dependence of the slip length of the shear rate can also be included in this
model by assuming that the inhomogeneities (e.g., nanobubbles) are elon-
gated at large values of shear rate, hence effectively increasing the relative
no-shear to no-slip regions.

10.5.3 Reynolds–Vinogradova Theory for Hydrophobic
Surfaces

In this section, we derive analytical solutions for the steady-state flow be-
tween two curved hydrophobic surfaces following the work of (Vinogradova,
1995; Vinogradova, 1996). This theory is an extension of Reynolds lubrica-
tion theory appropriate for slip surfaces.

The theory is valid for general curved surfaces, but for simplicity here
we show the main steps in the solution for two spherical rigid bodies of
radii R1 and R2. The distance h between the two bodies is small compared
to the radii, and contact is allowed only at a single point. We also assume
that a hydrophilic surface is characterized by b = 0. A schematic of the
setup is shown in Figure 10.25; a cylindrical coordinate system is employed
in deriving the solution. The relative velocity is v = |v1 − v2|, where the
spheres move along the line connecting their centers with velocities v1 and
v2.
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FIGURE 10.25. Geometry and notation for two spheres approaching each other.

The surfaces of the two bodies (upper and lower, respectively) can be
described by paraboloid of revolution, i.e.,

Z = h +
1
2

r2

R1
+ O(r4) and Z = −1

2
r2

R2
+ O(r4),

and introducing a shifted coordinate z = Z+r2/(2R2) and Re = R1R2/(R1+
R2), we can represent the two surfaces in a new coordinate system as

z = h +
1
2

r2

Re
+ O(r4) and z = O(r4).

The governing equation is Reynolds’s lubrication equation, assuming that
the characteristic length is the gap between the two particles, i.e.,

µ
∂2vr

∂z2 =
∂p

∂r
,

while in the z-direction we have that ∂p/∂z = 0, which implies that the
pressure is a function of r only. The boundary conditions correspond to slip
on the lower body, characterized by b2 = b, while on the upper surface we
assume that b1 = b(1 + k), where k characterizes the specific type of the
interaction. Specifically,

• k = −1 corresponds to a hydrophilic upper surface.

• k = 0 corresponds to a hydrophobic upper surface.

• k → ∞ corresponds to a bubble upper surface.

In addition, k can take any other value between −1 and ∞ to represent
other types of interaction and surfaces. We note that contrast to the stan-
dard Reynolds problem, where the only length scale present is the gap h,
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here we have two additional length scales, namely b and b(1 + k). So the
boundary conditions on the lower surface are

vz = 0 and vr = b
∂vr

∂z

and those on the upper surface are

vz − rvr

Re
= −v and vr = −b(1 + k)

∂vr

∂z
.

The solution of the above Reynolds equation with the aforementioned
boundary conditions yields

vr(r, z) =
1
2µ

∂p

∂r

[
z2 − z

H(H + 2b(1 + k))
H + b(2 + k)

− bH(H + 2b(1 + k))
H + b(2 + k)

]
,

where H = h + r2/(2Re). The relative velocity v can be obtained from the
continuity equation

∂vz

∂z
+

1
r

∂(rvr)
∂r

= 0,

which by integration yields

v =
1
r

∂

∂r

[
(r

∂p

∂r
)

1
2µ

(
H3

3
− H3(H + 2b(1 + k))

2(H + b(2 + k))
− bH2(H + 2b(1 + k))

H + b(2 + k)

)]
.

This velocity is constant, and thus we can solve the above differential equa-
tion in terms of pressure by integrating twice and assuming that p = 0 at
r → ∞, and ∂p/∂r = 0 at r = 0 due to symmetry. The equation for the
pressure is then

p(r) = −3µRev

H2 p∗, (10.9)

consisting of two factors, namely, the Reynolds part and the correction
factor p∗ given by

p∗ =
2AH

BC
+

2H2

C − B

(
B − A

B2 ln(1 + B/H) − C − A

C2 ln(1 + C/H)
)

.

(10.10)
The constants A,B,C in this expression characterize the two surfaces; they
are given by

A = b(2 + k),

B = 2b(2 + k +
√

1 + k + k2),

C = 2b(2 + k −
√

1 + k + k2).

The resistance forces acting on the spheres are equal in magnitude and
are primarily due to the pressure, so the force can be computed exactly
from Fz =

∫∞
0 p2πrdr, to obtain

Fz = −6πµR2
ev

h
f∗, (10.11)
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FIGURE 10.26. Correction factor f∗ as a function of the gap to slip length ratio
for the three asymptotic cases discussed in the text.

consisting also of two factors, namely, the Reynolds part and the correction
factor f∗ given by

f∗ = − Ah

BC

− 2h

C − B

(
(B + h)(B − A)

B2 ln(1 + B/h)

− (C + h)(C − A)
C2 ln(1 + C/h)

)
. (10.12)

For the aforementioned three limiting cases, the above expression reduces
to

f∗ =
1
4
(1 +

3h

2b
[(1 + h/(4b)) ln(1 + 4b/h) − 1] for k = −1,

f∗ =
h

3b
[(1 + h/(6b)) ln(1 + 6b/h) − 1] for k = 0,

f∗ =
h

3b
[(1 + h/(3b)) ln(1 + 3b/h) − 1] for k → ∞.

These three cases are plotted in Figure 10.26 and show, as expected, that
the correction factor is always less than one; the no-slip case corresponds
to f∗ = p∗ = 1. Also, both correction factors depend on the length scale
ratios, namely h/b and h/[(k+1)b]. In the limit of very small gap, the case of
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f∗ → 0 (corresponding to k > −1) represents a configuration of two bubbles
approaching each other, while the case of f∗ → 1/4 (corresponding to
k = −1) represents the flow resistance for a hydrophilic sphere interacting
with a bubble.

In the standard Reynolds theory (f∗ = 1) the hydrodynamic resistance
is inversely proportional to the gap and diverges for h → 0. However, the
new physical result in the solutions of Vinogradova is for two hydrophobic
surfaces, i.e., k > −1 and h → 0, where the friction coefficient

f∗

h
= − 2

C − B
[(1 − A/B) ln B/h − (1 − A/C) lnC/h]

depends logarithmically on h and is inversely proportional to the slip length
b. The above result is valid for h � C < B. This dependence is more clearly
seen for the case in which A and C are approximately of the same order of
magnitude. In this case, (Vinogradova, 1995) has derived that

f∗

h
=

1
3b

ln
(

6b

h

)
,

which again shows the logarithmic dependence on the gap h.

The above formulation for two spheres has been extended to general
curved hydrophobic surfaces by (Vinogradova, 1996). The results are very
similar to those of the case of two spheres. For example, the resistance force
is given by

Fz = − 3πµv

hI1
√

I2
f∗, (10.13)

where f∗ is defined by the same expression of equation (10.12), but the
geometry is now described by the curvatures of the two surfaces as follows:

I1 =
1
2

[
1

R−
1

+
1

R+
1

+
1

R−
2

+
1

R+
2

]
,

I2 =
1
4

[
1

R−
1 R+

1
+

1
R−

2 R+
2

+ sin2 φ

(
1

R+
2 R+

1
+

1
R−

2 R−
1

)
+ cos2 φ

(
1

R−
2 R+

1
+

1
R+

2 R−
1

)]
.

Here R+ and R− denote the maximum and minimum principal radii of
the surface, and thus I1 and I2 are the mean and Gaussian curvatures
of the effective surface, respectively. Also, φ defines the orientation of the
two coordinate systems attached to the two surfaces. For example, we can
consider the interaction of a sphere with a plane, a case typical in the surface
force apparatus, in which case we obtain I1 = 1/R and I2 = 1/(4R2).
Similarly, we can model two crossed cylinders for which R+

2 , R+
1 → ∞ and

φ = π/2, so the two invariants are

I1 =
1
2

(
1

R−
2

+
1

R−
1

)
and I2 =

1
4R−

2 R−
1

.
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The reader can try to determine the two invariants for the case of two
hydrophobic cylinders with aligned axes for which φ = 0.

The analytical models of Vinogradova have been used with success in fit-
ting the force curves in several SFA measurements, e.g., (Zhu and Granick,
2001; Zhu and Granick, 2002), but the expression for f∗ does not depend
on the shear rate. However, in several SFA experiments it was shown con-
vincingly that there is a strong dependence of the response on the driving
speed, and thus these data do not agree with Vinogradova’s theory (Spikes
and Granick, 2003). To this end, a new model was proposed by (Spikes
and Granick, 2003) based on the observation that the experimental results
may represent onset of slip at a fixed shear stress τco rather than slip at a
constant slip length b. Because in the SFA a sphere interacts with a plane,
the surface shear stress is zero at the center and also away from it with
maximum values in between; see Figure 10.19. This, in turn, implies that
there exists an annular region around the contact point where slip occurs.
The proposed new model in (Spikes and Granick, 2003), combines both
this critical shear stress and the slip at constant b, so the shear stress when
boundary slip occus is

τc = τco +
µ

b
vs.

The corresponding pressure gradient for the case of one slippery surface
only is

dp

dr
= − min

{
6µWr

h3 ,

(
6µWr

h3 − 6b

(h + 4b)

(
−τco

h
+

3µWr

h3

))}
,

where min denotes the minimum of the two quantities, and W is the squeeze
velocity; h is the gap height at radial distance r. The influence of τco may
not be realized in some applications, including cases in which it is constant,
as in microchannel pressure-driven or Couette flow. However, it provides
a correction for low shear stress configurations and also for the surface
force apparatus and the atomic force microscope as well as in surfaces with
roughness.



11
Water in Nanochannels

Water and its properties in various forms is one of the most actively inves-
tigated areas because of its importance in nature. The anomalies that exist
in the bulk properties of water make it very interesting and challenging
for research, and a vast deal of literature is already available. Even though
water has been studied for more than 100 years now, its properties are far
from understood. With the advances in fabrication of nanochannels that
are only a few molecular diameters in critical dimension, there is now an
opportunity for a major breakthrough in understanding the properties of
water in confined nanochannels and in validating atomistic simulations. In
this chapter, after introducing some definitions and atomistic models for
water, we present the static and dynamic behavior of water in confined
nanochannels.

11.1 Definitions and Models

Water is composed of two hydrogen atoms and one oxygen atom. Fig-
ure 11.1 shows a sketch of the water molecule and the various quantities
used to characterize it. For an isolated water molecule (e.g., water in gas
phase), it has a bond length rOH of 0.95718 Å, and a bond angle θHOH of
104.474◦. In the liquid state, both these values are slightly modified by the
water−water and/or water−ion interactions. For example, neutron diffrac-
tion experiments suggested a bond length of rOH = 0.970 Å and a bond
angle of θHOH = 106.00◦ (Ichikawa et al., 1991) for the liquid state. Because
of the higher electronegativity of the oxygen atom compared to that of the
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FIGURE 11.1. Sketch of a water molecule and the various quantities used to
characterize the water molecule.

hydrogen atom, the oxygen site of the water molecule will appear to be
“negatively charged,” and the hydrogen site will appear to be “positively
charged.” Such a charge separation then creates an electric dipole. Because
of the symmetry of the water molecule, the dipole can be represented by a
line that starts from the oxygen atom and bisects the H−O−H angle (the
dotted line in Figure 11.1 is the dipole). If a water molecule is represented
by several point charges in an atomistic model, the dipole moment of the
model water molecule is given by

µdip =
N∑

i=1

qiri,

where N is the number of point charges in the model, and qi and ri are
the charge and position vector of the point charge i, respectively. The mag-
nitude of the dipole moment, µdip, is the length of the dipole vector µdip.
Experimentally, the dipole moment of a single water molecule in liquid state
at 300 K is determined to be 2.95±0.2 Debye (1 Debye = 3.336×10−30 C m)
(Gubskaya and Kusalik, 2002). Sometimes, it is advantageous to describe
the water molecule simply as a dipole, e.g., when studying the response
of the water molecule to an electrical field. In this case, the orientation
of the water is usually characterized by the dipole orientation angle θdip
with respect to a certain reference direction (see Figure 11.1). Some of the
important properties of water obtained experimentally are summarized in
Table 11.1.

A large number of “hypothetical” models for water have been devel-
oped in order to discover the structure of water, on the basis that if the
(known) model can successfully predict the physical properties of water,
then the (unknown) structure of water can be determined. They involve
positioning the electrostatic sites and Lennard–Jones sites, which may or
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TABLE 11.1. Important properties of water (H2O) †

Dipole moment 2.95 ±0.2 Debye
Boiling point 100◦C at 101.325 kPa
Isothermal compressibility 0.4599 GPa−1

Density 997.05 kg/m3

Dielectric constant 78.4
Diffusion coefficient 2.27×10−9m2/s
Enthalpy of Vaporization 40.657 kJ/mol (100◦)
Electronic polarizability (liquid) 1.48 Å3

Specific heat capacity (Cp) 75.327 J/mol/K
Specific heat capacity (Cv) 74.539 J/mol/K
Thermal conductivity 0.610 W/m/K
Dynamic viscosity 0.8909 mPa·s

†Unless mentioned otherwise, all the properties are reported at 25◦ C.

may not coincide with one or more of the charged sites. Generally, each
model is developed to match well a certain set of physical structures or pa-
rameters (e.g., the density anomaly, radial distribution function, or other
critical parameters). A discussion of the various atomistic models for water
is presented next.

11.1.1 Atomistic Models
There are a number of atomistic models for water, and a description of the
majority of the models can be found in (Chaplin, 2004). In this section we
summarize only the most commonly used models for water.

The SSD Model

The water molecule in the soft sticky dipole (SSD) model is treated as a
Lennard–Jones sphere with an embedded point dipole plus a tetrahedral
“sticky” potential, all situated at the molecular center of mass (M) located
on the H-O-H bisector at 0.0654 Å from the oxygen toward the hydrogens
(see Figure 11.2). The geometry of the water molecule used in this model
is similar to that of any three-site model (e.g., TIP3P). The O-H length
(i.e. rOH) is 0.9572 Å and the H-O-H angle (i.e. θHOH) is 104.52◦. The
H-M-H angle is 109.47◦. The center of mass is the only interaction site of
this model (Liu and Ichiye, 1996).

In the SSD model, the total interaction potential energy between two
water molecules i and j is given by (Liu and Ichiye, 1996)

Vij = V LJ
ij (rij) + V dp

ij (rij ,Ωi,Ωj) + V sp
ij (rij ,Ωi,Ωj), (11.1)

where rij is the distance between the molecular centers, rij is the separation
vector between two molecular centers, and Ω is the orientation of the water
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FIGURE 11.2. Schematic representation of a three-site water model. This par-
ticular model corresponds to the geometry of SSD. M is the molecular center of
mass, which is taken as the origin.

molecule, which is determined by both the orientation of the dipole moment
vector and the orientation of the molecular plane. The first term in equation
(11.1) is the Lennard–Jones potential (see Section 16.1 for more details),

V LJ
ij (rij) = 4εw

[(
σw

rij

)12

−
(

σw

rij

)6
]

,

where σw = 3.051 Å and εw = 0.152 kcal/mol (Liu and Ichiye, 1996). The
second term in equation (11.1) is the point dipole–point dipole potential,

V dp
ij (rij ,Ωi,Ωj) =

µi · µj

r3
ij

− 3(µi · rij)(µj · rij)
r5
ij

,

where µi and µj are the dipole moment vectors, each of whose magnitude
is 2.35 D. Note that the factor 1/4πε0 has been omitted for simplicity in
defining the potential due to electrostatic charges. The last term in equation
(11.1) is the tetrahedral sticky potential,

V sp
ij (rij ,Ωi,Ωj) = V ◦ [s(rij)wij(rij ,Ωi,Ωj) + s′(rij)wx

ij(θij)
]
,

where V ◦ = 3.7284 kcal/mol determines the strength of the sticky potential.
The function wij(rij ,Ωi,Ωj) is given by

wij(rij ,Ωi,Ωj) = sin(θij) sin(2θij) cos(2ϕij) + sin(θji) sin(2θji) cos(2ϕji),

where (θij , ϕij) is the set of spherical polar angles of the position of molecule
j in the frame fixed on molecule i and with an orientation such that the
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Z-axis is parallel to the dipole moment of i and the X-axis is perpendicular
to the molecular plane of i. In addition, wx

ij(θij) is an empirical correction
form added to the sticky potential; s(rij) and s′(rij) are the modulating
functions, which interpolate between 0 and 1. The properties of water mod-
eled by SSD are given in Table 11.3.

Evaluation of the interaction between two SSD water molecules requires
computing only one distance between the two centers of mass, four spherical
angles, and the angle between the dipole vectors. On the other hand, three-
site models like TIP3P and SPC/E require computing nine intermolecular
distances, while five-site models like ST2 and TIP5P require computing 17
intermolecular distances. Simulations with the SSD potential are about 4
times and 7 times faster compared with the three-site models in molecular
dynamics (Tan et al., 2003) and Monte Carlo (Tan et al., 2003), respec-
tively. The original parameters of the SSD water model give low water
density (0.977 g/cm3) and low heat of vaporization energy at room tem-
perature and 1 atmosphere. However, these issues have been addressed by
(Tan et al., 2003) by optimizing the parameters used in the SSD potential.

The SPC Model

The simple point charge (SPC) model is also a three-site model. It consists
of a tetrahedral water model with an OH distance of 0.1 nm, H-O-H angle
of 109.47◦, point charges on the oxygen and hydrogen positions of −0.82e
and +0.41e (electronic charge units), respectively, and a Lennard–Jones
interaction on the oxygen positions given by

VLJ = −(A/r)6 + (B/r)12, (11.2)

where A = 0.37122 (kJ/mol)1/6· nm and B = 0.3428 (kJ/mol)1/12· nm. The
total interaction energy between two SPC water molecules consists of the
Lennard–Jones potential and the Coulombic potential based on classical
electrostatics,

Vtotal = VLJ + VC , (11.3)

where VC between two molecules i and j is represented as the sum of
Coulomb interactions acting among the charged points (i.e., the O and H
atoms’ positions) in the following way:

VC =
∑
O,H

qIqJ

rIJ
ij

, (11.4)

where rIJ
ij is the distance between site I of the molecule i and site J of the

molecule j.
The geometry is similar to the water geometry shown in Figure 11.2.

However, the center of mass coincides with the oxygen atom for the SPC
model. The dipole moment of the SPC model is 2.27 D, compared to 1.85 D
for the isolated molecule. The diffusion coefficient of the model is 3.6×10−5
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cm2· s−1 at 300 K. The potential energy for liquid SPC water (Berendsen
et al., 1987) at 300 K is −41.7 kJ/mol, and the density at 300 K and atmo-
spheric pressure turns out to be 0.98 g · cm−3. Although the model behaves
quite satisfactorily for most purposes, there is room for improvement with
respect to density, radial distribution function, and diffusion constant. The
properties of the SPC model are summarized in Table 11.3.

The SPC/E Model

The extended simple point charge (SPC/E) model is characterized by three
point masses with O-H distance of 0.1 nm, H-O-H angle equal to 109.47◦,
charges on the oxygen and hydrogen equal to −0.8476 e and +0.4238 e,
respectively, and with Lennard–Jones parameters of oxygen–oxygen inter-
action according to equation (11.2) (A = 0.37122 (kJ/mol)1/6· nm and B =
0.3428 (kJ/mol)1/12· nm) (Berendsen et al., 1987). The interaction between
two SPC/E water molecules is represented by equations (11.2), (11.3) and
(11.4). The SPC/E model has a dipole moment of 2.35 D. The diffusion
constant is improved considerably compared to the SPC model. The agree-
ment of the radial density distribution with experiment is somewhat better
for the SPC/E model than for the SPC model (Berendsen et al., 1987).

The ST2 model

The ST2 potential developed by (Stillinger and Rahman, 1974) is based
on a rigid four-point-charge model for each water molecule. The ST2 water
model is shown in Figure 11.3. The positive charges +q are identified as
partially shielded protons, and they have been located precisely 1 Å from
the oxygen nucleus, O. The distance l from O to each of the negative charges
−q is 0.8 Å in the ST2 model. Pairs of vectors connecting O to the point
charges are all disposed at an angle θt,

θt = 2cos−1(3−1/2) ≈ 109◦28′.

The ST2 molecules interact with each other through a potential function
consisting of a Lennard–Jones central potential acting between oxygens,
plus a Coulombic potential for the 16 (4×4) pairs of point charges. The
ST2 model has a dipole moment of 2.353 D (Stillinger and Rahman, 1974).

The TIPnP Model

The geometry of the TIP5P model is shown in Figure 11.4, and its parame-
ters are presented in Table 11.2, along with those for the TIP3P and TIP4P
models. For all TIPnP models, the O-H bond length rOH and H-O-H bond
angle θHOH have been set to the experimental gas-phase values, i.e., 0.9572
Å and 104.52◦. For TIP5P, the negatively charged interaction sites are
located symmetrically along the lone-pair directions with an intervening
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FIGURE 11.3. A sketch of an ST2 water model.

angle, θLOL , of 109.47◦. A charge of +0.241 e is placed on each hydrogen
site, and charges of equal magnitude and opposite sign are placed on the
lone-pair interaction sites. The dipole moments are 2.35 D, 2.18 D, and
2.29 D for TIP3P, TIP4P, and TIP5P, respectively. There is no charge on
oxygen for TIP5P. The Lennard–Jones potential acts on only the oxygens
with a σ0 of 3.12 Å and an ε0 of 0.16 kcal/mol. The potential energy be-
tween two water molecules a and b is then given by the following equation
(Mahoney and Jorgensen, 2000):

Vab =
∑
ij

qiqje
2

rij
+ 4ε0

[(
σ0

rOO

)12

−
(

σ0

rOO

)6
]

, (11.5)

where i and j are the charged sites on a and b, respectively, and rOO is the
oxygen–oxygen distance.

The geometry of the TIP4P water model is shown in Figure 11.5. The
TIP4P model is based on four interaction sites located in a planar config-
uration. Two of those are labeled M and O, which are associated with the
oxygen nucleus, and the other two (which are labeled H) are the protons.
The two distances and one angle required to fully specify the site coordi-
nates are rOH = 0.957 Å, rOM = 0.15 Å (M lies on the axis of symmetry
between O and the line joining the H sites), and �HOH = 104.5◦.

The potential energy between two TIP4P water molecules consists of a
double sum over the interaction sites of both molecules; the terms in the
sum allow for Coulombic interactions between the electric charges assigned
to the sites as well as an LJ-type contribution (equation (11.5)). The charge
on the H site is equal to 0.52e, on the oxygen site is zero, and on the M site
is equal to −1.04e (Rapaport, 1997). The physical properties of water based
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FIGURE 11.4. A sketch of the TIP5P monomer geometry.
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FIGURE 11.5. A sketch of the planar TIP4P water molecule.

on the TIP4P model are summarized in Table 11.3, and the geometrical
and interaction parameters of the TIP4P model are summarized in Table
11.2.

The PPC Model

The polarizable point charge (PPC) model is an efficient polarizable model
that retains most of the simplicity of the popular classical three-site poten-
tials while incorporating the polarization response of the water molecule to
a local electric field as determined from ab initio calculations (Svishchev
et al., 1996). Studies (Kusalik et al., 1995) have shown that the PPC poten-
tial accurately describes both the virial equation of state for steam and the
liquid properties, including the local structure, dielectric constant, the self-
diffusion coefficient, and the Debye relaxation time (Kusalik et al., 1995),
over a wide range of temperatures. The distance between O and H (i.e.,
rOH) in the PPC model is equal to 0.943 Å and �HOH = 106◦. The ge-
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TABLE 11.2. Monomer geometry and parameters for the TIPnP potential func-
tions (Mahoney and Jorgensen, 2000).

Parameters TIP3P TIP4P TIP5P
qH (e) 0.417 0.520 0.241
σ0 (Å) 3.15061 3.15365 3.12

ε0 (kcal/mol) 0.1521 0.1550 0.16
rOH (Å) 0.9572 0.9572 0.9572

θHOH (deg) 104.52 104.52 104.52
rOL (Å) − 0.15 0.70

θLOL (deg) − − 109.47

ometry of the PPC water model is similar to the geometry of the three-site
water model shown in Figure 11.2. The values of the hydrogen charges are
given by (Kusalik et al., 1995)

q+ = 0.486 ± 0.03Ex + 0.02Ez,

where for the second term a “+ ” sign is used for one of the hydrogens and
a “− ” sign is used for the other hydrogen, and the electric field is given in
V/Å. The charge on the negative site follows from charge neutrality. The
short-range interaction of the PPC model is taken to be an LJ potential
centered on the oxygen. The LJ parameters, εLJ = 0.6 kJ/mol and σ =
3.234 Å, are optimized to give the correct energy, self-diffusion coefficient,
and structure for water at 25◦C. It is observed by (Kusalik et al., 1995)
that unlike other polarizable models, which typically execute at least three
times slower than effective potential models, a comparable calculation with
the PPC model runs only 1.5 times slower than a simulation with SPC/E
water. The physical properties of the water simulated using the PPC model
are summarized in Table 11.3.

The Six-Site Model

(Nada and van der Eerden, 2003) have proposed an intermolecular potential
model of a rigid H2O molecule that has six interaction sites. It has been
observed that this six-site model is much more suitable for the simulation
of ice and water near TM (i.e., melting point of ice) than the TIP4P and
TIP5P models. Figure 11.6 shows a sketch of the six-site model. A positive
point charge is placed on each hydrogen (H) site, and a negative charge
on each lone-pair (L) site, as in the TIP5P model. A negative charge is
also placed on a site M, which is located on the bisector of �HOH, as
in the TIP4P model. In contrast to the TIP4P and TIP5P models, the
Lennard–Jones interaction acts not only on the oxygen (O) site but also
on the H sites in the present model. For the O-H length (rOH) and H-O-H
angle in this model, intermediate values between those of the real molecule
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FIGURE 11.6. Schematic illustration of the water molecule in the six site model.

in the ice and vapor phases are taken (Nada and van der Eerden, 2003).
The average of �HOH and �LOL in the present model is the tetrahedral
angle of 109.5◦. The intermolecular interaction between molecules i and j,
Vij , is represented as the sum of the Coulomb interactions acting among
the charged points and the Lennard–Jones interactions acting on O and H
atoms, in the following way:

Vij =
∑

H,L,M

qIqJ

rIJ
ij

+ 4
∑
O,H

εIJ

⎡⎣(σIJ

rIJ
ij

)12

−
(

σIJ

rIJ
ij

)6
⎤⎦ ,

where rIJ
ij is the distance between site I of the molecule i and site J of

molecule j. Here qI (see Figure 11.6) gives the charge amount of site I.

Summary of Physical Properties

Table 11.3 summarizes some of the important properties of water obtained
from various water models.

11.2 Static Behavior

The static behavior of water in various confined states—near a surface,
in a slit pore, or in a cylindrical pore—is discussed in this section. The
static behavior includes density distribution, dipole orientation, hydrogen
bonding and clustering, and the contact angle of water to the surface in
a nano-confinement environment. These properties are of fundamental in-
terest and of critical importance. For example, an understanding of the
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TABLE 11.3. Some of the calculated physical properties of the water models †

Model µdip ε Dself Econfig Tmax
(Debye) (relative) (10−5 cm2/s) (kJ/mol) (◦C)

SSD 2.35 72 2.13 -40.2 -13
SPC 2.27 65 3.85 -41.0 −

SPC/E 2.35 71 2.49 -41.5 -38
PPC 2.52 77 2.60 -43.2 +4

TIP3P 2.35 82 5.19 -41.1 -13
TIP4P 2.18 53� 3.29 -41.8 -25
TIP5P 2.29 81.5 2.62 -41.3 +4
six-site 1.89 33 − − +14
Expt. 2.65, 3.0 78.4 2.30 -41.5 +3.98

†Note that µdip, ε, Dself , Econfig, and Tmax denote the dipole moment,
dielectric constant, self diffusion coefficient, average configurational energy,
and maximum density temperature. All the data are at 25◦ and 1 atm,
except � at 20◦.

density distribution and dipole orientation of the water molecules near a
surface is crucial for understanding the electrochemical reaction at a sur-
face (Henderson et al., 2001). In recent years, experimental techniques have
improved dramatically, and it is now possible to probe the structure of a
liquid at atomistic detail (Toney et al., 1994; Cheng et al., 2001). For ex-
ample, based on x-ray scattering measurements, (Toney et al., 1994) have
proposed that water is ordered in layers extended to about three molecular
diameters from an electrode surface and that water density near a charged
electrode is very high. Though these experiments can provide good insight
into water density distribution and dipole orientation, they cannot provide
detailed and direct information of these functions; rather, they provide in-
formation about the integrals involving these functions. In addition, these
experiments can probe only relatively simple geometry and cannot be used
easily to study how the various parameters (e.g., surface characteristics)
influence the static behavior of water in confined states. To this end, atom-
istic simulations have been more sucessfully used, and we will review some
of the interesting results here.

11.2.1 Density Distribution and Dipole Orientation
There is an extensive literature on the density distribution and dipole orien-
tation of water near a one-dimensional surface (Henderson et al., 2001; Yeh
and Berkowitz, 2000; Spohr et al., 1998; Galle and Vortler, 1999; Gordillo
and Mart́ı, 2003; Puibasset and Pellenq, 2003; Muller and Bubbins, 1998)
(1-D confinement), inside a cylindrical pore (Henderson et al., 2001; Allen
et al., 1999; Rovere and Gallo, 2003; Walther et al., 2001a; Allen et al., 2002;
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Gallo et al., 2000; Lynden-Bell and Rasaiah, 1996; Leo and Maranon, 2003;
Gallo et al., 2002a; Gallo et al., 2002b; Green and Lu, 1997) (2-D confine-
ment) and inside a cavity (Levinger, 2002; Brovchenko et al., 2001; Egorov
and Brodskaya, 2003) (3-D confinement). Here we focus on how the den-
sity and the dipole orientation of the water molecules are influenced by the
degree of confinement (e.g., size of nanopore), by the properties of surface
(e.g., hydrophobic vs. hydrophilic surface), and by the presence of surface
charge.

(Allen et al., 1999) studied the water density and the dipole orientation
in a cylindrical pore systematically by varying the pore size and the surface
properties. Three types of pores were considered. The first is a hydrophobic
wall consisting of a regular array of Lennard–Jones (LJ) 12-6 centers on
a cylindrical shell; the second is a structureless one-dimensional potential
function that approximates the atomic hydrophobic wall; and the third is
a hydrophilic surface containing an array of bound water molecules. Figure
11.7 shows the water oxygen atom density profiles against distance from the
effective wall radius for each surface type and for an effective radius R =
2.1 Å to 5.6 Å. The pore is solvated by a band of water molecules centered
at 1.2 to 1.4 Å from the effective channel radius. The hydrophobic and
hydrophilic channels result in very different water density profiles. Inside
hydrophobic channels, for R ≤ 3.6 Å, there is only one layer of water, while
there are two layers for larger cross-sections. In a hydrophilic channel, the
water molecules are able to approach closer to the channel wall, resulting
in a more sharply defined density peak compared to that in a hydrophobic
channel. The location of the first water density peak near the channel wall
is also shifted toward the channel wall for the hydrophilic surface case. In
addition, in large pores, a third peak of water density appears when the
channel surface is hydrophilic.

Figure 11.8 shows 20-Å segments of the center of mass corrected water
oxygen atom density profiles along the channel axis (z-direction) for atomic
hydrophobic (A), LJ hydrophobic (B), and hydrophilic channels (C) with
R = 2.6 Å, 4.1 Å, and 5.6 Å. Note that for both hydrophobic channels, a
transition occurs at R = 4.1 Å, where the water becomes highly structured,
and well-defined layers emerge. The similar results for the two hydrophobic
channels suggest that an explicit treatment of the atomic structure of the
channel does not have an appreciable effect on water structure. Hence, the
atomic hydrophobic channels are well represented by a one-dimensional po-
tential function. The LJ 5-3 function can be used to significantly reduce the
simulation times, since this gives a good reproduction of structural prop-
erties of water. In the hydrophilic channels, the water structure exhibits a
markedly different behavior, with only the narrow 2.6-Å channel exhibiting
some order along the channel axis.

Figure 11.9 shows the dipole orientation distribution for channels of ef-
fective radius 2.6 Å (panel A), 4.1 Å (panel B) and 5.6 Å (panel C). The
left panels show the average projection of dipole orientation onto the z-
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FIGURE 11.7. Water–oxygen atom radial density profiles: Density profiles for the
atomic hydrophobic (solid curve), LJ hydrophobic (dotted curve), and hydrophilic
(dashed curve) channels are compared for effective channel radii 2.1–5.6 Å. All
profiles are plotted against the distance from the effective wall, of the channel
R−r. The left-hand vertical axis represents the effective wall, while the right-hand
axis represents the channel axis z. Each graph is labeled with the effective channel
radius R. (Courtesy of S.-H. Chung.)
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FIGURE 11.8. Water–oxygen atom density profiles along the channel axis direc-
tion: (A) Density profile for atomic hydrophobic channels of effective radii 2.6 Å
(left panel), 4.1 Å (central panel), and 5.6 Å (right panel). (B) Density profiles
for LJ hydrophobic surface described by the LJ 5-3 potential. (C) Density profiles
for hydrophilic channels. (Courtesy of S.-H. Chung.)

direction (channel axis direction) for atomic hydrophobic (solid curve), LJ
hydrophobic (dotted curve), and hydrophilic (dashed curve) channels. The
right panels show the projection onto the radial vector r. In the hydropho-
bic channels, water molecules have a definite preference to point either up
or down the channel axes, and such a trend is especially clear in narrow
channels. Most distributions possess symmetry about the origin and result
in zero net dipole moment. However, in a very narrow channel (e.g., r =
2.6 Å), the symmetry is broken, and this leads to a rather large net dipole
moment along the channel. In contrast, in the hydrophilic channels, the wa-
ter dipoles prefer to lie in the xy-plane rather than align along the channel
axis, and align themselves more toward the channel wall. The net dipole
moments are zero in all the hydrophilic channels. Clearly, the geometrical
confinement alters the behavior of water from that in the bulk, and the
effects of different types of surfaces make its behavior further complicated.
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This can have a very profound influence on various macroscopic measur-
ables. As discussed by (Allen et al., 1999), an ion attempting to pass along
a line of dipoles aligned head to tail (as in the narrow hydrophobic channel
case) will be impeded less than if it were to pass alongside a line of dipoles
oriented perpendicular to the line (as in a hydrophilic channel), and this
can lead to very different transport behavior of the ions.

Density distribution and dipole orientation studies have also been per-
formed on charged nanopores. (Hartnig et al., 1998) studied the density
distribution and dipole orientation of water molecules in two cylindrical
nanopores with a radius of 10.9 Å. In the first pore, there are 72 alter-
nating positive and negative elementary charges on the pore surface, and
the second pore has no surface charge. Figure 11.10 shows the oxygen and
hydrogen density distribution for the two pores. From the graph, we ob-
serve that the water oxygen density has a slightly larger peak when the
pore is charged. In addition, the density peak of the oxygen atoms is closer
to the pore surface when the nanopore is charged. This can be explained
by the attraction of the water molecules toward the nanopore surface. The
hydrogen atom density profile shows a peak at R = 9.2 Å, which was not
observed when the pore was not charged. This is caused by the attraction
of the hydrogen atoms by the negative surface charges, which is not bal-
anced by the short-range Lennard–Jones repulsion as in the case of oxygen.
Figure 11.11 shows the average dipole moment of a water molecule in the
radial direction as a function of its radial position. For both charged and
noncharged pores, we observe that the water dipole tends to point toward
the pore center in the region 6.7 Å < R < 7.2 Å (where R is the pore
radius). However, in the charged pore, there is an additional region R >
8.2 Å, where the dipoles point toward the pore surface, consistent with the
hump in the hydrogen density profile at R = 9.2 Å. From these results,
we can conclude that the presence of a charge on the pore surface can in-
fluence the density distribution, dipole orientation, and the average dipole
moment.

Water confined in silica pores has also been investigated. Silica and other
porous materials are of great interest for a number of nanotechnology ap-
plications including catalytic and separation processes. (Gallo et al., 2000)
have examined the density profiles of water confined in a cylindrical Vy-
cor glass pore at various hydration levels (the smaller the number of water
molecules in the pore, the smaller the hydration level). Figure 11.12 shows
the snapshot of equilibrium configuration of confined water at various hy-
dration levels (the pore diameter is 4.0 nm). The hydrophilic nature of
the Vycor glass is evident, since all the water molecules are attracted to-
ward the pore surface. Low amounts of water (e.g., the number of water
molecules is 500) are almost completely adsorbed on the pore surface. With
increasing water concentration, water molecules occupy an increasing frac-
tion of the free volume of the pore. For about 2600 water molecules, the
hydration level is found to be close to 100%.
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FIGURE 11.9. Water dipole orientation distributions for channels of effective
radius 2.6 Å (A), 4.1 Å (B), and 5.6 Å (C). The left panels show the average
projection of dipole orientation onto the z-axis (cos(θ)) for atomic hydrophobic
(solid curve), LJ hydrophobic (dotted curve), and hydrophilic (dashed curve)
channels. The right panels show the projections of the dipole onto the radial
vector r (cos(φ)). (Courtesy of S.-H. Chung.)

11.2.2 Hydrogen Bonding
A hydrogen atom covalently bound to an electronegative atom (e.g., nitro-
gen, oxygen) has a significant positive charge and can form a weak bond
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FIGURE 11.10. Oxygen and hydrogen density distribution in a cylindrical pore
of radius 10.9 Å (ρ denotes the radius of the pore in Å) when the pore wall has
alternating positive and negative elementary charges (solid line) and when the
pore wall has no charges (dotted line). (Courtesy of E. Sphor.)

FIGURE 11.11. Average dipole moment (divided by the molecular dipole of
TIP4P water model) as a function of the radial position (ρ) in the pore. Solid
line: charged pore wall. Dotted line: uncharged pore wall. (Courtesy of E. Spohr.)
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FIGURE 11.12. Snapshots of equilibrium configuration of confined water at dif-
ferent hydration levels. Only the oxygen atoms of water are shown projected on
the xy-plane perpendicular to the axis of the confining cylinder. Nw is the number
of water molecules in the pore. Nw = 500, 1000, 1500, 2000, and 2600 correspond
to approximately 20%, 40%, 60%, 75%, and 100% hydration levels. (Courtesy of
M. Rovere.)

to another electronegative atom, and such a bond is usually termed as
a hydrogen bond. Water molecules in liquid state can form an extensive
hydrogen bonding network. Figure 11.13 shows the scenario of hydrogen
bonding between two water molecules. The strength of hydrogen bonds
(≈ 21 kJ/mol) is normally intermediate between that of the weak van der
Waals interactions (≈ 1.25 kJ/mol) and that of the covalent chemical bonds
(≈ 420 kJ/mol).

In atomistic simulations, there are two types of criteria for determining
whether two water molecules form a hydrogen bond, namely, an energetic
criterion and a geometric criterion. In the energetic criterion, two water
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FIGURE 11.14. Schematic of bulk water molecules and the definition of the first
coordination shell.

molecules are said to form a hydrogen bond if their interaction energy is
less than a certain threshold energy Ec

HB. In the geometric criterion, two
water molecules are said to form a hydrogen bond if (a) the O−O distance
is less than certain distance rc

HB and (b) the O−H· · ·O angle is less than
a certain threshold angle θc

HB. The O−O distance and O−H· · ·O angle
are usually referred to as hydrogen bond length (rHB) and hydrogen bond
angle (θHB). Typically, Ec

HB is chosen to be −10 kJ/mol, rc
HB is chosen

to be the radius of the first coordination shell of a water molecule, and
θc
HB is chosen to be 30◦. The first coordination shell of a water molecule

is defined as the first water shell around that water molecule. The radius
of the shell, R1, is usually chosen to be the position of the first minimum
of the oxygen–oxygen radial distribution function (RDFO−O) (see Figure
11.14).

At the molecular level, the water structure is determined by the hydrogen
bonding (HB) network. Since HB plays an important role in determining
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the transport properties of water molecules and ions, it is important to
understand how the HB network is influenced when the water is confined
in nanochannels. The HB of water inside slit pores (Galle and Vortler, 1999;
Galle and Vortler, 2001) and cylindrical pores (Allen et al., 1999; Rovere
and Gallo, 2003; Walther et al., 2001a; Rovere et al., 1998; Werder et al.,
2001; Spohr et al., 1999; Mashl et al., 2003) has been studied extensively
in the past decades.

Figure 11.15 shows the number of hydrogen bonds per water molecule in
a cylindrical pore as a function of the pore radius and surface properties
(Allen et al., 1999). For a hydrophobic pore, the extent of HB is maximized
at moderate radii (r ≈ 3.6 Å), and drops notably as the pore size decreases.
Similar observations have been reported for other hydrophobic pores, e.g.,
inside a carbon nanotube (Mashl et al., 2003). For a hydrophilic pore, the
number of hydrogen bonds per water molecule is not sensitive to the pore
size. However, if we exclude the hydrogen bonds between wall atoms and
water molecule (dash-dot-dot curve in Figure 11.15), i.e., by counting only
the hydrogen bonds between water molecules inside the pore, we find that
the average number of hydrogen bonds per water molecule is significantly
lower than that for the corresponding hydrophobic pores. This is because
the water molecules inside the pore sacrifice water–water hydrogen bonds
for the water–wall hydrogen bonds. Since the wall atoms are fixed, the
strong interactions between water molecules and the wall atoms are likely
to result in a reduced transport (e.g., diffusion transport) of water molecules
in a hydrophilic pore compared to that in a hydrophobic pore.

(Rovere et al., 1998) also reported on the HB of water molecules inside
a 4.0 nm diameter cylindrical SiO2 pore. Figure 11.16 shows the number
of hydrogen bonds as a function of distance from the center of the pore
computed as the wall–water interactions are turned “on” (solid line) and
“off” (dash line). Note that the number of hydrogen bonds decreases al-
most monotonically as we approach the pore surface when the wall–water
interaction is turned on. However, when the surface atom–water interaction
is turned off, the number of hydrogen bonds is essentially constant up to 15
Å from the pore center. Comparison of these two results indicates that the
pure geometrical confinement can alone be responsible for the reduction in
the number of hydrogen bonds at the interface.

Finally, the dynamic properties of HB have also been investigated. (Hum-
mer et al., 2001) investigated HB inside a carbon nanotube of 8.1 Å di-
ameter. They found that the HB inside the carbon nanotube is much more
stable and highly oriented compared to that in the bulk. For example, the
average lifetime of a hydrogen bond inside a carbon nanotube is 5.6 ps,
compared to 1.0 ps in the bulk. In addition, less than 15% of the H–O· · ·H
angles inside the carbon nanotube exceeds 30◦, compared to 30% in the
bulk. It was also reported that the OH bonds involved in the hydrogen
bonds are nearly aligned with the nanotube axis, collectively flipping di-
rection every 2 to 3 ns on average. In summary, the HB can be significantly
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FIGURE 11.15. The effect of pore radius on the number of hydrogen bonds per
water molecule for atomic hydrophobic (solid curve, filled circles), LJ hydropho-
bic (dotted curves, filled circles), and hydrophilic channels (dashed curve, open
circles). The number of hydrogen bonds in hydrophilic pores when channel wall
molecules are excluded are drawn as dash-dot-dot curves (open circles). (Courtesy
of S.-H. Chung.)

influenced by the strong confinement inside a carbon nanotube, and the
strongly stable hydrogen bonding inside the nanotube can change the wet-
ting characteristic of the nanotube significantly (Hummer et al., 2001).

11.2.3 Contact Angle
The contact angle θ is a quantitative measure of the wetting of a solid
by a liquid, as we have seen in Section 8.1; see Figure 8.4. At nanoscales,
where the surface to volume ratio of the system can be orders of magnitude
larger compared to a macroscopic system, the surface–water interactions
tend to dominate the behavior of water in the system. The contact angle
of water on the surface is a very important indicator of the strength of
the surface–water interactions. Several authors have investigated the static
wetting behavior of water on a graphite sheet (Werder et al., 2003) and on
a carbon nanotube surface (Werder et al., 2001) and computed the contact
angle of water on these surfaces.

(Werder et al., 2003) presented a study on the contact angle of water on
a graphite surface by using molecular dynamics simulations. Figure 11.17



428 11. Water in Nanochannels

FIGURE 11.16. Number of hydrogen bonds as a function of the distance from
the center of the pore, calculated with the wall–water interaction turned on
(solid line) and off (dashed line). The horizontal dotted line represents the den-
sity-weighted average value of number of hydrogen bonds for confined water with
the wall–water interaction turned on. (Courtesy of M. Rovere.)

shows snapshots of the system. It shows that a cubic water block will
spontaneously evolve to a hemisphere as it reaches equilibrium. The contact
angle of the water droplet on the graphite surface is a function of the
Lennard–Jones potential between the carbon atom and the water molecule.
The authors found that using a σCO = 3.19 Å and εCO = 0.392 kJ/mol,
one can reproduce the contact angle (86◦) of water on a graphite surface as
measured at the macroscopic scale. Such interaction parameters can then
be very useful in the study of water behavior in carbon nanotubes.

Recently, (Gonnet et al., 2004) have suggested that the contact angle
decreases weakly with increasing concentration of impurities like ions in
water, and that chemisorption1 of water onto the graphite surface, altering
the partial charge distribution on the graphite surface, can influence the
contact angle significantly.

1Chemisorption, or chemical adsorption, is adsorption in which the forces in-
volved are valence forces of the same kind as those operating in the formation of
chemical compounds, and the elementary step in chemisorption often involves an
activation energy.



11.2 Static Behavior 429

FIGURE 11.17. Side (top row) and top view (bottom row) of the initial (t = 0)
and equilibrated (t = 0.2 ns) water droplet. The lateral graphite dimensions in
the simulation are 119 Å ×118 Å. (Courtesy of P. Koumoutsakos.)

11.2.4 Dielectric Constant
From the results presented in this section, we can conclude that confine-
ment can change the dipole orientation of water molecules significantly.
This could lead to a change in the dielectric constant of water, which, in
turn, can influence the dynamic properties and the electrostatic interactions
between water molecules and between ion and water molecules. (Senapati
and Chandra, 2001) studied the dielectric constant of water inside spheri-
cal cavities of various sizes using two different water models, namely, soft
sticky dipole (SSD) (Liu and Ichiye, 1996) and SPC/E (Berendsen et al.,
1987) models (see Section 11.1 for details). Figure 11.18 shows the dielec-
tric constant computed using the two models as a function of the cavity
size (Senapati and Chandra, 2001). Clearly, the dielectric constant in a
nanocavity is significantly different from that in the bulk, and it decreases
as the cavity radius decreases. Specifically, a nearly 50% decrease of the
dielectric constant is observed in a cavity of about 12 Å diameter. Since
the cavity surface is not charged, the reduction of the dielectric constant is
purely an effect of confinement.
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FIGURE 11.18. Dielectric constant of water confined in nanocavities of different
cross sections. (Courtesy of A. Chandra.)

11.3 Dynamic Behavior

Understanding the dynamic behavior of water is critical to many biolog-
ical and engineering applications. For example, the study of the diffusion
of water molecules through nanochannels can help explain the operating
mechanisms of the water channels, which are responsible for many im-
portant biological processes in the cell (Sui et al., 2001; Hummer et al.,
2001; Beckstein and Sansom, 2003). In this section, we first review the
research on the basic concepts of dynamic behavior of water and then sum-
marize some of the simulation results on the diffusion transport of water
through nanochannels. Finally, the filling and emptying kinetics of water
in nanopores is discussed.

11.3.1 Basic Concepts
In this section, we focus our attention on the properties of the motion of a
single water molecule in confined states, such as the reorientation dynam-
ics, residence time, dipole correlation, and the velocity distribution. Under-
standing these properties can provide insight into the dynamic properties
of water in more complicated scenarios such as the diffusion transport.
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FIGURE 11.19. Definition of molecular unit vectors in a water molecule.

Reorientation Dynamics

Molecular reorientational motions in liquids are usually analyzed through
the time correlation functions

Cl,α(t) = 〈Pl(ûα(t) · ûα(0))〉 ,

where Pl refers to lth Legendre polynomial and ûα is a unit vector along a
given direction (α = µ, HH, OH, ⊥). As shown in Figure 11.19, four differ-
ent unit vectors are considered: a unit vector ûµ(t) ≡ µ(t)/µ(t) along the
molecular dipole moment direction, a unit vector ûHH(t) ≡ rHH(t)/rHH(t)
along the H-H direction, a unit vector ûOH(t) ≡ rOH(t)/rOH(t) along the
O-H direction, and a unit vector û⊥(t) = ûµ(t) × ûHH(t) perpendicular to
the molecular plane. The correlation functions associated with the Legen-
dre polynomials are

C1,α(t) = 〈cos θα(t)〉 ,

C2,α(t) =
1
2
〈
cos2 θα(t) − 1

〉
,

where cos θα ≡ ûα(t) · ûα(0). The characteristic reorientational times
(τα

1 , τα
2 ) are computed by

τα
i =

∫ ∞

0
Ci,α(t) dt, (i = 1, 2)

The reorientational motion of water molecules is characterized by the
dipole moment reorientation time τµ

1,2 (Mart́ı et al., 2002). A smaller τ
corresponds to a faster reorientation motion of the water molecule. Mart́ı
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FIGURE 11.20. Molecular dipole moment reorientation time τµ
1,2 as a function

of temperature at a density of 0.83 g/cm3. Computation with the first (bottom)
and second (top) Legendre polynomials. (Courtesy of J. Mart́ı.)

and coworkers (Mart́ı et al., 2002) studied the reorientation time of wa-
ter molecules confined in carbon nanotubes of length 7.45 nm and in-
ternal radii of 2.65 Å ((8, 8) nanotube), 4 Å ((10, 10) nanotube) and 5.33
Å ((12, 12) nanotube); see Section 13.2.1 for details on carbon nanotubes.
Figure 11.20 shows the reorientation time of the water dipole moment at
different temperatures and in different-sized nanotubes. At room tempera-
ture, the smaller the nanotube diameter, the faster the reorientational mo-
tion, and in the largest nanotube, the reorientation time approaches that
of the bulk water. From this result we can conclude that confinement tends
to speed up molecular reorientations. The faster reorientational motion in
small diameter nanotubes can be attributed to the partial breakdown of
the tetrahedral hydrogen-bond network, which is typical when water is
confined.

Residence Time

The mean time spent by a water molecule in its first coordination shell
(see Section 11.2.2 for the definition) can be characterized by a residence
time function Cres(t). The spatial distribution of various molecules and
ions closely surrounding a water molecule forms the coordinate shells of
the water molecule. The first coordination shell gives rise to a noticeable
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FIGURE 11.21. Residence time τres of a water molecule in its first coordination
shell as a function of temperature in different-sized nanotubes at a density of 0.83
g/cm3. (Courtesy of J. Mart́ı.)

cluster, whereas the second coordination shell is more diffuse, and it be-
comes difficult to discern a pattern for subsequent coordination shells. The
residence time for a given water molecule is defined as the number of water
molecules in the first coordination shell of the tagged molecule during the
time interval of length t. Usually, an exponential-like behavior of Cres(t)
is observed, and a residence time τres can be obtained from the fitting of
Cres(t) to a single exponential:

Cres(t) ≈ c e−t/τres .

A longer residence time suggests that water molecules form a more stable
structure. Figure 11.21 (Mart́ı et al., 2002) shows the residence time τres of
a water molecule in its first coordination shell as a function of the temper-
ature in different-sized nanotubes. We observe that at room temperature,
the residence time τres increases as the nanotube diameter decreases, indi-
cating that a water molecule inside a narrow pore will spend longer time
in its neighborhood than in larger pores. As the temperature increases, the
residence time decreases sharply, and the deviation of τres in different-sized
tubes also decreases.
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FIGURE 11.22. Water dipole correlation function inside nanotubes at 300 K.

Dipole Correlation

The reorientability of the water molecules can also be characterized by an
autocorrelation function (ACF) of the water dipoles. The ACF is defined
as

C(t) = 〈µ(0) · µ(t)〉/〈µ2〉,

where µ is the water dipole and the angle bracket denotes average over time
and molecules. The reorientability of the water molecules plays an impor-
tant role in determining the dynamic properties of water (e.g., viscosity,
diffusivity).

(Mashl et al., 2003) studied the reorientability of the water molecules
inside carbon nanotubes; Figure 11.22 shows the ACF obtained for wa-
ter inside carbon nanotubes of various diameters. It was observed that for
water in wide nanotubes, the ACFs generally take a bulk-like character.
However, for smaller nanotubes, the appearance of a plateau suggests that
the hydrogen bonds tend to form very rapidly and can be maintained for
a much longer time compared to those in the bulk. An interesting obser-
vation is that the water molecules in the 8.6-Å nanotube show the largest
degree of rotational immobilization, while the ACF of water molecules in-
side nanotubes that are slightly narrower or wider shows almost bulk-like
behavior.
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FIGURE 11.23. The distribution of the x- (circles), y- (triangles) and
z-components (rhombi) of the translational velocities of water molecules at steady
state. The solid line corresponds to the Boltzmann–Maxwell distribution. (Cour-
tesy of J. Fischer.)

Velocity Distribution Function

The velocity distribution of water at a given temperature is a fundamental
property, and in bulk it follows the Boltzmann–Maxwell distribution. How-
ever, whether water confined in a nanochannel would still obey the same
velocity distribution is not that obvious. (Lishchuk and Fischer, 2001) stud-
ied the velocity distribution function of water confined in a 2.06 nm wide
slit pore under an external microwave electric field. Figure 11.23 shows the
distribution of the x-, y- and z-components of the velocity of water inside
a 2.06 nm slit pore. It is observed that the velocity distribution obtained
from the simulation agrees very well with the classical Boltzmann–Maxwell
distribution.

11.3.2 Diffusion Transport
One of the motivations to study water behavior at nanoscale is to under-
stand how its transport is influenced by confinement. Since diffusion is
usually the dominant transport mechanism at small scales, the diffusion
of water in nanochannels has been explored in detail in the past. Several
researchers have investigated the diffusion of water inside artificial cylin-
drical nanopores (Allen et al., 1999; Lynden-Bell and Rasaiah, 1996; Zhou
et al., 2003), inside silica nanopores (Rovere and Gallo, 2003; Spohr et al.,
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FIGURE 11.24. Self-diffusion coefficient along the axial direction (z-direction)
of water molecules inside atomic hydrophobic (solid curve, filled circles), LJ hy-
drophobic (dotted curve, filled circles), and hydrophilic (dashed curve, open cir-
cles) pores. The horizontal dash-dot line is the bulk reference value. (Courtesy of
S.-H. Chung.)

1999; Gallo et al., 1999), inside carbon nanotubes (Leo and Maranon, 2003;
Mashl et al., 2003; Paul and Chandra, 2003), and inside slit nanopores
(Brovchenko et al., 2001; Zhang et al., 2002).

(Allen et al., 1999) investigated the diffusion coefficient of water molecules
inside artificial cylindrical pores of various radii and surface properties. Fig-
ure 11.24 shows the variation of the axial diffusion coefficient of water with
the radii of the pore for atomic hydrophobic, LJ hydrophobic, and hy-
drophilic channels (see Section 11.2.1 for details on these channels). The
result indicates that the axial (z-direction) self-diffusion of water molecules
within hydrophobic pores experiences a dramatic fall for channel sizes with
a radius of 3.6 to 4.1 Å. For a pore with a radius of 4.1 Å, the axial diffu-
sion decreases to about 4% of the bulk value. This is mainly caused by the
stable hydrogen-bonding network. As the pore size increases, the diffusion
coefficient of water approaches its bulk value. It was also observed that
the axial diffusion coefficient of water molecules inside a hydrophilic pore
increases monotonically with the increase in the pore radius. The results
also show that inside a small (R < 3.0 Å) or a large (R > 5.0 Å) pore, the
water diffusion in a hydrophilic pore is slower than that in a hydrophobic
pore. This can be explained by the preferred dipole orientation of the water
molecules with the stationary wall molecules.

(Mashl et al., 2003) studied the diffusion of water inside carbon nan-
otubes with different diameters. Figure 11.25 shows snapshots of the system
studied, and Figure 11.26 shows the mean-square displacement and axial
diffusion coefficient of water molecules obtained inside different-sized nan-
otubes. Similar to the studies in (Allen et al., 1999), the water molecules
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FIGURE 11.25. Snapshots from molecular dynamics simulations at 300 K with a
composite image of three typical systems with nanotube size increasing from left
to right. In narrow nanotubes (left), the water adopts a single-file arrangement
with a 1-D hydrogen bonding but becomes more disordered in a fashion similar
to that of bulk water in wider nanotubes (right). Confined within a nanotube of
a “critical” diameter (center), the water spontaneously orders itself into a regular
array with a 2-D hydrogen bonding.

are “immobilized” in a nanotube of 8.6 Å diameter. Panel (b) of Figure
11.25 shows the cross-sectional view of water structure inside the critically
sized 8.6-Å-diameter nanotube. A stable hydrogen-bonding network is ob-
served as expected. This is consistent with the diffusion coefficient results.
Since the simulations were performed at 300 K, these results indicate that
when the water is confined in a critical-diameter pore, it can behave in
an ice-like manner even at room temperature. Such an effect can be very
useful for a number of applications, such as proton conduction in synthetic
ion channels.

11.3.3 Filling and Emptying Kinetics
In nanopores, confinement of the water can induce the so-called drying tran-
sition as a result of the strong hydrogen bonding between water molecules.
This state can cause the water molecules to recede from the nonpolar sur-
face to form a vapor layer separating the bulk phase from the surface (Still-
inger, 1973; Lum et al., 1999; Lum and Luzar, 1997). This water behavior is
important in understanding many biological processes, e.g., ion and water
transport in biological channels where the channel dimension is of order
a few angstroms and the channel surface is usually hydrophobic (Hummer
et al., 2001). Motivated by the design of robust artificial ion and water chan-
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FIGURE 11.26. Water mobility inside nanotubes at 300 K. (a) Mean-square
displacement (MSD) of water traveling along the nanotube axis for various nan-
otubes. (b) Axial diffusion coefficient of water, normalized to bulk (2.69 × 10−5

cm2/s is the bulk value with SPC/E water), derived from panel (a).

nels (see Section 13.2 for more details on artificial ion channels), a number
of researchers have investigated the filling and emptying of water in car-
bon nanotubes (Hummer et al., 2001; Waghe et al., 2002; Berezhkovskii
and Hummer, 2002; Mann and Halls, 2003) and artificial nanopores (Allen
et al., 2002; Beckstein and Sansom, 2003; Allen et al., 2003; Beckstein et al.,
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2001; Kalko et al., 1995).

Water Entry in Hydrophobic Nanopores

Simulations of water conduction through carbon nanotubes (Hummer et al.,
2001) indicate that even though nanotubes are hydrophobic, the channel
has a steady occupancy of water molecules during the course of the simula-
tion (Figure 11.27). Even for a 60-ns simulation (Hummer et al., 2001), the
occupancies are not different. As mentioned in Section 11.2.2, the high oc-
cupancy of water inside the hydrophobic nanotube is mainly caused by the
stable hydrogen bond inside the nanotube. (Hummer et al., 2001) explained
this quantitatively by computing the local excess chemical potential, µex

NT,
defined as the negative free energy of removing a water molecule from the
channel. Such a free energy is not dominated by how strongly bound a
water molecule is on average, but by how populated weakly bound states
are. Even though the binding energy of water molecules inside the nan-
otube is unfavorable compared to bulk water, the binding energy inside the
nanotube is more sharply distributed (see Figure 11.28), and high-energy
states dominating the free energy are less frequently occupied. As a result,
though the water molecules inside the nanotube lose about 2 kcal/mol in
energy, they have a lower excess chemical potential of µex

NT ≈ −6.87± 0.07
kcal/mol, compared to bulk water of µex

NT ≈ −6.05± 0.02 kcal/mol. Water
molecules not only penetrate the nanotube, but they also transport across
the nanotube, and on average, about 17 water molecules pass through the
nanotube per nanosecond (see Figure 11.29). The conduction occurs in
a burst-like manner because of the tight hydrogen-bonding network inside
the nanotube; rupturing the water chain is energetically costly, and so rare.
However, once the rupture of the hydrogen bond occurs, the water chain
moves with little resistance through the nanotube, resulting in a burst of
the water flow.

Filling Mechanism

When the diameter of the nanopore is small enough for a single-file chain
(in a single-file chain the water molecules move as a single chain), the
mechanism of filling the nanopore can be understood as summarized below
(Waghe et al., 2002):

1. Filling of water molecules in a nanopore can occur from either side of
the nanopore, with hydrogens entering first, dipoles oriented outward.

2. Filling of water molecules progresses as a chain from the end; it is
initiated with the orientation remaining the same.

3. Simultaneous filling from both sides is not favorable, because the
dipole orientations at the ends repel each other.
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FIGURE 11.27. Water occupancy: number of water molecules inside the nanotube
as a function of time.

FIGURE 11.28. Water binding energies. a. Probability density pbind(u) of binding
energies u for bulk water and water inside the nanotube. Vertical arrows indicate
average binding energies. Tilted arrows indicate crossover region, in which weakly
bound states are more populated in bulk water. b. ln[pint(u)/pins(u)] for water
inside the nanotube and in bulk TIP3P water (open circles), fitted to β(µex

w − u)
(lines). The vertical distance between the two parallel lines of slope −β gives
the difference in the excess chemical potentials, β(µex

w − µex
NT). (Courtesy of G.

Hummer.)

4. Depending on the material (wall)–oxygen van der Waal’s interaction
forces, the chain can rupture at the ends, causing conduction in bursts
as in carbon nanotubes or stable as in silicon dioxide pores.

5. Filling and emptying occurs mainly by the sequential addition of wa-
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FIGURE 11.29. Water flow through the nanotube. a. Numbering of water
molecules leaving the nanotube at time t that entered the nanotube from the
other side. Individual water conduction events are smoothed with a 1-ns-wide
triangular filter. b. motion (along the tube length) of individual water molecules
during the conduction “burst” at 26.5 ns. (Courtesy of G. Hummer.)

ter to or removal from the single-file water chain inside the nanotube.

Figure 11.30 shows the trajectories of individual water molecules enter-
ing a silicon dioxide nanopore about 8 Å in diameter and 6 nm long as
a function of time. With longer tubes, the dipoles at the ends do not re-
pel each other as much as in a shorter tube, so chains form at both ends.
But one of them becomes dominant, and then filling progresses sequentially
through that chain till the chains meet. Figure 11.31 shows the filling as
distributions of normalized dipole orientations of water molecules with re-
spect to the axis of the tube. Here the behavior of water with respect to
time does not come into the picture, but rather the fact that orientation
remains the same in a chain. The orientations are predominantly either −1
or +1, showing that the direction of entry is along the axis of the tube from
either end.

Sensitivity to Water–Nanotube Interaction Parameters

The simulations performed on different types of nanotubes show that the
water entry is highly sensitive to the interaction of water with the nanotube.
A small reduction of the attraction between the carbon nanotube and the
water changes the hydration of the nanotube dramatically, and a sharp two-
state transition between empty and filled states on a nanosecond time scale
occurs in the nanopores (Waghe et al., 2002; Hummer et al., 2001; Beckstein
et al., 2001). Table 11.4 summarizes the LJ parameters from various papers,
all agreeing the fact that above a particular value of σoxygen−wall, the tube



442 11. Water in Nanochannels

0 100 200 300 400 500 600 700 800 900 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (ps)

N
or

m
al

is
ed

 a
xi

al
 d

is
ta

nc
e 

al
on

g 
th

e 
tu

be

FIGURE 11.30. Trajectories of individual water molecules in a nanopore in a
silicon dioxide membrane 8 Å in diameter and 6 nm long.

is empty.

Sensitivity to Nanotube Radius and Partial Charges on the Wall

(Allen et al., 2003) studied the filling and emptying in an artificial ion
channel with varying diameter and different permittivities of the mem-
brane surrounding the channel. They found that the permeation of a pore
of fixed length is very sensitive to the pore radius. For very narrow pores
(R < 0.55 nm in their simulations), water molecules are excluded from
the pore. As the pore radius increases to a threshold value (R = 0.60 nm
when the permittivities of the membrane is 1.0), intermittent permeation
occurs, and the pore fluctuates between the “filled” and “empty” states
stochastically. Further increase of the pore radius (e.g., R > 0.65 nm) then
leads to the complete filling of the pore. The threshold radius is sensi-
tive to the permittivity of the channel membrane, and using a polarizable
membrane results in a decreased threshold radius for the intermittent per-
meation. In contrast to what was reported for a small carbon nanotube,
where the water filled in the nanotube forms a one-dimensional chain, the
authors found that the filled channel contains a much larger number of
water molecules, and these water molecules exhibit a bulk-like behavior.
Such a difference is mainly caused by the different properties of the pore
surface. The simulations also reveal that the filling process is preceded by
formation of a percolating chain of water molecules through the nanopore
(see Figure 11.32), and the channel filling seems to “nucleate” around a
percolating cluster. The proposed filling mechanism can be understood by
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FIGURE 11.31. Normalized dipole of water molecules inside the tube projected
onto the tube axis as a function of the position z of the water–oxygen atom along
the tube axis. Each point corresponds to one water molecule in a saved configu-
ration. The results are separated for N = 1 to 5 water molecules inside the tube
(top to bottom). It was observed that for a single molecule in a tube, the water
dipole moments point inward preferentially. With subsequent molecules enter-
ing into the tube, this orientational preference is maintained, such that the chain
grows with all dipoles pointing inward. As a consequence, the dipolar orientations
of water chains entering from the two ends simultaneously are not compatible,
thus disfavoring simultaneous filling from both sides. (Courtesy of G. Hummer.)

analyzing Figure 11.33, where the average number of percolating chains in
the channel is plotted as a function of the number of water molecules n
inside the channel. Clearly, when n is small, there is never a percolating
cluster, and when n is large enough, there is almost always one present.
(Beckstein et al., 2001) show that the filling can be enhanced by placing
dipoles along the walls of the nanotube at diameters at which water cannot
enter the tube.
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FIGURE 11.32. Snapshot of a “percolating cluster” from a biased simulation run
with a pore radius of 0.6 nm and length of 0.8 nm. Only the water molecules near
the pore are shown. The positions of the confining walls are indicated. (Courtesy
of S. Melchionna.)

FIGURE 11.33. Probability of finding an unbroken chain of water molecules
through the pore as a function of the water molecules inside the pore shown in
Figure 11.32. The dashed line shows a scaled grand potential profile. (Courtesy
of S. Melchionna.)
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TABLE 11.4. Dependence of the full and empty states of water on the
Lennard–Jones interaction parameters.

Summary

In summary, from the various results presented in this chapter, we note that
water in confined nanochannels can exhibit very interesting and different
physical characteristics compared to that of bulk water. The properties of
water in confined nanochannels can depend strongly on the type of surface
(hydrophilic versus hydrophobic channel wall structure) and on whether
the nanopore surface is charged. It is important to properly understand
the merits and limitations of the various water models before they can be
used for nanotechnology design.

Nanotube material Tube Diame-
ter (Å)

Tube Length
(Å)

σoxygen−wall
(Å)

Fill/Empty
States

Artificial Mem-
brane (Beckstein
et al., 2001)

9.0 8.0 3.42 Both States

Carbon nanotube
(Waghe et al.,
2002)

8.1 27.0 3.27 Full

Carbon nanotube
(Waghe et al.,
2002)

8.1 27.0 3.41 Both States

Carbon nanotube
(Waghe et al.,
2002)

8.1 27.0 3.43 Empty

Carbon nanotube
(Hummer et al.,
2001)

8.1 13.4 3.23 Full

Artificial Slab 9.1 15.1 3.49 Both States
Silicon Dioxide 10.0 60.0 3.27(Si), 3.16

(O)
Full



12
Electroosmotic Flow in Nanochannels

In this chapter we discuss fundamental concepts and simulation of elec-
troosmotic flow in nanochannels. The basic continuum theory was pre-
sented in Chapter 7, so here the limitations of the continuum theory for
electroosmotic flow in nanochannels are identified by presenting a detailed
comparison between continuum and MD simulations. Specifically, the sig-
nificance of the finite size of the ions and the discrete nature of the solvent
molecules is highlighted. A slip boundary condition that can be used in the
hydrodynamic theory for nanochannel electroosmotic flows is presented.
Finally, the physical mechanisms that lead to charge inversion and corre-
sponding flow reversal phenomena in nanochannel electroosmotic flows are
discussed.

12.1 The Need for Atomistic Simulation

A fundamental issue that needs to be addressed is whether continuum the-
ories based on the Poisson–Boltzmann and the Navier–Stokes equations—
which have been popularly used to understand electroosmotic flow in micron-
scale channels—can be used to describe electroosmotic flow in nanometer-
wide channels. For example, in the derivation of the classical Poisson–
Boltzmann equation, the ions are assumed to be infinitesimal; the inter-
actions between the ions, ion–water, and ion–wall are all considered in
a mean-field fashion, and the molecular aspects of these interactions are
neglected. Similarly, the continuum flow theory based on Stokes or Navier–
Stokes equations assumes that the state variables (e.g., density) do not
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FIGURE 12.1. Comparison of the theoretical flowrates with experimental results.
1 x PBS, 0.1 x PBS and 0.01 x PBS refer to original PBS, 10-fold diluted PBS,
and 100-fold diluted PBS, respectively. (Courtesy of A.T. Conlisk.)

vary significantly over intermolecular distances and that the shear stress
can be related to the local strain rate by a linear constitutive relation-
ship. However, as discussed in Chapter 10, significant fluctuations in fluid
density have been observed close to the surface in molecular dynamics
simulations (Travis and Gubbins, 2000) as well as in experiments (Cheng
et al., 2001). Hence, it is important to understand in detail the validity
of continuum theory for electroosmotic flow in nanochannels. Conlisk and
coworkers (Zheng et al., 2003) presented a comparison between experimen-
tal and theoretical flow rates for electroosmotic flow in nanochannels with
critical dimension (typically the width or the height) varying from 4 nm to
27 nm. This comparison is shown in Figure 12.1. The ionic solution consid-
ered is phosphate-buffered saline (PBS), which consists of Na+, Cl−, K+,
H2PO−

4 , and HPO2−
4 . The pH value of PBS is 7.4. The theoretical results

are obtained using the classical continuum theory for electroosomotic flow.
The experimental and the theoretical flow rates agree very well except for
the 4-nm case. While it is difficult to exactly pin-point the reason for the
discrepancy, noncontinuum effects, such as the finite size of the ions, can
be a big part of the discrepancy, since they play an important role when
the critical channel dimension is just a few molecular diameters.

To understand the limitations and the various assumptions built into the
continuum theory, we present detailed comparisons between continuum and
MD simulations. Continuum modeling of electroosmotic flow is discussed
in detail in Chapter 7. In this section, however, a simplified form of the
equations presented in Chapter 7 is used to explain electroosmotic flow in
nanochannels. Specifically, we focus on electroosmotic transport in straight
flat channels; the channel width is in the z-direction, and the flow is along
the x-direction; see Figure 12.2. The assumptions are:
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FIGURE 12.2. A schematic of the channel system under investigation. The two
channel walls are symmetrical with respect to the channel center line. Each wall
is made up of four layers of silicon atoms. The channel width W is defined as
the distance between the two innermost wall layers. The dark dots denote water
molecules, and the shaded circles denote either Cl− or Na+ ions. For the co-
ordinate system chosen, z = 0 corresponds to the central plane of the channel
system.

1. Only counterions are present in the channel, and

2. The flow is fully developed, and there is no externally applied pressure
gradient.

Under these assumptions, the mathematical model presented in Chapter 7
can be simplified as

∂2ψ(z)
∂z2 = −q

ε
z̃c0e

−qz̃ψ(z)/kBT (12.1a)

d

dz

(
µ

du(z)
dz

)
+ qz̃c(z)Eext = 0, (12.1b)

where ψ(z) is the potential induced by the charges on the channel wall and
the ions, q is the electron charge (i.e., 1.6 × 10−19 C), z̃ is the valency of the
counterion, c0 is the counterion concentration at the channel center, where
the potential is assumed to be zero (note that is true when the double layers
do not overlap), ε is the permittivity of the fluid in the channel, kB is the
Boltzmann constant, T is the temperature, u(z) is the velocity of the fluid,
µ is the dynamic viscosity of the fluid, c(z) is the counterion concentration
across the channel, and Eext is the external electric field applied along the
channel.
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The boundary conditions for equation (12.1b) and equation (12.1b) are

dψ(z)
dz

∣∣∣∣
z=±h/2

= ±σs

ε
, (12.2a)

u(z)|z=±h/2 = 0, (12.2b)

where z = ±h/2 corresponds to the location of the lower and the upper
channel walls and σs is the charge density on the channel walls. Analytical
solutions for equation (12.1b) and equation (12.1b) are available for the
boundary conditions given in equations (12.2b) and (12.2b) (Israelachvili,
1992a; Eikerling and Kornyshev, 2001). However, to use the analytical so-
lution, one needs to first solve a transcendental equation numerically, so
equations (12.1b) and (12.1b) are typically solved numerically. The rela-
tive permittivity of water is typically taken as 81, since this is the reported
value for SPC/E water at 300 K (van der Spoel et al., 1998). The dynamic
viscosity of water is taken as 0.743 mPa·s in the continuum simulations,
since this gives the best match to the velocity profile in the central portion
of the channel.

Nonequilibrium molecular dynamics (NEMD) simulations, as described
in Chapter 16, were performed for systems consisting of a slab of water
molecules and ions sandwiched by two channel walls. Figure 12.2 shows
a schematic diagram of the system under investigation. The two channel
walls are symmetrical with respect to the channel center line. Each wall
is made up of four layers of silicon atoms oriented in the 〈111〉 direction.
Typical lateral dimensions of the channel wall are 4.66 nm × 4.43 nm,
which corresponds to 161 silicon atoms for each layer of the channel wall.
The channel width is varied from 0.95 nm to 10.0 nm in the simulations.
For the simulation of electroosmotic flow, the outermost wall layers (i.e.,
layer I of the lower channel wall and its counterpart in the upper channel
wall) are partially charged. We assume that the charges are uniformly dis-
tributed among the wall atoms; i.e., wall atoms are partially charged. The
wall atoms are fixed to their original positions during the simulation. The
water is modeled by using the SPC/E model (Berendsen et al., 1987) (see
Chapter 16 for details). We consider two types of interaction potentials,
i.e., Lennard–Jones and Coulomb potentials. The Lennard–Jones potential
is considered for every atom pair (except the atom pairs that have a hy-
drogen atom and the Si–Si pair). The parameters for the Lennard–Jones
potential are taken from the Gromacs forcefield (Spoel et al., 2001) and are
summarized in Table 12.1. The Coulomb potential is considered for every
charged atom pair.

The temperature of fluid is regulated to 300 K by using a Berendsen ther-
mostat with a time constant of 0.1 ps (see Section 16.1.3 on thermostats).
When setting up the simulation, the molecules were randomly positioned.
An energy minimization was performed to remove the local contacts. To
start the simulation, an initial velocity sampled from a Maxwellian distribu-
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TABLE 12.1. Parameters for the Lennard–Jones potential U(r) = C12
r12 − C6

r6 .

Interaction C6 (kJ · nm6/mol)) C12 (kJ · nm12/mol) σ (nm)†
O-O 0.2617 × 10−2 0.2633 × 10−5 0.317
O-Si 0.6211 × 10−2 0.7644 × 10−5 0.327
O-Cl 0.6011 × 10−2 0.1678 × 10−4 0.375
O-Na 0.4343 × 10−3 0.2352 × 10−6 0.286
Cl-Cl 0.1380 × 10−1 0.1069 × 10−3 0.445
Cl-Si 0.1426 × 10−1 0.4871 × 10−4 0.388
Cl-Na 0.9974 × 10−3 0.1499 × 10−5 0.339
Na-Na 0.7206 × 10−4 0.2101 × 10−7 0.257
Na-Si 0.1031 × 10−2 0.6829 × 10−6 0.295

† σ is the separation distance between atoms where the potential energy is zero.

tion at 300 K was assigned to each molecule in the system. The system was
simulated for a time period of 1 ns to 2 ns, so that the system has reached
steady state. A production run of 1 ns to 7 ns (depending on the system to
be simulated) was performed to gather the statistics of various quantities,
e.g., streaming velocity. The density and velocity profile across the channel
were computed using the binning method as described in Chapter 16. The
flow is driven by an external electric field Eext, applied along the channel
in the x-direction. Because of the extremely high thermal noise, a strong
electric field is required so that the fluid velocity can be retrieved with
reasonable accuracy. Note that the strong electric field results in a much
larger velocity than what is practically achievable in nanochannels. The
external electric field strength used ranges from 0.38 V/nm to 0.55 V/nm.
Table 12.2 summarizes the various simulations investigated in this section.

TABLE 12.2. Summary of the simulations performed.

Case # Channel σs # Water # Ions Eext Simulation
width ( C/m2) molecules (V/nm) time
(nm) (ns)

1 3.49 +0.120 2246 32 (Cl−) −0.55 5.1
2 3.49 +0.320 2075 85 (Cl−) −0.55 2.5
3 3.49 −0.120 2246 32 (Na+) +0.55 2.8
4 2.22 +0.120 1288 32 (Cl−) −0.46 6.3
5 0.95 +0.120 405 32 (Cl−) −0.55 9.4
6 10.00 +0.124 6606 32 (Cl−) −0.38 4.8
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12.2 Ion Concentrations

Figure 12.3 (a) shows the concentration profile of Cl− ions and water across
the channel for case 1, where the channel width is 3.49 nm and the wall
charge density is +0.120 C/m2. The ion distribution obtained from the
Poisson–Boltzmann equation is also shown for comparison. To compute the
ion distribution using the Poisson–Boltzmann equation, we have assumed
that the position of the wall coincides with the position of the first peak of
Cl− ion concentration obtained from MD simulation. The MD simulation
result deviates from the Poisson-Boltzmann equation prediction in several
aspects:

1. There is no Cl− ion within 0.24 nm from the channel wall,

2. The peak concentration of Cl− ions occurs at a position about 0.35
nm away from the channel wall, and the peak value is about 88%
higher compared to the Poisson–Boltzmann equation prediction, and

3. The ion concentration from MD does not decrease monotonically to
its value in the channel center. In particular, there is a plateau located
at about 0.49 nm to 0.60 nm away from the channel wall.

These deviations can be understood by looking at the molecular aspects
of the ions, wall atoms, and the water molecules. First, since a bare Cl−

ion has an effective radius of about 0.18 nm (Israelachvili, 1992a), a Cl−

ion cannot approach too close to the channel wall. Second, the ion and
the wall interact with each other via the Lennard-Jones potential in the
MD simulation. Such an interaction can contribute to the attraction of ions
toward the wall. Figure 12.3 (b) shows the potential energy of a Cl− ion
due to the Lennard–Jones potential between the Cl− ion and the channel
wall. In this calculation, we have assumed that the ion can access any
position in the xy-plane with equal probability. Figure 12.3 (b) indicates
that the potential energy due to the ion–wall Lennard–Jones interaction is
about −1.8 kB T (T = 300 K) at a position about 0.39 nm away from the
channel wall. Since a location with lower potential energy is more favorable
for the ions, the potential energy valley can attract more ions toward it.
The second deviation is primarily caused by this effect. Third, the molecular
interaction between the ion and the water molecules also plays an important
role in determining the ion concentration. Figure 12.3 (a) shows that the
water concentration is not uniform across the channel, and a significant
layering of water is observed near the channel wall. Such a layering effect
is well known and has been already discussed in Chapter 10. Since the
water molecules are less closely packed near the density “valley” than in
the bulk, the energy required to insert a finite-sized ion into the density
“valley” is lower compared to inserting an ion in the bulk. Hence, more ions
are attracted toward the density “valley” of water. In fact, a very weak peak
of Cl− ions is observed near the second density valley of water. From these
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FIGURE 12.3. (a) Cl− ion and water concentration across the channel for case
1 (W = 3.49 nm, σs = +0.120 C/m2). The channel center is located at z =
0 nm, and the position of water molecules is computed as the center-of-mass
position. (b) Potential energy of Cl− ions over the channel wall computed using
Lennard–Jones potential. It is assumed that the ion can access any position in
the xy-plane with equal probability.

results we can infer that the molecular interactions between ion–wall and
ion–water play an important role in determining the distribution of ions
near the channel wall.

Figure 12.4 shows the concentration profile of Cl− ions across the channel
for case 2, where the channel width is 3.49 nm and the charge density on the
channel wall is +0.320 C/m2. Compared to the previous case, the charge
density on the channel wall is very high (such a high charge density is
realistic in practical systems (Poppe et al., 1996)). The Poisson–Boltzmann
equation again underestimates the ion concentration near the channel wall.
A clear second peak of Cl− concentration is observed at a position about
0.45 nm away from the channel wall, whereas such a peak was very weak
in case 1. The second peak is primarily caused by the fact that the ions
are very densely packed (as indicated by the high concentration) near the
channel wall, and the strong electrostatic repulsion between the ions makes
it difficult to accommodate more ions in the region within 0.41 nm from
the channel wall. As a result, a second peak is observed. Since the ions are
more densely packed in the near wall region in this case compared to case
1 (in fact, the average shortest distance between two Cl− ions within 0.41
nm from the channel wall is found to be 0.54 nm for this case, and 0.69
nm for case 1), the electrostatic repulsion between ions is much stronger
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FIGURE 12.4. Cl− ion and water concentration profile across the channel for
case 2 (W = 3.49 nm, σs = +0.320 C/m2).

compared to case 1; hence, the second concentration peak is more distinct
in this case.

The water concentration profile in Figure 12.4 shows two interesting
features. First, compared to the previous case (see Figure 12.3 (a)), the
first concentration peak of water is about 33% higher. Second, there is
an additional water concentration peak located at about 0.44 nm away
from the channel wall, and the second concentration peak is very close
to the second peak of the Cl− concentration. This result indicates that
under high surface charge density, the high concentration of ions near the
channel wall can change the concentration of water significantly. Such a
change can be partly explained by the hydration of the ions. Typically
there will be several water molecules bound to each ion due to the strong
charge–dipole interaction between the ion and water (Israelachvili, 1992a).
Therefore, a region with very high ion concentration tends to have a high
water concentration region near it.

Figure 12.5 shows the Na+ ion concentration profile across the channel
for case 3, where the channel width is 3.49 nm and the charge density on
the channel wall is −0.120 C/m2. The only difference from the first case is
that the wall is oppositely charged and the Cl− ions are replaced by Na+

ions. We observe that (1) the first Na+ concentration peak near the wall
is about 37% lower compared to the Cl− concentration peak in the first
case, (2) the position of the first peak is located about 0.42 nm away from
the channel wall, i.e., about 0.07 nm farther away from the channel wall
compared to the first case, where the first Cl− ion peak is located at 0.35
nm away from the channel wall, and (3) the second Na+ ion concentration
peak is much more distinct compared to case 1. The first ion concentration
peak is lower in this case because the attractive interaction between the
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FIGURE 12.5. Na+ ion and water concentration across the channel for case 3 (W
= 3.49 nm, σs = −0.120 C/m2).

Na+ ion and the Si wall atoms—which contributes significantly to the high
ion concentration near the channel wall—is much weaker compared to the
Cl− ion concentration with the Si wall atoms (see Table 12.1). The second
observation can be explained by the fact that though a Na+ ion (bare
radius about 0.095 nm) is smaller compared to the Cl− ion, its hydrated
radius (0.36 nm) is bigger compared to the Cl− ion (0.33 nm), since a Na+

ion can attract more water molecules around it (the hydration number of
a Na+ ion is about 4 to 5, while the hydration number of Cl− ion is about
1).

The second Na+ concentration peak is primarily caused by the ion–water
interactions. Figure 12.5 indicates that the second ion concentration peak
is close to the second concentration valley of water. As explained in case 1,
such a water concentration valley is energetically more favorable than the
bulk for ions. Since the bare ion radius of Na+ is much smaller than that of
the Cl− ion, the Na+ ion can fit into the water concentration valley more
easily than the Cl− ion. Therefore, the second concentration peak of Na+

ions is more distinct compared to the Cl− ion case. One consequence of the
higher second peak of Na+ ions is that the water concentration valley near
the second Na+ peak is shallower compared to that observed in the Cl− ion
case (case 1). This is because the Na+ ion has a higher hydration number.
Thus, it can bring more water molecules toward the water concentration
valley than the Cl− ion.

12.2.1 Modified Poisson–Boltzmann Equation
From the results presented above, we can conclude that the wall–ion, water–
ion, and ion–ion interactions are important factors influencing the ion dis-
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tribution in the channel and that the ion distribution can significantly
influence the water concentration in the channel. The classical Poisson–
Boltzmann equation considers these interactions only in a mean-field fash-
ion and fails to account for the molecular nature of the ion, water, and
the wall (e.g., water is modeled as a continuum with a constant permit-
tivity). In this section, we present a modified Poisson–Boltzmann equation
that takes into account the wall–ion, water–ion, and ion–ion interactions
in a lumped manner. The Poisson–Boltzmann equation can be modified
to incorporate various effects that were neglected in the classical Poisson-
Boltzmann equation, e.g., the finite ion size effects (Borukhov et al., 2000),
nonelectrostatic interactions (Lue et al., 1999), dependence of the permit-
tivity of the solution on the field strength (Woelki and Kohler, 2000), wall
effects (Adamczyk and Warszynski, 1996) and discrete solvent effects (Bu-
rak and Andelman, 2001). Many of these modifications were based on sta-
tistical mechanics principles, and by incorporating all these effects into
the Poisson–Boltzmann equation, it is possible to predict the ion distri-
bution in the channel with good accuracy. However, due to the extremely
complicated nature of the ion–wall, ion–water, and ion–ion interactions, a
number of simplifications need to be made in the derivation of the mod-
ified Poisson–Boltzmann equation, and the calculation of the new terms
can still be very difficult in many cases. Thus, though these existing mod-
ifications to the Poisson–Boltzmann equation can aid in the interpretation
of various experimental observations, the development of a comprehensive,
easy-to-calibrate, and accurate model is still an active area of research.

Here we introduce the concept of electrochemical potential correction to
account for the interactions neglected in the classical Poisson–Boltzmann
equation. At thermodynamic equilibrium, the electrochemical potential of
an ion should be constant in the entire system, i.e.,

µc
i = z̃iqψ + kBT log ci + φex,i = kBT log c0,i, (12.3)

where z̃i is the valency of ion i, ψ is the electric potential in the system, ci

is the ion concentration, φex,i is the electrochemical potential correction of
ion i, and c0,i is the concentration of ion i when the electric potential and
the electrochemical potential correction terms are zero. Based on equation
(12.3), the ion concentration can be expressed as

ci = c0,i e
− z̃iqψ

kBT e
− φex,i

kBT . (12.4)

Substituting equation (12.4) into the Poisson equation (12.5b), we have

∇2ψ = −q

ε

N∑
i=1

z̃ici, (12.5a)

∇2ψ = −q

ε

N∑
i=1

z̃ic0,i e
− z̃iqψ

kBT e
− φex,i

kBT , (12.5b)



12.3 Velocity Profiles 457

where N is the total number of ionic species, which is equal to 1 in all our
simulations presented in this section.

The electrochemical potential correction term accounts for the deviation
of the ion–water and ion–wall molecular interactions from their values at
the channel center. Since the wall–ion interaction via the Lennard–Jones
potential is short-ranged, and the water-ion interaction would not devi-
ate significantly in the entire system except at positions very close to the
channel wall where the water concentration is not constant, the electro-
chemical potential correction term is nonzero only at positions close to the
channel wall. The precise contribution of ion–water and ion–wall molecular
interactions to the electrochemical potential correction term depends on
the specific case under study. For example, for case 1, where the ion–wall
(Cl− −Si) interaction is strong, the contribution of the ion–wall molecular
interactions to the electrochemical potential correction term is significant,
whereas for case 3 the contribution of ion-wall (Na+ −Si) molecular inter-
actions will be minor.

In principle, one can calculate φex provided the wall–ion, water–ion, and
ion–ion interactions can be computed explicitly. However, such a calcula-
tion, if possible, is very difficult. For example, to account for the molecular
nature of water, the charge–dipole interaction between water and the ion
as well as other molecular interactions (e.g., the van der Waals interaction
as included in the Lennard–Jones potential) will need to be considered ex-
plicitly. In addition, since the water concentration profile in the channel is
related to the ion concentration profile (as demonstrated by the correlation
between the second peak of the ion concentration with the water concen-
tration valley in Figures 12.3 (a), 12.4, and 12.5), the concentration profiles
of water and the ion must be computed self-consistently. In Section 16.3,
we describe a multiscale approach to computing the electrochemical poten-
tial correction and to computing the ion concentrations using the modified
Poisson–Boltzmann equation.

12.3 Velocity Profiles

The comparison of velocity profiles obtained from continuum and MD sim-
ulations is presented in this section. Figure 12.6 shows the velocity profile
across the channel for case 1, where the channel width is 3.49 nm. The ve-
locity profile based on the continuum flow theory, calculated by substitut-
ing the ion concentration obtained from the MD simulation into equation
(12.1b) and using the boundary condition specified by equation (12.2b),
is also shown for comparison. Figure 12.6 shows that the continuum flow
theory prediction using a constant viscosity of 0.743 mPa·s overestimates
the velocity in the entire channel. This is because the continuum calcula-
tion fails to take into account the fact that the viscosity near the channel
wall is much higher than its bulk value. It is reasonable to assume (Freund,
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FIGURE 12.6. Comparison of water velocity profile across the channel for case 1
(W = 3.49 nm, σs = +0.120 C/m2) as predicted by the MD simulation and by
the continuum flow theory.

2002) that the viscosity of water increases dramatically in the near wall
region. Such a dramatic increase in viscosity seems to be related to the
high electric field strength (Hunter, 1981), layering of the fluid molecules
(Lyklema et al., 1998), and the high concentration of ions near the channel
wall. However, a comprehensive theory accounting for all the effects is not
yet available.

The question of whether the continuum flow theory based on a constant
viscosity can predict the flow behavior in the central part of the channel is
an interesting one. We observe that if the predicted velocity is shifted down
by about 22.4 m/s, the continuum prediction matches the MD velocity at
a distance δ away from the channel wall; i.e., the continuum prediction
matches the MD simulation result very well in the central portion of the
channel. This is equivalent to saying that if the velocity at a position δ away
from the channel wall is given as the boundary condition to the Stokes equa-
tion (12.1b), then the continuum flow theory based on a constant viscosity
can still be used to predict the velocity in the central part of the channel.
Figure 12.6 also indicates that the no-slip boundary condition is applicable
to the case studied. However, the no-slip plane is not located at the center
of mass of the innermost layer of the channel walls (i.e., layer I in Fig-
ure 12.2), but is located at approximately 0.14 nm from the channel wall,
where the water concentration is almost zero. In Section 16.3, we describe
a multiscale approach that can be used to calculate the velocity profile in
the entire channel.

Comparison of velocity obtained from MD simulation and continuum
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+0.124 C/m2). The negative velocity close to the channel wall is statistical noise.

flow theory for case 4, where the channel width is 2.22 nm, also indicates
that though the continuum flow theory based on a constant viscosity over-
estimates the velocity in the entire channel, it can be used to study the
flow behavior in the central part of the channel, provided that the velocity
at a position δ away from the channel wall is given. It is also observed that
the no-slip plane is located at approximately 0.14 nm from the channel
wall. This is similar to what (Travis and Gubbins, 2000) had observed for
Poiseuille flow of Lennard–Jones atoms in various channel widths where
the no-slip plane is located at the position closest to the channel wall that
a fluid atom can approach and is independent of the channel width.

Figure 12.7 shows the velocity profile of water across the channel for
case 5, where the channel width is 0.95 nm and the surface charge density
is 0.124 C/m2. The characteristics of the velocity profile are significantly
different from those of case 1 (channel width: 3.49 nm) and case 4 (channel
width: 2.22 nm). Specifically:

1. The strain rate du/dy goes to zero at |z| ≈ 0.09 nm and |z| ≈ 0.14
nm, and

2. The velocity at |z| ≈ 0.14 nm is higher than the velocity at |z| ≈ 0.09
nm, and the velocity decreases from |z| ≈ 0.14 nm to |z| ≈ 0.09 nm.
Similar behavior was also observed by (Travis and Gubbins, 2000)
and (Travis et al., 1997) for Poiseuille flow of Lennard–Jones atoms
when the channel width approaches 4 to 5.1 times the diameter of
the fluid molecules.

This behavior suggests that the continuum flow theory is not valid for fluid
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flow in such narrow channels. Specifically, the velocity profile shown in
Figure 12.7 indicates that the shear stress cannot be related to the strain
rate by a local, linear constitutive relationship. The shear stress across the
channel can be computed by

τzx(z) =
∫ z

0
c(z)z̃qEext dz, (12.6)

where z = 0 is the middle plane of the channel, c(z) is the ion concentration,
and Eext is the external electric field along the channel length (x-direction).
Figure 12.8 is a plot of the shear viscosity calculated by

µ(z) =
τzx(z)

du/dz|z . (12.7)

Figure 12.8 indicates that the shear viscosity, computed by assuming a
local, linear constitutive relationship between shear stress and strain rate,
diverges at z ≈ ±0.14 nm and z ≈ ±0.09 nm, and becomes negative in
the region 0.09 nm < |z| < 0.14 nm. These unphysical results indicate that
the continuum flow theory, which assumes that the shear stress can be
related to the strain rate by a local constitutive relationship, is not valid
for electroosmotic flow in a 0.95 nm wide channel.
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12.4 Slip Condition

Marry and collaborators have presented an approach to modeling nanometer-
scale electroosmotic flows with slip conditions on the channel walls (Marry
et al., 2003). Starting from the Navier–Stokes equation given in Section 12.1,
the velocity in the x-direction is given by

u(z)
Eext

= −
∫∫

Fe(z) dz dz

µEext
+ a + bz,

where Fe is the force acting on the solution due to the external electrical
field (Eext), given by Fe = c(z)qEext. If the origin of the z-axis is chosen
to be the middle of the channel (along the width direction), the symmetry
of the system results in the relation

u(z)
Eext

= −
∫ z

−W/2

∫ z

0 Fe(z) dz dz

µEext
+ a (12.8)

In the above equation, W is the channel width. The value of a depends
on the boundary conditions. In the classical Smoluchowski treatment of
electroosmosis (see Chapter 7), the velocity is zero at the surface and a = 0.
Furthermore, if we consider the Poisson–Boltzmann equation to compute
the concentration profiles, then we get

u(z)
Eext

=
q

2πµLB
ln

cos(αz)
cos(αW/2)

,

where LB = q2/4πε0εrkBT , α is given by α tan(αW/2) = 2πLBσs/q, and
σs is the opposite of the surface charge density. As discussed in the previous
section, the above expression can be in large error from MD simulations.

A slip boundary condition was presented by (Marry et al., 2003) starting
from the work of (Bocquet and Barrat, 1993) and (Bocquet and Barrat,
1994). The component of the hydrodynamic velocity parallel to the interface
u(z) is assumed to be proportional to the perpendicular derivative, namely,

∂u(z0)
∂z

=
u(z0)

δ
. (12.9)

The no-slip boundary condition is recovered if the slip length δ satisfies
δ = 0. Here z0 is the hydrodynamic position of the interface, δ and z0 can
be obtained from the microscopic Kubo relations (Kubo et al., 1991):

µ

δ
=

1
SkBT

∫ +∞

0
〈Fx(t)Fx(0)〉 dt, (12.10)

where Fx is the microscopic friction exerted by the wall on the fluid, and
S is the interface area. The position of the fluid–wall interface is given by
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z0 =
δ

SkBTµ

∫ +∞

0
〈Fx(t)σxz(0)〉 dt, (12.11)

with σxz the xz component of the microscopic stress tensor.
By introducing the above slip boundary condition, we get the slip solu-

tion of the Navier–Stokes equations. The electroosmotic profile is given by
equation (12.8) with

a =
1

µEext

(∫ z0

−W/2

∫ z

0
Fe(z) dz dz − δ

∫ z0

0
Fe(z) dz

)
. (12.12)

Note that the slip boundary condition shifts the electroosmotic profiles by
adding a constant a that depends on δ and z0. If z0 is close to the channel
walls, it does not influence a significantly. Assuming that z0 ≈ −W/2,
which is a reasonable approximation, we get

a =
δ

µEext

∫ W/2

0
Fe(z) dz. (12.13)

The expression in (12.13) implies that the slip boundary condition increases
the electroosmotic flow. Using the expression for the force Fe (and an ana-
lytical solution for the concentration obtained from the Poisson–Boltzmann
equation, c(z) = 1

2πLB

α2

cos2(αz) ) in equation (12.13), we get

a =
δ

µ
σs.

The calculation of the slip parameters from the Kubo formula (12.10) and
(12.11) cannot be performed accurately from MD simulations. For the sake
of simplicity, (Marry et al., 2003) have computed the slip parameters from
the electroosmotic profile itself. Since the hydrodynamic limit holds only for
large channel widths, in this limit, we can assume that δ and z0 do not vary
a lot and can be taken as constant. Furthermore, we can also assume that
z0 is equal to −W/2. For the largest channel width shown in Figure 12.9,
Marry and colleagues have estimated the slip length to be δ = 6 Å. Us-
ing this slip length in equation (12.13) and using the Poisson–Boltzmann
equation for the concentration profile results in the electroosmotic profile
shown by the solid curve in Figure 12.9. The agreement with the macro-
scopic model is excellent for the three simulated channel widths shown in
Figure 12.9. The influence of the hydrodynamic boundary condition can be
significant even for large channel widths. As shown in Figure 12.10, even
for a channel width of 100 Å, the slip boundary condition correction is not
negligible.
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FIGURE 12.9. Comparison of electroosmotic velocity profiles ((u(z)/Eext)) ob-
tained for different channel widths; MD results are shown by solid circles (number
of solvent molecules is 200), open circles (number of solvent molecules is 400),
and filled triangles (number of solvent molecules is 600); PB/NS results with
no-slip boundary conditions are shown by the dotted lines; PB/NS results with
slip boundary conditions (δ = 6 Å, z0 = −W/2) are shown by the solid lines; the
vertical dashed lines denote the position of the channel walls. (PB/NS refers to
Poisson–Boltzmann/Navier–Stokes equations.) (Courtesy of P. Turq.)
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FIGURE 12.10. Mean electroosmotic velocity (u/Eext) as a function of the chan-
nel width. MD data are shown as diamonds; PB/NS equation with no-slip bound-
ary conditions is shown as a dotted line; PB/NS with slip boundary conditions
are shown by the solid line; L in this plot is the channel width, and the error
bars are for the MD data. (PB/NS refers to Poisson–Boltzmann/Navier–Stokes
equations.) (Courtesy of P. Turq.)

12.5 Charge Inversion and Flow Reversal

Charge inversion refers to the phenomenon that the coion charge density
exceeds the counterion charge density in a certain region of the electric
double layer (EDL) (Qiao and Aluru, 2004). Consider again the channel
system shown in Figure 12.2 with NaCl solution sandwiched between the
two channel walls. A total charge of −70e is evenly distributed among the
atoms of the innermost wall layers, giving an average surface charge density
(σs) of −0.285 C/m2. Such a charge density can be considered high, but it
is not impractical, since the typical charge density of a fully ionized surface
can exceed 0.3 C/m2 in magnitude. The system contains 108 Na+ ions,
38 Cl− ions, and 2144 water molecules. MD simulations were performed
using the parameters and models discussed in Section 12.1. Starting from a
random configuration, the system was simulated for 2.0 ns to reach steady
state, followed by a 15-ns production run. The flow was driven by an elec-
tric field, Eext, applied in the x-direction. Because of the extremely high
thermal noise, a strong electric field (Eext = 0.55 V/nm) is necessary so
that the fluid velocity can be retrieved with reasonable accuracy. A strong
external electric field can induce noticeable water alignment along the field
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direction, which can influence the ion distribution. To understand how this
influences the charge inversion results presented here, simulations were also
performed with zero external field. The ion distribution was found to be
only slightly different from what is reported here, and the charge inversion
is still observed.

To analyze the ion concentrations across the channel, the z-direction
mean force acting on the ions is computed in the lower portion of the
channel. The mean force fi(z) acting on an ion i, located at position z, is
computed as the total force on ion i from all other particles in the system
averaged over all configurations. The force fi(z) is considered negative if it
drives the ion toward the lower channel wall, and positive otherwise. The
potential of mean force (PMF), denoted by wi(z), for an ion i at a position
z is computed by

wi(z) =
∫ rf

z

fi(z′) dz′,

where rf is the reference plane (taken as the channel center plane here)
at which the PMF is taken as zero. Within the limit of classical statistical
mechanics, the concentration of an ion i at a position z, denoted by ci(z),
is related to the PMF by the Boltzmann distribution

ci(z) = c
rf

i exp(−wi(z)/kBT ),

where c
rf

i , kB, and T are the concentration of ion i at the reference plane,
the Boltzmann constant, and the temperature, respectively. To facilitate
discussion, we decompose the total mean force into an electrostatic mean
force and a nonelectrostatic mean force. In certain cases, we further decom-
pose the nonelectrostatic mean force into several components arising from
the interactions of the molecule (e.g., wall atoms, ion, or water) with the
ion.

To measure the screening of the surface charge by the ions, we define a
screening factor

Sf (z) =
∫ z

0
F [cNa+(z) − cCl−(z)]/ |σs| dz, (12.14)

where F is the Faraday constant. The screeing factor Sf (z) > 1 corresponds
to an overscreening of the surface charge.

Figure 12.11 shows the variation of water and ion concentration as well as
the screening factor across the channel. Apart from the well-known layering
of water near the channel wall, we also observe that:

1. a significant number of Na+ ions are accumulated within only 0.5 nm
of the channel wall,

2. the concentration of Cl− ion is very low in the region z < 0.5 nm
even though its access to the region 0.35 nm < z < 0.5 nm is not
limited by its finite size, and
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FIGURE 12.11. Water/ion concentration profiles and the screening factor Sf (z)
across the channel (only the lower portion of the channel is shown because of the
symmetry). Note that z = 0 denotes the position of the lower channel wall.

3. the surface charge is overscreened at a position 0.37 nm away from the
channel wall (i.e., Sf (z) � 1 for z > 0.37 nm), and charge inversion
occurs in the region z > 0.53 nm.

The overscreening and charge inversion cannot be predicted by the clas-
sical EDL theories, e.g., the Poisson–Boltzmann equation. Observation (1)
can be understood by analyzing the mean force acting on a Na+ ion as
shown in Figure 12.12. From the PMF definition and the Boltzmann distri-
bution, it follows that the accumulation of the Na+ ions in the region z <
0.5 nm is mainly caused by the negative total mean force in regions II and
IV of Figure 12.12 (a). Figure 12.12 (a) also shows that the nonelectrostatic
Na+−water interactions contribute significantly to the negative total mean
force in these regions (the mean force due to the nonelectrostatic interac-
tions between Na+−Na+, Na+−Cl−, and Na+−wall is not shown, since
its contribution to the total mean force is less significant). The magnitude
and sign of the nonelectrostatic Na+−water mean force depends mainly
on the repulsive nonelectrostatic interactions between the Na+ ion and its
nearby water molecules and on the asymmetrical distribution of the water
molecules around the ion (a symmetrical distribution will result in a zero
mean force). For an ion located near the channel wall, the asymmetrical
distribution of water molecules around the ion can be significantly influ-
enced by the fluctuation of water concentration near the channel wall (see
Figure 12.11), which then leads to a fluctuating mean force in the region 0
< z < 0.75 nm of Figure 12.12(a).
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FIGURE 12.12. (a) Total mean force acting on a Na+ ion and its component
due to the nonelectrostatic Na+−water interactions, (b) the electrostatic mean
force acting on a Na+ ion with and without the surface charge density. The zero
surface charge case has a bulk ion concentration of 1.0 M.

The contribution of the electrostatic interactions is evaluated by studying
the electrostatic mean force acting on the Na+ ion, which is computed by
subtracting the nonelectrostatic component from the total mean force. As
shown in Figure 12.12 (b), the mean force acting on a Na+ ion due to its
electrostatic interaction with all other molecules in the system is positive
for z < 0.35 nm. Such a positive mean force arises mainly from the fact that
when the Na+ ion is very close to the lower channel wall, the electrostatic
interactions between the ion and its hydration water molecules, which are
distributed mainly above the ion, tend to “pull” the ion from the surface.
To understand how the surface charge contributes to the accumulation of
Na+ ions near the charged channel wall, we computed the electrostatic
mean force experienced by a Na+ ion in a reference case, where the surface
charge density is zero and the bulk ion concentration is the same as in
the present case. Figure 12.12(b) shows that when the surface is charged,
though the electrostatic mean force acting on the Na+ ion near the wall is
positive, it is significantly lower compared to the case in which the surface
is not charged. From this we see that when the molecular nature of water
is considered, the electrostatic interactions contribute to the accumulation
of Na+ ions near the charged channel wall in a different way from what one
would expect in a classical EDL theory.
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FIGURE 12.13. (a) Total mean force acting on a Cl− ion and its nonelectrostatic
component, (b) and (c) are the mean forces experienced by a Cl− ion due to
its nonelectrostatic interactions with Na+ and Cl− ions, wall atoms and water
molecules.

Observation (2), which deals mainly with the low Cl− ion concentration
in the region z < 0.5 nm, can be explained by performing an analogous
mean force analysis for the Cl− ion. Figure 12.13 shows that the total mean
force acting on a Cl− ion is strongly positive in the region 0.4 nm < z < 0.6
nm (see panel (a)), and it is dominated by the nonelectrostatic interactions
between the Cl−−Na+ ions (see panel (b)) and Cl−−water molecules (see
panel (c)). This indicates that the low concentration of Cl− ion in the region
0.35 nm < z < 0.5 nm is mainly caused by the nonelectrostatic interactions
between Cl−−Na+ and Cl−−water. The depletion of Cl− ion in the region
z < 0.35 nm is caused by the finite size of the Cl− ion.

Observation (3), which deals with overscreening and charge inversion, can
be explained by the following two mechanisms. First, as discussed above, in
addition to the electrostatic interactions, the nonelectrostatic Na+−water
interactions also contribute significantly to the accumulation of Na+ ions
near the channel wall. Together, these interactions bring many more Na+

ions toward the channel wall than is predicted by the classical EDL theory,
where the molecular nature of water is not considered. Second, because of
the nonelectrostatic interactions between the Cl− ions and the wall atoms
and the water molecules, and because of the accumulation of Na+ ions near
the channel wall, the Cl− ions tend to stay away from the channel wall
and accumulate in the region z > 0.5 nm. The combination of these two
mechanisms then makes it possible for the surface charge to be overscreened
at a short distance from the channel wall (z = 0.37 nm), and for the
concentration of Cl− ions to exceed that of the Na+ ions at a distance of
0.53 nm away from the channel wall.
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FIGURE 12.14. (a) Water velocity profile across the channel obtained from MD
and continuum simulations. (b) driving force for the flow across the channel using
the ion concentrations obtained from MD simulation.

Flow reversal refers to the phenomenon that the electroosmotic flow is
in the opposite direction to the one typically expected (Qiao and Aluru,
2004). For example, when the surface is negatively charged and the exter-
nal electrical field is in the positive x-direction, one typically expects the
electroosmotic flow to be in the positive x-direction. However, an electroos-
motic flow in the negative x-direction will be observed when flow reversal
occurs.

For the channel system discussed above, Figure 12.14 (a) shows the water
velocity profile across the channel obtained by using MD and continuum
calculations. In the continuum calculation, the Poisson–Boltzmann (PB)
equation is solved to obtain the ion concentration, which is then used to
calculate the driving force for the flow given by the expression

Fe(z) = q[cNa+(z) − cCl−(z)]Eext,

where q is the electron charge. The flow Fe(z) is used as the driving force
in the Stokes equation to compute the water velocity. In solving the PB
equation, the bulk concentration of the NaCl solution is taken to be 1.0 M,
which is consistent with the result shown in Figure 12.11. For the Stokes
equation, a no-slip boundary condition is applied at positions z = 0.13
and 3.36 nm, which is consistent with the MD observation. The dielectric
constant and the viscosity of the water are taken as 81 (this is the relative
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dielectric constant) and 0.743 mPa·s, respectively. From Figure 12.14 (a),
we observe that while the continuum theory based on the PB and the
Stokes equations predicts a positive velocity in the entire channel, the MD
simulation shows a velocity that is slightly positive near the channel wall,
but is negative in the region 0.42 nm < z < 3.01 nm. Clearly, a flow reversal
is observed.

To understand the flow reversal, we calculate the driving force Fe(z)
for the flow using the ion concentration obtained from the MD simula-
tion. Specifically, in the region where the ions are immobilized, Fe(z) is
taken as zero, and in the rest of the channel, Fe(z) is computed by the ex-
pression given above, using the ion concentrations shown in Figure 12.11.
Figure 12.14 (b) shows the calculated driving force. The flow Fe(z) is zero
within 0.19 nm from the channel wall, since the Na+ ions adsorbed on the
wall are immobilized. Notice that because of the charge inversion, Fe(z)
is negative in the region 0.53 nm < z < 2.96 nm. Figure 12.14 (a) also
shows the velocity computed by substituting the driving force obtained
from the MD ion concentrations into the Stokes equation. Clearly, the new
driving force can predict the flow reversal in the region 0.58 nm < z <
2.91 nm, which indicates that the major mechanism for the flow reversal is
the immobilization of the adsorbed Na+ ion on the channel wall and the
charge inversion. The velocity profile with the new driving force, however,
still deviates from the MD velocity profile, especially in the regions close
to the channel wall. The reason for this deviation is not clearly understood
at present, but is probably caused by the high local viscosity in the near
wall region.

In summary, the charge inversion and flow reversal are some of the new
physical phenomena that have been observed in nanochannel electroosmotic
flows. While these results indicate that the molecular nature of water and
ions can lead to interesting new phenomena, the inclusion of the molecular
nature of water and ions into continuum electrostatic and hydrodynamic
theories remains an active area of research.



13
Functional Fluids and Functionalized
Nanotubes

The possibility of targeting and precisely controlling the electrooptical as
well as the mechanical properties of microstructures in a dynamic way
using external fields has opened new horizons in microfluidics research,
including new concepts and protocols for microfabrication. New function-
alized ferrofluids and ferromagnetic particles have led to a range of new
biomedical and diagnostic applications. Self-assembled magnetic matrices
can find a large range of applications for the separation of DNA and other
intermediate-size objects such as cells, proteins, organelles, and micro- or
nanoparticles. Self-assembly of colloids can be used in a bottom-up ap-
proach to the fabrication of nanosystems; in particular, self-assembly offers
a possible route to fabricating three-dimensional microsystems. Such self-
assembly techniques are biomimetic; i.e., they are inspired by processes in
biological systems that enable proteins and cells to arrange themselves or-
ganically in functionally beneficial ways. However, they need external forces
to be imposed to facilitate the process and provide quality control by steer-
ing and tailoring target properties. To this end, magnetic and electric fields
can be used for paramagnetic and charged particles, respectively. How ex-
actly this is accomplished is the subject of the first part of this chapter.
On a more fundamental level, systematic studies of paramagnetic parti-
cles or charged particles and their dynamics offer insight into the role of
Brownian noise in microsystems as well as conceptual differences between
deterministic and stochastic modeling.

Because of advances in nanotechnology, there is now a possibility of un-
derstanding cell behavior at a fundamental level. In particular, there is now
an exciting opportunity to understand how ionic channels in cellular mem-



472 13. Functional Fluids and Functionalized Nanotubes

branes function by taking advantage of the progress in nanotechnology.
Carbon nanotubes with diameters as small as 5 Å to 10 Å are compa-
rable to the diameters encountered in ion channels. However, the surface
characteristics of a carbon nanotube may not match closely the surface
properties of an ion channel. By functionalizing carbon nanotubes, it is
possible to tune the surface properties of carbon nanotubes to investigate
the function of a variety of ion channels. To enable such advances, it is
important to understand how water, ions, and various electrolytes interact
with carbon nanotubes and functionalized nanotubes. This is the subject
of the second part of this chapter.

In particular, in the first section we present details on the physical mech-
anisms involved in self-assembly, and subsequently we give examples of
patterns formed using magnetic fields for magnetorheological fluids and
electrophoretic deposition for electrorheological fluids. In the second sec-
tion, after a brief introduction to carbon nanotubes and ion channels in
biological membranes, we present results on electrolyte transport through
carbon nanotubes. Specifically, we present concepts and results showing
that the transport of electrolytes can be augmented by using functional-
ized nanotubes and electric fields.

13.1 Colloidal Particles and Self-Assembly

Construction of functional materials with feature sizes ranging from 1 nm to
1000 nm is a challenging problem and an area of active research. Due to the
inherent dimensional limitations of currently available mechanical forming
and lithographic techniques, it is difficult to produce structures with length
scales on the order of nanometers. In addition, the following factors make
it difficult for colloidal particles to assemble into ordered structures:

1. The particle motion is dominated by the Brownian motion and inter-
facial interactions. This becomes significant in submicron scales.

2. Brownian motion is random, and therefore it is very difficult to con-
trol.

3. The assembly times of the colloidal particles are too slow for practical
technologies. Due to their larger size, the motion of colloidal particles
is orders of magnitude slower than that of the atom. This is one of the
reasons why molecular self-assembly in nature is common and easier
than colloidal self-assembly.

Despite these difficulties, major strides have been made in the construc-
tion of self-assembled monolayers (Wasserman et al., 1989). As a result,
designing surfaces and structures at the molecular scale has now become
a possibility. The current molecular self-assembly techniques are inspired
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by processes in biological systems that enable proteins and cells to arrange
themselves organically in functionally beneficial ways. This involves design-
ing molecules and supramolecular entities that will aggregate into desired
structures due to their shape complementarity (Wasserman et al., 1989).

Simulation of particulate microflows could play an important role in
the development and active control of dynamically reconfigurable self-
assembled structures. Colloidal micropumps and colloidal microvalves are
already in existence and have been used for active microfluidic control;
see an example in Figure 1.6, and for details (Terray et al., 2002). Self-
assembly of colloidal particles onto the interface of emulsion droplets has
been exploited by (Dinsmore et al., 2002) to fabricate solid capsules with
precise control of size, permeability, strength, and compatibility. The re-
sultant structures, which are called colloidosomes, are hollow elastic shells;
they can be used for cellular immunoisolation.

Electrorheological (ER) and magnetorheological (MR) fluids, that is, sus-
pensions that exhibit sensitivity to external electric and magnetic fields,
are fluids with more than just viscosity as their main property. ER and
MR fluids can dynamically change their optical properties, anisotropy, me-
chanical rigidity, and electronic properties, often in a reversible way. The
applications are many, but perhaps the most exciting ones are based on
self-assembly of magnetic colloidal particles into chains or columnar struc-
tures (Doyle et al., 2002; Furst et al., 1998; Liu et al., 1995). In (Doyle
et al., 2002), self-assembled magnetic matrices were developed for DNA
separation chips. Compared to previous separation media, suspensions of
paramagnetic particles have several advantages: they have a low viscosity
in the absence of magnetic field, their pore size can be tuned (from 1 to
100 microns), and they do not require sophisticated microlithography.

There has been a lot of work in understanding ER fluids, and at least their
field-induced structures are reasonably well understood (Gast and Zukoski,
1989; Halsey and Toor, 1990; Tao and Sun, 1991; Chen et al., 1992; Martin
et al., 1992). There are, however, several complicating factors (e.g., surface
charge, electrode polarization; see (Promislow et al., 1995)), which have
limited the range of their application in microfluidics research today. These
can be avoided with MR fluids, which exhibit an analogous field-induced
aggregation and can also be controlled by a single external magnetic field.
However, the behavior of particles interacting through induced magnetic
fields is more complex than that of ER fluids, and their dynamics are
not well understood. For example, the long-range nature of the particle
interaction can persist even when they form chains or columns; the range
of the interaction depends sensitively on the chain length.

There are several experimental studies focused on understanding the
dynamics of magnetic chains and columns (Liu et al., 1995; Furst et al.,
1998; Promislow et al., 1995), as well as a few simulation studies (Cli-
ment et al., 2004). Here we consider two main classes of problems. The
first category involves flow geometries and devices with tens of suspended
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paramagnetic microparticles. The second category includes problems with
hundreds or even thousands of paramagnetic microparticles. It has been
observed experimentally that in the presence of an orienting external field,
at low concentrations one-dimensional lattices are formed, while at high
concentrations two-dimensional lattices of staggered rows of particles are
obtained. Both classes are of great interest from the theoretical as well as
the engineering point of view. More specifically, in the first class of prob-
lems, paramagnetic microparticles have been used as the active flow-control
element to design and then optimize basic elements of a microfluidic net-
work, e.g., pumps, valves, mixers (Hayes et al., 2001). This approach has
the potential of avoiding some of the difficulties experienced by other tech-
niques, while the materials can be synthesized in large scales. For example,
colloidal silica is easily modified for dispersion in both aqueous and non-
aqueous solvents and is biocompatible; see, for example, (Terray et al.,
2002). Typically, fewer than one dozen microspheres are involved in these
designs. In the second class of problems, we are interested in fundamen-
tal understanding of the scaling laws that govern the interaction of many
chains or magnetic columns formed by hundreds or thousands of micro-
spheres. Self-assembled structures can be used in fabricating magnetically
controlled microdevices with complex functionality, for example, actively
addressable arrays of microreactors that can react dynamically with fluids
for sorting and mixing applications; or self-assembled magnetic matrices for
DNA separation chips. A fundamental unresolved question is reversibility
in static or dynamic self-assembly processes and its validity as a function
of the magnetic field strength and geometry.

Modeling of ER or MR fluids is quite complicated, and in simulating such
flows, it is more effective to adopt a hierarchical simulation methodology
that performs best in a certain range of parameters in terms of both accu-
racy and computational complexity. It should include stochastic techniques
to represent Brownian noise, geometric roughness or other uncertainties as-
sociated with the boundary conditions, particle size, and interaction forces.
That is, both continuum and atomistic techniques, as we discuss in Chap-
ters 14 and 16, respectively, should be used.

Another method to build structure and function in the nanometer scale
involves the use of electric fields to assemble colloidal particles at electrode
surfaces. Patterned crystalline arrays of colloidal particles can be formed by
appropriately altering the surface topography of the electrode surface. Be-
sides the disadvantage of added time and expense for altering the electrode
surface (lithography and etching steps), this method cannot be used for
forming patterns comprising different colloidal particles (Hayward et al.,
2000). (Kim et al., 1997) exploited the presence of capillary forces in a mi-
crocontact printing mold to draw the colloidal suspension into small chan-
nels above the substrate. Evaporation of the solvent results in the colloidal
particles to self-assemble into crystals. While this method eliminates the
use of photolithography to form patterned surfaces, it is restricted to pat-
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terns with interconnected areas alone, since it is based on capillary flows.
(Hayward et al., 2000) described a method for assembling patterned col-
loidal crystals using selective illumination of an optically sensitive electrode
with electromagnetic radiation. This method overcomes limitations of the
other methods described above.

In the following two sections we focus on the physical and modeling
issues that need to be considered for understanding and simulating col-
loidal structures using paramagnetic beads and charged particles. We first
discuss issues in magnetorheological fluids and subsequently address elec-
trophoretic deposition.

13.1.1 Magnetorheological (MR) Fluids
In order to determine the mechanics of paramagnetic micropsheres in dif-
ferent flow configurations, we need first to characterize the particles and the
forces that act on them. Superparamagnetic beads consisting of iron oxide
crystals dispersed in a styrene polymer are readily available in a range of
sizes from 0.3 µm to 5 µm in diameter (e.g., Bang Labs). Other function-
alized paramagnetic beads are available in sizes down to 20 nm that are
generally spherical in shape. The particles are magnetically soft and read-
ily acquire a dipole moment when placed in a magnetic field. They also
show minimal hysteresis and quickly lose their dipole moment when the
magnetic field is removed. The particles are colloidal in character and can
remain in suspension for a long time, with negligible sedimentation, under
the action of Brownian motion and short-range electrostatic repulsion. In
MR flows for the formation of self-assembled structures the volume fraction
of the particles is typically low, and the particles are larger than 20 nm.
These features distinguish the systems from ferrofluids (Rosenweig, 1987),
in which individual magnetite crystals, on the order of 20 nm in size or
smaller, are in random suspension at much higher volume fractions. In the
experiments of (Hayes et al., 2001), (Furst et al., 1998), and (Doyle et al.,
2002) on the formation of supraparticle structures, the particles were all
about 1 µm to 3 µm in diameter, while in (Promislow et al., 1995), they
were about 0.6 µm in diameter.

The forces acting on the particles arise from the imposed magnetic field,
Brownian motion, short-range electrostatic repulsion, van der Waals forces,
gravity, and fluid forces. In particular, van der Waals forces would cause
particles to bind together and aggregate due to collisions from Brownian
motion or in a shear flow, but these forces act only over very short dis-
tances, while electrostatic repulsion between particles acts over a relatively
larger distance, comparable to the Debye layer thickness, and will prevent
aggregation; see (Russel et al., 1989; Tabor, 1991). The details of the elec-
trostatic properties depend on the preparation of the beads, how they are
stabilized, and the electrolyte content of the liquid phase. The effect of
gravity diminishes rapidly with particle size, and the dominant forces to
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(a)

FIGURE 13.1. Sketch and definition of geometric parameters.

consider are due to the magnetic field, Brownian motion, and viscous fluid
forces. The diffusivity of an isolated sphere is given by the Stokes–Einstein
formula

D =
kBT

6πaµ

for a particle of radius a, where µ is the fluid viscosity, kB is Boltzmann’s
constant, and T is the absolute temperature. Some characteristic features
of particles of radius 1 µm and 0.1 µm are listed in Table 13.1.

A criterion for determining whether two particles that have a magnetic
dipole will form a chain can be obtained by comparing the energy of thermal
fluctuations kBT with the interaction energy U of the magnetic dipoles. To
this end, we define the dipole strength ratio

λ =
|U |max

kBT
,

so for λ > 1 attraction forces overcome the Brownian motion, and aggre-
gation is expected. If r is the center–center separation and θ is the angle
between the line of centers and the orientation of the dipoles (see Figure
13.1), the interaction energy (SI units) is

U(r, θ) =
µ0

4π
|m|2(1 − 3 cos2 θ)/r3,

where m is the dipole strength. For a magnetic field strength H, the induced
dipole is

m =
4
3
πa3χH,

in terms of the effective magnetic susceptibility χ of the particle. A chain
will form if Umax is significantly larger than kBT . As discussed in (Hayes
et al., 2001), the formation of supraparticle structures depends on particle
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TABLE 13.1. Estimates for a paramagnetic bead, density 1.5 × 103 kgm−3, sus-
pended in aqueous solution at temperature 300 K.

d = 2µm d = 0.2µm
(a = 1µm) (a = 0.1µm)

Stokes settling velocity Ws 1.1 µm/sec 1.1 × 10−2µm/sec
Brownian diffusivity D = kT/6πµa 0.22 × 10−12 m2/sec 0.22 × 10−11 m2/sec
Schmidt number ν/D 4.5 × 106 4.5 × 105

Diffusion time scale a2/D 4.5 sec 4.5 × 10−3 sec
Scale for Brownian force kT/a 4.14 × 10−15 N 4.14 × 10−14 N
Buoyancy force 2.06 × 10−14N 2.06 × 10−17 N
Peclet number Pe = Wsa/D 5 0.5 × 10−3

size, magnetic susceptibility, field strength, temperature, channel geome-
try and surface properties, and volume fraction of the particles. Structures
rapidly disassemble once the magnetic field is removed due to the electro-
static repulsion at short-range and Brownian motion.

We can make an order of magnitude estimate for the attractive force
between two paramagnetic beads by assigning representative values of H =
104 Am−1 for the magnetic field strength and χ = 1 for the volumetric
magnetic susceptibility. The particles respond to each other’s gradients of
magnetic flux density, which decreases as r−4. At contact this force can be
relatively large, 6×10−11 N, for a particle of radius 1 µm or 6×10−13 N for a
particle of radius 0.1 µm. These values may be compared to the parameters
in Table 13.1. At a separation distance of r = 10a, characteristic of the
interparticle distance in a random suspension at 0.5% volume fraction, the
forces drop to 10−13 N and 10−15 N respectively for separations aligned with
the dipoles. Actual field strengths may be lower than these levels, and the
force estimates scale with H2. The general indications are that Brownian
motion is significant for the larger particles only when they are dispersed,
while for the submicron scales Brownian motion plays an increasing role.
The characteristics of the magnetic field will change once chains of beads
start to form.

Hydrodynamic Forces

Fluid forces have a central part in the dynamics of particles in MR flows.
In the development of microdevices for pumping, mixing, or flow control
in a microchannel, we need to determine flow characteristics around the
individual particles and in the channel as a system. While the flow will be
low Reynolds number in character, inertial effects will influence the large
scale dynamics and will be appreciable where the geometry of the channel
changes.

Various methods are available for flow simulations. Specifically, we dis-
cuss the continuum-based ALE, DLM, and FCM schemes in Chapter 14.
These are flexible methods suitable for particulate flows both in low Reynolds
number and zero Reynolds number flows. In addition lattice–Boltzmann
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simulations (LBM), see Section 15.5, have been developed as a general
simulation approach for dispersed two-phase flows as well as dissipative
particle dynamics methods; see Section 16.4. For Stokes flows there are
several methods based on multipole expansions; see (Kim and Karrila,
1991). The Stokesian dynamics method of (Brady and Bossis, 1988) uses a
low-order multipole representation to construct a mobility matrix for the
particles. This is supplemented with localized resistance forces and lubri-
cation forces when particles are close to each other or near a wall. These
simulations have been used to investigate dense suspensions and the rhe-
ology of particles in shear flows. New developments of the method (Ichiki
and Brady, 2001) have extended the range of application to larger systems
of particles and to possibly higher multipole representations. These meth-
ods provide a range of techniques to determine flow characteristics and the
force and torques acting on the particles in response to the flow or their
motion through the fluid.

At low Reynolds numbers, special attention is needed to determine the
motion of particles that are close to each other or near a wall. As the
separation distance is reduced, very large forces can be generated as fluid
is displaced from the narrow gap between particles or from shearing motion
across the gap. These are characterized by lubrication forces and have been
calculated accurately for a number of standard configurations; see section
14.3.2 and (Jeffrey, 1982; Kim and Karrila, 1991). Even if one uses high-
order multipole methods or other accurate flow simulation methods, the
numerical resolution of the gap becomes insufficient to calculate these forces
accurately, and in general, some approximation of these effects must be
included with the simulations. The lubrication forces are usually included
through a summation of discrete pairwise interaction between particles or a
particle and a wall, with the forces determined by the particle positions and
relative velocity. This has been done for the force coupling method (FCM)
in Stokes flows; see (Dance and Maxey, 2003). There are limitations to the
accuracy of summing pairwise interactions, and this is evident, for example,
for a particle in a narrow channel, where both walls simultaneously can
influence the particle motion. A simple model that can be used to prevent
overlapping of particles is a velocity repulsion barrier. It can be activated
only when particles are closer than a cutoff distance Rref on the order of
20% of the radius a. This repulsive velocity is given by

vij = −vref

2a

[
R2

ref − r2

R2
ref − 4a2

]2

rij ,

where rij is the distance connecting the particles i and j (see sketch in
Figure 13.1). Calibration of the relative motion of two or three particles
can help in determining the velocity scale vref .

As the separation distance between particles is reduced further, particle–
particle forces will act. In the context of colloids the most relevant is the
short-range electrostatic repulsion between particles due to surface charges.
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The effects of these charges that are naturally occurring in most systems
is generally screened by ions in the suspending liquid phase, and their
influence is confined to a thin Debye layer. Their action on particle motion
is effectively approximated by a Derjaguin potential; see (Russel et al.,
1989).

Magnetic Forces

In a permeable magnetic medium the magnetic flux density B (units of T )
is due to the external field and the induced magnetic moments within the
material. The governing equations are

B = µ0(H + M),
∇ · B = 0,

∇ × H = j;

Here j is the macroscopic current density that is generated externally and
M is the magnetic dipole density (Am−1) induced in the material. The
latter is written in terms of the magnetic field strength H (units of Am−1)
as

M = χH,

where χ is the magnetic susceptibility of the material. For a particle, the
overall dipole moment m is the volume integral of the dipole density over
the particle volume,

m =
∫

M d3x,

so for a uniform sphere of radius a subject to an external uniform magnetic
field with flux density B0,

m =
4
3
πa3χH =

4
3
πa3χ

B0

µ0
.

In general, the susceptibility will be a nonlinear function of the field strength,
and the induced dipole moment density will saturate at some level. Satu-
ration often occurs when the magnetic flux density in the material reaches
about 1.0 to 1.5 tesla. The Langevin theory provides an estimate for the
susceptibility including the effect of thermal energy. In a medium in which
the dipole elements interact through their induced fields, a modified esti-
mate for the overall dipole moment must be made that leads to a higher
effective susceptibility. For the beads used in the experiments of (Promislow
et al., 1995), the effective volumetric susceptibility was χ = 0.9.

In vacuum, B = µ0H, where µ0 = 4π×10−7 Hm−1 is the permeability of
free space, so a magnetic field strength H = 1000 Am−1 would correspond
to a magnetic flux density B = 1.257 × 10−3 T. In (Doyle et al., 2002), an
external magnetic flux density of about 10 mT was used, corresponding to
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a magnetic field strength H = 10,000 Am−1. In (Hayes et al., 2001), the
magnetic flux density imposed in the liquid phase was about 50 mT, or 500
gauss in terms of cgs units. Also, the flux densities used in (Furst et al.,
1998), were around 3 mT, corresponding to 30 gauss or H = 2300 Am−1.

The magnetic flux density due to an isolated dipole moment is

B = −µ0

4π
∇(

m · x
r3 ).

In the presence of an external uniform magnetic field with flux density B0,
we obtain

B = −µ0

4π

(
3(m · r)r

r5 − m
r3

)
+ B0.

The corresponding force acting on the dipole in the presence of an ambient
magnetic field is

F = ∇ × (B × m) = m · ∇B.

This force may be written in terms of a scalar potential F = −∇U with
U = −m · B. The torque acting on a dipole that has a fixed moment is

G = m × B,

and the dipole will tend to turn to align with the magnetic field.
Paramagnetic beads placed in a uniform magnetic field will acquire a

dipole moment aligned with the field. The dipoles will then attract each
other to form a chain of aggregated particles with the dipoles joined end
to end. The attraction is quite long-range but does fall off quickly with
distance as r−4. The uniform magnetic field will produce no force on the
particles, only the dipoles will create a gradient of the magnetic flux den-
sity B needed to generate a net force. At large separations the force will
be below the level of Brownian thermal fluctuations or other background
forces. As the particles disperse due to random motion or as longer chains
form, the particles will come close enough for the magnetic forces to become
dominant.

The description of the particles in terms of simple magnetic dipoles cap-
tures the primary dynamics, even though a more detailed multipole rep-
resentation may be warranted for local variations in the magnetic field.
In (Paranjpe and Elrod, 1986), such a description has been used in terms
of dipoles to effectively study the equilibrium configurations of chains of
magnetic beads and to determine their stability from the overall potential
U . While energy minimization principles yield information about the final
states, dynamic simulations are needed to obtain the development in time
and information about the time scales for chain formation and their even-
tual fate. This requires the solution of the coupled system of equations for
the dipole strengths, which are determined by the external field and the
fields generated by the other particles or other chains of particles.
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(a) (b)

FIGURE 13.2. Brownian motion of 2.34-µm silica particles in DI water. (a) A
snapshot of monolayer of particles. (b) Particle trajectories of silica microspheres
for 10 seconds.

Brownian Motion

Brownian motion and the effects of thermal fluctuations become an increas-
ingly important feature for submicron-sized particles. Figure 13.2 (a) shows
a snapshot of a monolayer of 2.34-mum-sized silica particles in DI water,
taken using a conventional inverted light microscope. A sequence of digital
images was taken using a monochrome CCD camera to track the Brown-
ian diffusion of the silica particles. Image processing algorithms given in
(Crocker and Grier, 1996), were employed to track the particle centers and
draw their corresponding trajectories. The trajectories of the silica micro-
spheres for 10 seconds of Brownian diffusion are shown in Figure 13.2 (b).
Experiments were conducted at room temperature.

The standard description of Brownian motion is based on the Langevin
model, where the particles are subject to a random white-noise forcing from
the thermal fluctuations. This yields the aforementioned classic Stokes–
Einstein result for the diffusivity of a single spherical particle that is in-
dependent of the mass of the particle. In a dilute system the particles can
be considered in isolation, as is the case of many Brownian dynamics sim-
ulations of polymer chains. However, there are long-range hydrodynamic
interactions between particles in a suspension under low Reynolds number
conditions. These modify the mobility of a system of particles and hence
the diffusivities and particle motion in response to thermal fluctuations.

The starting point for most simulation studies of Brownian motion is
the Langevin equation written in the form of an Ito stochastic differential
equation for the evolving displacements of the particle. This is essentially a
Monte Carlo simulation of the suspension. An alternative is to formulate the
problem as a Fokker–Planck equation for the configurational distribution
function. A key element of the stochastic simulations is to characterize the
vector of stochastic Brownian forces FB using the fluctuation–dissipation
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theorem in terms of the collective resistance tensor R for the system of par-
ticles. The fluctuating forces have zero mean and are uncorrelated in time,
but the forces on individual particles are correlated on average, through
the hydrodynamic interactions, with〈

FB(t) · FB(t′)T
〉

= 2kBT R δ(t − t′).

The resistance tensor R is determined by the instantaneous configuration of
the particles and must be recalculated as the particles move. The fluctuat-
ing forces give rise to corresponding random displacements in the stochastic
equation, which can be characterized through the corresponding mobility
tensor R−1. For a system of particles the diffusion tensor is D = kBTR−1.
The repeated computations of the resistance or mobility tensors can become
lengthy as the system of particles becomes larger, and steps are needed to
accelerate the computational steps. A simple representation of the Brown-
ian motion using a fluctuating force FB with zero mean and the correlation
specified above is

FB = ξ

√
12πµakBT

dt
,

where dt is the time step in the numerical integration of the Lagrangian
tracking of the particles and ξ is a random vector following a Gaussian
distribution.

In addition to the factors already noted, beads and chains of particles in
a microchannel will involve the hydrodynamic effects of the channel walls
on the resistance or mobility tensors together with the hydrodynamic in-
teraction of spherical beads with nonspherical chains. Magnetic beads that
have formed a bound pair will be subject to both random displacements
and rotations.

Dynamics of Particle Chaining

We present here a simulation of many particles placed in a periodic box
of width L/a = 48, where a is the particle radius. The simulation is based
on the force coupling method (FCM); see Section 14.3.2. The resolution is
1283 Fourier grid nodes for the solution of the fluid flow equations. Under
the influence of hydrodynamic and magnetic forces the particles tend to
aggregate in linear clusters. An averaging of ten initial random seedings
was performed in order to evaluate the temporal growth of the mean cluster
size 〈S(t)〉. This is defined as

〈S(t)〉 =
∑

s s2n(s)∑
s sn(s)

,

where n(s) denotes the number of clusters of size s in the suspension at
the sampled time.
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(a) (b)

FIGURE 13.3. (a) Initial random seeding of paramagnetic beads, and (b) config-
uration at t/t∗

B = 16. Concentration is c = 0.003 and dipole strength λ = 100.

In (Climent et al., 2004), several different configurations were consid-
ered corresponding to a particle volume fraction c ranging from 0.3% to
3% and dipole strength ratio λ from 1 to 104. This concentration is in the
range of the experiments of (Promislow et al., 1995), so that comparisons
are possible. Figure 13.3(a) shows typical initial conditions with eighty
paramagnetic particles seeded at random positions in a cubic domain. Fig-
ure 13.3(b) shows a typical aggregation of particles with chains of various
lengths formed but with some particles still isolated. As time evolves, these
particles will join together and form longer chains. Chain/chain interaction
leads also to long structure formation. Most of the chains are linear, since
head-to-tail aggregation of magnetic dipoles is energetically preferable. Lat-
eral merging of chains is also possible, leading to thick clusters of particles.
Such lateral merging is important for the resistance to deformation and
threshold of rupture of long chains. It is directly connected to the yield
stress of the suspension and has a strong impact on nanotechnology appli-
cations. In Figure 13.3(b), chain defects are observable; e.g., observe one
chain divided into two branches that connect again. Careful experiments of
microrheology using dual-trap optical tweezers have highlighted clearly the
impact of annealing defects on the mechanical properties of chains (Furst
and Gast, 2000).

Von Smoluchowki’s theory (von Smoluchowski, 1916) provides a solid
basis for predicting aggregation rates in very dilute solutions. It states that

• the rate of change in the number of clusters containing n particles is
connected to the reaction kernel that represents the rate of coales-
cence of two smaller clusters.

In diffusion-limited aggregation, the numerical simulations in (Miyazima
et al., 1987), based on the motion of oriented particles on periodic square



484 13. Functional Fluids and Functionalized Nanotubes

10
0

10
1

10
2

10
0

10
1

t/t
B
*

<
S

(t
)>

FIGURE 13.4. Evolution of the mean cluster size in terms of particle diameter.
The symbols denote: plus - λ = 1; triangle - λ = 10; squares - λ = 100, and stars -
λ = 10,000. The dashed line indicates t0.7 dependence. 〈S(t)〉 is normalized with
the particle diameter.

lattices support the scaling evolution 〈S(t)〉 ∝ tz . The exponent z is related
to the diffusion coefficient of a cluster of length s. Under the assumption of
a long chain, it is commonly accepted that the diffusion coefficient scales
like s−1, which in turn leads to the relation

〈S(t)〉 ∝ t0.5.

Even though this behavior has never been strictly observed in experiments,
it provides a valuable point of reference.

The determination of a characteristic time scale is a critical issue. We
can expect a collapse of all the data if the time scale is properly defined,
i.e., accounting for the effect of the dipole strength λ and the particle
volume fraction c. A simplistic model of doublet formation is based on
pure diffusion of particles in a very dilute suspension. Particles diffuse as
long as collisions do not occur. When two particles are touching, a doublet
is formed. The characteristic time tB in this case is inversely proportional
to diffusivity D and concentration c as it corresponds to the flux of particles
toward an isolated test particle, i.e.,

tB =
a2

6Dc
.

Based on experimental results, a correction was introduced in (Promislow
et al., 1995), that improves this scaling. The identification of mechanisms
leading to chain formation is of fundamental significance for the time scale
determination. In particular, the motion of a paramagnetic particle can
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be split into two main regimes. When particles are widely separated, the
attraction force that decays quickly (r−4) is not strong enough, and parti-
cles diffuse randomly. When the separation between two beads or between
a particle and a chain is smaller than a critical value rc determined by
U(rc) ∝ kBT , the attraction force becomes dominant and aggregation oc-
curs. Therefore, the flux of particles captured by a single sphere has to
be augmented. The capture volume related to the surface |U | = kBT al-
lows the determination of a new time scale based on the envelope of the
anisotropic dipolar potential. Promislow et al. proposed to use a modified
time scale t∗B given by

t∗B =
a2

24[(1/3)1/2 − (1/3)3/2]Dcλ
.

This characteristic time is inversely proportional to D, c as before, but also
to the dipole strength λ. The constant prefactor is derived based on the
capture volume that corresponds to the combined conditions of attraction,
i.e., U < 0 and r < rc.

In the simulations of (Climent et al., 2004), initially, the mean cluster
size is equal to one particle diameter, since all the particles are seeded
randomly throughout the domain respecting the nonoverlapping condition.
Figure 13.4 shows results for a very dilute suspension (c = 0.003) that
experiences a constant magnetic field characterized by a dipole strength λ
ranging from 1 to 104. We notice that in the case of λ = 1, no chains are
forming and the particles always diffuse randomly. The magnetic attraction
is not strong enough to join the particles together, since Brownian forcing
dominates the behavior of the suspension. A clear transition is observed
when λ � 1, with 〈S(t)〉 slowly increasing during a characteristic time of
order t∗B . Subsequently, aggregation sets in as particles or chains gradually
join together forming linear supraparticle structures. The linear increase in
a log-log plot is evident for almost one decade. When the mean length is
on the order of half of the domain width, the periodic conditions become
invalid and the simulation is stopped.

In the previous example, the geometry was not taken into account, and
chains became longer as a function of time, although they may bifurcate
into smaller chains due to chain–chain interactions. Geometry effects are,
however, very important, and they can be used cleverly to affect the pattern
formation. The effect of geometric confinement on dynamic self-assembly
has been simulated for the first time in (Liu, 2004), following the experi-
mental studies of (Hayes et al., 2001). Figure 13.5 shows four snapshots of
the dynamic aggregation process inside a trianglular duct. Initially, eight
paramagnetic beads are randomly scattered inside the duct. Upon the ap-
plication of a horizontal external magnetic field, the particles in close prox-
imity form pairs first, then triplets, and so on. Due to the magetic dipole
repulsion and attraction mechanisms, the particles tend to form a straight
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Magnetic Field

FIGURE 13.5. Aggregation of eight particles inside a trianglular duct due to
magnetic dipole interactions: initial seeding (top left); shortly after initial seed-
ing (top right); shortly before the final aggregation (bottom left); final position
(bottom right).

line to minimize the magnetic potential energy in the system. However,
because of the constraint imposed by the geometric boundaries, not all
particles can be accommodated at that height. Therefore, a five-particle
chain moves down to a proper right height, while a triplet moves upward
and to the right in order to join the finally formed chain parallel to the
magnetic field direction.

13.1.2 Electrophoretic Deposition
Electrophoretic deposition of colloidal particles at charged surfaces has
been used as a manufacturing technique for coating metals, oxides, phos-
phores, inorganic and organic paints, rubber, dielectrics, superconductors,
and glasses (Trau et al., 1997). In his seminal paper, (Hamaker, 1940)
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described the formation of a colloidal deposit by electrophoresis. Elec-
trophoretic deposition (EPD) is essentially a two-step process that involves:

1. Application of an electric field to transport the colloidal particles in
the liquid suspension toward an electrode (electrophoresis), and

2. Collection of particles on the electrode to form a coherent deposit.

Building on these early ideas, flocculation at the electrode surface was ex-
plained in terms of dipole interactions (Estrelalopis et al., 1982). Hamaker’s
law relates the deposit yield to the electric field strength, electrophoretic
mobility, surface area of the electrode, and the particle mass concentration
in the suspension, and it is given as

dY

dt
= µECA, (13.1)

where Y is the yield (in kg), E is the electric field strength (in V/m), µ
is the electrophoretic mobility (in m2/(V.s)), A is the surface area of the
electrode (in m2), and C is the mass concentration of the colloidal particle
in the suspension (in kg/m3). For cylindrical coaxial electrodes, a closed-
form expression for the yield during EPD is provided in (Avgustinik et al.,
1962). For more advanced models of the EPD, the reader is referred to
(Biesheuvel and Verweij, 1999).

The majority of work in EPD has been concerned with measuring the de-
position rate, and maximizing film thickness and porosity of the deposited
film. However, very little attention was devoted to the microscopic dynam-
ics that give rise to the resulting morphology of the deposited layers. For
a long time, the dynamics of electrophoretically deposited layers was as-
sumed to be analogous to particle sedimentation. (Hamaker and Verwey,
1940) theorized that the primary action of the electric field was to move
the particles toward the electrode and to produce a force that pressed the
particles together on the electrode surface, the same way gravity acts on
particle sedimentation. However, systematic experimentation has revealed
new interesting physics during electrophoretic deposition (Richetti et al.,
1984; Bohmer, 1996; Trau et al., 1996; Trau et al., 1997). Particle motion
transverse to the applied electric field was observed close to the electrode
surface, when particles do not stick to the electrode. This resulted in par-
ticle aggregation to form densely packed self-ordered planar clusters. This
phenomenon is unexpected from pure electrostatic considerations, since
like-charged particles repel each other. Consequently, the attractive inter-
action between particles must be strong enough to overcome electrostatic
repulsion to facilitate the aggregation. In the following, we discuss in detail
the aggregation dynamics during EPD.

Colloidal Aggregation

The colloidal particle aggregation on a charged surface under an electric
field was first reported in (Richetti et al., 1984). Subsequent experiments
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FIGURE 13.6. Colloid arrays obtained by electrodeposition on nonpatterned ITO
substrates for 3.88 µm size polystyrene (PS) particles at a DC potential of 20 V.
Times of electrodeposition were (a) 30 s, (b) 90 s, and (c) 210 s. (Courtesy of E.
Kumacheva.)

on electrophoretic deposition have also confirmed the migration of colloidal
particles toward each other over very large distances (even greater than
five particle diameters) to form highly ordered two-dimensional structures.
This long-range attraction between colloidal particles close to electrodes has
been observed in both AC and DC electric fields (Bohmer, 1996; Trau et al.,
1996; Trau et al., 1997). In addition, different two-dimensional colloidal
phases (analogous to) gas, liquid, and solid (crystal structures) can be
formed on the surface of the electrode by manipulating the current density,
which alters the magnitude of lateral attractions between particles. In the
following we review observations by (Bohmer, 1996) regarding the self-
ordering of colloidal particles on electrode surfaces:

1. The aggregation occurred after the particles were close to the surface
or deposited.

2. The aggregation was reversed when the polarity of the applied field
was reversed.

3. Two or more clusters that formed on the surface aggregated to form
a larger cluster.

4. The clusters dispersed when the field was turned off.

Figure 13.6 shows the colloidal arrays obtained by the electrophoretic
deposition of 3.88 µm size polystyrene (PS) particles at a DC potential of
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20 V on ITO electrodes (Golding et al., 2004). Evolution of the colloidal
system from a gaseous state in Figure (a) to a liquid phase in Figure (b)
and finally to a crystalline phase in Figure (c) can be seen. The colloidal
assembly follows a three-stage process. In the initial nucleation stage, the
colloidal particles randomly deposit on the electrode surface (Figure a).
Following deposition, the colloidal particles laterally migrate on the elec-
trode surface, forming dyad- and triad-like structures, thereby increasing
the surface area (Figure b). In the final stage, small particle clusters begin
to merge to form two-dimensional islands (Figure c). It is important to
understand that although the Brownian motion tends to redistribute and
break up the particle clusters formed after aggregation, it is a very slow
process (Ristenpart et al., 2004).

The details of the aggregation mechanism are still not completely under-
stood. Comprehensive theories that can completely describe the aggrega-
tion dynamics at the electrode surface are not available in the literature. As
the particles and clusters were seen to interact over long ranges, (Bohmer,
1996) suggested that hydrodynamic effects resulting from electroosmotic
flow around each particle were responsible for particle aggregation. This
also ruled out the contribution of short-ranged van der Waals forces to
particle aggregation. The motion of particles deposited on an electrode
surface is governed by the relative interplay of electrokinetics, electrohy-
drodynamics, and Brownian diffusion. (Solomentsev et al., 1997) considered
the electroosmotic flow around the charged particles near the electrode sur-
face, and proposed an electrokinetic model for particle aggregation. This
model was able to qualitatively explain the observations in (Bohmer, 1996).
In addition, the particle trajectories predicted by the model were in good
quantitative agreement with experimentally measured trajectories of three
particles aggregating near the electrode surface. In a later work, (Solo-
mentsev et al., 2000) studied the aggregation dynamics for two particles
during electrophoretic deposition under steady electric fields. They pro-
posed a convective–diffusive model based on electrokinetics to explain the
mechanism behind the particle aggregation.

Figure 13.7(a) shows a schematic of two equal-sized colloidal particles
electrophoretically deposited on an electrode. The two particles are as-
sumed to be at the same height h above the electrode surface, and the elec-
tric field E is normal to the electrode surface. The particles attract each
other due to the electroosmotic flow around each particle (Solomentsev
et al., 2000). The authors solved Laplace’s equation to obtain the electric
field about a single particle, and then they used this result to solve for the
electroosmotic flow field. The streamlines around a particle are shown in
Figure 13.7(b). The electrokinetic slip velocity at the surface of the col-
loidal particles drives the flow. The electroosmotic flow around a single
particle entrains the neighboring particle, and draws it closer. Secondary
electrophoretic effects also become important, since the electric field has
a component that affects the relative motion of the two particles. The
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FIGURE 13.7. (a) Schematic of two equal-sized particles of diameter D deposited
on an electrode by EPD. The particles remain mobile due to the Brownian mo-
tion, (b) Electroosmotic flow around a colloidal particle held stationary near an
electrode. When the direction of electric field is reversed, the direction of the flow
is also reversed. (Courtesy of M.A. Bevan.)

electroosmotic flow brings the particles together, while the electrophoresis
moves them apart. (Solomentsev et al., 2000) have shown that at r ≈ 3D,
the magnitude of the electroosmotic velocity is about seven times greater
than the electrophoretic velocity, and this facilitates the aggregation pro-
cess. It has to be noted that this analysis is applicable only for DC electric
fields.

(Trau et al., 1996) and (Trau et al., 1997) explained the transverse migra-
tion of colloidal particles using an electrohydrodynamic mechanism wherein
fluid flow transports the particles toward each other. They theorized that
the particles near the electrode alter the local electric fields, and these
perturbations can result in concentration and current density gradients at
the electrode surface, resulting in fluid motion. This model is applicable
for both AC and DC electric fields, and it is consistent with experimental
studies.

In summary, the current theories are not elaborate enough to provide
quantitative estimates of particle aggregation behavior. More experiments
are needed to provide an insight into the origin of the lateral convective
forces. A model that can completely describe the particle aggregation dy-
namics should take into account the combined effects of electrokinetics,
electrohydrodynamics, and Brownian diffusion, similar to the model we
presented for magnetorheological fluids.

13.2 Electrolyte Transport Through Carbon
Nanotubes

There is great interest in investigating fluid flow through carbon nanotubes.
In Chapter 10 and Chapter 11, we presented results on transport of simple
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fluids and water through carbon nanotubes. The fundamental question is
whether electrolytes can be transported easily through small-diameter car-
bon nanotubes. One of the motivations to investigate electrolyte transport
through carbon nanotubes is to create nanoscale devices or design concepts
to mimic biological ion channels. In this section, after an introduction to
carbon nanotubes and ion channels, we address the issue of electrolyte
transport through carbon nanotubes and present ideas to mimic some as-
pects of biological ion channels.

13.2.1 Carbon Nanotubes
Carbon nanotubes were discovered by (Iijima, 1991). Since their discovery,
nanotubes have aroused great excitement because of their unique physical
properties, which span a wide range, from structural to electronic. For ex-
ample, nanotubes have a light weight and a record-high elastic modulus,
and they are one of the strongest fibers that can be made. There are two
main types of carbon nanotubes (Saito et al., 1998; Dekker, 1999; Baugh-
man et al., 2002):

• A single-walled carbon nanotube (SWNT), made of a single atomic
layer thick of graphite (called graphene) rolled into a seamless cylin-
der.

• A multiwalled carbon nanotube (MWNT), made of several concentric
nanotube shells.

Single-walled carbon nanotubes have emerged as a very promising new
class of materials for a variety of applications. The diameter of a SWNT is
about 0.7 nm to 10 nm, though most of the observed single-wall nanotubes
have diameters less than 2 nm. The structure of a SWNT is one-dimensional
with axial symmetry. A SWNT exhibits a spiral conformation, called chi-
rality. The chirality is given by a single vector called the chiral vector,
ch. The chirality vector connects crystallographically equivalent sites on a
two-dimensional graphene sheet. The diameter and helicity of a defect-free
SWNT are uniquely characterized by the chirality vector

ch = na1 + ma2 ≡ (n,m),

where n, m are integers (0 ≤ |m| ≤ n), and a1 and a2 are the graphene
lattice vectors (see Figure 13.8). An armchair nanotube corresponds to the
case of n = m, that is, ch = (n, n), and a zigzag nanotube corresponds
to the case of m = 0, or ch = (n, 0). All other (n,m) chiral vectors corre-
spond to chiral nanotubes. The indices (n,m) also determine the metallic
or semiconducting behavior (electronic properties) of SWNT. Carbon nan-
otubes for which n − m = 3i, with i an integer, are metallic; all others are
semiconducting. Armchair nanotubes are metallic. The electronic proper-
ties of MWNTs are rather similar to those of perfect SWNTs, because the
coupling between the cylinders is weak in MWNTs.
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FIGURE 13.8. Schematic of a two-dimensional graphene sheet illustrating lattice
vectors a1 and a2, and the chiral vector ch = na1 + ma2.

The diameter of SWNT, dcnt, is given by L/π, where L is the circumfer-
ential length of the carbon nanotube given by

L = |ch| =
√

ch · ch = a
√

n2 + m2 + nm,

where a = 2.49 Å is the lattice constant of the honeycomb lattice. The
chiral angle θ is defined as the angle between the vectors ch and a1, with
values of θ in the range 0 ≤ |θ| ≤ 30◦, because of the hexagonal symmetry
of the honeycomb lattice. The chiral angle θ denotes the tilt angle of the
hexagons with respect to the direction of the nanotube axis, and the angle
θ specifies the chiral symmetry. The indices (n,m) can also be used to
compute the chiral angle, i.e.,

cos θ =
2n + m

2
√

n2 + m2 + nm
.

Zigzag and armchair nanotubes correspond to θ = 0◦ and θ = 30◦, respec-
tively; 0 < θ < 30◦ corresponds to chiral nanotubes.

Single-walled and multiwalled nanotubes have excellent mechanical prop-
erties, since the two-dimensional arrangement of carbon atoms in a graphene
sheet allows large out-of-plane distortions. The strength of carbon–carbon
in-plane bonds keeps the graphene sheet exceptionally strong against any
in-plane distortion or fracture. For example, the Young’s modulus of a (10,
10) SWNT is estimated to be ∝ 0.64 TPa. The density-normalized modulus
and strength of a (10, 10) SWNT are, respectively, ∝ 19 and ∝ 56 times
that of a steel wire and, respectively, ∝ 2.4 and ∝ 1.7 times that of silicon
carbide nanorods. The measured room temperature thermal conductivity
for an individual MWNT (>3000 W/mK) is greater than that of natural
diamond. Because of their excellent structural and material characteristics,
carbon nanotubes are being explored for a wide variety of applications in-
cluding nanoelectronics, microscopy, sensors, and actuators, field emission,
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nanotube-polymer composites, and many others. It is not surprising that
carbon nanotubes are also being explored for applications in nanoflows. In
particular, the transport of liquids, gases, and electrolytes through carbon
nanotubes have many applications including biomimetics, sensors, nanoflu-
idic interconnects, and many others.

13.2.2 Ion Channels in Biological Membranes
Ion channels are proteins in cell membranes (lipid bilayers) that are crucial
for shaping electrical signals and controlling diffusion and flow of ions and
fluids across cells. They provide a high conducting, hydrophilic pathway
across the hydrophobic interior of the membrane. The key features of ion
channels that give rise to their extraordinary range of biological functions
include variations in:

1. Their selectivity (what ions can pass through),

2. Their conductance (how rapidly can ions get through), and

3. Their sensitivity (how the conductance is modulated by such factors
as the chemical composition of their environment, the transmembrane
voltage, the membrane surface tension, and the chemical binding of
the ion).

Some of the biological functions of channels include signaling and com-
putation, triggers for cellular events, electrical power generation, energy
transduction, fluid pumping and filtration, chemical sensing and mechan-
otransduction.
The gating property of the ion channel:

Whenever there is a conformational change in the protein structure that
lets the channel open or close, allowing the ionic current to be turned “on”
or “off,” the channel is said to be gated, analogous to opening and closing
of a gate. Ion channels can be classified according to which chemical or
physical modulator controls their gating activity. Thus we have different
groups of channels as summarized below:

1. Ligand gated channels: Ligand gated channels open or close in re-
sponse to the binding of a small signaling molecule or “ligand.” Some
ion channels are gated by extracellular ligands and others by intra-
cellular ligands.

2. Voltage gated channels: Voltage gated channels are found in neurons
and muscle cells. They open or close in response to changes in the
voltage drop across the plasma membrane.

3. Mechanosensitive channels: These channels open or close in response
to some mechanical deformation. For example, sound waves bending
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FIGURE 13.9. A potassium channel in a lipid membrane.

the cilia-like projections on the hair cells of the inner ear open up
some type of ion channels leading to the creation of nerve impulses
that the brain interprets as sound.

Selectivity of ion channels: Ion channels are highly specific filters, allowing
only desired ions to go through the cell membrane. They can discriminate
between size and charge of the permeant molecule. For example, potassium
channels are selective to potassium but not sodium even though the lat-
ter is smaller in diameter. The potassium channel is shown in Figure 13.9.
The KcsA K+ channel is composed of four subunits, each with two trans-
membrane helical domains and a pore region. Recent structural imaging
studies by (Doyle et al., 1998) show this three-dimensional organization in
detail and have helped in understanding better the mechanism of channel
selectivity (see Figure 13.10).

Engineered ion channels have been developed to function as a single-
molecule detection system (Bayley and Cremer, 2001; Woodhouse et al.,
1999). In an applied potential, an ionic current is carried by the ions that
bathe both sides of the lipid bilayer. When the target molecule binds to the
binding site in the pore, the current is modulated. The frequency of binding
reveals the concentration of the analyte, and the duration and amplitude of
the events reveal its identity. Though engineered channels have significant
advantages including high sensitivity, wide dynamic range, and biocompat-
ibility, their lack of durability makes them reliable only in a lab setting. The
possibility of a nanoscale device that incorporates the functionality of ion
channels into artificial nanotubes and is far less complex than a biological
system has also been investigated. A review of the literature shows that
promising options for such a device that can be practically realized include
gold nanotubule membranes (Kang and Martin, 2001; Li et al., 2001), ion
beam etched silicon nitride membranes (Martin et al., 2001), and single
carbon nanotubes.
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FIGURE 13.10. An ion entering the selectivity filter of the potassium channel
embedded in a lipid bilayer.

13.2.3 Transport Through Unmodified Nanotubes
Quantitative information on fundamental modes of water transport and
transport rates have been obtained through carbon nanotubes of diameters
of about 150 nm (Sun and Crooks, 2000). As mentioned earlier, in Chapter
11, (Hummer et al., 2001) showed by molecular dynamics simulations that
water molecules enter nanotubes of as small as 8.4 Å diameter even though
carbon is hydrophobic. (Miller and Martin, 2002) showed experimentally
that it is possible to control the rate and direction of electroosmotic flow
through nanotube membranes of large diameters (120 nm). The behav-
ior of water molecules and ions through hydrophobic carbon nanotubes
is of critical importance because ion channels such as K+ channels have
their selectivity filter lined with hydrophobic residues that facilitate trans-
membrane movement of ions and water without sticking to the side wall.
However, transport of ions in these channels is stabilized by polar interac-
tions with surrounding proteins, which is a feature that the nanotube lacks.
Therefore, fundamental questions have to be answered regarding transport
of ions in an electrolytic solution through nanotubes, and in this section
we summarize some results.

We have performed MD simulations using a system consisting of the
carbon nanotube, water, and ions using GROMACS (Lindahl et al., 2001)
at a constant pressure of 1 bar and a constant temperature of 300 K. In
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some examples discussed below, a slab and functional (charge) groups are
also used. The slab consisted of neutral atoms that mimic the interior of a
hydrophobic phospholipid bilayer. The box size varied from 33 Å to 75 Å
depending on the length and diameter of the tube and was at least twice as
long as the tube length. The tube was fixed at the center of the box when
there was no slab, but had limited freedom of motion when inserted into a
slab that was held stationary. Periodic boundary conditions were applied
in all three directions. The parameters for Lennard–Jones potentials and
bonded interaction were taken from a GROMACS force field with a carbon–
carbon bond length of 1.42 Å. Values for the Lennard–Jones interaction
parameters for the nanotube (C), and water oxygen (O) were:

• σCC = 3.36 Å, εCC = 0.0969 kcal/mol,

• σOC = 3.23 Å, εOC = 0.129 kcal/mol,

and were based on a cutoff of 15 Å. Bulk SPC/E water, having atomic
charges of −0.8476e and 0.4238e on oxygen and hydrogen, respectively, was
equilibrated (300 K) and used to fill the nanotube interior. Electrostatic
interactions used the particle-mesh Ewald method with a 10-Å real-space
cutoff, a 1.5-Å reciprocal space gridding, and splines of order 4 with a 10−5

tolerance (see Section 16.1 for more details on MD simulations). Depending
on the box size, 1033 to 2970 water molecules were used to yield a constant
density of 1 g/cm3. Concentrations of KCl varied from 1 M to 1.85 M. The
slab consisted of pseudoatoms with the same Lennard–Jones parameters
as those of a lipid bilayer. The partial charges for NH+

3 and COO− were
taken from the side groups of lysine and glutamic acid respectively in the
GROMACS amino acid database. The simulation time varied between 2 ns
and 7 ns, and a time step of 2 fs was used in a leapfrog scheme.

Even though both water and molten ions seem to enter the tube spon-
taneously, when both ions and water molecules are involved, the situa-
tion could be more complex because of the possible interplay between hy-
drophilic interactions involving the ions and water and the hydrophobic
interactions involving the water and the carbon nanotube. Four sets of
simulations were performed, comprising:

1. Carbon nanotubes fixed in the center of a box in a solution of KCl,

2. Tubes fixed in water with artificial charges at the ends,

3. Asymmetrically functionalized tube in a pseudo bilayer (opposite
charge groups at either ends), and

4. Symmetrically functionalized tube (same charge groups at the ends)
in a pseudo bilayer.

The results of the above simulations are summarized below.
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FIGURE 13.11. Very low ion occupancy in a (16, 16) carbon nanotube (13.4 Å
long, 21.696 Å diameter) fixed in the center of the box with a solution of 1.85 M
KCl. There is neither an external electric field nor partial charges on the rim.

The ion occupancy (or the number of ions) inside uncapped carbon nan-
otubes of various diameters ranging from (6, 6) to (16, 16) tubes in a solu-
tion of 1.85 M KCl was tested. The tubes were fixed in the box center and
were of length 13.4 Å. For a simulation with a tube of 21.7 Å diameter,
the box had 925 water molecules and 40 potassium and chloride ions each.
Initially, the tube had 7 potassium and 6 chloride ions. Over the course
of 3 ns, the ion occupancy was observed to be largely 0 or 1, as shown
in Figure 13.11. The ions enter the tube from either end, but they do not
travel across the length of the tube.

13.2.4 Transport Through Nanotubes with Charges at the
Ends

To increase the occupancy of ions in the tube, partial charges of ±0.38e
were placed at atoms on the rim of the tube to create a dipole, the positive
charges being on the top rim and the negative charges on the bottom rim.
Nonequilibrium molecular dynamics simulations (NEMD) were performed
with the tube fixed in the center of a box of length 33 Å and an applied ex-
ternal electric field of 0.015 V/nm, which is of comparable order to that of
some ion channel membrane potentials, along the axial direction to mimic
the membrane potential. It was observed that the ion occupancy is much
higher compared to the ion occupancy in nanotubes with no charges (see
Figure 13.12). Figure 13.13 shows how the ion occupancy varies with the
diameter of the tube. An interesting observation is that the average occu-
pancy of chloride ions is higher than that of the potassium ions with a ratio
of 3:2. This could be due to the difference in water structure around the
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FIGURE 13.12. Ion occupancy in a (16, 16) carbon nanotube (13.4 Å long, 21.696
Å diameter) fixed in a solution of 1.85 M KCl with external electric field of
E = 0.015 V/nm and partial charges of ±0.38e on the rim atoms.
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FIGURE 13.13. Variation of average ion occupancy with diameter in CNT (13.4
Å long) fixed in 1.85 M KCl with an external applied electric field of 0.015 V/nm.

two ions as well as the van der Waals interaction between the ions and the
nanotube.

13.2.5 Transport Through Functionalized Nanotubes
Even though an electric field alone would drive ions into the tube, the par-
tial charge on the rim increases the sensitivity and could be used to control
the type and rate of ionic flow into the tube. This principle is the basis
of tube end functionalization. Once partial charges were shown to increase
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occupancy, the next step was to replace them with functional groups. NH+
3

and COO− were used as the functional groups. Both outer wall and end wall
chemical functionalization attachments of nanotubes have been successfully
realized in experiments (Chen et al., 2001; Chen et al., 1998; Halicioglu and
Jaffe, 2002). Functional group attachment can increase solubility and alter
nanotube properties, among other things (Sinnott, 2002). In our simula-
tions, an asymmetric functionalization of carboxylate and amino residues
was used in place of the partial charges to mimic a real ion channel at
either end. Even though functionalizing the inner wall would mimic some
ion channels more closely, end wall functionalization is more feasible than
inner wall functionalization for tubes of small diameter (Chen et al., 1998).
The functionalized carbon nanotube was then placed in a membrane-mimic
with properties similar of those of a lipid bilayer with a surrounding bath of
1.5 M KCL solution (see Figure 13.14). An electric field of 0.15 V/nm was
used to drive the ions through the tubes, and the trajectories of K+ and
Cl− ions are shown in Figure 13.15. Over the course of 2 ns of simulation
time, the chloride current was found to be much higher than the potas-
sium ion current because K+ ions are bound electrostatically to the COO−

groups at the mouth, causing an energy barrier, thereby reducing the K+

occupancy in the tube. Thus, this decorated nanotube is an example of one
possible nanotube functionalization that can lead to a modulation of the
ionic current via ion selectivity.

Symmetric functionalization can be used to selectively transport one
species. Figure 13.16 shows the trajectories of ions in a symmetrically func-
tionalized (16, 16) tube with COO− on both ends and in the middle with
protonated carbon atoms. The chloride occupancy is much larger than that
of potassium.

13.2.6 Anomalous Behavior
An interesting aspect of electrolytic transport through charged carbon nan-
otubes is the observation of anomalous behavior (Qiao and Aluru, 2003d).
Specifically, we have performed molecular dynamics simulations of elec-
troosmotic transport of NaCl solution through a 5.42 nm diameter single-
walled carbon nanotube with different surface charge densities. We observed
that if the carbon nanotube surface is negatively charged (charge density
of −0.076 C/m2), a significant amount of Na+ ion is contact adsorbed on
the nanotube wall and immobilized, resulting in negligible electroosmotic
transport. However, if the carbon nanotube surface is positively charged
(charge density of 0.076 C/m2), the contact adsorption of the Cl− ion is
moderate, and the adsorbed Cl− ions are not immobilized, thus generating
a significant electroosmotic transport and a velocity slip on the carbon nan-
otube surface. The flow is driven by an external electric field Eext, applied
along the channel in the z-direction. Because of the extremely high thermal
noise, a strong electric field was applied in our simulations so that the fluid
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FIGURE 13.14. Functionalized carbon nanotube in a bath of 1.5 M KCl.
CH2-NH3

+ is attached one per carbon ring to the top, and CH2-COO− is at-
tached at the bottom. The tube is inserted in a slab (not shown). Chloride ions
are shown in the lighter shade. Water molecules are also not shown. Chloride oc-
cupancy is higher than potassium. A buildup of potassium ions near the COO−

is also observed.
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FIGURE 13.15. Positions of individual ions (K+ on the left and Cl− on the right)
inside an end wall functionalized nanotube along the nanotube axis in a (16, 16)
tube fixed in a slab in a solution of 1.5 M KCl. The axial distance is scaled, with
a unit of 1 being the length of the tube. K+ enters from the bottom and Cl−

enters from the top. There is an external electric field of 0.15 V/nm. The rate of
chloride ion passage is higher than that of K+ ion passage, indicating a selectivity
of anions over cations.
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FIGURE 13.16. K+ trajectory (left) and Cl− trajectory (right) in a symmetrically
functionalized tube with COO− groups on both ends and protonated carbon
atoms in the center of the (16, 16) tube. The axial distance is scaled such that the
length of the tube corresponds to a unit of 1. The chloride current is much higher
than that of potassium current wherein there is asymmetric functionalization
because K+ ions are electrostatically bound to the COO− group at the mouth
of the tube. The chloride ion also has to clear a barrier created by protonated
carbon atoms in the center to reach the other end.

velocity could be retrieved with reasonable accuracy. External electric field
strengths of −0.2 V/nm and 0.2 V/nm are used for positive and negative
surface charge densities, respectively.

Figure 13.17 shows the water and ion concentration profile across the
channel for a positively charged CNT surface. A significant layering of
water, as indicated by the strong fluctuation of the water concentration,
is observed near the channel wall. The Cl− ion concentration is maximum
at a position very close to the channel wall (r = 2.34 nm), and decreases
toward the channel center. However, such a decrease is not monotonic, and
we observe a weak second concentration peak at r = 2.05 nm. It is also
observed that the Na+ ion concentration does not decrease monotonically
toward the channel wall, but has a peak located at r = 1.93 nm. Both
the second peak of Cl− ion and the peak of Na+ ion are very close to the
second concentration valley (r = 1.94 nm) of the water molecules.

Figure 13.18 shows the water and ion concentration profile across the
channel for a negatively charged CNT surface. The counterion (Na+ ion)
concentration distribution is significantly different from that observed in
the positively charged case. Specifically, we observe that:

1. The location of the counterion adsorption peak is closer to the channel
wall than the first water concentration peak, and

2. The peak concentration of the counterion is much higher than the
value observed in the positively charged surface.

Both observations are caused by the smaller size of Na+ ion compared to
that of the Cl− ion, i.e., the bare radius of a Na+ ion is smaller than that
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FIGURE 13.17. Water and ion concentration distribution across the channel for
a positively charged CNT surface.

0 1 2
Radial distance (nm)

0

10

20

Io
n 

co
nc

en
tr

at
io

n 
(M

)

Na
+

Cl
−

0

40

80

120

160

W
at

er
 c

on
ce

nt
ra

tio
n 

(M
)

Water

FIGURE 13.18. Water and ion concentration distribution across the channel for
a negatively charged CNT surface.
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FIGURE 13.19. Bulk water velocity profile across the channel for a positively
charged surface (shown as filled squares) and a negatively charged surface (shown
as filled triangles).

of a Cl− ion and a water molecule (the radii of the Na+ ion, Cl− ion, and
a water molecule are 0.095, 0.181, and 0.14 nm, respectively); hence, the
Na+ ion can approach the channel wall more closely compared to a Cl−

ion or a water molecule.
Figure 13.19 shows the bulk water velocity for positively and negatively

charged CNT surfaces. We observe that for a positively charged surface:

1. The velocity profile is flat in the central portion of the channel,

2. A significant velocity slip is observed near the channel wall, and

3. The velocity for a negatively charged surface is very small, indicating
that the bulk transport is negligible in this case.

Figure 13.20 (a) shows the typical trajectory of 8 Cl− ions during a 60
ps period. Note that the starting z-position of all 8 ions is shifted to z = 0
nm. We observe that the contact adsorbed Cl− ions are not immobilized,
since the Cl− charged surface atom interactions are not very strong. Figure
13.20 (b) shows the typical trajectory of 8 Na+ ions during a 120 ps period.
We observe that the contact adsorbed Na+ ions are immobilized because of
the stronger Na+ charged surface atom interactions. Since the movement
of Na+ ions is negligible, the driving force on the fluid is negligible. Thus,
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FIGURE 13.20. (a) Typical trajectory of Cl− ions for a positively charged surface
during a time period of 60 ps. (b) Typical trajectory of Na+ ions for a negatively
charged surface during a time period of 120 ps. The starting z−position of all
ions are shifted to z = 0 nm.

the bulk fluid velocity for a negatively charged surface is much smaller than
that observed for a positively charged surface.

The observed dependence of electroosmotic transport on the surface
charge is significantly different from the results obtained using the conven-
tional continuum theories, which predict that the electroosmotic transport
will simply reverse its direction if the surface charge density is flipped. This
anomalous dependence of electroosmotic transport on the surface charge
is mainly caused by the different adsorption behavior of the counterions,
which depends on the size of the counterion, the local electrostatic interac-
tions between ion-water and ion-charged surface atoms, and on the external
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electric field.
In summary, by investigating the behavior of water and ions (or elec-

trolytes) and their interactions in carbon nanotubes and functionalized
carbon nanotubes and other nanopores, it is possible to create nanofluidic
devices that open new opportunities for sensing, detection, and probing
matter at nanoscales.



Part III:
Simulation Techniques



14
Numerical Methods for
Continuum Simulation

Full-system simulation of microsystems typically involves simulations of
coupled electrical, mechanical, thermal, and fluid domains. Even within the
fluid domain only, in applications such as multiphase microflows, different
subdomains are required to handle the stationary and moving components.
It is clear that in order to reduce computational complexity, the numerical
discretizations employed should be both highly efficient as well as robust.
The significant geometric complexity of flows in microsystems suggests that
finite elements and boundary elements are more suitable than finite differ-
ences for efficient discretization. Because of the nonlinear effects, either
through convection or boundary conditions, boundary element methods
are also limited in their application range despite their efficiency for linear
flows. However, they have been used routinely for efficient computation of
the electrostatics. A particularly promising approach for microflows makes
use of meshless techniques, where particles are “sprinkled” almost randomly
into the flow and boundary. This approach handles the geometric complex-
ity of microflows effectively, but the issues of accuracy and efficiency have
not yet been fully resolved. As regards nonlinearities, one may argue that
at such low Reynolds numbers the convection effects should be neglected,
but in complex geometries with abrupt turns the convective acceleration
terms may be substantial, and thus they need to be taken into account.
The same is true for particulate microflows, where nonlinear effects are
important, and thus Stokesian dynamics – a very effective simulation ap-
proach – may be limited for simulation of biofluidic applications, since it
can simulate only zero Reynolds number flows. Also, flows in micronozzles
and other aerospace applications may result in large Reynolds numbers,
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exceeding one thousand!
In this chapter we present three main numerical methodologies to analyze

flows in microdomains:

• High-order finite-element (spectral element) methods for Navier–Stokes
equations. Formulations for both incompressible and compressible
flows in stationary and moving domains are presented.

• Meshless methods with random point distribution.

• The force coupling method for particulate microflows.

These methods represent three different classes of discretization philoso-
phies. They have been used with success in diverse applications of mi-
crosystems, from microfilters, valves, and mixers to self-assembly processes.
Clearly, any other discretization method based on finite-differences, finite-
elements or finite-volumes can also be used.

14.1 Spectral Element Method: The µFlow
Program

In this section we present the spectral element method (Karniadakis and
Sherwin, 1999) implemented in the program µFlow, which was used in
many examples included in this book. A summary of the capabilities of
this program or gas flows in different regimes is given in Table 14.1. This
is just an example of how a continuum-based approach can be employed to
simulate microflows, and thus the spectral element method can be replaced
by finite elements, finite volumes, or finite differences. Most of the ideas
we present next apply also to these other discretizations. The specific ca-
pabilities and issues we cover in this section are to be used as reference in
designing a similar program using other continuum-based discretizations.

In gas microflow simulations both the incompressible and the compress-
ible Navier–Stokes equations can be employed to compute the relative ef-
fects of compressibility and rarefaction. Strictly speaking, from the the-
oretical point of view, there is an inconsistency in using the incompress-
ible form of the Navier–Stokes equations with the slip boundary condition
(Aoki, 2001). In practice and for very small Reynolds numbers, the lim-
its in Knudsen number for the incompressible models are dictated by the
physics of the problem as well as by numerical stability considerations. The
first incompressible version of µFlow (I1 in Table 14.1) solves the Navier–
Stokes equations as well as the energy equation. It employs the first-order
slip (equation (2.19)) and temperature jump (equation (2.20b)) and ther-
mal creep boundary conditions. It is general for two- and three-dimensional
flows. Explicit (in time) implementation of the boundary conditions results
in a Knudsen number limit of typically Kn < 0.1. The second version of
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TABLE 14.1. Gas flow models and boundary conditions implemented in µFlow.
This program is used in many examples in this book, and it can be replaced by
other equivalent discretizations.

Flow B.C. 2-D/3-D V. Slip T. Creep T. Jump Kn limit
I1 O(Kn, Kn2) 2-D/3-D Yes Yes Yes < 0.1
I2 O(Knn) 2-D Yes assigned No < 0.5
C O(Knn) 2-D/Axi-Sym Yes Yes Yes < 0.5

incompressible µFlow (I2 in Table 14.1) employs the slip boundary con-
dition (equation (2.26)). It is stable for high Kn flows, and applicability is
restricted with the flow geometry and the validity of the slip flow model.
It does not solve the energy equation, and therefore thermal creep effects
are imposed explicitly by a prescribed tangential temperature gradient. In
the compressible version of µFlow (C in Table 14.1) the general high-order
slip boundary condition (equation (2.26)) and high-order temperature jump
boundary condition (equation (2.31)) are used. Their limitations are based
on the limitations of the slip flow theory. This version of the program is re-
stricted to shock-free flows; therefore, it is used for subsonic and shock-free
transonic flows.

The spatial discretization of µFlow is based on the spectral element
method, which is similar to the hp version of finite element methods (Kar-
niadakis and Sherwin, 1999). Typical meshes for simulation in a rough
microchannel with different types of roughness (presented in Section 4.1.4)
are shown in Figure 14.1. The two-dimensional domain is broken up into
elements similar to finite elements, but each element employs high-order
interpolants based on Legendre polynomials. The N points that determine
the interpolant correspond to locations of maxima of the Legendre poly-
nomials and include the end-points. For smooth solutions, the spatial dis-
cretization error decays exponentially to zero (spectral or p-convergence).
This means that if we double N , the error will decay by two orders of mag-
nitude. This is a much faster decay than in standard second-order methods,
which yield an error reduction by a factor of only four. In microflow simu-
lations, the spectral element method can be used efficiently by exploiting
the dual path of convergence allowed by the method. For example, in re-
gions of geometric complexity a finite element-like discretization (low N
and small-size elements) can be employed, whereas in regions of homo-
geneous geometry with steep gradients a spectral-like discretization (high
N and large-size elements) can be employed. In particular, the boundary
conditions for microflows, either for gases (Knudsen effects) or liquids (elec-
trokinetic effects) can be resolved very accurately. On the other hand, the
computational cost of the spectral element method is O(KNd+1), where
d = 2 and d = 3 for two-dimensional and three-dimensional discretizations,
respectively, and K is the number of elements. This is higher compared
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µFlow:Grids

In-Phase Channel with aspect ratio of 20 : 1

Out-Phase Channel with aspect ratio of 20 : 1

FIGURE 14.1. Two-dimensional meshes used in µFlow simulations of flow in a
rough microchannel of aspect ratio 20 : 1. The top plot shows in-phase rough-
ness, and the lower plot shows out-of-phase roughness. The domain is broken
up into large elements, and in each element a spectral expansion defined by
Gauss–Lobatto–Legendre (GLL) points (see detail) is used to represent all fields
and data (including the geometry). Here N = 12 GLL points are used in each
direction.

to the corresponding cost for standard finite element methods, but for the
same accuracy the spectral element method is more efficient.

Our objective here is to focus on the following two issues, which are very
important for microflows, instead of presenting complete discretization de-
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tails; many different algorithms can be found in (Karniadakis and Sherwin,
1999) for general incompressible and compressible flows. Specifically:

• For incompressible microflows, which are viscous-dominated, we present
the correct pressure boundary condition to supplement the con-
sistent Poisson equation for the pressure.

• For compressible flows we present the characteristic treatment of
boundary conditions, which guarantee stability and accuracy.

The efficiency of the overall algorithm is based on time-splitting of the ad-
vection and diffusion operators, which are treated with a collocation formu-
lation and Galerkin projection, respectively. The time-splitting is demon-
strated here for the one-dimensional linear advection–diffusion equation

Ut + V Ux = αUxx, (14.1)

where V is the constant advection velocity. Splitting the advection and the
diffusion terms and discretizing the time derivative, we obtain

Û − Un

∆t
= −23

12
(V Ux)n +

16
12

(V Ux)n−1 − 5
12

(V Ux)n−2, (14.2a)

Un+1 − Û

∆t
= αUn+1

xx , (14.2b)

where ∆t is the time step, Un denotes the value of U at time t, and Un+1

denotes the value of U at time t+∆t. The intermediate (predicted) state is
denoted by Û . Therefore, this splitting scheme corresponds to obtaining a
predicted field (Û) first by advection, and then correcting it with diffusion.
For enhanced accuracy and stability of the advection step we have used a
third-order Adams–Bashforth scheme. For the diffusion step we have used
the Euler backward scheme. This can easily be extended to higher-order
time-accurate schemes.

This time-splitting procedure accommodates the implementation of the
elemental interface connectivity conditions properly and efficiently. Specifi-
cally, the elemental interface connectivity conditions are handled by a char-
acteristic decomposition for the advection substep, and a direct stiffness
summation for the diffusion substep. The characteristic treatment is sta-
ble for elemental interfaces and inflow/outflow conditions for hyperbolic
problems (such as the Euler equations), and the direct stiffness summation
procedure is widely used for elemental interface conditions in parabolic
problems.

It has been demonstrated in earlier chapters that the majority of mi-
croflows (with the exception of micronozzles, Section 6.6) are in the low
Reynolds number regime (Re ≤ O(1)) due to the small characteristic di-
mensions. In some cases, the inertial terms in the Navier–Stokes equations
can be neglected, but the continuity equation for density must still be solved
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in the characteristic form. Thus, use of time-splitting is inevitable for sim-
ulating microflows with our algorithm. For creeping Stokes flow, with the
velocity rather than the characteristic dimension being small, the Mach
number becomes very small, and use of compressible algorithms becomes
inefficient. This is due to the fact that the wave speeds are dominated by
the speed of sound cs, and u � cs. In such a case we use the incompressible
version of µFlow.

14.1.1 Incompressible Flows
The most efficient way of solving the incompressible (unsteady) Navier–
Stokes equations is based on the fractional step method; see Chapter 8 in
(Karniadakis and Sherwin, 1999). It is based on the projection of the ve-
locity field obtained from the momentum equation into a divergence-free
space. The latter involves the pressure equation and corresponding bound-
ary conditions. However, the fractional step method was first proposed for
high Reynolds number flows, and therefore it should be corrected for strong
viscous effects in microflows. To this end, a consistent pressure boundary
condition should be employed, as we demonstrate next. We follow here
the work of (Karniadakis et al., 1991), where the correct pressure bound-
ary condition was employed, leading to a consistent Poisson equation with
a proper Neumann condition for the pressure. In two substeps the time-
discrete scheme is as follows: First we solve

v̂ − vn

∆t
+ (vn+1/2 · ∇)vn+1/2 =

1
2
ν∇2(v̂ + vn), (14.3a)

v̂ = 0 on ∂Ω, (14.3b)

where
vn+1/2 ≡ 23/12vn − 16/12vn−1 + 5/12vn−1,

corresponding to a third-order Adams–Bashforth scheme. In the second
substep we enforce

vn+1 − v̂
∆t

= −∇pn+1,

∇ · vn+1 = 0,

∂pn+1

∂n
= −νn · (∇ × ω)n+1 − n · v̂ on ∂Ω. (14.4)

Note that in the classical fractional step we have

∂pn+1

∂n
= 0,

which is an inviscid-type boundary condition. This can be used for high
Reynolds number flows but not for microflows. We assume here that the
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no-slip and no-penetration conditions are valid. Otherwise, the pressure
boundary condition also needs to be modified, e.g., in electroosmotic flow
with slip. Assuming now Stokes flow for simplicity, the rotational form of
the boundary condition for the pressure in equation (14.4) is equivalent to
the Laplacian form of the boundary condition

∂pn+1

∂n
= νn · ∇2vn+1 on ∂Ω. (14.5)

The rotational form, unlike the Laplacian form, satisfies the compatibility
condition (Karniadakis et al., 1991), and it also reinforces the incompress-
ibility condition, since

∇2v = ∇(∇ · v) − ∇ × ω.

In addition, it leads to a stable approximation, since the magnitude of the
boundary-divergence is directly controlled by the time step.

To illustrate the differences between the rotational (equation (14.4)) and
Laplacian (equation (14.5)) forms of the pressure boundary condition, we
consider the exact boundary condition at time step (n + 1)∆t, i.e.,

∂pn+1

∂n
= ν

[
∂Qn+1

∂n
− ωn+1

s

]
,

where we have introduced ωs = n · ∇ × ω and Q = ∇ · v. We can now
expand ωs in a Taylor series to obtain

∂Qn+1

∂n
=

1
ν

∂pn+1

∂n
+ ωn

s + ∆t
∂ωn

s

∂t
+ · · · .

Inserting the Laplacian form (equation (14.5)) in the above equation, we
obtain

∂Qn+1

∂n
∝ ∂Qn

∂n
+ ∆t

∂ωn
s

∂t
,

which shows an accumulation of divergence flux at the boundary at every
time step and therefore the possibility for instability. In contrast, if the
rotational form in equation (14.4) is used, we obtain

∂Qn+1

∂n
∝ ∆t

∂ωn
s

∂t
,

and therefore the magnitude of the boundary-divergence flux is controlled
directly by the time step. We can reduce the boundary-divergence errors
further by using a multistep approximation to represent the right-hand side
in equation (14.4):

∂pn+1

∂n
= −νn ·

Jp−1∑
q=0

βq(∇ × ω)n−q,



516 14. Numerical Methods for Continuum Simulation

where Jp is the number of previous steps from which information is used.
Following the above argument we find that

∂Qn+1

∂n
∝ (∆t)Jp ,

and therefore the boundary-divergence flux can be made arbitrarily small
by controlling the time step ∆t. Note that for the inviscid pressure bound-
ary condition

∂pn+1

∂n
= 0,

the boundary-divergence flux is O(1), independent of the size of the time
step ∆t.

To relate the boundary-divergence to the overall accuracy of the velocity
field we consider the equation that the divergence Q ≡ Qn+1 satisfies, i.e.,

Q

∆t
− γ0ν∇2Q = 0,

where we set the right-hand side to zero, since the pressure satisfies a
consistent Poisson equation, and the divergence at previous time steps
(Qn, Qn−1, . . .) is assumed zero; γ0 is a coefficient due to time-discretization
(Karniadakis et al., 1991). It is clear that there exists a numerical bound-
ary layer of thickness δ =

√
γ0ν∆t, so that Q = Qwe−s/δ, and thus the

boundary-divergence is Qw = −δ(∂Q/∂n)w. (Here s is a general coordi-
nate normal to the boundary). Similarly, from order of magnitude analysis
we have Qw = O(∂v/∂n), and therefore

v ∝ Qwδ ∝
(

∂Q

∂n

)
w

γ0ν∆t.

This relation shows that the time-differencing error of the velocity field
is an order smaller in ∆t than the corresponding error in the boundary-
divergence. For the inviscid-type pressure boundary condition, we are there-
fore limited to first-order accuracy, since the boundary-divergence flux is
O(1). However, in general, we obtain

v ∝ (∆t)Jp+1

if a high-order time integration scheme is used to advance the velocity field.
In numerical experiments, it was found in (Karniadakis et al., 1991) that
with Jp = 2 we obtain a third-order-accurate velocity field. Note that the
boundary-divergence scales as

Qw ∝ √
ν(∆t)Jp .

These heuristic arguments have been more rigorously documented in
(Karniadakis et al., 1991) and confirmed by numerical results. To demon-
strate the effect of the incorrect inviscid pressure boundary condition ver-
sus the correct rotational form in the boundary condition, we consider a
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FIGURE 14.2. Divergence of velocity field across the channel for a Stokes flow.
∆t = 10−2. The spatial discretization is based on 20 spectral elements of order 10,
which eliminates any spatial errors (Tomboulides et al., 1989). The inviscid-type
boundary condition leads to large divergence errors at the boundaries.

decaying Stokes channel flow subject to compatible initial conditions (Kar-
niadakis and Sherwin, 1999). In Figure 14.2 we plot the divergence of the
velocity field across the channel. It is seen that incorporation of the ro-
tational form of the pressure boundary condition almost eliminates the
artificial boundary layer. High-order treatment produces smaller boundary
divergence errors consistent with the aforementioned arguments.

Remark: The above pressure boundary condition assumes that the no-
penetration condition at the wall holds. However, if the surface moves per-
pendicular to its plane with velocity vw ·n, e.g., squeezed film applications
in Section 6.1, then a time-dependent term is present, i.e.,

∂p

∂n
= −νn · (∇ × ω) − ∂vw · n

∂t
on ∂Ω.

If the slip condition is applied and the nonlinear effects are nonnegligible,
then this term should also be added, appropriately, on the right-hand side
of the above equation. In addition, the boundary condition in equation
(14.3b) should be corrected appropriately.

14.1.2 Compressible Flows
We present here the two-dimensional formulation in order to discuss some
important issues associated with the interface and boundary conditions.
Both Galerkin and discontinuous Galerkin projections can be employed, but
here for simplicity we present the standard Galerkin approach. For an intro-
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duction to discontinuous Galerkin methods with emphasis on compressible
flow simulations the interested reader can consult (Cockburn et al., 2000).

The compressible Navier–Stokes equations in nondimensional flux form
are (see Section 2.2, equation (2.16))

∂

∂t

⎛⎜⎜⎝
ρ
ρu
ρv
E

⎞⎟⎟⎠+
∂

∂x

⎛⎜⎜⎝
ρu

ρu2 + p
ρuv

(E + p) · u

⎞⎟⎟⎠+
∂

∂y

⎛⎜⎜⎝
ρv
ρvu

ρv2 + p
(E + p) · v

⎞⎟⎟⎠

=
1

Re
∂

∂x

⎛⎜⎜⎜⎝
0

2
3 µ (2∂u

∂x − ∂v
∂y )

µ (∂u
∂y + ∂v

∂x )
2
3 µ (2∂u

∂x − ∂v
∂y ) · u + µ (∂u

∂y + ∂v
∂x ) · v + kγ

Pr · ∂T
∂x

⎞⎟⎟⎟⎠

+
1

Re
∂

∂y

⎛⎜⎜⎜⎝
0

µ (∂u
∂y + ∂v

∂x)
2
3 µ (2∂v

∂y − ∂u
∂x )

2
3 µ (2∂v

∂y − ∂u
∂x ) · v + µ (∂u

∂y + ∂v
∂x) · u + kγ

Pr · ∂T
∂y

⎞⎟⎟⎟⎠ ,

where k is the thermal conductivity and γ is the ratio of specific heats. The
unknowns are the conservative variables, i.e.,

(ρ, ρu, ρv, E).

The energy is defined as

E = ρ[T + 1/2(u2 + v2)],

and the pressure p is obtained from the equation of state

p = (γ − 1)ρT.

The nondimensionalization is done with respect to reference velocity, den-
sity, and length scales (i.e., U0, ρ0, l0), and the reference temperature is
chosen as T0 = U2

0 /Cv; here, Cv is the constant-volume specific heat. The
dynamic viscosity µ is related to temperature by Sutherland’s law

µ

µ0
=
(

T

T0

)3/2
T0 + S1

T + S1
,

where µ0 is the viscosity at the reference temperature T0, and S1 is a
constant, which for air is

S1 = 110K.
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It is convenient to simplify this equation to a simpler power law of the form

µ

µ0
=
(

T

T0

)ω

, with 0.5 < ω < 1.

Sutherland’s law can be approximated at high temperature values from the
equation above and ω → 0.5, whereas for low temperature values ω → 1.

Interface and Boundary Conditions

Following the time-splitting algorithm of equation (14.1), we first consider
the inviscid (Euler) equations in order to present a proper treatment of
interface conditions. Specifically, the Euler equations are solved by a spec-
tral (Gauss–Lobatto–Legendre) collocation formulation (Karniadakis and
Sherwin, 1999). The flow domain is divided into elements, where colloca-
tion discretization is applied in each element locally. This procedure brings
up the issue of elemental interface treatment. Since the Euler equations
are hyperbolic, simple averaging at elemental interfaces is inappropriate.
Instead, a characteristic treatment is necessary, as we explain next.

Specifically, the interface problem is solved in three main steps:

• linearization of the Euler equations,

• characteristic decomposition, and

• characteristic treatment.

Let us consider the following one-dimensional system of nonlinear hyper-
bolic partial differential equations in conservative form:

∂W

∂t
+

∂F (W )
∂x

= 0. (14.6)

We first define the Jacobian A by

A(W ) =
∂F

∂W
,

and then we linearize the equations around some known state o, yielding
the following form:

∂W

∂t
+ A(Wo)

∂W

∂x
= 0. (14.7)

Here A(Wo) is a constant N × N matrix (N is the dimension of the vector
W ). We then transform the linearized equations into the characteristic form

∂Ri

∂t
+ λi

∂Ri

∂x
= 0, (14.8)
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where λi are the eigenvalues of A(Wo), and Ri(W,Wo) are the character-
istic variables. For Euler equations the eigenvalues and the corresponding
characteristic variables are

λ1 = λ2 = uo · n, λ3 = uo · n − cs, λ4 = uo · n + cs,

R1 = ρ
c2
s

γ − 1
−
(

1
2
ρuo · uo − m · uo + E

)
,

R2 = (ρu − ρuo)ny − (ρv − ρvo)nx,

R3 = −(m − ρuo) · n +
(

γ − 1
cs

)(
1
2
ρuo · uo − m · uo + E

)
,

R4 = (m − ρuo) · n +
(

γ − 1
cs

)(
1
2
ρuo · uo − m · uo + E

)
.

Here cs is the local speed of sound, m is the momentum flux vector (m =
(ρu, ρv)), E is the energy (E = ρT +0.5ρ(u2 + v2)), uo is the Roe-averaged
velocity vector, and n is the surface normal, with nx and ny the x and y
components of the surface normal, respectively. The subscript o corresponds
to the Roe-averaged states obtained by averaging two states (denoted by
left, L, and right, R) as follows:

uo =
√

ρLuL +
√

ρRuR√
ρL +

√
ρR

; vo =
√

ρLvL +
√

ρRvR√
ρL +

√
ρR

.

The characteristic treatment is performed as follows: Each elemental in-
terface is treated by analyzing the sign of the eigenvalues, λi. We define the
right (R) and the left (L) states at an interface depending on the local flow
direction. We linearize the equations around the Roe-averaged states ob-
tained from the right and left values. If the sign of the eigenvalue is positive,
we choose the characteristic variables from the left calculated state, and if
the sign of the eigenvalue is negative, we choose the characteristic variables
from the right calculated state. Once the characteristic variables are ob-
tained, we convert them back to the conservative variables and update the
elemental interface values as follows:

ρ =
(

γ − 1
c2
s

)[
R1 +

c

γ − 1

(
R3 + R4

2

)]
,

ρu =
(

R4 − R3

2
nx + R2ny

)
+ (ρuo),

ρv =
(

R4 − R3

2
ny − R2nx

)
+ (ρvo),

E =
(

cs

γ − 1

)(
R3 + R4

2

)
− 1

2
ρuo · uo + (ρu)uo + (ρv)vo.
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The above elemental interface treatment is one-dimensional and can be
used in multiple dimensions by directional splitting. However, it cannot be
used directly at element corners. To this end, we apply the treatment sug-
gested in (Kopriva, 1991). The problem is divided into two one-dimensional
problems. The corresponding Riemann invariants are

R+ = u +
2

γ − 1
cs; R− = u − 2

γ − 1
cs,

S+ = v +
2

γ − 1
cs; S− = v − 2

γ − 1
cs.

We assume locally isentropic flow in the neighborhood of the corner and
obtain the entropy value of the corner from the element that the flow is
leaving. We also define a domain of influence, and choose the calculated
values of Riemann invariants from the corresponding elements, which lie
in the domain of dependence. Figure 14.3 shows the domain of influence
at the corners of four elements. For this specific example, since the flow is
leaving element 1, we get the entropy and Riemann invariants of R+ and
S+ from element 1. The Riemann invariants R− and S− are obtained from
elements 2 and 4, respectively. The flow variables are calculated as follows:

u =
1
2
(
R+ + R−) ; v =

1
2
(
S+ + S−) ,

cs =
γ − 1

4
(
R+ − R− + S+ − S−)− cup; s = sup,

where the subscript “up” denotes the upstream values (i.e., values from the
element that the flow is leaving). Assuming ideal gas and locally isentropic
flow, the state of the gas is fixed by solving the local pressure and density
using speed of sound and the entropy

p

ργ
= constant; c2

s = γp/ρ,

and thus the conservative variables and local temperature can be calcu-
lated.

Next, we discuss inflow and outflow boundary conditions. The Euler
equations require specification of three inflow and one outflow boundary
condition for subsonic flow. However, these boundary conditions are not
known ahead of time. Therefore, we select predicted inlet and exit stages,
and perform again a characteristic decomposition. The only difference is
that we select the left state as the specified inlet state and the right state
as the calculated values at the inlet. Then, we perform the characteristic
decomposition. Similarly at exit, the predicted state is specified as the right
state, and the calculated state is chosen as the left state.

The wall boundary conditions must be designed to reflect incident pres-
sure waves with high-order accuracy, resulting in minimal numerical en-
tropy creation near the boundaries. One implementation is to impose zero
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FIGURE 14.3. The domain of influence at a corner of four elements, and corre-
sponding Riemann invariants.

normal velocity at the surface by modifying the local pressure to account
for the changes in energy while the density remains unchanged. For a ho-
mentropic (i.e., constant entropy in the entire flow domain) inviscid flow,
simulation with µFlow resulted in change in the entropy near the wall by
≈ 10−6. This is an indication of the very low values of numerical diffu-
sion of the spectral element discretization combined with the characteristic
approach for the boundary conditions.

Turning now to the full compressible Navier–Stokes equations, we need
to treat properly the viscous fluxes at elemental interfaces as well as the no-
slip or slip condition. First, unlike the spatial discretization for the Euler
equations, where we employ a spectral collocation approach, for the vis-
cous contributions we employ a standard Galerkin projection (Karniadakis
and Sherwin, 1999). Specifically, the viscous diffusion terms in the mo-
mentum equation are treated by the chain rule of differentiation, because
the unknowns are the conservative variables, not the primitive variables,
i.e., (ρu, ρv, E), not (u, v, T ). The Laplacian of temperature is treated by
assuming that T is also an independent variable. This seems necessary;
otherwise, the spatial derivatives of T must include spatial derivatives of
terms obtained from the chain rule of differentiation of the energy relation
(E = ρ[T + 1/2(u2 + v2)]). The elemental interface is treated by applying
a direct stiffness summation procedure as in standard finite element meth-
ods (Karniadakis and Sherwin, 1999). Specifically, simple addition of all
contributions at nodes at the interface is performed to ensure continuity of
the variables.

No-slip and Dirichlet temperature boundary conditions are implemented
at the walls. It is possible to specify Dirichlet boundary conditions at the
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inflow and outflow, which can be a function of time and space. Use of the
characteristic treatment is essential for the stability of the inviscid part of
the equations, and viscous boundary conditions must be designed to main-
tain minimal wave reflection from the outflow and inflow boundaries. At
the outflow we let the pressure be infinitesimally smaller than the value
calculated from the inviscid step. This treatment is usually enough to re-
lease the pressure waves with minimal reflection from the boundaries for
the viscous substep.

For steady internal flows, specifying the back-pressure at the exit of
the domains constitutes a difficulty, since the characteristic decomposition
method is based on ρ, (ρu), (ρv), and E. In the implementation of back-
pressure we have used the calculated values of velocity and temperature at
the exit of the channel. Then, the back-pressure is imposed indirectly by
calculating the density corresponding to the calculated temperature and
the desired back-pressure. This implementation results in uniform back-
pressure with good accuracy and eliminates numerical boundary layers at
the channel exit.

Implementation of Slip Boundary Conditions

The numerical implementation of equations (2.19) and (2.20b) is somewhat
complicated due to the mixed-type (Robin) boundary conditions. An ex-
plicit (in time) implementation of equation (2.19) at time level (n + 1)∆t
(neglecting for simplicity the temperature term) is as follows:

Un+1
s − Uw =

J−1∑
i=0

αi

[
2 − σv

σv
(Kn)

∂U

∂n

]n−i

s

+ O(∆tJ), (14.9)

where αi denotes the weights necessary to obtain the time-accuracy O(∆tJ )
with ∆t the time step. However, explicit treatment of boundary conditions
is an extrapolation process, and thus it is numerically unstable, e.g., for
relatively high values of Knudsen number.

We have determined through numerical experimentation that the overall
Navier–Stokes solution with explicitly implemented velocity slip boundary
conditions becomes unstable when the calculated slip amount (Us −Uw) at
a certain time step is sufficiently large to cause a sudden change of the sign
of wall vorticity in the next time step. This empirical finding can be readily
justified by considering the following argument. For a linear Couette flow
(see Chapter 3) with driving velocity U0 and local gas velocity U1 at a
distance (∆y) away from the wall, it is possible to approximate (to first-
order accuracy and for σv = 1) the velocity slip Us as

Us − U0 = Kn
U1 − U0

∆y
.
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For no change in the sign of vorticity at the wall, we require that (U0−U1) >
(U0 − Us) = − Kn U1−U0

∆y ; this is satisfied if ∆y > Kn (in nondimensional
form). This limit is a significant restriction, especially for spectral-based
methods such as the one we use in our discretization, where collocation
points are clustered very rapidly close to the boundaries. Therefore, spectral
and other high-order methods that typically provide high-order accuracy
are subject to numerical instabilities of this form.

We have found that the new boundary conditions (equations (2.26) and
(2.31)) are numerically stable for relatively higher values of Knudsen num-
ber. Their applications are usually restricted by the flow geometry. For
example, the limit of applicability of (2.26) and (2.31) in a channel flow
is Kn = 0.5. Since these boundary conditions obtain the slip information,
one mean free path away from the surface, meaningful results are achieved
when λ < h/2, where h is the channel thickness.

14.1.3 Verification Example: Resolution of the Electric
Double Layer

As an example of how to verify resolution-independence with the spectral
element discretization, we consider the numerical solution of the Poisson–
Boltzmann equation (7.4) and the incompressible Navier–Stokes equations
(7.12); see Section 7.1. The weak (variational) form of equation (7.4) is
solved via a Galerkin projection. A Newton iteration strategy for a variable-
coefficient Helmholtz equation is employed to treat the exponential nonlin-
earity in the following form:[∇2 − αβ cosh(α (ψ∗)n)

]
(ψ∗)n+1 = β sinh(α (ψ∗)n)

−αβ (ψ∗)n cosh(α (ψ∗)n),

where (n) denotes the iteration number. The solution from the previous
iteration is used for evaluation of the nonlinear forcing function, and the
resulting system is solved until the residual is reduced beyond a certain
level (typically 10−13).

The numerical solution of equation (7.4) is challenging due to the expo-
nential nonlinearity associated with the hyperbolic sine function. In par-
ticular, for large values of α the nonlinear forcing increases rapidly for any
value of β. Also, for very large values of β with α = 1, similar difficulties
exist. Accurate resolution of the problem requires high grid density within
the EDL. A typical mesh for the α = 1 and β = 10,000 case is presented
in Figure 14.4 (right). It consists of 22 elements across the channel width,
spaced in biased fashion with minimum width of 0.001h very near the walls.
Once the mesh topology is fixed, the modal expansion order N is increased
to resolve the problem further. For rectangular elements shown in Figure
14.4, N = 2 corresponds to a quadratic solution for ψ∗, typically employed
in finite element discretizations.
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FIGURE 14.4. EDL resolution: Exponential decay of the L2 error norm as a func-
tion of the spectral expansion order N (left). Sample grid used to resolve sharp
electric double layer consists of 22 elements across the channel, and each element
is discretized with Nth-order modal expansion per direction (right). The quadra-
ture points for su-elemental discretization at select elements are also shown. Sim-
ulations are performed for β = 10,000.

The numerical accuracy of the results is determined by using equation
(7.9). In Figure 14.4 (left) the variation of the L2 error norm as a function
of the modal expansion order N is presented. The results are obtained for
the mesh topology shown on the right plot. Convergence results for α = 1,
β = 10,000 and α = 10, β = 10,000 are shown. The L2 error norm is defined
as

L2 =

[∫
Ω R (ψ∗)2 dΩ

]1/2∫
Ω dΩ

,

where Ω represents the entire flow domain. The residual of equation (7.9)
is denoted by R, and it is given by

R(ψm) = ψm − 4
α

tanh−1
[
tanh

(α

4

)
exp

(
−
√

αβ η∗
)]

,

where the superscript m denotes the numerical results. The convergence
results presented in Figure 14.4 show exponential decay of the discretization
error with increased N , typical of the spectral/hp element methodology.
This high-resolution capability enables accurate resolution of the electric
double layers with substantially fewer elements compared to the low-order
finite element discretizations. Figure 14.4 shows exponential convergence
for both α = 1 and α = 10.

14.1.4 Moving Domains
The spectral element method that we described in the previous sections
is a suitable method for simulations in moving domains, which are often
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encountered in microsystems, e.g., valves and mixers or other microac-
tuators with moving parts. A robust treatment of the moving boundary
requirement can be achieved by the Arbitrary Lagrangian Eulerian (ALE)
formulation, where the arbitrary motion and acceleration of the moving do-
main can be handled independently of the fluid motion. The ALE method
was developed in the early 1970s for fluid flow problems in arbitrarily mov-
ing domains (Hirt et al., 1974). Finite-element-based ALE formulations
for incompressible viscous flows to study dynamic fluid structure interac-
tion problems were developed by (Donea et al., 1982), and (Nomura and
Hughes, 1992). Further advances in the ALE method, especially in improve-
ment of the mesh velocities for moving boundaries, have been developed by
(Lohner and Yang, 1996). The first spectral element ALE algorithm using
quadrilateral spectral elements to study free surface flows was developed
by (Ho, 1989). In the following we present an ALE algorithm for solving
the two-dimensional incompressible Navier–Stokes and heat transfer/scalar
transport equations in moving domains (Beskok and Warburton, 2001).

ALE Formulation

In this section, we consider domains that are arbitrarily moving in time.
This is not a trivial generalization, because we have to discretize the time-
dependent operators as well as the time-dependent fields. In the ALE for-
mulation, the local elemental operators are formed at every time step. This
is necessary in order to handle the mesh shape variations in time. The high-
order ALE formulation implemented with spectral element discretizations
exhibits the usual advantages of low dispersion and robustness to large de-
formations, as we will demonstrate below. This, in turn, implies that no
remeshing is required during the simulation, which frequently dominates
the computational cost.

We consider the nondimensionalized incompressible Navier–Stokes equa-
tions with a passively advected scalar field θ(x, t). The domain is time-
dependent (Ω(t)), and it is moving with velocity w. The governing equa-
tions are

∂v

∂t
+ (v − w) · ∇v = −∇p +

1
Re

∇2v + f in Ω(t),

∂θ

∂t
+ (v − w) · ∇θ =

1
Pe

∇2θ in Ω(t),

∇ · v = 0 in Ω(t).

The Peclet number Pe is the Reynolds number Re multiplied by either
the Prandtl number Pr or the Schmidt number Sc for heat transfer or
species transport applications, respectively. For heat transfer problems, the
nondimensional temperature is given as

θ =
T − T0

∆T
,
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where T0 is a reference temperature and ∆T is a predefined or desired
temperature difference. For the species transport applications, θ can be
identified as the concentration density normalized by a reference value.

To discretize the equations in time we use a high-order stiffly stable
scheme (see (Karniadakis and Sherwin, 1999) in two passes:
Pass I

v̂ =
Ji−1∑
q=0

αqv
n−q + ∆t

[
Je−1∑
q=0

βqN(vn−q,wn−q) + fn+1

]
,

θ̂ =
Ji−1∑
q=0

αqθ
n−q + ∆t(

Je−1∑
q=0

βqÑ(vn−q,wn−q, θn−q),

xn+1 =
Ji−1∑
q=0

αqxn−q + ∆t(
Je−1∑
q=0

βqwn−q),

∂pn+1

∂n
= n ·

[
−

Je−1∑
q=0

βqN(vn−q,wn−q)

]
− n ·

[
1

Re

Je−1∑
q=0

βq[∇ × (∇ × vn−q)]

]
.

PassII

∇2pn+1 = ∇ ·
(

v̂

∆t

)
,

∇2vn+1 − γ0Re
∆t

vn+1 = −Re
∆t

(v̂ − ∆t∇pn+1),

∇2θn+1 − γ0Pe
∆t

θn+1 = − Pe
∆t

θ̂,

∇2wn+1 = 0,

where x(X, t) are the coordinates of the moving frame, relative to a fixed
set of coordinates X, and

N(v,w) = (v − w) · ∇v,

Ñ(v,w, θ) = (v − w) · ∇θ.

In the first pass all steps are explicit and computed using the values of
θ, v,w, which are computed at the quadrature points. In the second pass
all steps are computed implicitly. This scheme is of first order in time, but
second-order schemes can be constructed based on staggered algorithms
or predictor–corrector methods. The constants αq, βq, γ0 are integration
weights (see Table 6.1 in (Karniadakis and Sherwin, 1999)). The mesh
velocity is arbitrary, and can be specified explicitly or can be obtained
from a Laplace equation, following (Ho, 1989). A better approach is to
employ a variable coefficient in the Laplacian to provide enhanced smooth-
ing, thereby preventing sudden distortions in the mesh (Lohner and Yang,
1996).
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A: B: C: D:

E: F: G: H:

FIGURE 14.5. Meshes (A–H) consist of three quadrilaterals and two triangles,
which are progressively skewed by shifting the interior vertex. Case H results in
element minimum angle of 10−3 degrees. Convergence plots for all these cases are
shown in Figure 14.6.

We now consider the effect of the skewness of the physical elements on
the accuracy of the projection operator without any mesh motion. In Fig-
ure 14.5, we examine eight different meshes consisting of triangles and
quadrilaterals. We start by projecting sin(πx) sin(πy) onto a square do-
main covered with standard elements. Figure 14.6 shows the results for the
modal basis, demonstrating that exponential convergence is achieved. Sub-
sequently, we make the elements covering the domain progressively more
skewed in the B-H meshes. In each case, we see that exponential conver-
gence is achieved, even when one of the triangular elements has a minimum
angle of about 10−3 degrees (See case H in Figure 14.5). Hence, the accu-
racy of the method is extremely robust for badly shaped elements. Also, we
note that the similarity of the convergence curves demonstrates that the
rate of exponential convergence is unaffected by the skewing for meshes A
through G.

Example

Applications of the spectral element ALE approach to microfluidic mixing
have been published in (Kumar and Beskok, 2002; Sert and Beskok, 2002).
Here we present some results for mixing of two fluids of the same density in
a microchannel by stirring the fluid with an oscillating cylinder. Although
detailed mixing studies require three-dimensional simulations, the follow-
ing results are intended to demonstrate the capability of this approach, and
they are limited to two-dimensional analysis. Two fluids are introduced at
the channel entrance from separate inlets as shown in Figure 14.7 (a). Fully
developed flow conditions are assumed at the inlet with parabolic velocity
distribution and identical flow rates. The top stream carries a scalar quan-
tity with concentration of θ = 1, and the stream entering from the bottom
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FIGURE 14.6. Convergence in the L2 norm for modal projection of the function
u = sin(πx) sin(πy) on meshes A through H shown in Figure 14.5.

has a concentration of θ = 0. The zero-flux boundary conditions for the
species are used on the channel side-walls and on the cylinder surface. At
the channel exit fully developed conditions are assumed, and the pressure
is set to zero (gauge pressure) at the outflow.

The computational domain and the corresponding spectral/hp element
discretization are shown in Figure 14.7. Here a 6th-order modal expansion
is employed in each direction inside each element with 32 quadrilateral and
314 triangular elements. The total number of elements is fixed during a
simulation. The elemental discretization is shown by the thick lines, and
quadrature points are shown by the thin lines (a). Figure 14.7 (b) shows the
deformed mesh at the cylinder minimum position, caused by the cylinder
oscillation. The dashed–dotted line shows the center of the channel. The
elements near the cylinder experience large deformations. Based on the
test results in Figures 14.5 and 14.6, we expect the unstructured hp mesh
to sustain high-order accuracy under large deformations. Thus, we do not
have to remesh the computational domain for most practical applications.

The oscillating cylinder perturbs the two streams with concentration den-
sities of θ = 1 and θ = 0, and promotes mixing. Mixing of the two streams
depends on the Schmidt number of the fluid, Sc = ν/D. The ratio of fluid
convection to mass diffusion is determined by the Peclet number (based on
the mass diffusion coefficient D). In this case the Peclet number is defined
as Pe = Re Sc. Since mixing is enhanced by the oscillating cylinder, the
Strouhal number St = U/ωd (defined by the maximum inlet velocity U ,
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(b)

(a)

Inlet 1

Inlet 2

FIGURE 14.7. The mesh consists of 32 quadrilateral and 314 triangular elements.
The elemental discretization is shown by thick lines, and the quadrature points
for 6th-order modal expansion are shown by the thin lines. The undeformed mesh
is shown in (a). The deformed mesh at the cylinder minimum position, due to
the cylinder oscillation, is shown in (b).

the cylinder diameter d, and oscillation frequency ω) also becomes impor-
tant in characterizing the micromixer. In this study Re = 100, St = 0.6
and Sc = 5. The concentration contours are shown in Figure 14.8.

Mixing simulations for large Schmidt number flows are computationally
expensive for the following reasons. First, the concentration gradients at
the interface increase with the Schmidt number, requiring enhanced spatial
resolution. Second, mixing is an unsteady process, and it requires long-time
integration. Therefore, for large Schmidt number flows we need to increase
both the spatial resolution and the integration time of the simulation. For
such cases, accumulation of the phase and dissipation errors can become
problematic. The spectral/hp methods, exhibiting exponential reduction in
the time rate of growth of phase and dissipation errors may be effective for
such simulations. More details on mixing at microscales can be found in
Chapter 9.



FIGURE 14.8. Four snapshots for mixing promoted by an oscillating cylinder.
The concentration density contours are shown for Re = 100, Sc = 5, St = 0.6 A
total of 346 spectral/hp elements with 8th order modal expansion are used in the
simulations. Arrows show the direction of motion of the cylinder.

14.2 Meshless Methods

The spectral element method presented above is a typical Galerkin method,
and in the limit of linear basis it reduces to the standard finite element
method. The high-order equivalent of the finite volume method, which
would be more appropriate for compressible high-speed flows, e.g., in mi-
cronozzles, is a discontinuous Galerkin method with a spectral basis, see
(Cockburn et al., 2000), and references therein. Both classes of methods
and their low-order counterparts are based on a mesh that consists of tri-
angles, quadrilaterals in two dimensions, and tetrahedra, hexahedra, etc.
in three dimensions.

A popular research topic in numerical methods has been the development
of meshless methods as alternatives to the traditional finite element, finite
volume, and finite difference methods. The traditional methods all require
some connectivity knowledge a priori, such as the generation of a mesh,
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whereas the aim of meshless methods is to sprinkle only a set of points or
nodes covering the computational domain, with no connectivity informa-
tion required among the set of points. Multiphysics (specifically involving
problems with moving domains) and multiscale analysis can be simplified
by meshless techniques, since we deal with only nodes or points instead
of a mesh. Meshless techniques are also appealing because of their poten-
tial in adaptive techniques, where a user can simply add more points in a
particular region to obtain more accurate results.

Extensive research has been conducted in the area of meshless methods;
see (Belytschko et al., 1996; Li and Liu, 2002; Atluri, 2002; Li, 2003), for
an overview. Broadly defined, meshless methods contain two key steps:

• Construction of meshless approximation functions and their deriva-
tives, and

• Meshless discretization of the governing partial differential equations.

Least-squares (Lancaster and Salkauskas, 1981), kernel based (Mon-
aghan, 1992), and radial basis function (Hardy, 1971; Kansa, 1990a;
Kansa, 1990b) approaches are three techniques that have gained consid-
erable attention for construction of meshless approximation functions (see
(Jin et al., 2001), for a detailed discussion on least-squares and kernel ap-
proximations). The meshless discretization can be categorized into three
classes:

1. Cell integration (Belytschko et al., 1994),

2. Local point integration (Atluri, 2002), and

3. Point collocation (Liszka et al., 1996; Aluru, 2000).

Both interior and exterior domain problems (using a boundary-only formu-
lation such as the boundary-integral formulation) encountered in microsys-
tems have been solved with meshless methods. In this section we provide
a brief overview of the application of meshless methods for interior (or
domain) and boundary-only problems.

14.2.1 Domain Simulation
A summary of the various meshless techniques that have been developed
for domain simulation is provided in Table 14.2. Here we outline the key
steps in the finite cloud method and show its application to some examples.

The meshless finite cloud method uses a fixed kernel technique to con-
struct the interpolation functions and a point collocation technique to dis-
cretize the governing partial differential equations. In a two-dimensional
fixed kernel approach, given a scattered set of points as shown in Figure
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TABLE 14.2. A summary of meshless methods developed for domain simula-
tion. See (Belytschko et al., 1996; Li and Liu, 2002; Atluri, 2002; Li, 2003), for
references to the various methods listed here.

Point
collocation

Cell integration
Galerkin

Local domain in-
tegration
Galerkin

Moving
least-
squares

Finite point
method

Element-
free Galerkin
method, Par-
tition of unity
finite element
method

Meshless
local Petrov–
Galerkin
method,
Method of fi-
nite spheres

Fixed least-
squares

Generalized fi-
nite difference
method,
h-p meshless
cloud method,
Finite point
method

Diffuse element
method

Reproducing
kernel

Finite cloud
method

Reproducing
kernel particle
method

Fixed kernel Finite cloud
method

Radial basis Many
techniques

Many
techniques

Cloud

Node

Cloud

Star point

FIGURE 14.9. Distribution of random points and typical clouds in the meshless
method.

14.9, an approximation ua(x, y) to an unknown u(x, y) is given by

ua(x, y) =
∫

Ω
C(x, y, xk − s, yk − t)φ(xk − s, yk − t)u(s, t) ds dt, (14.10)

where φ is the kernel function centered at (xk, yk), which is usually taken
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as a cubic spline or a Gaussian function. For the results shown here, φ is
taken as a modified Gaussian function, i.e.,

φ(x − xI) =
w(x − xI)

1 − w(x − xI) + ε̂
,

where ε̂ is a small number that is used to avoid the singularity of φ(x−xI);
typically, ε̂ is chosen to be 10−5. Also, w(x − xI) is a normalized Gaussian
function given by

w(z) =

⎧⎪⎨⎪⎩
e−(z/c)2−e−(dmi/c)2

1−e−(dmi/c)2 , z ≤ dmi,

0, z > dmi,

where dmi is the support size of a cloud (see Figure 14.9), and c is the
dilation parameter, which is taken as dmi/2. In two dimensions, the kernel
function is constructed as

φ(x − xI , y − yI) = φ(x − xI)φ(y − yI).

Also, C(x, y, xk − s, yk − t) is the correction function, which is given by

C(x, y, xk − s, yk − t) = pT (xk − s, yk − t)c(x, y), (14.11)

pT = {p1, p2, . . . , pm} is an m × 1 vector of basis functions. In two dimen-
sions, a quadratic basis vector is given by

pT =
[
1, xk − s, yk − t, (xk − s)2, (xk − s)(yk − t), (yk − t)2

]
, m = 6.

Finally, c(x, y) is an m × 1 vector of unknown correction function coeffi-
cients. The correction function coefficients are computed by satisfying the
consistency conditions, i.e.,∫

Ω
pT (xk−s, yk−t)c(x, y)φ(xk−s, yk−t)pi(s, t)dsdt = pi(x, y), i = 1, . . . ,m.

, In discrete form, the above equation can be written as
NP∑
I=1

pT (xk − xI , yk − yI)c(x, y)φ(xk − xI , yk − yI)pi(xI , yI)∆VI = pi(x, y),

i = 1, . . . ,m,

where NP is the number of points in the domain and ∆VI is the nodal vol-
ume of node I (the nodal volumes can be simply set to unity; see (Aluru and
Li, 2001; Aluru, 2000), for a more detailed discussion on nodal volumes).
The above equation can be written in matrix form as

Mc(x, y) = p(x, y),

Mij =
NP∑
I=1

pj(xk − xI , yk − yI)φ(xk − xI , yk − yI)pi(xI , yI)∆VI ,

i, j = 1, . . . ,m.



14.2 Meshless Methods 535

From the above equation, the unknown correction function coefficients are
computed as

c(x, y) = M−1p(x, y).

Since M is a small matrix (6 × 6 matrix for a quadratic basis in 2-D, i.e.,
m = 6), the correction function coefficients can be computed using either
a direct solver or any iterative solver. Substituting the correction function
coefficients into equation (14.11) and employing a discrete approximation
for equation (14.10), we obtain

ua(x, y) =
NP∑
I=1

NI(x, y)ûI ,

where ûI is the nodal parameter for node I, and NI(x, y) is the fixed kernel
meshless interpolation function defined as

NI(x, y) = pT (x, y)M−T p(xk − xI , yk − yI)φ(xk − xI , yk − yI)∆VI .

The interpolation functions obtained from the above equation are multival-
ued. A unique set of interpolation functions can be constructed by comput-
ing NI(xk, yk), I = 1, 2, . . . ,NP, when the kernel is centered at (xk, yk) (see
(Aluru and Li, 2001), for more details). The derivatives of the unknown u
are approximated by

∂ua(x, y)
∂x

=
NP∑
I=1

∂NI(x, y)
∂x

ûI ,

∂ua(x, y)
∂y

=
NP∑
I=1

∂NI(x, y)
∂y

ûI ,

∂2ua(x, y)
∂x2 =

NP∑
I=1

∂2NI(x, y)
∂x2 ûI ,

∂2ua(x, y)
∂y2 =

NP∑
I=1

∂2NI(x, y)
∂y2 ûI ,

∂2ua(x, y)
∂x∂y

=
NP∑
I=1

∂2NI(x, y)
∂x∂y

ûI .

The finite cloud method uses a point collocation technique (Aluru, 2000)
to discretize the governing equations. Point collocation is the easiest way
to discretize the governing equations. In a point collocation approach, the
governing equations for a physical problem can be written in the following
general form:

L(u(x, y)) = f(x, y) in Ω,

G(u(x, y)) = g(x, y) on Γg,

H(u(x, y)) = h(x, y) on Γh,
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FIGURE 14.10. Meshless method: Uniform (left) and random (right) point dis-
tribution.

where Ω is the domain, Γg is the portion of the boundary on which Dirich-
let boundary conditions are specified, Γh is the portion of the boundary
on which Neumann boundary conditions are specified, and L, G, and H
are the differential, Dirichlet, and Neumann operators, respectively. The
boundary of the domain is given by Γ = Γg ∪ Γh. After the meshless ap-
proximation functions are constructed, for each interior node, the point
collocation technique simply substitutes the approximated unknown into
the governing equations. For nodes with prescribed boundary conditions
the approximate solution or the derivative of the approximate solution is
substituted into the given Dirichlet or Neumann-type boundary conditions,
respectively. Therefore, the discretized governing equations are given by

L(ua) = f(x, y) for points in Ω,

G(ua) = g(x, y) for points on Γg,

H(ua) = h(x, y) for points on Γh.

In the following we present an example of meshless simulation.

Flow in a Driven Cavity: As an application of the finite cloud method to
fluids, a typical flow solution using the incompressible Navier–Stokes equa-
tions and no-slip condition is presented here. We consider a square cavity
of dimensions 1 × 1 mm with the top wall moving at constant velocity cor-
responding to Re = 3.2. The two-dimensional Navier–Stokes equations are
discretized in collocation fashion. Two different node distributions are em-
ployed as shown in Figure 14.10. In the first one, 961 points are distributed
uniformly in the cavity. In the second case, 961 points are distributed ran-
domly in the cavity. The corresponding velocity vectors are shown in Figure
14.11. Examination of velocity profiles at different locations shows negligi-
ble differences in the two solutions.
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FIGURE 14.11. Velocity vectors of flow in a driven cavity: Uniform (left) and
random (right) point distribution.

In summary, domain meshless methods are attractive alternatives to tra-
ditional numerical methods. The implementation of boundary conditions
in Galerkin-based meshless methods has some difficulties, but a number
of approaches have been suggested to overcome these difficulties (see, e.g.,
(Li and Liu, 2002), and references therein). The collocation meshless meth-
ods can impose the boundary conditions exactly, but the robustness of
the method can be an issue for random distribution of points. This issue
has been addressed in (Jin et al., 2004), but more progress is desirable.
The construction of approximation functions is more expensive in meshless
methods compared to the cost associated with construction of interpola-
tion functions in the finite element method. The integration cost in Galerkin
meshless methods is more expensive. Galerkin meshless methods can be a
few times slower (typically about 5 times) than finite element methods.
Collocation meshless methods are much faster, since no numerical integra-
tions are involved. However, they may need more points, and as mentioned
above, the robustness needs to be improved. For a quadratic basis in 2-D,
the collocation meshless method has been shown to converge quadratically.
Even though not much work has been published on time-stepping schemes
in meshless methods, much of the published literature on time-stepping
schemes for finite difference and finite element methods is applicable to
meshless methods.

14.2.2 Boundary-Only Simulation
The key idea in boundary-only simulation is to discretize only the boundary
of the problem. For linear and exterior problems (infinite domain problems),
where there is a well-defined Green’s function, boundary integral formula-
tions are attractive, since they need only the discretization of a surface. The
discretization of a surface into a mesh can, however, be quite involved for
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TABLE 14.3. A summary of various boundary-only meshless methods. See (Li,
2003), for references to the various methods listed here.

Boundary inte-
gral
collocation

Dual reciprocal
collocation

Boundary local
domain
discretization

Moving
least-squares

Boundary node
method

Local boundary
integral equa-
tion method,
Meshless local
Petrov-
Galerkin
method, Hy-
brid boundary
node method

Fixed
least-squares

Boundary cloud
method

Boundary
point
interpolation

Boundary point
interpolation
method

Radial ba-
sis function
approximation

Boundary Knot
Method

complicated surfaces. In meshless boundary-only methods, the basic idea
is to combine boundary-integral formulations with meshless approximation
and discretization. A summary of the various boundary-only methods that
have been developed is given in Table 14.3. In this section, we provide
an overview of the boundary cloud method method and its application to
solving the Stokes equations.

The various least-squares and kernel approaches that have been discussed
in the context of domain meshless methods can be applied to compute the
approximation functions for boundary-only meshless methods. However,
instead of Cartesian coordinates one needs to use the cyclic (for 2-D prob-
lems where the boundary is one-dimensional) or curvilinear coordinates
(for 3-D problems where the boundary is two-dimensional) to overcome
singularity issues in the moment matrix. The boundary cloud method uses
a varying basis approach (Li and Aluru, 2003) and Cartesian coordinates
to compute the approximate functions. In a varying basis approach, the
unknown u(x, y) is approximated by

u(x, y) = pT
v (x, y)bt, (14.12)

where pv is the varying base interpolating polynomial and bt is the un-
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FIGURE 14.12. Definition of singular and nonsingular cloud.

known coefficient vector for point t. To construct the varying basis interpo-
lation functions, clouds are classified into two types: singular and nonsingu-
lar. When all the points inside a cloud lie along a straight line, the cloud is
defined as singular; otherwise, it is nonsingular. As shown in Figure 14.12,
the cloud of point 1 is singular, and the cloud for point 2 is nonsingular,
since the points do not lie along a straight line. Using a linear polynomial
basis, the base interpolating polynomial is given by

pT
v (x, y) =

⎧⎨⎩
[
1 x y

]
m = 3 (nonsingular cloud),

[
1 x

]
or
[
1 y

]
m = 2 (singular cloud).

For a point t, the unknown coefficient vector bt is computed by minimizing

Jt =
NP∑
i=1

wi(xt, yt)
[
pT

v (xi, yi)bt − ûi

]2
,

where NP is the number of nodes, wi(xt, yt) is the weighting function cen-
tered at (xt, yt) and evaluated at node i, whose coordinates are (xi, yi),
and ûi is a nodal parameter. Once the unknown coefficient vector (bt) is
computed, the approximation for the unknown u(x, y) in equation (14.12)
is defined. Numerical integrations in the boundary cloud method are im-
plemented using the standard cell structure and Gaussian quadrature.

The application of the boundary cloud method to the Stokes equations
(see Chapter 2 for a discussion on the Stokes equations) is now discussed.
The boundary integral equation of the Stokes equations without body forces
can be written as (Phan et al., 2002)

cik(x)ui(x) =
∫

∂B

[Uik(x,y)σij(y) − Wijk(x,y)ui(y)]nj(y)dS, (14.13)
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where i, j, k = 1, 2; cik is the corner tensor, nj is the unit outward normal
at ∂B; ui is velocity; Uik and Wijk are the kernel tensors; σij = −pδij +
µ(ui,j + uj,i) is the stress tensor, and x, y are the source point and field
point, respectively. For 2-D problems, ∂B is the boundary curve defining
the body B. The kernel tensors in equation (14.13) for 2-D Stokes flow are
given by

Uik = − 1
4πµ

[δikln(r) − r,ir,k],

Wijk = − 1
πr

r,ir,jr,k,

where δik is the Kronecker delta function, r = ‖y − x‖, r,i = ri/r, and
ri = xi(y) − xi(x).

In the above equations, Uik,Wijk → ∞ as r → 0, and the integral is
singular. Thus, regularization of equation (14.13) is necessary. Using the
linear and constant modes given in (Mukherjee, 2000), we obtain

0 = −
∫

∂B

Wijk(x,y)[ui(y) − ui(x) − ui,p(x)(xp(y) − xp(x))]nj(y)dS

+
∫

∂B

Uik(x,y) [σij(y) − σij(x)]nj(y)dS, (14.14)

where p = 1, 2. If the velocity and the stress are sufficiently smooth, the
singularity in equation (14.14) is removed. Therefore, the integration can
be evaluated using Gaussian quadrature schemes.

For the numerical implementation, the velocity and the traction are ap-
proximated in each cloud by the varying base interpolating polynomial as
described above (Li and Aluru, 2003), and can be written in a general form
as

uk(y) =
NP∑
I=1

NI(y)ûI
k

and

τk(y) =
NP∑
I=1

NI(y)τ̂ I
k ,

where k = 1,2, τk is the traction, ûI
k and τ̂ I

k are the nodal parameters,
NI(y) is the approximation function, and NP is the number of points.

The above approximations and their derivatives are substituted into
equation (14.14). In order to evaluate the integrals in equation (14.14),
the boundary is decomposed into cells, and equation (14.14) is satisfied on
every boundary node. By using Gaussian quadrature and looping over all
the boundary nodes, equation (14.14) can be written in matrix form

Aû + Bτ̂ = 0,
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FIGURE 14.13. Sketch of Stokes flow through a step channel. Also shown is the
inlet velocity.

where A and B are 2NP × 2NP matrices, and û and τ̂ are 2NP vectors.
After applying the boundary conditions, the unknowns on the boundary
nodes can be calculated.

As an example, the results for a step flow are presented here. The ge-
ometry of the channel is shown in Figure 14.13. The velocity at the inlet
is uniformly distributed; the value of velocity u is 1 unit/s. The point dis-
tribution on the boundary is shown in Figure 14.14. The velocity at the
interior nodes is computed by using the boundary integral equations. The
computed x-component of the velocity across line AB and at the outflow
are shown in Figure 14.15. The results from the boundary cloud method
match well with the results obtained from the finite element method.

In summary, boundary-only formulations are more efficient for linear
problems with a known Green’s function(s), since they eliminate the need
to discretize the entire domain. Meshless boundary-only formulations fur-
ther improve the efficiency by eliminating the need for a mesh (a scattered
set of points is used to discretize the boundary) on the boundary. Typ-
ically, the meshless boundary-only formulation is a factor of two slower
than the boundary element method. However, the error obtained with the
meshless boundary-only formulation is lower than the error obtained with
the boundary element method for the same point distribution. Meshless
boundary-only formulations are relatively new approaches compared to
meshless domain formulations. As a result, a complete mathematical anal-
ysis of the boundary-only formulations is not yet available. The extension
of boundary element methods or meshless boundary-only methods to un-
steady methods can be quite involved.
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FIGURE 14.15. Comparison between the boundary cloud method (BCM) and
the finite element method (FEM) for the x-velocity profiles (a) along line AB;
(b) at the outflow.

14.3 Particulate Microflows

Here we consider numerical approaches for simulating particulate microflows
in the applications described in chapter 1 (see Figures 1.5, 1.6) and also
in self-assembly applications; see Section 13.1. There are a number of ap-
proaches in dealing with particulate flows based on direct but computation-
ally expensive methods such as the front tracking technique of (Tryggvason
et al., 1998); the ALE (Arbitrary Lagrangian Eulerian) method, see Section
14.1.4 and (Johnson and Tezduyar, 1996); and the fictitious domain method
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(DLM) (Glowinsky et al., 1999). A mesoscopic method based on the lattice–
Boltzmann equation has been developed by (Ladd, 1994a; Ladd, 1994b);
we discuss this method in some detail in Section 15.5. Also, a stochas-
tic molecular dynamics approach, the dissipative particle dynamics (DPD)
method, can be used, especially for dense systems; See section 16.4. At low
Reynolds numbers, the Stokesian dynamics approach has been developed
by (Brady and Bossis, 1988), which deals effectively with the lubrication
forces in particle–particle and particle–wall interactions.

The complexity of dynamics of a particulate flow depends on the volume
fraction occupied by the particles relative to the total volume, defined as

α =
∑

i NiVp,i

V
,

where V is the total volume, Vp,i is the particle volume, and Ni, is the
number of particles present in volume Vp,i. For α ≤ 10−3 the particulate
flow is dilute, but for α ≥ 10−3 strong fluid-dynamic interactions and
particle collisions occur.

To model particulate microflows accurately, the full Navier–Stokes equa-
tions need to be employed; otherwise, important phenomena such as the
wake behind the particles are inaccurately represented. The wake influences
the history of the particle’s trajectory. Additionally, convective inertia in-
fluences the vorticity transport, resulting in the faster decay of the so-called
Basset history force. In the following we first review some classical results
on hydrodynamic interactions between spheres, and subsequently we focus
on the force coupling method, a particularly fast and easy to implement
modeling approach for particulate flows.

14.3.1 Hydrodynamic Forces on Spheres
We first discuss some classical semianalytical results for a single sphere,
and subsequently we present known results for hydrodynamic interactions
between spherical particles, and between particles and solid walls. We as-
sume that the flow is either in the Stokes or in the low Reynolds number
regime.

For a steady motion of an isolated particle, modeled as a sphere, the drag
force is given by

FD =
1
2
CDρfπa2|V − U∞|(V − U∞),

where V is the particle velocity, U∞ is the undisturbed flow at the particle’s
center, CD is the drag coefficient, ρf is the fluid density, and a is the particle
radius. Semiempirical expressions for the drag coefficient have been given
by (Clift et al., 1978) in the form

CD = φ(Rep)CSS
D ,
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where CSS
D = 24

Rep
is the steady Stokes drag coefficient. Here,

Rep =
2a|V − U∞|

ν
,

and the correction φ(Rep) is obtained from a best-fit to experimental data:

φ(Rep) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1 + 3

16Rep for Rep < 10−2,

1 + 0.315Re0.82−0.05 log Rep
p for 10−2 ≤ Rep < 20,

1 + 0.1935Re0.6305
p for 20 ≤ Rep < 260.

However, in an unsteady flow even in the limit of the Stokes flow, the
above semiempirical relations are not valid. The problem of a single sphere
in nonuniform unsteady flow was first solved by (Maxey and Riley, 1983)
assuming a no-slip boundary condition at the particle surface. The initial
slip condition was originally discussed in (Maxey, 1993), and subsequently
it was introduced in the equation of motion (Michaelides, 1997); it states
that

Vi �= U∞
i +

a2

6
∂2U∞

i

∂x2
j

,

so the complete particle equation of motion is

mp
dVi

dt
= (mp − mf )gi + mf

DU∞
i

Dt

−mf

2
d

dt

(
Vi − U∞

i − a2

10
∂2U∞

i

∂x2
j

)

−6πµa

(
Vi − U∞

i − a2

6
∂2U∞

i

∂x2
j

)

−6πµa2
∫ t

0

1√
πν(t − s)

d

ds

(
Vi − U∞

i − a2

6
∂2U∞

i

∂x2
j

)
ds

−6πaµ

(
Vi − U∞

i − ∂2U∞
i

dx2
j

)(
1√
πνt

)
.

Here mp and mf are the particle mass and fluid mass respectively, and the
convective total derivatives are denoted by D

Dt for the flow and d
dt for the

particle (Maxey and Riley, 1983).
The second-derivative terms are corrections due to the flow curvature.

The last term is due to initial slip velocity, and the term before the last
one is the Basset history force, which is associated with diffusion generated
at the particle surface. A more general expression valid for small but finite
particle Reynolds number was derived by (Lovalenti and Brady, 1993),
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who considered also the slip effects and enhanced the Basset history term
with a long-time correction. This equation was later extended in (Mei and
Adrian, 1992), to particle Reynolds numbers up to 100, again introducing
convection to the history term associated with the vorticity transport from
the particle surface onto the bulk of the fluid. It is clear from this work that
convective inertia is very important even at very small scales and cannot
be neglected in microflows, as the numerical and experimental results of
(Lomholt, 2000) have also shown.

We now discuss hydrodynamic interactions between two particles in
Stokes flow, which generally scale as the inverse of the distance between
their centers. First, we consider a particle interacting with a wall, and
subsequently we will present results for particle–particle interactions.

An analytical solution for drag force on a sphere moving perpendicular
to a plane wall was obtained by (Goldman et al., 1967) in the form of
an infinite series solution. Using regression techniques, (Bevan and Prieve,
2000) developed the following rational function approximation:

FD =
6πµV a

f(h)
,

f(h) =
6(h/a)2 + 2(h/a)

6(h/a)2 + 9(h/a) + 2
,

where a is the particle radius, h is the particle–surface separation distance,
and V is the particle velocity. In the asymptotic limits the above relation
gives

lim
h→∞

fe(h) → 1, lim
h→0

fe(h) → h/a.

An analytical solution for drag force on a sphere moving parallel to a
plane wall was obtained in (O’Neill and Majumdar, 1970). A rational func-
tion approximation for this solution is given by

FD =
6πµV a

f(h)
,

f(h) =
368(h/a)3 + 559(h/a)2 + 81(h/a)
368(h/a)3 + 779(h/a)2 + 250(h/a)

.

In the asymptotic limits the above relation gives

lim
h→∞

fe(h) → 1, lim
h→0

fe(h) → 0.324.

Hydrodynamic interaction of a particle near a flat surface also affects its
diffusion characteristics. The particle diffusion in the translational direction
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(parallel) to the wall is given as

D(h) =
kBT

6πµa
g(h),

g(h) =
368(h/a)3 + 559(h/a)2 + 81(h/a)
368(h/a)3 + 779(h/a)2 + 250(h/a)

,

and the hindered particle diffusion in the normal direction to the wall is
given as (Bevan and Prieve, 2000)

D(h) =
kBT

6πµa
g(h),

g(h) =
6(h/a)2 + 2(h/a)

6(h/a)2 + 9(h/a) + 2
,

where h is the particle–wall distance.

We now consider particle—particle interactions. Relative motion of two
spheres toward each other, squeezing flow, was solved in (O’Neill and Ma-
jumdar, 1970). A rational function approximation of drag force for this case
is given by

FD =
6πµV a

f(h)
,

f(h) =
54(h/a)3 + 71(h/a)2 + 8(h/a)

54(h/a)3 + 154(h/a)2 + 60(h/a) + 4
,

where h is the separation distance between the two spheres. In the asymp-
totic limits the above relation gives

lim
h→∞

fe(h) → 1, lim
h→0

fe(h) → 2h/a.

Collective motion of two spheres with the same velocity V parallel to
their line of centers so that there is no relative velocity between them
was solved analytically in (Stimson and Jeffery, 1926). A rational function
approximation of drag force for this case is given by

FD =
6πµV a

f(h)
,

f(h) =
2(h/a)3 + 14(h/a)2 + 31(h/a)

2(h/a)3 + 11(h/a)2 + 20(h/a) + 4
,

where h is the separation distance between the two spheres. In the asymp-
totic limits of h → 0 and h → ∞, the above relation gives

lim
h→∞

fe(h) → 1, lim
h→0

fe(h) → 1.55.
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The relative motion of two spheres with the velocity ±V perpendicular
to their line of centers was solved by the multiple reflection method ana-
lytically (O’Neill and Majumdar, 1970). A rational function approximation
of the drag force for this case is given by

FD =
6πµV a

f(h)
,

f(h) =
3433(h/a)2 + 4815(h/a) + 67
3433(h/a)2 + 2591(h/a) + 31

,

where h is the separation distance between the two spheres. In the asymp-
totic limits of h → 0 and h → ∞, the above relation gives

lim
h→∞

fe(h) → 1, lim
h→0

fe(h) → 2.17.

Collective motion of two spheres with the same velocity V perpendicular
to their line of centers was obtained by (O’Neill and Majumdar, 1970). A
rational function approximation of drag force for this case is given by

FD =
6πµV a

f(h)
,

f(h) =
−31(h/a)3 + 8275(h/a)2 + 14720(h/a) + 45
−31(h/a)3 + 8252(h/a)2 + 20843(h/a) + 62

,

where h is the separation distance between the two spheres. In the asymp-
totic limits the above relation gives

lim
h→∞

fe(h) → 1, lim
h→0

fe(h) → 0.725.

The rational function approximations for the drag force, presented above,
are valid for very specific particle/surface configurations. In 1976, Batche-
lor combined all of these two-body hydrodynamic problems and specified
particle interactions in a tensor form. This related the velocity and force
field vectors via the mobility tensor (Batchelor, 1976). This treatment en-
abled development of Stokesian dynamics algorithms (Brady and Bossis,
1988).

14.3.2 The Force Coupling Method (FCM)
For a dilute limit with volume fraction much smaller than 10−3, particulate
microflows can be modeled by simply adding a source term of the form

Sp = −
0∑
n

Fn
i δ(x − Y n)
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FIGURE 14.16. Comparison of FCM against results from direct numerical simu-
lation (SEM) for flow past an array of spheres. The particle Reynolds number Rep

is plotted against the force Reynolds number, Ref , the latter being proportional
to the drag coefficient. (Courtesy of G. Dent.)

on the right-hand side of the Navier–Stokes equations, where the force on
each particle is

Fn
i = mp

dVi(Y n)
dt

and Y n is the vector coordinate associated with the particle’s center of
mass; also, δ(x−Y n) is the Dirac delta function. This is the so-called point-
force model, which is not resolvable in numerical simulations of Navier–
Stokes equations, and the results depend on the implementation details of
the numerical scheme employed. It is used formally in Stokesian dynamics,
but the corresponding equations are solved analytically; it has also been
used in earlier gas–solid flows, e.g., dusty gases. The point-force approach
does not directly take into account the finite particle size or interactions of
particles in the flow. For example, this approach cannot capture the experi-
mentally observed phenomena associated with acceleration of particles such
as the DKT (drafting–kissing–tumbling) event. This phenomenon refers to
nonlinear interactions between two spheres where the trailing sphere is first
drawn into the wake of the leading sphere, it touches it, and then overtakes
the leading sphere by tumbling around it (Fortes et al., 1987).

For a dense particulate microflow where the size of the particle becomes
comparable with the characteristic length of the domain, the above descrip-
tion may be of very limited use. On the other hand, computing in great
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detail all the pair collisions is a computationally formidable task (John-
son and Tezduyar, 1996). To this end, we describe next the force coupling
method (FCM), which was developed by Maxey and his students (Maxey
et al., 1997; Maxey and Dent, 1998; Maxey and Patel, 2001). It was used
and validated for particulate microflows with great success in (Lomholt,
2000; Liu et al., 2002). In FCM, the same stationary mesh is used through-
out the simulation, and in combination with the spectral element method
we described earlier it gives very accurate results (Liu, 2004). A compari-
son of the overall accuracy of FCM for an array of spheres is shown in Fig-
ure 14.16. The comparison is against a direct numerical simulation using
the spectral element method in computations performed by (Dent, 1999).
A very good agreement is achieved even at relatively high Rep and this
holds for quite dense particulate flows, e.g., up to 20% concentration. Typ-
ically, in particulate microflows the particle Reynolds number is small, e.g.,
Rep ≤ 10.

The basic idea of the FCM is to model the disturbance flow via a cal-
ibrated multipole expansion modifying the Navier–Stokes equation. The
particles are virtual, and the slip or no-slip boundary conditions on their
surface is only approximately satisfied. This alleviates the severe numerical
stiffness of the problem associated with exact boundary condition enforce-
ment on many moving surfaces. The modified Navier–Stokes equations are
then

∂ui

∂t
+ uj

∂ui

∂xj
= − 1

ρf
∇p + ν∇2ui

+
1
ρf

∑
n

Fn
i ∆(x − Yn;σ)

+
1
ρf

∑
n

Fn
ij

∂Θ(x − Y n;σD)
∂xj

. (14.15)

The first extra source term on the right is associated with a monopole
contribution caused by a virtual particle that occupies a finite localized
region defined by the Gaussian envelope

∆(x − Y n, σ) =
1

(2πσ2)3/2 exp
[
− (x − Yn)2

2σ2

]
.

The length scale σ is related to the size of the particle, i.e., radius a, as
follows (Maxey and Patel, 2001):

σ =
a√
π

.

This choice corresponds to a particle having velocity

Vi(t) = ũi(Y, t),
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where the latter is a volume-averaged velocity obtained from the convolu-
tion

ũi =
∫

ui(x, t)∆(x − Y, σ)d3x,

and ui(x, t) denotes the flow field computed from the Navier–Stokes equa-
tions. Note that if more particles are present, the particle interaction is
already included in ui(t) and therefore in the particle velocity Vi(t). The
volume-averaged velocity ensures that

• The mass of particles is conserved; see (Maxey and Dent, 1998), and

• A consistent energy balance exists between the potential energy cor-
responding to the settling of the particle and fluid viscous dissipation;
see (Maxey and Patel, 2001).

In essence, the convolution procedure represents a filtering process of the
small scales, which are energetically insignificant, and thus they do not
affect the particle motion. The magnitude of the monopole Fn

i represents
the force on the fluid by particle n, and it can be computed from the
equations of the motion of the particle

mp
dVi

dt
= FB

i + FH
i ,

where FB
i includes all body forces, e.g., gravity or electromagnetic forces,

and FH
i is the force from the fluid on the particle. Since flow inertia is

already included in FCM, it has to be subtracted from the particle inertia.
The force monopole strength is therefore

Fn
i = −(mn

p − mf )
dV n

i

dt
+ FB

i .

For example, if gravity is the only body force, then

FB
i = (ρp − ρf )V n

p gi,

where V n
p is the volume occupied by particle n.

The last term in the FCM governing equations (14.15) is associated with
the dipole contribution (Kim and Karrila, 1991). It is caused by two dif-
ferent effects:

• an antisymmetric part, which is due to torque exerted on the fluid by
particle n, and

• a symmetric part, the stresslet, which corresponds to the rate of strain
tensor.

The formulation of the force dipole effect ensures that the angular mo-
mentum/kinetic budget is consistently related to the work done by any
torque and that the stresslet term does not impart net work on the flow.



14.3 Particulate Microflows 551

The envelope Θ(x, σD) employed for the dipole contribution is also a
Gaussian envelope but with a different width, characterized by the length
scale σD, i.e.,

Θ(x, σD) = ∆(x, σD).

This length scale is determined by matching the particle angular velocity
found from the convolution

Ω̃i =
1
2

∫
ωi(x)Θ(x − YσD)d3x,

with the angular velocity of a fixed sphere in an unbounded quiescent flow
of vorticity ωi; see (Kim and Karrila, 1991), and also (Lomholt, 2000). This
matching results in

σD =
a

3
√

6
√

π
.

The total force dipole strength is the sum of the contributions due to the
torque and due to stresslet, and is of the form

Fn
ij = F

n(s)
ij +

1
2
εijkTn

k ,

where Tn
k is the torque acting on the fluid due to either an external torque

on the particle or the effects of moment of intertia of the particle. Often
this term is zero or negligible. Also, F

n(s)
ij is the stresslet and is adjusted

so that the condition

Ẽn
ij =

∫
EijΘ(x − Y, σD)d3x

is zero for each particle, where

Eij =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
.

In the context of Stokes’s flow for an isolated particle, the torque needed
to maintain the rotation of a sphere with angular velocity Ω is

T = 8πa3µΩ.

For a sphere placed in an external flow U∞ that has a uniform rate of
strain E∞

ij , the symmetric force dipole needed to neutralize this is

F s
ij =

20
3

πµa3E∞
ij .

Combining the above equations, we obtain

Fn
ij = ρfνVp(3Ωij + 5E∗

ij).
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The torque term is
Ωij = εijkΩp

k,

where εijk is the tensorial index and Ωp
k is the angular velocity of particle

k. The stresslet contribution is defined implicitly by assuming that the
average rate of strain is zero, since the particles are not allowed to deform.
To this end, we obtain E∗

ij from the convolution

E∗n
ij =

∫
E∞

ij Θ(x − Yn, σD)d3x,

where

E∞
ij =

1
2

(
∂U∞

i

∂xj
+

∂U∞
j

∂xi

)
is the strain tensor of the undisturbed flow field.

The details of the implementation were presented by (Lomholt, 2000),
who employed an iterative procedure to impose the constraint of zero aver-
age strain rate. A more direct approach would be to consider the mobility
matrix, which is the inverse of an influence matrix, and can be constructed
from the linear response to multiunit pulses. This, however, may be compu-
tationally expensive, but hybrid approaches can be followed that combine
efficiency and accuracy. A robust and simple to implement approach is the
penalty method developed in (Liu, 2004).

To complete FCM, we need to update the locations of the virtual particles
Y n from

dYi

dt
= Vi,

and following an explicit (third-order Adams–Bashforth) time-stepping
scheme we obtain

Y k+1
i − Y k

i

∆t
=

23
12

V k
i − 16

12
V k−1

i +
5
12

V k−2
i .

Here k refers to the time level, and ∆t is the time step used. Note that in
FCM we have V k

i = ũk
i .

FCM has been studied systematically by (Lomholt, 2000), who compared
it with experimental results for one, two, and three particles. In Figure 14.17
we plot the results of Lomholt for a flow in a channel with two particles
interacting, with gravity the body force. The DTK process revealed by
the experiments of (Fortes et al., 1987) was reproduced in experiments
described in (Lomholt, 2000). We see that very good agreement for the
particles, trajectory is obtained with the FCM predictions for this strongly
nonlinear interaction.

In the following, we compare the accuracy of FCM to the accuracy of
direct numerical simulation (DNS) and to the distributed Lagrange mul-
tiplier (DLM) methods for a flow past a microsphere. All discretizations
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FIGURE 14.17. Particle trajectories in (left) streamwise-normal directions and
(right) streamwise-spanwise directions. Comparison of FCM predictions (lines)
and experimental results (symbols). The geometry is a channel of width 10 mm
with the walls located at x2 = ±5 mm. The particle Reynolds number is 1.71
for the leading particle (triangle) and 1.60 for the trailing particle (circle). All
particles have the same radius of 1 mm. (Courtesy of S. Lomholt.)

are based on spectral elements. By DNS we mean that we enforce the no-
slip boundary condition on the particle directly as a Dirichlet condition.
We consider the prototype problem of a flow past a sphere inside a three-
dimensional channel. The sphere is located near one wall of the channel,
which has length 15, height 7, and width 7. The origin of the coordinate
system is located at the center of the channel, so that the flow domain
covers −7.5 ≤ x ≤ 7.5, −3.5 ≤ y ≤ 3.5, and −3.5 ≤ z ≤ 3.5. A sphere
of radius R = 1 is placed near the lower channel wall with its center at
(x0, y0, z0) = (0,−1.5, 0). The fluid density and viscosity are chosen to be
ρf = 1.0 and ν = 1.0, respectively. Periodic conditions are imposed in the
x- and z-directions, and no-slip conditions are applied on the two walls
of the channel. The flow is driven by a constant force in the x-direction,
F = 2ν

h2 , where h is the channel half-width.
The spectral DLM simulations employ Fourier expansions in the x- and

z-directions and a spectral element discretization in the y-direction (Dong
et al., 2004). Distributed Lagrange multipliers are used to impose the zero-
flow constraint inside the sphere. The “collocation points” consist of the
flow grid points lying inside the sphere and intersection points between the
surface of the sphere and the underlying flow grid lines. On the boundary
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FIGURE 14.18. Sphere off center: comparison of velocity profiles between spec-
tral DLM, DNS, and FCM at three streamwise locations at Reynolds number
Re = 1.55 (based on the channel center line maximum velocity and sphere diam-
eter). Left: streamwise velocity. Right: wall-normal velocity.

collocation points the flow velocities are obtained via the spectral element
interpolation procedure. In the FCM calculations a restoring force and
torque are computed via a penalty method to keep the sphere from moving
and rotating in the channel. The restoring force and torque are then used
as the force monopole strength and dipole strength, respectively.

In Figure 14.18 we plot the streamwise (left figure) and wall-normal
(right figure) velocity profiles at three downstream locations, x = 0, R, and
2R, computed with all three methods. All three methods agree with one
another quite well in the region far away from the sphere (x = 2R). Closer
to the sphere surface and inside the sphere, the spectral DLM results are in
good agreement with DNS results, while larger discrepancies between FCM
and DNS results are observed in these regions. Due to asymmetry in the
configuration, the flow exerts a torque and a lift force on the sphere. The
coefficients for the drag and lift forces on the sphere and the torque with
respect to the z-axis computed with all three methods are summarized
in Table 14.4. FCM overpredicts the drag force on the sphere by about
6%. However, given the small number of elements, FCM simulations have
produced lift and torque values that are in quite good agreement with
DNS. FCM is a very fast method and scales favorably for a large number
of particles. Even in this application with a single sphere, FCM was one
to two orders of magnitude faster than DNS or DLM; the latter was as
expensive as DNS. The drag and lift forces produced by spectral DLM are
in good agreement with DNS results; the errors are within 2%. It is noted
that poorly resolved regions on the surface of the sphere could affect the
accuracy of the torque in DLM. For example, if the boundary collocation
points consist only of intersection points between the sphere surface and the
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Elements/Grid CD CL CT

DNS 4608(5th order) 33.932 1.236 5.064
4608(7th order) 33.929 1.236 5.066
4608(8th order) 33.929 1.236 5.066

FCM 360(4th order) 35.122 1.274 4.872
360(6th order) 35.175 1.274 5.251
360(8th order) 35.306 1.276 5.251

DLM 96 × 60 × 96 33.475 1.172 5.236
96 × 72 × 96 33.533 1.211 5.157
96 × 84 × 96 33.724 1.210 5.175

TABLE 14.4. Drag coefficient (CD = Drag
1
2 ρf U2

md
, where Um is the maximum velocity

at the center line of the channel and d is the cylinder diameter), lift coefficient
(CL = lift

1
2 ρf U2

md
), and the torque coefficient (CT = Torque

1
4 ρf U2

md2 ) on the sphere near
one wall in a 3D channel.
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FIGURE 14.19. Relative distance between the centers of two particles in a mi-
crochannel. The circles denote experimental results, the solid line FCM predic-
tions with monopole and dipole terms, and the dotted line FCM predictions with
monopole terms only. (Courtesy of S. Lomholt.)

vertical grid lines, the torque will be overpredicted on the grid 96×84×96
(with a value 5.37).
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Collisions and Contact Forces

In Section 14.3.1 we have presented several semianalytical results that can
be used to analyze the hydrodynamic interactions between the particles as
they approach each other, i.e., in the lubrication limit. The effect of lubrica-
tion is not explicitly included in FCM, and it has to be added via separate
models (Dance and Maxey, 2003). For exact representation of both the
lubrication effect and the far-field interaction, an infinite number of mul-
tipoles is required, which will make the method inefficient. However, it is
interesting to note the effect of the dipole term in this context. Lomholt
(2000) has studied this effect by considering the dynamics of the two par-
ticles when they touch, using FCM simulations with both the monopole
and the dipole terms. A typical result is shown in Figure 14.19, where
we see that the inclusion of the dipole contribution improves the results.
Specifically, the trajectories of the two particles show a general agreement
with the experimental results, but the numerical results, obtained with the
monopole term show only erroneous overlap between the two particles. On
the other hand, the inclusion of the dipole term leads to particles that touch
but do not overlap; similar conclusions were reached in the simulations pre-
sented in (Liu et al., 2002). Including force dipoles helps to represent the
particle–particle interactions in the flow more accurately, but they are not
adequate on their own. Lubrication forces still play a role in low Reynolds
number flows. At finite Reynolds numbers collisions do occur, and contact
forces need to be explicitly included, e.g., elastic forces that cause particles
to bounce. To this end, simple models based on the interparticle distance
to mimic the elastic collision effect can be employed, as we show next.

The component of the repulsion force on particle j from particle k in the
xi direction is computed as:

F jk
i = C1

xj
i − xk

i

2a

(
(1.05 × 2a)2 − r2

C2 × 4a2

)n

, (14.16)

where C1 = 1.02 and C2 = 0.011 are two constants to adjust the strength
of the force; a is the particle radius; xj

i − xk
i is the difference in the xi

coordinates of particles j and k; and r is the distance between the two
particles. The exponent n can take the value 2 or 3 for weak or strong
repulsions, respectively. The collision force works in pairs, i.e., Fjk = −Fkj .
The cut-off distance is 5% of the diameter away from the particle surface. In
other words, when two particles are within distance 1.05×2a, the repulsion
force will be automatically activated on each particle to push them away.
For example, when r ≥ 1.05 × 2a, this repulsive force will remain 0. When
r = 1.025 × 2a, it is about 6 times the Stokes drag force. When r = 2a, it
equals 43.8×6πaµ. It is much stronger when particles start going into each
other. Figure 14.20 shows the magnitude of the repulsion force versus the
distance between two particles for n = 2 and n = 3.

A collision model of the same nature is developed for particles bumping
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FIGURE 14.20. Normalized elastic collision force versus normalized distance.

into a wall at an angle. Here the force is no longer pairwise, but instead it
acts on the particle from the wall. This force is computed as

F j
i = C1

xj
i − Yi

a

(
(1.05a)2 − r2

C2a2

)n

, (14.17)

where Yi is the coordinate of the contact point at a wall, and r is the
distance from the center of particle j to the contact point. The same cut-
off distance is used here. The contact point is found by a loop over the
grid points on the wall and picking the point closest to the center of the
particle.

Nonspherical Particles

The FCM as described above is valid for spherical nondeformed particles.
However, extensions to ellipsoid particles are straightforward by setting the
two axes of the ellipsoid thus:

a1 =
√

πσ1 and a2 =
√

πσ2.

In this case the Gaussian envelope is ellipsoidal with extent defined by σ1
and σ2. The expressions above are obtained by matching the settling veloc-
ities in FCM with the analytically obtained settling velocities for ellipsoid
particles. The additional computational complexity is that equations of an-
gular momentum have to be solved for each particle in order to obtain the
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required orientation information. Moreover, arbitrary shapes, e.g., particle
chains or clusters, can be modeled as an assembly of ellipsoids with ap-
propriate linkages and constraints in their motion. The important point is
that the same governing equations for the microflow are valid, i.e., equa-
tion (14.15), and only the particle dynamics have to be modeled properly.
Details of the implementation and validation results are presented in (Liu,
2004).

Summary

In summary, particulate microflows are difficult to compute directly, but the
relatively low particle Reynolds number limit allows some simplifications.
Microflows typically correspond to values of volume fraction greater than
10−3, and thus nonlinear hydrodynamic interactions have to be accurately
modeled. FCM is suitable for particulate microflows because it models ac-
curately such interactions without the extra expense of special remeshing
or solution of stiff algebraic systems as in the arbitrary Lagrangian Eu-
lerian (ALE) method, the front tracking method, or the fictitious domain
method (DLM). To appreciate the numerical resolution requirements, FCM
typically employs approximately 5 grid points per particle compared to 15
to 20 points in the aforementioned approaches. With regard to lubrication
effects, simple models derived from Stokesian dynamics can be incorpo-
rated, when such corrections are needed as in the case of very large volume
fraction. Similarly, different collision strategies can be implemented that
are application-specific, as is typically done in particulate macroflows. The
main drawback of FCM is that it assumes rigid particles, which may not
be valid for some microflow applications. In addition, for dense suspensions
the results may not be accurate.



15
Multiscale Modeling of Gas Flows

In this chapter we discuss theory and numerical methodologies for simulat-
ing gas flows at the mesoscopic and atomistic levels. Such a description is
necessary for gases in the transition and free-molecular regimes. First, we
present the direct simulation Monte Carlo (DSMC) method, a stochastic
approach suitable for gases. We discuss limitations and errors in the steady
version of DSMC and subsequently present a similar analysis for the un-
steady DSMC. In order to bridge scales between the continuum and atom-
istic scales we present an iterative coupling algorithm used often in elliptic
problems. To demonstrate convergence and accuracy of this algorithm we
revisit the microfilters (see Section 6.5) and present specific details for sev-
eral cases. We then give an overview of the Boltzmann equation, describing
in some detail gas–surface interactions, and include benchmark solutions for
validation of numerical codes and of macromodels. A main result relevant
for bridging microdynamics and macrodynamics is the Boltzmann inequal-
ity, which we also discuss in the last section on lattice Boltzmann methods
(LBM) as the H-theorem. These methods represent a “minimal” discrete
form of the Boltzmann equation, and are applicable to both compressible
and incompressible flows. An interesting new version is the entropic LBM,
which enforces the H-theorem in order to guarantee Galilean invariance
and numerical stability even for small viscosity values.
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15.1 Direct Simulation Monte Carlo (DSMC)
Method

The direct simulation Monte Carlo method was first developed by G. Bird,
its inventor and pioneer (Bird, 1994). Several review articles about the
DSMC method are also available (Bird, 1978; Muntz, 1989; Cheng and
Emmanuel, 1995; Oran et al., 1998). Most of these articles present reviews
of the DSMC method for low-pressure rarefied gas flow applications, with
the exception of (Oran et al., 1998), where microfluidic applications are also
addressed. The reader is referred to these books and articles for technical
algorithmic details and sample DSMC programs.

Under standard conditions in a volume of 10µm ×10µm ×10µm there
are about 1010 molecules. A molecular-based simulation model that can
compute the motion and interactions of all these molecules is not possible.
The typical DSMC method employs hundreds of thousands or even millions
of “simulated” molecules that mimic but do not follow exactly the motion
of real molecules.

DSMC is based on the splitting of the molecular motion and intermolec-
ular collisions by choosing a time step smaller than the mean collision time,
and tracking the evolution of this molecular process in space and time. For
efficient numerical implementation, the space is divided into cells similar
to the finite volume method. The DSMC cells are chosen proportional to
the mean free path λ. In order to resolve large gradients in flow with re-
alistic (physical) viscosity values, the average cell size ∆xc is about λ/3
(Oran et al., 1998). The time- and cell-averaged molecular quantities are
presented as the macroscopic values at cell centers.

DSMC involves four main steps:

• Motion of the particles.

• Indexing and cross-referencing of particles.

• Simulation of collisions.

• Sampling of macroscopic properties of the flow field.

The basic steps of a DSMC algorithm are given in Figure 15.1 and are
summarized below.

The first step involves motion of the simulated molecules during a time
interval of ∆t. Since the molecules will go through intermolecular collisions,
the overall time step for simulation is chosen smaller than the mean colli-
sion time ∆tc. Once the molecules are advanced in space, some of them will
have gone through wall collisions or will have left the computational domain
through the outflow boundaries. Hence, the boundary conditions must be
enforced at this level, and the macroscopic properties along the solid sur-
faces must be sampled. This is done by modeling the surface molecule inter-
actions by application of conservation laws on individual molecules, rather
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FIGURE 15.1. Typical steps for a DSMC method. (Courtesy of E. Oran.)

than using a velocity distribution function (commonly used in Boltzmann
equation algorithms; see sections 15.4 and 15.5). This approach allows in-
clusion of many other physical processes, such as the chemical reactions,
radiation effects, three-body collision, and ionized flow effects, without ma-
jor modifications to the basic DSMC procedure. However, a priori knowl-
edge of the accommodation coefficients must be used in this process (see
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Section 2.2.2), and this constitutes a weakness of the DSMC method, sim-
ilar to the Navier–Stokes-based slip and even Boltzmann-equation-based
simulation models. This issue is discussed in detail in the following section.

The second step is indexing and tracking of the particles. This is nec-
essary, since during the first stage the molecules might have moved to a
new cell. The new cell locations of the molecules are indexed; hence the
intermolecular collisions and flow field sampling can be handled accurately.
This is a very crucial step in an efficient DSMC algorithm. The index-
ing, molecule tracking, and data structuring algorithms should be carefully
designed for specific computing platforms. Dietrich and Boyd presented
DSMC calculations for more than 100 million simulated particles on 400-
node IBM SP2 computer with 90% parallel efficiency (Dietrich and Boyd,
1996). Parallel efficiency of DSMC algorithms requires very effective load
balancing methods based on the number of molecules, because the compu-
tational work of a DSMC method is proportional to the number of simu-
lated molecules.

The third step is simulation of collisions via a probabilistic process.
Since only a small portion of the molecules is simulated, and the motion
and collision processes are decoupled, the probabilistic treatment becomes
necessary. A common collision model is the no-time-counter (NTC) tech-
nique of Bird (1994), which is used in conjunction with the subcell tech-
nique, where the collision rates are calculated on the basis of the DSMC
cell, and the collision pairs are selected within the subcells. This improves
the accuracy of the method by maintaining the collisions of molecules near
to each other (Oran et al., 1998).

The last step is the sampling of macroscopic flow properties, which is
done within a cell, and the appropriate macroscopic values are presented
at cell centers. The macroscopic properties for unsteady flow conditions
are obtained by ensemble averaging of many independent calculations. For
steady flows, time-averaging can also be used.

15.1.1 Limitations and Errors in DSMC
While DSMC is a very powerful approach, and in fact the only possible
numerical approach in simulating high Knudsen number rarefied flows in
complex geometries, there are several possible limitations and error sources
that the reader should be aware of:

1. Finite Cell Size: The typical DSMC cell should be about one-
third of the local mean free path. Values of cell sizes larger than this
may result in erroneously enhanced diffusion coefficients. In DSMC
one cannot directly specify the dynamic viscosity of the fluid. The
dynamic viscosity is calculated via diffusion of linear momentum.
(Breuer et al., 1995) have performed one-dimensional Rayleigh flow
problems in the continuum flow regime. They discovered that for cell
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sizes larger than one mean free path the apparent viscosity of the fluid
increases. Also, the dependence of viscosity and thermal conductiv-
ity on the cell size has been studied using the Green–Kubo theory
(Alexander et al., 1998). Specifically, it was shown that the trans-
port coefficients deviate from the Enskog values for dilute gas as the
square of the cell size ∆y. For example, for the viscosity coefficient it
was found that

µ =
5

16d2

√
mkBT

π

[
1 +

16
45π

∆y2

λ2

]
,

where d is the molecular diameter. Therefore, if the cell size is equal
to the mean free path, the error is on the order of 15%.

2. Finite Time Step: Due to the time splitting of the molecular motion
and collisions, the maximum allowable time step should be smaller
that the local collision time ∆tc. Values of time steps larger than
∆tc will result in traveling of molecules through several cells prior to
a cell-based (even subcell-based) collision calculation. In (Hadjicon-
stantinou, 2000), it was found that the error in transport coefficients
is proportional to the square of the time step; e.g., the viscosity has
the form

µ =
5

16d2

√
mkBT

π

[
1 +

16
75π

(vm∆t)2

λ2

]
,

where vm =
√

2RT is the most probable velocity.

The time-step and cell-size restrictions stated above are not a Courant
Friederichs Lewy (CFL) stability restriction of a typical wave equa-
tion formulation. The DSMC method is always stable. Violation of
the physical restrictions stated in 1 and 2 may result in highly diffused
numerical results.

3. Ratio of the Simulated Molecules to the Real Molecules: Due
to the vast number of molecules in simulations and limited computa-
tional resources, one always has to choose a sample of molecules to
simulate. If the ratio of the actual to the simulated molecules becomes
too high, the statistical scatter of the solution is increased. The de-
tails for the statistical error can be found in (Oran et al., 1998; Bird,
1994; Chen and Boyd, 1996).

4. Boundary Condition Treatment: Especially the inflow/outflow
boundary conditions can become important in a microfluidic simula-
tion. A subsonic microchannel flow simulation may require specifica-
tion of inlet and exit pressures. Based on the apparent viscosity of the
fluid, the flow will develop under this pressure gradient, and result
in a certain mass flowrate. During such a simulation, specification of
back-pressure for subsonic flows becomes a problem. For this case we
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have implemented and recommend a DSMC algorithm mimicking the
characteristic treatment of subsonic compressible flow algorithms in
the following fashion: At the entrance of the channels we specified the
number density, temperature, and average velocity of the molecules.
At the outflow region we specified the desired number density and
temperature (for a given pressure drop) as well as the corresponding
average velocity of the molecules that are entering the computational
domain from the outflow boundary. By this treatment we were able
to significantly reduce the spurious numerical boundary layers at the
inflow and outflow regions.

Also, for high Knudsen number flows (i.e., Kn > 1) in a channel
with blockage (such as a sphere in a pipe) we have observed that the
location of the inflow and outflow becomes important. For example,
the molecules reflected from the front of the body may reach the
inflow region with very few intermolecular collisions. This creates a
largely diffused flow at the front of the bluff body (Liu et al., 1998).

5. Uncertainties in the Physical Input Parameters: These in-
clude typically the input for molecular collision cross-section models
such as the hard sphere (HS), variable hard sphere (VHS), and vari-
able soft sphere (VSF) models; see (Oran et al., 1998; Vijayakumar
et al., 1999), and the references therein. The hard sphere model is
usually sufficient for monatomic gases or for cases with negligible vi-
brational and rotational nonequilibrium effects. To demonstrate this
claim we investigate the accuracy of our DSMC results in Section
4.2 by performing higher-resolution DSMC studies. The original res-
olution studies for microchannels employed 6,000 cells with 80,000
simulated molecules, and the results were sampled for 2.0 × 106 time
steps. In Figure 15.2 comparisons of Kn = 0.1 and Kn = 2.0 channel
flow velocity profiles obtained by VHS and VSS models for various
cell and simulated molecule resolutions are presented. The 24,000
cells with 480,000 molecule runs are time-averaged for 1 to 2 × 105

time steps. No significant differences in various DSMC results are
observed. However, the higher-resolution cases converged faster. The
predictions of various DSMC models agree well with the linearized
Boltzmann solutions obtained by (Ohwada et al., 1989a).

Along with these possible error sources and limitations there are some
disadvantages of the DSMC method applied to gas microflows. These are:

1. Slow Convergence: The error in the DSMC method is inversely pro-
portional to the square root of the number of simulated molecules.
Reducing the error by a factor of two requires increasing the number
of simulated molecules by a factor of four! This is a very slow con-
vergence rate compared to continuum-based simulations with spatial
accuracy of second or higher order. Hence, if the continuum equations
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FIGURE 15.2. Nondimensionalized velocity distribution across the channel for
Kn = 0.1 and Kn = 2.0 flows. Comparisons of various DSMC resolutions against
the linearized Boltzmann solution of (Ohwada et al., 1989a) are presented. It is
seen that the DSMC simulations using the VSS (left) and VHS (right) models
are in good agreement with the linearized Boltzmann solutions.

are valid (for Kn < 0.1), it is computationally more efficient to use
the continuum models than the DSMC method.

2. Large Statistical Noise: Microflows are typically low-speed flows
(1 mm/s to 1 m/s). The macroscopic fluid velocities are obtained by
averaging the molecular velocities (of approximate value 500 m/s) for
a long time. This five to two orders of magnitude difference between
the molecular and average speeds results in large statistical noise,
thus microflows require a very long time averaging for gas microflow
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simulations. The statistical fluctuations decrease with the square root
of the sample size. Time or ensemble averages of low-speed microflows
on the order of 0.1 m/s require about 108 samples in order for one to
be able to distinguish such small macroscopic velocities. A modified
version was introduced by (Fan and Shen, 1999), who developed an
information-preservation (IP) technique that enables DSMC simula-
tion of low-speed flows at higher efficiency; see Section 15.1.3.

3. Long Time to Reach Steady State: For low-speed microflows the
time required to reach steady state is usually dictated more by the
convective time scales than the diffusive time scales. For example,
gas flow in a microchannel of length 1 cm and height 1 µm with
an average speed of 1 cm/s will require the DSMC simulation to
reach time 1 second for the macroscopic disturbances to travel from
the inflow toward the outflow of the channel. On the other hand,
the viscous time scale for this problem can be calculated by tvisc ≈√

h2/ν, where ν is the kinematic viscosity (νair ≈ 10−6 m2/s), and
h is the height of the channel. For air in a 1-µm channel the viscous
time scale is 10−3 seconds, a value three orders of magnitude less
than the convective time scale. The mean collision time for air at
standard conditions is on the order of 10−10 seconds, and the time
step of the DSMC method should be smaller than the mean collision
time. Hence, a DSMC algorithm must run at least 1010 time steps for
this microchannel prior to settling into a steady-state condition. In
practice, due to the simple geometry, settling into a steady state may
occur much earlier. However, for a large aspect ratio channel with
geometric complications common in microsystems, the above order
of magnitude analysis will be valid.

4. Extensive Number of Molecules: If we discretize a rectangular
domain of 1 mm ×100µm ×1µm under standard conditions for Kn =
0.1 flow, we will need at least 30 cells per 1µm length scale. This
results in a total of 2.7×109 cells. Each of these cells should contain at
least 20 simulated molecules, resulting in a total of 5.4×1010 particles.
Combined with the number of time step restrictions given above,
low-speed microfluidic simulation with DSMC easily goes beyond the
capabilities of most computers.

An alternative treatment to overcome the extensive number of sim-
ulated molecules and long integration times is utilization of the dy-
namic similarity of low-pressure rarefied gas flows to gas microflows
under atmospheric conditions. The key parameters for the dynamic
similarity is the geometric similarity, and matching of the flow Knud-
sen, Mach, and Reynolds numbers. Performing actual experiments
under dynamically similar conditions may be very difficult. However,
parametric studies via numerical simulations are possible. The funda-
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mental question to answer for such an approach is whether a specific,
unforeseen microscale phenomenon is missed with the dynamic sim-
ilarity approach. However, all numerical simulations are inherently
model-based. Unless microscale-specific models are implemented in
the algorithm, we will not be able to obtain more physical informa-
tion from an atomistic simulation than from a dynamically similar
low-pressure simulation.

5. Lack of Deterministic Surface Effects: Molecule–wall interac-
tions are specified by the accommodation coefficients (σv, σT ); for
diffuse reflection, σv = 1. Hence, the reflected molecules lose their
incoming tangential velocity and are reflected with the tangential ve-
locity of the wall. For σv = 0, the tangential velocity of the impinging
molecules is not changed. For any other value of σv, a combination
of these procedures can be applied. This level of wall and boundary
interaction treatment is more fundamental than the slip conditions
presented in Chapter 2. However, it still lacks the most fundamental
way of simulating the molecule–wall interactions, which includes the
molecular structure of the walls. Such approaches are obtained by
molecular-dynamics simulations (see Section 16.1 and (Tehver et al.,
1998)). Also, the accommodation coefficients for every surface and
gas pair are not available (see Section 2.2.2 for details on recent ex-
perimental research).

15.1.2 DSMC for Unsteady Flows
Microsystems often experience unsteady or time-periodic flows, which re-
sult in dynamic variations of lift and drag forces, and torques on the de-
vice components. Computations of unsteady flows require time-dependent
numerical simulations, and DSMC provides an effective tool in the transi-
tion and free molecular flow regimes (Kn ≥ 0.1). To this end, this section
presents the key concepts that need to be addressed in DSMC computations
of unsteady flows.

In order to make these ideas specific, in the following we discuss the
concepts and conditions relevant to the computations of oscillatory Cou-
ette flows, presented in Section 3.3. Lateral oscillations in this prototype
geometry require consideration of one-dimensional unsteady flows. In these
computations, we utilized the hard sphere (HS) model for molecular col-
lision, and the no-time-counter (NTC) scheme for collision pair selection
(Bird, 1994). The choice of the HS model facilitates easy comparisons with
the theoretical solutions of the linearized Boltzmann equation, and it also
enables easier code implementation. Argon gas is simulated with a reference
temperature Te = 273 K. The surfaces are assumed to be fully accommo-
dating. Hence, the particles are reflected from the surfaces according to a
Maxwellian distribution with surface velocity and temperature. Simulation
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parameters are chosen such that the compressibility and viscous heating ef-
fects are negligible. Although the gas temperature increases with increased
oscillation frequency, the maximum temperature rise in the simulations is
less than 2%. More than 100 simulated particles per cell are employed. The
entire domain is discretized into 40 to 100 equally spaced cells, to ensure
that the cell size (∆y) is smaller than the mean free path for all simulations.
A finer grid is used for high Stokes number flows to resolve the flow inside
the Stokes layers, while a coarser grid is used for low Stokes number flows.
With respect to selecting the time step (∆t), the following issues need to
be considered:

1. ∆t has to be significantly smaller than the mean collision time, ∆tc,
to ensure accurate simulations.

2. The cell size ∆y should be smaller than the mean free path, λ, and
the molecules should not move across more than one cell between two
consecutive time steps. Hence, ∆t � ∆y/vm, where vm =

√
2RT is

the most probable velocity.

3. The characteristic length scale of the problem, L, and kinematic vis-
cosity, ν, in micro- and nanoflows can result in small viscous diffusion
time, which scales as L2/ν. Hence, ∆t � L2/ν.

4. The time period of oscillations (T0 = 2π/ω) can become smaller than
the mean collision time; hence ∆t � 2π/ω, where ω is the frequency
of oscillations.

We must indicate that the first three requirements are also valid for steady
DSMC computations, while the last requirement is specific for unsteady
flows. In all simulations of Section 3.2, the time step was chosen to satisfy
all four constraints. The range of the total simulation time was around three
to eighteen time periods. This ensured that the transients starting from the
quiescent initial conditions decay, and a time-periodic state is achieved. In
unsteady DSMC, ensemble-average at each time step replaces the time-
average used in steady computations. Ensemble-averaging is performed over
5000 different realizations of the stochastic process for each time step.

In all simulations, the amplitude of the oscillating wall is kept constant
at u0 = 100 m/s, maintaining relatively low Mach number flows so that
compressibility effects are negligible. The gas number density (n0), excita-
tion frequency (ω), and the characteristic system length (L) are adjusted
to simulate different combinations of Kn and β.

Effects of Statistical Scatter

Figure 3.8(d) aids in better visualization of statistical scatter in the DSMC
results, which is insignificant for this case even near the stationary wall
(y/L ≤ 0.1). Note that the normalized amplitude does not drop below 1%
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of the maximum signal for this case. In the simulations, onset of statistical
fluctuations is observed when the normalized signal amplitude drops below
1% of the maximum signal. Some of the DSMC results presented in Sec-
tion 3.3 exhibit statistical fluctuations. In order to explore the statistical
fluctuations induced by finite sampling in the presence of thermal fluctua-
tions, we follow (Hadjiconstantinou et al., 2003). In equilibrium statistical
mechanics, the ratio of excitation velocity u0 to the thermal fluctuation u′

for an ideal gas is given by (Hadjiconstantinou et al., 2003)

u0√
〈(u′)2〉

= M
√

γN0, (15.1)

where M is the Mach number, γ is the ratio of specific heats, and N0 is
the average number of particles per single cell. The velocity fluctuation is
defined as u′ = u−〈u〉, where u is the instantaneous velocity and 〈u〉 is the
average velocity. Since the unsteady DSMC algorithm uses ensemble aver-
ages over K repeating runs, the “noise-to-signal” ratio Eu can be expressed
as

Eu =

√〈(u′)2〉
u0

=
1

M
√

γKN0
. (15.2)

Based on the above definition, and the typical simulation parameters used
in Section 3.3 (u0 = 100 m/s, K = 5000, N0 = 100, and γ = 5/3), we
obtain Eu = 3.4× 10−3. Considering that the above expression is obtained
for a medium in equilibrium, the noise level in unsteady computations is
expected to be higher due to the presence of strong nonquilibrium effects
in high Stokes number rarefied flows.

Finally, we must indicate that DSMC computations of more complex
cases, such as the squeeze film damping (see Section 6.1), often require
consideration of two- or three-dimensional unsteady flows. Although such
computations are very challenging, ensemble averaging requires indepen-
dent realizations of unsteady flows. This may enable code parallelization
with perfect parallel efficiency if the stochastic processes as well as the
random number generators employed in each processor are independent of
each other.

15.1.3 DSMC: Information-Preservation Method
(Fan and Shen, 1999) have developed an information-preservation (IP)
scheme for low-speed rarefied gas flows. Their method uses the molec-
ular velocities of the DSMC method as well as an information velocity
that records the collective velocity of a large number of molecules that a
simulated particle represents. The information velocity is based on an in-
elastic collision model. The results presented for one-dimensional Couette,
Poiseuille, and Rayleigh flows in the slip, transition, and free-molecular flow
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regimes show very good agreement with the corresponding analytical solu-
tions. Also, Boyd and his co-workers have developed a DSMC-IP scheme
for simulation of two-dimensional gas microflows (Cai et al., 2000). In (Sun
and Boyd, 2002), a general two-dimensional unsteady IP formulation is
described that relaxes the incompressible, isothermal assumptions of (Fan
and Shen, 1999). The new IP version was shown in (Sun and Boyd, 2002),
to provide good agreement with DSMC fundamental test cases including
Couette flow and Rayleigh flow. This method was also used in (Sun and
Boyd, 2004), to investigate fundamental aerodynamic behavior under flow
conditions typical of microsystems.

The DSMC-IP method overcomes the statistical scatter in low-speed
constant-density flow systems. The statistical scatter of DSMC is due to
the thermal motion of particles with mean thermal speed, which is on the
order of 450 m/s. However in the DSMC-IP scheme, the thermal motion
causes statistical scatter only at the information level, which is smaller
than the average macroscopic velocity of the system, typically on the or-
der of 1 m/s. Therefore, the DSMC-IP method can be used for simulation
of gas microflows. The information-preservation algorithm requires about
37.5% memory increase, compared to a regular DSMC algorithm. Since
the DSMC-IP reduces the statistical scatter, it is possible to identify con-
vergence to steady state by monitoring the average number density and
streamwise velocity (or the kinetic energy) of the system. This approach
cuts down the sample size and correspondingly decreases the CPU time
required by a standard DSMC method for low-speed flows by orders of
magnitude.

In Figure 15.3, we present a typical result from (Boyd and Sun, 2001). A
comparison of density contours obtained from the DSMC, DSMC-IP, and
Navier–Stokes with slip simulations for flow past an NACA 0012 airfoil is
shown. The free stream flow conditions correspond to M = 0.1, Re = 1,
Kn = 0.013. The computational domain consists of 9120 nonuniform struc-
tured cells, which are clustered near the airfoil. Each DSMC cell has 45
particles on average, while the DSMC-IP has 40 particles per cell. The
time step is set to 5×10−8 s, which is smaller than the mean collision time
of the particles. Both the DSMC and DSMC-IP are executed for 30,000
iterations to reach a steady state, before sampling the flow field. The sam-
pling continued until each cell had an average of 400,000 sampled particles
(corresponding to about 1000 samples per cell). Large statistical scatter
is observed in the density contours obtained in the DSMC algorithm, as
shown in Figure 15.3 (a). However, the density contours of the DSMC-IP
are smooth, and agree well with the Navier–Stokes with slip results (plot in
(c)) (Boyd and Sun, 2001). (Shen et al., 2003) utilized the DSMC and IP-
DSMC methods to simulate low-speed flows in long microchannels. The IP
results agree with the experimental measurements of pressure distribution
and mass flow through microchannels in (Arkilic et al., 1994; Liu et al.,
1993; Pong et al., 1994). The IP and DSMC also predict the Knudsen’s
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FIGURE 15.3. Density contours of flow past an NACA 0012 airfoil, obtained by
the DSMC (a), DSMC-IP (b), and Navie–Stokes with slip (c) algorithms. The
free stream flow conditions are M = 0.1, Re = 1, Kn = 0.013. (Courtesy of I.D.
Boyd.)

minimum equally well.
The DSMC-IP method is relatively new, and further developments for

nonisothermal flow conditions, which require preservation of the internal
energy, are necessary. However, the result presented in Figure 15.3 is a clear
indication of significant advancement of the DSMC-IP over the classical
DSMC method for nearly isothermal flow conditions. Another direction in
which the IP method has been developed and utilized is as an interface in
hybrid methods that combine particle-based DSMC with continuum-based
discretizations; see (Sun et al., 2004), and also Section 15.2.
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15.2 DSM: Continuum Coupling

In this section we discuss possible procedures for coupling the DSMC
method with the Navier–Stokes equations. This is important particularly
for simulation of gas flows in MEMS components. If we consider the mi-
crocomb drive mechanism, the flow in most of the device can be simu-
lated by slip continuum-based solvers. Only when the gap between the
surfaces becomes submicron should the DSMC method be employed. Simi-
larly, in microchannel flows mixed slip-transition flows could occur. Hence,
it is necessary to implement multidomain DSMC/continuum solvers. De-
pending on the application, hybrid Euler/DSMC (Roveda et al., 1998) or
DSMC/Navier-Stokes algorithms (Hash and Hassan, 1997) can be used.
Such hybrid methods require compatible kinetic-split fluxes for the Navier–
Stokes portion of the scheme (Lou et al., 1998) so that an efficient coupling
can be achieved. An adaptive mesh and algorithm refinement (AMAR) pro-
cedure, which embeds a DSMC-based particle method within a continuum
grid, has been developed in (Garcia et al., 1999); it enables molecular-based
treatments even within a continuum region. Hence, the AMAR procedure
can be used to deliver microscopic and macroscopic information within the
same flow region. An effective coupling approach is based on the DSMC-IP
technique presented earlier in this chapter. The original idea for intro-
ducing the IP method was to reduce the high level of statistical fluctua-
tions found in DSMC calculations. This same property makes it suitable
as an interface for communicating information to large scales described by
continuum-based approximations (Sun et al., 2004).

To make these ideas more concrete we discuss some possible algorithms.
We assume that in the highly rarefied region (Kn ≥ 0.1) we employ a
DSMC discretization that is computationally efficient in this regime. As
Kn → 0 the DSMC approach becomes increasingly inefficient, and thus the
need for a continuum description in the low Kn region. Such a situation,
for example, arises in gas flow through a long narrow tube or slit where the
pressure drop downstream produces a high degree of rarefaction. The same
is true for the expansion region of micronozzle flows we studied in Section
6.6.

The change from a microscopic to macroscopic (or vice versa) behav-
ior is gradual, and therefore the question arises as to where the interface
separating rarefied from nonrarefied behavior should be located. A possible
criterion for determining this interface is the local Knudsen number defined
as

Knl = (λ/ρ)|∇ρ|
or a continuum breakdown parameter suggested by (Bird, 1994):

P = M(λ/ρ)|∇ρ|,
where M is the Mach number. Values of P = 0.1 and 0.01 to 0.02, respec-
tively, have been suggested by Bird and other researchers, e.g., for rarefied
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NS NS ( Slip ) DSMC

FIGURE 15.4. Domain for DSMC-continuum coupling. The interface is an over-
lap region where DSMC and modified Navier–Stokes with slip are both valid.

flows encountered in high-altitude applications. However, for internal flows
at microscales the criterion is application-specific. For small Reynolds num-
ber viscous flows, deviation of velocity distribution from the Maxwellian
may provide a more definitive metric. This interface from continuum to
rarefied has been treated as a single surface in previous attempts to couple
DSMC with Navier–Stokes equations starting with the work of (Wadsworth
and Erwin, 1992) and in subsequent work, see (Hash and Hassan, 1997),
and references therein. It is perhaps better to treat the interface as a fi-
nite zone giving an overlap between the region of validity of DSMC and
the Navier–Stokes equations. A typical situation is sketched in Figure 15.4,
corresponding to the aforementioned example of a long narrow channel.
The proposed interface extends from Kn1 to Kn2, inside which the modi-
fied Navier–Stokes with the high-order slip condition (see equation (2.28))
and DSMC are both valid.

The key theoretical issue here in developing a hybrid description from
the atomistic to macroscopic scale is the identification and theoretical justi-
fication of a proper set of interface conditions. In past work associated with
high-altitude rarefied flows, three different procedures have been proposed
and implemented with various degrees of success:

• the Marshak condition,

• extrapolating the fluxes, and

• extrapolating the properties.

The Marshak condition is an extension of a concept in radiative heat
transfer, and it was first proposed by (Golse, 1989) for higher-atmosphere
applications. It employs the half-fluxes at the interface, i.e., the flux of parti-
cles with velocity in the half normal velocity range. The total flux is then set
to the sum of the half-flux based on the DSMC side and the half-flux based
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on the Navier–Stokes side. Matching the fluxes by extrapolation leads to
a conservative global scheme, but the main difficulty comes from the large
scatter of fluxes (i.e., momentum and heat flux) on the DSMC side that
cannot match the smooth macroscopic fluxes on the Navier–Stokes side.
In low Reynolds number cases, the scatter effect is more pronounced than
in the high-altitude rarefied flows, and is particularly large for high-order
moments, e.g., the fluxes. Finally, the extrapolation of macroscopic prop-
erties at the interface (density, velocity, temperature) does not guarantee
monotonicity and is critically dependent on both smoothing and accuracy
of extrapolation of these quantities. In addition, a large number of samples
is required for averaging in order to obtain the macroscopic properties (an
input to the Navier–Stokes solver), which renders this approach inefficient.

While these issues have been addressed to some extent in high-altitude
rarefied flows, no significant progress has been made (Hash and Hassan,
1997). In addition, flows at microscales correspond to very viscous sub-
sonic flows, whereas the previously studied flows corresponded to high-
speed transonic and supersonic flows. A more appropriate approach is to
develop interface conditions based on the overlap zone shown in Figure
15.4. The Navier–Stokes along with the slip conditions in the overlap zone
will facilitate a smooth transition between the no-slip continuum flow and
the large-slip rarefied flow. The size of the overlap is a parameter that will
be selected in such a way that conservativity, solution continuity, and solu-
tion convergence are guaranteed. With regard to convergence in particular,
the following acceleration scheme can be employed based on a relaxation
procedure:

φn+1
MC = θφn

MC + (1 − θ)φn
NS,

where θ is the acceleration parameter with θ ∈ (0, 1). Here the subscript
(MC) denotes quantities on the DSMC side and (NS) on the Navier–Stokes
side. Note that the microscopic quantities in the DSMC region will be com-
puted based on the Chapman–Enskog distribution, which involves gradients
of interpolated quantities, since Maxwellian distributions are certainly inap-
propriate for these nonequilibrium flows. The overlap region also provides a
spatially homogeneous regime over which appropriate averages can be per-
formed to reduce scatter from the DSMC solution. On the Navier–Stokes
side, subsonic outflow conditions can be imposed following a characteris-
tic decomposition that could involve fluxes (if the Marshak condition is
enforced) or property interpolated quantities in analogy with the above in-
terpolation procedure. In either case, appropriate formulations need to be
developed in order to take into account the overlap zone.

As far as frequency of coupling is concerned, the time step restrictions
on the Navier–Stokes side are dictated by the Courant number (CFL;
∆tU/∆x) and most probably the diffusion number (∆tν/∆x2) for the very
low Reynolds number we consider, whereas on the DSMC side the time step
is controlled by the mean collision time λ/c. This suggests that coupling
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should take place at almost every time step if the diffusion time step con-
straint dominates or a subcycling procedure should be followed, in which
one Navier–Stokes step is followed by many DSMC steps if the convective
time step dominates.

To understand the various algorithmic and implementation issues, we
consider the example of multiscale analysis of microfilters. The specific
algorithmic issues are elaborated below and in the next section, and the
results are presented in the subsequent section. A high-level description of
the multiscale method is presented in Algorithm 1. Given an arbitrary ini-
tial state and a set of boundary conditions along the overlapping interfaces,
a Schwarz technique is implemented to find a self-consistent solution to the
Stokes (or Navier–Stokes) and the DSMC subdomains. Self-consistency is
determined by a convergence check that requires that the DSMC noise as
well as the updates to the solution (for example, pressure and the velocities)
be less than a specified tolerance value. Self-consistency also ensures that
the boundary conditions at the interface have converged to the specified
tolerance. To further reduce the DSMC noise in the solution, a postpro-
cessing step is performed after the initial convergence check is satisfied.
In the postprocessing step, several coupling iterations between Stokes (or
Navier–Stokes) and DSMC subdomains are performed. The final results in
the DSMC subdomain are obtained as an average of the samples collected
during the postprocessing step. As a last step, the results from the DSMC
subdomains are used as boundary conditions to find the solution in the
continuum subdomains. The Schwarz algorithm and the interpolation be-
tween the Stokes (or Navier–Stokes) and the DSMC domains is discussed
next.

15.2.1 The Schwarz Algorithm
To understand the Schwarz technique, consider two overlapping subdo-
mains as shown in Figure 15.5(a). An alternating Schwarz method for this
geometry can be summarized as follows:

Begin : n = 0;u(0)
2 |Γ1

= initial condition
Repeat :{ n = n + 1

Solve Lu
(n)
1 =f1 in Ω1 with BC u

(n)
1 =u

(n−1)
2 on Γ1

Solve Lu
(n)
2 =f2 in Ω2 with BC u

(n)
2 =u

(n)
1 on Γ2

} until convergence

where n is the iteration number, u
(n)
i is the solution in domain Ωi at it-

eration n, L is the partial differential operator describing the governing
equations, and fi are forcing functions of position in domain Ωi. Here BC
refers to the operator imposing the boundary conditions. In the alternat-
ing Schwarz method, the subdomains are overlapped, and Dirichlet-type
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Algorithm 1 Description of DSMC/Stokes (or Navier-Stokes (NS)) cou-
pling in various overlapping Schwarz methods.
Main Loop Coupling iteration
initialization step colored alternating Schwarz
While not converged* do Make Nstep time steps in all Di

Do coupling iteration Interpolate DSMC to Stokes/NS
end while Solve Stokes/NS in all Si

Interpolate Stokes/NS to DSMC
coupling iteration
serial alternating Schwarz coupling iteration
for each DSMC domain Di do parallel alternating Schwarz

Make Nstep time steps in Di Make Nstep time steps in all Di

end for Solve Stokes/NS in all Si

Interpolate DSMC to Stokes/NS Interpolate DSMC to Stokes/NS
for each Stokes/NS domain Si do Interpolate Stokes/NS to DSMC

Solve Stokes/NS equations in Si

end for
Interpolate Stokes/NS to DSMC

* Convergence requires the convergence of coupling iterations and the re-
duction of DSMC noise below a specified tolerance.

(a)

Ω2

Ω1

Γ1Γ2

(b)

S D S D1 1 2 2

FIGURE 15.5. Decomposition of a sample geometry into (a) two overlapping
subdomains, and (b) four subdomains.

boundary conditions are employed. The alternating Schwarz method can
be modified to use nonoverlapping domains and Neumann-type boundary
conditions, as explained in the previous section using a relaxation tech-
nique; see also (LeTallec and Mallinger, 1997), for a description on coupling
time-dependent Navier–Stokes with DSMC using a nonoverlapped Schwarz
coupling and Robin-type (mixed) boundary conditions. Several variations
of the basic Schwarz technique for elliptic partial differential equations are
presented in (Smith et al., 1996).

The alternating Schwarz method as described above is a serial technique.
In Algorithm 1, the serial alternating Schwarz method and two parallel
implementations of the Schwarz technique for coupling Stokes (or Navier–
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Stokes) and DSMC subdomains are shown. To understand the implemen-
tation of various Schwarz techniques, consider the geometry and its de-
composition shown in Figure 15.5(b). Here Si denotes the Stokes (or the
Navier–Stokes) subdomain, and Di denotes the DSMC subdomain. In the
serial alternating Schwarz method, each subdomain is solved sequentially,
i.e., S1, followed by D1, followed by S2, and so on. In a colored Schwarz
method, the subdomains are divided into groups (i.e., colored), and the sub-
domains in each group are solved concurrently, while each group is solved
sequentially. The optimal coloring depends on the geometry and its decom-
position. For example, for the subdomains shown in Figure 15.5(b), all the
Di’s are assigned one color, and all the Si’s are assigned a different color.
All the Di’s are solved at once, followed by the solution of all the Si’s. In
a parallel alternating Schwarz method, all the subdomains are solved at
once; i.e., the subdomains S1, S2, D1, and D2 are all solved concurrently.

15.2.2 Interpolation Between Domains
In general, the position of the continuum nodes and the DSMC particles do
not match in the overlapped regions. When a solution is computed in the
DSMC subdomain, the solution for the continuum nodes in the DSMC sub-
domain can be obtained using an interpolation scheme. This interpolation
scheme is referred to as the DSMC-to-continuum interpolation. Similarly,
when a solution in the Stokes subdomain is computed, the solution for the
DSMC particles (or DSMC cell centers) in the Stokes subdomain can again
be computed by an interpolation scheme. This interpolation scheme will
be referred to as the continuum-to-DSMC interpolation. Both continuum-
to-DSMC and DSMC-to-continuum interpolation schemes can be imple-
mented by using the meshless interpolation techniques described in Chap-
ter 14. We explain the two interpolation techniques next.

DSMC-to-Continuum Interpolation

Let us denote by ci the DSMC cells that will be used to compute the so-
lution at the continuum boundary nodes nj . Let xci denote the position of
the DSMC cell center and xnj denote the position of a continuum bound-
ary node at which the solution needs to be interpolated. Let uci denote
the nodal parameters for the solution at the DSMC cell centers (the so-
lution that needs to be interpolated can be pressure, velocity, etc.) and
u(xnj) be the interpolated solution at the continuum boundary node nj .
To compute u(xnj), a kernel or a weighting function is first centered at
the position xnj . The kernel centered at xnj defines the cloud Ωj and the
number of DSMC cell centers, NCj , that lie within the cloud Ωj (see Fig-
ure 15.6(a) for the definition of the cloud and the cells that fall within
the cloud). When the kernel is centered at xnj , the interpolation functions,
Ni(xnj), i = 1, 2, . . . ,NCj , are computed. Once the interpolation functions
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FIGURE 15.6. Placement of the kernel and the definition of the cloud for (a)
DSMC-to-continuum interpolation and for (b) continuum-to-DSMC interpola-
tion.

are computed, u(xnj) is computed by

u(xnj) =
NCj∑
i=1

Ni(xnj)uci. (15.3)

Continuum-to-DSMC Interpolation

Let ni denote the nodes in the continuum domain, and let cj denote the
DSMC cells. Let xni and xcj denote the position of the continuum nodes
and the DSMC cells, respectively. Let uni denote the nodal parameter for
the solution at the continuum node with location xni, and let u(xcj) be
the interpolated solution at the DSMC cell center with location xcj . To
compute u(xcj), a kernel or a weighting function is centered at the position
xcj . The kernel centered at xcj defines the cloud Ωj and the number of
continuum nodes, NPj , that lie within the cloud Ωj (see Figure 15.6(b)
for the definition of the cloud and the continuum nodes that fall within
the cloud). When the kernel is centered at xcj , the interpolation functions,
Ni(xcj), i = 1, 2, . . . ,NPj , are computed. Once the interpolations functions
are computed, u(xcj) is computed by

u(xcj) =
NPj∑
i=1

Ni(xcj)uni. (15.4)

15.3 Multiscale Analysis of Microfilters

In this section we present results on multiscale analysis of microfilters using
two coupling schemes. For a discussion on the physics of microfilters, see
Section 6.5. The first scheme couples DSMC with the Stokes equations and
the second scheme couples DSMC with the Navier–Stokes equations. The
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differences in the two coupling schemes are highlighted, and the depen-
dence of the convergence of the multiscale method on various parameters
is discussed.

15.3.1 Stokes/DSMC Coupling
The coupled DSMC/Stokes approach is applied to the microfilter geometry
shown in Figure 15.7. The various geometrical parameters shown in Fig-
ure 15.7 are set to be hf = 5 µm, lc = 1 µm, lin = 7 µm, lout = 7 µm and
hc = 0.2µm; see also (Aktas and Aluru, 2002), for results on hc = 0.8µm.
Figure 15.7 also shows the decomposition of the filter geometry into Stokes
and DSMC subdomains. The extension of the DSMC subdomain on each
side of the channel is denoted by dext. Observe that for this example,
we have one DSMC subdomain and two Stokes subdomains. In order to
make sure that the flow is approximately incompressible at the interface,
dext = 2 µm is used. The overlap between DSMC and Stokes subdomains
is denoted by dov. The overlap is measured from the center of the DSMC
estimation cells to the continuum nodes; i.e., the generation cells are not
counted in the overlap because these cells do not have valid data that can
be used. An identical overlap distance, dov, is used for both the input and
the output regions. The initial state and the boundary conditions for the
DSMC subdomain are selected far from the expected steady-state solution
in order to test the convergence characteristics of the coupled approach.
The boundary conditions imposed on various surfaces of the microfilter ge-
ometry are listed in Table 15.1. The initial pressure was set to 5.0 atm,
and the initial velocity was set to 0 m/s for the DSMC subdomain. For
all the simulations, a DSMC time step of 10 ps was used. For the coupled
DSMC/Stokes analysis, a total of 50×103 DSMC iterations were performed
to make sure the coupling procedure has converged, and the averages were
collected for 1 µs. For the DSMC simulations, a transient of 1.5 µs was
simulated, before the averages were collected for 1 µs.

TABLE 15.1. A summary of boundary conditions on various surfaces of the mi-
crofilter geometry.

Pressure x-velocity y-velocity
Surface A 1.3 atm - 0
Surface B 1.0 atm - 0
Surface C,E ∂P/∂y = 0 0 ∂vy/∂y = 0
Surface D,F ∂P/∂y = 0 0 ∂vy/∂y = 0
Surface Si,So - vx=DSMC estimate -
Surface Di,Do p=Stokes solution vx=Stokes solution vy=Stokes solution
Surface G,H - diffusive diffusive
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FIGURE 15.7. The geometry of the microfilter device. Also shown in the figure
are the Stokes (or the Navier–Stokes) and DSMC subdomains and the overlap
between the two subdomains.

To test the accuracy of the coupled DSMC/Stokes method, the geome-
try shown in Figure 15.7 is simulated by DSMC only (which will serve as
the exact solution) and by the coupled approach. The coupled simulations
use an overlap of dov = 0.0 µm. Figures 15.8 and 15.9 compare the pres-
sure and x-velocity, respectively, obtained with the DSMC and the coupled
simulations for hc = 0.2 µm. We observe that the coupled simulations are
in good agreement with the DSMC results. The good agreement between
the two methods establishes the accuracy of the coupled method. From the
results, we can also conclude that the multiscale approach achieves proper
coupling between the DSMC and Stokes subdomains.

An important aspect of the multiscale approach is its convergence behav-
ior. The dependence of the convergence on various parameters contained
in the multiscale approach needs to be understood to guarantee the con-
vergence of the multiscale approach. Here we investigate the convergence
characteristics on the overlap size, dov, the DSMC particle weight, wp, and
the number of DSMC time steps between coupling iterations, Nstep.

Overlap size: The overlap size in Figure 15.7, dov, describes the over-
lap between the Stokes and the DSMC subdomains, i.e., both DSMC and
Stokes equations are solved in the overlap region. The dependence of the
convergence on the overlap is investigated by considering various overlap
sizes: dov = 0.6, 0.4, 0.2, and 0.0 µm. The overlap is increased or decreased
by adjusting the distance dext (see Figure 15.7). The implementation of the
interface boundary conditions for the dov = 0.0 µm case is not different from



15.3 Multiscale Analysis of Microfilters 581

0 0.5 1 1.5

x 10
−5

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35
x 10

5

position (m)

pr
es

su
re

 (
P

a)

pressure

coupled
DSMC

FIGURE 15.8. Comparison of pressure along the midline of the channel obtained
from the DSMC only and coupled simulations (hc = 0.2 µm, dov = 0 µm).
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FIGURE 15.9. Comparison of velocity along the midline of the channel obtained
from the DSMC only and coupled simulations (hc = 0.2 µm, dov = 0 µm).

the other dov cases.
The convergence results are summarized in Figures 15.10 and 15.11. Fig-

ure 15.10 shows the convergence of the pressure boundary condition at
the input section (see (Aktas and Aluru, 2002) for convergence of veloc-
ity boundary condition). In Figure 15.10, the pressure boundary condition
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FIGURE 15.10. Convergence of pressure boundary condition transferred from
the continuum side to the DSMC subdomain for different overlaps. Nstep = 5000
is used.

is plotted by computing the average of the boundary condition imposed
on all the buffer cells. The figure indicates that the convergence is weakly
dependent on the overlap size for this problem, with larger overlap size
exhibiting slightly better convergence. In order to further investigate the
dependence of the convergence characteristics on the overlap size, we show
the absolute error in the pressure boundary condition transferred from the
Stokes subdomain to the DSMC subdomain in Figure 15.11. Absolute error
is defined as the absolute deviation between the computed value and an
exact value, which is determined from the DSMC-only simulation. Again,
the values plotted are the average of all the DSMC buffer cells. The results
in Figure 15.11 were obtained for Nstep = 5000. This result shows that the
number of iterations until convergence is weakly dependent on the overlap
size. A mathematical analysis of the Schwarz method for elliptic problems
reveals that a faster convergence should be obtained for a larger overlap
(Smith et al., 1996). However, the result in Figure 15.11 indicates clearly
that the number of coupling iterations is only weakly dependent on the
overlap size. The observed behavior leads to the conclusion that the Stokes
and the DMSC subdomains are weakly coupled for this example.

Particle weight: We have already discussed the effect of noise in DSMC;
this is particularly troubling to the convergence of the multiscale approach.
The noise in the DSMC estimates can be controlled by decreasing the par-
ticle weight or by increasing the number of DSMC time steps. To evaluate
the dependence of convergence on the particle weight, wp, simulations are
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FIGURE 15.11. The absolute error in the pressure boundary condition transferred
from the continuum subdomain to the DSMC subdomain for different overlaps.
Nstep = 5000 is used.

performed using particle weights of 25× 104, 5× 104, 104, and 103. We ob-
served (see (Aktas and Aluru, 2002), for convergence plots) that a smaller
particle weight, which accounts for more particles, exhibits better conver-
gence characteristics with less noise. We also observed that the convergence
is not delayed significantly because of a larger noise (due to a larger particle
weight). Thus, we can conclude that the method is fairly robust. The obser-
vation that the coupled method converges when a large particle weight is
used is important for application of the particle cloning method (Chen and
Boyd, 1996) to speed up the DSMC simulation. The particle weight that
should be selected according to the DSMC accuracy requirements is 103.
However, a lower weight requires extensive CPU times, and the simulation
time can be reduced by using a particle cloning method that starts with
16 times the desired weight of 103 and using four cloning steps to get the
desired accuracy.

Number of time steps in DSMC: The selection of the number of DSMC
time steps, Nstep, during each coupled iteration is important for the effi-
ciency of the coupled method. Two issues need to be considered in select-
ing Nstep. The first issue deals with the noise in the DSMC solution. The
noise considerations that were discussed in connection with particle weight
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also apply for the selection of Nstep. In the simulations reported here, the
particle weight, wp, is reduced proportionally as Nstep is decreased. The
second issue that needs to be considered in selecting Nstep is the time-
dependent nature of the DSMC solution computed during the coupled it-
erations. Starting from an initial state, the multiscale coupled algorithm
will take a certain number of iterations to compute a converged solution.
During each iteration, the flow in the DSMC subdomain will evolve in a
time-accurate manner toward a steady-state solution determined by the
boundary conditions. If Nstep is large enough during each coupled itera-
tion, a steady-state solution can be reached. However, there is no need to
compute steady-state solutions during each coupled iteration because the
boundary conditions enforced on the DSMC subdomain are not necessarily
steady-state boundary conditions. Since the goal is to compute a steady-
state solution for the entire system (including both Stokes and DSMC sub-
domains), Nstep can be selected shorter, and the boundary conditions can
be updated in an iterative manner until a steady-state solution is reached.

To investigate the effect of Nstep, the filter geometry is simulated by
keeping Nstep/wp constant while Nstep is changed. This keeps the noise in
the DSMC estimates at the same level. Nstep values of 200, 1000, 5000,
and 25,000 are investigated. The convergence of the pressure boundary
condition in the input section was investigated (see (Aktas and Aluru,
2002), for convergence plots). We observed that for Nstep = 200 and 1000,
a larger number of coupling iterations are needed for convergence when
compared to Nstep = 5000, and 25,000. A comparison of the total simulated
DSMC iterations until convergence shows that for Nstep = 200 and 1000,
the total DSMC iterations are approximately equal. However, for the other
two cases, the DSMC iterations until convergence are much larger. Thus,
we can conclude that if Nstep × Ncpl (where Ncpl is the number of coupling
iterations until convergence) is longer than the number of iterations the
DSMC subdomain takes to reach a steady state, convergence is determined
by the properties of the coupling method, whereas if Nstep×Ncpl is smaller,
then the DSMC subdomain will evolve in a quasi-static manner and Ncpl
will be increased. For an efficient implementation, Nstep × Ncpl should be
close to the time constant of the DSMC subdomain.

15.3.2 Navier–Stokes/DSMC Coupling
When compared to DSMC/Stokes coupling, the application of DSMC/Nav-
ier–Stokes coupling involves several issues: coupling of temperature, the
presence of larger gradients at the interface and/or the overlap region, the
behavior of Navier–Stokes equations in the presence of noisy boundary
conditions, and the distribution function for the particles injected into the
DSMC region. These and related issues are discussed below.

The coupling of the pressure and velocity is performed in the same man-
ner as the DSMC/Stokes coupling. For the coupling of temperature, several
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alternatives can be implemented. Typically, coupling the temperature in the
same way as velocity gives the best results. That is, the temperature esti-
mated from DSMC is interpolated to the Navier–Stokes subdomains; and
after the Navier–Stokes solution, the temperature from within the contin-
uum subdomain is interpolated back to the DSMC boundary cells. The
transfer of variables between subdomains for coupling is summarized in
Table 15.2 (see Figure 15.7 for the microfilter geometry). In contrast to
velocity coupling, in the absence of overlap, the temperature does not con-
verge. For this reason, the DSMC/Navier–Stokes coupling described here
uses nonzero overlap.

In addition to the scheme described in Table 15.2, other possibilities
for the coupling of temperature can also be implemented. However, we
observed that the Navier–Stokes solution does not converge if the tempera-
ture is not specified at the interfaces with the atomistic model. Also, it was
observed that when the temperature at the boundary of the DSMC sub-
domain is updated by extrapolating the value from the neighboring cells,
the method becomes unreliable, with the temperature solution differing
significantly from the DSMC solution in some cases.

TABLE 15.2. A summary of boundary conditions on various surfaces of the mi-
crofilter geometry.

Surface Pressure x-velocity y-velocity temperature
A 1.3 atm - 0 300 K
B 1.0 atm - 0 300 K
C, E ∂P/∂y = 0 0 ∂vy/∂y = 0 ∂t/∂y = 0
D, F ∂P/∂y = 0 0 ∂vy/∂y = 0 ∂t/∂y = 0
Si, So - vx = DSMC est. vy = DSMC est. t = DSMC est.
Di, Do p = NS sol vx = NS sol. vy = NS sol. vy = NS sol.
G, H - diffusive diffusive 300 K

Distribution function used for DSMC boundary cells: Previous
work on DSMC coupling is not conclusive about the distribution func-
tion used for injection into the DSMC domain. It was first suggested that
Chapman–Enskog distribution be used whenever DSMC is being coupled
to Navier–Stokes equations (Hash and Hassan, 1996). However, it was later
suggested that Chapman–Enskog distribution may not be necessary in all
cases (Hash and Hassan, 1997). In (Garcia et al., 1999), a dimensionless
parameter B is used to analyze the validity range of the Chapman–Enskog
distribution. For the examples discussed here, the dimensionless parameter
B is 0.04, which is smaller than the maximum value for the range of validity
of the Chapman–Enskog distribution, which indicates that the Chapman–



586 15. Multiscale Modeling of Gas Flows

Enskog distribution can be utilized. For the example presented here, the
Chapman–Enskog distribution was used for the particles generated in the
buffer cells. Chapman–Enskog distribution was selected because Kn at the
interface was in the slip flow regime, indicating the presence of nonequi-
librium. The parameters that are needed for the Chapmann–Enskog dis-
tribution were taken from the Navier–Stokes simulation of the continuum
subdomain and interpolated back to the DSMC subdomain.

Number of buffer cells used: An additional optimization that can be
implemented for DSMC/Navier–Stokes coupling is to use two rows of buffer
cells instead of one. Using two or more rows of buffer cells makes certain
that the buffer region has enough depth to inject a proper number of high-
velocity particles. Furthermore, as compared to using one big buffer cell,
this approach helps capture some of the gradient in the buffer zone.

Problems induced by noise in the DSMC estimates: In some cases,
the noise in DSMC estimates can result in wiggles in the Navier–Stokes
solution. The wiggles die off further into the continuum domain. However,
the presence of wiggles may cause problems with interpolation because
wrong values may be interpolated. In order to help avoid problems, the
flexibility provided by meshless interpolation can be utilized by adjusting
the cloud sizes to filter out the effect of the wiggles in the Navier–Stokes
solution.

Analysis of Peclet and local Kn numbers: The Peclet number, Reynolds
number, and local Kn of the flow in the interface zone can be calculated to
provide information on the characteristics of the filter problem. An analysis
of the Peclet number shows that in the Navier–Stokes subdomains, the lo-
cal Peclet number, defined by using point-to-point spacing, is smaller than
or close to 1. The Peclet number is highest at the regions closest to the
input and output of the channels. In the simulations described here, numer-
ical stabilization is not used. However, for larger values of Peclet number
stabilization will be necessary. An analysis of the local Kn shows that a
local Kn between 0.4 µm and 2 µm from the channel exit is in the slip flow
regime. Far from the channel exit, the global Kn is 0.011, which is at the
boundary of continuum and slip flow regimes. The use of no-slip boundary
conditions close to the DSMC/NS boundary may introduce some error to
the coupled solution. Since the slip velocity observed from the DSMC sim-
ulation is small with respect to the maximum velocity, the error is expected
to be small. The Reynolds number of the flow for the conditions studied is
about 4.5. Thus, it is seen that the flow in the filter is compressible, and the
use of Navier–Stokes equations is necessary in order to bring the coupling
interface close to the filter channel.

Example: The coupled DSMC/Navier–Stokes approach is applied to the
microfilter geometry shown in Figure 15.7. The various geometrical param-
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FIGURE 15.12. The DSMC and coupled results for temperature plotted along
the midline for dMC = 0.6 µm, dov = 0.29 µm. The vertical lines denote the
boundaries of the Navier–Stokes subdomains.

eters shown in Figure 15.7 are set to be hf = 5 µm, lc = 1 µm, lin = 6 µm,
lout = 8 µm, and hc = 0.8 µm. Figure 15.7 also shows the decomposition
of the filter geometry into Navier–Stokes and DSMC subdomains. The ex-
tension of the DSMC subdomain on each side of the channel is denoted by
dext. The region simulated by DSMC on each side of the channel is denoted
by dMC = dext − dov. The overlap between DSMC and Navier–Stokes sub-
domains is denoted by dov. Again, the overlap is measured from the center
of the DSMC estimation cells to the continuum nodes; i.e., the generation
cells are not counted in the overlap. An identical overlap distance, dov, is
used for both the input and the output regions. The boundary conditions
imposed on various surfaces of the microfilter geometry are listed in Ta-
ble 15.2. For all the simulations, a DSMC time step of 10 ps was used.
For the coupled DSMC/NS analysis, a total of 80 × 103 DSMC iterations
were performed to make certain the coupling procedure converged, and
the averages were collected for at least 2 µs. For the DSMC simulations,
a transient of 1.5 µs was simulated, and averages were collected for 1 µs.
The parameters of the fluid for Navier–Stokes simulation were set at the
values corresponding to the DSMC values. The filter geometry shown in
Figure 15.7 was simulated with the coupled method using dMC = 0.6 µm
and dov = 0.29 µm. The results for temperature are compared with DSMC
solution in Figure 15.12 (see (Aktas et al., 2003), for results on pressure and
velocity). The good agreement between the DSMC and multiscale results
demonstrates the accuracy of the coupled method.
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FIGURE 15.13. Gas–surface interaction.

15.4 The Boltzmann Equation

The Boltzmann equation can be derived rigorously from Newton’s laws
at least for the low-density limit, but it is also used for the dense limit,
although there is no totally rigorous theoretical basis for the latter (Cer-
cignani et al., 1994). Research efforts in the 1990s focused on obtaining
most of the fluid-dynamics limits of the Boltzmann equation including the
incompressible limit; see (Bardos et al., 1991; Bardos et al., 1993), and
(Desjardins et al., 1999; DiPerna and Lions, 1991), and references therein.

Here we assume that microscale fluidic and thermal gas transport in
the entire Knudsen regime (0 ≤ Kn < ∞) is governed by the Boltzmann
equation (BE). The Boltzmann equation describes the evolution of a veloc-
ity distribution function by molecular transport and binary intermolecular
collisions. An analysis of microflows based on the Boltzmann equation has
been presented in series of papers that study silicon accelerometer motion
and squeezed film damping as a function of the Knudsen number and the
time-periodic motion of the surfaces (Veijola et al., 1995a; Veijola et al.,
1998; Fukui and Kaneko, 1988; Fukui and Kaneko, 1990); see Section 6.1.
More applications using solutions of the Boltzmann equation are presented
in (Aoki, 2001).

To illustrate some of the complexities in performing simulations based
on the Boltzmann equation, we provide a brief review next. Let us consider
monoatomic gases, the state of which can be described by a velocity distri-
bution function f(t,x,v), where x denotes the position and v denotes the
velocity of the molecules. The distribution function represents the number
of particles in the six-dimensional phase space dx dv at time t. This dis-
tribution function obeys the Boltzmann equation (Sone, 2002; Cercignani,
1988; Bird, 1994)

∂f

∂t
+ v · ∂f

∂x
+ F · ∂f

∂v
= Q(f, f∗), (15.5)

with x ∈ Ω and v ∈ R3. Here F is an external body force, and the term on
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the right-hand side represents molecule collisions; it is given by

Q(f, f∗) =
∫

R3

∫
S+

|V · n|[f(x,v′
∗)f(x,v′) − f(x,v∗)f(x,v)]dn dv∗.

(15.6)
This represents collisions of two molecules with postcollision velocities v
and v∗, and corresponding precollision velocities denoted in addition by
primes (see Figure 15.13). Here, the integration is taken over the three-
dimensional velocity space R3 and the hemisphere S+, which includes the
particles moving away from each other after the collision. Also, we have
the definitions

V = v − v∗; v′ = v − n(n · V); v′
∗ = v∗ + n(n · V),

where n is the unit vector along (v − v′).
The definition of the rest of the terms in equation (15.5) is as follows:

The first term is the rate of change of the number of class v molecules
in the phase space. The second term shows convection of molecules across
a fluid volume by molecular velocity v. The third term is convection of
molecules across the velocity space as a result of the external force F.

Let us now define the quadratic function

φ(v) ≡ a + b · v + c|v|2;

then the collision term satisfies the following relations:∫
R3

φ(v)Q(f, f∗)dv = 0, (15.7a)∫
(ln f)Q(f, f∗) ≤ 0. (15.7b)

The first one represents conservation of mass, momentum, and energy
for the a,b, and c terms, respectively. In the second one, known as the
Boltzmann inequality, the equal sign applies if (ln f) is collision invariant.
This leads to the solution

f = exp(a + b · v + c|bv|2),

which is known as the Maxwellian distribution and represents an equilibrium
state for number density n0 and temperature T0. It can be rewritten in the
familiar form

f0 = π−3/2n0β
3
0 exp(−β2

0v2), (15.8)

where we have defined
β2

0 =
m

2kBT0
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with kB = 1.3805 × 10−23 J/K the Boltzmann constant, and m the molec-
ular mass.

All the macroscopic quantities are defined in terms of the distribution
function: for example,

• Density

ρ(x, t) = m

∫
f(x,v, t)dv

• Bulk velocity

ρu(x, t) = m

∫
vf(x,v, t)dv

• Temperature

T (x, t) =
m

3nkB

∫
c2f(x,v, t)dv,

where c ≡ v − u is the peculiar velocity.

The boundary conditions take into account the wall type via the non-
negative scattering kernel, representing a probability density

R(v′ → v;x; t)

that molecules hitting the wall with velocity between v′ and v′ + dv′ at
location x at time instance t will be reflected with velocity between v and
v + dv. If R is known, then we can obtain the boundary condition for the
distribution function as

f(x,v, t) vn =
∫

H(−v′
n)|v′

n|R(v′ → v;x, t)f(x,v′, t)dv′, (15.9)

where H(x) is the Heaviside step function, and vn = v · n is the velocity
normal to the surface. If there is no adsorption on the wall surface, then∫

H(vn)R(v′ → v;x, t)dv′ = 1,

and also the scattering kernel satisfies a reciprocity condition; see (Sone,
2002; Cercignani, 1988).

Different types of scattering kernels express different gas–surface inter-
actions and define the accommodation coefficient introduced earlier in Sec-
tion 2.2.2. Assuming, as before, that σv molecules are reflected diffusely
and (1−σv) are reflected specularly, then the popular Maxwell’s scattering
kernel, used exclusively before the 1960s, has the form

R(v′ → v;x) = (1 − σv)δ(v′ − v + 2nvn) +
2σvβ4

w

π
exp(−β2

wv2), (15.10)
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where βw involves the wall temperature Tw. For σv = 1 we obtain solely
diffuse scattering, which physically means that we have perfect accommo-
dation, in the sense that the molecules “forget their past” and reemerge
after the wall collision with a Maxwellian distribution function.

Other scattering kernels have been proposed by many authors, but the
most popular one is the Cercignani–Lampis model (Cercignani and
Lampis, 1971). It was obtained by other methods using Brownian motion
and through an analogy with electromagnetic scattering. It introduces two
accommodation coefficients: the tangential accommodation coefficient, 0 ≤
σt ≤ 2, and the normal accommodation coefficient, 0 ≤ σn ≤ 1. It has the
form

R(v′ → v;x) =
2σnσt(2 − σt)β4

w

π

× exp
(

−β2
w

v2
n + (1 − σn)(v′

n)2

σn
− β2

w

(vt − (1 − σt)v′
t)2

σt(2 − σt)

)
×I0

(
β2

w

2
√

1 − σtvnv′
n

σn

)
,

where vn and vt are the normal and tangential components of the molecular
velocities, and I0 is the zeroth-order modified Bessel function of the first
kind.

For the continuum description presented in Chapter 2, we did not need
the scattering kernel but rather an equivalent lumped accommodation co-
efficient, which was determined empirically depending on the gas and the
wall type. For example, for light gases, such as helium and neon, the tan-
gential accommodation coefficient may be much less than unity, but for
heavy gases, e.g., xenon and krypton, the tangential accommodation coef-
ficient is close to one. For typical surfaces in microsystems and argon or
nitrogen the value obtained in (Arkilic, 1997), is around 0.8.

• In general, the cleaner the surface, the smaller the value of the tan-
gential accommodation coefficient.

Also, the position-dependent accommodation coefficient is a matrix, the
elements of which depend on the distribution function of the impinging
molecules.

A comparison of the Maxwell scattering kernel and the Cercignani–
Lampis kernel for micronozzle flows was presented in (Ketsdever et al.,
2000b). In particular, the free molecule microresistojet (FMMR) discussed
in Section 6.6 was considered with argon as propellant. Two forms of the
Cercignani–Lampis–Lord (CLL) model were employed in the simulations
(Lord, 1991; Lord, 1995): the original model as well as a generalized form
permitting diffuse reflection at a surface with incomplete energy accommo-
dation. A comparison of the normalized specific impulse at the exit of the
FMMR is shown in Figure 15.14. For the same value of the accommodation
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FIGURE 15.14. Gas–surface interaction in micronozzle flows. The normalized
specific impulse is plotted across the expansion slot of a free molecule microre-
sistojet (Ketsdever et al., 2000b). (a denotes accommodation coefficient, same as
σv in this book). (Courtesy of A. Ketsdever.)

coefficient (symbol a in the figure) the models differ by about 5%, whereas
varying the accommodation coefficient from specular (σv = a = 0) to dif-
fuse (σv = a = 1) leads to about 20% variation in the value of the predicted
specific impulse Isp. It was shown in (Ketsdever et al., 2000b), that other
quantities, such as axial velocity distribution functions, are more sensitive
to the scattering model assumption.

15.4.1 Classical Solutions
We review here some of the most popular solution methods for the Boltz-
mann equation; more details can be found in (Cercignani, 1988; Cercignani,
2000; Cercignani et al., 1994), and in the comprehensive review articles
(Sharipov and Sleznev, 1998; Aoki, 2001). The degree of success in de-
riving semianalytical solutions depends on the Knudsen number and the
geometry of the flow. More specifically, there are different methods for

• the hydrodynamic limit, where Kn → 0;

• the free-molecular limit, where Kn → ∞, and

• the transition limit, which is the most difficult regime.
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FIGURE 15.15. Measured pressure deviation from theoretical prediction in he-
lium microchannel flow. Top: No-slip boundary condition is assumed. Bottom:
Grad’s 13-moment method with slip is applied. Kn = 0.15. (Courtesy of C.-M.
Ho.)

Hydrodynamic Regime: The Grad and
Chapman–Enskog Methods

One of the earliest solution approaches for the Boltzmann equation is the
method of moments proposed by (Grad, 1949), where the distribution
function is represented by a series

f(x,v, t) = floc

[
a(0)H(0) + a(1)H(1) + · · · +

1
N !

a(N )H(N)
]
,

where floc is the local Maxwellian distribution obtained from the equilib-
rium Maxwellian of equation (15.8) by replacing the equilibrium quantities
with the local number density n(x, t) and local temperature T (x, t), and
H(N) are orthogonal Hermite polynomials. The coefficients a(N) are ex-
pressed in terms of the N moments of the distribution function. Similarly,
the boundary conditions are handled using projections with the Hermite
polynomials, but a closure condition is also needed, which is based on some
physical condition.

This method has been used by C.-M. Ho and his colleagues using N = 13
moments to predict the pressure distribution in helium flow in a channel
with Kn = 0.15 at the exit. The results are shown in Figure 15.15. On the
first plot, the difference in pressure between the measurements and Grad’s
method with no-slip boundary conditions is shown. On the second plot, the
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pressure difference is shown again but with the theoretical result obtained
with Grad’s 13-moment method and slip boundary condition. The devi-
ations start at about 2/3 of the channel, where Kn increases from 0.1 to
0.15. It is clear that the Grad method captures accurately the deviation due
to velocity slip at the wall. For Grad’s method no information about the
accommodation coefficient is needed, and this is one of its great advantages.

Another approach is the Chapman–Enskog method, where the dis-
tribution function is expanded into a perturbation series with the Knudsen
number being the small parameter (see Chapter 2):

f = f0 + Kn f (1) + Kn2 f (2) + · · · .

Here, the first term corresponds to the local Maxwellian distribution, i.e.,

f0 = floc.

Successive high-order equations are obtained by substituting this expansion
into the Boltzmann equation (15.5).

From the equation for f (1) we obtain the Newtonian Navier–Stokes equa-
tions and Fourier’s law of conduction. Furthermore, assuming a model for
the molecular interaction we can obtain explicit expressions for the trans-
port coefficients of the momentum and energy equations. For example, for
the hard sphere molecules model the dynamic viscosity is

µ =
5
16

√
πmkBT

πd2 ,

with d the molecular diameter.

Approximate Forms of Boltzmann Equation

Approximate formulations of the Boltzmann equation can be obtained by
simplifying the collision integral. In the limit of very high Knudsen number,
i.e., the free-molecular flow, the collision integral is zero, but for arbitrary
rarefaction, simplifications are needed to make the Boltzmann equation
computationally tractable.

One such approach is the method of Bhatnagar, Gross, and Krook (Bhat-
nagar et al., 1954), the so-called BGK model. In this method, the collision
integral is approximated as

QBGK(f, f∗) = ν∗(floc − f),

where ν∗ is the collision frequency, which is assumed to be independent of
the molecular velocity v, but it is a function of spatial coordinates and time.
We can obtain a relation of the collision frequency from the mean thermal
velocity v̄ =

√
8kBT/(πm) and the mean free path λ =

√
2/(2nπd2), i.e.,

ν∗ =
v̄

λ
=

4
π

p(x, t)
µ(T )

,
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where p(x, t) is the pressure obtained from the distribution function

p(x, t) =
m

3

∫
c2f(x,v, t)dv.

However, this expression for the collision frequency leads to expressions for
the dynamic viscosity (also for the thermal conductivity) that are incon-
sistent with those derived using the Chapman–Enskog method to obtain
solutions of the BGK model equation. Specifically, the Chapman–Enskog
solution leads to

ν∗ =
p(x, t)
µ(T )

,

which is the same equation as the one corresponding to solutions of the
Boltzmann equations with the full collision term. Other models have been
proposed for the collision frequency, including corrections that allow depen-
dence on the molecular velocity, since full simulations suggest this to be
the case; the interested reader can find appropriate references in (Sharipov
and Sleznev, 1998).

• In general, numerical evidence from full solutions of the Boltzmann
equation suggests that the BGK model is an accurate method for
isothermal flows. However, for nonisothermal flows, corrections for
the Prandtl number (and collision frequency) need to be introduced.

Another approximation that allows computationally tractable models is
linearization of the Boltzmann equation. The distribution function is then
written as

f(x,v, t) = f0(n0, T0)[1 + h(x,v, t)],

where f0 is the absolute Maxwellian distribution corresponding to equilib-
rium state (n0, T0), and h(x,v, t) is the perturbation distribution function.
The linearized Boltzmann equation is then

∂h

∂t
+ v · ∂h

∂t
− Q̃h = 0,

where the linearized collision term is

Q̃h =
∫

R3

∫
S+

f0(v∗)(h′ + h′
∗ − h − h∗) dn dv∗.

All macroscopic (continuum) parameters can then be written in terms
of the perturbation function, i.e.,

n = n0 + (1, h); n0u = (v, h); T = T0 +
m

3kBn0
(v2, h) − T0

n0
(1, h),

where (·, ·) denotes a weighted inner product with f0 as the weight function.
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A different linearized Boltzmann equation can be obtained by linearizing
around the local Maxwellian distribution, i.e.,

f(x,v, t) = floc(n, T )[1 + h(x,v, t)],

where the macroscopic local quantities n(x, t) and T (x, t) are involved. In
this case the perturbation function satisfies an inhomogeneous equation:

∂h

∂t
+ v · ∂h

∂t
− Q̃h = −v ·

[
1
n

∂n

∂x
+
(

mv2

2kBT
− 3

2

)
1
T

∂T

∂x

]
.

Further approximations are required for both the boundary conditions and
the linearized collision operator Q̃ to bring the Boltzmann equation to
a computationally friendly form; see (Cercignani, 1988; Cercignani et al.,
1994; Sharipov and Sleznev, 1998).

15.4.2 Sone’s Asymptotic Theory
When the Knudsen number is small, the contribution of the collision term
in the Boltzmann equation becomes large, and the velocity distribution
function approaches a local Maxwellian. Then, the behavior of the gas may
be described as continuum. In this section, we present the work of Sone
and collaborators (Sone, 2002) for the small Knudsen number limit, which
is pertinent to microflows. In particular, we will consider small and large
deviations from equilibrium. This is measured by the Mach number, and
we recall that the Knudsen number, the Mach number, and the Reynolds
number are related (see Chapter 2):

M ∝ Kn ·Re.

We first introduce the nondimensional variables, which are chosen in such
a way that they express a perturbation from a Maxwellian distribution with
vi = 0. Let L, t0, T0, and p0 be the reference length, time, temperature,
and pressure, and

ρ0 = p0(RT0)−1, (15.11)

where the reference state is the Maxwellian distribution with vi = 0, p = p0,
and T = T0:

f0 =
ρ0

(2πRT0)3/2 exp
(

− ξ2
i

2RT0

)
. (15.12)

Then, the nondimensional variables are defined as follows:

xi = Xi/L, t̄ = t/t0, ζi = ξi/(2RT0)1/2,
φ = f/f0 − 1, ω = ρ/ρ0 − 1, ui = vi/(2RT0)1/2,
τ = T/T0 − 1, P = p/p0 − 1, Pij = pij/p0 − δij ,
Qi = qi/p0(2RT0)1/2, uwi = vwi/(2RT0)1/2, τw = Tw/T0 − 1,
ωw = ρw/ρ0 − 1, Pw = pw/p0 − 1, (Pw = ωw + τw + ωwτw).

(15.13)
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We also redefine the Knudsen number to be consistent with Sone’s notation
as follows:

k =
√

2RT0

ρ0AcL
=

√
π

2
λ0

L
. (15.14)

Case with Re � 1

Following (Sone, 2002), we first analyze the small Reynolds number regime,
for which we have

Re � Kn � 1,

and thus small deviations from equilibrium, i.e., M � 1. The steady-state
Boltzmann equation in nondimensional abstract form is

ζi
∂φ

∂xi
=

1
k

L(φ), (15.15)

where the right-hand side denotes the collision operator. The boundary
condition expressed also in abstract form is

φ = φw (ζini > 0) (15.16)

on the boundary, where φw may depend on φ (ζini < 0) linearly.
We are looking for the asymptotic behavior of φ for small k following the

method of analysis by (Sone, 1969; Sone, 1971) and (Sone and Aoki, 1994).
In particular, expansions of the Grad–Hilbert form are sought for a moder-
ately varying solution of equation (15.15), whose length scale of variation is
on the order of the characteristic length L of the system [∂φ/∂xi = O(φ)],
in a power series of k:

φ = φ + φk + φk2 + · · · . (15.17)

Corresponding to this expansion, the macroscopic variables ω, ui, τ, etc. are
also expanded in k:

h = h + hk + hk2 + · · · , (15.18)

where h = ω, ui, . . ..
The asymptotic solution obtained by Sone is summarized below: A solv-

ability condition yields the zeroth-order equation for the pressure, i.e.,

∂P0

∂xi
= 0, (15.19)

and the following governing equations for different orders (m) of the ex-
pansion:
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∂uim

∂xi
= 0, (15.20a)

∂Pm+1

∂xi
= γ1

∂2uim

∂x2
j

, (15.20b)

∂2τm

∂x2
j

= 0, (15.20c)

(m = 0, 1, 2, . . .),

where
Pm = ωm + τm, (15.20d)

and γ1 is a constant related to the collision integral.
The corresponding stress tensor and temperature gradient vector of the

Grad–Hilbert solution are

Pij0 = P0δij , Pij1 = P1δij + γ1Sij0,

Pij2 = P2δij + γ1Sij1 + γ3
∂2τ0

∂xi∂xj
,

Pij3 = P3δij + γ1Sij2 + γ3
∂2τ1

∂xi∂xj
− 2γ6

γ1

∂2P1

∂xi∂xj
,

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
(15.21a)

Qi0 = 0, Qi1 = 5
4γ2Gi0,

Qi2 = 5
4γ2Gi1 +

γ3

2γ1

∂P1

∂xi
, Qi3 = 5

4γ2Gi2 +
γ3

2γ1

∂P2

∂xi
.

⎫⎪⎬⎪⎭ (15.21b)

Here we have defined the strain tensor and the heat flux as

Sijm = −
(

∂uim

∂xj
+

∂ujm

∂xi

)
, Gim = −∂τm

∂xi
.

The constants are as follows:

• For a hard sphere molecular gas (Ohwada and Sone, 1992):

γ1 = 1.270042427, γ2 = 1.922284066,

γ3 = 1.947906335, γ6 = 1.419423836.

⎫⎪⎬⎪⎭ (15.22a)

• For the BKG model,
γn = 1. (15.22b)
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Remark: The governing equations are the steady-state Stokes and heat
conduction equation at various orders with appropriately defined stress ten-
sor and heat flux. In particular, in equation (15.21a) the term proportional
to Sijm corresponds to viscous stress in the classical fluid dynamics, the
higher-order term proportional to ∂2τm/∂xi∂xj is called thermal stress,
and the term proportional to ∂2P1/∂xi∂xj is the pressure stress. In the
second and higher orders, the heat flux vector Qim depends on pressure
gradient as well as on temperature gradient.

Boundary Conditions: We will ignore here the Knudsen correction,
which is also derived asymptotically by (Sone, 2002). Instead, we will focus
our attention to consistent boundary conditions, which have been presented
in Chapter 2 from a different perspective.

The boundary conditions up to zeroth order are

ui0 − uwi0 = 0, (15.23a)
τ0 − τw0 = 0. (15.23b)

The boundary conditions up to first order are

(ui1 − uwi1)ti = k0Sij0nitj + K1Gi0ti (15.24a)
ui1ni = 0, (15.24b)

τ1 − τw1 = −d1Gi0ni. (15.24c)

The boundary conditions up to second order are

(ui2 − uwi2)ti = k0Sij1nitj + a1
∂Sij0

∂xr
njnrti + a2κ̄Sij0nitj + a3κijSjr0nrti

+ a4
∂Gi0

∂xj
njti + a5κ̄Gi0ti + a6κijGj0ti

− K1
∂τw1

∂xi
ti, (15.25a)

ui2ni = b1
∂Sij0

∂xr
ninjnr + b2

(
∂Gi0

∂xj
ninj + 2κ̄Gi0ni

)
, (15.25b)

τ2 − τw2 = −d1Gi1ni − d4
∂Sij0

∂xr
ninjnr − d3

∂Gi0

∂xj
ninj

−d5κ̄Gi0ni, (15.25c)

where

κ̄ = 1
2 (κ1 + κ2), κij = κ1�i�j + κ2mimj ,

uwi = uwi0 + uwi1k + · · · , τw = τw0 + τw1k + · · · .

⎫⎪⎬⎪⎭ (15.25d)
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The terms κ1/L and κ2/L are the principal curvatures of the boundary,
where κ1 or κ2 is taken negative when the corresponding center of cur-
vature lies on the side of the gas; the �i and mi are the direction cosines
of the principal directions corresponding to κ1 and κ2, respectively. Also,√

2RT0uwi (uwini = 0) and T0(1+ τw) are the velocity and temperature of
the boundary, respectively; k0,K1, a1, . . . , a6, b1, b2, and d1,d3, d4, and d5
are constants called slip coefficients, determined by the molecular model
(e.g., hard sphere, BKG) and the reflection law on the boundary (e.g., dif-
fuse reflection). The slip coefficients depend on the parameter (U0/kBT0)
except for a hard sphere molecular gas and the BKG model.

• For a hard sphere molecular gas under diffuse reflection (σv = 1), the
slip coefficients are

k0 = −1.2540, K1 = −0.6463, d1 = 2.4001,

a4 = 0.0330, b1 = 0.1068, b2 = 0.4776.

⎫⎪⎬⎪⎭ (15.26)

• For a BGK gas the slip coefficients are

k0 = −1.01619, K1 = −0.38316, d1 = 1.30272,

a1 = 0.76632, a2 = 0.50000, a3 = −0.26632,

a4 = 0.27922, a5 = 0.26693, a6 = −0.76644,

b1 = 0.11684, b2 = 0.26693, d3 = 0,

d4 = 0.11169, d5 = 1.82181.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.27)

In order to obtain dimensional quantities we need the viscosity and con-
ductivity, which are given by

µ =
√

π

2
γ1p0

λ0√
2RT0

; k =
5
√

π

4
γ2Rp0

λ0√
2RT0

.

Remark 1: The second term on the right-hand side of the slip condition of
equation (15.24a) shows that a flow is induced over a wall with a tempera-
ture gradient along it. This is the thermal creep flow, as we have discussed
in Section 5.1. The fifth term on the right-hand side of equation (15.25a)
shows the existence of another type of flow, called thermal stress slip flow,
which we have also discussed in Section 5.1.

Remark 2: The above equations demonstrate rigorously that in order to
simulate steady-state microflows when Re � Kn � 1, we simply need to
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solve the Stokes equations under the slip boundary condition. The effect of
gas rarefaction for the macroscopic variables, such as density, flow velocity,
and temperature, enters only through the slip boundary condition.

Case with Re ≈ 1 and Small ∆T

The next step in Sone’s theory is to extend the asymptotic theory to the
case the Reynolds number takes a finite value. In that case, the Mach num-
ber is of the same order of magnitude as the Knudsen number. Correspond-
ingly, the deviation of the velocity distribution function from a uniform
equilibrium state at rest is O(Kn). In addition, the temperature variation
should be O(Kn) for the theory to be valid. The solutions are obtained
from the steady-state nonlinear Boltzmann equation. Specifically, the non-
linear terms of the (perturbed) velocity distribution function φ cannot be
neglected when powers of k are considered, since φ = O(k) by assumption.

Sone uses the so-called S expansion to expand φ in the form

φ = φ1k + φ2k
2 + · · · , (15.28)

looking for a moderately varying solution whose length scale of variation is
on order of the characteristic length L of the system [∂φ/∂xi = O(φ)]. Here
the series starts from the first-order term of k, since φ = O(k), and φm =
O(1), in contrast to the previous Grad–Hilbert expansion. The macroscopic
variables ω, ui, τ , etc. are also expanded in k in a similar fashion, i.e.,

h = h1k + h2k
2 + . . . , (15.29)

where h = ω, ui, . . ..
The governing equations obtained from the expansion at various orders

(m) are:

First, the solvability pressure condition:

∂P1

∂xi
= 0. (15.30)

The first-order conservation equations are

∂ui1

∂xi
= 0, (15.31a)

uj1
∂ui1

∂xj
= −1

2
∂P2

∂xi
+

1
2
γ1

∂2ui1

∂x2
j

, (15.31b)

uj1
∂τ1

∂xj
=

1
2
γ2

∂2τ1

∂x2
j

. (15.31c)

The second-order conservation equations are

∂uj2

∂xj
= −uj1

∂ω1

∂xj
, (15.32)
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uj1
∂ui2

∂xj
+ (ω1uj1 + uj2)

∂ui1

∂xj

= −1
2

∂

∂xi

[
P3 − 1

6
(γ1γ2 − 4γ3)

∂2τ1

∂x2
j

]

+
1
2
γ1

∂2ui2

∂x2
j

+
1
2
γ4

∂

∂xj

[
τ1

(
∂ui1

∂xj
+

∂uj1

∂xi

)]
, (15.33a)

uj1
∂τ2

∂xj
+ (ω1uj1 + uj2)

∂τ1

∂xj
− 2

5
uj1

∂P2

∂xj

=
1
5
γ1

(
∂ui1

∂xj
+

∂uj1

∂xi

)2

+
1
2

∂2

∂x2
j

(
γ2τ2 +

1
2
γ5τ1

2
)

, (15.33b)

where γn are constants related to the collision integral.
The coefficient functions of the S expansion of the stress tensor Pij and

heat flux vector Qi are given as follows:

Pij1 = P1δij ,

Pij2 = P2δij − γ1

(
∂ui1

∂xj
+

∂uj1

∂xi

)
,

Pij3 = P3δij − γ1

(
∂ui2

∂xj
+

∂uj2

∂xi
− 2

3
∂uk2

∂xk
δij

)
−γ4τ1

(
∂ui1

∂xj
+

∂uj1

∂xi

)
+ γ3

(
∂2τ1

∂xi∂xj
− 1

3
∂2τ1

∂x2
k

δij

)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(15.34)

Qi1 = 0,

Qi2 = −5
4
γ2

∂τ1

∂xi
,

Qi3 = −5
4
γ2

∂τ2

∂xi
− 5

4
γ5τ1

∂τ1

∂xi
+

1
2
γ3

∂2ui1

∂x2
j

,

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
(15.35)

where γ4 and γ5 are defined as follows.

• For a hard sphere molecular gas

γ4 = 0.635021, γ5 = 0.961142, (15.36)

• and for the BKG model

γ4 = γ5 = 1. (15.37)

Remark 1: The last terms of Pij3 and Qi3, i.e.,

γ3 [∂2τ1/∂xi∂xj − (1/3)(∂2τ1/∂x2
k)δij ]
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and
(γ3/2)∂2ui1/∂x2

j ,

are not present in the Newton and Fourier laws, respectively. The former is
called thermal stress and its effect has been discussed in Section 5.1. The
terms before these terms (terms with γ4 and γ5) are due to the dependence
of the viscosity and thermal conductivity on the temperature of the gas.

Boundary Conditions: On the wall boundary the following boundary
expansions at different orders are valid. For expansions of first order we
have

ui1 − uwi1 = 0, (15.38a)
τ1 − τw1 = 0. (15.38b)

For terms of second order we have

(ui2 − uwi2)ti = k0Sij1nitj + K1Gi1ti (15.39a)
ui2ni = 0, (15.39b)

τ2 − τw2 = −d1Gi1ni, (15.39c)

where the slip coefficient k0, K1, and d1 are the same as those in the linear
theory.

Remark 2: The equations derived from the first order expansion are the
incompressible Navier–Stokes equations with no slip. The next-order equa-
tions are the compressible Navier–Stokes equations valid for a slightly com-
pressible fluid, but there is a difference. Specifically, the corresponding
Navier–Stokes equations have γ3 = 0. This difference is due to the thermal
stress in Pij3 in equation (15.34). Following Sone’s analysis and introducing
a new variable P ∗

3 , we obtain

P ∗
S3 = PS3 +

2
3
γ3

∂2τS1

∂x2
i

. (15.40)

Then, we can incorporate the γ3 term in the pressure term. So in the case of
small temperature differences, we recover exactly the compressible Navier–
Stokes equations by absorbing the thermal stress in the pressure term. This
is not, however, true for large Reynolds number or for large temperature
variations, as we will see below.

Remark 3: The above analysis illustrates that the slip boundary condition
should be used in conjunction with the compressible Navier–Stokes equa-
tions. The combination of slip boundary conditions and the incompressible
Navier–Stokes equations, which is often used because of convenience, is
theoretically inconsistent (Aoki, 2001).
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Remark 4: Unlike the Chapman–Enskog expansion, Sone’s asymptotic
theory leads to a set of equations whose degree of differentiation does not
increase with the order of approximation. In addition, Sone’s theory proves
directly that the velocity distribution function depends on the spatial vari-
ables only through the five macroscopic variables and their derivatives and
is not used as an assumption as done in the classical theory.

Case with M ≈ 1

This case corresponds to a finite Mach number, which for a small Knudsen
number that we study here implies that the Reynolds number can be very
large, since Re ∝ O(1/Kn) � 1. The method of analysis of Sone is to first
obtain the solution [∂φ/∂xi = O(φ)] describing the overall behavior of the
gas without limiting the size of φ. To this end, the Hilbert expansion in the
Knudsen number is introduced in the form

φ = φ0 + φ1k + · · · . (15.41)

The macroscopic variables ω, ui, τ, etc. are also expanded in a similar fash-
ion. The leading term φ0 of the expansion is the local Maxwellian, charac-
terized by the leading terms ω0, ui0, and τ0 of the five macroscopic variables,
i.e., density, flow velocity, and temperature. The variables ω0, ui0, and τ0
are governed by the Euler set of equations:

∂ω̃0ui0

∂xi
= 0, (15.42a)

ω̃0uj0
∂ui0

∂xj
+

1
2

∂P0

∂xi
= 0, (15.42b)

ω̃0uj0
∂

∂xj
(u2

i0 +
5
2
τ̃0) = 0, (15.42c)

where

ω̃0 = 1 + ω0, τ̃0 = 1 + τ0, P0 = ω0 + τ0 + ω0τ0. (15.43)

The higher-order macroscopic variables ωm, uim, and τm (m ≥ 1) are gov-
erned by inhomogeneous linear Euler-type equations.

In addition, still in leading order (Kn0) a correction is required in order to
make the solution satisfy the kinetic boundary condition. This introduces
boundary layer terms with the no-slip condition. To this end, the solution is
expanded in powers of

√
Kn (Sone et al., 2000). Thus, the next-order term

is O(
√

Kn) rather than O(Kn). The governing equations at this order are
also perturbed Euler equations with boundary layer corrections but with
slip boundary conditions representing velocity jump and thermal creep. In
addition, at this order a Knudsen layer correction is required. The technical
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details of this approach can be found in (Sone et al., 2000), where some
earlier erroneous published results are rectified.

Case with Re ≈ 1 and Large ∆T

For a hard sphere molecular gas, the continuum equations governing the
macroscopic variables at their leading-order term are given as follows (Sone,
2002):

∂P0

∂xi
= 0,

∂P1

∂xi
= 0, (15.44a)

∂ ω̃0uj1

∂xj
= 0, (15.44b)

ω̃0uj1
∂ ui1

∂xj
= −1

2
∂P2

∂xi
+

1
2
γ1

∂

∂xj

[
τ̃

1/2
0

(
∂ ui1

∂xj
+

∂ uj1

∂xi
− 2

3
∂ uk1

∂xk
δij

)]
−1

2
γ7

1

P̃0

∂

∂xj

[
∂ τ0

∂xi

∂ τ0

∂xj
− 1

3

(
∂ τ0

∂xk

)2

δij

]

−1
2
γ3

1

P̃0

∂

∂xj

[
τ̃0

(
∂2 τ0

∂xi∂xj
− 1

3
∂2 τ0

∂x2
k

δij

)]
, (15.44c)

ω̃0uj1
∂ τ0

∂xj
=

1
2
γ2

∂

∂xj

(
τ̃

1/2
0

∂ τ0

∂xj

)
, (15.44d)

where

ω̃0 = 1 + ω0, τ̃0 = 1 + τ0, P̃0 = 1 + P0 = ω̃0τ̃0,

γ1 = 1.270042427, γ2 = 1.922284066, γ3 = 1.947906335, γ7 = 0.188106.

In the present expansion, ui1 is the leading term of the flow velocity, since
the case with ui0 ≡ 0 is considered.

The boundary conditions are

τ0 = τw0, ui1 = − τ̃
1/2
0

P̃0

∂ τ0

∂xj
(δij − ninj), (15.45)

for the temperature and velocity, respectively.

Remark: The third and fourth terms on the right-hand side of equation
(15.44c) are due to thermal stress. The thermal stress contribution is not
in the form of a gradient of some function, and thus it cannot be incorpo-
rated in the pressure term, in contrast to the small temperature variation
presented earlier. Therefore, the solution ui1 = 0 is possible under a special
temperature field. The condition for ui1 to be zero is

εijk
∂ τ0

∂xj

∂

∂xk

(
∂ τ0

∂xl

)2

= 0, (15.46)
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which is obtained by putting ui1 = 0 in equation (15.44c). When the dis-
tance between isothermal lines or surfaces is constant along such contours,
the condition is satisfied. Thus, even when the temperature of the bound-
ary is uniform and the thermal creep flow is absent, a flow may be induced
in the gas. This flow is called nonlinear thermal stress flow, and it was
presented in Section 5.1.

15.4.3 Numerical Solutions
Numerical simulations based on the Boltzmann equation are computation-
ally very expensive, and they have been obtained mostly for simple ge-
ometries, such as pipes and channels. In particular, a number of inves-
tigators have considered numerical solutions of the linearized BGK and
exact Boltzmann equations, valid for flows with small pressure and tem-
perature gradients (Huang et al., 1997; Sone, 1989; Ohwada et al., 1989a;
Loyalka and Hamoodi, 1990; Aoki, 1989). These studies used hard sphere
and Maxwellian molecular models.

In the following, we summarize some benchmark solutions that can be
used for validating numerical simulations and experimental results for mi-
crochannels and micropipes.

Rarefied flow in a channel has been studied extensively using both
the full Boltzmann equation and different versions of the BGK model. A
comparison of different numerical solutions in (Sharipov and Sleznev, 1998),
reveals a small difference of about 2% in most of the published solutions
for the normalized flowrate. This quantity is defined as

Ṁc =
Ṁ

HPiβi
,

where Ṁ is the mass flow rate, H is the channel height, Pi is the pressure
at the inlet, and the parameter βi is defined as

βi =
√

m

2kBTi
,

where Ti is the temperature at the inlet. In Tables 15.3 and 15.4 (adopted
and modified from (Sharipov and Sleznev, 1998)) we list values of the nor-
malized flowrate as a function of the rarefaction parameter δ defined as

δ =
√

π

2
1

Kn
,

where the Knudsen number is based on the channel’s height H (δ is the
same as the parameter D defined in Section 6.1). These results are ob-
tained for different accommodation coefficients employing Maxwell’s scat-
tering kernel. More specifically, the fully diffuse scattering case (σv = 1)
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TABLE 15.3. Pressure-driven flow in a channel: Normalized flowrate Ṁc vs. δ
(rarefaction parameter) and σv (accommodation coefficient) (0 < δ ≤ 1).

Ṁc

Loyalka (1975)a Loyalka and

Hickey (1991)b

δ σ = 1 σ = 0.92 σ = 0.88 σ = 0.84 σ = 0.80 σ = 0.75 σ = 0.50

0.01 3.0489 3.2417 3.6697 3.9085 4.1695 ... ...

0.02 2.7107 3.0548 3.2463 3.4530 3.6771 ... ...

0.03 2.5234 3.0381 3.0131 3.2021 3.4070 ... ...

0.04 2.3964 2.6915 2.8556 3.0328 3.2249 ... ...

0.05 2.3016 2.5823 2.7383 2.9069 3.0897 ... ...

0.07 2.1655 2.4259 2.5706 2.7270 2.8967 ... ...

0.09 2.0698 2.3163 2.4532 2.6011 2.7618 ... ...

0.1 2.0314 2.2723 2.4060 2.5507 2.7077 2.7860 4.3628

0.3 1.7092 1.8937 2.0011 2.1176 2.2448 ... ...

0.5 1.6017 1.7776 1.8766 1.9844 2.1023 2.2128 3.4748

0.7 1.5591 1.7272 1.8220 1.9254 2.0388 ... ...

0.8 1.5482 1.7052 1.7976 1.8986 2.0092 ... ...

0.9 1.5416 ... ... ... ... 2.1269 3.3392

1.0 1.5389 1.7005 1.7921 1.8921 2.0019 2.1204 3.3270

a Solutions of BGK model equation.
b Solutions of Boltzmann equation.

corresponds to BGK solutions of (Cercignani et al., 1994), while the hy-
brid specular-diffuse scattering cases correspond to solutions of BGK model
equation by (Loyalka, 1975) and solutions of the full Boltzmann equation
by (Loyalka and Hickey, 1991).

The good approximation of solutions to Boltzmann’s equation by the
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TABLE 15.4. Pressure-driven flow in a channel: Normalized flowrate Ṁc vs. δ
(rarefaction parameter) and σv (accommodation coefficient) (1 < δ ≤ 10).

Ṁc

Loyalka (1975)a Loyalka and

Hickey (1991)b

δ σ = 1 σ = 0.92 σ = 0.88 σ = 0.84 σ = 0.80 σ = 0.75 σ = 0.50

1.1 1.5379 ... ... ... ... 2.1171 3.3192

1.2 1.5394 ... ... ... ... 2.1164 3.3149

1.3 1.5427 ... ... ... ... 2.1178 3.3136

1.4 1.5473 ... ... ... ... 2.1209 3.3144

1.5 1.5530 1.7107 1.7999 1.8974 2.0046 2.1254 3.3171

2.0 1.5942 1.7503 1.8386 1.9352 2.0414 2.1625 3.3491

2.5 1.6480 1.8039 1.8918 1.9881 2.0939 ... ...

3.0 1.7092 1.8653 1.9531 2.0493 2.1551 2.2748 3.4618

3.5 1.7751 1.9316 2.0196 2.1158 2.2217 ... ...

4.0 1.8440 2.0013 2.0894 2.1858 2.2918 ... ...

5.0 1.9883 2.1472 2.2356 2.3324 2.4388 2.5555 3.7496

6.0 2.1381 2.2988 2.3876 2.4848 2.5916 ... ...

7.0 2.2914 2.4541 2.5433 2.6408 2.7480 2.8625 4.0633

9.0 2.6048 2.7722 2.8620 2.9601 3.0679 ... ...

10.0 2.7638 2.9340 3.0241 3.1225 3.2305 3.3407 4.5490

a Solutions of BGK model equation.
b Solutions of Boltzmann equation.
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FIGURE 15.16. Normalized flowrate versus the rarefaction parameter
δ =

√
π/(2Kn) for channel and pipe.

BGK kinetic model is also valid for rarefied pipe flow, and the discrep-
ancy in the mass flowrate is about 2%. Here the normalized flowrate is
defined as

Ṁp =
Ṁ

πR2Piβi
,

where R is the pipe radius. In Table 15.5 (adopted and modified from
(Sharipov and Sleznev, 1998) we present values of the normalized flowrate
as a function of the rarefaction parameter δ and the accommodation coeffi-
cient σv. The data for the diffuse scattering (σv = 1) are from (Cercignani
and Sernagiotto, 1966), and they are solutions to the BGK model equations.
The data for the hybrid diffuse-specular scattering is due to Porodnov et
al. (Porodnov et al., 1978; Porodnov and Tuchvetov, 1979), and they are
also solutions of the BGK equation.

In Figure 15.16 we plot the normalized flowrate versus the rarefaction
parameter δ for both the channel and pipe; the data are from Tables 15.3,
15.4, and 15.5. We observe the familiar Knudsen’s minimum discussed ear-
lier in Section 4.2, with the asymptote for a pipe only as δ → 0, which is
equivalent to Kn → ∞.



610 15. Multiscale Modeling of Gas Flows

TABLE 15.5. Pressure-driven flow in a pipe: Normalized flowrate Ṁp vs. rar-
efaction parameter (δ) and accommodation coefficient (σv). Solutions of BGK
equations by Porodnov and Tuchvetov (1979).

Ṁp

δ σ = 1 σ = 0.94 σ = 0.90 σ = 0.84 σ = 0.80 σ = 0.6

0.01 1.4768 1.657 1.791 2.026 2.187 3.374

0.02 1.4608 1.635 1.764 1.983 2.144 3.255

0.04 1.4391 1.605 1.728 1.933 2.085 3.137

0.08 1.4131 1.569 1.685 1.873 2.014 ...

0.1 1.4043 1.556 1.668 1.853 1.992 2.944

0.2 1.3820 1.523 1.627 1.806 1.931 ...

0.4 1.3796 1.510 1.615 1.768 1.888 2.720

0.6 1.3982 1.523 1.621 1.772 1.888 2.691

0.8 1.4261 1.547 1.638 1.791 1.904 ...

1.0 1.4594 1.578 1.668 1.818 1.930 2.706

2.0 1.6608 1.773 1.861 2.007 2.116 2.879

3.0 1.8850 1.994 2.081 2.227 2.336 3.096

4.0 2.1188 2.225 2.312 2.458 2.567 3.372

5.0 2.3578 2.461 2.548 2.694 2.803 3.565

6.0 2.5999 2.700 2.787 2.934 3.003 ...

7.0 2.8440 2.942 3.029 3.167 3.285 ...

8.0 3.0894 3.185 3.272 3.420 3.529 4.293

9.0 3.3355 3,430 3.517 3.664 3.778 ...

10.0 3.5821 3.675 3.761 3.910 4.019 4.785
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FIGURE 15.17. Thermal creep in a channel: Normalized flowrate versus the rar-
efaction parameter δ =

√
π/(2 Kn).

15.4.4 Nonisothermal Flows
Unlike isothermal flows, where the BGK model equations result in accurate
approximations to the Boltzmann equation, in the case of heat transfer
the BGK model is inadequate, since it gives the wrong Prandtl number.
This is particularly evident in simulations of thermal creep, where the dif-
ference in solutions of the BGK and Boltzmann equations may be as high
as 30%. This is shown in the Figure 15.17, where we plot the normalized
flowrate in a channel due to thermal creep. The BGK solution, due to (Loy-
alka, 1974), differs significantly from the solution of the Boltzmann equation
obtained by (Ohwada et al., 1989a). The BGK solution can be improved
if the assumption that states that the collision frequency is independent of
the molecular velocity is relaxed.

• In fact, a simple modification where the nondimensional collision fre-
quency is taken as (2/3)δ instead of exactly equal to δ, which corre-
sponds to the standard BGK model, improves the BGK predictions
significantly.

15.5 Lattice–Boltzmann Method (LBM)

The lattice-Boltzmann method (LBM) offers potentially great advantages
over conventional methods for simulating microflows. It represents a “min-
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FIGURE 15.18. Analogue between the BBGKY hierarchy and its lattice coun-
terpart. Adopted from (Succi, 2001).

imal” form of the Boltzmann equation and can be used for gas or liquid
as well as for particulate microflows. It can handle arbitrarily complex ge-
ometries, even random geometries, in a fairly straightforward way, and it
seems to be particularly effective in the regime in which microdevices op-
erate. This method solves a simplified Boltzmann equation on a discrete
lattice. Because of its intrinsic kinetic nature it can also handle the high
Knudsen number regime, and it is very effective for problems where both
mesoscopic dynamics and microscopic statistics are important. However,
initially there was only limited use of the method in microflows, and this
may have to do with its originally intended use in simulating high Reynolds
number flows. In the following, we review its origin and basic idea, we com-
pare it with Navier–Stokes solutions, and finally we present flow simulation
examples, including microflows.

There are three main theoretical developments: The first one took place
in the mid 1980s leading to the lattice gas methods. The second one started
in the early 1990s leading to the lattice Boltzmann equation. Finally, the
third main development took place in the early 2000s leading to the entropic
lattice Boltmann method. A schematic representation of these methods is
shown in Figure 15.18, adopted from the book by (Succi, 2001). The left
column shows the classical BBGKY (Bogoliubov–Born–Green–Kirwood–
Yvon) hierarchy leading from atomistic to continuum flow equations. The
right column shows the corresponding approximations in the framework of
lattice methods. At the atomistic level we have a description by Newton’s
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law that uses molecular positions and molecular velocities. This is the basis
of the molecular dynamics (MD) (see Section 16.1) but also for the lattice
gas method. This is followed by the many-body kinetic model of Liouville,
which employs distribution functions fN (x1,v1, . . . ,xN ,vN , t) that satisfy
the Liouville equation[

∂

∂t
+

N∑
i=1

vi · ∂

∂xi
+ ai · ∂

∂vi

]
fN = 0, (15.47)

where ai are the molecular accelerations. This is a 6N -dimensional conti-
nuity equation; it can be simplified by coarse-graining, i.e., averaging over
single-particle coordinates to obtain a distribution function of reduced or-
der

fM = f12...M<N =
∫

f12...NdzM+1 . . . dzN ,

where dzk = dxk dvk, k = M + 1, . . . , N . This averaging procedure results
in the BBGKY hierarchy expressed by the equation[

∂

∂t
+

M∑
i=1

vi · ∂

∂xi
+ ai · ∂

∂vi

]
fM = CM , (15.48)

where the right-hand-side term CM contains effects of intermolecular col-
lisions represented by fM+1, . . . , fM+B , where B denotes the number of
bodies involved in the interaction. The Boltzmann equation corresponds to
B = 1; also, to obtain the Navier–Stokes equations we keep only the two
lower levels, i.e., M = 1, 2 in the BBGKY hierarchy.

Next, we present the main results of all three aforementioned lattice
approaches.

In the last half of the 1980s, a new class of numerical approaches was
developed for solving the Navier–Stokes equations indirectly. These new
algorithms were based on discrete lattice models of interacting “particles,”
whose continuum description could govern the continuum fluid flow equa-
tions. The most interesting of these methods was the cellular automaton
model of Frisch, Hasslacher, and Pomeau (hereafter called FHP) (Frisch
et al., 1986). The basic idea of lattice gas (or cellular automata (CA))
methods is to represent the fluid as an ensemble of interacting low-order-
bit computers situated at regularly spaced lattice sites. In the FHP model
of two-dimensional hydrodynamics, the underlying lattice is a close-packed
equilateral triangular lattice with sites at triangle vertices. Each site has a
seven-bit state with the first six bits specifying the presence or absence of
a particle traveling at angle ej = j 60◦ (0 ≤ j < 6) along the edges of the
triangular lattice and the last bit specifying the existence or nonexistence
of a particle at rest at the lattice site. Each particle (except a rest parti-
cle) moves one lattice distance in one fundamental time interval. After the
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particles propagate they then interact according to certain collision rules
(Frisch et al., 1986).

Soon it was discovered, however, that there were some difficulties with
these CA methods. First, their work requirements increase rapidly with
Reynolds number, and in fact, for some cases CA-based computations
could be more expensive than corresponding computations with the Navier–
Stokes equations (Orszag and Yakhot, 1986). Also, the methods represent
the correct incompressible hydrodynamics only in the limit of small Mach
number. Finally, CA methods are statistical in nature and suffer from sig-
nificant noise. The velocity field is computed as the average velocity over a
large number N of CA sites, so that there is an error of order 1/

√
N in the

evaluation of this velocity field. The first two arguments are not so critical
for microflows, where both the Reynolds number and the Mach number
are typically low, except for micronozzles (see Section 6.6). However, the
third one, which is similar to the problem in DSMC, is related to the effi-
ciency of these methods, and new theoretical developments have extended
CA methods, improving their accuracy considerably.

An effective way to avoid the difficulties with noisiness of CA systems
is to use a lattice Boltzmann approach (McNamara and Zanetti, 1988;
Higuera and Jiménez, 1989); also see (Succi, 2001; Chen and Doolen, 1998)
and references therein. This approach seems to be more efficient than Monte
Carlo CA methods for moderate to low Reynolds numbers. The idea is to
integrate a kinetic equation for the CA system; here the kinetic equation is
for average particle distribution functions along each of the discrete allowed
particle velocities at each lattice site. For a two-dimensional CA system
there are seven distribution functions (corresponding to the seven bits) at
each lattice site. These functions are smooth nonrandom functions governed
by nonlinear partial differential equations that are integrated in space-time
to obtain the flow description. Velocities are determined as averages over
a number of lattice sites of the LB system. The method extends easily to
three dimensions in which the lattice is a 24-bit or 25-bit projection of a
four-dimensional FCHC lattice onto three-dimensional space.

A more recent version developed by Chen and collaborators (Chen and
Doolen, 1998) employs a square lattice in two dimensions with three speeds
and nine velocities. Specifically, they have eight nonzero velocities for mov-
ing along the edges of the square and one zero velocity for the rest particle
as follows:

(±1, 0), (0,±1), (±1,±1), (0, 0).

The LB equations can be thought of as discrete analogues of the continuous
Boltzmann equation we presented in Section 15.4 but in an incomplete
velocity space (phase space); more rigorous work has in fact proved this
analogy (Abe, 1997). Let us denote by fi(x, t) the distribution function at
x, t with velocity ci, and assume that the collision operator can be described
by the BGK approximation we described earlier (Section 15.4). Then, the
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LBM-BGK equation of motion is given by

fi(x + ci∆t, t + ∆t) − fi(x, t) =
1
τ

(fi − f eq
i ), (15.49)

where f eq
i , (i = 0, 1, . . . , 8) is the equilibrium distribution function and τ

is the relaxation time. An equilibrium distribution that approximates the
Maxwellian–Boltzmann equilibrium distribution up to second–order was
derived in (Qian et al., 1992), and is given by

f eq
i = wiρ

[
1 +

ciαuα

c2
s

+
(ciαciβ − c2

sδαβ)
2c4

s

uαuβ

]
,

where i = 0, 1, . . . , 8, while α and β are the two Cartesian directions. All
fluid velocities are normalized by

√
3RT , and thus the speed of sound is

cs = 1/
√

3; also, wi are weights. The density and velocity are obtained from
formulas similar to the Boltzmann equation, where the integral is replaced
by summations, i.e.,

ρ =
∑

i

fi and ρv =
∑

i

cifi.

In simulating incompressible isothermal flows, the relaxation time τ is taken
constant in the BGK mode, but as we have discussed already in Section
15.4, this is not valid for nonisothermal flows or flows with variable density,
as in gas microflows. To this end, it has been proposed by Chen and col-
laborators (Nie et al., 1998) to modify the relaxation parameter as follows:

τ ′ =
1
2

+
ρ0

ρ

(
τ − 1

2

)
,

where ρ0 = 1. The viscosity ν and mean free path are defined based on the
relaxation parameter from

ν = c2
s∆t(τ ′ − 1/2) and λ =

ρ0

ρ
(τ ′ − 1/2). (15.50)

In order to arrive at the Navier–Stokes equation from the LBM we also
need to employ the limit of long wavelength and low Mach number, and
using the Chapman–Enskog multiscale expansion the resulting equations
are

∂ρ

∂t
+ ∇α · (ρvα) = 0,

∂(ρvα)
∂t

+ ∇β · (ρvαvβ) = −∇αP + ∇β · [ν(∇α(ρvβ) + ∇β(ρvα)].

The pressure is given by P = c2
sρ. If the density variations are small, we

recover the more familiar form of Navier–Stokes from the above equations.
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The BGK version of LBM is typically more accurate for values of τ < 1. A
systematic truncation error analysis of LBM is performed in (Holdych et al.,
2004). The method is second-order accurate in time for fixed lattice spac-
ing, but is first-order accurate in time and second-order accurate in space
for a constant value of τ . If the lattice spacing is reduced for a constant
ratio ∆x/∆t, then LBM does not converge. It is also recognized that LBM
has the same type of inconsistency as the classical Dufort–Frankel scheme
for diffusion, and thus consistency is satisfied only for ∆t/∆x2 remaining
constant during refinement. For constant values of τ , LBM is consistent in
the classical sense.

While successful for simple isothermal fluid flows, the above LBM for-
mulation is not Galilean invariant for nonisothermal and multiphase flows;
for isothermal flows it is Galilean invariant up to order O(M4), where M is
the Mach number. It has also been shown to be unstable for small values of
the viscosity. Indeed, in the above formulation we see that the viscosity is
proportional to (τ − 1

2 ), and for values of τ ∈ (1
2 , 1] instabilities may arise.

Such considerations have led to the development of the entropic lattice
Boltzmann method in (Karlin et al., 1999; Boghosian et al., 2003). At the
heart of this formulation is the use of the H-theorem of Boltzmann, which
measures irreversibility. This was presented as the Boltzmann inequality in
equation (15.7b). Specifically, H is the Boltzmann function based on which
the entropy S is computed as S = −kBH, where

H =
∫

f(x,v, t) ln f(x,v, t) dv dx.

Regardless of the form of the collision operator, the H-theorem states that
dH/dt ≤ 0, which in general is not satisfied in LB methods globally, al-
though it may be satisfied locally in some versions. Specifically, it has been
shown rigorously by (Yong and Luo, 2003) that the H-theorem does not
exist for the lattice Boltzmann equation with polynomial equilibria.

Enforcing the H-theorem in the lattice Boltzmann formulation guaran-
tees an asymptotically homogeneous spatial distribution of particles as
t → ∞, which in turn translates into numerical stability. In the contin-
uum case, the Boltzmann inequality produces the Maxwellian distribution
(used as equality in equilibrium). This is obtained as a minimizer of the H
function defined above subject to the five conservation laws (as constraints)
of mass, momentm (3), and energy. The local Maxwellian can also be inter-
preted as the zero point of the collision term, and also the zero point of the
entropy production (Succi et al., 2002). In the discrete case the Maxwellian
distribution is not necessarily the minimizer of the disrete H function (ir-
respective of the lattice), and this results in the aforementioned problems.
To this end, in entropic lattice Boltzmann, use of different convex H func-
tions is made that can be minimized relatively easily. The requirements are
that Galilean invariance be preserved, as well as realizability (0 < f eq < 1)
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and solvability. The latter condition implies that local equilibrium can be
expressed in terms of the density and velocity, i.e., the continuum variables.

In particular, the following form of the H function was introduced by
(Karlin et al., 1999):

H =
N∑

i=1

fi ln(fi/Wi),

where Wi are velocity-dependent weights with Wi = f eq
i at zero flow. An

example in two dimensions for the nine-velocity lattice (2D9V) is

H = HB + ln(3/8)f0 + ln(3/2)
4∑

i=1

f1i + ln(6)
4∑

i=1

f2i,

where HB =
∑2

k=1
∑4

l=1 fkl(ln fkl − 1), and at equilibrium,

f eq
0 =

8
3

exp[a], f eq
1l =

2
3

exp[a + λαc1lα],

f eq
2l =

1
6

exp[a + λαc2lα].

Also, a = ln(ρ/6)−u2/(2c2
s), and λα = uα/c2

s. Constructing the correspond-
ing local equilibrium from these expressions, (Karlin et al., 1999) recovered
the equilibrium distribution used in (Qian et al., 1992), on the 2D9V lat-
tice. Such H functions enforce Galilean invariance up to O(M4), where M
is the Mach number. Given, however, that the lattice Boltzmann equation
is an approximation to the Navier–Stokes equations within O(M2), such
H functions lead to very accurate results for the local equilibrium distribu-
tions.

A second-order O(M2) H function of different form was employed in
(Boghosian et al., 2003), where uniform contributions to the H function
from the lattice sites are assumed of the form

H =
N∑

i=1

h(fi).

This H function is also minimized subject to the usual hydrodynamic con-
straints. In this case h is not a Boltzmann entropy, but its form depends on
the space dimension. For example, in three dimensions it follows the Tsallis
form, which is typically associated with lack of ergodicity (Boghosian et al.,
2003). Many other entropy functions are possible depending on the spe-
cific kinetic model, i.e., single- or multispeed. For example, in (Boghosian
et al., 2004), h(fi) is obtained from a certain functional differential equa-
tion, which admits power-law solutions for certain types of lattices.

In summary, this new entropic LB method offers many possibilities and
potentially can overcome the aforementioned shortcomings of the more tra-
ditional LBM. However, its extensions to nonisothermal flows as well as
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complex fluid flows has not been established rigorously yet. We also note
that the limit of LBM to the Navier–Stokes equations has been obtained so
far only for incompressible flows but not for compressible flows. In a sense,
we have a quasi-compressible formulation that can be used for both incom-
pressible and compressible flows. In this limit the Mach number scales with
the Knudsen number, and the fluctuation of density around its mean value
scales with the Knudsen number squared (Boghosian et al., 2003).

15.5.1 Boundary Conditions
With regard to boundary conditions, the so-called bounce-back scheme with
its origin in CA has been used to simulate wall boundary conditions. In the
bounce-back scheme, when a particle distribution streams to a wall node,
the particle distribution scatters back to the node it came from (Chen
and Doolen, 1998). However, this approach leads to relatively low-order
accuracy, and more recent work has attempted to include corrections in
the distribution function by including velocity gradients at the wall nodes
(Skordos, 1993), explicitly imposing a pressure constraint (Noble et al.,
1995) or employing extrapolation techniques on staggered meshes (nodes
at midpoints of lattice), similarly to the classical finite difference discretiza-
tions (Chen et al., 1996). An analysis of the accuracy of the boundary
conditions as a function of the relaxation parameter τ was performed in
(Holdych et al., 2004).

A robust boundary condition was analyzed in (Wagner and Pagonabar-
raga, 2002), for LBM, the so-called Lees–Edwards periodic boundary con-
ditions. These are appropriate for simulating flows with simple boundaries,
like Couette flows, subject to severe shear, which could be problematic
using other types of boundary conditions. One issue is the interpolation
scheme employed, since it may introduce artificial dissipation. Finally, new
boundary conditions with error estimates have been formulated in (An-
sumali and Karlin, 2002), and have been applied to slip flows as well as to
no-slip flows.

15.5.2 Comparison with Navier–Stokes Solutions
A validation of the traditional LBM with direct solutions of the Navier–
Stokes equations was presented in (Karniadakis et al., 1993) (LBM com-
putations were performed by G. Zanetti). Specifically, the spectral element
method described earlier in Section 14.1 was employed, and the incom-
pressible Navier–Stokes equations were solved. The version of LBM used
was similar to the method of (Higuera and Succi, 1989), which was made
Galilean invariant by using a different choice of equilibrium distribution
function. The resulting numerical scheme has some of the flavor of a finite-
volume technique. It is, however, more microscopic in nature because it still
involves the integration of a Boltzmann equation but in a limited phase
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FIGURE 15.19. Pressure contours for the shear-driven flow past the shaded body.
The top wall is moving, while the lower wall is stationary; Re = 110 (Karniadakis
et al., 1993).

space with only a finite number of possible particle velocities. This new
model successfully passed a series of consistency tests: tests of rotational
symmetry, tests of the stress tensor, tests of Galilean invariance, sound,
and shear waves. Specifically, we present the simulation of a sheared flow
in a channel with a bluff body. This flow has simple boundary conditions:
periodic in the flow direction and no-slip on the bottom wall and on the
body. The flow is driven by a moving top wall. Moreover, the flow is steady
in the range of Reynolds number considered.

The domain was mapped onto a parallelogram of 128 × 128 lattice sites,
with a top wall velocity of U = 0.042, and the reduced density, ρ, of the
LBE fluid was chosen to be ρ = 0.3; the kinematic viscosity was adjusted so
that the macroscopic Reynolds number defined using V0, the height of the
channel, and the kinematic viscosity of the fluid was Re = 110. The same
simulation was repeated using a higher resolution, i.e., 192 × 192 lattice
sites, and a small discrepancy was found, less than 2% between the two
runs. The results of the LBM simulations were rescaled appropriately for
the comparison with the spectral element results. It is worth mentioning
that there are no free parameters in this conversion process, except for an
arbitrary constant added to the pressure. In the reference solution com-
puted using the spectral element method the flow domain was subdivided
into 28 elements, and to test for convergence, the same problem was run
with three different spectral resolutions, 5 × 5, 7 × 7, and 9 × 9 modes per
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FIGURE 15.20. Streamwise and normal velocity profiles. The LBM data are
indicated with symbols, and the direct Navier–Stokes solutions with the solid
line (Karniadakis et al., 1993).

element. The results between LBM and spectral element simulations were
in very good agreement. The domain and pressure contours are shown in
Figure 15.19. A typical comparison for the velocity components vx and vy

as a function of y downstream of the bluff body at x = 0.625 is shown in
Figure 15.20. The discrepancies between the two solution methods seem to
be particularly prominent, on the order of 10%, where the local velocity
is small, typically less than 1% or 2% of the wall velocity V0 = 1. This
small discrepancy between the two methods is physical in origin, i.e., due
to weak compressibility effects in LBM, what we described earlier as quasi-
compressible fluid. In fact, the amplitude of compressibility corrections to
the local density scales as the square of Mach number, and the latter varies
widely between different regions of the flow.

15.5.3 LBM Simulation of Microflows
A discrete Boltzmann equation for microfluidics has been developed by
(Li and Kwok, 2003) based on the aforementioned BGK single-relaxation-
time collision model. A statistical-mechanical approach was employed to
derive an equivalent external acceleration force acting on the lattice par-
ticles. The potentials used accounted for electrostatic interactions as well
as intermolecular interactions between fluid–fluid and fluid–substrates. For
Poiseuille microflow, the slip velocity Us is

Us =
2τ(τ − 1)

3ρν
Fδ2

x, (15.51)

where τ is the relaxation factor in the BGK model. Also, F is the external
force due to the mean-field potential, and δx is the lattice constant or grid
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spacing. The validity of this model and in particular equation (15.51) was
questioned by (Luo, 2004), who interpreted δx as the grid spacing. In that
case, for fixed fluid properties, the slip velocity vanishes as δx → 0. It is
also not clear what the dependence of the slip velocity Us on the single
relaxation time constant τ means physically. Li and Kwok argued that
δx is a lattice spacing whose value depends on the physical properties of
the microfluidic system, but they did not specify how. The main problem
with such models is how rigorously the boundary condition is imposed at
the wall; for example, the bounce-back boundary condition can create any
amount of slip if not properly implemented.

While more work is required to fully resolve such issues at the funda-
mental level, an evaluation of LB models in the context of microflows is
instructive. Next, we first present some simulations of the standard LBM
method, i.e., the BGK version we described above, and subsequently we
present an example obtained using the entropic LBM. We have already
presented LBM simulations of a microcavity flow in Chapter 3 as well as
simulations using the entropic LBM in Chapter 5. Here we first present re-
sults for microchannels obtained by (Nie et al., 1998) using a square lattice
and the equations described above. The microchannel has length L = 1000
and height H = 10 in lattice units. A pressure boundary condition was used
at the inlet and the outlet with ratio Π = Pi/Po = 2. The parameter ρ0
in equation (15.50) was set by comparing the flowrate from the simulation
to experimental results presented in Figure 4.2. The slip velocity and mass
flowrate at the outlet of the microchannel are plotted in Figure 15.21. The
slip velocity at the outlet was obtained from

U(Y ) = U0(Y − Y 2) + Vs,

where Y = y/H. From a least-squares fit to the data of Figure 15.21, Nie
et al. found that

Vs = 8.7Kn2,

and based on this equation, they obtained an analytical formula for the
normalized flowrate (with respect to continuum flowrate):

Mf = 1 + 12Vs(Kn)
ln(Π)
Π2 − 1

.

This formula agrees well with the numerical data shown in Figure 15.21 if
we set Π = 2. With regard to nonlinear distribution of pressure, for Kn ≤
0.2 the LBM results agree with the DSMC results presented in Chapter
4. However, for higher Knudsen number values a change in the curvature
of the pressure distribution was observed, indicating a slower than linear
pressure drop. This latter result, however, has not been verified by DSMC
approaches, and it deserves further investigation.

In the following we present an application of the entropic LBM. Specif-
ically, the slip boundary condition is examined for a simple setup, where
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FIGURE 15.21. Slip velocity and normalized mass flowrate at theThe lines cor-
respond to equations described in the text. (Courtesy of X. Nie, G.D. Doolen,
and S. Chen.)
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FIGURE 15.22. Velocity profile in a 2-D body force driven Poiseuille flow at
Kn = 0.035 and Ma = 0.01. Comparison between the analytical solution of the
BGK equation and a simulation of the entropic lattice Boltzmann method with
the diffusive boundary condition. (Courtesy of I.V. Karlin and S. Ansumali.)

asymptotic analysis of the continuous Boltzmann BGK equation is possi-
ble, using the assumption of the isothermal condition. In Figure 15.22 we
compare the analytical solution (Cercignani, 1975) with the simulation us-
ing the isothermal entropic lattice Boltzmann model (Karlin et al., 1999;
Ansumali et al., 2003) and the diffusive boundary condition we presented
earlier (Ansumali and Karlin, 2002). Good agreement is obtained for this
benchmark problem without the use of any adjusted parameters. Another
application of entropic LBM is presented in Section 5.4.2, where the as-
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sumption of isothermal conditions is relaxed and temperature variations
across the microchannel are allowed. DSMC simulations for this case re-
ported in (Zheng et al., 2002), show that the assumption of the isothermal
flow is not valid. The quasi-continuum approaches, e.g., the Navier–Stokes–
Fourier description based on the slip boundary conditions or Burnett de-
scription, fail to capture even qualitatively the temperature profile. This
is especially true at values of Knudsen number in the transition regime,
where a minimum in the temperature profile appears in the middle of the
channel. Other hybrid extensions of LBM have been developed to address
the difficulties encountered in simulating such temperature effects with the
standard LBM. In (Lallemand and Luo, 2003), the mass and momentum
equations are solved using a multiple-relaxation-time model (instead of the
single-relaxation-time BGK model), whereas the energy equation is solved
using finite differences.



16
Multiscale Modeling of Liquid Flows

In this chapter we discuss theory and numerical methodologies for simu-
lating liquid flows at the atomistic and mesoscopic scales. The atomistic
description is necessary for liquids contained in domains with dimension of
fewer than ten molecules. First, we present the molecular dynamics (MD)
method, a deterministic approach suitable for liquids. We explain details
of the algorithm and focus on the various potentials and thermostats that
can be used. This selection is crucial for reliable simulation of liquids at
the nanoscale. In the next section we consider various approaches in cou-
pling atomistic with mesoscopic and continuum levels. Such coupling is
quite difficult, and no fully satisfactory coupling algorithms have been de-
veloped yet, although significant progress has been made. An alternative
method is to embed an MD simulation in a continuum simulation. This is
demonstrated in the next section in the context of electroosmotic flow in a
nanochannel, where examples for various parameters in Poisson–Boltzmann
and Navier–Stokes applications are included. In the last section we discuss
a new method, developed in the late 1990s primarily in Europe: the dissi-
pative particle dynamics (DPD) method. It has features of both LBM and
MD algorithms and can be thought of as a coarse-grained version of MD. It
employs stochastic forces to account for the eliminated degrees of freedom
and thus new integration techniques need to be used. We present different
such methods and ways of implementing boundary conditions.
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FIGURE 16.1. MD simulation of hydrophobic hydration of two (16, 0) carbon
nanotubes of 5 nm diameter. The white color represents hydrogen, the dark oxy-
gen, and the grey shows molecules of the single-wall carbon nanotubes. (Courtesy
of P. Koumoutsakos.)

16.1 Molecular Dynamics (MD) Method

The molecular dynamics (MD) method is suitable for simulating very small
volumes of liquid flow, with linear dimensions on the order of 100 nm or
less and for time intervals of several tens of nanoseconds. It can deal ef-
fectively with nanodomains and is perhaps the only accurate approach in
simulating flows involving very high shear where the continuum or the New-
tonian hypothesis may not be valid. For dimensions less than approximately
ten molecules, the continuum hypothesis breaks down even for liquids (see
Chapters 10 and 12), and MD should be employed to simulate the atom-
istic behavior of such a system. MD is, however, inefficient for simulating
gas microflows due to the large intermolecular distances that require rela-
tively large domains. Gas microflows are simulated more efficiently using
the DSMC method that we describe in Section 15.1.

Another emerging application of MD simulation is investigation of the
fluid–thermal behavior of carbon nanotubes, such as the one shown in
Figure 1.23, from first principles. Carbon nanotubes have very interest-
ing hydrophobic and hydrophilic behavior, as discussed in Section 13.2.1.
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In Figure 16.1 we show the results of a constant-temperature (300 K) MD
simulation of hydrophobic hydration around two carbon nanotubes of 5 nm
diameter (Walther et al., 2001b). The objective is to quantify the behavior
of water in the presence of single-wall carbon nanotubes and obtain the
wetting angles for different systems.

Molecular dynamics (MD) computes the trajectories of particles that
model the atoms of the system, since they result from relatively simplified
interaction force fields. The MD simulations generate a sequence of points
in phase space as a function of time; these points belong to the same ensem-
ble, and they correspond to the different conformations of the system and
their respective momenta. An ensemble is a collection of points in phase
space satisfying the conditions of a particular thermodynamic state. Sev-
eral ensembles, with different constraints on the thermodynamic state of
the system, are commonly used in MD. For example:

• The NPT ensemble (also known as the isobaric–isothermal ensemble)
is characterized by a fixed number of atoms, N , a fixed pressure, P ,
and a fixed temperature, T .

• The microcanonical ensemble (NVE) has a thermodynamic state
characterized by a fixed number of atoms, N , a fixed volume, V ,
and a fixed energy, E. This corresponds to an isolated system.

• The canonical ensemble (NVT) is a collection of all systems whose
thermodynamic state is characterized by a fixed number of atoms,
N , a fixed volume, V , and a fixed temperature, T .

• The grand canonical ensemble (µVT) has a thermodynamic state
characterized by a fixed chemical potential, µ, a fixed volume, V ,
and a fixed temperature, T .

Molecular-dynamics simulations can be classified into:

• Equilibrium MD (EMD) simulations, and

• Nonequilibrium MD (NEMD) simulations.

The properties of the fluid that are not in equilibrium can be described
by nonequilibrium statistical mechanics (Sadus, 1999) and calculated from
NEMD simulations. Typically, NEMD involves applying a perturbation to
the usual equations of motion. The perturbation can be constant through-
out the simulation, it can evolve with time, or alternatively, a sinusoidally
oscillating perturbation can be used.

The motion of an ensemble of atoms in MD simulations is governed by
interatomic forces arising from the interaction of electrons and nuclei. Thus,
the results obtained from MD simulations are linked with the ability of the
potential energy function to represent the underlying system. In a classical
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MD simulation, first, a model system consisting of N particles is selected
and Newton’s equations of motion of the form

mi
d2ri

dt2
= Fi, (16.1)

where mi is the mass of atom i, ai = d2ri/dt2 its acceleration, and Fi

the force acting on atom i, are solved until the properties of the system
no longer change with time. Once a steady state is reached, the required
measurements are performed. The key steps in MD simulation are:

1. Initialization: Before starting the simulation, initial positions and ve-
locities are assigned to all particles in the system. The particle posi-
tions should be chosen compatible with the structure being simulated.

2. Force calculation: At each step the interactions between the parti-
cles are examined and the forces due to these interactions are calcu-
lated. This is the most time-consuming step in typical MD simulations
(Frenkel and Smit, 2002). The various intermolecular potentials em-
ployed in MD and their calculation is discussed in Sections 16.1.1 and
16.1.2.

3. Integration of the equations of motion: The equations of motion are
integrated using time integration algorithms that are based on finite
difference methods. The most commonly used time integration algo-
rithm is the Verlet integration rule

rn+1 = 2rn − rn−1 + ∆t2a(t) + O(∆t4).

Variants of the Verlet algorithm, such as the leap-frog scheme and
the velocity Verlet algorithm, are popularly employed for time inte-
gration.

4. Data storage and analysis: After the equations of motion are inte-
grated, the relevant properties of the system (e.g., temperature, pres-
sure, volume) are calculated and stored.

In the rest of this section, we provide details on some key steps in MD.
Since there are many excellent textbooks on MD (see, e.g., (Allen and
Tildesley, 1994)), only the important details are highlighted.

16.1.1 Intermolecular Potentials
The definition of accurate intermolecular potentials is key to any atomistic
simulation, and here we provide an overview of some of the intermolecular
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potentials developed in the past. In general, the potential energy (V ) of a
system consisting of N interacting particles can be expressed as:

V =
∑

i

V1(ri) +
∑

i

∑
j>i

V2(ri, rj) +
∑

i

∑
j>i

∑
k>j>i

V3(ri, rj , rk) + · · · ,

(16.2)
where ri is the position of particle i. The first term on the right-hand side
(V1) is the potential energy due to the external fields, and the remaining
terms, which are modeled by intermolecular potentials, represent the parti-
cle interactions (e.g., V2 is the potential between pairs of particles and V3 is
the potential between particle triplets and so on (Sadus, 1999)). Typically,
equation (16.2) is truncated after the second term; i.e., the three-body and
higher-order interactions are neglected. The intermolecular interaction po-
tentials have been discussed in detail in (Maitland et al., 1981), and (Stone,
1996). The many-body effects on the intermolecular interactions have been
reviewed in (Elrod and Saykally, 1994).

Pairwise Intermolecular Potentials

In many atomistic simulations, it is sufficient to use the simplest models to
represent the essential physics, and many pairwise (two-body) potentials
have been proposed (Maitland et al., 1981). Typically, these potentials are
parameterized such that the simulations based on them can reproduce cer-
tain experimental measurements, e.g., the second virial coefficient, diffusion
coefficient, and viscosity of a certain material (Sadus, 1999). Here we out-
line some of the most commonly used pairwise intermolecular potentials.
Unless mentioned otherwise, r denotes the distance between the two par-
ticles interacting via the pairwise intermolecular potentials.

1. Square-Well Potential. The square-well potentials is one of the sim-
plest intermolecular potentials that is capable of representing the
properties of liquids (Sadus, 1999). It is given by

V (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, r ≤ σ,

−ε, σ < r ≤ λσ,

0, r > λσ,

(16.3)

where λ is some multiple of the hard-sphere diameter (σ) and ε is a
measure of the attractive interaction. This potential belongs to the
genre of “hard-sphere + attractive term” potentials. In the “hard-
sphere” potential (Allen and Tildesley, 1994) the atoms are approx-
imated as impenetrable hard spheres. The properties of the square-
well fluid have been investigated widely (Haile, 1992), and it remains
a useful starting point for the development of liquid state theories
(Yuste and Santos, 1994).



630 16. Multiscale Modeling of Liquid Flows

2. Yukawa Potential. Considerable interest has been demonstrated in
simulating the properties of atoms interacting via the hard-sphere
Yukawa potential (Frenkel and Smit, 2002; Rudisill and Cummings,
1989; Rosenfeld, 1993; Kalyuzhnyi and Cummings, 1996), which is
described by

V (r) =

⎧⎪⎨⎪⎩
∞, r ≤ σ,

−εσ/re−z(r/σ−1), r > σ,

(16.4)

where ε is an attractive term, σ is the hard-sphere diameter, and
z is an adjustable parameter. The inverse power dependence of this
potential means that it can be applied to ionic systems (Rowlinson,
1989). It has been shown that when z = 1.8, the potential behaves
very similarly to the Lennard–Jones (12-6) potential (Duh and Mier-
Y-Teran, 1997).

3. Lennard–Jones Potential. Lennard–Jones potential is one of the most
widely used potentials for nonpolar molecules. The generalized form
of a Lennard–Jones potential is

V (r) = ε

[
m

n − m
x−n − n

n − m
x−m

]
, (16.5)

where n and m are constants, x = r/rm, and rm is the separation
corresponding to minimum potential energy. The “hard-sphere” di-
ameter is related to the energy-minimum separation rm by

σ = rm

(m

n

) 1
n−m

. (16.6)

The most common form of the Lennard–Jones potential is obtained
when n = 12 and m = 6, i.e.,

V (r) = 4ε

[(σ

r

)12
−
(σ

r

)6
]

. (16.7)

The first term in equation (16.7) represents a short-range repulsive
force, which prevents overlap of the atoms, while the second term
represents an attractive interaction. Figure 16.2 shows the variation
of the Lennard–Jones potential and the corresponding force (F =
−∇rV (r)). The advantage of the Lennard–Jones potential is that it
combines a realistic description of the intermolecular interaction with
computational simplicity.

4. WCA Potential. The WCA (Weeks–Chandler–Andersen) potential
is a modification of the Lennard–Jones potential, where the atoms
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FIGURE 16.2. The variation of the Lennard–Jones potential (in units of ε) and
the corresponding force (in units of ε/σ) as a function of the intermolecular
distance.

interact via a cut and shifted Lennard–Jones interatomic potential
function defined by

V (r) =

⎧⎪⎨⎪⎩
4ε
[
(σ

r )12 − (σ
r )6

]− VLJ(rc), r ≤ rc,

0, r > rc,

(16.8)

where rc (= σ/21/6) is the truncation distance, VLJ(rc) is the value of
the Lennard–Jones potential at the point of truncation, and σ and ε
are the Lennard–Jones distance and energy parameters. We note that
in this case, the interactions between the atoms are purely repulsive.
Therefore, this potential is used in those cases in which we want the
atoms to purely repel each other.

5. Buckingham Potential. The Buckingham potential is given by

V (r) = A exp(−Br) − C6

r6 , (16.9)

where A, B, and C6 are empirical constants. The major difference
from the Lennard–Jones potential is that the repulsion term now has
an exponential dependence on the distance, which is shown to be more
realistic than the Lennard–Jones potential (Born and Mayer, 1932).
However, compared to the Lennard–Jones potential, the Buckingham
potential is much more expensive to evaluate.
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6. Coulomb Potential. The Coulomb potential accounts for the electro-
static interactions between particles when charges are present, e.g.,
for ions or polyatomic molecules with partial charges. The Coulomb
potential between two particles is given by

V (r) =
1

4πεrε0

q1q2

r
, (16.10)

where q1, q2 are the charges of the two particles, and ε0 is the vacuum
permittivity.

Table 16.1 gives a summary of the pairwise (i.e., two-body) intermolecu-
lar interaction potential schemes that are commonly used in MD simulation.

Many-Body Intermolecular Potentials

Though the pairwise potentials have been fairly successful in describing the
intermolecular interactions, there is evidence that the three-body interac-
tions (or even higher-order interactions) can be important in some cases
(Bobetic and Barker, 1970; Monson et al., 1983; Rittger, 1990b; Rittger,
1990a; Rittger, 1990c). Here we introduce the Tersoff potential, which is a
three-body potential.

The Tersoff potential is based on the concept of bond order; i.e., the
strength of a bond between two atoms is not constant, but depends on the
local environment. The Tersoff potential has the form

V (r) =
1
2

∑
ij

φR(rij) +
1
2

∑
ij

BijφA(rij) + · · · , (16.11)

where R and A mean “repulsive” and “attractive.” The Tersoff potential
is not a pair potential because Bij is not a constant. In fact, it is the bond
order for the bond joining atoms i and j, and is a decreasing function of the
“coordination” Gij assigned to the bond; i.e., Bij = B(Gij). Gij is defined
as

Gij =
∑

k

fc(rik)g(θjik)f(rij − rik),

where fc(r), f(r), and g(θ) are empirical functions. The basic idea is that
the bond ij is weakened by the presence of other bonds ik involving atom i.
The amount of weakening is determined by the location of the other bonds.
The angular terms are introduced to help construct a realistic model. Ter-
soff potential has been calibrated for silicon (Tersoff, 1988b) and carbon
(Tersoff, 1988a). In practice, there are two major problems with this po-
tential. First, since the potential involves a large number of parameters
to be calibrated, finding a good parameterization for a given material is
rather difficult. Second, the calculation of the potential and the associated
force is very expensive. However, because simulations based on it can re-
produce many important solid material properties, e.g., the lattice constant
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TABLE 16.1. Summary of the commonly employed intermolecular potentials.

Potential Expression Parameters

Square-well

V (r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∞, r ≤ σ,

−ε, σ < r ≤ λσ,

0, r > λσ

σ, ε

Yukawa

V (r) =

⎧⎪⎨⎪⎩
∞, r ≤ σ,

− εσ
r exp[−z( r

σ − 1)], r > σ,

σ, ε, z

Lennard–
Jones V (r) = 4ε

[
(
σ

r
)12 − (

σ

r
)6
] σ, ε

Buckingham

V (r) = A exp(−Br) − C6

r6

A, B, C6

Coulomb

V (r) =
1

4πεrε0

q1q2

r

q1, q2, εr

WCA

V (r) =

⎧⎪⎨⎪⎩
4ε
[
(σ

r )12 − (σ
r )6

]− VLJ(rc), r ≤ rc,

0, r > rc

σ, ε, rc
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and bulk modulus of diamond, it is widely used in atomistic simulation of
solids.

16.1.2 Calculation of the Potential Function
The calculation of the potential function and the associated force accounts
for most of the computational cost in an atomistic simulation. Therefore,
efficient algorithms for the calculation of the potential and force are es-
sential to any atomistic simulation program. Here we give a brief overview
of the potential calculation, and the force can usually be calculated in a
similar way. Depending on the nature of the potential, the algorithm for
potential calculation can be quite different. It is useful to divide the po-
tentials into two categories, i.e., those for the short-range interactions and
those for the long-range interactions. For the short-range interactions be-
tween particles, the potential energy usually decreases to essentially zero
for an intermolecular distance of 1 nm to 2 nm or even smaller. Most in-
termolecular potentials (e.g., the Lennard–Jones potential) belong to this
category. For the long-range interactions between particles, the potential
energy decreases very slowly and is typically not negligible even at a very
large distance, e.g., tens of nanometers. The Coulomb potential belongs to
this category.

Calculation of Short-Range Interactions

To compute the potential due to the short-range interactions, a “cutoff”
method is usually used (Allen and Tildesley, 1994). The idea is to compute
the potential only for the particle pair (or particle triplet) that are within
certain cutoff distance rcutoff . This value is usually chosen such that the
potential energy between particles whose distance is larger than rcutoff is
negligible. For Lennard–Jones potential (see equation (16.7)), rcutoff = 2.5σ
is usually used. In practice, a neighbor list is maintained for each particle in
the system, and one computes the potential energy between a particle pair
only when one particle is within another particle’s neighbor list. Because the
particles move, the neighbor list needs to be updated during the simulation.
Many algorithms have been developed to construct and update the neighbor
list, and they are discussed in detail in (Sadus, 1999).

Calculation of Long-Range Interactions

The calculation of potential due to the long-range interactions (long-range
potential) is much more difficult than to the calculation of potential due
to the short-range interactions. For long-range potentials, using a cutoff
method with a small rcutoff typically gives rise to significant artifacts in
the simulations, while using a large rcutoff is computationally expensive.
Thus, in general, the cutoff method is not preferred in the calculation of
long-range potentials. In this section, we give an overview of the algorithms
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developed to compute the Coulomb potential due to the electrostatic inter-
actions. There are many algorithms, e.g., Ewald summation (Frenkel and
Smit, 2002), particle–mesh Ewald (Darden et al., 1993), the fast multi-
pole method (Greengard, 1987), the particle–particle particle-mesh method
(PPPM) (Hockney and Eastwood, 1981; Darden et al., 1993; Luty et al.,
1995), and the reaction field method (Sadus, 1999); here we will focus on
the first three methods. We note that many of these algorithms are devel-
oped in the context of periodic boundary conditions, which are commonly
used in atomistic simulations. Because of the periodic boundary conditions,
a particle i in a system consisting of N particles interacts not only with
the N − 1 particles, but also with an infinite number of images of these
particles.

1. The Ewald Summation. The Ewald summation is a popular technique
to compute electrostatic interactions (Frenkel and Smit, 2002). The
total electrostatic energy of N particles with charges qi in a cubic
simulation box (box length: L) and their periodic images is given by

V =
1
2

∞′∑
n=0

N∑
i=1

N∑
j=1

qiqj

| rij + n | , (16.12)

where the summation over n is taken over all periodic images, n =
(nxL, nyL, nzL) with nx, ny, nz integers. The prime indicates the
omission of i = j for n = 0. Note that the prefactor 1/4πε0 is omitted
for simplicity. Direct implementation of equation (16.12) is difficult
because the summation is conditionally convergent, and converges
very slowly. In the Ewald summation, equation (16.12) is converted
into two series terms each of which converges more rapidly (De Leeuw
et al., 1980; Heyes, 1981). The first step is to impose a neutralizing
charge distribution (typically a Gaussian distribution) of equal mag-
nitude but of opposite sign to each charge. Then, the summation
over point charges becomes a summation of the interaction between
charges plus the neutralizing distributions. The new summation is of-
ten referred to as the “real space” summation. The real space energy
is given by

Vreal =
1
2

∞∑
n=0

′
N∑

i=1

N∑
j=1

qiqjerfc(κ|rij + n|)
|rij + n| . (16.13)

The value of κ is chosen such that only terms corresponding to n =
0 (i.e., interactions involving charges in the central box only) make a
contribution. Because of this, Vreal can be computed using the usual
cutoff method. In the second step, another charge distribution is im-
posed to counteract exactly the neutralizing distribution. The contri-
bution of this charge distribution to the potential energy is called a
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“reciprocal space” energy,

Vrecip =
1
2

∑
k �=0

N∑
i=1

N∑
j=1

4πqiqj

k2L3 exp
(

− k2

4κ2

)
cos(k · rij), (16.14)

where k= 2πn/L2 are the reciprocal vectors. The summation of
Gaussian functions in real space also includes the interaction of each
Gaussian with itself. This interaction energy is given by

VGauss = − κ

π0.5

N∑
k=1

q2
i . (16.15)

The medium surrounding the sphere of simulation boxes must also
be considered in the calculation, since the sphere can interact with
its surroundings (Sadus, 1999). No correction is required if the sur-
rounding medium is a good conductor. However, if the surrounding
medium is a vacuum, the following correction applies:

Vcorr =
2π

3L3

∣∣∣∣ N∑
i=1

qiri|
∣∣∣∣
2

. (16.16)

Consequently, the final expression for the total potential energy is

V = Vreal + Vrecip + VGauss + Vcorr. (16.17)

The computational cost of the reciprocal-space energy (equation (16.14))
scales as N3/2 (Sadus, 1999). Thus, the Ewald summation approach
can still be very expensive for large systems.

2. Particle–Mesh Ewald (PME). PME is a method proposed by (Darden
et al., 1993) and (Essmann et al., 1995) to improve the performance
of the reciprocal summation in the Ewald method. Instead of directly
summing reciprocal vectors, the charges are assigned to a grid using
cardinal B-spline interpolation. This grid is then Fourier transformed
with a 3D FFT algorithm, and the reciprocal energy term is calcu-
lated by a single sum over the grid in k-space. The potential at the
grid points is calculated by inverse transformation, and by using the
interpolation factors, the forces on each atom can be calculated. The
PME algorithm scales as N log(N), and is substantially faster than
the ordinary Ewald summation for medium to large systems. For very
small systems it might still be better to use Ewald summation to avoid
the overhead in setting up grids and performing transformations.

3. The Fast Multipole Method (FMM): The traditional particle–particle,
particle–mesh, or a combination of these methods commonly benefit
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from potential truncation and neighbor list strategies (Sadus, 1999).
The philosophy behind these computational strategies is to identify
and distinguish between neighboring molecules that make only small
contributions. This distinction between near and far interactions can
be handled efficiently by ordering the molecules in a hierarchical tree
structure. The tree-based methods provide large gains in computa-
tional efficiency, particularly for calculation of long-range interac-
tions. For example, the fast multipole method (FMM) is of order
N compared with N2 (or N3/2) for a traditional particle–particle
calculation.

The fast multipole method was developed using the hierarchical tree
concept (Greengard, 1987; Greengard and Rokhlin, 1987; Carrier
et al., 1988; Schmidt and Lee, 1991). The FMM algorithm involves
multipole expansion for boxes at the lowest level of the tree. These
expansions are combined and shifted as they are passed up and down
the tree. Particles are assigned to the cells at the finest level of the
tree. In the FMM algorithm some cells may be empty, while some
cells may have several particles. The multipole expansion of the par-
ticle configuration on the finest level is formed about the center of the
box. Each “child” box communicates this information to the “parent”
box on the next level. Aggregate information about distant particles
comes back down the low-level boxes. In the FMM algorithm, the
simulation box of length L is subdivided into a box of length L/2r,
where r is an integer representing the level of refinement. The divi-
sion is equivalent to forming 8r equal-sized subvolumes. This is done
for every single box to a maximum level of refinement R irrespec-
tive of the number of particles that they contain. The maximum level
of refinement R is approximately equal to the number of particles
(N), i.e., R = log8 N . At the maximum level there is on average one
particle per box.

The comparison of the efficiency of the FMM algorithm to that of
the particle–particle algorithm depends on the number of particles in
the simulation, the maximum level of refinement, and the number of
multipoles (Sadus, 1999). (Schmidt and Lee, 1991) analyzed the dif-
ferent scenarios. Typically, the FMM algorithm is advantageous for
simulations involving tens of thousands of molecules. Simple particle–
particle algorithms assisted by time-saving concepts such as a neigh-
bor list are adequate for atoms or simple polyatomic molecules. How-
ever, the rigorous evaluation of the properties of real macromolecules
by molecular simulation requires thousands of interaction sites per
molecule. Alternative computational strategies are required to deal
with this increased level of complexity. It is in this context that hier-
archical tree algorithms (e.g., FMM) are likely to play an increasingly
important role in molecular simulation.
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16.1.3 Thermostats
For several reasons (e.g., drift during equilibration, drift as a result of
force truncation and integration errors, heating due to external or fric-
tional forces), it is necessary to control the temperature of the system in
MD simulations. In a canonical ensemble of finite systems, the instanta-
neous kinetic temperature fluctuates (Frenkel and Smit, 2002). In fact, if
the average kinetic energy per particle is kept constant (as is done in the
isokinetic MD scheme (Evans and Morriss, 1990)), then the true constant-
temperature ensemble would not be simulated. In practice, the difference
between isokinetic and canonical schemes is often negligible (Frenkel and
Smit, 2002). In this section we discuss some of the most commonly em-
ployed temperature coupling schemes.

The Berendsen Thermostat

The Berendsen algorithm simulates weak coupling with first-order kinet-
ics to an external heat bath with a given temperature T0. According to
this algorithm the deviation of the system temperature from T0 is slowly
corrected according to the following equation (van der Spoel et al., 2004):

dT

dt
=

T0 − T

τ
. (16.18)

As equation (16.18) shows, the temperature deviation decays exponentially
with a time constant τ . This method of coupling has the advantage that
the strength of the coupling can be varied and adapted to the user’s re-
quirement. At each step the velocity of each particle is rescaled by a factor
λ, given by

λ =
[
1 +

∆t

τT

(
T0

T
− 1

)]1/2

. (16.19)

The parameter τT (in equation (16.19)) is close to, but not exactly equal to,
the time constant τ of the temperature coupling (equation (16.18)) (van der
Spoel et al., 2004):

τ =
2CV τT

NdfkB
,

where CV is the total heat capacity of the system, kB is Boltzmann’s con-
stant, and Ndf is the total number of degrees of freedom. Here τ is not equal
to τT , because the kinetic energy change caused by scaling the velocities
is partly redistributed between kinetic and potential energy, and hence the
change in temperature is less than the scaling energy (Berendsen et al.,
1984).

The Nose–Hoover Thermostat

The Berendsen thermostat is very efficient in relaxing a system to the
target temperature. However, it does not generate states in a canonical
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ensemble, even though the deviation is small. To enable canonical ensemble
simulations, one may use the extended-ensemble approach first proposed by
Nose (Nose, 1984) and later modified by Hoover (Hoover, 1985). The system
Hamiltonian is extended by introducing a thermal reservoir and a frictional
term in the equations of motion. The frictional force is proportional to the
product of each particle’s velocity and a friction parameter ξ. This friction
parameter (or “heat bath” variable) is a fully dynamic quantity with its
own equation of motion; the time derivative is calculated from the difference
between the current kinetic energy and the reference temperature.

In Hoover’s formulation, the particles’ equations of motion are given by

d2ri
dt2

=
Fi

mi
− ξ

dri
dt

,

where the equation of motion for the heat bath parameter ξ is

dξ

dt
=

1
Q

(T − T0).

The reference temperature is denoted by T0, while T is the current in-
stantaneous temperature of the system. The strength of the coupling is
determined by the constant Q (usually called the “mass parameter” of the
reservoir) in combination with the reference temperature. Since the mass
parameter is dependent on the reference temperature, it is an awkward way
of describing the coupling strength.

An important difference between the weak coupling scheme and the
Nose–Hoover algorithm is that using a weak coupling one gets a strongly
damped exponential relation, while the Nose–Hoover approach produces
an oscillatory relaxation. For further discussion and some implementation
issues of the Nose–Hoover algorithm, we refer the reader to (van der Spoel
et al., 2004).

The Andersen Thermostat

In the constant-temperature method proposed by (Andersen, 1980), the
system is coupled to a heat bath that imposes the desired temperature. The
coupling to a heat bath is represented by stochastic impulsive forces that
act occasionally on randomly selected particles. These stochastic collisions
with the heat bath can be considered as Monte Carlo moves that transport
the system from one constant-energy shell to another (Frenkel and Smit,
2002). Between stochastic collisions, the system evolves at constant energy
according to the normal Newtonian laws of motion.

Before starting such a constant-temperature simulation, the strength of
the coupling to the heat bath should be selected. This coupling strength
is determined by the frequency of stochastic collisions. Let us denote this
frequency by Γ. If successive collisions are uncorrelated, then the distribu-
tion of time intervals between two successive stochastic collisions, P(t; Γ),
is of the Poisson form
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P(t; Γ) = Γexp[−Γt],

where P(t; Γ)dt is the probability that the next collision will take place in
the interval [t, t + dt].

A constant-temperature simulation employing Andersen thermostat con-
sists of the following steps:

1. Start with an initial set of positions and momenta and integrate the
equations of motion for a time interval of ∆t.

2. A number of particles are selected to undergo a collision with the
heat bath. The probability that a particle is selected in a time step
of length ∆t is Γ∆t.

3. If particle i has been selected to undergo a collision, its new velocity
will be drawn from a Maxwell-Boltzmann distribution corresponding
to the desired temperature T0. All other particles are unaffected by
this collision.

It should be noted that rigorously, the dynamics generated by the Ander-
sen scheme are unphysical (Frenkel and Smit, 2002). Therefore, it is risky
to use the Andersen method when studying dynamical properties. The key
properties of the Andersen thermostat can be summarized as follows:

1. It relies on stochastic collisions with heat reservoirs to control the
temperature.

2. It produces a canonical NVT distribution, but probabilistically, rather
than deterministically.

3. The algorithm is very similar to MD, but each particle undergoes a
stochastic collision with probability Γ∆t after every time step.

The Andersen thermostat has been used very effectively in dissipative
particle dynamics (DPD) methods; see Section 16.4 in this chapter.
Table 16.2 gives a comparison of the temperature coupling schemes that
are commonly used in MD simulation.

16.1.4 Data Analysis
MD simulation generates the trajectories of all the particles in the system,
but to obtain a deeper insight into the system being studied, we need to
analyze the trajectories obtained during the MD simulation. In this section,
we summarize some of the most commonly performed data analyses in the
simulation of fluid transport.
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TABLE 16.2. Summary of the commonly employed thermostats.

Thermostat Key concept Suitability/Application

Berendsen First-order-
kinetics-based
weak coupling

Easy implementation and compu-
tationally inexpensive.

Nose–Hoover Extended
Lagrangian

Most rigorous implementation of
the NVT ensemble.

Andersen Stochastic
collision

Suitable for thermal coupling of
atomistic and continuum do-
mains; also for DPD.

Density Profiles

To investigate nanoflows in channels and pores, where the fluid density is
inhomogeneous (see Chapters 10 and 11), it is useful to compute the spatial
distribution of fluid density, e.g., density profile along the radial direction of
a nanopore. This is usually performed using the “binning method” (Allen
and Tildesley, 1994). In this scheme the relevant spatial domain (i.e., the
domain where the density distribution of the species needs to be computed)
is partitioned into a number of cells, which are identified as the “bins.”
The number of atoms in each bin is computed from the knowledge of the
positions of the atoms. In order to obtain a better statistical analysis of
the number density in a bin, we add the number of atoms in the bin for a
number of steps and then divide the total number of atoms in the bin by
the number of steps and the volume of the bin. Thus, the number density,
ci, of the ith bin, averaged over s steps, is given by

ci = 〈ni/VOLi〉s,

where ni is the total number of atoms in the ith bin during each step and
VOLi is the volume of the ith bin.

Velocity Profiles

The velocity profile is one of the most important measurables for fluid
transport, and can be computed in a similar manner as the density profile.
Usually, the simulation system is partitioned into n bins, and statistics of
the fluid velocity are gathered separately in each bin (Tysanner and Garcia,
2004). Assuming that during an s-step simulation, at each step k, there are
nk,i particles in the ith bin, and the velocity of each of these particles
(denoted by j) is given by vj

k,i, then the average fluid velocity ui in the ith
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bin can be computed by

ui =

∑s
k=1

∑nk,i

j=1 vj
k,i∑s

k=1 nk,i
. (16.20)

Equation (16.20) is used to compute the steady-state velocity profile.
If one is interested in the transient behavior of the velocity profile, an
ensemble of simulations will need to be performed. In this case, the velocity
profile can still be analyzed using equation (16.20), and the only difference
is that the parameter s now denotes the different simulations rather than
different time steps.

Diffusion Coefficient

The diffusion coefficient can be calculated using the Einstein relationship

D =
1
6

lim
t→∞

〈[r(t0 + t) − r(t0)]2〉
t

,

where r is the atom position, which can be obtained from the trajectories
generated by the MD simulation. See Chapter 10 for a discussion of the
calculation of diffusion coefficients of simple fluids.

Stress Tensor

The stress or pressure tensor of an atomic fluid, denoted by P, is often
defined as the infinitesimal force dF acting on an infinitesimal area dA,
which moves with the local streaming velocity u(r, t) of the fluid (Todd
et al., 1995):

dF = −dA · P. (16.21)

The pressure tensor can be written as a linear sum of a kinetic component,
Pk, and a potential component, Pu. In equation (16.21), the kinetic com-
ponent is deemed to be across the surface dA if at a time t a particle moves
through (or across) the surface. The potential component Pu, due to inter-
molecular forces, is, however, not as easily defined (Todd et al., 1995). An
interatomic force between two atoms is often said to be “across” the surface
if the line between the centers of mass of the two atoms cuts through (or
across) the surface defined by dA. This is known as the Irving–Kirkwood
convention (Todd et al., 1995).

However, there is really no unambiguous definition of “across” for ei-
ther the kinetic or the potential contribution to the pressure tensor. For
example, there are obvious difficulties in handling many-body force con-
tributions to the potential part of the pressure tensor. The ambiguities in
both components of the pressure tensor are best illustrated by the fact that
the predictions of hydrodynamics are unaltered if the curl of an arbitrary
vector field is added to the pressure tensor. In hydrodynamics it is only the
gradient of the pressure tensor that appears in the equations of motion.
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The Irving–Kirkwood (IK) expression for the pressure tensor at time t
(Todd et al., 1995) is

P(r, t) =
1

VOL

[∑
i

mi[vi(t) − u(ri, t)][vi(t) − u(ri, t)]

+
1
2

∑
ij

rij(t)Oij(t)Fij(t)|ri(t)=r

⎤⎦ ,

where vi is the total particle velocity, u is the streaming velocity of the
fluid, VOL is the volume of the system, Fij is the force on atom i due to
atom j, and Oij is the differential operator:

Oij = 1 − 1
2!

rij · ∂

∂r
+ · · · +

1
n!

[
−rij · ∂

∂r

]n−1

+ · · · . (16.22)

Thus, from the knowledge of the positions of the atoms, velocities of the
atoms, and forces acting on the atoms obtained from a typical “MD run,”
the stress (or pressure) tensor in the fluid medium can be computed.

Shear Viscosity

Each molecular-dynamics method for calculating the shear viscosity of a
fluid falls into one of two main categories: equilibrium molecular dynam-
ics (EMD) or nonequilibrium molecular dynamics (NEMD) techniques. The
EMD techniques involve either the calculation of time correlation functions
by measuring the decay of near-equilibrium fluctuations in properties of the
fluid (Green–Kubo methods) or by accumulating displacements in proper-
ties over time (Einstein methods). For example, the Green-Kubo relation
for shear viscosity, η, is given by (Arya et al., 2000)

η =
VOL
kBT

∫ ∞

0
〈Pxz(0)Pxz(t)〉dt,

where Pxz is the xz component of the pressure tensor P given by (Arya
et al., 2000)

P =
1

VOL

⎛⎝ N∑
i=1

pipi

mi
+

N∑
i=1

N∑
j>i

rijFij

⎞⎠ , (16.23)

where pi is the momentum vector for atom i, and rij = ri − rj is the
vector joining the centers of molecules i and j. A weakness of these EMD
methods is that the shear viscosity suffers from substantial nonmonotonic
system size dependence (Hess, 2002).

The NEMD techniques usually involve measuring the macroscopic steady-
state response of the system to a perturbing field and relating the linear
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response to a transport coefficient. One of the earliest NEMD techniques,
which maintains conventional periodic boundary conditions, involves im-
posing a spatially periodic external force on the molecules to generate an
oscillatory velocity profile (Arya et al., 2000). The amplitude of this ve-
locity profile at steady state is inversely related to the shear viscosity, and
hence the viscosity can be calculated. The shear viscosity is wavelength
dependent, however, and the Newtonian shear viscosity is obtained only in
the long wavelength limit, i.e., in the limit k → 0, where k is the wave vec-
tor of the oscillatory perturbation. This means that a very large simulation
box is required to get reasonably accurate values of shear viscosity, which
limits the usefulness of this technique.

The more successful NEMD techniques involve imposing a planar Cou-
ette flow velocity profile (i.e., zero wave vector techniques). One of the most
efficient NEMD algorithms for shear viscosity is the Sllod algorithm (Arya
et al., 2000). The Sllod algorithm has been used by several authors, and has
been shown to be exact for arbitrarily large shear rates γ̇, and is therefore
appropriate for studying non-Newtonian regimes. The modified equations
of motion for Sllod algorithm are (Arya et al., 2000)

dri

dt
=

pi

mi
+ ri · �u,

dpi

dt
= Fi − pi · �u − αpi,

where Fi is the force on molecule i, and α is the thermostating multiplier.
The strain-rate-dependent shear viscosity is obtained from the constitutive
equation

η(γ̇) = −〈Pxz〉
γ̇

.

The Newtonian shear viscosity is estimated by extrapolating the shear
viscosities to zero shear rate. Both EMD and NEMD methods give sim-
ilar values for the Newtonian shear viscosities. However, an advantage of
the NEMD method is that the shear rate dependence of the viscosity is
obtained directly from NEMD, while EMD provides the zero shear rate
value only. One of the drawbacks of the NEMD method is that there is no
generally accepted theoretical model for the shear rate dependence of the
shear viscosity. The resulting Newtonian viscosity obtained from an NEMD
simulation depends on the model used in the extrapolation procedure. To
overcome this limitation, NEMD simulations at very small shear rates may
be performed. However, this defeats the purpose of the NEMD method,
since these low shear rate simulations require nearly as much computation
time as the EMD methods. Although the NEMD runs can be parallelized for
different shear rates, the computational time required to obtain the viscos-
ity is limited by those long simulation runs at low shear rates. Refinements
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to the traditional NEMD methods have been developed that reduce the
computational cost by improving the signal-to-noise ratio at small fields
(Arya et al., 2000; Hess, 2002); however, viscosity calculation is still quite
demanding.

Error Estimation

Sources of systematic error in MD include system-size dependence, pos-
sible effects of random number generators, and poor equilibration (Allen
and Tildesley, 1994). These should be estimated and eliminated wherever
possible. It is also essential to obtain an estimate of the statistical signifi-
cance of the results. Simulation averages are taken over runs of finite length,
and this is the main cause of statistical imprecision in the mean values so
obtained.

1. Errors in Equilibrium Averages: Suppose that we are analyzing some
simulation results that contain a total of τrun time steps, or config-
urations. The average of some property A is (Allen and Tildesley,
1994)

〈A〉run =
1

τrun

τrun∑
τ=1

A(τ).

If it is assumed that each quantity A(τ) is statistically independent
of the others, then the variance in the mean would simply be given
by

σ2(〈A〉run) = σ2(A)/τrun, (16.24)

where

σ2(A) = 〈δA2〉run =
1

τrun

τrun∑
τ=1

(A(τ) − 〈A〉run)2.

The estimated error in the mean is given by σ(〈A〉run). However, the
data points are not usually independent, because configurations are
often stored sufficiently frequently, so that those are highly correlated
with each other. In those cases, the number of steps for which these
correlations persist must be built into equation (16.24) (Allen and
Tildesley, 1994). For example, suppose that the τrun configurations
actually consist of blocks, each containing 2τA identical configura-
tions. For large τA, this corresponds to a correlation “time” τA. Then

σ2(〈A〉run) = 2τAσ2(A)/τrun.
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2. Errors in Fluctuations: Errors in the estimate of fluctuation averages
of the type 〈δA2〉 may be estimated simply on the assumption that
the process A(t) obeys Gaussian statistics. The resulting formula is
(Allen and Tildesley, 1994)

σ2(〈δA2〉run) = 2t′A〈δA2〉2/trun,

where a slightly different correlation time appears:

t′A = 2

∞∫
0

dt〈δA(t)δA〉2/〈δA2〉2.

For an exponentially decaying correlation function, t′A = tA is the
usual correlation time.

16.1.5 Practical Guidelines
In this section we outline some of the issues that are faced in setting up and
running an MD simulation. If one is using an MD package or an in-house
program, it is necessary to choose the various parameters properly. This
section discusses how to make a prudent choice of the important parameters
and how various choices affect the accuracy and the speed of the simulation.

1. Size of the Time Step. We would like to use as large a time step as
possible so that we can explore more of the phase space of the system.
However, since we truncate the Taylor’s series expansions, the time
step needs to be small enough so that the expansions can provide
a reliable estimate of the atomic positions and velocities at the end
of the time step. For typical time-marching algorithms with a time
accuracy of order three, one uses a time step that is a fraction of the
period of the highest-frequency motion in the system. A good way of
checking whether the time step is small enough is to run an equilib-
rium simulation without temperature coupling. If the fluctuation in
the total energy is less than 0.5% of the total energy of the system,
the time step is typically acceptable. For a typical simulation of water
transport, where the O−H bond length is fixed, a time step size of
1.0 to 2.0 fs is commonly used.

2. Cut-Off Scheme. The most expensive part of energy and force cal-
culations is the nonbonded interactions, since there are N(N − 1)/2
such interactions to calculate in an N -atom system. To save com-
puter time, it is usual practice to neglect nonbonded interactions
that occur between atoms separated by more than a given distance
(say 10 Å). This use of a cut-off scheme in potential/force calculation
is justified for potentials like the Lennard–Jones potential. However,
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for charged atoms, the use of a cut-off scheme is not easily justified:
charge–charge interactions are of much longer range (because of the
1/r dependence of the interaction energy). In this case, one usually
needs to use the more complicated method for the calculation of the
interaction energy, e.g., the particle mesh Ewald method (PME) or
the fast multipole method (FMM), as discussed in Section 16.1.2.

3. Boundary Conditions: The most commonly employed boundary con-
ditions in MD are the periodic boundary conditions. The atoms of
the system to be simulated are put into a space-filling box, which is
surrounded by translated copies of itself. Thus there are no bound-
aries of the system; the artifact caused by unwanted boundaries in
an isolated cluster is now replaced by the artifact of periodic condi-
tions. If a crystal is simulated, such boundary conditions are desired
(although motions are naturally restricted to periodic motions with
wavelengths fitting into the box). If one wishes to simulate nonperi-
odic systems, as liquids or solutions, the periodicity by itself causes
errors. The errors can be evaluated by comparing various system sizes;
they are expected to be less severe than the errors resulting from an
unnatural boundary with vacuum (van der Spoel et al., 2004). Many
packages (e.g., GROMACS (van der Spoel et al., 2004)) use periodic
boundary conditions, combined with the minimum image convention,
where only one, the nearest, image of each particle is considered for
short-range nonbonded interaction terms. For long-range electrostatic
interactions this is not always accurate enough, and therefore other
techniques for the calculation of the interaction energy, e.g., the parti-
cle mesh Ewald method (PME) or the fast multipole method (FMM)
(see Section 16.1.2) are necessary.

4. Freezing a Group of Atoms. Atoms that are supposed to remain sta-
tionary can be frozen to reduce the computational time. This is
also useful during equilibration, e.g., to avoid badly placed solvent
molecules from interacting unreasonably with other species (say pro-
tein atoms), although the same effect can also be obtained by putting
a restraining potential on the atoms that must be protected (van der
Spoel et al., 2004). The freeze option can be used, if desired, on just
one or two coordinates of an atom, thereby freezing the atoms in a
plane or in a line (van der Spoel et al., 2004).

5. Storing the Simulation Results. MD simulation generates the trajec-
tories of each atom in the simulation system. The properties of the
system can be obtained by analyzing these trajectories. The common
practice is to save the system trajectories at certain intervals during
the simulation, and analyze the trajectories when the simulation is
finished. For most measurables, e.g., density, this is sufficient. Be-
cause the trajectories of neighboring time steps are usually highly
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correlated, it is usually not necessary to store the trajectory at each
time step. However, for the analysis of certain variables, e.g., stream-
ing velocity, which has huge statistical fluctuations, one has to store
the data at each step to obtain a reasonable estimation of the variable,
which will result in prohibitive disk space consumption. In this case,
the data analysis is usually performed in an “on-the-fly” manner.

6. Number of Bins. In the binning method (described in Section 16.1.4),
the system is partitioned into cells. The total number of cells or the
size of the individual cell is an important choice. Since we want to
estimate a certain variable, which varies continuously in the space, a
larger number of bins means a finer grid and thus a better estimation
(small systematic error). However, because of the statistical nature
of data analysis in MD simulations, a smaller-sized bin or cell means
a smaller number of particles in the bin and thus a larger statistical
error. Thus there is a trade-off between systematic error and statisti-
cal error. It is to be noted that since the computation time for data
analysis using the binning method is negligible compared to the other
computational steps of MD simulation, coarser or finer partitioning
(for the purpose of binning) does not affect the speed of the simula-
tion significantly. The choice of the number of bins also depends on
the parameter that needs to be extracted.

16.1.6 MD Software
A number of MD programs are available on the Web for free download.
Some of the MD programs that are popularly used by the computational
chemistry and biology community are listed in Table 16.3.

16.2 MD-Continuum Coupling

MD simulations can be employed only for a short time and very small
length scales due to their large computational requirements compared to
the computational complexity of continuum discretizations. Multiscale ap-
proaches both in time and space can overcome this difficulty. The coupling
of MD to Navier–Stokes equations would extend the range of applicabil-
ity of both approaches and provide a unifying description of liquid flows
from nanoscales to larger scales. The incompressible Navier–Stokes equa-
tions are involved in the coupling, although some authors have attempted
to couple MD to compressible Navier-Stokes equations; see, for example,
(Flekkoy et al., 2000). In the following we will present the main ideas of
four different coupling strategies:

• The relaxation method of (O’Connell and Thompson, 1995).
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TABLE 16.3. A list of some commonly used MD packages.

MD Package Website

GROMACS http://www.gromacs.org

AMBER http://amber.scripps.edu/

CHARMM http://yuri.harvard.edu/

NAMD http://www.ks.uiuc.edu/Research/namd/

Chemical http://www.uku.fi/ thassine/chemical/

Insight II http://www.accelrys.com/insight/

ORAC http://www.chim.unifi.it:8080/orac

• The Maxwell demon method of (Hadjiconstantinou and Patera, 1997).

• The flux-exchange method of (Flekkoy et al., 2000), and

• A hybrid method of (Nie et al., 2004).

Coupling of heterogeneous representations was first attempted in solid
mechanics problems (Kohlhof et al., 1991). Similar coupling was extended
to liquids in the works of (O’Connell and Thompson, 1995; Hadjiconstanti-
nou, 1999; Flekkoy et al., 2000; Nie et al., 2004). In the MD-continuum
coupling the use of an overlap region is necessary, since MD induces local
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FIGURE 16.3. Domain for MD-Continuum coupling.

structure in the fluid at interfaces and especially for density (Koplik and
Banavar, 1995). The two-domain coupling would therefore have the form
shown in the sketch of Figure 16.3, consisting of a region (MD) where the
molecular dynamics simulation is performed, the region where the Navier–
Stokes equations will be solved, and an overlap region, where both descrip-
tions are valid. However, in order to terminate the MD region, in addition
to standard particle motion in the overlap region a constraint should be
imposed of the form

Ni∑
n=1

pn − Mivi = 0,

where Ni is the total number of particles and Mi is the mass of the con-
tinuum fluid element in the i-bin, and pn is the momentum of the nth
particle in the v-direction. This constraint can be integrated into standard
Lagrange’s equations governing the motion of the rest of the molecules in
the MD region. This approach was successfully implemented by (O’Connell
and Thompson, 1995), who used an overlap region of 14σ. A free parameter
in this approach is the strength of the constraint ξ in relation to the extent
of the overlap region. Specifically, the equations of motion in the i-bin are

ẋi =
pi

m
+ ξ

[
Mi

mNi
− 1

Ni

Ni∑
n=1

pn

m

]
, (16.25)

ṗi = −∂V

∂x
, (16.26)
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FIGURE 16.4. Schematic of one Schwarz iteration cycle (Courtesy of N.G. Had-
jiconstantinou.)

where m is the particle mass. Small values of the parameter will provide an
inadequate coupling between MD and Navier–Stokes, while large values will
lead to excessive damping of particle fluctuations, which in turn will lead to
divergence in the solution. In (O’Connell and Thompson, 1995), a value of
ξ = 0.01 was used for simulating a slow-startup Couette flow. It was shown
that the best choice of ξ is to have ∆tMD/ξ greater than the autocorrelation
time tvv , where ∆MD is the time step in the MD simulation. This relaxation
approach does not handle correctly the mass flux at the MD-continuum
interface, and this is an important limitation of the method.

A more effective approach would be to use the constraint dynamics to
control the density fluctuations at the end of the interface (last bin), while
at the same time resorting to a relaxation iterative procedure similar to
the DSMC-continuum coupling (see Section 15.1). In the context of liquid
flows, we cannot provide a modification of the Navier–Stokes equations to
account for the slip, and thus the constraint, on the MD side, will enforce
the no-slip condition as interface to the continuum description. In other
words, we interpolate quantities as

φn+1
MD = θφn

MD + (1 − θ)φn
NS,
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FIGURE 16.5. Convergence history for the obstructed channel problem of Fig-
ure 16.4. The velocity profile at different iterations is shown. (Courtesy of N.G.
Hadjiconstantinou.)

with θ the relaxation parameter. For θ = 0 we obtain the alternating
Schwarz algorithm used in the work of (Hadjiconstantinou, 1999), which is
explained schematically in the plot of Figure 16.4; see also Section 15.2.1.
The example is flow in an obstructed channel in which a square region
behind the solid block is treated by MD. The continuum iterate receives
Dirichlet data on Γcont from the molecular solution obtained in the previous
iteration cycle (top); the continuum solution on Γmol is subsequently used
as Dirichlet data on the molecular simulation (bottom). A typical result
of the convergence history of the iterative process is shown in Figure 16.5.
The hybrid solution is compared to the full continuum solution (denoted
by a dashed line); the continuum solution is taken as “exact,” since the
molecular region is representing bulk fluid far from any boundaries. An ini-
tial guess of zero velocity in the molecular region was used. The oscillations
around the “exact” solution are due to the statistical fluctuations in the
molecular description.

This method employs a particle reservoir to satisfy the mass flux across
the hybrid interface; this reservoir is taken as the outer ring of the MD
domain. The particles do not drift away, because of the periodic boundary
conditions imposed on the MD domain. The particle velocity in a bin of
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the overlap region is drawn from a Maxwellian distribution at each time
step, adopting the so-called Maxwell demon procedure. In this approach the
particle nonequilibrium distributions are not included. In addition, there
are sudden changes of the particle velocities from one step to another.

In general, this type of iterative coupling may depend on the relative size
of the domains and could lead to possible divergence of solutions for large
disparity in domain sizes, which is typical in microfluidic and nanofluidic
applications. The relaxation procedure for θ �= 0 has been shown to weaken
the strong dependence on the domain size (Henderson and Karniadakis,
1991). This is typical of algorithms based on the classical Schwarz algo-
rithm, and for coupling of elliptic problems with heterogeneous discretiza-
tion, convergence of the θ-relaxation iterative procedure is independent of
the domain sizes. In addition to the iterative coupling and the dynamic
constraint in the overlap region, convergence of the coupled solution is ac-
complished only if there is compatibility between transport coefficients on
the two sides and the scatter of quantities on the microscopic side is min-
imized using spatial averages, for example, by exploiting homogeneity in
planar slices about 2σ thick.

The flux-exchange method developed by (Flekkoy et al., 2000) is con-
servative, since it relies in the matching of fluxes of mass and momentum
between the MD and Navier–Stokes domains. In particular, the mass flux
continuity is enforced by the equation

ms(x, t) = Aρv · n,

where A is the area and n the unit normal vector. Here s(x, t) is the number
of particles that need to be added to (if s is positive) or removed (if s is
negative) the top bin of the overlap domain. Similarly, the momentum flux
continuity is enforced by the equation

ms(x, t)〈u′〉 +
∑

i

Fi = AΠ · n,

where u′ is the velocity of the added or removed particles, and Fi is an
external force acting on particle i in the region of flux-exchange from con-
tinuum to particles (P ← C). Flekkoy et al. employed the compressible
Navier–Stokes equations in the coupling, and thus the momentum flux ten-
sor Π has the form

Π = ρvv + p − µ(∇v + ∇vT − ∇ · v) − (µ/3)∇ · v.

Combining the two equations, we observe that the momentum equation is
satisfied if the mass equation is satisfied, but in addition we need to enforce

〈u′〉 = v and
∑

i

Fi = A (Π − ρvv) · n.
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In order to avoid drifting of particles, a weight function g(x) was intro-
duced. In particular, this function obeys g(x) = g′(x) = 0 for x ≤ 0 and
diverges as

g(x → L/2) ∝ 1
L/2 − x

at the edge of the region (P ← C). The coordinate x runs parallel to n,
and x = 0 is in the middle of the region (P → C) where flux-exchange
from continuum to particles take place. Also, L is the size of the bins in
the n direction. In addition, in order to maintain thermal equilibrium it
was found necessary to thermalize the particles in the subdomain P ← C
using Langevin dynamics. Specifically, a force of the form

FLi = −γ(ui − v) + F̃, 〈F̃(t)F̃(t′)〉 = 2kBTγδ(t − t′)

was added to the force Fi; here γ is a measure of dissipation.
This scheme was tested for steady Couette and Poiseuille flow using a

shifted Lennard–Jones potential, with time steps ∆tMD = 0.0017τ on the
MD side and ∆t = 100∆MD on the Navier–Stokes side.

In the hybrid method of (Nie et al., 2004) the relaxation procedure of
O’Connel and Thompson is abandoned, and new motion equations for the
MD are derived. In the overall region, the average continuum velocity vJ in
each cell J is computed by averaging the velocities on the cell’s grid points
where the Navier–Stokes equations are discretized. Continuity of the mean
velocity is imposed by requiring that the averaged particle velocity in this
cell be equal to vJ , i.e.,

1
NJ

∑
i

ui = vJ(t),

where NJ is the number of particles in cell J . Taking the Lagrangian deriva-
tive of the above, we have

1
NJ

∑
i

ẍi =
DvJ(t)

Dt
,

which is a constraint in the equations of motion ẍ = Fi/m. A general
solution that satisfies the constraint has the form

ẍ =
DvJ(t)

Dt
+ ζi,

∑
i

ζi = 0.

By choosing

ζi =
Fi

m
− 1

mNJ

NJ∑
i=1

Fi
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we obtain the generalized equations of motion for the ith particle,

ẍ =
Fi

m
− 1

mNJ

NJ∑
i=1

Fi +
DvJ(t)

Dt
+ ζi,

∑
i

ζi = 0. (16.27)

The discretization of the above equation gives

x(t + ∆tMD) − 2x(t) + x(t − ∆tMD)
∆t2MD

=
Fi

m
− 1

mNJ

NJ∑
i=1

Fi − 1
∆tMD

[
1

NJ

NJ∑
i=1

ẋ(t)i − vJ(t + ∆tMD)

]
.

The motion equations employed in the relaxation method in (O’Connell
and Thompson, 1995), are similar to the equations (16.27) but with the last
two terms on the right-hand side premultiplied by the relaxation parameter
ξ � 1. This means that the solution relaxes to a converged solution after
time on the order of ∆tMD/ξ. This delay may be necessary in order to
prevent the constraint from canceling intrinsic thermal fluctuations on time
scales less than the autocorrelation time tvv . However, as arugued in (Nie
et al., 2004), it has the undesirable effect that the particle velocities always
lag the continuum solution, which is incorrect in an accelerating flow.

A weight function similar to the flux-exchange method was also intro-
duced in (Nie et al., 2004), in order to prevent drifting of molecules away
from the MD domain but also to minimize density oscillations. In order
to ensure mass continuity at the MD–continuum interface, the number of
particles in each cell is modified by the net flux over a time step of the
Navier–Stokes equations,

n′ = −A∆tρv · n/m.

In general, this method has features of the relaxation method and the flux-
exchange method, but momentum flux continuity is not directly imposed.
It has been used successfully in simulating accelerating Couette flow, cavity
flow, and flow over an obstacle. Typical values were 15.5σ for the overlap
region in a domain 52.1σ wide. The Navier–Stokes time step was ∆t =
50∆tMD with ∆tMD = 0.005τ , and τ =

√
mσ2/ε the characteristic time of

the Lennard–Jones potential.

In summary, some of the key ingredients for effective MD–continuum
coupling are:

• Use of a constraint to minimize density variations at the interface.

• Modification of the potential at the interface to eliminate local arti-
ficial structure.
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• Use of a relaxation procedure to accelerate convergence of the coupled
algorithm.

• Incorporation of constrained dynamics.

• Mass and momentum flux exchange to maintain conservativity.

In the following section we present another approach to multiscale mod-
eling in the context of electroosmotic flow in a nanochannel.

16.3 Embedding Multiscale Methods

In Chapter 12 (Sections 12.2 and 12.3), we observed that near the channel
wall various atomistic characteristics (e.g., finite size of the ions, layering
of water molecules) that were neglected in the classical continuum theory
for the electroosmotic flow become important. In order to predict the elec-
troosmotic flow in the entire channel accurately, one has to capture these
atomistic details in the near-wall region. Multiscale simulation can be very
helpful in such a scenario. In this section, we discuss a multiscale simula-
tion method that is based on the embedding technique. Figure 16.6 shows a
schematic of the embedding technique. The central ideas in the embedding
technique are:

1. To simulate a wider (or coarser) length scale problem (see Figure
16.6(a)), we first set up an auxiliary smaller (or finer) length scale
problem (see Figure 16.6(b)) using similar input conditions (e.g., wall
surface charge density) such that the near-wall noncontinuum behav-
ior is captured.

2. An MD simulation is performed on the finer length scale problem.

3. The MD results from the finer scale channel are embedded into the
continuum simulation of the coarser length scale problem.

For this approach to be accurate, the size of the fine-scale problem must
be large enough such that all the critical regions in the coarser length
scale problem, where atomistic details are important, are included in the
auxiliary problem. For this approach to be efficient, the size of the fine-
scale problem must be much smaller than the size of the original system,
i.e., W1 � W0. In practice, the size of the auxiliary problem is chosen as a
compromise between these two objectives.

In the rest of this section, we describe two embedding multiscale exam-
ples to compute the ion concentration and the velocity distribution in a
nanochannel electroosmotic flow.
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FIGURE 16.6. Schematic of the embedding technique for multiscale simulation.
(a) represents the original coarser length scale problem and (b) represents aux-
iliary fine scale problem set up to solve the coarser length scale problem. W0

and W1 are the characteristic length scales of the two systems. The shaded areas
of width δ denote the critical regions where atomistic details are important in
determining the system behavior. The region of width ε in panel (b) is a buffer
region.

16.3.1 Application to the Poisson–Boltzmann Equation
In Section 12.2.1, we presented a modified Poisson–Boltzmann equation
to account for the wall–ion, water–ion, and ion–ion interactions in a more
accurate manner. The key issue in the implementation of the modified
Poisson–Boltzmann equation is to compute the excess chemical potential
for an ion, i, denoted by φex,i (see Section 12.2.1 for details). In the embed-
ding multiscale approach, we extract the electrochemical potential correc-
tion term from the ion concentration profile obtained from MD simulation
of a smaller width channel using equation (12.4). Once the electrochem-
ical potential correction term is obtained, one can use it in the modified
Poisson–Boltzmann equation (12.5b) to simulate the ion distribution in
a bigger channel with the same wall structure and similar surface charge
density. In such an approach, one circumvents the difficulty of obtaining a
closed form expression for the electrochemical potential correction term by
utilizing the MD simulation results.

The accuracy of this approach depends on how the fine-scale problem
is set up and on how significantly the electrochemical potential correction
term differs in the two problems (i.e., in the coarse-scale and in the fine-scale
problems). In setting up the fine-scale problem, one needs to include the
near-wall region, where the electrochemical potential correction is nonzero.
By setting up the fine-scale problem using similar operating conditions
(e.g., wall charge density, wall structure, and bulk concentration) as in
the original system, the electrochemical potential correction will not differ
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significantly in the two problems. This is because:

1. The wall–ion interaction included in the electrochemical potential
correction term is the Lennard–Jones potential, which depends only
on the wall structure and the Lennard–Jones parameters, and thus
will not change when the channel width is increased.

2. The water–ion interactions depend primarily on the water concentra-
tion (i.e., how closely the water molecules are packed). MD simulation
results of water concentration profile in channels of different width
but with the same surface charge density indicate that the water con-
centration profile near the channel wall is independent of the channel
width.

In summary, the electrochemical potential correction term is primarily
due to the wall effects (e.g., ion–wall interactions and wall-induced water
layering). Since these interactions are short-ranged, further addition of wa-
ter layers in the bulk (corresponding to a wider channel) would not affect
the electrochemical potential correction term significantly. Hence, the use
of the same electrochemical potential correction term for wider channels
can produce reasonably accurate results.

The efficiency of this approach depends on whether the length scale of
the fine-scale problem can be significantly smaller compared to the original
problem. This can be achieved by choosing a small ε in Figure 16.6. How-
ever, if ε is too small in the fine-scale problem, the system behavior in one
critical region may be influenced by the system behavior in another critical
region (e.g., the ion distribution near the upper channel may be influenced
by that near the lower channel wall), which may not exist in the original
coarse-scale problem. As an example, for a 6-nm-wide coarse-scale channel,
typically a 2-nm-wide fine-scale channel (note that this can depend on a
number of parameters such as the surface charge density, and Debye length)
is used. MD simulation of a 2-nm-wide channel requires much smaller com-
putational time than the MD simulation of the 6-nm-wide channel. Another
good example where the embedding multiscale approach can be efficient is
the nanofluidic system studied by (Kemery et al., 1998), where nanochan-
nels are connected by microchannels. In this case, the MD simulation of
the nanochannels is possible, but the MD simulation for the entire system
is impossible.

Figure 16.7 (a) shows the MD concentration profile of Cl− ion across
the channel for case 4 (see Table 12.2 for details), where the channel width
is 2.22 nm and the surface charge density on the channel wall is 0.120
C/m2. Figure 16.7 (b) shows the electrochemical potential correction term
extracted by using equation (12.4). Note that the electrochemical potential
correction term is close to zero at about 0.8 nm away from the channel wall.
φex reaches a minimum at about 0.34 nm away from the channel wall, and
this roughly corresponds to the position of the minimum of the potential
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energy due to the Lennard–Jones potential between the wall and the Cl−

ion (see Figure 12.3 (b)). This indicates that the electrochemical poten-
tial correction term at this position is primarily due to the Lennard–Jones
potential between the wall and the Cl− ion. Using the electrochemical po-
tential correction term shown in Figure 16.7 (b), the ion distribution in
various channels with different widths and similar surface charge densities
were calculated. Figure 16.7 (c) shows the comparison of Cl− concentra-
tion in a 3.49-nm channel (case 1, charge density: 0.120 C/m2 (see Table
12.2)) predicted by MD simulation and by the modified Poisson-Boltzmann
equation. Figure 16.7 (d) shows the comparison of Cl− concentration in a
10.0 nm channel (case 6, charge density: 0.124 C/m2) predicted by MD
simulation and by the modified Poisson–Boltzmann equation. The results
in Figures 16.7 (c) and 16.7 (d) suggest that the extraction of the electro-
chemical potential correction using a fine-scale channel and employing it in
the modified Poisson–Boltzmann equation to predict the variation of the
ion concentration in the coarser channel works very well.

16.3.2 Application to Navier–Stokes Equations
The results in Section 12.3 indicate that the continuum flow theory is not
valid for electroosmotic flow in a 0.95-nm-wide channel. However, contin-
uum theory can be used to describe flow in channels wider than 2.22 nm,
provided that viscosity variation near the channel wall is taken into ac-
count. It is, however, very difficult to obtain a closed-form expression for
viscosity variation near the channel wall. To simulate electroosmotic flow
in wide channels, where MD simulation can be very expensive, one possi-
ble way is to first perform an MD simulation in a smaller channel under
similar conditions (e.g., using the same wall structure and charge density
as in a wider channel) and then extract the viscosity from the MD data.
The extracted viscosity can then be used in continuum theory to model
flow in a wider channel. In this approach, one assumes that the viscos-
ity near the channel wall would not change appreciably when the channel
width increases. This assumption typically holds, since viscosity depends
on the fluid properties and ion concentrations near the channel wall, and
these parameters would not change significantly when the channel width
changes, provided that other operating conditions (e.g., wall structure and
wall charge density) do not change significantly or remain the same. The
evaluation of viscosity from molecular dynamics data can be difficult, since
one needs to compute the derivative of the velocity obtained from MD data.
Since the velocity obtained from the MD simulation is usually very noisy,
unless the simulation is carried out for a very long time, the derivative
of the velocity would be even noisier, leading to significant noise in the
extracted viscosity. It is possible to smooth the velocity data using a fil-
ter, but this may introduce additional errors into the viscosity estimation.
An alternative approach is to use the embedding multiscale approach, in
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FIGURE 16.7. (a) Cl− ion concentration across the channel for case 4 (W = 2.22
nm, σs = +0.120 C/m2). (b) The electrochemical potential correction term ex-
tracted from the ion distribution shown in (a). (c) Comparison of Cl− ion concen-
tration across the channel for case 1 (W = 3.49 nm, σs = +0.120 C/m2) as pre-
dicted by the MD simulation and modified P-B equation. (d) Comparison of Cl−

ion concentration across the channel for case 6 (W = 10.0 nm, σs = +0.124 C/m2)
as predicted by the MD simulation and modified Poisson–Boltzmann (P-B) equa-
tion.

which the velocity near the wall, obtained from the fine-scale simulation, is
used in the continuum modeling of a coarse-scale channel. This approach
is described below.

Figure 16.8 presents details on the simulation of electroosmotic flow in a
large channel using the velocity obtained from MD simulation of electroos-
motic flow in a small channel. For any position within δ′ from the no-slip
plane, the velocity in the large channel is obtained by embedding the MD
velocity obtained for the electroosmotic flow in a small channel. Once the
velocity at z = δ′ is obtained, it is used as the boundary condition for the
continuum flow modeling in the central portion of the large channel using
a constant viscosity. To embed the small channel MD velocity u within δ′

from the no-slip plane into the simulation of flow in a large channel, we
first integrate the momentum equation from the channel center (c′′ is the
center of the small channel and c′ is the center of the large channel) to a
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FIGURE 16.8. Continuum simulation of electroosmotic flow in a large channel
using the velocity embedding technique. The channel is partitioned into two re-
gions: a near wall region and a channel center region. The velocity near the wall
is computed by embedding the velocity obtained from MD simulation of elec-
troosmotic flow in a smaller channel. The velocity in the channel center region is
computed using the continuum flow theory based on a constant viscosity.

position z:

µ
du

dz

∣∣∣∣z
s=c′′

=
∫ z

c′′
−z̃qc(s)Eext ds, (16.28)

µ
dū

dz

∣∣∣∣z
s=c′

=
∫ z

c′
−z̃qc̄(s)Ēext ds, (16.29)

where u, c, and Eext are the velocity, the ion concentration, and the external
electric field at any position z in the small channel, respectively. Further-
more, ū, c̄, and Ēext are the velocity, the ion concentration, and the external
electric field at any position z in the big channel, respectively. Using the
symmetry of the velocity profile with respect to the channel center,

du

dz

∣∣∣∣
s=c′′

=
dū

dz

∣∣∣∣
s=c′

= 0, (16.30)
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dividing equation (16.29) by equation (16.28), and applying equation (16.30)
gives

dū

dz

∣∣∣∣
z

=

∫ z

c′ −z̃qc̄(s)Ēext ds∫ z

c′′ −z̃qc(s)Eext ds

du

dz

∣∣∣∣
z

= F (z)
du

dz

∣∣∣∣
z

, (16.31)

where F (z) is defined by

F (z) =

∫ z

c′ −z̃qc̄(s)Ēext ds∫ z

c′′ −z̃qc(s)Eext ds
. (16.32)

Integrating equation (16.31) from the no-slip plane (i.e., z = 0) to any
position z, and using the fact that the velocity is zero at the no-slip plane,
we obtain

ū(z) =
∫ z

s=0
F (s)

du

ds
ds = F (z)u(z) −

∫ z

0

dF (s)
ds

u(s) ds. (16.33)

Equation (16.33) can be used to compute the velocity near the channel
wall in large channels. Note that no derivatives of the MD velocity in the
small channel are needed. Instead, one needs to calculate the derivative of
the function F (z), which is obtained by integrating the ion concentration,
and it is much easier to obtain good statistics for ion concentrations in
MD simulations. In principle, equation (16.33) can be applied in the region
from the no-slip plane to the center of the small channel (i.e., point c′′ in
Figure 16.8). However, equation (16.33) is used only in the region within
δ′ from the channel wall. There are two reasons for this:

1. Evaluation of the function F (z) is difficult as we approach the center
of the small channel because the integration term in the denominator
is close to zero.

2. Since the viscosity variation is important only near the channel wall,
we can use a constant viscosity in the region δ′ away from the no-slip
plane instead of embedding the MD velocity.

In the simulations presented here, δ′ is taken to be 0.64 nm, since MD
simulations indicate that the viscosity variation beyond this length scale is
small. As mentioned earlier, the no-slip plane is typically located at 0.14 nm
from the channel wall. Hence, the region in which the velocity is obtained
from the embedding technique is δ = 0.78 nm from the channel wall for
the larger channel.

Figure 16.9 shows the velocity profile across a 10.0-nm channel (case
6; see Table 12.2 for details) obtained by using the embedding multiscale
approach. The velocity within the δ distance from the channel wall is em-
bedded using equation (16.33) and the MD velocity of a 2.22-nm channel.
The velocity in the central portion of the channel is computed using a
constant viscosity of 0.743 mPa·s. Although there is considerable noise in
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FIGURE 16.9. Velocity profile across the channel for case 6 (W = 10.00 nm, σs

= +0.124 C/m2). The velocity in the region within δ from the channel wall is
obtained using equation (16.33) and the MD velocity within the same region from
case 4 (W = 2.22 nm, σs = +0.120 C/m2). The velocity in the central portion
of the channel is computed using a constant viscosity of 0.743 mPa·s.

the MD velocity profile for case 4 (i.e., in the MD velocity of a 2.22-nm
channel), the velocity obtained using equation (16.33) matches the MD
simulation results reasonably well.

16.4 Dissipative Particle Dynamics (DPD)

So far, we have discussed the molecular dynamics (MD) method and the
lattice Boltzmann method (LBM) for simulations in the atomistic and
mesoscopic regimes, respectively. A potentially very powerful alternative
to both methods has more recently emerged: the dissipative particle dy-
namics method (DPD), which combines features from both MD and LBM.
The initial model was proposed by Hoogerburgge and Koelman as a simu-
lation method to avoid the artifacts associated with traditional LBM sim-
ulations while capturing spatiotemporal hydrodynamic scales much larger
than those achievable with MD (Hoogerburgge and Koelman, 1992).

The DPD model consists of particles that correspond to coarse-grained
entities, thus representing molecular clusters rather than individual atoms.
The particles move off-lattice, interacting with each other through a set
of prescribed and velocity-dependent forces (Hoogerburgge and Koelman,
1992; Espanol and Warren, 1995). Specifically, there are three types of
forces acting on each dissipative particle:
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• A purely repulsive conservative force,

• A dissipative force that reduces velocity differences between the par-
ticles, and

• A stochastic force directed along the line connecting the center of the
particles.

These forces can be interpreted as follows: The conservative forces cause
the fluid particles to be as evenly distributed in space as possible as a result
of certain “pressures” among them. The frictional forces represent viscous
resistances between different parts of the fluid. Finally, the stochastic forces
represent degrees of freedom that have been eliminated during the coarse-
graining process. The last two forces effectively implement a thermostat,
so that thermal equilibrium is achieved. Correspondingly, the amplitude
of these forces is dictated by the fluctuation–dissipation theorem (Espanol
and Warren, 1995), which ensures that in thermodynamic equilibrium the
system will have a canonical distribution. All three forces are modulated
by a weight function that specifies the range of interaction between the
particles and renders the interaction local.

The distinguishing feature of the DPD forces is that they conserve mo-
mentum, and therefore, the DPD model satisfies mass and momentum con-
servation, which are responsible for the hydrodynamic behavior of a fluid
at large scales (Espanol, 1995). Also, by changing the conservative interac-
tions between the fluid particles, one can easily construct “complex” fluids,
such as polymers, colloids, amphiphiles, and mixtures.

In summary, the DPD method is characterized by the following condi-
tions:

• Position and velocity variables are continuous, as in MD, but the time
step is updated in discrete steps, as in LBM.

• The conservative forces between DPD particles are soft-repulsive,
which makes it possible to extend the simulations to longer time
scales compared to MD.

• Hydrodynamic behavior is expected at much smaller particle numbers
than in classical MD.

• DPD has the advantages of standard LBM but avoids the disadvan-
tages of lacking Galilean invariance and introducing spurious conser-
vation laws.

• Mass and momentum are locally conserved, which results in hydro-
dynamic flow effects on the macroscopic scale.

• The characteristic kinetic time in DPD is large compared to MD time
scales.
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A conceptual picture then of DPD is that of soft microspheres randomly
moving around but following a preferred direction dictated by the con-
servative forces. DPD can be interpreted as a Lagrangian discretization
of the equations of fluctuating hydrodynamics as the particles follow the
classical hydrodynamic flow but they display thermal fluctuations. These
fluctuations are included consistently based on the principles of statistical
mechanics.

In the following we will present the governing equations, and we will
discuss in some detail the numerical integration of these stochastic differ-
ential equations. Subsequently, we will discuss how to implement boundary
conditions and we will present some examples.

16.4.1 Governing Equations
We consider a system consisting of N particles having equal mass (for
simplicity in the presentation) m, position, ri, and velocities vi. The afore-
mentioned three types of forces exerted on a particle i by particle j are
given by

FC
ij = FC

ij (rij)r̂ij , (16.34a)

FD
ij = −γωD(rij)(vij · r̂ij)r̂ij , (16.34b)

FR
ij = σωR(rij)ξij r̂ij , (16.34c)

where rij ≡ ri − rj , rij ≡ |rij |, r̂ij ≡ rij/rij , and vij ≡ vi − vj . The
variables γ and σ determine the strengths of the dissipative and random
forces, respectively. Also, ξij are symmetric Gaussian random variables with
zero mean and unit variance, and are independent for different pairs of
particles and at different times; ξij = ξji is enforced in order to achieve
momentum conservation.

The conservative force FC
ij is similar to the MD formulation, and it can

include any pressure-drop terms, electrostatic or magnetic interactions, as
well as van der Waals forces. This force as well as the other two forces
are acting within a sphere of radius rc, which is the length scale of the
system. It corresponds to a soft interaction potential, similar to what has
been proposed independently by (Forrest and Suter, 1995) in simulation
studies of polymers. By averaging systematically Lennard–Jones potentials
or the corresponding molecular field over the rapidly fluctuating motions of
atoms during short time intervals, an effective average potential is obtained
of the form shown in Figure 16.10. An approximation of this can be given
as (Groot and Warren, 1997)

FC
ij =

⎧⎪⎨⎪⎩
aij(1 − rij)r̂ij for rij ≤ rc = 1,

0 for rij > rc = 1,
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FIGURE 16.10. Lennard–Jones potential and its averaged soft potential.

where aij is a maximum repulsion between particle i and particle j. Unlike
the hard Lennard–Jones potential, which is unbounded at r = 0, the soft
potential employed in DPD has a finite value at r = 0 equal to aij . This
reflects the fact that there is a finite probability that there will be no atoms
at r = 0 for some realizations.

For water in the nondimensional units set here we have that aij = 25,
while for other liquids we have that aij = 75kBT/ρ. These values were
obtained in (Groot and Warren, 1997), by enforcing the proper compress-
ibility of the system defined by

κ−1 =
1

kBT

∂p

∂n

∣∣∣∣
T

,

where n is the number density. For water at room temperature (300 K) this
dimensionless compressibility is κ−1 = 15.9835. The pressure is obtained
as a function of the density, e.g.,

p = ρkBT +
1

3V

〈∑
j>i

(ri − rj) · FC
ij

〉
,

where V is the volume. Also, the density is a free parameter, and for ρ ≥
3 the fluid behaves as liquid. However, since the number of interactions
between particles scales linearly with density, the required computational
time per unit volume increases with the square of the density. Therefore,
in the simulations it suffices to work with the lowest value of ρ = 3 for
computational efficiency (Groot and Warren, 1997).

The requirement of canonical distribution sets two conditions on the
weight functions and the amplitudes of the dissipative and random forces.
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Specifically, we have that

ωD(rij) =
[
ωR(rij)

]2
(16.35a)

and
σ2 = 2γkBT, (16.36)

where T is the system temperature and kB the Boltzmann constant. The
weight function takes the form

ωR(rij) =

⎧⎪⎨⎪⎩
1 − rij/rc for rij ≤ rc,

0 for rij > rc,

where rc is the cutoff radius. This is simply a convenient model to localize
the interactions.

In the initial formulation of DPD by (Hoogerburgge and Koelman, 1992),
the above conditions were not satisfied and energy was not conserved. This
was corrected by (Espanol and Warren, 1995), who employed solutions
of the Fokker–Planck equation. Let us consider the distribution function
f(ri,pi, t), which describes the probability of finding the system in a state
with particles located at ri having momenta pi at time t. The time evolution
of this distribution is expressed by the Fokker–Planck equation

∂f

∂t
= LCf + LDf,

where LC denotes the Liouville operator of the Hamiltonian system inter-
acting with conserved forces FC ; also, LD represents the dissipative and
random terms. If the last term is set to zero, we obtain a Hamiltonian
system, which admits the canonical Gibbs–Boltzmann distribution as a so-
lution. That is, f eq(ri,pi) = exp(−∑

i p
2
i /2mkBT − U/kBT ) is a solution

of
∂f eq

∂t
= LCf eq = 0.

However, in the presence of the extra two nonconservative forces the equi-
librium distribution will be different from the above unless the condition

LDf eq = 0

is satisfied. This condition is satisfied if the amplitude of the random and
dissipative forces and also the weight functions are related as expressed by
equations (16.35a) and (16.36).

The time evolution of DPD particles is described by Newton’s law:

dri = vidt, (16.37)

dvi =
1
m

(
FC

i dt + FD
i dt + FR

i

√
dt
)

. (16.38)
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Here FC
i =

∑
i �=j FC

ij is the total conservative force acting on particle i; FD
i

and FR
i are defined similarly. The velocity increment due to the random

force has a factor
√

dt instead of dt. This term represents Brownian motion,
which is described readily by a standard Wiener process with a covariance
kernel given by

RFF (ti, tj) = e−γ|ti−tj |.

We see therefore that (1/γ) is the correlation length in time for this stochas-
tic process.

16.4.2 Numerical Integration
Unlike the MD equations, the DPD equations are stochastic, and this repre-
sents an extra degree of difficulty. In addition, the dissipative force depends
on the velocity, which in turn depends on the force, so there is nonlinear
coupling. In the following we represent a few schemes that have been used
to integrate the DPD equations with various degrees of success. A detailed
comparison of the performance of these integrators is given in (Nikunen
et al., 2003).

Explicit Euler Forward (EF)

The explicit Euler integrator is never used, but it helps to set the notation
for the more complicated algorithms and also as starter for multistep inte-
grators of higher order. We assume that we know the solution at time step
n and we want to obtain the solution at time step (n+1). We update both
the velocities and the positions of all particles in a straightforward manner.
All three forces contribute within a region refined by the cutoff radius rc.

• At time tn+1 we have

vn+1
i = vn

i +
1

mi

(
FC

i ∆t + FD
i ∆t + FR

i

√
∆t
)

,

rn+1
i = rn

i + vn
i ∆t.

• Compute physical quantities.

Velocity–Verlet Method (DPD-VV)

The velocity–Verlet method is based on the classical MD velocity–Verlet
algorithm, which we discuss in Section 16.1, and is time-reversible. One dif-
ference, however, with the classical algorithm is that the dissipative force
is computed twice at the end of each time step to account for the implicit
relationship to velocity mentioned earlier.
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• At time tn+1 we have

v̂i = vi +
1
2

1
mi

(
FC

i ∆t + FD
i ∆t + FR

i

√
∆t
)

,

rn+1
i = rn

i + v̂i∆t,

vn+1
i = v̂i +

1
2

1
mi

(
FC

i ∆t + FD
i ∆t + FR

i

√
∆t
)

.

• Compute FD
i .

• Compute physical quantities.

Here the forces at the last step are reevaluated with v̂i and rn+1
i .

Shardlow’s Splitting Method

Another approach, which is often used in classical computational fluid dy-
namics, is operator splitting. In (Shardlow, 2003), the conservative forces
were separated from the dissipative and random forces. First, the conser-
vative components are computed using the classical MD approach, and
subsequently the dissipative and random contributions are handled using a
Langevin formulation. Two splitting schemes were developed (S1 and S2)
corresponding to first-order and second-order accuracy, respectively. S1 is
more efficient and is presented below.
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• At time tn+1 we have

v̂i = vn
i − 1

2
1
m

γω2(rij)(vn
ij · r̂ij)r̂ij∆t +

1
2

1
m

σω(rij)ξij r̂ij

√
∆t,

v̂j = vn
j +

1
2

1
m

γω2(rij)(vn
ij · r̂ij)r̂ij∆t − 1

2
1
m

σω(rij)ξij r̂ij

√
∆t,

ˆ̂vi = v̂i +
1
2

1
m

σω(rij)ξij r̂ij

√
∆t

−1
2

1
m

γω2(rij)∆t

1 + γω2(rij)∆t

[
(v̂ij · r̂ij)r̂ij + σω(rij)ξij r̂ij

√
∆t

]
,

ˆ̂vj = v̂j − 1
2

1
m

σω(rij)ξij r̂ij

√
∆t

+
1
2

1
m

γω2(rij)∆t

1 + γω2(rij)∆t

[
(v̂ij · r̂ij)r̂ij + σω(rij)ξij r̂ij

√
∆t

]
,

ṽi = ˆ̂vi +
1
2

1
mi

FC
i ∆t,

rn+1
i = rn

i + ṽi∆t,

vn+1
i = ṽi +

1
2

1
mi

FC
i (rn+1

j )∆t.

• Compute physical quantities.

Lowe’s Alternative Method

The approach by Lowe differs from all other integration approaches of the
DPD scheme. Here, the integration of the dissipative and random forces
is bypassed. Specifically, Newton’s equation of motion are integrated first,
and then the system is thermalized as follows:

• For all particles within a sphere defined by rc we assign a probabil-
ity (0 < Γ∆t ≤ 1) to predict an updated relative velocity from a
Maxwelian distribution. So for a specific pair (ij) we first generate
the relative velocity v0

ij ·eij from a distribution ξij

√
2kBT/m, where

ξij is a Gaussian random variable with zero mean and with variance
as before.

This procedure effectively sets up an Andersen thermostat; see Section
16.1.3. In particular, for Γ∆t = 0 the system is not coupled to the thermo-
stat, whereas for Γ∆t = 1 the particle velocities are thermalized at every
time step.

Two particularly attractive features of this method are:
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• energy conservation even at large time steps, and

• the tracer diffusion properties of the fluid can match those of a real
liquid, in conrast to other DPD versions.

• At time tn+1 we have

v̂i = vn
i +

1
2

1
m

FC
i ∆t,

ri = rn
i + v̂n

i ∆t,

ˆ̂vi = v̂i +
1
2

1
m

FC
i (rj)∆t.

• For all pairs rij < rc, select probability Γ∆t. Obtain v0
ij · r̂ij :

∆ij =
1
2
r̂ij · (v0

ij − ˆ̂vij) · r̂ij ,

vn+1
i = vn

i + ∆ij ,

vn+1
j = vn+1

j − ∆ij .

• Compute physical quantities.

Example

Conservation is one of the key conditions for accurate simulations of the
canonical ensemble. To this end, we study how a DPD fluid reaches equi-
librium using various discretization schemes. In particular, we set to zero
all conservative forces, and we simulate in time the effective thermostat
expressed by the balance of dissipative and random forces. The simulation
is conducted in a 3D periodic box of size 10 × 10 × 10, where the length
scale is defined by rc = 1, and a particle number density is set to ρ = 4;
thus N = 4,000 particles. The random force strength is chosen as σ = 3 in
units of kBT and the dissipative force amplitude is γ = 4.5.

The physical quantities considered here are the average kinetic temper-
ature

〈kBT 〉 =
m

3N − 3

〈
N∑

i=1

v2
i

〉
, (16.39)

and the normal component of the pressure tensor defined by

pxx = ρ

N∑
i=1

v2
ix, (16.40)
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FIGURE 16.11. Time evolution of average kinetic temperature (approaching
unity) and normal component of pressure (approaching zero) for fluid in equilib-
rium. Left: ∆t = 0.01; Right: ∆t = 0.05.

where a constant mass for all particles is assumed. When the system reaches
equilibrium, the average kinetic temperature reaches unit value and the
pressure approaches zero.

In Figure 16.11, we plot both quantities as a function of time for two
different time steps. We use three different methods for integration, namely,
the Euler, the Verlet, and the Lowe methods. We see that at ∆t = 0.01 all
methods converge to the correct value after some initial transients, whereas
for ∆t = 0.05 only Lowe’s method gives the correct value of temperature.
In all methods, however, a stationary state is achieved, which implies that
the simulated thermostat is effective in all cases.

In general, the splitting method gives similar results to those of Lowe’s
method. (Nikunen et al., 2003) recommend the use of the splitting method
and Lowe’s method, since they are more accurate and more efficient than
several other methods that they tested, including the DPD-VV scheme.
Their tests include problems with zero conservative forces as well as poly-
mer flows where hard Lennard–Jones potentials combined with proper
springs are employed to represent the polymer; the solvent is represented by
soft potentials. Lowe’s method, in particular, which does not deal with the
computations of dissipative or random forces, seems to be the most effi-
cient. It is based on normally distributed random numbers, while other
integration schemes employ random numbers, from a uniform distribu-
tion. Another important consideration is that with Lowe’s approach, one
can achieve realistic values of the Schmidt number Sc ∝ 1000 for liquids,
whereas with the other approaches the Schmidt number is of order one (Sc
∝ 1), which is clearly incorrect, since this corresponds to gases.
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FIGURE 16.12. Comparison of boundary conditions for the two cases described
in the text: case 1 (high wall density): squares; case 2 (equal wall density): circles.
Plotted are velocity profiles (open symbols) and density profiles (solid symbols)
across a channel of height 10rc.

16.4.3 Boundary Conditions
The example we presented in the previous section involved only periodic
boundaries, and hence there was no need to specify boundary conditions.
In a confined geometry, however, the effect of the no-slip or slip boundary
condition with the wetted surface has to be modeled carefully. To this end,
the boundary conditions that have been used in DPD are based on ideas
implemented in both LBM and MD formulations.

There are three main methods to impose boundary conditions in DPD
(Revenga et al., 1999):

1. The Lees–Edwards method, also used in LBM, which is a way to
avoid directly modeling the physical boundary.

2. Freezing regions of the fluid to create a rigid wall or a rigid body,
e.g., in particulate microflows.

3. Combining freezing with proper reflections, namely, specular reflec-
tion or bounce-back reflection, or Maxwellian reflection.

Let us first consider how to implement the Lees–Edwards (Lees and
Edwards, 1972; Wagner and Pagonabarraga, 2002) boundary conditions for
a shear flow (e.g., Couette flow) with the upper wall moving with velocity
−Ux/2 and the lower wall moving at Ux/2. Let us assume that we have
a system of particles with positions (rx, ry, rz) and velocities (vx, vy, vz)
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within a box of dimensions (Lx, Ly, Lz). We can describe the boundary
conditions by providing the new positions r′ and velocities v′ of the particles
after the particles have been moved, as follows:

r′
x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(rx + dx) mod Lx, ry ≥ Ly,

rx mod Lx, 0 ≤ ry < Ly,

(rx − dx) mod Lx, ry < 0,

r′
y = ry mod Ly,

r′
z = rz mod Lz,

v′
x =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(vx + Ux), ry ≥ Ly,

vx, 0 ≤ ry ≤ Ly,

(vx − Ux), ry < 0,

v′
y = vy and v′

z = vz.

Here dx = Ux∆ is the time-dependent offeset. Therefore, we avoid providing
explicitly any new boundary conditions in this case.

Next, we examine how to incorporate reflections at the wall. We have
already described the aforementioned types of reflection earlier in this book,
but we briefly review them here as well. In specular reflections the velocity
component that is tangential to the wall does not change, while the normal
component is reversed. In the bounce-back reflection both components are
reversed. A Maxwelian reflection involves particles that are introduced back
into the flow with a velocity following a Maxwelian distribution centered
around the wall velocity.

In the continuum limit, it is interesting to investigate which one of these
boundary conditions honors the no-slip condition. We focus the discussion
on the third boundary condition from the above list, since it is the most
general approach. In order to parameterize the DPD flow system, following
the work of Espanol and his group (Revenga et al., 1999), we identify the
key nondimensional parameter that affects the slip velocity. Specifically,
there are five governing parameters in the DPD fluid system: m (the mass
of particles); γ (the friction coefficient); rc (the cutoff radius); kBT (tem-
perature); and λ = N−1/d (the average distance between particles, where
d is the space dimension). Based on these we can define the dimensionless
friction coefficient

τ ≡ γλ

dvT
,

where vT =
√

kBT/m is the thermal velocity. Large values of τ mean
that the particles move very little in the time scale associated with the



16.4 Dissipative Particle Dynamics (DPD) 675

velocity decaying due to thermal fluctuations. Also, we define a measure of
overlapping between particles by

s ≡ rc

λ
,

which represents the number of particles that interact within the cutoff
radius rc. These two nondimensional parameters define the dynamics of the
DPD fluid system. For example, the kinematic viscosity can be computed
in terms of these two parameters following a kinetic theory description, i.e.

ν =
1
2
λvT

[
1
τ

+
3
40

s2τ

]
.

Espanol and other researchers have used the plane Couette flow to eval-
uate the above boundary conditions. The Lees–Edwards boundary condi-
tions work well for this model, as we discussed above, but the objective is
to see what type of reflections are appropriate with the freeze-and-reflect
approach. In (Revenga et al., 1999), it was shown that for large values of
τ all three reflections satisfy the no-slip condition. However, for small val-
ues of τ the specular and Maxwellian reflections produce an excessive slip
velocity at the wall, while the bounce-back approach satisfies the no-slip
condition. An anomaly, however, has been presented for the temperature
profile very close to the wall at small values of τ even with the bounce-back
boundary conditions. This was explained as large axial velocity dispersion
for small values of τ . For τ ≈ 0 the particles move along almost straight
lines, while the bounce-back condition causes a continuous acceleration of
the particles after each collision with the wall. However, a closer inspection
of the definition employed for the temperature contributions in (Revenga
et al., 1999), shows that this behavior for small values of τ is not really an
anomaly!

There are many possibilities for an effective implementation of boundary
conditions. Next we compare two different approaches to implementing the
no-slip boundary condition for a Poiseuille flow, following the studies of
(Pivkin, 2005); see Figure 16.12. Similar procedures have been proposed
in (Willemsen et al., 2000), for no-slip conditions. We consider a box with
dimensions 10 × 10 × 10 (where rc = 1), N = 3,000, σ = 3.0, ρ = 3, and
γ = 4.5. The walls are composed of three layers of DPD particles and are
four times denser than the fluid (squares) in the first case and equal to the
wall density (circles) in the second case. The repulsion force coefficient is
aij = 25 for the particles in the flow and also for the wall particles. The
results of this comparison are summarized in Figure 16.12 for the velocity
profiles and for the corresponding density profiles. In both cases the bounce-
back condition is implemented, and the only difference is the density at the
wall.



17
Reduced-Order Modeling

In this chapter, we introduce several reduced-order modeling techniques for
analyzing microsystems following the discussion of Section 1.7. Specifically,
techniques such as generalized Kirchhoffian networks, black box models,
and Galerkin methods are described in detail. In generalized Kirchhof-
fian networks, a complex microsystem is decomposed into lumped elements
that interact with each other as constituent parts of a Kirchhoffian net-
work. Techniques such as equivalent circuit representations and description-
language-based approaches are described under generalized Kirchhoffian
networks. In black box models, detailed results from simulations are used
to construct simplified and more abstract models. Methods such as nonlin-
ear static models and linear and nonlinear dynamic models are described
under the framework of black box models. Finally, Galerkin methods, where
the basic idea is to create a set of coupled ordinary differential equations,
are described. Both linear and nonlinear Galerkin methods are discussed.
The advantages and limitations of the various techniques are highlighted.

17.1 Classification

Several techniques have been developed for reduced-order modeling or
macromodeling of microsystems. Each technique has its own advantages
and disadvantages, and the selection of a technique for a particular problem
depends on a number of parameters such as the desired accuracy and non-
linearity. Many of the macromodels are created directly from physical-level
simulations and often require human input at some stage of the process; i.e.,
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FIGURE 17.1. Classification of macro-models used in microsystem design.

there exists no systematic procedure to extract them automatically from
the physical simulations. To identify macromodel extraction steps that can
be automated in these cases is an important research topic in the field of
microsystem simulation. In this section, we introduce the different macro-
models and classify them into several broad categories. Figure 17.1 shows
the classification of the various types of reduced-order models.

17.1.1 Quasi-Static Reduced-Order Modeling
Quasi-static macromodels are particularly useful for conservative systems
with no dissipative terms. The distinction between energy domains in which
the energy is strictly conserved (such as ideal elasticity, electromagnetic
fields in linear lossless media, and inviscid flows) and those that have intrin-
sic dissipation mechanisms (fluidic viscosity, friction, heat flow, viscoelas-
ticity, and internal loss mechanisms such as domain–wall motion that can
lead to hysteresis (Senturia, 1998a)) is important, since dynamical behav-
ior in a conservative domain can be derived from quasi-static behavior. All
forces can be expressed as gradients of suitable potential-energy functions.
If only conservative mechanisms are involved, one can use quasi-static sim-
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ulations together with the mass distribution to fully characterize the dy-
namical behavior. Quasi-static macromodels are appropriate for cases in
which a steady-state behavior is a reasonable assumption. In many cases,
such as the squeeze film damping in a moving MEMS structure (see Chap-
ter 18), such an assumption may be incorrect, in which case a dynamical
macromodel is needed.

This procedure is fairly accurate only for conservative energy domains.
For a more accurate analysis, the inertia and damping terms must be
considered. Forces are expressed as appropriate gradients of suitably con-
structed potential energy or coenergy functions, and these functions are
calculated quasi-statically. If one has knowledge of mass distribution, one
can assess accelerations and kinetic energy in response to these forces and
hence can construct complete dynamic models of the device using only
quasi-static simulations in the potential energy domain.

The steps followed in the quasi-static reduced-order modeling are as fol-
lows (Senturia et al., 1997):

1. Select an idealized structure that is close to the desired model.

2. Model the idealized problem analytically, either by solving the gov-
erning differential equation, or by approximating the solution with
Rayleigh–Ritz energy minimization methods.

3. Identify a set of nondimensionalized numerical constants that can be
varied within the analytical form of the solution.

4. Perform meshed numerical simulations of the desired structure over
the design space of interest, and adjust the nondimensionalized nu-
merical quantities in the macromodel for agreement with the numer-
ical simulations.

The method has some advantages: (i) simple to use and easy to imple-
ment; (ii) reasonably accurate for conservative energy systems when mass
distribution is known; (iii) can be used to determine material constants;
(iv) even if analytical functions exist for nonlinear behavior, in most cases
nonlinearities can be taken care of by a simple fit function. However, the
major disadvantage of this method is that it cannot be used in a noncon-
servative energy system, i.e., when dissipation is involved.

17.1.2 Dynamical Reduced-Order Modeling
Explicit dynamical formulation of microsystems can be very time-consuming,
and computationally expensive to insert in a system-level simulator. As a
result, it is difficult for the designer to use it in an iterative design cy-
cle or to probe sensitivities to variations in the geometry and material
constants by repeated simulations. This demands the development of dy-
namical reduced-order models for projecting the results of the fully meshed
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analysis onto physically meaningful reduced variables, containing algebraic
dependencies on structural dimensions and material constants. Dynami-
cal reduced-order modeling is much more challenging than the quasi-static
reduced-order modeling, since the design space involves large motions and
nonlinear forces. The various reduced-order modeling methods that fall un-
der dynamical methods are shown in Figure 17.1. These methods can be
broadly classified into three categories: (1) generalized Kirchhoffian net-
works, (2) black box models, and (3) Galerkin methods. In the following
sections, we will look into the different methods that fall under these three
categories in detail.

17.2 Generalized Kirchhoffian Networks

In this method, a complex microsystem is decomposed into components (or
lumped elements) that interact with each other as constituent parts of a
Kirchhoffian network (Voigt and Wachutka, 1997). Compact models with
very few degrees of freedom are formulated for each of the components. All
the system components are given a mathematical description in terms of
conjugate thermodynamic state variables and the pertinent currents (fluxes
or through quantities) and the driving forces (affinities or across quanti-
ties) such as mass flow and pressure gradient, electrical current, and voltage
drop. A system component is called a “block” and is characterized by the
number and nature of its terminals, which allow for the exchange of flux
quantities across subsystem boundaries. The components can be decom-
posed further by either (a) interconnection of basic components (structural
modeling) or (b) description by a set of algebraic equations (behavioral
modeling). The models of reusable components are stored in a block li-
brary.

Behavioral description of devices and subsystems when supported by
hardware description languages (HDL) leads to the approach of macro-
modeling based on HDLs. Some examples of HDLs are HDL-A1 (Mentor
Graphics, 1995), MAST2 (Mantooth and Vlach, 1992), and SpectreHDL3

(Cadence, Ltd., 1997). The features of these HDLs are (i) Multidomain
description, (ii) clear distinction between interface and algorithmic kernel
of the model, (iii) interface to embedded C programs, and (iv) mechanisms
for handling nonlinear ODEs to be solved by the internal algorithm.

1Hardware description language for analog and mixed signal applications:
Mentor Graphics.

2Analog hardware description language used in the SABER simulator from
Synopsys Inc.

3Analog Hardware Description Language: Cadence Ltd.
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17.2.1 Equivalent Circuit Representation
In the equivalent circuits approach, the microsystem comprising the me-
chanical, electrical, and fluidic components is represented by their electrical
equivalents (Tilmans, 1996). The approach is based on the mathematical
analogy between electrical and mechanical systems; specifically, the formal
similarities between the integrodifferential equations governing the behav-
ior of electrical and mechanical systems is the basis of the analogy. Newton’s
second law of motion relates the force F acting on a body of mass m by
the relation

F = m
∂u

∂t
= m

∂2x

∂t2
,

where u and x are the velocity and displacement of the mass. This is anal-
ogous to the constitutive equation of an electrical inductor

V = L
∂i

∂t
= L

∂2q

∂t2
,

where V is voltage, i is current, q is charge, and L is the inductance in
the electrical circuit. Here F plays the same role as the voltage V , the
velocity u as the current i, and the displacement u as the charge q. The
mass m in mechanical systems represents the inductance L in an electrical
circuit. However, while force is a “through variable” in mechanical systems,
voltage (its representative in the electrical system) is an “across variable”
in electrical systems. In general, it can be seen that a through variable in
the mechanical system is represented as an across variable in an electrical
system and vice versa. Hence, in the equivalent circuit representation, series
connections in mechanical systems are represented by parallel connections
in electrical systems and vice versa.

Once all the mechanical systems are converted to electrical counterparts,
a single representation of a system operating in more than one energy do-
main is finally obtained. Kirchhoffian conservation laws are then applied to
solve the system. Commercial packages like SPICE4 (Quarles et al., 1987)
can be used for such purposes. This method gives a better understand-
ing and visualization of the system and facilitates further analysis of the
system in order to investigate the effects of the connecting subsystems or
modifications to the system.

Lumped Parameter System

The lumped parameter approach is a reduced-order modeling method based
on the equivalent circuit representation of microsystems. The basic idea in
this method is to concentrate or lump the physical properties of the system,
such as mass, stiffness, capacitance, and inductance, into single physical el-
ements (Tilmans, 1996). The elements representing the mass are assumed

4Integrated Circuit Simulator: UC Berkeley
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TABLE 17.1. Direct electromechanical analogies for lumped translational sys-
tems.

Mechanical Quantity Electrical Quantity

Force: F Voltage: V

Velocity: u Current: i

Displacement: x Charge: q

Mass: m Inductance: L

Compliance: 1/k Capacitance: C

Viscous resistance: c Resistance: R

to be perfectly rigid, and conversely, elastic elements have no mass. Lumped
parameter modeling is typically valid as long as the wavelength of the sig-
nal is greater than all the dimensions of the device or the system under
consideration. The device is finally represented as a set of lumped electri-
cal network elements using the electrical-mechanical analogies. Once the
circuit representation is constructed, commercially available circuit simula-
tors such as SPICE can be used. Alternatively, dynamical state equations
can be obtained from the network and simulated using standard math
packages like MATLAB. There are two major issues in creating lumped-
element macromodels: the first issue is to partition the continuum device
into a network of lumped elements, and the second issue is to determine
the parameter values for each element.

The partitioning problem can be particularly troublesome, because un-
like purely electric circuits, general mechanical structures do not offer a
clean mapping between geometry and the corresponding network topology.
For example, when considering the electrostatic pull-in of the beam, the
moving beam simultaneously serves as the moving boundary of a capacitor
used for actuation and sets a moving boundary condition at the bounding
surface of a gas film. The lumped parameter values for the physical ele-
ments are typically determined from a combination of analysis, numerical
simulation, and constitutive properties obtained from test structures. An
alternative approach to determine the lumped parameters is to use energy
methods. In energy methods, a reasonable shape function with one or more
undetermined parameters is assumed, the total stored energy is calculated
with that shape function, and the stored energy is then minimized with re-
spect to the parameters. The accuracy of energy methods depends on the
quality of the shape function employed and on how well the stored energy
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(a) (b)

FIGURE 17.2. (a) A parallel plate electrostatic actuator. (b) Schematic repre-
sentation of the parallel plate electrostatic actuator.

calculation is implemented. For a first-order analysis of device behavior,
accounting for the dependence of device behavior on the geometry and
material properties, energy methods are unmatched in terms of simplicity
and speed. A generalized procedure for lumped parameter modeling is as
follows:

1. The device is decomposed into a combination of rigid bodies, ideal
springs, and ideal variable capacitors. The damping is considered ex-
ternal to the transducer.

2. The governing equations are linearized about an equilibrium signal.

3. The characteristic equations, which relate the effort variables as a
function of state variables, and the transfer matrix, which relates
the effort-flow variables at the electrical port directly to those at the
mechanical port, are derived.

4. The transfer matrix is used to obtain the equivalent circuit repre-
sentation. Typically, the equivalent circuit representation may not be
unique. So a practical situation is chosen.

We now illustrate the equivalent circuit representation of a parallel plate
electrostatic actuator (in the absence of air-damping) using the above pro-
cedure. Figure 17.2(a) shows the parallel plate electrostatic actuator con-
sisting of a rigid mass suspended by two flexible beams. A potential dif-
ference is applied between the ground plane and the mass, giving rise to
attractive electrostatic forces. The mass moves down, and the beams bend
due to these forces. The schematic representation of the device is given in
Figure 17.2(b). Since the mass is rigid, the suspension structure can be
modeled as a mass–spring system. The two identical beams represent the
two springs. The spring constant (k = 2k1) can be derived from the beam
flexure formula. We use the energy method as described earlier to generate



684 17. Reduced-Order Modeling

FIGURE 17.3. Transfer matrix computation for the parallel plate actuator using
lumped parameters.

the lumped parameters. The total energy W of the system, consisting of
electrical (We) and mechanical (Wm) energies, is given by

W = We(qt, xt) + Wm(qt, xt) =
q2
t

2C(xt)
+

1
2
k(xt − xr)2, (17.1)

where qt and xt are the charge and displacement at the time instant t,
and xr is the equilibrium position of the mass; C is the capacitance of
the system at the time instan, which is a function of xt and is given as
C(xt) = ε0A/(d+xt); ε0 is the permittivity of vacuum and A denotes area.
Taking the total differential of the energy represented by equation (17.1),
we obtain

δW =
∂W

∂qt
δqt +

∂W

∂xt
δxt = vtdqt + Ftdxt, (17.2)

where vt is the voltage between the plates and Ft is the mechanical force
acting on the movable plate. Using equations (17.1), (17.2) and the expres-
sion for capacitance, we obtain

vt(qt, xt) =
∂W

∂qt
=

qt(d + xt)
ε0A

and Ft(qt, xt) =
∂W

∂xt
=

q2
t

2ε0A
+k(xt−xr).

Since the equations are nonlinear, they are linearized using the Taylor’s
series expansion around some bias point (x0, q0). The constitutive equation,
describing the linear relations between the incremental or small signal effort
variables and the state variables, for voltage at the bias point (x0, q0) is
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FIGURE 17.4. Decomposition of the transfer matrix into elemental matrices for
circuit representation.

given by

v(q, x) =
∂vt

∂qt

∣∣∣∣
0
q +

∂vt

∂xt

∣∣∣∣
0
x =

(d + x0)
ε0A

q +
q0

ε0A
x =

q

C0
+

v0

(d + x0)
x. (17.3)

Using the constitutive equation for force and the expression for Ft, we
obtain the final expression for the force, i.e.,

F (q, x) =
∂Ft

∂qt

∣∣∣∣
0
q +

∂Ft

∂xt

∣∣∣∣
0
x =

q0

ε0A
q + kx =

v0

(d + x0)
q + kx. (17.4)

The constitutive equations and the final expressions for v and F as given
by equations (17.3) and (17.4), respectively, can be used to construct the
transfer matrix as shown in Figure 17.3. The transfer matrix can be decom-
posed into elemental matrices in several ways, giving rise to many feasible
circuit representations of the device. Figure 17.4 shows one decomposi-
tion of the transfer matrix and the corresponding circuit representation.
There are several other circuit representations possible for the same de-
vice (see (Tilmans, 1996), for details) including some with pure capacitive
circuits. Typically, the designer chooses the most appropriate circuit rep-
resentation based on the application.

The advantages of the lumped parameter method are as follows: (i) It
is easy to use and can be easily incorporated into system simulators. (ii)
Equivalent lumped resistors treated external to the system can be used to
model dissipation. (iii) The equivalent circuit representation can be used
to analyze complex structures and coupled subsystems with several elec-
trical and mechanical ports. The disadvantages of the method are these:
(i) Unlike pure electric circuits, mechanical structures do not offer a clean
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FIGURE 17.5. Continuously distributed system with infinite degrees of freedom.

mapping between the geometry and the corresponding network analogy.
(ii) No CAD tools are currently available that can automatically construct
an energetically correct lumped-element topology directly for an arbitrary
device geometry. (iii) Large-signal and nonlinear analysis is cumbersome,
difficult, and error-prone. (iv) In most cases the conservative and dissipative
energy domains are to be modeled separately.

Distributed Parameter System

In a distributed parameter system (see (Tilmans, 1997)), the mass, com-
pliance, capacitance, etc., are not easily identifiable as lumped elements
at individual points. These elements are, instead, continuously distributed
throughout the system. Figure 17.5 shows another parallel plate actuator,
but in this case, in contrast to the lumped parameter case, the mass is a
continuously deformable beam with a uniformly distributed load on it. The
electrical and mechanical domains are coupled either through the bound-
ary of the flexible beam or throughout the entire system as in the case of
transducers employing piezoelectric materials. In such cases, it is difficult
to distinguish between the mechanical and electrical forces, and the lumped
parameter system cannot be easily used to extract the circuit parameters.
Instead, the distributed parameter approach needs to be employed. The
fundamental difference between lumped parameter models and distributed
parameter systems is that while the former method has a finite number of
degrees of freedom, the latter has an infinite number of degrees of freedom.
The lumped parameter models and the distributed parameter models are
just two distinct mathematical models of the same physical system and
the distributed parameter approach can be considered as a more general
approach compared to the lumped parameter approach (Tilmans, 1997).

The procedure for distributed parameter modeling is given by:

1. A quasi-one-dimensional modeling of the system is first performed,
where only the displacements associated with the dominant modes
are considered, while the ones in the other directions are neglected.
This reduces the dependence of the system behavior to a single co-
ordinate.
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2. The characteristic equations are derived using modal analysis, which
is described in detail later in this section.

3. Modal analysis techniques are used to find the solution to the gov-
erning equations in terms of normalized mode shapes and generalized
coordinates by the use of the mode-superposition principle.

4. A Galerkin-like approach is then used to generate an infinite set of
uncoupled ODEs that represent the system by means of an infinite
number of single-degree-of-freedom lumped-parameter systems.

5. The characteristic equations of the system that describe the linear
relations between incremental variations of the port variables around
a stable bias point are derived. The equations are then linearized
around the bias point.

6. Using the possible characteristic equations and the numerous equiv-
alent circuit representations, a circuit representation that represents
the practical situation in the most appropriate way is selected.

The steps in the distributed parameter approach are similar to those in
the lumped parameter approach, except that the continuous system is mod-
eled using modal analysis in the distributed parameter approach to reduce
the degrees of freedom. We consider the actuator shown in Figure 17.5 to il-
lustrate the distributed parameter approach. The electrical and mechanical
domains are coupled through the surface of the flexible beam, which can be
thought of as an infinite number of localized individual electrostatic trans-
ducers. The electrical energy stored in each such element of infinitesimal
area δA is given by

UδA =
1
2

(σt(x, y)δA)2

ε0δA/(d + wt(x))
=

1
2

σt(x, y)2

ε0/(d + wt(x))
δA, (17.5)

where σt(x, y) denotes the surface electric charge density as a function of
position. The total differential of equation (17.5) is given by

δU =
∂U

∂σt
δσt +

∂U

∂wt
δwt.

The voltage at time instant t, vt (see the discussion leading to equation
(17.2)), can be expressed as

vt =
∂U

∂σt
=

σt(x, y)
ε0/(d + wt(x))

.

Similarly, the mechanical pressure acting along the surface pt can be ex-
pressed as

pt =
∂U

∂wt
= −σt(x, y)2

2ε0
.
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Similar to the derivation of equations (17.3), (17.4), the expressions for
v ≡ ∆vt and p ≡ ∆pt in terms of w ≡ ∆wt and σ ≡ ∆σt are given by

v =
d + w0

ε0
σ +

v0

d + w0
w and p = − v0

d + w0
σ + 0 · w.

The operating point is indicated by the subscript 0, and the coefficient
“0” arises because the stiffness properties of the beam are considered to
be external to the transducer (Woodson and Melcher, 1968). Rewriting the
above equations, the expressions for σ and p are given by

σ =
ε0

d + w0
v − ε0v0

(d + w0)2
w and p = − ε0v0

(d + w0)2
v +

ε0v
2
0

(d + w0)3
w.

In the absence of elastic stiffness, the exterior mechanical pressure p is
completely counterbalanced by the electrostatic pressure pe, and hence

pe = −p =
ε0v0

(d + w0)2
v − ε0v

2
0

(d + w0)3
w.

Next, the elastic properties of the beam are taken into account. Employing
energy methods (Shames and Dym, 1985) and excluding dynamic terms,
the differential equation of motion is

L [w(x)] = −qe(x) + q(x), (17.6)

where qe(x) and q(x) are transverse forces per unit length of electrical and
mechanical origin, and L is the differential operator given by

L = EI
∂4

∂x4 − N
∂2

∂x2 , (17.7)

where E and I are the Young’s modulus and the second moment of iner-
tia of the beam, respectively, and N is the applied axial force. Rewriting
equation (17.6), we have

q(x) =
bε0v0

(d + w0(x))2
v + Le [w(x)] , (17.8)

where

Le ≡ L − bε0v
2
0

(d + w0(x))3
= L − ke(x).

The eigenvalues and the mode shapes (eigenvectors) of the governing equa-
tion (17.8) are now computed by solving a standard eigenvalue problem.
Using the mode superposition principle, an infinite number of ordinary
differential equations are formed (this topic is discussed in more detail in
Section 17.4). Typically, a few mode shapes contain most of the mechani-
cal energy, and these few modes can satisfactorily capture the mechanical
deformation, thereby reducing the order of the problem.
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In summary, we have a few ODEs to describe the parallel plate actuator,
which can now be used to construct the equivalent circuit of the system
in the same way as described earlier for the lumped parameter modeling.
The advantages of the distributed parameter approach are the following:
(i) It can be used to model continuous systems where most other methods
fail. (ii) It can be incorporated into system simulators. (iii) Distributed
parameter electrical devices can be coupled to the mechanical and the elec-
trical terminal pairs as done in the lumped networks case. In a general
case, the system has one electrical port characterized by the voltage v and
the current i, and an infinite number of mechanical ports characterized
by a generalized load and a generalized velocity. The disadvantages of the
method are these: (i) It needs designer input, and test structures are re-
quired to verify whether the modeling results are correct. (ii) In most cases
the conservative and dissipative energy domains have to be modeled sep-
arately. (iii) Since there is no unique representation possible, macromodel
generation cannot be automated easily.

17.2.2 Description Languages
Even though the equivalent circuit approach is popular, there are several
drawbacks to using an equivalent circuit representation, the most impor-
tant one being that not all microdevices can be represented by equivalent
circuits, and even if an equivalent circuit representation exists, its construc-
tion may not be trivial. Besides, the physical meaning of the problem gets
complicated due to representation of nonelectrical quantities such as force
and velocity in terms of electrical quantities such as current and voltage.
As a result, it may not be easy to understand how well the model captures
the physics of the device.

Several other methods have also been developed which are based directly
on the algebraic-differential equations that describe the device behavior.
Suitable languages are used to describe the equations, with hardware de-
scription language being one of them. Simulations using description lan-
guages are, however, slower. The speed can be increased by using built-in
libraries (stamps) for some standard structures or devices. Nodal analysis is
another method, where the differential equations are solved directly. These
two techniques are summarized below.

Element Stamps

One way of building coupled systems of equations in the electrical and
mechanical domain is through the use of element stamps. Element stamps
are the building blocks of conventional circuit simulators. They are derived
from lumped-constant models of individual microdevices, and built into the
circuit simulator (Casinovi, 2002). The use of element stamps for the con-
stitutive elements allows one to simulate a system in a faster and more ef-
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ficient way compared to models written in hardware description languages.
Lumped constant models are sufficiently accurate for many applications.
Ordinary circuit simulators use lumped constant models for electronic de-
vices. This approach enables the simulation of complex mixed technology
systems starting from their constitutive elements. Like Kirchhoff’s laws for
electrical components, the equations governing the dynamics of constrained
rigid bodies are additive with respect to the number of elements in the
system. As a consequence, models of microdevices can be represented by
stamps, which contain all the terms that contribute to the global system
of equations.

The Modified Nodal Analysis (MNA) technique for circuit simulation is
based on Kirchhoff’s current law, which states that the sum of all outgoing
currents at each node is equal to zero, i.e.,∑

k

ik = 0.

Kirchhoff’s current law, when considered at each node, generates a set of
algebraic differential equations, which can be transformed into a set of
algebraic equations by applying a suitable numerical integration scheme.
The nonlinear algebraic equations can be solved by numerical methods
(e.g., a Newton’s method), which require repeated solution of a set of linear
equations of the form

Av = b.

The observation that each element in the circuit contributes to the above
equation leads to the element stamp concept. Figure 17.6 shows a simple
resistor (of conductance G) connected between nodes t and o. The branch
current, i, given by i = G(vt − v0), appears with a positive sign in the
current equation at node t and with a negative sign at node o. Hence,
the resistor contributes the term +G(vt − v0) to the tth equation and the
term −G(vt − v0) to the oth equation. An element stamp (which is the
coefficient matrix A having rows corresponding to each node, and columns
corresponding to each variable) for the resistor is shown in Figure 17.6.
If vt and vo are the tth and the oth elements of the voltage vector, v,
respectively, the resistor’s contribution to the coefficient matrix adds a
quantity +G to positions (t, t) and (o, o) and a −G to the positions (t, o)
and (o, t). The lumped-constant models for MEMS is based on the fact
that all the MEMS structures are built from a common set of basic (or
atomic) elements, such as beams, anchors, and plates. Though these are
less accurate than distributed constant models, they reduce the computa-
tional effort by a great deal. For many applications the accuracy obtained
from a lumped-constant model could be sufficient. Just as the conventional
circuit simulation relies on the lumped-constant models of the electronic
devices, microsystem simulation can be achieved by extending the concept
of element stamps to microdevices and their constitutive elements. In this
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FIGURE 17.6. Element stamp for a resistor.

FIGURE 17.7. Schematic diagram of the parallel plate actuator with damping.

case, the Kirchhoff’s circuit laws are replaced by the Newtonian equations
of motion. The equations governing the dynamics of rigid bodies are given
by ∑

k

Fk = 0 and
∑

k

Tk = 0,

where F and T stand for forces and torques, respectively. The similarity
between Kirchhoffian current laws and these equations is apparent. How-
ever, one difference is that since microsystems involve both mechanical and
electrical domains, there are both mechanical and electrical variables and
equations contained in element stamps for microsystems. We illustrate the
development of an element stamp for the parallel plate actuator shown in
Figure 17.2. External (air) damping is also considered and is represented by
the external damper (c) as shown in the schematic diagram in Figure 17.7.
The governing equations for the system are given by

m
∂2x

∂t2
+c

∂x

∂t
+kx = Fe = −ε0A

2

[
V 2

(d − x)2

]
and i =

∂q

∂t
=

∂

∂t

[
ε0AV

d + x

]
.

Trapezoidal integration and linearization of the governing equations gives
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FIGURE 17.8. Element stamp for the parallel plate actuator.

rise to the following simple algebraic equation:

mux +
h

2
cux + k

h

2
x +

h

2

[
∂Fe

∂vt
vt +

∂Fe

∂vb
vb

]
= 0,

where ux = ∂x/∂t, h is the time step of integration, and vt and vb are the
voltages on the beam and the ground element, respectively. Using the node-
wise analysis as described above for the resistor, the element stamp for this
MEM actuator is shown in Figure 17.8. The stamp has four rows, two for
the electrical equations and two for the mechanical-dynamical equations.
The four columns correspond to the four variables, namely, vt, vb, x, and ux.
This method takes much less time to simulate in a circuit simulator. It pro-
vides a compact and efficient way of adding the contribution of a particular
element to the overall system. Since built-in models are used, this procedure
can handle only those devices that can be described by the built-in models.
This might not be a disadvantag, since all MEMS devices can be described
in terms of a set of basic elements. The computational effort required is
much less compared to general purpose simulators like SABER5 (Mantooth
and Vlach, 1992) or MATLAB that rely on user-provided HDL models.

Nodal Analysis

Nodal analysis has been widely used for formulating system equations in
circuit analysis tools such as SPICE. The circuit is decomposed into N -
terminal devices, and each device is modeled by ordinary differential equa-
tions (ODEs) with coefficients parameterized by device geometry and ma-
terial properties (Zhou et al., 1998). The devices are linked together at
their terminals or nodes, and the resulting coupled differential equations
can be solved as a system of nonlinear ODEs. This approach is fast, rea-
sonably accurate, flexible, and can be used for a higher-level simulation of

5Mixed mode circuit simulators from Synopsys Inc.
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(a) (b)

FIGURE 17.9. (a) A cantilever-beam-based microdevice. (b) Nodal representa-
tion of the microdevice.

microsystems.
In nodal analysis, the microdevice is represented using atomic elements

like anchors, gaps, and beams (Zhou et al., 1998). Figure 17.9 shows a mi-
crodevice and its nodal representation. The nodal representation contains
three anchor elements, one beam element, and an electrostatic gap element.
Each atomic element has a lumped behavioral model with geometric pa-
rameters that can be specified individually. This simplifies the evaluation
of changes in size on the device performance in each design iteration. The
system matrices formed are much smaller than those in finite element anal-
ysis, and the models are implemented in analog HDLs supporting mixed
physical domain simulations. The total system is formulated by formulat-
ing each individual element first. For the beam element defined between
nodes 1 and 2, we have

f1
n = f1

n(q1, q2), n = 1, 2,

and for the gap element (nodes 2, 3, 4, 5) we have

f2
n = f2

n(q2, q3, q4, q5), n = 2, 3, 4, 5,

where fn, represents the internal forces (the forces in the x-direction, y-
direction, and the moment) acting at node n, and qn represents the node
displacements (the displacements in the x- and y-directions and the angle
of rotation). The superscript and the subscript denote the element number
and the node number, respectively. Each node has three degrees of freedom
in 2D: the displacements in the x- and y-directions and the rotation. The
sum of all the internal forces (fn) acting at a given node is equal to the
external load P acting at the node, which in this case is the electrostatic
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force. The assembled equations for each node are given by

P1 = f1
1 (q1, q2),

P2 = f1
2 (q1, q2) + f2

2 (q2, q3, q4, q5),
P3 = f2

3 (q2, q3, q4, q5),
P4 = f2

4 (q2, q3, q4, q5),
P5 = f2

5 (q2, q3, q4, q5).

The displacements and the rotations associated with nodes 1, 4, and 5 are
zero, so they are removed. The final system of equations is given by

P2 = f1
2 (q2) + f2

2 (q2, q3),
P3 = f2

3 (q2, q3).

This system of equations can be solved by standard numerical methods.
NODAS (Fedder and Jing, 1998) is a circuit-level behavioral simulation

tool that uses the concept of nodal analysis. Design with NODAS starts
from schematic entry, where microsystem elements (such as beams and
fluidic channels) and circuit elements (such as transistors) can be wired
together. A composite net list for the entire system is generated and sent
to the circuit simulator. In the schematic generation phase, terminals of
element instances are represented by groups of pins. Each pin has an asso-
ciated discipline determining its physical nature. Since schematic assembly
consumes a lot of effort and is prone to error, if pins were used for each
degree of freedom, buses are used in digital circuit schematics for com-
pactness of schematic representation. Similarly, for the same reason analog
buses are used in NODAS; however, since existing limitations in analog
HDLs (hardware description languages) allow only pins of the same dis-
cipline to be grouped as one bus, they result in three buses per terminal:
translational, rotational, and electrical. This compact terminal represen-
tation reduces wiring effort and wiring errors. Splitters are the behavioral
blocks used to convert scalar wires to bus wires. They also apply stimuli
and monitor simulation results at the individual degree of freedom. Global
acceleration and rotational rate pins are used and shared by all elements
in combination with the hierarchical schematic for each model to reduce
clutter in the schematic. These pins take care of the external dynamics
influence. The “through” and “across” variables are chosen in accordance
with Kirchhoff’s laws. The across variables are chosen depending on the
output required. Since Kirchhoff’s network laws are applied in the chip’s
reference frame, coordinate transformation matrices are used to transform
from one coordinate system to another. Some of the basic lumped models
used are the linear beam model, nonlinear beam model, and nonlinear gap
model. SUGAR (Zhou et al., 1998) uses a similar approach by modeling the
MEMS structures in terms of three basic elements (i.e., beams, gaps, and
anchors) and builds the ODE models for each kind. The system equations
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are then formulated according to node connectivity information given as
an input file and solved using nodal analysis.

The advantages of the nodal analysis method for microsystem design are
as follows: (i) It can solve coupled nonlinear differential equations. (ii) It is
fast, reasonably accurate, flexible, and can be used for higher-level simula-
tion of microsystems. (iii) It can perform DC, steady-state, and transient
analysis. The disadvantages of the nodal analysis technique are these: (i)
The approach can still be expensive for complex systems. (ii) It cannot
account for all the nonlinear behavior encountered in microsystems. More
details on nodal analysis as well as more examples can be found in (Fed-
der and Jing, 1998; Vandemeer et al., 1998; Mukherjee and Fedder, 1998;
Baidya and Mukherjee, 2002).

17.3 Black Box Models

Black box models stem from basic ideas in system and control theory. Black
box models are based on measured input-output behavior, hence the name
“black box models.” Detailed results from simulations are used to construct
simplified and more abstract models. The various models that fall under
this category can be broadly classified into:

1. Nonlinear static models: These models use mathematical optimiza-
tion, approximation, and interpolation methods for curve fitting and
parameter adaptation. Table-based numerical reduced-order model-
ing falls in this category.

2. Linear dynamic models: These are usually formulated in the Laplace
domain. The system is simulated in the time or frequency domain.
Algorithms from control and system theory are used to calculate the
transfer function. The response function is calculated using the con-
volution integral principles on the impulse function and the actual
input function. If the system is complicated, random input functions
may be needed to simulate the system instead of step or impulse func-
tions. Krylov subspace techniques and moment matching methods fall
under this category.

3. Nonlinear dynamic models: In these models, the modeling is done
based on assumptions about the internal structure composed of basic
functional blocks. A few control theory approaches are also available.
Krylov subspace methods fall under this category.

17.3.1 Nonlinear Static Models
The method that falls in this category is table-based reduced-order model-
ing.
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Table-Based Reduced-Order Modeling

Table-based reduced-order models use tables of numerical data to describe
the relationship between variables (Wu and Carley, 2001). The table-based
models are built directly from data obtained from measurements or device
simulations without detailed knowledge of underlying physics. Hence, the
difficulties and errors associated with extracting analytical models are elim-
inated and the process can be automated. For behavioral-level simulations,
cubic spline interpolation is used to evaluate the functions. In addition to
the nonlinear behavioral numerical model, a set of linear numerical mod-
els is constructed to assist in solving for operating points, to perform AC
analysis, and to design closed-loop feedback systems. The procedure for
table-based macromodeling can be described as:

1. The device is described by a set of ODEs, which are solved using
standard numerical methods.

2. The functions that describe the relationships between the variables
are represented in numerical tables, obtained from device simulations.

3. During simulations, the models are evaluated by interpolating the
data in the tables.

The microdevice shown in Figure 17.5 is modeled using the steps outlined
above. The governing equation for the dynamics of the device is given by

m
∂2x

∂t2
+ c

∂x

∂t
+ fs = fe,

where m is the effective mass, c is the damping factor, fs is the spring
force, and fe is the electrostatic actuation force. First, a full simulation
of the device is performed to generate the table of data. The mechanical
part (or the spring force) is computed using any standard finite element
solver, and the electrostatic force is computed using the capacitance solver
based on the boundary element method. The functions that represent the
relationship between the variables, in this case fs and fe, are generated
from tables of numerical data obtained from device simulations. During
the simulations, the tabl-based models are evaluated by interpolating the
data; typically, a cubic spline interpolation is used. As an example, suppose
y depends on x, and for some value of x between xi and xi+1, y can be
computed by

y = a1yi + a2yi+1 + a3
∂2yi

∂x2 + a4
∂2yi+1

∂x2 ,

a1 =
xi+1 − x

xi+1 − xi
, a2 =

x − xi

xi+1 − xi
,

a3 =
1
6
(a3

1 − a1)(xi+1 − xi)2, a4 =
1
6
(a3

2 − a2)(xi+1 − xi)2.
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Since second derivatives are required, typically, a second table comprising
second derivatives is also constructed.

The merits of table-based reduced-order modeling are: (i) The procedure
eliminates the difficulties and errors associated with analytical model ex-
traction. (ii) The method can be easily automated once the order and state
variables of the ODE are decided. The problems with table-based macro-
modeling are: (i) The method does not preserve the physical meaning of
the system. (ii) It is not easy for the designer to propose modifications
and expect the system to behave as desired. (iii) At least some expensive
full-scale physical simulations are required to generate the table(s) of data.

17.3.2 Linear Dynamic Models
The reduced-order modeling methods that fall in this category are the
Krylov subspace technique and the moment matching technique, which are
discussed in this section.

Krylov Subspace Technique Based on the Lanczos Method

The governing equation for a continuous time-invariant multi-input multi-
output (MIMO) system (e.g., a comb-drive microresonator) is of the form
(Srinivasan et al., 2001; Bai, 2002)

Cẋ(t) + Gx(t) = Bu(t), y(t) = LT x(t), (17.9)

where t is the time variable, x(t) ∈ �N is a state vector, u(t) ∈ �m

is the input excitation vector, and y(t) ∈ �p is the output vector. Here
C,G ∈ �N×N are system matrices, B ∈ �N×m and L ∈ �N×p are the
input and output distribution arrays, respectively, N is the state space
dimension, m and p are much smaller than N , and m ≥ p.

A variety of analyses can be performed for the linear dynamical system
given in equation (17.9). For example:

1. A static analysis to compute the equilibrium condition.

2. A steady-state analysis, also called the frequency response analysis, to
determine the frequency responses of the system to external steady-
state oscillatory (e.g., sinusoidal) excitation.

3. A transient analysis to compute the output behavior y(t) subject to
time varying excitation u(t).

4. A sensitivity analysis to determine the proportional changes in the
time response y(t) and/or steady-state response to a proportional
change in system parameters.
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Some of these analyses can be very expensive, especially if performed using
equation (17.9). If a reduced-order system to equation (17.9) can be de-
veloped, the analysis can be performed quickly. The reduced-order system
should have the following desirable attributes:

1. The reduced system should have a much smaller state-space dimen-
sion compared to the state-space dimension of the full-order system.

2. The error between the full-order and the reduced-order models should
be as small as possible.

3. The reduced-order model should preserve the essential properties of
the full-order system.

Therefore, the reduced-order linear system should be of the form

Cnż(t) + Gnz(t) = Bnu(t), y(t) = LT
nz(t), (17.10)

where z(t) ∈ �n is a state vector, u(t) ∈ �m is the input excitation vector,
and y(t) ∈ �p is the output vector. Here Cn,Gn ∈ �n×n are system
matrices, Bn ∈ �n×m and Ln ∈ �n×p are the input and output distribution
arrays, respectively; n is the state space dimension, which should be much
smaller than N . Assuming a single-input single-output (SISO) system for
simplicity, p = m = 1. In this case, we use b and l for input and output
vectors, respectively. The MIMO system can be dealt with in a similar
manner.

The Krylov subspace technique (Srinivasan et al., 2001) reduces the orig-
inal system (equation (17.9)) to the reduced system (equation (17.10)).
Before we discuss the reduction method, it is important to understand the
concept of Krylov subspaces. A Krylov subspace is a subspace spanned
by a sequence of vectors generated by a given matrix and a vector as fol-
lows. Given a matrix A and a starting vector r, the nth Krylov subspace
Kn(A, r) is spanned by a sequence of n column vectors:

Kn(A, r) = span[r,Ar,A2r,A3r, . . . ,An−1r].

This is called the right Krylov subspace. When A is asymmetric, there
exists a left Krylov subspace generated by AT and a starting vector l
defined by

Kn(AT , l) = span[l,AT l, (AT )2l, . . . , (AT )n−1l].

Next, we need to define a set of basis functions such that they span the
desired Krylov subspaces. Let V = [v1, v2, v3, . . . , vn] and W = [w1, w2, w3,
. . . , wn] be basis vectors such that

Kn(A, r) = span[v1, v2, v3, . . . , vn], Kn(AT , l) = span[w1, w2, w3, . . . , wn].
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The Lanczos process is an elegant way of generating such basis vectors.
The Lanczos vectors V and W are constructed to be biorthogonal, i.e.,

wT
j vk = 0 ∀ j �= k.

The Lanczos algorithm to generate V and W from A, r, and l can be found
in (Freund, 1999).

The reduced system, using Krylov subspaces, can be generated using the
following steps (see also Figure 17.10):

1. Taking s0 as the expansion point of equation (17.9), A and r are
defined as

A = −(G + s0C)−1C and r = (G + s0C)−1b.

2. Using the Lanczos method, V and W are computed as

span[V] = Kn(A, r), span[W] = Kn(AT , l).

3. The reduced matrices Cn,Gn,bn, ln are computed as follows: For
double-sided projection

Cn = VT CW, Gn = VT GW, bn = WTb, ln = VT l,

and for single-sided projection,

Cn = VTCV, Gn = VT GV, bn = VTb, ln = VT l.

The double-sided projection formula does not always guarantee a sta-
ble reduced-order model except for certain trivial cases (e.g., RC net-
works), whereas single-sided projection onto V guarantees an uncon-
ditionally stable reduced-order system. However, double-sided pro-
jection generally gives more accurate results than single-sided projec-
tion. The order of the subspace is chosen according to the frequency
range where matching is required. For matching of q resonant peaks,
n has to be at least 2q.

Often, second-order systems are encountered in microsystems (Bai, 2002;
Ramaswamy and White, 2001), of the form

Mq̈(t) + Dq̇(t) + Kq(t) = Pu(t), y(t) = QTq + RT q̇(t),

where Q and R are chosen depending on the output variable of interest.
The second-order system can be formulated into an equivalent linear system
of the form given in equation (17.10) such that the symmetry of the original
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FIGURE 17.10. Basic transformations in the Krylov subspace method for macro-
modeling.

system is preserved, i.e.,

x(t) =

⎡⎢⎣q(t)

q̇(t)

⎤⎥⎦ , C =

⎡⎢⎣D M

F 0

⎤⎥⎦ ,

G =

⎡⎢⎣K 0

0 −F

⎤⎥⎦ , B =

⎡⎢⎣p

0

⎤⎥⎦ , l =

⎡⎢⎣Q

R

⎤⎥⎦ ,

where F can be any N × N nonsingular matrix. Generally, F is chosen to
be the identity matrix, I, while F = M is also a reasonable choice if M,
D, and K are symmetric. The advantages of the Krylov subspace method
are: (i) It is fairly accurate for linear systems and can be automated. (ii) It
is computationally very effective. The disadvantages are: (i) It is not very
accurate for highly nonlinear systems. (ii) It does not preserve the physical
meaning of the original system.

Moment Matching Techniques

The main idea behind the moment matching technique (Ismail, 2002) is to
construct the transfer function directly from the system equations using
Laplace transformation, and then to approximate the transfer function by
some rational function. Consider again equation (17.9). Taking the Laplace
transform of this equation, the frequency domain formulation is given by

sCẊ(s) + GX(s) = BU(s), Y(s) = LTX(s). (17.11)

Eliminating the variable X(s) from equation (17.11), the input and output
are related by a p × m matrix-valued rational function

H(s) = LT (G + sC)−1B,

where H(s) is known as the transfer function of the linear system, and the
state-space dimension of the system is N . The Taylor series expansion of
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the scalar transfer function H(s) about s0 is given by

H(s) = lT (I−(s−s0)A)−1r = lT r+(lT Ar)(s−s0)+(lT A2r)(s−s0)2+· · ·
= m0 + m1(s − s0) + m2(s − s0)2 + · · · ,

where mj are the moments about s0. The objective is to approximate H(s)
by a rational function Hq(s) ∈ �q−1,q over the range of frequencies of in-
terest, where q ≤ N . One choice is the Padé approximation (Bultheel and
Barvel, 1986). A function Hq(s) ∈ �q−1,q is said to be a qth Padé approx-
imant of H(s) about an expansion point s0 if it matches with moments of
H(s) as far as possible. It is required that (Bai, 2002)

H(s) = Hq(s) + O((s − s0)2q). (17.12)

Note that we have 2q conditions on the 2q degrees of freedom that describe
the approximation function. Specifically, let

Hq(s) =
Pq−1(s)
Qq(s)

=
a0 + a1s + a2s

2 + · · · + aq−1s
q−1

1 + b1s + b2s2 · · · + bqsq
.

The coefficients [ai] and [bi] of the polynomials Pq−1(s) and Qq(s), and also
the moments can be computed by multiplying both sides of equation (17.12)
by Qq(s) and comparing the first q(s− s0)k terms for k = 0, 1, 2, . . . , n− 1.
A system of 2q nonlinear equations is solved to find the 2q unknowns. This
takes into account the dominant q poles, while the poles larger than this
value are neglected.

The advantages of this method are: (i) Reduction in computational effort.
(ii) A wide variety of physical phenomena encountered in microsystems, in-
cluding dissipation, can be modeled. (iii) The accuracy can be improved by
taking more moments at each node. (iv) Static, steady-state, and transient
analysis can be performed. The disadvantages of this approach are: (i) It is
applicable for linear dynamical systems only. (ii) It is inefficient if the num-
ber of inputs is large. (iii) It is not stable for higher-order approximations.
(iv) It is computationally expensive for each expansion point.

The multinode moment matching (MMM) method (Ismail, 2002) is an
extension of the single point moment matching (SMM) method and has
much better efficiency than to the SMM technique. The MMM technique
simultaneously matches the moments at several nodes of a circuit using
explicit moment matching around s = 0. MMM requires a smaller compu-
tational effort, since only (q + 1) moments are required (see (Ismail, 2002)
for details). MMM is numerically stable, as the higher powers are not used
in the expansion, avoiding truncation errors.

17.3.3 Nonlinear Dynamic Models
Nonlinear dynamic models are frequently encountered in microsystems.
Linearizing the nonlinear equations and using reduced-order methods like
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the linear Krylov subspace method based on a Lanczos process or other lin-
ear basis function techniques may not be sufficient to capture the nonlinear
behavior of the system. Arnoldi-based Krylov subspace methods (Chen and
White, 2000) and the trajectory piecewise linear approach (Rewienski and
White, 2001) and its modifications are found to work better for nonlinear
systems. These techniques are summarized in this section.

Krylov Subspace Technique Based on the Arnoldi Method

Consider a nonlinear system of the form

ẋ = f(x) + bu(t), y = lT x, (17.13)

where x is a vector of length n, f is a nonlinear vector function, u(t) is the
input of the system, and y(t) is the output. Taylor series expansion of the
function f about the origin (the equilibrium point) to second order yields
a quadratic approximation of the form

ẋ = Jfx + xTWx + bu(t), y = lT x, (17.14)

where Jf is the Jacobian of f evaluated at the origin and W is an N×N×N
Hessian tensor. The matrices Jf and W are given by

Jf i,j =
∂fi

∂xj
and Wi,j,k =

∂2fi

∂xj∂xk
.

We assume that Jf is nonsingular. Let A = Jf
−1 be the inverse of the

Jacobian. Multiplying equation (17.14) by A yields

Aẋ = x + AxTWx + Abu(t), y = lT x. (17.15)

The orthogonal basis for the Krylov subspace span[Ab,A2b, . . . ,Aqb],
where q � N , is the size of the reduced system that will be generated
by using the Arnoldi method (Chen and White, 2000) for numerical stabil-
ity. The Arnoldi process generates V, an n × q orthonormal matrix whose
columns span the Krylov subspace. Using the change of variables x = Vz
in equation (17.15), we have

AVż = Vz + AzT VTWVz + Abu(t), y = lTVz.

Left-multiplying by VT , and defining H = VTAV, we have

Hż = z + VTAzTVT WVz + VTAbu(t), y = lTVz.

The system can be expressed in the original form (equation (17.13)) by
left-multiplying by H−1 to obtain

ż = H−1z + H−1VTAzT VTWVz + H−1VTAbu(t), y = lT Vz.
(17.16)
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Setting

J′ = H−1, b′ = H−1VTb, l′ = VT l,

where H−1VTAzT VTWVz is quadratic in z and can be written in the
form zTW′z for some W′. Then, equation (17.16) can be reduced to a
quadratic system of the form

ż = J′z + zTW′z + b′u(t), y′ = l′T z,

where y′ is an approximation to y. The key step in this approach is the
use of Arnoldi projection to reduce the large quadratic tensor to a small
quadratic tensor.

The merits of this approach are: (i) This method is much more accurate
than the linearized models and can be automated. (ii) It is computationally
very effective. The problem with this approach is that it is not very accurate
for highly nonlinear systems even though it has a quadratic nonlinear term.
If higher-order terms are included, the cost of the reduced order model
increases as O(n4), and the number of coefficients to be evaluated is very
large.

Trajectory Piecewise-Linear Approach

The key idea in the trajectory piecewise-linear approach is based on repre-
senting the nonlinear system with a piecewise-linear system and then reduc-
ing each of these pieces with Krylov subspace projection methods (Rewien-
ski and White, 2001). Instead of approximating the individual components
as piecewise-linear and then composing hundreds of components to make
a system with exponentially many different linear regions, a small set of
linearizations is generated about the state trajectory, which is the response
to a “training input.” Introducing the change of variables x = Vz in equa-
tion (17.13) and multiplying the resulting equation by VT yields

ż = VT f(Vz) + VTbu(t) and y = lT Vz.

The two key issues here are first, selecting a reduced basis V such that
the system provides a good approximation of the original system. This
has already been addressed in the previous sections. The second issue,
which makes the Taylor-series-expansion-based reduced-models inefficient,
is the computation of the term VT f(Vz). For linear and quadratic reduced-
order models, the linear and the quadratic terms from the Taylor expansion
about an equilibrium point x0 are considered, and all higher-order terms
are neglected, i.e.,

f(x) ≈ f(x0) + A0(x − x0) +
1
2
W0(x − x0) ⊗ (x − x0),
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where ⊗ is the Kronecker product and A0 and W0 are the Jacobian and
the Hessian of f(·). For the linear case, the reduced-order model becomes

ż = VT f(x0) + A0rz + VTbu(t) and y = lT Vz,

while for the quadratic case, the reduced order model becomes

ż = VT f(x0) + A0rz +
1
2
W0r(z ⊗ z) + VTbu(t) and y = lT Vz,

where A0r = VTA0V and W0r = VTW0(V ⊗ V) are q × q and q × q2

matrices, respectively, which are typically dense and must be represented
explicitly. As a result, the cost of computing VT f(Vz) and the cost of
storing the matrices A0r (A0r and W0r for the quadratic case) are O(q2)
in the linear case and O(q3) in the quadratic case. Hence, although the
method based on Taylor expansion may be extended to higher orders of
nonlinearities, this approach is limited in practice to cubic expansions due
to exponentially growing memory and computational costs.

In the piecewise-linear approach, s linearized models of the nonlinear
system with expansion points x0, . . . ,xs−1 are considered, i.e.,

ẋ = f(xi) + Ai(x − xi) + bu(t),

where x0 is the initial state of the system and Ai are the Jacobians of f(·)
evaluated at the states xi. Considering a weighted combination form,

ẋ =
s−1∑
i=0

[wi(x)f(xi) + wi(x)Ai(x − xi)] + bu(t),

where wi(x) are weights that sum to 1. Assuming that a qth-order basis V
has already been generated, the following reduced-order model is obtained:

ż = (Ar · w′(z)T )z + γ · w′(z)T + bru(t), y = lrz,

where γ =
[
VT (f(x0) − A0x0), . . . ,VT (f(xs−1) − As−1xs−1)

]
, br = VT b,

lr = lT V, Ar =
[
A0rA1r . . .A(s−1)r

]
, w′ = [w0, w1, . . . , ws−1] is a vector

of weights, and Air = VTAiV. The weights are computed in the following
manner.

1. For i = 0, . . . , (s − 1) compute di = ‖z − zi‖2.

2. Compute m = min[di : i = 1, . . . , (s − 1)].

3. For i = 0, . . . , (s − 1) compute wi = (exp(di)/m))−25.

4. Normalize wi.
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This implies that the linearized point that is closest to the current position
gets the maximum weight. Instead of finding linearized models covering the
entire N -dimensional state space, a collection of models is generated along
a single trajectory of the system. This is done by simulating the system at
the initial point and moving ahead by a very small interval from that point
to get a new point, and the process is repeated for each point. However,
this method requires performing simulation of the initial nonlinear sys-
tem, which may be very costly due to the initial size of the problem. This
problem is avoided by using the Arnoldi-based Krylov subspace method,
instead of the full simulation, to simulate the nonlinear system and obtain
approximate trajectory and linearization points, making the process faster.

Further improvements to the method have been reported in (Rewien-
ski and White, 2002), where a richer aggregated reduced basis is obtained
by applying the Arnoldi method at each linearization point instead of only
once. This results in improved accuracy and consequently reduces the order
of the reduced model further. In the original implementation, the projection
matrix V was constructed using a Krylov subspace based on a linearization
about the initial state x0. In the new implementation, the above approach
has been replaced by a three-step procedure. First, at each of the lineariza-
tion points xi, a reduced-order basis is generated in a suitable Krylov space
corresponding to a linearized model generated at xi. Second, the union of
all the bases is formed, and third, the set is reduced using singular value
decomposition. The method for basis generation was replaced from the
Arnoldi-based Krylov subspace method to the TBR (Truncated Balanced
Realization) algorithm in (Vasilyev et al., 2003), and a hybrid method using
both TBR and Krylov subspace has been implemented. It was found that
the TBR-based methods gave better accuracy than the method in which
the Krylov subspace was used solely.

17.4 Galerkin Methods

Galerkin methods are popular techniques for reduced-order modeling. In
this section, we summarize both linear and nonlinear Galerkin methods for
reduced-order modeling.

17.4.1 Linear Galerkin Methods
The objective is to create a set of coupled ordinary differential equations
that give an accurate representation of the dynamical behavior of the de-
vice. The approach is to formulate the dynamical behavior in terms of a
finite set of orthonormal spatial basis functions, each with a time-dependent
coefficient. Though this method is not typically analytical, it still forms a
very important tool in the reduced-order modeling of microsystems that
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cannot be represented as lumped elements. Because of the relatively small
number of state variables, the models can be quickly evaluated, and inte-
grated over time. Such models can be readily inserted into circuit simula-
tors for behavioral representation at the system level, including feedback
effects around nonlinear devices. For completely numerical sets of ODEs,
automatic model-order reduction can be implemented, at least for linear
problems, and for nonlinear problems by using a combination of methods
like the Krylov subspace techniques. The two most popular methods that
fall under this category are the linear modes of vibration and Karhunen–
Loève decomposition.

Linear Modes of Vibration

The basic idea in this method is to represent the physical variable, e.g., the
deformed shape of the microdevice, as a summation of the linear normal
mode shapes. This results in the transformation from the nodal coordi-
nates to the time-dependent coefficients of the mode shapes, called modal
coordinates (Ananthasuresh et al., 1996). This approach also eliminates the
coupling between the inertia and stiffness matrices of the governing equa-
tions. Assuming that higher modes of vibration have negligible effect on
the system’s response, a reduced-order model is obtained by using only the
first few modes. Instead of the original system of N coupled equations, N
being the total number of degrees of freedom, only n equations need to be
solved in the reduced-order model, where n is the number of modes consid-
ered. The number of modes considered determines both the accuracy and
the computation time of the system. A general procedure for this method
is given as (Ananthasuresh et al., 1996):

1. Derive basis functions from an initially meshed structure by solving
for the small-amplitude (linear) modes of a structure.

2. Form a basis set that is orthonormal in the state space.

3. Consider the first few modes to represent the physical variable(s) of
interest (e.g., structural deformation).

4. Represent the solution to the system as a linear combination of the
modes with time-dependent coefficients.

The undamped dynamical behavior of a fully meshed structure is given by

Mẍ + Kx = F(x, t), (17.17)

where M is the global inertial matrix, K is the global stiffness matrix, and
F(x, t) is the nonlinear external force. Let S be the modal matrix, i.e., an
N ×N matrix whose columns are the mode shape vectors. The generalized
inertia matrix MG and the generalized stiffness matrix KG are defined as

MG = ST MS and KG = ST KS,
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where both MG and KG are diagonal. Substituting x = Sq in equa-
tion (17.17) and premultiplying by ST, we get

MGq̈ + KGq = ST F(Sq, t).

Since MG and KG are diagonal matrices, the coupling of the q’s is through
the nonlinear force term. In practice, only a few modes are sufficient to
describe the deformation. So the N equations are reduced to a smaller
number of m equations, where m is the number of mode shapes considered.

If damping properties are to be included, the damping force is added as
an additional term on the right-hand side of the equation, or a new set of
geometric basis functions is generated by including the space external to
the structure where the damping is present. If an additional force term is
added, it contains a dependence on velocity. Another approach to account
for damping is to assume Rayleigh damping, in which case the linear modes
obtained from M and K would be sufficient to capture the full behavior.
However, in general, to include the effect of damping, one may have to solve
the quadratic eigenvalue problem (λ2M + λD + K)s = 0 for the desired
modal matrix S.

If the structure undergoes large-amplitude deformation, then in an ideal
case, the stiffness matrix needs to be recomputed as the amplitude changes.
An alternative approach is to retain the original stiffness matrix and add
an extra force term to account for the large-amplitude effects, such as stress
stiffening of the structure. It is convenient to express the right-hand side in
terms of modal coordinates instead of the meshed coordinates. The energy
method (Senturia, 1998b) can be used for this purpose, and this procedure
is summarized below:

1. Find the linear modes for the elastic problem assuming the no-load
condition.

2. Perform quasi-static simulation over a design space that includes the
deformations described by a superposition of p modes and develop a
suitable potential energy function for other conservative forces (e.g.,
electrostatic) and large-amplitude elastic effects (e.g., for stress stiff-
ening). Create analytical expressions for the variation of potential
energy as a function of the selected mode set (this function is nonlin-
ear and must include products of modal amplitudes, etc.).

3. Replace the right-hand side of the modal dynamic formulation with
suitable derivatives of the potential energy functions with respect
to modal amplitudes. The net result is a small coupled set of 2p (2
state variables per mode) ODEs that can be easily integrated forward
in time, without requiring any conversions to and from the original
meshed space.

The advantage with modal methods is that they break open the coupled-
domain problem. The original modal basis functions are obtained from a
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single energy domain, e.g., elasticity, together with the associated mass dis-
tribution, and the nonlinear potential energy functions can be computed
one energy domain at a time. Therefore, it is not necessary to perform com-
plex self-consistent coupled-domain simulations. This approach requires
many (single-energy domain) simulations combined with fitting parameters
to obtain analytical functions. So it is difficult to do it manually. It is possi-
ble to automate the procedure for nonlinear conservative problems. There
are limits to the basis-function approach. Thus far, it has been difficult
to calculate accurately the stress stiffening of an elastic body undergoing
large-amplitude deformation using superposition of modal coordinates. Ad-
ditionally, when the device undergoes nonlinear motion, such as contact,
modal approaches fail. However, the class of microsystems that can now
be handled with the automated basis-function approach is large enough
to be interesting. More examples using modal basis functions for MEMS
simulations are given in (Gabbay and Senturia, 1998; Varghese et al., 1999).

Karhunen–Loève Decomposition Method

The basic idea in the Karhunen-Loève (KL) decomposition method is sim-
ilar to the basic idea in the linear modes method, i.e., to develop a few
global basis functions to represent the entire system by a reduced-order
model. In the case of the linear modes method, the linear modes of the sys-
tem obtained through the solution of the generalized eigenvalue problem
form the set of basis functions. Karhunen–Loève decomposition is another
method to generate global basis functions, and the advantage with the KL
decomposition is that it works better than the linear modes technique for
nonlinear cases. The procedure for the extraction of the basis functions in
the KL decomposition method is summarized below:

1. Simulate the entire system dynamics first by using a time-stepping
scheme that is stable and known to give accurate results.

2. The spatial distributions of each state variable u(x, t) are sampled
at a series of tn different time instants during the simulations. These
sampled distributions are stored as a series of vectors ui, and each
vector represents a “snapshot” in time.

3. The basis functions are determined using either the singular value
decomposition (SVD) or the KL approach.

In the SVD approach, which is mathematically equivalent to the KL decom-
position technique, n orthogonal basis functions [a1, . . . ,an] are determined
by minimizing the following expression:

tn∑
i=1

| ui − proj(ui, span[a1, . . . ,an]) |2 . (17.18)
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This is accomplished by taking the singular value decomposition (SVD) of
the matrix U, whose columns are ui. The SVD of U is given by

U = VΣWT ,

where V contains the eigenvector as columns and Σ contains the eigenval-
ues in the diagonal. By taking ai = vi for i = 1, 2, . . . , n, the minimization
of the expression in equation (17.18) is accomplished.

The KL approach (Sirovich, 1987) is a procedure for extracting an empir-
ical basis for a modal decomposition from an ensemble of signals. Assuming
that the signals are an ensemble of the functions ui, the objective is to find
a single deterministic function that is most similar to members of ui on
average. In other words, one needs to find a function that maximizes the
inner product with the field ui. That is, one needs to maximize

λ =
〈(φ,ui)2〉

(φ, φ)
,

where 〈〉 is the averaging operator, which can be a time, space, or ensemble
average, and (φ,ui) =

∫
Ω φ(x)ui(x)dΩ is the inner product defined in the

function space Ω. It turns out that this condition is met when φ(x) is an
eigenfunction of the two-point tensor given by

Kφ =
∫

Ω
K(x, x′)φ(x′)dx′ = λφ(x),

where K(x, x′) is a nonnegative Hermitian operator given by

K(x, x′) = 〈ui(x)ui(x′)〉 =
1
tn

tn∑
i=1

ui(x)uT
i (x′).

The above equation can be solved by the direct method or by the method
of “snapshots” (Sirovich, 1987). In the method of “snapshots” the eigen-
function can be represented as the summation of snapshots ui, i.e.,

φ(x) =
∑

k

αkuk(x). (17.19)

Substituting this into the two-point tensor equation yields a matrix eigen-
value problem that determines the eigenvalues and eigenvectors α. Sub-
stituting this set of eigenvectors in equation (17.19) yields a set of eigen-
functions φ(x), which is the set of global basis functions. It is important
to note that the eigenfunction corresponding to the largest eigenvalue cor-
responds to the most energetic of the snapshots ensemble followed by the
eigenfunction corresponding to the next-largest eigenvalue, and so on. Af-
ter the basis functions are generated by using either the SVD or the KL
method, the Galerkin procedure is employed with the basis functions to
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FIGURE 17.11. Basic steps in the Karhunen–Loève decomposition method.

convert the original nonlinear governing PDE to a set of coupled ODEs
much smaller in size. Figure 17.11 explains the various steps for imple-
menting the Karhunen–Loève decomposition method.

The advantages of this method are: (i) In general, very few basis functions
are required. (ii) Nonlinear behavior is efficiently captured. (iii) The same
basis functions can be employed to simulate different input parameters,
even though regeneration of the basis functions for the new input param-
eters can provide more accurate results. The disadvantages of the method
are: (i) Using a combined state vector instead of independent basis func-
tions can result in a reduced number of basis functions, but this can distort
the physical meaning of the problem. (ii) Problems can still occur, since
the basis functions chosen may not capture the entire state space. This is
usually the case when there are multiple attractors, rare intermittent fluc-
tuations, or bifurcations in the parameter space. (iii) Complications can
result in systems exhibiting intermittent chaotic behavior. (iv) The over-
head with the initial full-scale simulation is quite high. Low-dimensional
flow dynamical systems may converge to erroneous states after long-time
integration and can be observed in reduced-order models constructed from
the Karhunen–Loève decomposition method. A dissipative model based on
a spectral viscosity diffusion convolution operator has been used in (Sirisup
and Karniadakis, 2004), for improving the asymptotic behavior of KL pre-
dictions.

In spite of the existing voids, the KL decomposition technique is promis-
ing for nonlinear dynamic simulation, especially as the complexity in-
creases. As coupled domain simulation tools improve, this approach can
be a powerful tool for microsystem simulation. The standard KL decom-
position has been modified under several circumstances to generate more
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efficient macromodels. Nonlinear responses have been well captured by an
arc-length-based KL decomposition presented in (Chen and Kang, 2001b).
This method is motivated by the fact that while rapidly varying events
can occur in a very short time period, they typically traverse a relatively
large interval in the phase space. Hence, considering an ensemble average
based not only on time but also on arc length in phase space can lead
to better macromodels. This has been shown in (Chen and Kang, 2001b),
for a capacitive pressure sensor, where the arc-length-based approach is
found to capture the rapidly changing dynamics of the device better than
the standard KL approach. Further analysis of this approach shows that
the arc-length-based ensemble average is a weighted time average, with
the weighting function equal to the magnitude of the vector field, thereby
stressing the event of rapid change.

Weighted Karhunen–Loève Decomposition Method

Another modification to the standard KL decomposition is the use of a
weighting function (Qiao and Aluru, 2003c; Graham and Kevrekidis, 1996;
Zhang et al., 2003). The basic idea is that instead of trying to minimize
equation (17.18), we assign different weights to different snapshots and try
to minimize the weighted residual, i.e.,

Ns∑
i=1

| wiui − proj (wiui, span{a1, . . . ,aN}) |2. (17.20)

Observe the difference between equations (17.18) and (17.20): wi is the
weighting assigned to snapshot ui. In the weighted KL approach, instead of
minimizing a least-squares measure of “error” between the linear subspace
spanned by the basis functions and the observation space, we minimize the
weighted “error” between these two spaces.

By using the fact that the SVD of a snapshot ensemble gives the basis
that minimizes equation (17.18), it is easy to show that the basis that
minimizes equation (17.20) is the column vector of matrix L2:

ŨW = L2Σ2R2
T , (17.21)

where W is an Ns × Ns diagonal matrix whose diagonal elements are the
weighting coefficients for each snapshot, i.e., [W ]i,i = wi.

Remarks:

1. If the weighting function matrix is the identity, i.e., wi = 1 (i =
1, 2, . . . , Ns), then the weighted KL technique and the standard KL
technique produce identical bases.

2. In the implementation of the weighted KL technique, once the snap-
shots are obtained, a weight is assigned to each snapshot.
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3. Since the snapshot ensemble matrix is multiplied by a diagonal ma-
trix, the computational cost of a weighted KL decomposition based
on equation (17.21) is almost the same as the computational cost of
the classical KL decomposition.

Significance of Weighting: The concept of assigning different weights to dif-
ferent snapshots is useful when the transient behavior of certain variables
(for example, velocity or pressure) changes significantly with time. For ex-
ample, in the case of electroosmotic transport, the flow gets to steady state
at different times for different locations in the channel (see the discussion
in (Qiao and Aluru, 2003c), for more details). If a higher weighting is as-
signed to those snapshots taken during the fast-changing transient, then
the basis obtained with SVD will, according to equation (17.20), be able to
produce more accurate results. In other words, the new basis obtained with
weighted snapshots will be able to represent the system behavior much bet-
ter than the basis functions obtained with the classical KL decomposition
technique. If the transient behavior of the system is gradual, then the use
of the weighting function is limited, and both weighted and classical KL
decomposition techniques can be expected to produce comparable accuracy
results.

A feasible approach for rapidly varying transient solutions is to obtain
more snapshots during the time when the solution is changing rapidly
and to compute the basis using the classical KL decomposition technique.
However, there are several situations in which obtaining snapshots is not
straight-forward. For example, when snapshots are obtained from exper-
iments, repeating the experiment to obtain more snapshots can be very
expensive. Similarly, if the snapshots are obtained from numerical simula-
tions and if a rapidly varying transient is represented by a few snapshots,
repeating the simulation to get more snapshots with a smaller time step
can be very expensive. A good compromise in such cases is to use weighted
snapshots to get better basis functions, instead of repeating the experi-
ments or the numerical simulations. Many times it is difficult to foresee the
various time scales encountered in the system. The concept of weighting in
a KL decomposition technique introduces more flexibility and accuracy to
represent multiple time scales in a dynamical system.

Discussion on Weighted Basis versus Error in the Solution: It is important
to note that weighting is a concept introduced to improve the accuracy over
certain time scales or periods rather than a technique that can be used to
improve the accuracy over the entire time period. In fact, reduced-order
modeling using a weighted basis usually exhibits slightly higher error in
the time period that is less significantly weighted. Typically, reduced-order
modeling exhibits a very nonuniform error in the whole time domain, i.e.,
it might behave very well in certain time periods but not be able to capture
the basic characteristics in certain other time periods. By using a weighted
KL basis, it is possible to achieve a more uniform reduction in error in the
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solution.
A second question of significant interest is, how does a weighted ba-

sis compare with other bases in capturing the system transient? There is
no easy answer without a detailed mathematical analysis. However, we do
know that (1) increasing the number of basis functions used in approx-
imating, for example, the velocities and pressure generally improves the
accuracy of the simulation; (2) different methods generate different bases,
and the number of significant basis functions that need to be included in
each method is different. The accuracy of the solution is influenced by both
the number of basis functions and the quality of the bases. Typically, the
number of basis functions that need to be included in a weighted approach
is less than the number of basis functions that need to be included in the
classical KL approach for comparable accuracy.

Example: Transient Analysis of Electroosmotic Flow

Electroosmotic flow (see Chapter 7 for governing equations and other de-
tails) in a cross channel, shown in Figure 17.12, is used as an example to
demonstrate the KL and the weighted KL techniques. The cross channel is
an interesting problem, since the flow in the intersection exhibits many in-
teresting characteristics. In the case of balanced applied potentials, the net
flow into the side channel is negligible but the fluid velocity does not vanish
in the side channel. A good reduced-order model should capture both the
flow in the main channel and flow within the intersection of the cross chan-
nel. The flow in the cross channel exhibits multiple time scales, i.e., the
flow within the intersection reaches steady state much more quickly than
the flow in the main channel. In addition, the velocity profile within the
intersection is more complex than the velocity profile in the main channel.
To capture the multiple time scales encountered in the cross channel exam-
ple, a weighted KL decomposition is used to generate the basis functions
for the reduced-order model.

Sixty snapshots are used to generate a reduced-order model. The snap-
shots are equispaced in time with a time period of 8.85 µs between snap-
shots. Figure 17.13(a) shows the weighting function employed to generate
the weighted KL basis. The weighting coefficient, w(i), for the ith snapshot
is calculated by

w(i) = r + (1 − r)
e−(i/c)2 − e−(Ns/c)2

1 − e−(Ns/c)2 , (17.22)

where Ns is the total number of snapshots, r is the minimal weighting
for all snapshots, and c is a parameter controlling the steepness of the
weighting function. In this calculation, since the first few snapshots contain
the information of how V-velocity near the intersection reaches steady state,
they are weighted more heavily than the other snapshots. The snapshots
closer to the steady-state value are not critical, so they are assigned a lower
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FIGURE 17.12. Geometry of a cross channel used in transient analysis.

weighting. The minimal weighting is set to be 1/6. The steepness parameter
is chosen to be 8.5 in this case.

Figure 17.13(b) shows the U-velocity prediction in the main channel,
and both methods (standard and weighted KL techniques) produce almost
identical results at steady state, though the reduced-order model using
weighted KL basis gives slightly better accuracy at the beginning of the
simulation. In Figure 17.14(a), we compare the performance of weighted
and standard KL techniques by fixing the number of snapshots and in-
vestigating the number of basis functions required with each technique to
get comparable accuracy. We use 60 snapshots in each approach. For the
weighted KL technique we use 4 basis functions for the x-component of the
velocity, 4 basis functions for the y-component of the velocity, and 3 basis
functions for the pressure (referred to as (4U+4V+3P) in Figure 17.14(a)).
To reproduce the results obtained by the weighted KL technique, 6 basis
functions had to be used for the x-velocity, 6 basis functions for the y-
velocity, and 6 basis functions for the pressure (denoted by (6U+6V+6P)).
For comparable accuracy, we need almost twice the number of basis func-
tions in a standard KL approach than in the weighted KL technique. This
result indicates that when the number of snapshots is fixed, a weighted KL
technique needs fewer basis functions than a standard KL technique to re-
produce full simulation results. The use of fewer basis functions leads to a
computationally more efficient approach. We also observed that a technique
with (4U+4V+3P) basis functions is almost twice as fast as the technique
with (6U+6V+6P) basis functions; i.e., a reduced-order model based on
the weighted KL technique can be twice as fast as the reduced-order model
based on the standard KL technique while achieving essentially the same
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FIGURE 17.13. (a) A weighting function that assigns different weighting coeffi-
cients for different snapshots. (b) Comparison of U-velocity in the main channel
far upstream of the intersection. 60 snapshots are used and 3U+3V+3P basis
functions are used in both methods.

accuracy.
In Figure 17.14(b), we compare the performance of weighted and stan-

dard KL techniques by fixing the number of snapshots and basis functions.
The number of snapshots is fixed to 20, and the number of basis functions
for U, V, and P is fixed to 3, i.e., (3U+3V+3P). The snapshots are eq-
uispaced in time with a time period of 26.6 µs between snapshots. The
weighting coefficients for the weighted KL technique are computed using
equation (17.22). The minimal weighting r is 1/6, and the steepness pa-
rameter is set to be 9. Figure 17.14(b) compares the weighted and standard
KL techniques with the full transient simulation. The results indicate that
the weighted KL basis is able to capture the velocity profile during the ini-
tial transient much more effectively than the standard KL approach. The
steady-state solution predicted by both techniques is almost the same and
compares well with the full transient simulation. From this we can conclude
that with the same number of snapshots and basis functions, the weighted
KL approach can offer better accuracy in resolving multiple time scales than
the standard KL approach. In Figure 17.15, we compare the performance
of weighted and standard KL techniques by fixing the number of basis
functions (3U+3V+3P) and using different snapshots with each approach.
The weighted KL method uses 22 snapshots to generate the basis functions
(the weighting coefficients are again selected by the approach described in
the previous paragraph), and the standard KL method uses 66 snapshots
to generate basis functions. The result in Figure 17.15 indicates that the
weighted KL technique offers better accuracy during the initial transient
than the standard KL method, while both methods produce comparable
accuracy at steady state. From this result, we can conclude that for a fixed
number of basis functions, a weighted KL technique using fewer snapshots
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FIGURE 17.14. (a) Comparison of V-velocity at position a − a′ of Figure 17.12.
60 snapshots are used in both methods. (b) Comparison of V-velocity at position
a − a′ of Figure 17.12. 20 snapshots and 3U+3V+3P basis functions are used in
both reduced-order modeling techniques.
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FIGURE 17.15. Comparison of V-velocity at position a − a′ of Figure 17.12.
3U+3V+3P basis functions are used in both reduced-order modeling techniques.
22 snapshots are used in the weighted KL method and 66 snapshots are used in
the standard KL method to generate basis functions.

can produce better accuracy than a standard KL technique.
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17.4.2 Nonlinear Galerkin Methods
A dynamical system can be represented by a differential equation of the
form

v̇ = G(v, λ), (17.23)

where in the general case v is an element of a Hilbert space E and G(v, λ)
is a smooth nonlinear operator. We investigate the loss of stability of an
equilibrium ve of equation (17.23) under quasi-static variation of a dis-
tinguished system parameter λ. Equation (17.23) can be rewritten in the
form

u̇ = L(λ)u + g(u, λ), (17.24)

where L = Gv(ve) is the linearization of the operator G at ve, the equi-
librium position; g is a smooth nonlinear operator, and u = v − ve is
the deviation from ve. From the point of stability we assume that equation
(17.24) has an asymptotically stable equilibrium position ue = 0 for a range
of parameter values λ. Now λ is varied quasi-statically, and it is assumed
that for λ = λc a loss of stability occurs at ue = 0. Then, two cases exist
for which a proper dimension reduction can be performed (ε � 1):

1. For | λ − λc |= O(ε), the center manifold theory applies.

2. For | λ − λc |= O(1), the Galerkin methods apply.

According to the center manifold theory (Troger and Steindl, 1991), the
field variable can be decomposed into a form:

u(x, t) = uc(x, t) + us(x, t) =
nc∑
i=1

qi(t)χi(x) + U(qi(t),x), (17.25)

where χi(x) are the active spatial modes, obtained from the solution of the
eigenvalue problem related to the linear system

u̇ = L(λc)u.

Also, qi(t) are the time-dependent amplitudes, and us(x, t) can be rep-
resented by an infinite sum. The key point is that the influence sum of
the higher modes contained in us(x, t) can be expressed in terms of the
lower-order modes by the function U(qi(t),x).

In applying the Galerkin methods, the field variable u(x, t) is expressed
in the form

u(x, t) =
m∑

j=1

qj(t)φj(x)

by a set of m comparison vectors φj(x) called the Galerkin basis, which sat-
isfies the geometric and natural boundary conditions. Two subdivisions in
the Galerkin methods exist, namely, the standard (linear) Galerkin method
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and the nonlinear Galerkin method. In the linear Galerkin method one ne-
glects us(x, t) in equation (17.25). Therefore, the fast dynamics taken into
account by the center manifold theory are completely ignored in the re-
duction process. Nonlinear Galerkin methods take into consideration the
influence of higher modes and are also known by the name inertial mani-
folds in the mathematical literature. Two nonlinear Galerkin methods that
have gained importance are (Steindl and Troger, 2001):

1. Approximate inertial manifold theory.

2. Postprocessed Galerkin method.

Application of Karhunen–Loève decomposition in nonlinear Galerkin meth-
ods has been presented in (Bangia et al., 1997). The dynamics of incom-
pressible Navier–Stokes flow in a spatially periodic array of cylinders in
a channel (for a mixing application) have been investigated using this
method.

Approximate Inertial Manifold Theory

Equation (17.24) can be rewritten in the form (Steindl and Troger, 2001)

u̇c = PLuc + Pg(uc + us), (17.26)

u̇s = QLus + Qg(uc + us), (17.27)

by decomposing E = Ec ⊕ Es, where Ec is finite-dimensional and Es is
closed. This decomposition is achieved by defining the projection P onto
Ec along Es, giving uc = Pu ∈ Ec and us = Qu ∈ Es, where Q =
I −P (see (Troger and Steindl, 1991), for details). In the standard Galerkin
approximation of equation (17.24), from the eigenfunctions of L, m modes
are selected, equation (17.27) is completely ignored, and us is set to be zero
in equation (17.26) to obtain

u̇ml = PLuml + Pg(uml),

where the index l denotes linear approximation. The influence of fast dy-
namics on the slow (essential) dynamics is completely ignored. Sometimes,
a much better approximation is obtained if it is assumed that equation
(17.24) has an inertial manifold of dimension m that can be realized as the
graph of a function h : PE → QE, or in other words, us = h(umn). The
projection of the inertial form onto PE is then given by

u̇mn = PLumn + Pg(umn + h(umn)). (17.28)

Now the approximation of u is given by uapprox = umn + h(umn), which
is analogous to equation (17.25). In the actual process, first, one makes a
standard Galerkin approximation using n nodes. Then the m-dimensional
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approximation of the inertial manifold, h, is calculated (see (Brown et al.,
1990), for details) and used in equation (17.28) and in the expression for
uapprox. This method can capture nonlinear behavior better than standard
Galerkin methods, but it involves extra cost, since the inertial manifold
needs to be computed at every integration step.

Postprocessed Galerkin Method

This method is computationally more efficient than the approximate iner-
tial manifold theory (Garcia-Archilla et al., 1998). In this method, first the
standard Galerkin method is used, and at time (t) only when some output
is required, the variables are approximated by the inertial manifold. That
is, the solution qm = qml is calculated from

q̇ml = PLqml + Pg(qml),

which requires less effort than computing qm = qmn from

q̇mn = PLqmn + Pg(qmn + happrox(qmn)).

The final approximate solution for u, uapprox, is computed by uapprox =
uml+happrox(uml), where happrox is the approximate inertial manifold. The
computational cost is reduced greatly as a result of this simplification.

The concept of dynamic postprocessing has been introduced in (Margolin
et al., 2003), for highly oscillatory systems. For a variety of systems, the
normal postprocessed Galerkin method has been found to be a very effi-
cient technique for improving the accuracy of ordinary Galerkin/nonlinear
Galerkin methods with very little extra computational cost. The normal
postprocessed Galerkin methods are based on truncation analysis using
asymptotic (in time) estimates for the low and high mode components,
which hold only when the solutions are on or near an attractor. As a re-
sult, these estimates may not hold for nonautonomous systems with highly
oscillatory (in time) forcing, long transients, etc. Dynamic postprocessing
can handle such situations by integration along transients (see (Margolin
et al., 2003), for more details).



18
Reduced-Order Simulation

In chapter 17 we discussed various techniques for reduced-order model-
ing of microsystems. In this chapter, we discuss the application of these
techniques to several examples in microflows. First, we present circuit and
device models and their application to lab-on-a-chip systems. Then, we dis-
cuss macromodeling of squeeze film damping by applying equivalent circuit,
Galerkin, mixed-level, and black box models. Next, we present a compact
model for electrowetting. Finally, we summarize some of the software pack-
ages that are available for reduced-order simulation.

18.1 Circuit and Device Models for Lab-on-a-Chip
Systems

The concept of a micro-total analysis system (µ-TAS) or a lab-on-a-chip
for integrated chemical and biochemical analysis has grown considerably in
scope since its introduction (Manz et al., 1990; Reyes et al., 2002). µ-TAS
involves the miniaturization of all the functions found in chemical analysis,
including fluidic transport, mixing, reaction, and separation (Greenwood
and Greenway, 2002), so that the entire chemical measurement laboratory
could be miniaturized onto a device of a few square centimeters. For exam-
ple, the system shown in Figure 18.1 incorporates the essential processes
(fluidic transport, mixing, reaction, and separation) involved in a µ-TAS.
One of the critical elements of any microfluidic system or µ-TAS is its flu-
idic transport system. For the example considered in Figure 18.1, the fluid
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FIGURE 18.1. A prototype chemical analysis system. The system incorporates
fluidic transport, mixing, reaction, and separation.

is transported from the ends of the cross-shaped segments to the reservoir
marked as the “Final Species.” Most microfluidic chips transport the fluid
electrokinetically (see Chapter 7) and/or by pressure. Electrokinetic trans-
port and control of fluids has the advantage that it eliminates the need for
mechanically moving parts, such as valves and pumps, which have thus far
been difficult to construct and interface to microchip systems (Weigl et al.,
2003).

An important element of the µ-TAS is the reaction chamber. As shown
in Figure 18.1, chemical/biological species are transported to the reaction
chambers, where chemical reactions take place leading to the formation of
a product. The rate of formation of the product is dependent on the flux
of the reactant, the proportion of the various reactants in the solution,
the order of the reaction, and the reaction kinetics. The solution from the
reaction chamber is sometimes tapped for detection. The detection of the
product is typically easier than the detection of the reacting species. In such
a case, the presence of the product and the concentration of the product
can give quantitative information about the reacting species. Thus, often
reaction and detection schemes are intrinsically linked together, and both
of these form an integral part of the µ-TAS.

Another important functionality in µ-TAS is the separation of biomole-
cules and biochemical species. Electrophoresis and isoelectric focusing (see
Chapter 7 for details) are the most commonly employed methods of separa-
tion. In Figure 18.1, for example, the separation is based on electrophoresis.
Higher field intensity is generally tolerable for electrophoretic separation in
microchannels (Ehrfeld, 2003). Smaller characteristic dimensions in combi-
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nation with higher field intensities lead to a shorter time scale of separation,
which is a fundamental advantage in µ-TAS compared to macroscopic de-
vices.

When designing integrated microfluidic systems of the type shown in
Figure 18.1, some important objectives are to:

1. Increase the throughput.

2. Improve the homogeneity of the mixture.

3. Obtain higher separation efficiency.

4. Perform detection faster.

However, it may not be possible to attain all these objectives, and there
can be a trade-off leading to an optimized design. In this section, using the
techniques discussed in Chapter 17, “easy-to-use” circuit and device mod-
els are presented, which can be used to explore the design space and select
an optimal design for integrated microfluidic systems to perform various
functions. The model development is illustrated using the example shown
in Figure 18.1. The models are, however, general enough that they can be
applied or extended to other microfluidic systems. The development of a
compact/circuit model for fluid flow due to a combined pressure and elec-
trical potential gradient is first discussed. The compact model is described
in two parts, namely, the electrical model and the fluidic model.

18.1.1 Electrical Model
For microfluidic devices that rely on the electrokinetic force as the driving
force, the electric field must be computed first. In the case of electroosmotic
flow (see Chapter 7 for details; here we restate only the essential equations
to derive the circuit models), the potential field due to an applied potential
can be computed by solving the Laplace equation:

∇2φ = 0, (18.1)

where φ is the electrical potential. Since equation (18.1) predicts a linear
potential drop for simple straight channels, the potential variation can be
represented by linear electrical resistances. In order to develop a complete
circuit that takes into account the charge stored in the electrical double
layer (EDL), capacitive elements also need to be included in modeling the
electrical domain. The EDL can be decomposed into the stern layer and
the diffuse layer. As the stern layer and the diffuse layer store charge,
the capacitance associated with these layers is important. In addition, the
capacitance of the channel wall, which arises due to a potential difference
across the channel wall, needs to be taken into account. The electrical
resistance of the EDL can be safely neglected, since the effective resistance



724 18. Reduced-Order Simulation

of the EDL is much higher than the resistance of the channel filled with
buffer (Hayes and Ewing, 2000). Figure 18.2(a) and Figure 18.2(b) illustrate
a typical cross-shaped channel segment (this is similar to the cross shapes
formed by S1, S2, M1, S3 or B1, B2, B3, M1 or B4, B5, B6, M2 or S4, S5, S6,
M2 in Figure 18.1) in a microfluidic system and its circuit representation,
respectively.

The electrical resistance of a solution-filled simple straight channel is
given by the expression

Rch,i =
ρsol,iLi

Ac,i
,

where ρsol,i is the electrical resistivity of the solution in the ith channel,
i = 1, 2, . . . 4 (see Figure 18.2(b)), Li is the length of the ith channel, Ac,i

is the cross-sectional area of the ith channel, and Rch,i is the electrical
resistance of the ith channel.

The expression for the effective capacitance, shown in Figure 18.2(b), is
given by

(Ceff,i)
−1 = (Cst,i)

−1 + (Cdl,i)
−1 + (Cwall,i)

−1
,

where Cst,i is the capacitance of the stern layer of the ith channel, Cdl,i
is the capacitance of the diffuse layer of the ith channel, and Cwall,i is the
capacitance of the ith channel wall; Cst,i is given by the expression (Oldham
and Myland, 1994)

Cst,i =
εAs,i

xH,i
,

where ε is the permittivity of the fluid in the channel, As,i is the inner
surface area of the ith channel, and xH,i is the thickness of the stern layer.
The capacitance of the diffuse layer, Cdl,i, is given by the expression (Davies
and Rideal, 1966)

Cdl,i =
σT,iAs,i{( 2kBT

ze

)
sinh−1

(
σT,i

c
1
2

[ 500π
εRT

] 1
2
)} ,

where σT,i is the intrinsic surface charge density on the channel wall, kB is
Boltzman’s constant, T is the temperature, z is the valence of the counte-
rion, e is the charge of an electron, c is the concentration of the counterion
in the bulk solution, and R is the universal gas constant. The capacitance
of the wall for a cylindrical channel, Cwall,i, is given by the expression

Cwall,i =
εAs,i

ri ln( ro

ri
)
,

where ri is the inner radius of the channel and ro is the outer radius of the
channel.

When no potential difference is applied across the channel wall, no charge
is induced in the channel wall. As a result, the capacitance of the chan-
nel wall can be neglected in the computation of the effective capacitance.



18.1 Circuit and Device Models for Lab-on-a-Chip Systems 725

(a) (b)

FIGURE 18.2. (a) A typical cross-shaped channel segment of a microfluidic sys-
tem. The electrical potentials, φ1−4, are given. V1 and V2 are the transverse
applied potentials. (b) The electrical network representation for the cross-shaped
channel. Rch,1−4 are the electrical resistances, ψ1−4 are the surface potentials of
the channel walls, and Ceff,1−4 are the capacitances of the EDLs.

For example, there is no wall capacitance for i = 2, 3, 4, since there is no
applied voltage across the channel, as shown in Figure 18.2(a). Typically,
the capacitance of the stern layer is much higher than the capacitance
of the diffuse layer (Oldham and Myland, 1994). Also, when capacitances
are connected in series (as in this case), the capacitance with the smaller
value dominates. Therefore, in most cases the effective capacitance, Ceff ,
can be approximated by the diffuse layer capacitance, Cdl. The effective
capacitance can be related to the surface potential by the expression

Ceff,iψ0,i = qst,i = σT,iAs,i,

or
ψ0,i =

σT,iAs,i

Ceff,i
, (18.2)

where ψ0,i is the surface potential on the ith channel and qst,i is the total
charge stored in the EDL of the ith channel.

18.1.2 Fluidic Model
For the fluidic transport driven by an electrical field and/or a pressure
gradient, the “through quantities” are the flow rates through the chan-
nels, while the “across quantities” are the electrical potential differences
and the pressure differences imposed on the fluidic channels. In this section
we present a derivation of the constitutive equation relating the “through
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quantities” to the “across quantities” making use of the continuity equa-
tion and the steady-state momentum equation for electroosmotic flows (see
Chapter 7 for details).

Slip Case

The slip case model can be used when the thickness of the EDL is insignif-
icant compared to the depth or diameter of the channel. The body force,
F = ρeE (see Chapter 7), is nonzero only within a few Debye lengths from
the channel wall, since the potential induced by the zeta potential drops to
zero very quickly near the channel wall (Mitchell et al., 2000). In the devel-
opment of the compact model for the slip flow case, we will assume that the
flow is fully developed and the thickness of the EDL is insignificant com-
pared to the thickness or diameter of the channel (this assumption usually
holds good for channels larger than 200 nm; see Chapter 7 for details). As
a result, the effect of the electrokinetic force can be represented by a slip
velocity at the wall given by the Helmholtz–Smoluchowski equation (see
section 7.3)

up = −εζ

µ
∇φ, (18.3)

where ∇φ is the potential gradient across the fluidic channel and ζ is the
zeta potential of the fluidic channel. The Poisson–Boltzmann equation,
which is used for the full-scale simulation of electroosmotic flow, can be
linearized for low values of surface charge density. Then, the Debye–Hückel
theory predicts the following relationship between the zeta potential, ζ,
and the surface potential, ψ0 :

ζ = ψ0 exp(−κχ),

where κ is the inverse of the Debye length and χ is the radius of the
counterion. The surface potential can be computed from equation (18.2)
using the capacitance model. Thus, from knowing the surface potential, the
zeta potential of the channel wall can be computed. The velocity profile
across a capillary slit is a function of only the slip velocity and the pressure
gradient, i.e.,

u = − 1
2µ

dp

dx

(
y2 − h2

4

)
+ up, (18.4)

where x denotes the stream direction of the channel, y denotes the trans-
verse direction of the channel, and h is the channel depth. Since up is given
by equation (18.3), solving for the velocity in equation (18.4) is reduced to
computing the pressure distribution in the fluidic network. By taking di-
vergence of the momentum equation and applying the continuity condition,
we get the expression

∇2p = ∇ · F − ∇ · (ρf (u · ∇)u).
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In the regions where the flow is fully developed, the convection term
(u·∇)u is zero. Thus, ∇ · (ρf (u · ∇)u) vanishes. The term corresponding to
the divergence of the force must be zero in the fully developed flow regions;
otherwise, the flow would not be fully developed due to the nonuniform
body force. Hence, for the region where the flow is fully developed, the
pressure calculation is reduced to a Laplace equation,

∇2p = 0. (18.5)

Thus, equation (18.5) decouples the solution of pressure from the solution
of velocity.

Integrating the velocity profile given in equation (18.4) across the cross-
section of the capillary slit and using equations (18.1), (18.3), and (18.5),
we get the following expression for the flowrate per unit width:

Q =
(

h3

12µL

)
∆p +

(
εζh

µL

)
∆φ. (18.6)

For the ith channel in an array of channels, equation (18.6) can be rewritten
as:

Qi = Hi∆pi + Ei∆φi, (18.7)

where Hi is the hydraulic conductance of the ith channel, Ei is the elec-
trohydraulic conductance of the ith channel, ∆pi is the pressure drop in
the ith channel, and ∆φi is the electrical potential drop in the ith channel.
The expressions for Hi and Ei for the capillary slit are given in equa-
tion (18.6). For a cylindrical channel, the hydraulic conductance and the
electro-hydraulic conductance are given by

Hi =
πri

4

8µiLi
and Ei =

εζiπri
4

µiLi
,

where ri is the inner radius of the ith cylindrical channel. Equation (18.7)
is the constitutive relationship, which relates the “through quantity” to the
“across quantities” (a combined pressure and electrical potential drop). If
the flow is driven by only a pressure gradient, then the second term in
equation (18.6) can be neglected. Similarly, if the flow is driven by only an
electric field, then the first term on the right-hand side of equation (18.6)
can be neglected. Figure 18.4 shows the circuit representations of the fluidic
domain for the cross-shaped channel segment shown in Figure 18.3. It is to
be noted that the total flow is the sum of the electrokinetically driven flow
and the pressure-driven flow.

No-Slip Case

The slip velocity model discussed above can be employed when the Debye
length is thin compared to the channel width. However, when the Debye
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FIGURE 18.3. A cross-shaped channel with a combined pressure and electrical
potential gradients. The electrical potentials, φ1−4, and pressures, p1−4, are given.

FIGURE 18.4. Circuit representation for the electrokinetically driven flow is on
the left. E1−4 are the electrohydraulic conductances of the channels and (Cfl,1−4)
are the fluidic capacitances. Circuit representation for the pressure-driven flow
is given on the right. H1−4 are the hydraulic conductances of the channels. The
plus sign between the two figures indicates that the total flow is the sum of the
electrokinetically driven flow and the pressure-driven flow.

length is comparable to the channel width, the slip velocity model may
not be accurate. For a capillary slit, the velocity profile is given by the
expression (Patankar and Hu, 1998; Keh and Tseng, 2001)

u(y) = − 1
2µ

dp

dx

(
y2 − h2

4

)
− ε

µ
∇φ

(
ψ0 − ψ(y)

)
, (18.8)
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where

ψ(y) =
ψ0cosh( y

λD
)

cosh( h
λD

)
, (18.9)

and λD is the Debye length; see equation (7.1). Integrating the velocity
profile (given in equation (18.8)) across the cross-section and using equation
(18.9), we get the following expressions for the hydraulic conductance and
the electrohydraulic conductance of the ith channel:

Hi =
hi

3

12µiLi
and Ei =

ε

µiLi
ψ0

⎛⎝2hi − 2λD

sinh
(

hi

λD

)
cosh

(
hi

λD

)
⎞⎠ .

Fluidic Channels with Elastic Membranes

In the case of channels with integrated elastic parts in them (e.g., a flexible
membrane) a capacitive element needs to be included in the circuit model
of the fluidic domain as shown in Figure 18.4. The fluidic capacitor can be
modeled as

Cfl =

∫∫
Γw(x, y)dΓ

p
, (18.10)

where Cfl is the fluidic capacitance, w is the deflection, Γ is the total surface
area of the flexible membrane, and p is the pressure difference across the
channel wall. For a rectangular membrane of dimensions a×b, the fluidic
capacitance from equation (18.10) is given by

Cfl =
4a

π5Dr

∞∑
m=1,3,5,...

(−1)
m−1

2

m5

sin(mπ
2 )

mπ
a{

b

2
+

a

2mπ
[αm − tanh(αm)(3 + αm tanh(αm))]

}
,

where

αm =
mπb

2a
,

and Dr is the rigidity of the membrane given by

Dr =
Emodh3

m

12(1 − ν2)
,

where hm is the thickness of the membrane, Emod is the elastic modulus of
the membrane, and ν is the Poisson ratio of the membrane.

The implementation of the electrical model and the fluidic model is car-
ried out using the modified nodal analysis technique (Ogrodzki, 1994). Once
the variations of φ and p are known, the flowrate in each channel can be
computed using the constitutive relationship given in equation (18.7).
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              A
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        Module:

B

              A
B

Reaction
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FIGURE 18.5. Chemical species A and B are transported to the reaction cham-
ber, where they undergo a second-order reversible reaction process.

18.1.3 Chemical Reactions: Device Models
Consider a scheme (shown in Figure 18.5) in which the chemical species
A and B are transported to the reaction chamber, where they undergo a
second-order reversible reaction process to produce species C. The govern-
ing equations for this reaction process are given by

A + B
k1�
k2

C,

∂mA

∂t
= QACA − k1(mA)(mB) + k2(mC),

∂mB

∂t
= QBCB − k1(mA)(mB) + k2(mC),

∂mC

∂t
= k1(mA)(mB) − k2(mC),

where Qi is the flowrate of the ith species, which is computed from the
fluidic transport model (or known from the design specifications), Ci is the
concentration of the ith species, mi is the number of moles of the ith species
present in the reaction chamber, k1 is the forward reaction rate, and k2 is
the backward reaction rate. A trapezoidal scheme is used to discretize the
ODEs given above. The discretized equations are given by

(mn+1
A − mn

A)
∆t

= QACA − k1

4
(mn+1

A + mn
A)(mn+1

B + mn
B) +

k2

2
(mn+1

C + mn
C),

(mn+1
B − mn

B)
∆t

= QBCB − k1

4
(mn+1

A + mn
A)(mn+1

B + mn
B) +

k2

2
(mn+1

C + mn
C),

(mn+1
C − mn

C)
∆t

=
k1

4
(mn+1

A + mn
A)(mn+1

B + mn
B) − k2

2
(mn+1

C + mn
C).
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Q

Q

(Anode) −(Cathode)+ Q

(+ve ions)

(−ve ions)ph

ph

FIGURE 18.6. A basic separation unit, which can separate species that are op-
positely charged, have different valences or different electrophoretic mobilities.

The nonlinear equations given above are solved by employing a Newton–
Raphson scheme to compute mn+1

A , mn+1
B and mn+1

C at the (n + 1)th time
step given mn

A, mn
B , and mn

C at the nth time step. These equations consti-
tute the device model for the reaction module.

18.1.4 Separation: Device Model
Figure 18.6 shows a simple separation mechanism, which is repeated as the
basic unit in the circular separation device reported in (Kutter, 2000). The
separation unit can separate species that are either oppositely charged or
have different valences or different electrophoretic mobilities. The total flux
of a given species through a channel is given by the following expression:

Jt =
[
Ddiff

∂c

∂x
+

zFcDdiff

RT
(∇φ) c + vconvc

]
Ac, (18.11)

where Jt is the total flux, Ddiff is the diffusion coefficient of the species, c is
the concentration of the species, Fc is Faraday’s constant, z is the valence
of the ion, R is the universal gas constant, T is the temperature, Ac is
the cross-sectional area of the fluidic channel, and vconv is the convective
velocity of the flow that arises due to the bulk flowrate, Q, given in equation
(18.6):

vconv =
Q

Ac
.

From equation (18.11), the total flux is the sum of the diffusive flux (given
by the first term), the electrophoretic flux (given by the second term and
it is zero for uncharged species), and the convective flux (given by the
last term), which arises due to the bulk flow in the channel. Typically, the
separation unit is designed in such a way that the convective flux and the
electrophoretic flux (for charged species) dominate over the diffusive flux
(Fletcher et al., 1999). Thus, assuming that the diffusive flux is negligible,
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the expression for the total flux is given by

Jt =
[
zFcDdiff

RT
(∇φ) c + vconvc

]
Ac

or
Jt = (Qph + Q)c,

where Q is the convective flowrate, which is computed using equation
(18.6), and Qph is the electrophoretic flow rate, which is given by the ex-
pression (Fletcher et al., 1999)

Qph =
(

zFcDdiff

RT

)
Ac∇φ.

Thus, the constitutive equation, which relates the “through quantity” (elec-
trophoretic flowrate) to the “across quantity” (electrical potential differ-
ence), in the case of electrophoretic flow, is given by

Qph =
(

zFcDdiffAc

RTL

)
∆φ = F∆φ,

where F is the electrophoretic conductance of the fluidic channel.
Consider an example, where two species A and B are present in the

separation channel shown in Figure 18.6. Assume that species A is unit-
positively charged and species B is unit-negatively charged, while the sur-
face of the channel has a negative fixed charge. Therefore, the electroos-
motic flow through the channel would be from left to right (i.e., from the
anode side to the cathode side) as shown in Figure 18.6. The electrophoretic
flow for A would be from left to right, but that for B would be in the oppo-
site direction. This is due to the difference in the electrophoretic velocities
of these two species. Thus, the ratio of the rate of molar increment at the
outlet of the separation channel for the two species is given by the expres-
sion

Separation Ratio =
(Q + sign(zA)× | Qph |A)cin

A

(Q + sign(zB)× | Qph |B)cin
B

=
(Q+ | Qph|A)cin

A

(Q− | Qph|B)cin
B

,

where cin
A is the concentration of species A at the inlet, and cin

B is the
concentration of species B at the inlet. Considering that the bulk flow is
due to electrical potential gradient only (i.e., pressure-driven flow is ab-
sent), the separation ratio of the species can be expressed in terms of the
electrophoretic conductance, electrohydraulic conductance, and the inlet
concentration of the species, i.e.,

Separation Ratio =
(H + FA)cin

A

(H + FB)cin
B

. (18.12)

Thus, the knowledge of the electrophoretic conductance and the electro-
hydraulic conductance can be used to compute the separation ratio using
equation (18.12), which can be considered as the device model for the sep-
aration module.
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FIGURE 18.7. A block diagram for combined circuit/device analysis of the
lab-on-a-chip system shown in Figure 18.1.

18.1.5 Integration of the Models
Figure 18.7 summarizes the integration of the circuit and device models
for the prototype integrated microfluidic system shown in Figure 18.1. The
circuit-based electrical model is first employed to compute the electrical
potential distribution in the entire microfluidic system. Using the electri-
cal potential distribution as an input, the fluidic circuit model is used to
compute the flow variables (the pressure distribution, flowrate, etc.) in
the entire system. The flowrates through various channels are then used
to compute the mixing ratio/efficiency, reactions and the separation ratio.
Even though Figure 18.7 is specific to the microfluidic system shown in
Figure 18.1, it can be generalized to various other microfluidic systems by
appropriately combining the electrical, fluidic, mixing, reaction/detection,
and separation modules.

18.1.6 Examples
In this section, we demonstrate the application of the models and the im-
plementation using several examples. In the first example (Figure 18.8,
(Jacobson et al., 1999)), we consider microfluidic devices, which can be
used for electrokinetically driven parallel and serial mixing. In the second
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(a) (b)

FIGURE 18.8. Schematics of the microchips for parallel (a) and serial (b) elec-
trokinetic mixing. The circles depict sample, buffer, and waste reservoirs. The
sample, buffer, and analysis channels are labeled “S,” “B,” and “A,” respectively.
The T intersections are the basic units for the parallel mixing device, while the
cross intersections are the basic units for the serial mixing device (Jacobson et al.,
1999).

example, we demonstrate a circuit-model-based analysis of a pneumatically
controlled fluidic transport system, which has been used in a high-density
microfluidic chip by (Thorsen et al., 2002). In the final example, we con-
sider an integrated system, and a complete simulation-based analysis of the
lab-on-a-chip.

Electrokinetically Driven Mixing

Microfluidic devices for parallel and serial mixing have been experimen-
tally demonstrated (Jacobson et al., 1999). The parallel mixing device
(Figure 18.8a) is designed with a series of independent T-intersections,
and the serial mixing device (Figure 18.8b) is based on an array of cross-
intersections. Figures 18.9(a) and 18.9(b) show the circuit representation
of the mixing devices. Since the channels do not contain any flexible walls,
the fluidic capacitances are neglected. The parameters (e.g., channel di-
mensions and applied potential) used in the simulation are the same as
those used in the experiments reported in (Jacobson et al., 1999). The zeta



18.1 Circuit and Device Models for Lab-on-a-Chip Systems 735

potential of the channel walls for this example is computed from the ca-
pacitor model and has been verified with the experimental results given in
(Jacobson et al., 1999). The expressions that have been used to compute the
sample fraction are the same as those given in (Jacobson et al., 1999). For
the parallel mixing device, the sample fraction in the jth analysis channel
is computed by the expression

(S.F.)Aj
= (n)Aj

=
(Q)Sj

(Q)Aj

,

where S.F. is the sample fraction, (Q)Sj
is the flowrate of the sample in

the jth analysis channel, and (Q)Aj
is the flowrate of the total solution in

the jth analysis channel. For the serial mixing device, the sample fraction
in the (m + 1)th analysis channel is computed by the expression

(S.F.)Am+1 = (n)Am+1 =
m∏

k=1

[
1 − (Q)Bk

(Q)Sk+1

]
,

where (Q)Bk
is the flowrate of the buffer in the kth channel and (Q)Sk+1 is

the sample flowrate in the (k+1)th channel. Table 18.1 gives a comparison
of the simulated and experimental results for the parallel and serial mixing
devices. The simulation results show very good agreement with the experi-
mental results. The CPU times to compute the electrical variables and the
fluidic variables for the systems shown in Figure 18.8 (i.e., the mixing de-
vices) were of order 1 second on a 800-MHz PC. Figures 18.10a and 18.10b
show the variation in the sample fraction that can be obtained by control-
ling the electrical potential at the buffer and the sample reservoirs. These
results demonstrate the advantage of the circuit model for designing mi-
crofluidic systems. It is practically impossible to get the variation of the
output parameter with the input parameter varying over such a large range
using experimental techniques or full-scale simulation methods.

The depth of the channels considered for parallel and serial mixing are
10 µm and 5.5 µm, respectively. For such large depths, the slip flow circuit
model presented in Section 18.1.2 gives accurate results. Even if a no-slip
flow circuit model is employed, the results would match exactly with the slip
flow circuit model. However, as the depth of the channel gets smaller, the
no-slip model can produce more accurate results than the slip-flow model.
Shown in Figure 18.11 is a comparison of the relative error between the full
simulation results and the slip and no-slip models for channel depths of 50
nm, 100 nm, and 200 nm. The Debye length is 10 nm in all cases. For both
models, the error grows as the depth of the channel decreases. However,
the error is much smaller with the no-slip model than with the slip model.
Also, the rate of growth of the error is smaller with the no-slip model than
with the slip model.
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TABLE 18.1. A comparison of the simulated and experimental results for different
types of mixing.

CHANNEL
(PARALLEL
MIXING)

SAMPLE FRACTION
(EXPERIMENT)

SAMPLE FRACTION
(SIMULATION)

A1 0 0

A2 0.84 0.833

A3 0.67 0.675

A4 0.51 0.522

A5 0.36 0.340

A6 0.19 0.165

A7 1.0 1.0

CHANNEL (SE-
RIAL
MIXING)

SAMPLE FRACTION
(EXPERIMENT)

SAMPLE FRACTION
(SIMULATION)

A1 1.0 1.0

A2 0.36 0.37

A3 0.21 0.22

A4 0.12 0.12

A5 0.059 0.053

Large-Scale Integration

In Chapter 1, we discussed a large-scale-integration-based microfluidic chip
in Figure 1.31. Here we revisit the problem and show some results obtained
using the circuit models discussed in the previous chapter. In the example
shown in Figure 1.31, the fluidic transport system consists of two layers
(Figure 18.12): the “control” layer, which contains all channels required to
actuate the valves, is situated on top of the “flow” layer, and the “flow”
layer contains the network of the channels being controlled (Unger et al.,
2000). All biological assays and fluid manipulations are performed in the
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(a) (b)

FIGURE 18.9. (a) The circuit (both fluidic and electrical) representation of the
parallel mixing device. Since the flow is electrokinetically driven, the fluidic resis-
tance of the channel is the inverse of the electrohydraulic conductance. (b) The
circuit representation of the serial mixing device.

(a) Parallel mixing (b) Serial mixing

FIGURE 18.10. Variation in the sample fraction (denoted by N2) of the second
analysis channel when the applied potential (in “volts”) in the sample reservoir
and the buffer reservoir is changed. The plots for the other analysis channels (in
both cases) have the same pattern.

flow layer. A valve is created whenever a control channel crosses a flow
channel (Figure 18.12). The resulting thin membrane at the junction be-
tween the two channels can be deflected by fluidic actuation (Thorsen et al.,
2002; Unger et al., 2000).

The schematic A of Figure 18.12 shows the orientation of the control layer
and the flow layer. The schematic B of Figure 18.12 shows the valve closing
for rectangular and rounded channels. The dotted lines indicate the con-
tour of the top of the channel for a rectangular (left) and a rounded (right)
channel as pressure is increased. In the example shown in Figure 18.13(a),
rectangular channels are considered. Making multiple, independently actu-
ated valves in a device requires independent control of the pressure applied
to each control line. Figure 18.13(a) shows an example of such a device.
From the “top view,” the black channels oriented from west to east are
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FIGURE 18.11. A comparison of the percentage relative error in the bulk flowrate
Q between the slip flow model and the no-slip flow model, when compared with
full-scale simulation.

FIGURE 18.12. (A) Schematic of the arrangement of the control layer and the
flow layer used for attaining pneumatic control. (B) Schematic of the valve closing
for rectangular and rounded channel (Unger et al., 2000).

the control channels, and the gray channels oriented from north to south
are flow channels. The control layer is on top of the flow layer. The flow
channels are numbered from 0 to 7, and the control channels are named in
alphabetic order from A to F. A valve at the intersection of flow channel
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(a) (b)

FIGURE 18.13. (a) Microfluidic system consisting of “control channels” (left
to right) and “flow channels” (top to bottom). Intersections with wider control
channels denote valves or switches. A cross indicates a closed valve. For further
details refer to (Thorsen et al., 2002). (b) The fluidic circuit representation of the
system. The valves are modeled as electrical switches.

0 and control channel A is designated as “A0.” Such a designation is later
used to explain the circuit representation of the system. The configuration
shown in Figure 18.13(a) consists of simple “on–off” valves, which can be
considered as fluidic switches to control the flow in the “flow” channels.
Each control line can actuate multiple valves simultaneously. Since the di-
mension of the control line can be varied, it is possible to have a control
line pass over multiple flow channels to actuate multiple valves. The active
element is the roof of the flow channel, and the intersections that act as
valves or fluidic switche, are denoted by a wider width of the control chan-
nel. The intersections that are marked by a cross (Figure 18.13(a)) indicate
a closed (or off) position, and the intersections that are not marked by any
cross indicate an open (or on) position.

The circuit representation for the microfluidic system shown in Fig-
ure 18.13(a) (Thorsen et al., 2002) is depicted in Figure 18.13(b). Since the
flow is pressure-driven, only the fluidic circuit needs to be considered. The
fluidic circuit represents the flow layer, and the intersections with valves
are shown as electrical switches. The resistances (or conductances) in the
fluidic circuit of Figure 18.13(b) are the fluidic resistances of the channels
in the flow layer. The “on–off” position of the valves depends on the gauge
pressure in the control channel compared to the pressure in the flow chan-
nel. Thus, the control layer is represented in the fluidic circuit through its
gauge pressure. In Figure 18.13(b) the pressure difference of the ith con-
trol channel is represented by “Vi”. The notation “V” is used because of
the analogy between electrical voltage and pressure. The “on” position of
a switch (in Figure 18.13(b)) is represented by a vertical dash connecting
two consecutive resistances (e.g., “A0”), and the “off” position of a switch
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FIGURE 18.14. (a) Simulation of fluid flow through the microfluidic system
shown in Figure 18.13(a). The plus signs indicate presence of flow. (b) Varia-
tion of the threshold pressure with the thickness of the membrane.

is represented by a slanted dash causing a break between two consecutive
resistances (e.g., “B4”). The hydraulic conductances (or hydraulic resis-
tances) can be modeled using the approach explained in Section 18.1.2.
The pressure-actuated control valves can be modeled as switches, which
are considered “off” if the pressure in the control channel is above the
“threshold pressure” and are considered “on” if the pressure in the con-
trol channel is below the threshold pressure. The threshold pressure can
be computed from the expression (Timoshenko and Woionowsky-Krieger,
1959)

Pthreshold =
(ha

2 )

( 4a4

π5Dr

∑∞
m=1,3,5...

(−1)
m−1

2

m5
sin( mπ

2 )
mπ
a

{1 − αm tanh(αm)+2
2 cosh(αm) })

,

where h is the height of the flow channel, a and b are the dimensions of
the rectangular membrane acting as the valve, Dr and αm are as defined
in Section 18.1.2. Figure 18.14(a) shows the simulated flow distribution in
the flow layer of the microfluidic circuit shown in Figure 18.13(b). A plus
sign corresponding to a given flow channel indicates that the flow is “on;”
otherwise, the flow is “off.” A cell associated with a given flow channel
will receive fluid only if the flow is on. Figure 18.14(b) shows the nonlinear
variation of the threshold pressure with the thickness of the membrane,
and Figure 18.15(a) shows the nonlinear variation of the threshold pressure
with the dimension of the square membrane. Thus, for a specified threshold
pressure one can choose the thickness of the membrane from Figure 18.14(b)
and the dimension of the membrane from Figure 18.15(a). The CPU time
to simulate the flow distribution for the system shown in Figure 18.13(a)
was 16 seconds. Figure 18.15(b) shows the simulation result for an array
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FIGURE 18.15. (a) Variation of the threshold pressure with the width of the
square membrane. (b) An example of large-scale integration, where the fluid is
stored in a desired pattern in a microfluidic chip containing 60×126 chambers.

of 60×126 chambers. Fluid is stored in the chambers based on the filling
mechanism described in Figure 18.13(a) (Thorsen et al., 2002). This result
demonstrates that the fluid can be stored in any arbitrary pattern using
large-scale integration of micro/nanochannels.

Lab-on-a-Chip

In the final example we consider a lab-on-a-chip system (Figure 18.16),
which is designed based on the “nanochip” reported in (Becker and Lo-
cascio, 2002). The various chemical species are transported to the different
modules on the chip from their sources by electrokinetic transport. One-
third of the channels (marked as set A1 in Figure 18.16) perform the dual
role of fluid transport and passive mixing. Each channel in the set marked
as A1 is designed as shown in Figure 18.17(a) (Kutter, 2000). In this design,
the characteristic dimension at a given level is half of that at the previous
level. As a result, in the case of diffusion-dominated mixing, the equilibra-
tion time for mixing decreases at every level, since the equilibration time
for homogeneous mixing is proportional to the square of the characteris-
tic dimension; see Chapter 9. Thus, the homogeneity of the sample being
transported increases. Figure 18.17(b) shows the circuit model, where the
number of split levels used is three. In the simulations presented here,
the number of splitting levels is considered as a design parameter. Figures
18.18(a) and 18.18(b) show the dependence of the flowrate and the ho-
mogeneity of the mixture, emix, on the number of split levels. The mixing
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FIGURE 18.16. The schematics of the microfluidic chip considered in the
lab-on-a-chip example. The fluidic transport system represented on the south-
west side of the chip is duplicated on all the other sides.

(a) (b)

FIGURE 18.17. (a) The split channel design used for fluid transport in set A1 of
the microfluidic chip. This type of channel serves a dual purpose of transporting
and mixing. (b) The circuit (both fluidic and electrical) representation for the
split channel design.

effectiveness is defined as (see Section 9.4)

emix = 1 −
√

1
N

∑N
i=1 (ci − cPM

i )2√
1
N

∑N
i=1 (c0

i − cPM
i )2

,

where ci is the concentration at the ith node, cPM
i is the concentration at

the ith node if the two streams (i.e., the sample and the buffer streams)
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FIGURE 18.18. (a) The dependence of the flowrate on the number of split levels
used. (b) The dependence of the effectiveness of the mixing (i.e., homogeneity of
the mixture) on the number of split levels used.

are perfectly mixed, and c0
i is the concentration at the ith node if the two

streams do not mix at all. The analytical solution of the diffusion equation,
obtained by the method of separation of variables, provides the concentra-
tion variation in the transverse direction. The mixing effectiveness, emix,
ranges from 0 to 1, with 1 indicating complete mixing and 0 indicating no
mixing.

The following parameters have been used for the results shown in Fig-
ures 18.18(a–b): ∆φ = 100 V (the potential difference applied between the
start and the end of the channel, e.g., in Figure 18.17(a) it is applied be-
tween 0 and 11); length of each level = 200 µm; height of the initial channel
= 16 µm; σT = 6.2 × 10−3 C/m2; µ = 10−3 kg/m.s; ε = 6.95 × 10−10. The
concentration of species A at the inlet of the transport system is considered
to be 0.1 mM. The results in Figures 18.18(a–b) indicate that there is a
trade-off between the throughput and mixture homogeneity. However, if
one uses a high value for the fluidic resistance of the initial channel, then
that dominates the total fluidic resistance. As a result, the throughput
is standardized and does not depend strongly on the number of splitting
levels. Therefore, the device designer can control the effectiveness of the
mixing process by varying the number of splitting levels.

Electrophoretic separation and electrokinetic transport are the governing
mechanisms through the set of channels marked as A2 in Figure 18.16,
while electrokinetic transport is the governing mechanism through the set
of channels marked as A3. The species in set A1 (say A) is transported to
the detection module (D), where it reacts with species B (already present
in the detection chamber) to produce species C which can be used for
off-chip detection. The reaction model given in Section 18.1.3 has been
used to simulate the reaction between species A and B to produce species
C. The initial condition corresponds to zero moles of A and C and one
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FIGURE 18.19. (a) Concentration (of species C) versus time for various applied
potentials. (b) Concentration (of species C) versus time for two different numbers
of input ports per side of the microfluidic chip.

mole of species B in the reaction chamber (D). A second-order forward
reaction is considered for this reaction chamber (i.e., D). Therefore, the
backward reaction rate is considered to be zero. A forward reaction rate
of 10−2 (mM.s)−1 has been considered. Figures 18.19(a), 18.19(b), and
18.20(a) show the variation in the rate of formation of species C with time
for different design parameters (e.g., applied potential, number of input
ports per side of the chip, channel length). If the minimum concentration
of species C required for detection is known (say 1 mM as considered in
this case), then one can predict the detection time from the simulation
results or one can design the chip to meet a specific detection time. The
chemical species (G and H) transported through the channels A2 and A3
are transported to the reactor module (R in Figure 18.16), where they
undergo a second-order reversible chemical reaction to produce another
chemical species, F. The reaction model given in Section 18.1.3 has been
used for simulating the reaction between species G and H to produce species
F. The initial condition corresponds to zero moles of G, H and F in the
reaction chamber (R). The following parameters have been used for this
phase: total length of a single channel = 2 mm; height of a single channel = 1
µm; σT = 2×10−1 C/m2; forward reaction rate = 0.1 (mM.s)−1; backward
reaction rate = 0.01 s−1. The concentration of species G at the inlet of the
transport system is considered to be 20 mM and the concentration of species
H is considered to be 50 mM. Figures 18.20(b) and 18.21(a) show the effect
of various design parameters on the variation of the concentration of F with
time. Figure 18.21(b) shows the dependence of the separation ratio (taking
place in the set “A2”) on the ratio of the electrophoretic mobility of the
species being separated. The applied potential difference is 100 V for this
case. A time step of 0.1 second has been used for this case. The CPU time to
do a transient analysis of the complete system (shown in Figure 18.16) for
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FIGURE 18.20. (a) Concentration (of species C) versus time for different lengths
(total) of the microfluidic channel. (b) Concentration (of species F) versus time
for various applied potentials.
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FIGURE 18.21. (a) Concentration (of species F) versus time for different numbers
of input ports per side of the microfluidic chip. (b) The dependence of separation
ratio (taking place on set “A2” in Figure 18.16) on the ratio of the electrophoretic
mobility of the species being separated.

500 seconds was on the order of 10 minutes on a PC of modest capability.

18.2 Macromodeling of Squeezed Film Damping

The dynamical behavior of microsystem components is often strongly af-
fected by viscous air damping effects. They have to be carefully taken into
account during the design and optimization process in order to get a real-
istic and reliable description of the device operation. The damping effects
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can be treated in two ways. The first is as a damping coefficient in the simu-
lation model at the descriptional level (e.g., mechanical FEM device model
or system-level compact model) as a fit parameter. The other method is to
accurately treat it using a physical model (on the continuous-field level by
solving the Navier–Stokes equations), which implies a large computational
effort. The first method is easy. However, it lacks physical transparency,
whereas the second method becomes prohibitive in the case of complex de-
vice geometry and/or coupling with other physical energy domains. How-
ever, for a large class of MEM devices, we can use a simplified form of the
Navier–Stokes equations, e.g., the Reynolds squeezed film equation, which
requires considerably less computational cost. Reynolds squeezed film equa-
tion (see Section 6.1) is typically applicable when a small gap between the
two plates/structures opens and closes with time. This assumption holds
for structures where the seismic mass moves perpendicular to a fixed wall,
for plates with tilt around horizontal axes, and for clamped beams where
the flexible part moves against a fixed wall. Some examples of MEM de-
vices where the Reynolds equation is valid are fixed–fixed beams, cantilever
beams, and micromirrors.

The nonlinear isothermal compressible Reynolds squeezed film equation
for air damping with slip flow is (see Section 6.1)

∇ · [(1 + 6Kn)h3p∇p
]

= 12µ
∂(ph)

∂t
,

where h(x, y, t) is the variable gap between the movable part and the ground
electrode of the MEM device, p(x, y, t) is the air pressure under the beam,
Kn(x, y, t) = λ/h is the Knudsen number, where λ is the mean free path
of air. Figure 18.22 shows a typical MEM device, a deformable beam/plate
at a height h(x, y, t) over a ground plane, which in the undeformed state
is the initial gap between beam and the ground plane. The shaded region
(on the xy plane) is the domain where the Reynolds equation is solved
with the boundaries indicated in Figure 18.22. Depending on the example
considered, the boundary conditions can change. For a mirror, the fluid
system is assumed to be open (ambient pressure) on all sides, whereas for a
fixed–fixed beam, the fluid system is open along the sides of the beam and
closed (no flow) at the ends of the beam. Squeezed film damping in MEMS
is a coupled phenomenon (mechanics, electrostatics, and fluidics). In order
to obtain a self-consistent solution at any time instant, an iterative scheme
has to be followed (e.g., a relaxation scheme) among the three domains.
Considerable amount of work has been done in the reduced-order modeling
of squeezed film damping in MEMS. They fall into the categories already
discussed in Chapter 17, namely, equivalent circuit models, Galerkin meth-
ods, description language models/mixed-level simulation, and black box
models.
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FIGURE 18.22. Domain for solving squeezed film damping equation in a MEM
device.

18.2.1 Equivalent Circuit Models
Compact models for squeezed film damping based on equivalent circuit
representation have the advantage of being incorporated into standard cir-
cuit simulators. The forces created by a squeezed gas film between ver-
tically moving planar surfaces can be divided into spring and damping
forces, which can be realized with frequency-dependent resistors and induc-
tors (Veijola et al., 1995a). The second-order nonlinear Reynolds equation
can be linearized when the motion of the plate(s) is small, the two plates
are substantially parallel, and the motion is perpendicular to the surface
of the plates. The linearized equation is written as

p0g
2

12µe
∇2

(
p

p0

)
− ∂

∂t

(
p

p0

)
=

∂

∂t

(
x

g

)
, (18.13)

where p is a small pressure change of the static pressure p0. The variation
of the plate spacing x is also assumed to be small compared with the static
gap g; µe is the effective viscosity of the gas given by (Veijola et al., 1995a)

µe =
µ

1 + 9.638Kn1.159 .

The linearized Reynolds equation (18.13) has two principal components in
its solution, one in phase with the plate movement and the other out of
phase, i.e., the spring term and the damping term, respectively. The force
components can be calculated by integrating over the plate area, which for
a rectangular plate is given (Blech, 1983) as an infinite series expansion

F0

x
=

64Sp0A

π6g

∑
m,n(odd)

m2 + c2n2

(mn)2[(m2 + c2n2) + S2/π4]
, (18.14)

F1

x
=

64S2p0A

π8g

∑
m,n(odd)

1
(mn)2[(m2 + c2n2) + S2/π4]

, (18.15)
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FIGURE 18.23. (a) Equivalent circuit element for squeezed film damping. (b)
Equivalent circuit for squeezed film damping in the entire gap.

where m and n are odd integers, A = WL is the plate area, and c = W/L.
Here W and L are the width and length of the mass planar surfaces as
shown in Figure 18.22; S is the squeeze number given by

S =
12µeW

2

p0g2 ω,

and ω is the angular frequency. The forces in equations (18.14), (18.15)
can be represented by the electrical equivalent circuit using a combination
of an inductance (equals the spring behavior of the gas) and a resistance
(acts as a damping element) in series, as shown in Figure 18.23(a). Figure
18.23(a) shows a single element for a corresponding m and n. The actual
equivalent circuit for squeezed film damping would consist of a parallel
combination of such elements (for various m and n) connected in parallel
to the MEM device circuit as shown in Figure 18.23(b). The governing
differential equation for the circuit shown in Figure 18.23(a) is

Lm,n
∂im,n

∂t
+ Rm,nim,n = V =

∂u

∂t
, (18.16)

where V is the voltage drop through the element (analogous to velocity
in mechanics and represented by the flux term ∂u

∂t ). At steady state (all
signals are sinusoidal having a single angular frequency ω), the current and
velocity (flux term) can be expressed as

im,n = Im,n exp(jωt), u = U exp(jωt),
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where I and U are complex coefficients. Putting this in equation (18.16),
we get

Im,n =
jω

Rm,n + jωLm,n
U,

and hence the total current in the squeezed film equivalent circuit that
corresponds to the total force is the sum of all currents of the parallel
sections

Is =
∑

m,n(odd)

Im,n = U
∑

m,n(odd)

jω

Rm,n + jωLm,n
.

The imaginary and the real parts of the ratio Is/U are

Im

(
Is

U

)
=

∑
m,n(odd)

Rm,nω

R2
m,n + ω2L2

m,n

, Re
(

Is

U

)
=

∑
m,n(odd)

Lm,nω2

R2
m,n + ω2L2

m,n

,

which satisfy the frequency dependency specified in equations (18.14),
(18.15), respectively. This requires that Im

(
Is

U

)
= F0/x and Re

(
Is

U

)
=

F1/x. This gives

Lm,n = (mn)2
π4g

64Ap0
, Rm,n = (mn)2(m2 + c2n2)

π6g3

768AW 2µe
.

The components Lm,n and Rm,n depend on the distance g (the static gap).
If the displacement is large, the component values will also vary with the
displacement and hence are nonlinear in nature. The equivalent circuit of
squeezed film damping is connected in parallel with the MEM device circuit,
and the whole system can be solved using any standard circuit simulator.
For more details on circuit modeling of squeezed film damping, see (Veijola,
2001; Turowski et al., 1998).

18.2.2 Galerkin Methods
Linear modes of vibration of a system have been used for reduced-order
modeling of MEM dynamics as discussed in Chapter 17. In this section,
squeezed film damping has been considered in such a model-order reduc-
tion. The fluid (film) in between the plates typically undergoes Stokes flow
(low Reynolds number, hence negligible inertia effects) and thus does not
have any “normal modes” of its own that could be used for basis functions
in combination with the elastic modes. One obvious approach is to linearize
the dissipative effect under an assumption of small motion. Once linearized,
frequency-domain analysis can be used, converting the time-dependent dis-
sipation problem in the time domain into a time-independent frequency-
domain calculation of amplitude and phase response. This approach was
the basis for the early squeezed film damping work involving rigid body
motion and has been widely used in the MEMS field. Even when the mov-
ing body is flexible, it is possible to use the modal amplitude to create a
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moving boundary condition for the fluidic system and calculate the reaction
force. This has been done for small-amplitude damped resonant motions of
flexible microbeams and resonators. When the amplitudes are large, such
as for the electrostatic pull-in of a beam, linearized modal solutions are
not accurate. In (Mehner et al., 2003), an approach has been presented to
add dissipative effects of squeezed film damping (Reynolds equation) in the
transient and harmonic analysis of MEMS. The macromodels are automat-
ically generated by a modal projection technique based on the harmonic
transfer functions of the fluidic domain. The transfer functions are either
obtained at the initial position (small signal case) or at various deflec-
tion states (large deflection case). In this method, an equivalent damping
and stiffness matrix that captures the true dependency between structural
velocities and fluid pressure is computed in the modal coordinates. The
damping Cjiq̇i and the stiffness coefficients Kjiqi of such a matrix repre-
sentation can be obtained from the following modal force balance equation:

Cjiq̇i + Kjiqi = φT
j

∫
NT p(φiq̇i)dA,

where qi is the modal coordinate, φi is the ith eigenvector (mode), and NT

is the vector of finite element shape functions. Here Cji and Kji state the
dependency between structural wall velocities caused by mode i and the
reacting fluid forces that act on mode j. The damping and the squeeze co-
efficients of each mode are the main diagonal terms. Off-diagonal terms
represent the fluidic crosstalk among modes, which happens in case of
asymmetric gap separation. The following steps are performed to obtain
the coefficients of C and K:

1. The squeezed film model is excited by wall velocities that are equal
to the values of the first eigenvector (mode).

2. A harmonic response analysis is performed to compute the pressure
response in the entire frequency range.

3. The real and the imaginary parts of the element pressure are inte-
grated and the complex nodal force vector computed for each fre-
quency.

4. The scalar product of all eigenvectors and the nodal force vector of
step 3 is computed. The resulting numbers are modal forces, which
indicate how much of the pressure distribution acts on each mode.

5. The damping and the stiffness coefficients are extracted from the real
and the imaginary parts of the modal forces.

6. Steps 1 to 5 are repeated for each eigenmode.
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(a) (b)

FIGURE 18.24. (a) Pressure distribution under an oscillating flat plate at low fre-
quency. (b) Pressure distribution under an oscillating flat plate at high frequency.
(http : //www.ansys.com/ansys/mems/mems downloads/thermal analogy
damping.pdf)

A modal decomposition of damping effects is acceptable, since the Reynolds
squeezed film equation is linear. More examples using modal basis functions
for MEMS simulations are given in (Gabbay and Senturia, 1998; Varghese
et al., 1999). Figure 18.24(a) shows the pressure distribution under a flat
plate for a low frequency of oscillation, while Figure 18.24(b) shows the
pressure distribution under a flat plate for a high frequency of oscillation.
At high frequency, the fluid cannot easily escape from the sides, giving
roughly uniform and high pressure under the plate.

The Karhunen–Loève decomposition method for model order reduction
has also been effectively used for squeezed film damping in (Hung and Sen-
turia, 1999). The method used is basically the same as that in the absence
of damping. From a few full-simulation runs, snapshots are taken for the
fluid pressure distribution and a set of pressure basis functions formed us-
ing an SVD analysis. These basis functions are then used in the dynamic
simulation of the device, thereby reducing the order of the system. The
nonlinear Reynolds equation can be reduced efficiently using this method
with no linearization involved as in the case of the equivalent circuit rep-
resentation. The trajectory piecewise-linear approach has also been used
for modeling squeezed film damping in MEM devices; see (Rewienski and
White, 2001), for details.

18.2.3 Mixed-Level Simulation
A mixed-level formulation uses a hardware description language for mod-
eling squeezed film damping (Schrag and Wachutka, 2002). From an FEM
model of the microstructure built by any standard FEM tool, a netlist for
finite network (FN) simulation is constructed utilizing the grid and the
geometric information from the FEM model. The governing equations (the
Reynolds equation and the mass continuity equation) are discretized and
coded in VHDL-AMS (Schrag et al., 2001; Sattler et al., 2003). The limita-
tions of the Reynolds equation due to edge effects and perforations on the
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FIGURE 18.25. Mixed-level approach for modeling squeezed film damping in
MEMS (see (Schrag and Wachutka, 2002), for details).

plate are rectified using error-compensating compact models. These com-
pact models are in the form of lumped circuit elements such as resistances
or constants, which can be determined from a few FEM simulations. The
FN model in the sense of the Kirchhoffian network theory describes the
squeezed film damping by two conjugate variables, namely, the pressure
difference pik between two adjacent nodes (“across variables”) and the cor-
responding mass flow rate Qik (“through variable”) (Schrag and Wachutka,
2002). The mass balance equation is satisfied automatically as a result of
the Kirchhoffian laws. However, correct formulation of the mass flowrate
at each node must be done separately. The FN model can be implemented
into a general-purpose system simulator and applied to arbitrary device
geometries. The flowchart for the method is shown in Figure 18.25.

18.2.4 Black Box Models
The Arnoldi method has been used in (Chen and Kang, 2001a), to solve
a MEMS micromirror device for both small and large deflections in the
presence of fluid damping. The fluid damping equation (nonlinear isother-
mal Reynolds equation) has been linearized using Taylors series, and the
Arnoldi method has been used to construct a reduced-order linear model
for small angular deflections. For large angular deflections, both the lin-
ear and the second-order nonlinear terms from the fluid equation were
retained in the Taylors expansion, and the Arnoldi method has been ap-
plied to construct a weakly nonlinear model. The accuracy can be increased
by considering higher-order terms in the Taylors expansion, but the com-
putational cost goes up, restricting the use of the process. The trajectory
piecewise-linear approach overcomes some of these difficulties, as described
in Chapter 17.
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FIGURE 18.26. (a) A bulk circuit diagram for a liquid with a small amount of
electrical resistance Rliq atop a dielectric solid with capacitance Csol and a large
electrical resistance Rsol. (b) The corresponding steady-state PDE with boundary
conditions.

18.3 Compact Model for Electrowetting

In Chapter 8, we discussed electrowetting and the associated physical
phenomena. Here we revisit electrowetting and discuss a compact model.
Figure 18.26(a) shows the equivalent circuit diagram for the liquid-drop-
dielectric solid system. Here φ is the electrical potential inside the drop,
and ρl and ρs are the resistivities of the liquid and solid, respectively. The
total impedence for the circuit diagram shown in Figure 18.26 is (Shapiro
et al., 2003a)

V (s)
I(s)

= z(s) =
1 + Rliq

Rsol
+ sRliqCsol

sCsol + 1
Rsol

,

where s is the Laplace variable. For a sinusoidal signal V (t) = Ṽ cos(ωt) of
frequency ω, s is taken as s = iω. The voltage drop across the solid Vsol(s)
is given by

Vsol(s) = zsol(s)I(s) =
zsol(s)
z(s)

V (s) =

(
1

1 + Rliq
Rsol

+ sRliqCsol

)
V (s).

In the steady state (i.e., s = iω → 0), the voltage and energy stored in the
dielectric are

Ṽsol =

(
1

1 + Rliq
Rsol

)
Ṽ and Ede =

1
2
Csol

(
1

1 + Rliq
Rsol

)2

Ṽ 2, (18.17)

where Ṽ is the applied DC voltage. The dependence shown in equation
(18.17) is similar to the energy in the perfectly insulating solid; Ede(R, θ) =
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1
2

εsV 2

h πR2 sin2 θ, except for the new Rliq/Rsol term. Hence, the resistance
of the liquid drop Rliq is shape-dependent. This dependence of resistance
on the droplet shape gives rise to contact angle saturation in this model, see
(Shapiro et al., 2003a; Shapiro et al., 2003b), for more details. The corre-
sponding PDE and boundary conditions for the equivalent circuit diagram
are shown in Figure 18.26(b).

18.4 Software

Several software packages have been developed, both commercially and
by universities, for the simulation of microsystems (including microfluidic
systems) using macromodels. Table 18.2 presents some of the available
software packages.
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TABLE 18.2. Software packages for reduced-order modeling of MEMS and mi-
crofluidics.

Name Manufacturer Description

HDL-A Mentor Graph-
ics Inc.

Analog and mixed signal analysis (equiv-
alent circuits for MEMS/microfluidics).

MAST/SABER Synopsys Inc. Analog and mixed signal analysis (equiv-
alent circuits for MEMS/microfluidics).

SpectreHDL Cadence Design
Systems

Analog and mixed signal analysis (equiv-
alent circuits for MEMS/microfluidics).

NODAS Carnegie Mellon
Univ.

A library of parameterized components
for using SABER (Synopsys Inc.) nodal
simulator to simulate MEMS devices.

SPICE U of C, Berkeley A general-purpose circuit simulation pro-
gram for nonlinear dc, nonlinear tran-
sient, and linear ac analyses (equivalent
circuits for MEMS/microfluidics).

SUGAR U of C, Berkeley An open source simulation tool for MEMS
based on nodal analysis techniques.

ANSYS
Multiphysics

ANSY Inc. Modal analysis, reduced-order models for
fluid damping, system-level simulation.

MEMS Xplorer MEMSCAP Inc. System level simulation (Equivalent cir-
cuits for MEMS).

CoventorWare Coventor Inc. Macromodels and system-level models for
MEMS and microfluidics.
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Sone, Y. and Aoki, K. (1994). Molecular Gas Dynamics. Asakura, Tokyo (in
Japanese).



798 Bibliography

Sone, Y., Aoki, K., Takata, S., Sugimoto, H., and Bobylev, A. V. (1996a). In-
appropriateness of the heat-conduction equation for description of a tem-
perature field of a stationary gas in the continuum limit: Examination by
asymptotic analysis and numerical computation of the Boltzmann equation.
Phys. Fluids, 8:628–638. Erratum, 1996, 8:841.

Sone, Y., Bardos, C., and Sugimoto, H. (2000). Asymptotic theory of the Boltz-
mann system for a steady flow of a slightly rarefied gas with a finite Mach
number: General theory. Eur. J. Mech., B/Fluids, 19:325.

Sone, Y., Fukuda, T., Hokazono, T., and Sugimoto, H. (2001). Experiment on
a one-way flow of a rarefied gas through a straight circular pipe without
average temperature and pressure gradients. In Rarefied Gas Dynamics,
eds. T.J. Bartel & M. Galiss, volume AIP, Melville.

Sone, Y. and Hasegawa, M. (1987). Poiseuille and thermal transpiration flows of a
rarefied gas through a rectangular pipe. J. Vac. Soc. of Japan (in Japanese),
30 (5):425–428.

Sone, Y., Takata, S., and Ohwada, T. (1990). Numerical analysis of the plane
Couette flow of a rarefied gas on the basis of the linearized Boltzmann
equation for hard-sphere molecules. Eur. J. Mech., B/Fluids, 9:273–288.

Sone, Y., Waniguchi, Y., and Aoki, K. (1996b). One-way flow of a rarefied gas
induced in a channel with periodic temperature distribution. Phys. Fluids,
8:2227.

Sone, Y. and Yoshimoto, M. (1997). Demonstration of a rarefied gas flow induced
near the edge of a uniformly heated plate. Phys. Fluids, 9:3530–3534.

Sparrow, E. M., Lundgren, T. S., and Lin, S. H. (1962). Slip flow in the entrance
region of a parallel channel. In Proc. Heat Transfer and Fluid Mechanics
Institute, Stanford, pages 223–238.

Spikes, H. and Granick, S. (2003). Equation for slip of simple liquids at smooth
solid surfaces. Langmuir, 19:5065–5071.

Spoel, D., Buuren, A., Apol, E., Meulenhoff, P., Tieleman, D., Sijbers, A., Hess,
B., Feenstra, K., Lindahl, E., Drunen, R., and Berendsen, H. (2001). Gro-
macs User Manual version 3.0. Nijenborgh 4, 9747 AG Groningen, the
Netherlands. Internet: http://www.gromacs.org.

Spohr, E., Hartnig, C., Gallo, P., and Rovere, M. (1999). Water in porous glasses.
a computer simulation study. J. Mol. Liquids, 80:165–178.

Spohr, E., Trokhymchuk, A., and Henderson, D. (1998). Adsorption of water
molecules in slit pore. J. Electroanal. Chem., 450:281–287.

Sreekanth, A. K. (1969). Slip flow through long circular tubes. In Trilling, L. and
Wachman, H., editors, Proceedings of the Sixth International Symposium on
Rarefied Gas Dynamics, volume 1, pages 667–680. Academic Press.

Srinivasan, V., Jog, A., and Fair, R. B. (2001). Scalable macromodels for micro-
electromechanical systems. In Modeling and Simulation of Microsystems,
pages 72–75.

Steindl, A. and Troger, H. (2001). Methods for dimension reduction and their
application in nonlinear dynamics. Intl. Journal of Solids and Structures,
38:2131–2147.



Bibliography 799

Stevens, M. J., Mondello, M., Grest, G. S., Cui, S. T., Cochran, H. D., and
Cummings, P. T. (1997). Comparison of shear flow of hexadecane in a
confined geometry. J. Chem. Phys., 106:7303–7314.

Stillinger, F. H. (1973). Structure in aqueous solutions of nonpolar solutes from
the standpoint of scaled-particle theory. J. Solut. Chem., 2:141–158.

Stillinger, F. H. and Rahman, A. (1974). Improved simulation of liquid water by
molecular dynamics. J. Chem. Phys., 60:1545–1557.

Stimson, M. and Jeffery, G. B. (1926). The motion of two spheres in a viscous
fluid. Proc. Roy. Soc., 111:110–116.

Stone, A. J. (1996). Theory of Intermolecular Forces. Clarendon Press, Oxford.

Stone, H. A., Stroock, A. D., and Ajdari, A. (2004). Engineering flows in small de-
vices: Microfluidics toward a lab-on-a-chip. Ann. Rev. Fluid Mech., 34:381–
411.

Stratton, J. A. (1941). Electromagnetic Theory. McGraw Hill, New York.

Stroock, A. D., Dertinger, S. K., Ajdari, A., Mezic, I., Stone, H. A., and White-
sides, G. M. (2002). Chaotic mixer for microchannels. Science, 295:647–651.

Succi, S. (2001). The Lattice Boltzmann Equation: For Fluid Dynamics and
Beyond. Oxford University Press.

Succi, S., Karlin, I. V., and Chen, H. (2002). Colloquium: Role of the H theorem
in lattice Boltzmann hydrodynamic simulations. Rev. Mod. Phys., 74:1203–
1220.

Sui, H., Han, B., Lee, J. K., Walian, P., and Jap, B. K. (2001). Structural basis of
water-specific transport through the AQP1 water channel. Nature, 414:872–
878.

Sun, L. and Crooks, R. M. (2000). Single carbon nanotube membranes: A well-
defined model for studying mass transport through nanoporous materials.
J. Am. Chem. Soc., 122(49):2340–12345.

Sun, Q. and Boyd, I. D. (2002). A direct simulation method for subsonic, mi-
croscale gas flows. J. Comp. Phys., 179:400–425.

Sun, Q. and Boyd, I. D. (2004). Flat-plate aerodynamics at very low Reynolds
number. J. Fluid Mech., 502:199–206.

Sun, Q., Boyd, I. D., and Candler, G. V. (2004). A hybrid continuum/particle
approach for modeling subsonic, rarefied gas flows. J. Comp. Phys., 194:256–
277.

Svishchev, I. M., Kusalik, P. G., Wang, J., and Boyd, R. (1996). Polarizable point-
charge model for water: Results under normal and extreme conditions. J.
Chem. Phys., 105:4742–4750.

Swaminathan, T. N. and Hu, H. H. (2004). Particle interactions in electrophoresis
due to inertia. J. Colloid Interface Sci., 273(1):324–330.

Szeri, A. Z. (1998). Fluid Film Lubrication: Theory and Design. Cambridge
University Press, New York.

Tabor, D. (1991). Gases, Liquids and Solids. Cambridge Univ. Press, 3rd edition.



800 Bibliography

Tagawa, N. (1993). State of the art for flying head slider mechanisms in magnetic
recording disk. Wear, 168:43.

Tai, Y. C., Fan, L. S., and Muller, R. S. (Salt Lake City, UT, February 1989).
IC-processed micro-motors: design, technology, and testing. IEEE Micro
Electro Mechanical System Workshop.

Takhistov, P., Indeikina, A., and Chang, H.-C. (2002). Electrokinetic displace-
ment of air bubbles in microchannels. Phys. Fluids, 14(1):1–14.

Talanquer, V. (1997). A new phenomenological approach to gas-liquid nucleation
based on the scaling properties of the critical nucleus. J. Chem. Phys.,
106(23):9957–9960.

Tan, M.-L., Fischer, J. T., Chandra, A., Brooks, B. R., and Ichiye, T. (2003). A
temperature of maximum density in soft sticky dipole water. Chem. Phys.
Lett., 376:646–652.

Tang, C. W., Nguyen, T. H., and Howe, T. R. (1989). Laterally driven polysilicon
resonant microstructures. Sens. Actuators, 20:25–32.

Tang, G. Y., Yang, C., Chai, J. C., and Gong, H. Q. (2004a). Joule heating effect
on electroosmotic flow and mass species transport in a microcapillary. Int.
J. Heat Mass Transfer, 47:215–227.

Tang, G. Y., Yang, C., Chai, J. C., and Gong, H. Q. (2004b). Numerical analysis
of the thermal effect on electroosmotic flow and electrokinetic mass transport
in microchannels. Analytica Chimica Acta, 507:27–37.

Tang, X. Z. and Boozer, A. H. (1996). Finite time Lyapunov exponent and
advection-diffusion equation. Phys. D, 95:283–305.

Tanner, L. H. (1979). The spreading of silicone oil drops on horizontal surfaces.
J. Phys. D, 12:1473–1484.

Tao, R. and Sun, J. M. (1991). Three-dimensional structure of induced elec-
trorheological solid. Phys. Rev. Lett., 67:398.

Technology Modeling Associates (1997). MEDICI User’s Manual: Circuit Anal-
ysis.

Tehver, R., Toigo, F., Koplik, J., and Banavar, J. R. (1998). Thermal walls in
computer simulations. Phys. Rev. E, 57 (1):R17–R20.

Tell, J. L. and Maris, H. J. (1983). Specific heats of hydrogen, deuterium, and
neon in porous Vycor glass. Phys. Rev. B, 28:5122–5125.

Telleman, P., Larsen, U. D., Philip, J., Blankenstein, G., and Wolff, A. (1998).
Cell sorting in microfluidic systems. In van den Berg, H. ., editor, Micro
Total Analysis Systems ’98, pages 39–44. Kluwer.

Terray, A., Oakey, J., and Marr, D. (2002). Microfluidic control using colloidal
devices. Science, 296:1841–1843.

Tersoff, J. (1988a). Empirical interatomic potential for carbon, with applications
to amorphous carbon. Phys. Rev. Lett., 61:2879–2882.

Tersoff, J. (1988b). New empirical approach for the structure and energy of
covalent systems. Phys. Rev. B, 37:6991–7000.



Bibliography 801

Thompson, P. and Troian, S. (1997). A general boundary condition for liquid
flow at solid surfaces. Nature, 389:360–362.

Thompson, P. A. (1988). Compressible Fluid Dynamics. McGraw Hill, New York.

Thompson, P. A. and Robbins, M. O. (1990). Shear flow near solids: Epitaxial
order and flow boundary conditions. Phys. Rev. A, 41(12):6830–6837.

Thompson, S. L. and Owens, W. R. (1975). A survey of flow at low pressures.
Vacuum, 25:151–156.

Thorsen, T., Maerkl, S. J., and Quake, S. R. (2002). Microfluidic large-scale
integration. Science, 298:580–584.

Tilmans, H. A. (1996). Equivalent circuit representation of electromechanical
transducers: I. Lumped-parameter systems. J. Micromech. Microeng., 6:157–
176.

Tilmans, H. A. (1997). Equivalent circuit representation of electromechanical
transducers: II. Distributed-parameter systems. J. Micromech. Microeng.,
7:285–309.

Timoshenko, S. and Woionowsky-Krieger, S. (1959). Theory of Plates and Shells.
McGraw-Hill Book Company: London.

Tison, S. A. (1993). Experimental data and theoretical modeling of gas flows
through metal capillary leaks. Vacuum, 44:1171–1175.

Tison, S. A. (1995). Private communications. NIST.

Todd, B. D., Evans, D. J., and Davis, P. J. (1995). Pressure tensor for inhomo-
geneous fluids. Phys. Rev. E, 52:1627–1638.

Tomboulides, A. G., Israeli, M., and Karniadakis, G. E. (1989). Efficient removal
of boundary-divergence errors in time-splitting methods. J. Sci. Comp.,
4:291.

Toney, M. F., Howard, J. N., Richer, J., Borges, G. L., Gordon, J. G., Mel-
roy, O. R., Wiesler, D. G., Yee, D., and Sorensen, L. B. (1994). Voltage-
dependent ordering of water molecules at an electrode/electrolyte interface.
Nature, 368:444–446.

Toxvaerd, S. (1981). The structure and thermodynamics of a solid-fluid interface.
J. Chem. Phys., 74(3):1998–2005.

Trau, M., Saville, D. A., and Aksay, I. A. (1996). Field-induced layering of
colloidal crystals. Science, 272:706–709.

Trau, M., Saville, D. A., and Aksay, I. A. (1997). Assembly of colloidal crystals
at electrode interfaces. Langmuir, 13:6375–6381.

Traube, J. and Whang, S.-H. (1928). Über Reibungskonstante und Wandschicht.
Z. Physikal. Chem. A, 138:102–122.

Travis, K. P. and Evans, D. J. (1996). Molecular spin in a fluid undergoing
Poiseuille flow. Phys. Rev. E, 55(2):1566–1572.

Travis, K. P. and Gubbins, K. E. (2000). Poiseuille flow of Lennard-Jones fluids
in narrow slit pores. J. Chem. Phys., 112(4):1984–1994.

Travis, K. P., Todd, B. D., and Evans, D. J. (1997). Departure from Navier
Stokes hydrodynamics in confined liquids. Phys. Rev. E, 55(4):4288–4295.



802 Bibliography

Tretheway, D. C. and Meinhart, C. D. (2002). Apparent fluid slip at hydrophobic
microchannel walls. Phys. Fluids, 14(3):L9–L12.

Trimmer, W. (1997). Micromechanics and MEMS, Classic and Seminal Papers
to 1990. IEEE Press.

Troger, H. and Steindl, A. (1991). Non-Linear Stability and Bifurcation Theory:
An Introduction for Engineers and Applied Scientists. Springer, New York.

Tryggvason, G., Bunner, B., Ebrat, O., and Tauber, W. (1998). Computations
of multiphase flows by a finite difference/front tracking method. In 29th
Computational Fluid Dynamics, Lecture Series, von Karman Institute.

Tseng, W. L. and Chang, H. T. (2001). A new stategy for optimizing sensitiv-
ity, speed, and resolution in capillary electrophoretic separation of DNA.
Electrophoresis, 22:763–770.

Tunc, G. and Bayazitoglu, Y. (2002). Heat transfer in rectangular microchannels.
Int. J. Heat Mass Transfer, 45(4):765–773.

Turowski, M., Chen, Z., and Przekwas, A. (1998). Squeeze film behavior in MEMS
for large amplitude motion: 3D simulations and non-linear circuit/behavioral
models. In IEEE/VIUF Intl. Conf. BMAS’98.

Tyrrell, J. and Attard, P. (2002). Atomic force microscope images of nanobubbles
on a hydrophobic surface and corresponding force-separation data. Lang-
muir, 18:160–167.

Tysanner, M. W. and Garcia, A. L. (2004). Measurement bias of fluid velocity
in molecular simulations. J. Chem. Phys., 196:173–183.

Unger, M. A., Chou, H.-P., Thorsen, T., Scherer, A., and Quake, S. R. (2000).
Monolithic microfabricated valves and pumps by multilayer soft lithography.
Science, 288:113–116.

Urbanek, W., Zemel, J. N., and Bau, H. H. (1993). An investigation of the
temperature dependence of Poiseuille numbers in microchannel flow. J.
Micromech. Microeng., 3:206–208.

van der Spoel, D., Lindahl, E., Hess, B., van Buuren, A. R., Apol, E., Meulenhoff,
P. J., Tieleman, D. P., Sijbers, A. L. T. M., Feenstra, K. A., van Drunen,
R., and Berendsen, H. J. C. (2004). Gromacs User Manual version 3.2.
www.gromacs.org.

van der Spoel, D., van Maaren, P. J., and Berendsen, H. J. (1998). A systematic
study of water models for molecular simulation: derivation of water models
optimized for use with a reaction field. J. Chem. Phys., 108(24):10220–
10230.

van Kampen, R. P. (1995). Bulk-Micromachinend Capacitive Servo-
Accelerometer. PhD thesis, Technical University of Delft, Delft.

Vandemeer, J. E., Kranz, M. S., and Fedder, G. K. (1998). Hierarchical represen-
tation and simulation of micromachined inertial sensors. In Modeling and
Simulation of Microsystems.

Varghese, M., Rabinovich, V. L., and Senturia, S. D. (1999). Reduced-order
modeling of Lorentz force actuation with modal basis functions. In Modeling
and Simulation of Microsystems, pages 155–158.



Bibliography 803

Vargo, S. E. and Muntz, E. P. (1996). A simple micromechanical compressor
and vacuum pump for flow control and other distributed applications. In
Thirty-Fourth Aerospace Sciences Meeting and Exhibit January 15–18 1996,
Reno, NV, AIAA 96-0310.

Vargo, S. E., Muntz, E. P., Shiflett, G. R., and Tang, W. C. (1998). Knud-
sen compressor as a micro- and macroscale vacuum pump without moving
parts or fluids. J. Vac. Sci. Technol. A-Vacuum Surfaces and Films Part 2,
17(4):2308–2313.

Vasilyev, D., Rewienski, M., and White, J. (2003). A TBR-based trajectory
piecewise-linear algorithm for generating accurate low-order models for non-
linear analog circuits and MEMS. In Proceedings of Design Automation
Conference, pages 490–495.

Veijola, T. (1999). Equivalent circuit models for micromechanical inertial sen-
sors. Technical report, Helsinki University of Technology, Circuit Theory
Laboratory, CT-39.

Veijola, T. (2000). Compact damping models for lateral structures including gas
rarefaction effects. In Proceedings of MSM 2000, pages 162–165, San Diego.

Veijola, T. (2001). Acoustic impedence elements modeling oscillating gas flow in
micro channels. In Modeling and Simulation of Microsystems, pages 96–99.
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611, 616
bioelectronic circuit, 305
black box models, 691, 748
Boltzmann equation, 584

approximate forms, 590
classical solutions, 588
heat transfer, 607
macroscopic quantities, 586
numerical solutions, 602

Boltzmann inequality, 585
Bond number, 313, 335
bond order, 628
bounce-back scheme, 614
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boundary cloud method, 534
boundary elements, 5, 505
boundary scattering, 137
bounded rarefaction layer, 98

see time-periodic Couette flow,
97

Bretherton equation, 336
Bretherton scaling, 336
Brownian motion, 18, 301, 470, 479,

487
bubbles

transport, 335
Buckingham potential, 627
bulk scattering, 137
Burnett equations, 57, 144

asymptotic limit, 146
cross-flow component, 145
deviations, 146
numerical instabilities, 67
streamwise component, 145
stress tensor, 66

capillarity, 314
capillary drying, 13
capillary number, 320, 336
capillary spreading, 319

self-similar solution, 322
capillary wicking, 319
carbon nanotubes, 379, 424, 488, 489

armchair, 489
multiwalled, 489
single-walled, 489
velocity slip, 497
zigzag, 489

Casimir effect, 9
cationic surfactants, 338
cavity flow, 110, 532

pressure, 112
vortex center, 112

Cercignani–Lampis model, 587
channel

elastomeric, 32
channel flow

compressibility effects, 121
limitation of analytic formulas,

126
mass flowrate, 120
pressure distribution, 120
velocity profile, 120

chaotic advection, 283, 342–345, 347,
349

Chapman–Enskog expansion, 57, 67,
611

Chapman–Enskog method, 589, 590
Chapman–Enskong theory, 14
characteristic boundary conditions,

509
characteristic decomposition, 515
characteristic treatment, 509, 515
charge inversion, 462
charged particle

in a pipe, 300
charged species

conservation equation, 261
CHARMM, 645
Chemical, 645
chemisorption, 426
chiral angle, 490
chirality, 489

vector, 489
choking, 217
Clausius–Mossotti factor, 301
CODESC, 42
collision frequency, 152
colloidal micropumps, 8
comb-drive, 3
compressibility, 31
compressible flow, 57

adiabatic, 126
isothermal, 118

compressible microflows, 513
compressible Navier–Stokes, 53
conductivity, 596
conservation equations, 52, 59
conservative variables, 514
contact angle, 311, 314
contact angle saturation, 332
continuum, 16, 57
continuum hypothesis, 8
continuum regime, 57
convective time scale, 55
Couette flow, 79

flowrate, 203
free-molecular, 83
friction coefficient, 80, 81
heat transfer, 188
high-order slip effect, 76, 80
oscillatory, 90, 197
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shear stress model, 86
slip flow regime, 79
temperature variation, 190
transition, 83
unified slip model, 85
velocity distribution, 188
velocity profile, 80
volumetric flowrate, 80

Coulomb potential, 628
cut-off frequency, 211

Dean flow, 345
Debye length, 259, 273, 295
Debye–Hückel

approximation, 258
equation, 297
linearization, 256
parameter, 257–259, 272

deep reactive ion etching (DRIE), 64
deformable control volume, 52
density distribution, 366

effect of channel width, 371
effect of fluid flow, 371

description languages, 685
developing flow, 137
dewetting, 318
dielectrophoresis, 254, 300, 327

applications, 302
cell separation, 303
DC, 303
filamentary, 304
Joule heating, 281
microwires, 304
mixing, 353
negative, 301
positive, 301
trapping, 304
velocity, 301

dielectrophoretic transport
filamentary, 304
trapping, 304

diffuse layer, 257
diffuse reflection, 62
diffusion coefficient

table, 342
diffusive time scale, 55
diffusivity

Einstein equation, 638
Green–Kubo equation, 373, 639

dilute gas, 14
dipole strength ratio, 474
direct simulation Monte Carlo method,

556
direct stiffness summation, 509, 518
discharge mass efficiency, 242
dissipative particle dynamics (DPD),

659
distributed parameter modeling, 682
DKT, see drafting–kissing–tumbling
DMD, 196
DNA sequencing, 35
DPD, 636, 659

Euler method, 664
Lowe’s method, 666, 668
splitting method, 665
Verlet method, 664, 668

drafting–kissing–tumbling event, 544
drag force, 279, 541–543

sphere, 225, 539, 550
drag reduction, 83, 181
DRIE, 241, 243
drying transition, 435
DSMC, 556

boundary conditions, 559
information-preservation scheme,

565
limitations, 558
no-time-counter, 563
unsteady flows, 563

DSMC coupling, 568
DSMC statistical scatter, 564
DSMC-IP, 568
duct flow model, 161

apect ratio factor, 163
mass flowrate, 163
remarks, 166

dynamic coating, 282
dynamic similarity, 18, 562
dynamic viscosity, 591, 596

Eckert number, 61
EDL, 256, 279, 291, 520, 719

bulk flow interface matching,
277

drag force, 279
effective thickness, 260, 277
inner layer scaling, 259
numerical stiffness, 280
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slip condition, 278
EDM, 1
effective viscosity, 210, 212
electric

conductivity, 264, 280
current density, 280

electric double layer, 256
displacement thickness, 266

electric neutrality, 256, 292
electrocapillary, 326
electrochemical potential correction,

454
electrokinetic

body force, 261
flow, 253
instability, 282
micropump, 268
mobility, 262
potential, 257, 258

electrokinetics, 31
electroosmosis, 254

AC, 270
flow control, 283
Joule heating, 281
mixing, 282
numerical verification, 520
suppression, 281
time-periodic, 271

electroosmotic flow, 511
array of posts, 288
complex geometric flows, 283
control, 283
cross-flow junctions, 284
governing equations, 264
slip condition, 459

electroosmotic potential, 259
electroosmotic/pressure-driven flows,

255, 266
dispersion, 297
shear stress, 267
volumetric flowrate, 267

electrophoresis, 254, 290
capillary, 294, 298
in a pipe, 300
migration velocity, 292
mobility, 291
moving boundary, 293
steady stat, 293
zone, 294

electrophoresis
migration velocity, 290

electrophoretic
deposition, 484
deposition colloidal aggregation,

485
migration velocity, 263
mobility, 262
velocity, 300

electrostatics, 56
electrowetting, 326, 327, 749

continuous type, 327
electrowetting-on-dielectric, 327
element stamps, 685
embedding method, 652

Navier–Stokes, 655
Poisson–Boltzmann, 653

EMD, 623, 639
energy methods, 678
ensemble average, 564
entropic LBM, 187, 612, 617, 618

method, 187
equation of state, see perfect gas
equations of motion, 51
equilibrium state, 585
equivalent circuit representation, 677
equivalent electric circuit model, 210
Euler backward method, 509
Euler equations, 53
Ewald summation, 631
expansion cooling, 187

Fanning friction, 130
coefficient, 181
factor, 127, 130

Fanno theory, 126
fast multipole method, 632
FCM, see force coupling method, 553

multipole expansion, 545
fingering instability, 323
finite cloud method, 528
finite differences, 505
finite elements, 505
first coordination shell, 430
first-order models, 59
flow past a sphere, 224

drag force components, 225
external flow, 224
in a pipe, 225
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flow reversal, 467
fluid layering, 367
fluid–wall interaction, 368
FMMR, 243, 587
force coupling method, 543
force-driven, 186

flow heat transfer, 186
Poiseuille flow, 186

Fourier law of heat conduction, 52
fractional step method, 510
free-molecular flow, 16, 590
free-molecular regime

flowrate, 164
modeling, 140
unified model, 146

frequency domain, 211
friction factor, 21
functionalized nanotubes, 496

gas damping, 196
gas flows, 30
gases

rarefied, 9
Gauss’s theorem, 53
Gaussian distribution, 298
general velocity slip boundary con-

dition, 70, 75
b-parameter, 72

generalized diffusion coefficient, 152
ghost effect, 177
Grad method, 589
gravitational field flow fractionation,

303
GROMACS, 493, 494, 643, 645
grooved channel flow, 112

drag reduction, 113

H-theorem, 555, 612
hard disk drives, 202
hard sphere model, 594, 598

dynamic viscosity, 590
heat conduction

ghost effect, 177
heat flux, 52
heat transfer, 167

Couette flow, 188
force-driven flow, 186
pressure-driven flow, 179

heated sharp-edge-induced flow, 177

Helmholtz equation, 520
Helmholtz–Smoluchowski

electroosmotic velocity, 265
velocity, 262, 272, 278

Helmholtz–Smoluckowski
velocity, 275

heterogeneous substrates, 324
high-order, 66

models, 66
slip coefficient, 73
slip models derivation, 67
slip models temperature jump,

70
slip models velocity, 69

homogeneous substrates, 324
hp version of finite elements, 507
hydrodynamic interactions, 539, 541
hydrodynamic similarity, 186
hydrogen bonding, 420
hydrophilic, 32, 36, 386, 387, 390,

399, 400, 403
hydrophobic, 32, 36, 386–388, 392,

394, 395

ideal gas, see perfect gas
IEF, 293
impulse bit, 240
in situ pressure sensors, 25
incomplete parabolic system, 53
incompressible flow, 54

conservative (flux) form, 54
convective form, 54
high-speed, 55
low-speed, 55
rotational form, 54
skew-symmetric form, 54

incompressible microflows, 510
inflow conditions, 517
inlet flows, 137
Insight II, 645
interface conditions, 515
interferometer, 65
intermolecular potentials, 624
ion channels, 34, 435, 491

gating, 491
sensitivity, 492

ion convection, 264
ionic energy parameter, 258
Irving–Kirkwood tensor, 639
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isoelectric focusing, 281, 293

Joule heating, 270, 280, 305

KAM boundaries, 357
Karhunen–Loève method, 704, 747

weighted form, 707
Kirchhoff

current law, 686
Kirchhoffian method, 676
Kirchoffian modeling, 748

Knudsen, 2
compressors, 174
layer, 57, 84, 150
minimum, 24, 142, 154, 160, 166,

209
model, 159
number, 2, 16, 61
paradox, 24

Krylov subspace method, 693

lab-on-a-chip, 268, 278, 334, 737
Lamb vector, 344
Lanczos method, 693
Langevin dynamics, 477, 479, 650
Laplace–Young equation, 312
Lattice–Boltzmann method, 607
lattice–Boltzmann method, 539
layering phenomenon, 9
LB-BGK equation of motion, 611
LBM

entropic form, 187, 617
Lees–Edwards boundary conditions,

614
Lennard–Jones potential, 9, 10, 365,

626
van der Waals forces, 317

LIGA, 1
linearization of Euler equations, 515
linearized Boltzmann equation, 591
Liouville equation, 14
lipid bilayers, 491
Lippmann equation, 327
liquid flows, 30
liquids

granular, 9
layering, 32
monolayer spreading, 32
Poiseuille law, 24

local average density method, 374
long-range potentials, 630
Lord Rayleigh, 311
lubrication, 539, 552, 554

theory hydrophobic surfaces, 399
lumped parameter modeling, 677
Lyapunov exponent, 345, 355

finite-time, 355

Mach number, 61
macromodeling, 39, 673
magnetorheological fluids (MR), 473
Marangoni traction, 337
Marshak condition, 569
Maxwell demon, 649
Maxwell’s scattering kernel, 586
Maxwellian distribution, 57, 585, 587,

592
MD, see molecular dynamics method

error estimation, 641
practical guidelines, 642

MD coupling, 644
flux-exchange method, 645
hybrid method, 645
Maxwell demon method, 645
relaxation method, 644

mean free path, 13, 14
air, 18

mean molecular spacing, 14
mean thermal speed, 68, 152
mean-square molecular speed, 15
mechanical admittance, 210
MEDUSA, 41
MEMS, 2, 38

classical papers, 24
electrostatics, 56
Feynman, 24
flow regimes, 1
pioneers, 24

meshless method, 527
boundary-only, 528, 533
interior, 528

method of moments, 589
micro-PIV, 255
microbellow mechanisms, 269
microcomb drive, 197
microfilters, 227, 571, 574

drag force, 232
DSMC modeling, 234
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effect of channel length, 236
effects of accommodation coef-

ficients, 238
flowrate comparisons, 237
scaling laws, 228, 229, 232
viscous heating, 234

micromirrors, 196
micromotor, 2, 3, 197
micronozzles, 239

hall thrusters, 240
ion engines, 240
nonequilibrium, 247, 248
outflow conditions, 247
plasma thrusters, 240
relaxation time, 248
residence time, 248
roughness, 246
transition, 247

micropistons, 269
microPIV, 26, 289
microPPT, 240
micropropulsion, 239
microsatellites, 196
microspacecraft, 239
MIMO system, 693
mixed domain simulation, 6
mixed-level simulation, 747
mixers, 347

active, 349
electroosmotic stirrer, 351
passive, 347

mixing index, 359
alternative definition, 360

molecular dynamics method, 9, 622
practical guidelines, 642

molecular gates, 35
moment matching method, 696
momentum and energy equations, 53
MR fluids, 473
multiphase flow, 32, 33

NAMD, 645
nanochannels, 33

density distribution, 366
diffusion transport, 373

nanosatellites, 196
nanotube, 32
Navier–Stokes equations

breakdown, 365, 379

Navier–Stokes/DSMC coupling, 580
near-wall potential distribution, 259
NEMD, 495, 623, 639
NEMS, 19
Newtonian fluids, 52
no-slip, 57, 58
no-time-counter, 558
nodal analysis, 688
nondimensionalization, 55
Nonisothermal flows, 607
nonlinear Galerkin method, 713
nonlinear thermal stress flow, 175,

176, 602
Nose–Hoover thermostat, 634
NPT ensemble, 623
Nusselt number, 180
NVE microcanonical ensemble, 623
NVT canonical ensemble, 623

octadecyl-trichlorosilane:OTS, 324
Ohm’s law, 280
optoelectrowetting, 333
ORAC, 645
oscillatory Couette flow, 90

quasi-steady, 91
shear stress, 95
unsteady, see time-periodic Cou-

ette flow
velocity, 91

Oseen approximation, 224
outflow conditions, 517

particle diffusion, 541
particle separators, 7

µFACS, 6
µMACS, 6

particle–mesh Ewald method, 632
particulate flows, 6, 30, 538
penalty method, 548, 550
perfect gas, 13
permittivity

complex, 301
phase space, 610
pipe flow model, 156

remarks, 166
plug flow, 266, 268, 273
Poincaré sections, 356
Poiseuille, 24
Poiseuille flow
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force-driven, 186
heat transfer, 179

Poiseuille number, 21
Poisson equation, 56, 509, 512
Poisson ratio, 41
Poisson–Boltzmann equation, 257, 279,

292, 450
Poisson-Boltzmann equation

modified form, 453
potential flow, 291
pressure boundary condition, 509
pressure cooling, 187
pressure distribution, 132
pressure gradients

adverse, 266
favorable, 266

pressure-driven, 117
flow heat transfer, 179
slip flow, 117

pressure-driven flow, 117
primitive variables, 54
propellant, 242, 245, 587

quality, 5
quality factor, 5, 107

R-TIRFM technique, 27
radial distribution function, 366
rarefaction, 31
rarefaction coefficient, 153
rarefied channel flow, 602
rarefied pipe flow, 605
Rayleigh–Ritz method, 675
reduced models

low-dimensional models, 56
residence time, 247
residence times, 344
Reynolds equation, 198, 199

derivation, 199
finite dimension effects, 209
generalized form, 203
multidimensional, 209
slip flow, 201
transition flow, 202

Reynolds number, 61
Reynolds–Vinogradova theory, 399
Riemann invariants, 517
Robin boundary conditions, 519
Roe-averaged velocity, 516

Rothe nozzle, 248
roughness, 25, 65

coordinate transformation, 136
effects, 136
random, 65

S expansion, 597, 598
sample injection, 298
scattering kernel, 586
Schwarz algorithm, 571, 649
second-order slip, 69

limitations, 65
sedimentation potential, 254
self-assembly, 27

dynamic, 28
static, 28

SEM, 25, 65, 196
separated flows, 73

external, 221
internal, 214
viscous normal stresses, 223

serpentine channel, 299
SFA, surface force apparatus, 387
shear-driven flow, 79
shock wave, 54
short channels

DSMC modeling, 234
effect of channel length, 236
effects of accommodation coef-

ficients, 238
flowrate comparisons, 237

short-range potentials, 630
silicon micromachining, 1
simulation approaches, 37
SISO system, 694
slider bearing, 18, 197, 204
slip, 57
slip boundary condition, 459, 460

implementation, 519
slip condition

liquids, 385
slip flow, 16, 20
slip flow regime, 57
slip length, 11
slip models

coefficients, 74
comparison, 74, 144
limitations and remarks, 76
remarks, 136
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validations, 131
slip velocity, 69, 487
Sllod algorithm, 640
Sone’s theory, 592
species

flux, 261
specific impulse, 588
spectral element method, 506, 507,

545
specular reflection, 62
SPICE, 39, 41
spinodal wetting, 318
square-cube law, 2
square-well potential, 625
squeeze number, 209, 744
squeezed film, 197, 210

damping in complex geometries,
213

squeezing flow, 542
Stern layer, 256
STM, 65
Stokes drag, 224, 301
Stokes flow, 291
Stokes number, 91
Stokes second problem, 94, 198
Stokes’s equations, 55
Stokes’s hypothesis, 52
Stokes’s second problem, 275
Stokes–Einstein formula, 474
Stokes/DSMC coupling, 575
Stokesian dynamics, 539
streaming potential, 254
stress tensor, 52
stresslet, 546
SURFACE EVOLVER, 325
surface force apparatus, 387
surface tension, 32, 311

table, 312
temperature variation, 311

Sutherland’s law, 514, 515
system simulation, 38

low-dimensional models, 42

T-junction flow, 33
Taylor dispersion, 295, 342

Taylor–Aris limit, 296
temperature discontinuity-induced flow,

177
temperature jump, 60

boundary condition, 70
temperature minimum, 187
temperature-induced flow

discontinuity, 175
heated plate, 175

Tersoff potential, 628
thermal creep, 31, 167, 607

effects, 181
experiment, 173
flow, 596
pressure drop, 170

thermal effects, 167
thermal stress, 59, 599, 601
thermal stress slip flow, 175, 176,

596
thermocapillary pumping, 322
thermostats, 634

Andersen, 635, 666
Berendsen, 634
Nose–Hoover, 634

thin films, 317
third-order slip, 73
through variable, 677
thrust force, 241
time-periodic Couette flow, 96

basic characteristics, 103
bounded rarefaction layer, 97
bounded Stokes layer, 97
energy dissipation, 107
free-molecular regime, 98
penetration depth, 103
shear stress, 105
slip velocity, 106
solution of Boltzmann equations,

98
transition regime, 97

time-periodic electroosmosis, 270
time-splitting method, 509
TMAC, see accommodation coeffi-

cients
transition flow, 16, 19
transition regime, 20, 57

duct flow model, 161
flowrate, 142, 150
mass flowrate, 157
modeling, 140
pipe flow model, 156
unified model, 146
velocity scaling, 147
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transpiration, see thermal creep
Tsallis entropy, 613

unified model
duct flow, 161
pipe flow, 156

unsteady Couette flow, see time-periodic
Couette flow

unsteady Stokes equations, 56

validation of slip models, 131
van der Waals forces, 317
variable diffusion coefficient model,

152
velocity distribution function, 584
velocity slip, 60
virtual walls, 326
viscous heating, 31, 182, 187
VLSI, 38
von Smoluchowski, 57
vorticity, 273
vorticity flux, 73
vorticity-streamfunction, 54

wall atoms
structure, 369
thermal motion, 369

wall registry index, 377
water

bond angle, 405
bond length, 405
first coordination shell, 423
PPC model, 412
properties, 406, 414
six-site model, 413
SPC model, 409
SPC/E model, 410
SSD model, 407
ST2 model, 410
TIPnP model, 410

WCA potential, 626
Weeks–Chandler–Andersen potential,

369
wet electronic circuit, 305
wetting, 31

contact angle, 32
hydrophobic, 32
hysteresis, 32

Winchester hard disk drive, 2

Woods equations, 57

Young equation
general form, 315
gravity, 316

Young–Lippmann equation, 330
general form, 331

Young-Lippmann equation, 327
Yukawa potential, 626
Yvon–Born–Green theory, 371

zeta potential, 257, 258, 264, 297
modifications, 281
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