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CREEP 

The creep behavior of MMCs is of great significance, since in many 
structural and non-structural applications, these materials will be subjected 
to constant stress (or strain) for long periods of time, at temperature above 
half of the homologous temperature (homologous temperature is the 
temperature of interest divided by melting point, both in K; i.e., TIT,). Most 
materials exhibit three distinct stages of creep: (i) primary creep, (ii) 
secondary or steady-state creep, and (iii) tertiary creep. In primary creep, the 
strains are relatively small. In the secondary or steady-state regime, a linear 
relationship exists between the strain and time (constant strain rate). This is 
believed to be a result of the combination of hardening and recovery 
mechanisms during creep. Finally, in the tertiary regime, the material 
undergoes cavitation and void growth, which is manifested in terms of a very 
rapid increase in strain with time. 

In general, the steady creep rate, E, , is described by a general expression 
called the Mukhe rjee-Bird-Dorn relation (Mukherjee et al., 1964): 

. AGbD b 
Es =-(-)p(;)n kT d 

where o is the applied stress, T is the temperature in kelvin, G is the shear 
modulus, b is the Burgers vector, d is the average grain size, p is the inverse 
grain size exponent, n is the stress exponent, D is the diffusion coefficient of 
the material, k is the Boltzmann's constant, and A is a dimensionless 
constant. The value of the stress exponent can usually be correlated with a 
particular creep mechanism (e.g., n - 4-5 for dislocation climb). The 
diffusion coefficient, D, is given by: 



D =Do exp - (-2) 
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where Do is the pre-exponential constant, R is the universal gas constant, and 
QD is the activation energy for creep, which is often equal to the activation 
energy for diffusion. For a detailed discussion on the fundamentals of creep, 
the reader is referred to texts such as Evans and Wilshire (1993) and Meyers 
and Chawla (1999). 

In general, the addition of high stiffness reinforcement greatly increases the 
creep resistance over that of unreinforced alloys. The addition of the 
reinforcement also changes the creep deformation mechanisms, relative to 
the pure matrix. A schematic of typical creep curves (strain versus time) for 
MMCs with continuous and discontinuous reinforcement, is shown in Fig. 
9.1 (Lilholt, 1991). Composites with continuous fibers exhibit a short 
primary creep regime, followed by a long steady-state regime, Fig. 9.1. This 
behavior can be predicted by simple viscoelastic models, such as an isostrain 
model, where the matrix is modeled as the viscous component and the fiber 
is elastic. In the case of discontinuous reinforcement (short fibers or 
particles), a more typical creep curve is observed, with three distinct creep 
regimes, Fig. 9.1, since the degree of load transfer is not as high as that for 
continuous fibers. 

9.1 CONTINUOUS FIBER REINFORCED MMCs 

The creep strength of continuous fiber MMCs is usually significantly higher 
than that of the unreinforced alloy. Figure 9.2(a) shows creep strain versus 
time for Ti-6AI-4V/SiCf composite at temperatures ranging between 430 and 
650°C (Leyens et al., 2003). As mentioned above, the creep curves exhibit 
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Fig. 9.1 Schematic of creep strain versus time for fiber reinforced and 
discontinuously reinforced MMCs (after Lilholt, 1991). The three stages of 
creep are (I) primary creep, (11) steady-state creep, and (111) fast fracture. 
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Fig. 9.2 Creep behavior of Ti-6A1-4V/SiCf composite versus the unreinforced 
alloy: (a) creep strain versus time plots for temperatures ranging between 430 
and 650°C and (b) steady-state creep rate versus stress. The MMC exhibits 
significantly higher creep resistance, but much higher creep stress exponent, n, 
(after Leyens et al., 2003). 
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two stages during creep. At the highest temperature, 650°C, the creep strain 
increases exponentially with time. A plot of creep strain rate, & ,  versus 
stress, o, Fig. 9.2(b), shows that a much higher stress is required to induce a 
given creep strain in the composite, relative to the unreinforced alloy. The 
stress exponent, for the composite, however, is much larger (n - 20 for the 
composite, visd-vis n - 6 for the unreinforced alloy). The reasons for the 
anomalously high values of the stress exponent in the composite are 
explained later in this chapter. In general, off-axis creep results in poorer 
creep resistance (Ohno et al., 1994). At 45" large-scale shear deformation 
takes place in the matrix, while at 90' (transverse loading) interfacial 
debonding results in creep fracture. 

Bullock et al. (1977) studied the behavior of directionally solidified in situ 
composites of Ni-Ni3Al-Cr3C2. The creep rate was found to be inversely 
proportional to the scale of the eutectic microstructure, i.e., the mean fiber 
radius, h. The Hall-Petch relation was modified for creep rate and written as: 

where & is the creep rate, &, is the creep rate for h = oo , and K is a 
constant. A comparison of the experimentally-determined creep rates and the 
model prediction is presented in Fig. 9.3, showing reasonable agreement. 
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Fig. 9.3 Minimum creep rate versus inverse square root of fiber radius of 
directionally solidified in situ composites of Ni-Ni3Al-Cr3C2 (after Bullock et 
al., 1977). The creep rate follows a modified Hall-Petch relationship. 
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The evolution of load transfer during creep, from the creeping matrix to the 
rigid reinforcement (most fibers do not creep at temperatures at which the 
metal matrix creeps), has an important influence on the creep of the 
composite. As the matrix creeps, an increasing fraction of the load is 
transferred to the fibers, Fig. 9.4(a). Upon unloading, the load in the fiber 
and matrix decrease. The stress in the matrix, however, dips below zero and 
then increases slightly. This phenomenon is termed creep recovery. A three 
dimensional finite element model of a fiber reinforced MMC (Em = 60 GPa, 
Ef = 470 GPa, 15 vol.% of fibers, with a matrix deforming by power-law 
creep) illustrates this behavior very nicely, Fig. 9.4(b) (Sm-ensen et al., 
1992). 

The gradual transfer of load from the matrix to the fibers can be modeled by 
assuming that the fiber behaves elastically and that the matrix follows power 
law creep (& = Aon ). Then the creep rate of the composite is given by: 

where &, is the asymptotic creep strain, which is achieved when all of the 
load has been transferred to the fibers. It is given by: 

The creep behavior of the composite is also dependent on whether the matrix 
creeps faster than the matrix, €, > &, , or vice versa, Fig. 9.5. In the case of 
matrix creeping faster, one may expect the fibers to fracture first. In the 
reverse scenario, &f  > &, , the matrix should crack first, allowing the fibers 
to bridge the crack. 

Lilholt (1985) proposed analytical models for predicting the creep behavior 
of fiber reinforced MMCs. He considered two cases: (a) fiber elastic and 
matrix creeping, and (b) both and fiber and matrix creeping. Load transfer to 
the fibers was modeled using a modified shear-lag theory, with the matrix 
between the fibers deforming by shear, and matrix at the fiber ends 
deforming in tension. While pure metals undergo power-law creep, the local 
stress in the matrix of the composite is significantly higher, so an 
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Fig. 9.4 Evolution of load transfer during creep, from the creeping matrix to the 
rigid reinforcement: (a) schematic of experimental behavior and (b) three- 
dimensional finite element model (after Serrensen et al., 1992). As the matrix 
creeps, an increased fraction of the load is transferred to the fibers. Upon 
unloading, slight creep recovery in the matrix takes place. 
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Fig. 9.5 Creep behavior of fiber reinforced MMC. When the matrix creeps 
faster than the matrix, &, > &f , the fibers fracture first. For &f > &, , the 

matrix cracks first, allowing the fibers to bridge the crack. 

exponential law describing matrix creep was deemed to be more appropriate 
(at these stresses the power law breaks down). The exponential law was 
given by: 

where o is the applied stress, & is the creep rate, &, is a constant, Q is the 
activation energy for creep (taken here as the activation energy for 
dislocation glide), and o, is the strength of the glide obstacles at 0 K. The 
total composite strength was modeled as a sum of the following components: 

where om is the creep strength of the matrix, oth is a threshold stress for 
Orowan bowing of dislocations, and < o > is a mean stress that is directly 
proportional to the applied strain. Good agreement was obtained with 
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experimental results on model composites, such as Ni/Wf and 
Ni/NiAlf,CrsC2f. 

Goto and McLean (1989, 1991) modeled the creep behavior of continuous 
and short fiber reinforced MMCs, based on the nature of the fiberlmatrix 
interface, Fig. 9.6. If the fiberlmatrix interface is completely incoherent, 
Orowan loops will stop at the interface and climb parallel to the fiber length. 
This results in extensive recovery and very little hardening at the interface. It 
also results in extensive strain relaxation at the interface and contributes to 
slipping of the boundary. For the case of the completely coherent boundary, 
two cases exist. If the modulus of the matrix is greater than that of the fiber, 
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Fig. 9.6 Types of fiberlmatrix interface used in modeling creep behavior (after 
Goto and McLean, 1989, 1991): (a) weak interface, (b) ideal strength interface, 
and (c) work hardened interface. 
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i.e., Em > Ef, the dislocations are attracted to the boundary, the coherency is 
retained, although some slippage may take place. For the case of Em < Ef, the 
dislocation loops are repelled from the fiber and a work hardened zone is 
created that is not conducive to interface slipping. The results of their model 
showed that the work hardened boundary temporarily carries a large fraction 
of the load, prior to transferring it to the fibers. This results in an 
enhancement in creep life. The case for a weak interface did not appear to 
have a significant effect on creep behavior in continuous fibers, although it 
did affect the short fiber behavior. 

Aspects of fiber fracture and interfacial debonding were also analyzed by 
Lee et al. (1995). These authors conducted a parametric analysis of the creep 
behavior of SCSd fiber reinforced Ti matrix composites. They used an 
iterative computer simulation to determine the stress in the fiber and matrix 
at a given time. Models with single and multiple fibers were considered. 
Figure 9.7 shows two examples of numerical model predictions. Figure 
9.7(a) shows the case of composites with (i) no fiber fracture, (ii) fiber 
fracture but no interfacial debonding, and (iii) fiber fracture with interfacial 
debonding. As expected, the material with fiber fracture and interfacial 
debonding exhibits the highest creep strain, for a given time, while the 
composite with no fiber fracture is the most creep resistant. The effect of 
interfacial strength is illustrated in Fig. 9.7(b). Note that with increasing 
interfacial strength, creep of the matrix is more constrained, so the overall 
composite creep rate is lower. 

9.2 DISCONTINUOUSLY REINFORCED MMCs 

Dlouhy et al. (1993, 1995) examined the creep behavior of A1203 short fiber 
reinforced A17Si3Cu alloy matrix composites, processed by squeeze casting. 
Three major mechanisms for creep damage were proposed: (i) load transfer 
to the fibers through a work hardened zone (WHZ) some distance from the 
fiberlmatrix interface; (ii) diffusional/recovery mechanisms that result in a 
decrease in dislocation density in the WHZ; and (iii) multiple fiber fracture. 
The WHZ develops in the primary creep regime, which contributes to 
significant load transfer to the fibers. The recovery process results from 
dislocations moving to the fiber ends by combined climb and glide 
processes, Fig. 9.8. Figure 9.9 shows a comparison of the dislocation 
structure, in the matrix of the composite, in the as-processed condition and 
after creep deformation at 623 K, stress of 40 MPa, and rupture at 1.7% total 
strain. Note the much higher dislocation density at the fiberlmatrix interface 
after creep. The addition of Mg to the alloy resulted in the formation of 
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Fig. 9.7 Numerical analysis of creep behavior of SCS-6 fiber reinforced Ti 
matrix composite (after Lee et al., 1995): (a) effect of fiber fracture and 
debonding - fracture and debonding increase the creep rate of the composite; 
and (b) effect of interfacial shear strength, z - increasing interface strength 
increases the constraint on the matrix, which lowers the creep rate of the 
composite. 
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Fig. 9.8 Proposed mechanism for creep deformation in a fiber reinforced MMC 
(after Dlouhy et al., 1993, 1995). A dislocation bows around the fiber. The 
dislocation segment at the interface climbs parallel to the fiber axis and is 
annihilated at the fiber ends. 

matrix 

Fig. 9.9 Comparison of dislocation in the matrix of the composite in (a) the as- 
processed condition and (b) after creep deformation at 623 K, 40 MPa, and 
rupture at 1.7% total strain (courtesy of A. Dlouhy and G. Eggeler). Note the 
enhanced dislocation density at the fiberlmatrix interface after creep. 
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intermetallic particles at the fiberlmatrix interface (Dlouhy et al., 1993). The 
proposed effect of the particles at the interface was a longer effective path 
for recovery, and thus, an increase in creep strength. Eventually, the stress 
concentration caused by dislocation pile-up at the fiberlmatrix interface 
results in fiber fracture, see Figs. 9.10 and 9.1 1. This also aids in recovery 
because of matrix diffusion at the fiber cracks. Fiber fracture and the 
increase in recovery contribute to the onset of tertiary creep. By using 
springs (elastic behavior) and dashpots (viscoelastic behavior) to represent 
individual components of the material behavior, excellent correlation with 
the experiment was obtained. 

Fig. 9.10 Effect of dislocation pile-up at the fiberlmatrix interface during creep 
(after Dlouhy et al., 1993). The stress concentration caused by dislocation pile-up 
results in fiber fracture, aiding in recovery because of diffusion at the fiber 
cracks. 

Fig. 9.11 Fiber fracture (indicated by arrows) in A1203 short fiber reinforced 
A17Si3Cu alloy matrix composite during creep (courtesy of A. Dlouhy and G. 
Eggeler). The loading axis is horizontal. 
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While short fibers or whiskers provide significant creep strengthening, 
particulate reinforcement has also been used to enhance creep resistance. 
Nieh (1984) studied the creep behavior of 6061/SiC/2OP and 6061/SiC/2OW, 
and compared it to that of the unreinforced 606 1 alloy, Fig. 9.12. He noted a 
much higher creep resistance in the composite with an accompanying higher 
sensitivity to applied stress (much higher stress exponent n). Enhanced creep 
resistance was also obtained with the higher aspect ratio whiskers than with 
particles, presumably due to more effective load transfer from the matrix to 
the whisker of high stiffhess and large aspect ratio. Webster (1982) also 
characterized the creep behavior of the matrix alloy and its whisker 
reinforced composite with increasing temperature. At intermediate 
temperatures (500-720K) the strength was controlled by the whiskers, as the 
load was transferred to the high modulus and high aspect ratio 
reinforcement. The strength becomes matrix-controlled at very high 
temperatures (720-900 K), perhaps due to increasingly lower interfacial 
shear strength and lower efficiency in load transfer to the whisker 
reinforcement. Evidence of creep cavitation, predominantly at reinforcement 
particle clusters, has also been observed (Whitehouse et al., 1998). 

Krajewski et al. (1 993, 1995) studied the creep behavior of 22 19/TiC/15,-T6 
composites, and compared it to that of the unreinforced alloy. They found 
that the precipitate structure in the matrix of the composite had a dominant 
effect on controlling creep rate. The composite had a finer interprecipitate 
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Fig. 9.12 Creep behavior of 6061/SiC particle and whisker reinforced 
composites (afier Webster, 1982). Notice the higher creep resistance of the 
whisker reinforced material, due to more effective load transfer to the 
reinforcement. 
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spacing than that of the unreinforced alloy, due to indirect strengthening (see 
Chapter 7). Figure 9.13(a) shows the unreinforced precipitate structure in the 
matrix of the composite. The precipitates exhibit characteristic needle-like 
morphology observed in A1-Cu and Al-Cu-Mg alloys. After creep 
deformation at 250°C and 75 MPa, the precipitates serve as barriers for 
dislocation motion, Fig. 9.13(b). 

In unreinforced aluminum alloys, Sherby et al. (1977) showed that the creep 
behavior was proportional to the substructure grain size, a, to the third 
power, i.e., a3. They also concluded that in materials where a subgrain size 
during creep was relatively constant, the steady-state creep rate was better 
described by a stress exponent of 8, rather than the conventional value of 5 
for dislocation creep. Thus, the following equation was used to describe the 
steady state creep rate in pure aluminum: 

where S is a constant, E is the Young's modulus of the materials, and Deff is 
the effective diffusivity for creep. Krajewski et al. (1993, 1995) also found 
that the creep rate in 2219lTiCl15, composites was proportional to the 
interprecipitate spacing, in the matrix, to the third power. They rationalized 
this behavior by postulating that a substructure is formed due to the presence 
of the reinforcement, and the size of the substructure may be controlled by 
the interprecipitate spacing. 

The anomalously high values of the stress exponent, n, and activation 
energy, Q, can be rationalized by using the concept of a threshold stress 
(Webster, 1982; Nieh, 1984, Nardone and Strife, 1987). Nardone and Strife 
(1987) used the concept of a threshold stress, (TR, for creep deformation in 
composites. This theory was originally used to explain the high values for Q 
and n in dispersion-strengthened alloys (Davies et al., 1973; Parker and 
Wilshire, 1975; Nardone and Tien, 1986, Kerr and Chawla, 2004). By 
introducing the threshold stress, the general steady-state creep rate is 
modified to: 

where A is a constant, E is the elastic modulus of the composite, and Q is the 
activation energy. A methodology for determining the threshold stress from 
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Fig. 9.13 Precipitate structure in the matrix of a 2219/TiC/15,-T6 composite 
(after Krajewski et al., 1993): (a) as-processed and (b) after creep deformation 
at 250°C and 75 MPa. Note the interactions between dislocations and 
precipitates (courtesy of P. Kraiewski). 
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experiments is shown in an inset. 

The physical explanation for the threshold stress in discontinuously 
reinforced composites can be attributed to a variety of reasons (Dunand and 
Derby, 1993; Pandey et al., 1992): (1) Orowan bowing between particles, (2) 
back-stress associated with dislocation climb, and (3) attractive force 
between dislocations and particles, resulting from relaxation of the strain 
field of dislocations at the particlelmatrix interface (Arzt and Wilkinson, 
1986). Due to the higher work hardening rate of the matrix, i.e., the addition 
of particle decreases the volume of matrix material, increasing the word 
hardening rate relatively to the unreinforced alloy, the enhancement of 
dislocation/dislocation interactions can contribute to OR, although this 
mechanism is more plausible at ambient temperature. 

A threshold stress approach cannot always be used to explain the high stress 
exponents observed in MMCs. Load transfer to the reinforcement, despite 
the lower aspect ratios of particles and whiskers, is significant. With 
increasing load transfer to the reinforcement, the resolved shear stress on 
dislocations in the matrix may be lowered significantly below that required 
for Orowan bowing. Dragone and Nix (1992) studied the creep behavior of 
A1203 short fiber reinforced A1-5% Mg alloy between 200400°C. They also 
observed anomalously high values of stress exponent (n - 12-15) in the 
composites, while the unreinforced alloy exhibited much lower, typical 
values (n - 3), Fig. 9.14. The measured activation energy (225 Wmol) for 
the composites was also anomalously high. A threshold stress analysis 
showed that the contribution from Orowan bowing was very small. Using a 
model consisting of randomly oriented short fibers in the A1 alloy matrix, 
and considering the progressive damage to the fibers during creep, they were 
able to predict the experimentally-observed high values of stress exponent 
and activation energy. Dragone and Nix (1990) also noted that the 
arrangement of fibers had a significant effect on the degree of matrix 
constraint. A decrease in effective stress (increase in matrix constraint) was 
observed with increasing volume fraction, fiber aspect ratio, and degree of 
overlap between fibers. Figure 9.15 shows a decrease in the von Mises stress 
in the matrix with increasing volume fraction and aspect ratio of the short 
fibers. The stress and strain distributions in fiber and matrix with increasing 
time are shown in Fig. 9.16. The stress in the fiber increases steadily with 
creep, indicating load transfer from the matrix to the fiber. Localization of 
plastic stain begins at the sharp corner of the fiber and progresses at the 
fiberlmatrix interface normal to the loading axis. The normal and shear 
stresses at the fiber /matrix interface are also quite large, indicating that void 
growth or debonding may take place during the creep process. 
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Threshold Stress Analysis in Creep 

The threshold stress analysis can be illustrated as follows. The figure belou 
in part (a) (after Li and Langdon, 1998a), below, shows the experimenta' 
creep data for an A1 7005/A1203/20, composite, in terms of shear strain rate 
j ,  versus shear stress, z , between 573-773 K. As described above, the 
composite exhibits an increasing stress exponent with decreasing appliec 
stress. 

The next step is to find the "true" stress exponent. This is obtained bj  

plotting the data in terms of ?I1" for several values of n. The plot with the 
best linear fit is usually a good indication of the true stress exponent. In the 
current case, a stress exponent of - 4 was obtained, part (b) (after Li anc 
Langdon, 1998a). The exponent calculated from linear regression should be 
similar to that of the unreinforced alloy, where pure metallic behaviol 
applies (unless the matrix itself has some oxide dispersions, and behaves as s 
dispersion strengthened material). Linear extrapolation of the linear fits tc 
the x-axis yields the threshold stress of the material at a given temperature 

70 . 

In order to complete the analysis, the normalized creep rate is plotted versu: 
the effective stress, part (c) (after Li and Langdon, 1998a). The normalizec 
creep rate, from the Mukherjee-Bird-Dorn equation, is given by: 

The effective stress is the applied stress minus the threshold stress 
normalized by the temperature-dependence of the shear modulus: 

If the threshold stress values are correct, the above plot should "collapse" the 
data for all temperatures onto a single line with a slope equal to the true 
stress exponent. 
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Fig. 9.14 Comparison of creep behavior of A1-5Mg/A1203/26,f versus the 
unreinforced alloy (after Dragone and Nix, 1992). Anomalously high values of 
the stress exponent, n, were observed in the composite. 
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Fig. 9.15 Finite element model of creep in an A1203 short fiber reinforced A1 
alloy matrix composite (after Dragone and Nix, 1990). The von Mises stress in 
the matrix decreases with: (a) increasing volume fraction and (b) aspect ratio of 
the short fibers. 
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Fig. 9.16 Finite element model of creep in an A1203 short fiber reinforced A1 alloy 
matrix composite: (a) stress distribution and (b) strain distribution during, with 
increasing time (after Dragone and Nix, 1990; courtesy of W.D. Nix). The stress 
in the fiber increases steadily with creep, indicating load transfer from the matrix 
to the fiber. Localization of plastic stain begins at the sharp comer of the fiber and 
progresses at the fiberlmatrix interface normal to the loading axis. 

Other continuum-based unit-cell approaches have also been used to model 
creep of discontinuously reinforced metal matrix composites (Bao et al., 
1991; Davis and Allison, 1995; Atkins and Gibeling, 1995; Biner, 1996). 
Assuming a spherical particle and the power-law creep formulation for the 
metal matrix, Davis and Allison (1995) showed that the ratio of composite to 
matrix steady-state creep rates depends primarily on the volume fraction and 
geometry of the reinforcing phase, with the stress exponent of the composite 
and that of the matrix remaining relatively constant. The higher resistance to 
creep in the composite is largely attributed to the constrained matrix flow, 
leading to a reduced creep rate in the composite. Changes in modulus ratio 
of reinforcement to matrix affected the initial stress distribution and creep 
rates, but did not really affect the final creep rates. Higher modulus 
mismatch between reinforcement and matrix resulted in higher initial creep 
rates. Residual stresses due to thermal expansion mismatch also resulted in 
higher initial creep rates in the composite. 
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Other aspects of creep deformation, such as grain boundary sliding have also 
been included (Biner, 1996). It was shown that when the grains in the matrix 
were allowed to slide, that incorporation of the reinforcement resulted in an 
enhancement in stress in the matrix (described above) which can result in 
inhomogeneous grain boundary sliding. Figure 9.17(a) shows the evolution 
of grain boundary cavitation and sliding in a short fiber reinforced metal 
matrix composite. As described above, the strain concentration takes place at 
the pole of the reinforcement, which coincides with the onset of matrix grain 
cavitation. With increasing time, grain boundary sliding takes place at the 
cavities or facet cracks. This effect is accentuated with an increase in 
reinforcement aspect ratio, Fig. 9.17(b), as the local strain concentration in 
the matrix, immediately above the reinforcement, increases. Figure 9.18 
shows a comparison of predicted creep rates for (i) matrix exhibiting 
cavitation and sliding, (ii) composite exhibiting matrix cavitation and 
sliding, and (iii) composite exhibiting matrix cavitation without sliding. The 
unreinforced alloy has a higher creep rate than the composite. The composite 
with matrix sliding but no cavitation exhibits slower creep rates at lower 
stress, but the creep rates approach that of the matrix at relatively large 
stress. 

It has also been observed that below a critical strain rate diffusional 
relaxation around the Sic particles is the rate-controlling mechanism, while 
above this point, a greater degree of load is carried by the high stifhess 
particles (Zong and Derby, 1997). In addition to the threshold stress, 
additional proposed mechanisms for the anomalously high values of Q and n 
include power law break-down of the matrix (Zong and Derby, 1997; 
Lilholt, 1985) and interfacial decohesion at the particlelmatrix interface 
(Taya and Lilholt, 1986). The reinforcement may contribute to changes in 
the matrix during creep by localized recrystallization at corners or interfaces 
and precipitate coarsening at the particlelmatrix interface, where the density 
of precipitates is the highest (because of the greatest thermal mismatch stress 
upon cooling being at the interface). 

It is interesting to note that in powder processed composite materials, oxide 
dispersions (not present in the unreinforced alloy) may also contribute to 
extremely high "anomalous" values of n and Q (Park et al., 1990; Li and 
Langdon, 1998b). Park et al. (1990) suggested that the presence of fine oxide 
particles, incoherent with the matrix, arising from the powder metallurgy 
process used to fabricate the composite, served as effective barriers for 
dislocation motion and gave rise to a threshold creep stress. The high creep 
stress exponent and increase in exponent with decreasing applied stress were 
attributed to the oxide particles in the matrix. The work of Li and Langdon 
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Fig. 9.17 (a) Finite element modeling of grain boundary cavitation and sliding in a 
short fiber reinforced metal matrix composite (after Biner, 1996; courtesy of S. 
Biner). Strain concentration takes place at the pole of the reinforcement, which 
coincides with the onset of matrix grain cavitation. With increasing time, sliding 
takes place at the cavities or facet cracks. (b) Increase in reinforcement aspect 
ratio accentuates local strain concentration in the matrix. 
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Fig. 9.18 Finite element model comparison of predicted creep rates for (i) 
matrix exhibiting cavitation and sliding, (ii) composite exhibiting matrix 
cavitation and sliding, and (iii) composite exhibiting matrix cavitation without 
sliding (after Biner, 1996). The unreinforced alloy has a higher creep rate than 
the composite. The composite with matrix sliding but no cavitation exhibits 
slower creep rates at lower stress, but the creep rates approach that of the matrix 
at relatively large stress. 

(1998a) supports this conclusion. They add that in composites processed via 
ingot metallurgy, compared to powder metallurgy-processed composites of 
the same composition, viscous glide is the rate-controlling mechanism 
because of the absence of oxide particles. 

Li and Langdon (1998a) also proposed two separate classes of creep 
behavior in metal matrix composites. In class M (pure metal type) materials 
dislocation climb is the rate-controlling mechanism, with a stress exponent 
of around 5 and activation energy similar to the value for self-diffusion in 
the matrix. In class A (alloy type) metals, viscous dislocation glide is the 
rate-controlling mechanism, with a stress exponent of around 3 and an 
activation energy associated with the viscous drag of the solute atmospheres. 
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Exceptionally high creep rates were observed at the highest stress levels, 
perhaps due to dislocations breaking away from solute atom atmospheres (Li 
and Langdon, 1998b). It should be noted that in unreinforced solid solution 
alloys a transition occurs between class M behavior at low stresses to class A 
behavior at higher stresses (Yavari et al., 1981). 

Li and Langdon (1998a) derived an expression which can be used to 
determine the transition in material behavior from class M to class A: 

where o, is the effective stress, p is a constant associated with the relative 
contributions from various viscous glide processes, e is the solute-solvent 
size mismatch, r, is the stacking fault energy of the matrix, B is a constant, 
and D, and D,, are the diffusion coefficients for dislocation climb and glide, 
respectively. A graphical representation of this equation, for several material 
systems, is shown in Fig. 9.19. 

9.3 SUPERPLASTICITY 

Superplasticity can be defined as the ability of a material to undergo uniform 
very large plastic strains (> 100% strain) (Meyers and Chawla, 1999). The 

Fig. 9.19 Graphical representation of the trasition from class M (pure metal type) 
behavior class A (alloy type) behavior (after Li and Langdon, 1998a). 



330 Chapter 9 

stress (0)-strain rate (&) behavior of most materials can be described by the 
following equation: 

where K and m are constants, and m is termed the strain-rate sensitivity. For 
a newtonian viscous solid, m = 1. Thus, any enhancement in m will 
contribute to an enhancement in superplasticity. In most alloys, the 
microstructural requirement for a high value of m is a very fine grain size. 
This is because the large plastic strains attained in superplasticity are 
accommodated by grain boundary sliding (Ahmed and Langdon, 1977; 
Mohamed et al., 1977). 

Superplasticity has been demonstrated in particle reinforced metal matrix 
composites, such as Sic particle or whisker reinforced Al. Because of the 
lower ductility and higher strain hardening rates in these materials, 
conventional superplasticity by reduction in grain size is not feasible. Wu 
and Sherby (1984) used thermal cycling to generate internal stresses in the 
composite, due to thermal expansion mismatch between reinforcement and 
matrix. The internal stresses assisted plastic flow and increased the m 
exponent. Nieh et al. (1984) conducted isothermal forming in the solid-liquid 
region of the material, and were able to obtain 300% strain at relatively high 
strain rates (- 3x10-'1s). Mahoney and Ghosh (1987) studied the superplastic 
behavior of an Al-Zn-Mg-Cu matrix composite with Sic particles (about 5 
pm in diameter). They were able to achieve superplastic strains of 500% in 
the composite, compared to 800 % in the unreinforced alloy. Fig. 9.20 shows 
a plot of flow stress versus strain rate during superplasticity at 516OC. An 
increase in Sic volume fiaction resulted in an increase in the flow stress 
necessary for superplasticity. The flow stress versus strain rate behavior was 
divided into three regions, Fig. 9.2 1. The expected behavior of the composite 
is given by the dashed line. The measured flow stress, however, particularly 
in Region I, is much higher than the expected behavior. This was attributed 
to a threshold stress due to pinning of grain boundaries by the Sic particles. 
In Region 11, the strain rate sensitivity is the highest (highest value of m), 
while in Region 111, superplasticity is controlled by dislocation creep in the 
matrix. 

The measured activation energies during superplasticity are often higher than 
for lattice diffusion or grain boundary diffusion. Li and Langdon (1998~) 
showed that by incorporating the contribution of load transfer to the particles 
(through a threshold stress approach), the true activation energy was similar 
to that for grain boundary diffusion. Mishra et al. (1997) studied the 
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Fig. 9.20 Slow stress versus strain rate during superplasticity at 516OC of an A1 
alloy matrix composites reinforced with Sic  particles (after Mahoney and Ghosh, 
1987). An increase in S ic  volume fraction resulted in an increase in the flow 
stress necessary for superplasticity. 

Fig. 9.21 Schematic of flow stress versus strain rate behavior for MMCs and 
unreinforced alloy (after Mahoney and Ghosh, 1987). The expected behavior of 
the composite is given by the dashed line. The measured flow stress, 
particularly in Region I, is much higher than the expected behavior. In Region 
11, the strain rate sensitivity is the highest (highest value of m), while in Region 
111, superplasticity is controlled by dislocation creep in the matrix. 
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mechanisms for superplasticity in Si3N4 particle reinforced 2124 A1 matrix 
composites. In single phase materials, slip accommodation is provided by 
grin boundary sliding. In dispersion strengthened systems, where fine second 
phase particles are introduced, they pin the grain boundaries, so local 
diffusional relaxation around the particles must take place. In particle 
reinforced MMCs, however, the particles are larger than that in dispersion 
strengthened systems, so sliding is controlled by diffusional accommodation 
at the particlelmatrix interface. If strain accommodation does not take place, 
then cavitation will occur. Mahoney and Ghosh (1987) showed that for an 
increase in reinforcement fraction, the fraction of voids increases, for a given 
applied strain, Fig. 9.22(a). This can be explained by the increase in 
triaxiality of stress in the matrix due to the presence of rigid, non-deforming 
particles (see chapter 7). 

The onset of cavitation can be delayed by the superposition of a compressive 
hydrostatic pressure, which counteracts the triaxial tensile stress (Vasudevan 
et al., 1989; Lewandowski and Lowhaphandu, 1998). Figure 9.22(b) shows 
the delay in the onset of void growth, during superplasticity, by the 
superposition of a hydrostatic pressure. Mabuchi and Higashi (1999) 
suggested that a liquid phase during superplasticity my also decrease local 
stress concentrations and delay the onset of superplasticity. A large fraction 
of liquid phase is not desirable, however, since it will form a brittle 
intermetallic between the particle and matrix (see chapter 5), and cavitation 
will take place (Mishra et al., 1997). 
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Pig. 9.22 (a) Increase in degree of cavitaiton (void volume) with increase in Sic 
particles in an A1 alloy matrix composite (after Mahoney and Ghosh, 1987). If 
strain accommodation does not take place, then cavitation will occur. The 
increase in traixiality of stress in the matrix due to the presence of rigid, non- 
deforming particles results in cavitation. (b) Delay in the onset of cavitation 
results when a compressive hydrostatic pressure is superimposed, which 
counteracts the triaxial tensile stress. 
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