
Chapter 7 

MONOTONIC BEHAVIOR 

In this chapter we discuss the monotonic strengthening and fracture 
mechanisms of continuous fiber and discontinuously reinforced metal matrix 
composites. Cyclic fatigue and creep of MMCs are discussed in chapters 8 
and 9, respectively. 

7.1 STRENGTHENING MECHANISMS 

The monotonic strength and stiffness of MMCs is usually much higher than 
that of the unreinforced metal. Figure 7.1 shows a general schematic of the 
evolution of damage in a MMC during monotonic loading. Since the 
reinforcing phase typically is much stiffer than the matrix, a significant 
fraction of the stress is initially borne by the reinforcement. Microplasticity 
then takes place, at a fairly low stress, which corresponds to the original 
deviation from linearity in the stress-strain curve. This point is termed the 
proportional limit stress. Microplasticity in the composites has been 
attributed to stress concentrations in the matrix at the sharp ends of fibers, 
whiskers, and particles; or at the poles of the reinforcement (Goodier, 1933; 
Corbin and Wilkinson, 1994; Chawla et al., 1998b; Chawla et al., 2003). 
With increasing strain, microplasticity increases in magnitude to global 
plasticity in the matrix. The incorporation of reinforcement results in an 
increase in work hardening rate of the material, relative to the unreinforced 
matrix. The higher observed work hardening rate, relative to the 
unreinforced material, is a simple function of lower matrix volume (by 
incorporation of the reinforcement), and not necessarily due to a change in 
work hardening mechanisms. When the matrix is significantly work 
hardened, the matrix is placed under great constraint (i.e., a triaxial tensile 
stress develops) with an inability for strain relaxation to take place. This 
causes the onset of void nucleation and propagation, which take place at a 
lower far field applied strain than that observed in the unreinforced material. 
With the onset of void growth in the matrix, the stress in the reinforcement 
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Fig. 7.1 Schematic of damage evolution in MMCs under tensile loading. 

approaches its fracture stress, which results in particle fracture and fracture 
of the composite. It should be pointed out that the damage evolution will 
also be very much influenced by the strength and nature of the 
reinforcementlmatrix interface, as discussed in sections 7.2 and 7.3 below. 

7.1.1 Direct Strengthening 

The strengthening mechanisms observed in MMCs may be divided into two 
broad categories, direct and indirect strengthening. Direct strengthening 
takes place primarily in continuous fiber reinforced composites, but also 
takes place in discontinuously reinforced composites. Under an applied load, 
the load is transferred from the weaker matrix, across the 
matrixlreinforcement interface, to the typically higher stiffness 
reinforcement (Cox, 1952; Kelly and Lilholt, 1969; Cheskis and Heckel, 
1970; Kelly, 1973; Chawla, 1997; Chawla and Shen, 2001). In this manner, 
strengthening takes place by the reinforcement "carrying" much of the 
applied load. This is shown schematically in Fig. 7.2. Let's assume a single 
high stiffness fiber embedded in a lower modulus matrix. The composite is 
loaded without direct loading of the fiber itself. If a set of parallel imaginary 
lines are drawn on the composite, after loading the lines will become 
distorted because of the shear stresses generated by differing axial 
displacements in fiber and matrix. Thus, load transfer to the fiber occurs by 
means of shear strains in the matrix. 
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Let us consider the case of a purely elastic fiber in an elastic matrix 
mathematically, Fig. 7.3. Let u be displacement in the matrix in the presence 
of the fiber, at a distance x from one end, and let v be the displacement at x 
in the absence of the fiber. If Pfis the normal load on the fiber, then we can 
write the following expression for load transfer from the matrix to the fiber: 

where B is a constant that is a function of fiber arrangement and matrix and 

Fig. 7.2 A single fiber embedded in a matrix with lower modulus: (a) 
unstressed state and (b) stressed state. The imaginary vertical lines become 
distorted, indicating shear strains at the interface and load transfer to the 
fiber. 

Fig. 7.3 A single fiber embedded in a cylindrical matrix shell subjected to an 
axial strain, e, which causes displacements in the fiber (u) and in the matrix (v). 
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fiber properties. The exact expression for B is described later in this section. 
Differentiating eq. 7.1, we get: 

du 
where - is the strain in fiber = - Pf and 

dx E f A, 

dv - is the strain in the matrix away from the fiber = e, imposed strain 
dx 

Equation 7.2 can be rewritten as: 

This second-order differential equation has the following solution: 

where p = - 
,LYEf 

In order to evaluate the integration constants, S and T, we apply the 
boundary conditions, Pf = 0 at x = 0 and x = l. Using half-angle 
trigonometric relations we obtain the following result: 
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The maximum possible value of strain in the fiber is the imposed strain, e, so 
the maximum stress in the fiber is eEf. The parameter P is a measure of how 
fast the load is transferred from the matrix to the fiber from the two ends. A 
value of p = 0.5 indicates a linear dependence of load transfer. If we have a 
long enough fiber, Fig. 7.4, the stress in the fiber will increase from both 
ends to a maximum value of the ultimate tensile strength of the fiber, i.e., 
o, = Efe .  Only a portion of the fiber (in the center) will be under the 
maximum stress. The average stress in the fiber, then, can be written as: 

We can obtain the variation of shear stress, z, along the fiberlmatrix interface 
by considering the equilibrium of forces acting over an element of fiber 
(radius rf). Thus, we can write, from Fig. 7.4: 

Let us now consider the variation of shear stress, z, along the fiberlmatrix 
interface. We can obtain an expression for the interfacial shear stress by 
considering the equilibrium of forces over an element of fiber. The tensile 
load on the fiber, Pf, is equal to Pf = of mf'. Substituting this into eq. 7.4 we 
get: 

From eqs. 7.3(b) and 7.5 we obtain: 
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Pig. 7.4 Tensile stress (o) and shear stress (7) distribution in a single fiber 
embedded in a cylindrical matrix shell. 

Figure 7.4 shows the variation of z and o with distance x. At the ends of the 
fiber, the axial stress is zero. It increases until it reaches of, in the center of 
the fiber (assuming a sufficiently long fiber that will enable the stress to 
build to of,,). The shear stress is a maximum at the fiber ends, and a 
minimum in the center of the fiber. Such a stress distribution has also been 
confirmed by finite difference technique (Terrnonia, 1987) and by micro- 
Raman spectroscopy for polymer matrix composites (Young, 1994). 

We now return to the expression for the constant B, which is a function of 
fiber packing geometry. In Fig. 7.4 we note that 2R is the average center-to- 
center fiber spacing. Let z(r) represent the shear stress at a distance r from 
the fiber axis. Then at the fiber surface we can be written as: 
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Or 

Consider now the equilibrium of forces on volume of matrix material 
between rf and R. We can write: 

2nrz(r) = constant = 2.nrfz(rf) 

The shear strain in the matrix at a distance r is given by: 

where Gm is the shear modulus of the matrix and y is the shear strain in the 
matrix. The shear strain in the matrix is given by 

where w is the real displacement in the matrix at any distance r. Integrating 
the above expression between the surface of the fiber, rf and the outer radius 
of the matrix, R, gives us the total displacement in the matrix: 

We can also write for the total displacement as: 

From Eqs. (7.7) and (7.8), we obtain the following relationship: 
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From Eqs. (7.6) and (7.9), we get: 

B is related to load transfer parameter P as follows: 

The ratio R/rf is a function fiber packing. For a square array and hexagonal 
array of fibers, we can write the following two expressions: 

A more general, maximum fiber packing factor, $,,, can also be introduced 
into the above equation: 

Substituting into Eq. (7.1 I), we get: 
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From the discussion above, it can be seen that in order to load the fibers to 
their ultimate tensile strength, the matrix shear strength must be relatively 
high. The maximum shear stress will be the smaller of the following two 
stresses: (a) yield stress of the matrix in shear and (b) shear strength of the 
fiberlmatrix interface. In MMCs, the interface shear strength is quite high, so 
plastic yielding of the matrix will take place first. If we assume that the 
matrix does not work-harden, the matrix shear yield strength, 2, will control 
the load transfer. Then, the equilibrium of forces over a fiber length el2 
(since the fiber is loaded from both ends) gives us the following relation: 

The term Ud is called the aspect ratio of the fiber. Given a sufficiently long 
fiber, it should be possible to load the fiber to its ultimate tensile strength, 
of,, by means of load transfer through the plastically deforming matrix. 
Thus, in order to load the fiber to of,, a critical aspect ratio of fiber is 
required, (Ud),, which is obtained by rewriting Eq. (7.12): 

Thus, in order to load the fiber to of, at a single point, t must be equal to 8,. 
In order to load a larger fraction of the fiber to of,, 8 should be much larger 
than t,. Thus, load transfer is more efficient in composites with large aspect 
ratio reinforcement, such as continuous fibers or whiskers. Due to the lower 
aspect ratio of particulate materials, load transfer is not as efficient as in the 
case of continuous fiber reinforcement, but is still significant in providing 
strengthening (Nardone and Prewo, 1986; Davis and Allison, 1993; Chawla 
et al., 1998a; Chawla et al. 2000). 

Nardone and Prewo (1986) proposed a modified shear lag model for load 
transfer in particulate materials, Fig. 7.5. The model incorporates load 
transfer from the particle ends, which is neglected in fiber reinforced 
composites because of the large aspect ratio. The yield strength of the 
particulate composite, o,,, is increased over the matrix yield strength, om,: 
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Fig. 7.5 Schematic of modified shear lag analysis used to quantify load transfer 
in low aspect ratio particles (after Nardone and Prewo, 1986). 

where S is the aspect ratio of the particle (equal to the particle length, L, 
divided by the particle thickness, t, for a rectangular particle), V, is the 
volume fraction of particles, and V, is the volume fraction of matrix. Note 
that this relation does not account for particle size or matrix microstructure 
effects on load transfer. 

7.1.2 Indirect Strengthening 

Indirect strengthening arises from a change in matrix microstructure and 
properties due to the addition of reinforcement. In this section we describe 
some possible sources of indirect strengthening. Thermal expansion 
mismatch between reinforcement and matrix can result in internal stresses 
whenever there is a temperature change (e.g., during cool down from 
processing or during service). Such a mismatch is generally present in all 
kinds of composites. It is a very important feature of MMCs comprised as 
they are of a high coefficient of thermal expansion (CTE) metallic matrix 
and a low CTE ceramic reinforcement. If the thermal mismatch-induced 
stress is greater than the yield stress of the matrix, upon cooling, dislocations 
form at the reinforcement/matrix interface because plastic deformation in 
common metals occurs via dislocations. In this manner, thermally-induced 
dislocation punching results in "indirect strengthening" of the matrix 
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(Chawla and Metzger, 1972; Chawla, 1973a; Chawla, 1973b; Vogelsang et 
al., 1986; Arsenault and Shi, 1986; Dunand and Mortensen, 1991). Chawla 
and Metzger (1972) showed this effect in W fiber reinforced Cu single 
crystal matrix composites. The density of dislocations in the matrix was 
measured (by an etch pitting technique) as a function of distance from the 
fiberlmatrix interface, for composites with various volume fractions of W 
fiber, Fig. 7.6(a). With increasing volume fraction, the dislocation density in 
the matrix increased. The dislocation density was also highest in the 
interface region because the thermal stresses between fiber and matrix in the 
interface region are the highest. The three-dimensional thermal stress model 
described in chapter 6 can be used to explain the distribution of dislocation 
density in the matrix. Fig. 7.6(b) shows thermally-induced slip lines in the 
polycrystalline Cu matrix in a WICu composite that was thermally cycled 
between room temperature and 450°C. Dunand and Mortensen (1991) used a 
model system of glass fiber reinforced AgCl to study dislocation punching 
due to thermal mismatch. The AgCl matrix is optically transparent and the 
dislocations can be seen emanating from the fiber, Fig. 7.7. The degree of 
thermally-induced dislocations can also be exacerbated by the degree of 
fiber roughness (Isaacs and Mortensen, 1992). 

Arsenault and Shi (1986) developed a model to quantify the degree of 
dislocation punching that takes place due to CTE mismatch between a 
particle and matrix, Fig. 7.8. The dislocation density generated due to the 
mismatch is given by: 

where A is a geometric constant, b is the Burgers vector, d is the diameter of 
the particle, V, is the particle volume fraction, and E is the thermal misfit 
strain equal to AaAT. The incremental increase in strength due to dislocation 
punching, then, can be written as: 

where B is a constant and G is the shear modulus of the matrix. Substituting 
in Eq. 7.14, we can write A o  as: 
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Fig. 7.6 (a) Dislocation density in W fiber reinforced Cu matrix 
composites, as a h c t i o n  of distance from the fiberlmatrix interface. 
With increasing volume fraction of fiber, the thermal stress mismatch 
at the interface increased, resulting in a higher dislocation density (after 
Chawla and Metzger, 1972). (b) Thermally-induced slip lines in the Cu 
matrix. 
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Fig. 7.7 Thermally-induced dislocation punching in a model glass fiberIAgC1 
system (Dunand and Mortensen, 1991). Note the high density of dislocations at 
the interface, and the punching of dislocation loops from the fiber ends 
(courtesy of A. Mortensen and reprinted with permission of Elsevier Ltd.). 

punched 
dislocations 

Fig. 7.8 Schematic of model used to quantify the degree of dislocation punching 
that takes place due to CTE mismatch between particle and matrix (after 
Arsenault and Shi, 1986). 
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where S is the aspect ratio of the particle and the other symbols have the 
significance given above. Inspection of Eq. 7.15 shows that the degree of 
indirect strengthening is directly proportional to volume fraction and 
inversely proportional to particle size. Thus, a larger degree of interfacial 
area (i.e., smaller particle size) will result in enhanced dislocation punching. 
This is shown schematically in Fig. 7.9. Note that for a constant volume 
fraction of 0.3, a significant enhancement in indirect strengthening is 
observed for particles of 3 pm diameter, vis-his  particles of 100 pm 
diameter 

In age-hardenable matrix materials, the thermally-induced dislocations 
(formed upon quenching from the solution treatment) serve as heterogeneous 
nucleation sites for precipitate formation during the aging treatment (Suresh 
and Chawla, 1993). Not only is there a preferential distribution of 
precipitates in the particletmatrix interface region, but the higher density of 
dislocations also causes an acceleration in the time to peak-age compared to 
the unreinforced alloy of the same composition. 

In composites processed by liquid phase routes, the matrix grain size can be 
much finer than that of the unreinforced alloy, due to pinning of grain 
boundaries by the particles or Zener pinning (Humphreys, 1977; 
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Fig. 7.9 Increase in yield strength due to dislocation punching, as predicted by 
the model of Arsenault and Shi (1986). The degree of strengthening is 
significantly influenced by particle size, for a given volume fraction. 
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Humphreys, 1991). Differences in matrix texture may also result by the 
incorporation of reinforcement, for example, in deformation processed 
materials (see chapter 4). 

Separating and quantifying the contributions of direct and indirect 
strengthening, to the overall composite strength is a challenge. The extent of 
indirect strengthening is more difficult to quantify than the contribution from 
direct strengthening. One way to separate the two types of strengthening is 
to process composites such that the matrix microstructure is similar to that of 
the unreinforced alloy. Krajewski et al. (1993), used a thermomechanical 
treatment in A1 2080/SiC,, consisting of solution treating, rolling, followed 
by aging (T8 treatment) to provide a homogeneous distribution of 
dislocations (and subsequently precipitates) in both the matrix of the 
composite and the unreinforced alloy. In such a situation, the difference in 
strengthening between unreinforced alloy and composite was attributed 
primarily to load transfer to the reinforcement (Chawla et al., 1998a). This is 
shown in Fig. 7.10. Chawla et al., (1998a) showed that in T8 matrix 
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Fig. 7.10 Yield strength vs. volume fraction of Sic particles in 2080/SiC, 
composite (after Chawla et al., 1998a). The rolled and aged materials (T8 
matrix composites) have similar microstructure to the unreinforced T8 alloy. T6 
matrix composites are aged only, so their microstructure is different from 2080- 
T6. The experimental increase in yield strength in T8 materials correlated well 
with predictions from the modified shear lag model. In T6 matrix composites, 
the strength of the composite consisted of contributions of both indirect and 
direct strengthening. 
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composites, the experimental increase in yield strength correlated well with 
predictions from the modified shear lag model. In composites that were 
solution treated, quenched, and aged (T6 heat treatment), the strength of the 
composite consisted of contributions of both indirect and direct 
strengthening, Fig. 7.10. 

7.2 MONOTONIC BEHAVIOR OF CONTINUOUS FIBER 
REINFORCED MMCS 

The monotonic strength and damage evolution in continuous fiber reinforced 
MMCs are dependent on several factors: 

Fiber characteristics. The volume fraction, strength, and relative 
orientation of the fibers, with respect to the loading axis. 

Strength and nature of the interface. Interfacial strength has a 
significant effect on the strengthening and damage tolerance of 
continuous fiber reinforced MMCs. Interfacial reactions between fiber 
and matrix, and fiber dissolution, may be detrimental to the strength of 
the composite. Preferential precipitation at the interface, in age- 
hardenable systems, can have mixed effects on strength. 

Matrix work hardening and strength characteristics. Of particular 
importance are the changes in matrix microstructure, during processing, 
due to the incorporation of the reinforcement (i.e., indirect 
strengthening, described above). 

We now examine each of the three main factors described above. 
Continuous fiber reinforced MMCs exhibit very high strength in the 
direction parallel to the fibers, but comparatively low strength perpendicular 
to the fiber direction. Figure 7.1 1 shows the anisotropy in strength of Al- 
2.5LilA1203,fcomposites, parallel to the fibers (0') and perpendicular to the 
fiber direction (90°), in both tension and compression (Schulte and 
Minoshima, 1993). Clearly, along the axis of the fibers the degree of 
strengthening from the fibers will be much higher than that perpendicular to 
the fiber direction. The mechanical properties of fiber reinforced metal 
matrix composites are also very much dependent on the strength of the 
fiberlmatrix interface. Figure 7.12 shows a schematic of damage for the case 
of a relatively weak fiberlmatrix interface and that of a relatively strong 
interface. When a fiber fractures in the composite with a weak interface, 
fiber debonding and crack deflection take place. These local energy- 
absorbing mechanisms allow for uniform redistribution of the load, 
originally borne by the fractured fiber, to the surrounding fibers. This 
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Fig. 7.11 Anisotropy in strength of A1-2.5Li/A1203,fcomposites, parallel to the 
fibers (0") and perpendicular to the fiber direction (90°), in (a) tension and (b) 
compression (after Schulte and Minoshima, 1993). 
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Global Load Sharing 

Fig. 7.12 Schematic of damage for the case of: (a) relatively strong fiberlmatrix 
interface, resulting in local load sharing and coplanar failure, and (b) relatively 
weak interface, where global load sharing is observed, and fiber debonding and 
matrix shear are predominant. 

condition is called global load sharing (Curtin, 1993). When the interface 
strength is very large, fiber fracture will not result in debonding and crack 
deflection. Rather, the load cannot be redistributed homogeneously, so the 
single fiber fracture will result in precipitous fracture of adjacent fibers. As 
the neighboring fibers fracture, more and more fibers will continue to 
fracture until the composite fails. This series of successive fiber failures due 
to localization of strain around a single fiber results in local load sharing 
(Gonzalez and LLorca, 2001). It should be noted that a very weak interface 
is also not desirable in MMCs. Such an interface would not allow efficient 
load transfer from the matrix to the fiber. 

Whether a composite exhibits global or local load sharing behavior may also 
be influenced by the work hardening characteristics of the matrix. A matrix 
with high strain hardening rate would be less conducive to plastic relaxation 
of the stress concentration around the fractured fiber. Thus, more brittle 
matrix materials are more conducive to local load sharing and a lower 
ductility. Figure 7.13 shows a comparison of A1/A1203/60f and 
606 1/A1203/60f fiber reinforced composites (Devk and McCullough, 1995). 
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Fig. 7.13 Tensile stress-strain comparison of A1/Al2O3/6Of and A160611 
A1203/60f fiber reinforced composites (after Devt and McCullough, 1995). The 
high interfacial shear strength and higher matrix work hardening rate of the 
A16061 matrix, resulted in a much lower ductility and strength than the 
composite with pure A1 matrix. 

Because of the combined effects of high interfacial shear strength and higher 
matrix work hardening rate of the A1 6061 matrix, this composite has a much 
lower ductility and strength than the composite with the pure A1 matrix. 
Voleti et al. (1998) used a finite element model of a composite consisting of 
a broken fiber surrounded by the matrix and an intact fiber. They showed 
that the stress concentration in the intact fiber was influenced by both 
interfacial debonding and matrix plasticity surrounding the broken fiber. If 
fiber fracture takes place at very low strains (much below the onset of global 
plasticity), then the matrix plasticity "propagates" toward the intact fiber 
resulting in a large degree of stress elevation. Interfacial debonding, on the 
other hand, reduces the stress concentration around the fractured fiber and 
the intact fiber. 

The degree of global load sharing is also a function of strain rate. Galvez et 
al. (2001) tested large diameter Sic fiber reinforced Ti-6A1-4V matrix 
composites at strain rates ranging between 2xl0-~ and 500 s-'. It was shown 
that at very high strain rates local load sharing conditions were predominant, 
and a lower composite ductility was observed. Lower strain rates were more 
conducive to allowing a gradual redistribution of the load, so global load 
sharing was observed. Microstructural observations showed that at low strain 
rates the carbon coating on the Sic fiber resulted in crack deflection at the 
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interface, while at very high strain rates the cracks penetrated the coating. 
These authors did not, however, observe a strain rate dependence on strength 
of the composite. 

Guden and Hall (2000) noticed significant increases in compressive flow 
stress and strength with increasing strain rate in A1/A1203,f composites. The 
strain rate sensitivity was observed in both longitudinal and transverse 
orientations. The strain rate sensitivity of transverse strength was attributed 
to the matrix strain rate sensitivity, while that in the longitudinal direction 
was due to strain rate dependent fiber buckling. In static compression, 
significant kinking and buckling of the fibers also takes place (Deve, 1997). 
Unfortunately, while relatively weak interfaces are conducive to global load 
sharing and thus, high tensile strength and ductility, they are quite 
detrimental to the transverse properties of the composite (Jansson et al., 
1991; McCullough et al., 1994; Bushby, 1998). This can be explained by the 
fact that, under transverse loading, the weak interfaces are perpendicular to 
the applied load. Similar observations have been made for Al2O3 fiber1Mg 
matrix composites under off-axis loading (Hack et al., 1984). 

7.2.1 Criteria for Debonding and Crack Deflection at an Interface 

In MMCs, as well as in other types of composites, interfacial bonding affects 
the fracture behavior of the composite. In very general terms, a strong 
interfacial bond will allow an oncoming crack to go unimpeded through the 
interface and the composite will fail, more or less, in one plane and in a 
brittle manner. The interaction of a crack with a weak interface, on the other 
hand, is likely to lead to debonding at the interface, followed by crack 
deflection, crack bridging, fiber fracture, and finally fiber pullout. These are 
all energy absorbing phenomena that contribute to enhanced fracture 
toughness and a non-catastrophic failure mode. 

A strength-based model for crack deflection or the formation of secondary 
crack at a weak interface was first proposed by Cook and Gordon (1964). 
They analyzed the problem of crack deflection at an interface between 
materials of identical elastic constants, i.e., the same material joined at an 
interface. Consider a crack advancing perpendicular to the fiberlmatrix 
interface. Cook and Gordon (1964) estimated the strength of the interface 
necessary to cause a diversion of the crack from its original direction. At the 
tip of a crack, there exists a triaxial state of stress (plane strain) or a biaxial 
stress (plane stress), see Fig. 7.14. The principal stress component, o,, has a 
very high value at the crack tip, and decreases sharply with distance from the 
crack tip. The stress component acting normal to the interface, ox, is zero at 
the crack tip. It rises to a maximum value at a small distance from the crack 
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tip and then falls off in a manner similar to o,. If the tensile strength of the 
interface is less than the maximum value of ox, then the interface will fail in 
front of the crack tip. According to the estimates of Cook and Gordon, an 
interface with strength equal to or less than 115~ of ox will result in the 
opening of the interface in front of the crack tip. 

One can also analyze the interaction between a crack and an interface in 
terms of a fracture energy parameter instead of strength (He and Hutchinson, 
1989). Two materials meeting at an interface are more than likely to have 
dzferent elastic constants. The modulus mismatch leads to shearing of the 
crack surfaces. This results in a mixed-mode stress state in the vicinity of an 
interface crack tip involving both the tensile and shear components. This, in 
turn, results in mixed-mode fracture, which can occur at the crack tip or in 
the wake of the crack. Figure 7.15 shows this crack front and crack wake 
debonding in a fiber reinforced composite. What this means in practical 
terms is that instead of a simple, one parameter description by the critical 
stress intensity factor KIc, one needs a more complex formalism of fracture 
mechanics to describe the situation in the composite. The parameter K under 
such a situation becomes scale sensitive, but the critical strain energy release 
rate, GI,, is not a scale sensitive parameter. The strain energy release rate, G 
is a function of the phase angle, y ,  which is a function of normal and shear 
loading. 

One needs to specify G and y to analyze the debonding at the interface. G 
and y are related, through the so-called Dundurs parameters, a and P as 
defined below: 

The parameter a can also be defined as: 
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Fig. 7.14 Stress distribution at a crack tip under a uniaxial applied stress in the 
y-direction (after Cook and Gordon, 1964). o, has a very high value at the 
crack tip, and decreases sharply with distance from the crack tip. The stress 
component acting normal to the interface, ox, is zero at the crack tip; it rises to 
a maximum value at a small distance from the crack tip and then falls off in a 
manner similar to o,. 

Fig. 7.15 Crack front and crack wake debonding in a fiber reinforced 
composite under a far field, uniaxial stress, o. Note the interfacial shear stress, 
.c causing sliding and triaxial state of stress at the crack tip. 
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In the above expressions, v is the Poisson's ratio, E is Young's modulus, and 
the subscripts 1 and 2 refer to the interface and fiber, respectively. The 
expression for the phase angle, yr ,  in terms of the elastic coefficients of the 
two media, radius r f?om the crack tip, and the displacements, u and v, at the 
crack tip is as follows: 

These expressions have been used by several researchers (Ruhle and Evans, 
1988; He and Hutchinson, 1989; Evans and Marshall, 1989; Gupta et al., 
1993; Chan, 1993) to analyze the conditions for fiber/matrix debonding in 
terms of the energy requirements. Without going into the details of the 
model, the main message of such a plot is to display the conditions under 
which the crack will deflect along the interface or penetrate through the 
interface into the fiber. The chart of Gi/Gf vs. a is shown in Fig. 7.16. Gi is 
the mixed- mode interfacial fracture energy of the interface, Gf is the mode I 
fracture energy of the fiber, and a is a measure of elastic anisotropy as 
defined above. For opening mode or mode I, y, = 0" while for mode 11, u/ = 

90". For all values of Gi/Gf below the line, interfacial debonding is predicted. 
For the special condition of a = 0, i.e., zero elastic mismatch, the model 

Fiber 
Failure 

\ I Oebonding 

ELASTIC MISMATCH, d 
Fig. 7.16 A chart of relative energies, GJGf vs. elastic mismatch, a (after 
Evans and Marshall, 1989). 
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predicts debonding at the fiberlmatrix interface for Gi/Gf less than about 
0.25. Conversely, for Gi/Gf greater than 0.25, the crack will propagate across 
the fiber. In general, for the elastic mismatch, a greater than zero, the 
minimum interfacial toughness required for interface debonding increases, 
i.e., high modulus fiber tends to favor debonding. 

Gupta et al. (1993) have also derived strength and energy criteria for crack 
deflection at a fiberlmatrix interface for several composite systems. They 
took due account of the anisotropic nature of the fiber as well as the fact that 
a crack can deflect along the interface in one direction (singly) or two 
directions (doubly). Their experimental technique involved laser spallation 
of a film from a substrate and the measurement of displacement by a 
sophisticated laser Doppler displacement interferometer. This technique 
allows the measurement of the tensile strength of the planar interface 
between the film and the substrate. The strength determined in the laser 
spallation experiment is thought to be independent of any inelastic processes 
because the interface separation takes place at a very high strain rate, about 
lo6 s-'. The tensile strength determined in this fashion is then related to the 
intrinsic interface toughness. According to the analysis of Gupta et al., for 
most pairs of materials, the energy release rate is higher for the doubly 
deflected crack than that for the singly deflected case. In this formulation, a 
generalized interface delamination chart based on the energy criterion cannot 
be made. However, the authors did provide the ratio of energies of crack 
deflection and crack penetration for a few chosen interface systems (Gupta, 
1991; Gupta et al., 1993). 

7.2.2 Work Done in Fiber Pullout 

Fiber pullout can be an important feature of the failure process in fiber 
reinforced composites. We now derive an expression for the work done in 
the pullout process. Consider the situation depicted in Fig. 7.17. Let us say 
that the fiber, of diameter d, fractures at some distance k below the main 
crack plane, such that 0 < k < tJ2, where t, is the critical length for load 
transfer. Locally, debonding of the fiberlmatrix interface occurs. When the 
fiber is pulled out of the matrix, an interfacial frictional shear stress, zi, will 
be generated. In our simple analysis here, we assume that this shear stress, zi, 
resisting fiber sliding is a constant. More complex treatments involving a 
Coulomb friction law governing fiber sliding resistance (Shetty, 1988; Gao 
et al., 1988) and treatments taking into account residual stresses are available 
in the literature (Cox, 1990; Hutchinson and Jensen, 1990; Kerans and 
Parthasarathy, 199 1). 
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Fig. 7.17 Fiber pulled out through a distance x after fiber fracture. A shear 
stress, .ri, comes into play at the interface during pullout. 

Let the fiber be pulled out a distance x. The interfacial shear force opposing 
this motion of fiber is zi nd (k - x), where nd (k - x) is the cylindrical surface 
area over which the shear stress is acting. Let the fiber be pulled out through 
a small distance dx. Then the work done by the interfacial shear force is zind 
(k - x) dx. The total work done in the fiber pullout process over the length k 
is obtained by integration: 

The length of the fiber pulled out will vary between 0 and tc/2, where t, is 
the critical length for load transfer. Therefore, the average work done in the 
fiber pullout process is: 
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This expression assumes that all of the broken fibers are pulled out. 
Experimental observations, however, show that only fibers with broken ends 
within a distance tc12 from the principal fracture plane undergo pullout. 
Thus, we should expect a fraction (e,lt) of fibers to pullout, and the average 
work done per fiber in fiber pullout can be written as 

7.2.3 Effect of Interfacial Reactions on Monotonic Behavior 

In chapter 4, we described the general features of the interface and provided 
some examples of interfacial reactions in MMCs. Here we explore the 
effects of interfacial reactions on the monotonic properties of MMCs. 
Interfacial reactions can play an important role in damage of continuous 
fiber reinforced MMCs (Page et al., 1984). In Ti matrix composites 
reinforced with SCS-6 fibers, the C-rich fiber coating reacts with the Ti 
matrix to form layers of brittle Tic  and Ti& (Konitzer and Loretto, 1989; 
Leyens et al., 2003). In B fiber reinforced Al, A1B2 is formed at the interface 
at temperatures as low as 500°C (Grimes et al., 1977). Tensile loading in the 
longitudinal axis results in circumferential cracks in the reaction layer, 
which severely impair the strength of the composite (Grimes et al., 1977; 
Mikata and Taya, 1985; Kyono et al., 1986). Figure 7.18(a) shows that the 
longitudinal strength decreases with increasing exposure time at 500°C 
(Kyono et al., 1986). In the transverse orientation, however, Figure 7.18(b), 
there was a slight increase in strength. This is because the damage 
mechanisms in transversely loaded composites were quite different. Here, 
the fracture surfaces of as-fabricated samples showed significant interfacial 
debonding. With increasing exposure time and an increase in the reaction 
layer thickness, the interface strength increased, so microcracks formed in 
the reaction layer and propagated through the boron fiber, resulting in fiber 
splitting. 

Transverse strength may also be affected by binders used to densify the 
matrix of the composite. Eldridge et al. (1997) fabricated sapphire fiber 
reinforced NiAl matrix composites with and without a polyrnethyl 
methacrylate (PMMA) organic binder. Transverse fracture surfaces showed 
that the composites with the binder exhibited a large amount of carbon 
residue at the fiberlmatrix interface, which prevented a strong interfacial 
mechanical bond and led to low interfacial strength, Fig. 7.19(a). 
Composites processed without binder had a much "cleaner" fracture surface, 
Figure 7.19(b), and stronger bond strength. 
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Exposure time at 50BC (h) 

Exposure time at 50BC (h) 

Pig. 7.18 Effect of exposure time at 500°C on the tensile behavior of A D f  
composites in (a) longitudinal orientation and (b) transverse orientation (after 
Kyono et al., 1986). A1B2 is formed at the interface and its thickness increases 
with exposure time. Circumferential cracks in the brittle interface form during 
tensile loading along the longitudinal direction. In the transverse orientation, 
the interface strength increases slightly with exposure time. 
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Fig. 7.19 Matching transverse fracture surfaces of sapphire fiber reinforced 
NiAl matrix composites (after Eldridge et al., 1997; courtesy of J.I. Eldridge): 
(a) with polymethyl methacrylate (PMMA) binder and (b) without binder (after 
Eldridge et al., 1997). Composites with the binder exhibited a large amount of 
carbon residue at the fiberlmatrix interface, which prevented a strong interfacial 
mechanical bond and led to lower interfacial strength. 

The extent of interfacial reaction can be reduced by the application of a thin 
fiber coating. In Sic fiber reinforced W composites, for example, a reaction 
zone of tungsten silicide is formed, which embrittles the interface and 
reduces the strength of the composite. Deposition of a Tic  coating 
significantly limited the reduction in strength (Faucon et al., 2001). It should 
be noted that while the incorporation of a fiber coating may hinder 
interfacial reaction, it may also contribute to a lower degree of wetting by 
the matrix and poorer densification of the composite. 

As mentioned above, in composites with a precipitation hardenable matrix, 
the interface may be affected by precipitates in the matrix which typically 
nucleate heterogeneously at the fiberlmatrix interface (see Chapter 3). 
Cornie et al. (1993) tailored heat treatments to control the precipitate size 
and spacing at the interface. They found that a minimum in precipitate 
spacing (which corresponds to a minimum in precipitate size) resulted in a 
maximum in longitudinal strength and a minimum in transverse strength. 
This was caused by the decrease in interfacial strength due to precipitation at 
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the interface. With increasing annealing time, coarsening of the precipitates 
took place, increasing the precipitate spacing, and increasing the interfacial 
bond strength. In this case, the transverse strength was maximized, although 
the longitudinal strength degraded by a small amount. The increase in 
transverse strength was explained by the increase in the interfacial area 
fraction of fiberlpure matrix (precipitate-free) bond. 

The discussion above points to the difficulty in obtaining a combination of 
longitudinal and transverse strengthening in continuous fiber reinforced 
MMCs. The longitudinal properties are controlled primarily by the strength 
and volume fraction of the fibers, while the transverse properties are dictated 
primarily by the matrix (Rao et al., 1993) and fiberlmatrix interface strength 
(Warrier and Majumdar, 1997). An increase in fiber volume fraction, 
however, increases the residual stresses during cooling from processing, 
while also decreases the transverse strength (Rosenberger et al., 1999). Thus, 
increasing the fiber strength would be a logical step toward increasing the 
longitudinal strength and simultaneously retaining the transverse properties 
of the composite. Rosenberger et al. (1999) compared the strength of 
composites with a high strength ultra-SCS fiber in a Ti alloy matrix, to those 
with conventional SCS fibers, and showed an increase in longitudinal 
strength with no corresponding decrease in transverse strength. 

Slight changes in composite modulus may also be achieved by controlling 
the matrix microstructure through heat treatments (Miller and Lagoudas, 
2000). This is confined to matrix materials, such as Ti alloys, where a 
change in crystal structure morphology of second phases takes place during 
heat treatment. Such manipulation of the matrix microstructure and crystal 
structure can also be used to tailor composite strength and ductility (Boehlert 
et al., 1997). In addition, other processing parameters may be used to tailor 
the matrix microstructure. Blucher et al. (2001) for example, studied the 
tensile behavior of composite wires of A1/A1203,f (Nextel 6 1 O), 606 1/A1203,f, 
and AI/Cf. With increasing wire drawing velocity, an increase in strength 
was observed, Figure 7.20. This was attributed to the refinement in the 
microstructure, due to higher solidification rate, at higher drawing velocity. 
In the A1/Cf composites, a reduction in interfacial reaction with increasing 
drawing velocity may have also contributed to the observed behavior. 

7.2.4 Modeling of monotonic behavior of continuous fiber reinforced 
MMCs 

The tensile behavior of continuous fiber reinforced MMCs has been modeled 
extensively by finite element modeling (Brockenbrough et al., 199 1 ; 
Gonzalez and LLorca, 2001; Ross011 et al., 2005). Gonzalez and LLorca 
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Fig. 7.20 Effect of wire spooling velocity on the tensile strength of Al/A1203,f 
and Al/Cf composites (after Blucher et al., 2001). Increasing drawing velocity 
results in faster solidification rate and finer rnicrostmcture. In the case of AVCf 
it also reduces the time for interfacial reaction. 

(2001) studied the tensile behavior of SCS-6 fiber reinforced Ti-6A1-4V 
matrix composites at ambient and elevated temperatures. The fibers were 
modeled using an axisyrnmetric model shown in Fig. 7.21(a). The fibers are 
embedded in a "homogeneous composite" with average composite 
properties. A comparison of the stress-strain behavior predicted by the 
model with the experiment is shown in Fig. 7.21(b). The experimental 
behavior is shown as the gray shaded region (due to slight scatter in the 
data), while the model prediction is shown in the solid black line. The 
composite exhibited an initial linear portion followed by a pronounced 
deviation from linearity and fracture of the composite. Note that due to the 
processing-induced residual stress, at zero applied stress the matrix is in a 
state of residual tension while the fiber is in compression. With increasing 
applied stress, the load on both fiber and matrix increase, although the rate 
of loading in the fiber is higher because of load transfer from the matrix. 
When the matrix yields, the stress in the matrix reaches a plateau. This stress 
corresponds to the deviation from linear stress-strain behavior of the 
composite. The stress in the fiber, on the other hand, continuously increases 
until fracture of the composite takes place. 
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Fig. 7.21 Finite element modeling of tensile behavior of fiber reinforced Ti-6A1- 
4V matrix composites (after Gonzalez and LLorca, 2001; courtesy of J. LLorca): 
(a) finite element model and (b) simulated composite, fiber, and matrix response. 
The simulated response correlates well with the experiment. 
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When a fiber fractures, the stress on neighboring fibers is also affected, since 
more load is carried by these fibers. The stress state in neighboring fibers is 
shown in Fig. 7.22. The stress in the neighboring fibers is highest in the 
plane of fracture of the original fiber. The first-nearest neighbor fiber has the 
highest stress, followed by the second and third-nearest neighbor, 
respectively. 

As shown above, during longitudinal loading the load is carried primarily by 
the fibers, although plastic deformation of the matrix between the fibers also 
takes place. Under transverse loading, however, significant plastic 
deformation between the fibers takes place. Thus, under transverse loading, 
the distribution of the fibers plays an important role in the composite 
response. Brockenbrough et al. (1991) modeled the longitudinal and 
transverse response of a 6061/B/46f composite with varying fiber 
distributions. As one would expect, under longitudinal loading, fiber 
distribution did not have a significant influence on the modeled behavior, 
Fig. 7.23(a), since the composite behavior was dominated by the response of 
the fibers. The experimental behavior compared well with the model 

- First nearest-neighbor 

I - - Second nearest-neighbor 
I ..... Third nearest-neiahbor 

Fig. 7.22 Effect of single fiber fracture on stress state in neighboring fibers, 
predicted by finite element modeling (after Gonzalez and LLorca, 2001; 
courtesy of J. LLorca). The stress is highest in the first nearest-neighbor. 
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prediction. Under transverse loading, the fiber distribution was modeled as 
square, square-diagonal, and triangle-packed, Fig. 7.23(b). The elastic 
regime was somewhat unaffected by the fiber distribution. Once the matrix 
yielded, the effect of fiber distribution became more apparent. The 
distribution of square packing exhibited the highest work-hardening rate, 
followed by triangle and square-diagonal packing, respectively. 

Rossoll et al. (2005) used finite element analyses (FEA) for varying fiber 
distributions, ranging from single fiber unit cells to complex cells to study 
the damage evolution during a tensile test. The in situ flow stress of the 
matrix in the composite was found to be different from that of the 
unreinforced alloy. This is the result of constrained deformation of the metal 
matrix in the composite, especially in the presence of clustering of fibers. 
This results in a deviation from the rule-of-mixtures, based on isostrain, 
because of a stiffening effect of matrix confinement when surrounded by 
touching fibers. 

7.3 MONOTONIC BEHAVIOR OF DISCONTINUOUSLY 
REINFORCED MMCS 

The monotonic behavior of discontinuously reinforced MMCs is dependent 
on several factors, such as reinforcement volume fraction, particle size, 
shape, and matrix microstructure. Chawla et al. (1998a) examined the effect 
of particle volume fraction (at a constant Sic  particle size) on monotonic 
tensile behavior. Figure 7.24 shows the tensile behavior of an Al-Cu-Mg 
(2080)/SiCp-T8 composite with varying volume fraction (at a constant 
particle size of 5 pm). With an increase in volume fraction, higher elastic 
modulus, macroscopic yield and tensile strengths, and lower ductility were 
observed. A comparison of the measured increase in yield strength, with 
increasing reinforcement volume fraction, compared very well with 
predictions from a simple modified shear lag analysis by Nardone and Prewo 
(1989) (see sec. 7.1.1 in this chapter). 

As mentioned in section 7.1, microsplasticity takes place at a fairly low 
stress, which corresponds to the proportional limit stress in the stress-strain 
curve. This microplasticity originates from stress concentrations at the poles 
and sharp corners of the particle, Fig. 7.25 (Chawla et al., 1998b). The initial 
microyielding stress decreases with increasing volume fraction of 
reinforcement, as the number of stress concentration points increases. The 
work hardening rate increases with increasing volume fraction of 
reinforcement (and decreasing matrix volume). The lower ductility can be 
attributed to the earlier onset of void nucleation with increasing 
reinforcement. The high stress concentration at the tips of the cracked 
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Fig. 7.23 Finite element model predictions of tensile behavior of continuous 
fiber reinforced composites with varying fiber arrangement (after 
Brockenbrough et al., 1991): (a) longitudinal and (b) transverse. 
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Pig. 7.24 Tensile behavior of an Al-Cu-Mg (2080)/SiC,-T8 composite with 
varying volume fraction, at a constant particle size of 5 pm (after Chawla et al., 
1998a). With an increase in volume fraction, higher elastic modulus, 
macroscopic yield and tensile strengths result, coupled with lower ductility. 

t t t t  
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t t t t t t t  

0 Microplasticity due to stress concentration 
at poles of the reinforcement 

Fig. 7.25 Microplasticity in the matrix of particle reinforced MMCs due to 
stress concentrations at the poles of the reinforcement andlor at sharp corners of 
the reinforcing particles (after Chawla et al., 1998b). 
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particles could also contribute to a lower ductility in the composite, 
compared to the unreinforced alloy. 

The effect of particle size on tensile behavior has been documented by 
several investigators (Mummery et al., 1991; Manoharan and Lewandowski, 
1992; Chawla et al., 1998a). Figure 7.26 shows the general trend of increase 
in strength and ductility with a decrease in particle size. This may be 
attributed to an increase in the Sic particle strength with a decrease in 
particle size. This inverse relationship between particle size and particle 
strength can be explained as follows. As the volume of the particle increases, 
the probability of a strength-limiting flaw existing in the volume of the 
material also increases. At relatively large particle sizes of this material, a 
significant amount of particle cracking takes place during extrusion prior to 
testing. Chawla et al. (1998a), showed that in A1 2080/SiC, composites, with 
volume fractions ranging from 10 to 30 vol. %, particle cracking was 
observed above an average particle size of 20 pm. Cracked particles don't 
carry any load, so the strength of the composite is lower than that of the 
unreinforced material, Fig. 7.26. 

A lower particle size also means a lower interparticle spacing (for a given 
- 

- - 
0 0.01 0.02 0.03 0.04 0.05 

True strain 

Fig. 7.26 Effect of reinforcement particle size on tensile behavior of an A1-Cu- 
Mg (2080)/SiC$-T8 composite, at a constant volume fraction of 20% (after 
Chawla et al., 1998a). Very large particles are detrimental to strength because of 
processing-induced fracture, prior to testing. Above about 20 pm or so, strength 
and ductility both increased with decreasing particle size. 
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volume fraction of particles) so that nucleated voids in the matrix are unable 
to coalesce as easily (Mummery et al., 1991). A higher work hardening rate 
has also been observed with decreasing particle size (Lewandowski et al., 
1991; Manoharan and Lewandowski, 1992). This is attributed to the 
formation of dislocation tangles around the particles and the formation of a 
dislocation cell structure with a cell size directly proportional to the 
interparticle spacing (Kamat et al., 1989). 

The fracture of particle reinforced MMCs is very much dependent on 
particle strength and particlelmatrix interface strength. A schematic of the 
two possible types of damage evolution is shown in Fig. 7.27. If the strength 
of the interface is greater than the particle strength (often observed in peak- 
aged composites) then the particles fracture before the interface. Matrix void 
growth takes place, and shear localization between fractured particles results 
in failure of the composite. In order to quantify the extent of particle fracture 
and particle pullout during tensile loading, both mating fracture surfaces 
need to be examined. An example of mating fracture surfaces is shown in 
Figure 7.28. A particle found on both mating fracture surfaces has fractured. 
The nature of fracture of the brittle Sic particles is quite interesting. Figure 
7.29 shows the fractured surface of a Sic particle aAer tensile loading. Note 
the spherical flaws or voids on the fracture surface, which presumably were 
responsible for crack initiation in the particles. The flaws arise during 
processing of the particles. The second scenario for damage is when the 
interface strength is much lower than the particle strength. Here, void 

Fig. 7.27 Schematic of the two possible types of tensile damage evolution in 
particle reinforced MMCs: (a) interface strength greater than particle 
strength and (b) interface strength less than particle strength. 
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Fig. 7.28 Mating tensile fracture surfaces of a 2080lSiCl20p composite 
showing significant amount of particle fracture (after Chawla et al., 2002a). 

Fig. 7.29 Fracture surface of a Sic particle after tensile loading (after Chawla et 
al., 2002b). Note the spherical flaws or voids on the fractured particle surface, 
which presumably are responsible for crack initiation. The flaws arise during 
processing of the particles. 

nucleation and growth will take place at the interface, due to decohesion of 
the matrix from the particle. This will be followed by ductile shear fracture 
through the matrix alone. An example of this is shown in Figure 7.30, for an 
overaged composite, with relatively weak interface strength. Note that a thin 
matrix layer has been left on the Sic particle surface. 

Particle reinforced composites, especially those subjected to extrusion, 
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Fig. 7.30 Void nucleation and growth at the particlelmatrix interface, due to 
relatively weak interface strength (overaged condition). Ductile shear fracture is 
also observed in the matrix of the composite (after Chawla et al., 2002b). 

exhibit a fair amount of anisotropy due to preferential particle orientation 
along the extrusion axis. Logsdon and Liaw (1986) studied the tensile 
strength anisotropy behavior in Sic particle and whisker reinforced 
aluminum alloys, and noted that the strength was higher parallel to the 
extrusion axis, than perpendicular to the extrusion axis. Jeong et al. (1994) 
also noted a higher Young's modulus of the composite along the extrusion 
axis. Ganesh and Chawla (2004, 2005) noted that the extent of orientation 
was highest for lowest volume fraction composites, since with increasing 
volume fraction the mean free path for rotation and alignment of a given 
particle decreased. The Young's modulus and tensile strength of the 
composites, independent of orientation, increased with increasing volume 
fraction of reinforcement, Fig. 7.31. Thus, although the degree of 
microstructural anisotropy was greatest for 2080/SiC/1OP, the greatest 
anisotropy in mechanical behavior was observed in 2080/SiC/3OP. 

The mechanical properties of lower cost processing techniques, such as 
sinter-forging, have been compared to existing hot-pressed and extruded 
materials. Chawla et al. (2002a) examined the strength of composites 
fabricated by a low-cost sinter-forging approach. The Sic particle size was 
relatively coarse, e.g., 25 pm. Materials processed by the sinter-forged 
approach exhibited similar tensile properties to those of the extruded 
material of similar composition, reinforcement volume fraction, and particle 
size, Fig. 7.32. The microstructure of the sinter-forged composites exhibited 
relatively uniform distribution of Sic particles, which appeared to be 
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Fig. 7.31 Anisotropy in Young's modulus in a 2080/SiCp composite (after 
Ganesh and Chawla, 2005). The longitudinal orientation is parallel to the 
extrusion axis, while transverse is perpendicular. 

Strain (%) 

Fig. 7.32 Tensile strength of 2080/SiC/2OP-T6 fabricated by low-cost sinter- 
forging and extrusion approach (after Chawla et al., 2002a). The sinter-forged 
material exhibited similar tensile properties, with slightly lower ductility, than 
the extruded material. 
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somewhat aligned perpendicular to the forging direction. The degree of 
alignment and interparticle bond strength was not as high as that observed 
for the extruded composite. The sinter-forged composite exhibited higher 
Young's modulus and ultimate tensile strength than the extruded material, 
but lower strain-to-failure. The higher modulus and strength were attributed 
to the absence of any significant processing-induced particle fracture, while 
the lower strain-to-failure was caused by poorer matrix interparticle bonding 
compared to the extruded material. Indeed, secondary working of the 
composite, such as extrusion after initial casting, can significantly improve 
the ductility of the composite, Fig. 7.33 (Lloyd, 1997). The ductility of the 
composite is also very much a function of the degree of particle clustering. 
Murphy et al. (1998) controlled the degree of particle clustering by 
controlling the cooling rate of the composite. The degree of particle 
clustering was measured by tesselation techniques (see inset), to determine a 
clustering severity parameter, P. The ductility of the composite was found to 
significantly decrease with increasing P. 

Matrix microstructure also plays an important role on strength of the 
composite. Overaging heat treatments modify the matrix microstructure, 
resulting in coarsening of the precipitate structure, while retaining a 
homogeneous precipitate distribution, which directly influences the strength 

As-cast 197 mm Billet 

2 
1 10 100 1000 
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Fig. 733 Effect of degree of secondary working (i.e., extrusion ratio) on 
ductility of AVSiC115, (after Lloyd, 1997). Extrusion significantly improved 
the ductility of the composite. 
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Quantifying Reinforcement Clustering 

During processing of continuous fiber or particle reinforced MMCs 
clustering of the reinforcement is likely to take place (see chapter 4). Whilc 
individual fibers can be distributed relatively homogenously (e.g., wher 
woven in a fiber fabric), controlling particle distribution can be morc 
challenging. As shown in this chapter, reinforcement clusters have : 
profound effect on mechanical properties, because the clusters act as stress 
concentrations. Many techniques have been used to quantify the degree o: 
reinforcement clustering. Here we describe two techniques that can be usec 
to obtain some measure of reinforcement clustering: (a) Dirichlet and finite. 
body tessellation and (b) digital image dilation. 

The technique is name after the mathematician Dirichlet (1850) whc 
proposed a tessellation scheme to quantify the arrangement of geometric 
objects in space. Consider a hypothetical two-dimensional microstructurc 
consisting of elliptical particles in space (see figure below). Let us mark the 
centroid of each ellipse. We can now construct cells around the particles 
such that each cell wall is equidistant between two centroids (part (b) in the 
figure below). This construction is called a tessellation. The tessellation is 
very useful because it yields information about the cell size, nearest. 
neighbor spacing distributions between particles, etc. Inspection of the 
Dirichlet tessellation, however, shows that when the objects are not perfeci 
spheres (in this case ellipses), the particles are not always fully containec 
within the cell boundaries. This is because the centroid of the ellipse is usec 
to construct the tessellation. Thus, for the case of non-spherica' 
reinforcement, a conventional tessellation is not quite adequate f o ~  
quantifying the microstructure. 

I I r 
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?he conventional tessellation scheme can be enhanced by employing a finite 
)ody tessellation (Chawla et al., 2002a). The steps involved in this proces: 
r e  shown in the panel below. An optical or scanning electron micrograph 
a), is segmented into a black and white image, (b). A watershed image 
)peration is then conducted, (c), which analyzes distances between particles 
med  on the centroid and perimeter of each particle. A tessellation is ther 
:onstructed, (d), whereby each of the irregular particles resides within tlx 
)oundaries of the cell. Similar statistics can be obtained from the finite bod) 
essellation as those from the conventional tessellation. 

)Ln alternative method for quantifying the degree of clustering in 2 

:omposite is to use a digital image dilation technique (Chawla et al., 2002a) 
rhis technique consists of, again, analyzing a segmented microstructure 
part (a) below). The perimeter of each particle is "dilated" by a certair 
ncrement, part (b). The dilation increment can be calculated by analytica 
xpressions for the average interparticle spacing for a random distribution o 
)articles of single (Meyers and Chawla, 1999) or multiple sizes (Torquato 
!002). If the particles are touching after the dilation, then this set of particle: 
s identified as a cluster (shaded region in part (b)). The cluster may be 
pantified by the number of particles in the cluster or by the area fraction o 
he cluster, relative to the whole microstructure. Ayyar et al. (2005) used thi: 
echnique to show the relative degree of clustering between twc 
nicrostructures (also shown below). The microstructure on the left i: 
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,elatively homogeneous and the one on the right is highly clustered. Part (c) 
;bows a histogram of the cluster size distribution for the two 
nicrostructures. Note that the clustered microstructure has a much higher 
?action of larger clusters. This information is particularly useful from a 
:yclic fatigue design perspective, since the fatigue life is controlled by the 
argest defect (cluster) size. 

2 4 6 8 10 12 14 16 18 20 22 24 26 
Cluster Size (No. of Particles) 
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of the composite (Chawla et al., 2000). Figure 7.34 shows the coarsening 
and increase in precipitate spacing in the matrix of MMCs overaged at 
various temperatures for 24 h. Increasing precipitate spacing decreases 
tensile strength, Fig. 7.35. This is to be expected since coarser precipitates 
result in a larger interprecipitate spacing and easier bypass of dislocations. 
For the composites subjected to higher overaging temperatures, the yield 
strength also decreased with an increase in precipitate spacing. 

7.3.1 Modeling of Monotonic Behavior of Particle Reinforced MMCs 

Similar to modeling of continuous fiber reinforced MMCs, FEM modeling 
has also been used to model the behavior of discontinuously reinforced 
MMCs. Figure 7.36(a) shows several single particle unit-cell models, in 
which the left vertical boundary represents the axially symmetric axis and 
mirror symmetry exists about the horizontal boundary. A periodic 
arrangement of particles with the shape of a "unit cylinder," "truncated 
cylinder," "double-cone," and "sphere" may be simulated using the 
appropriate boundary conditions (Shen et al., 1994). The matrix is modeled 
as an isotropically hardening elastic-plastic solid (following the experimental 
stress-strain curve of a peak-aged A1-3.5Cu alloy) and the Sic particles as an 
elastic solid. The calculated tensile stress-strain response of Al/SiC/20, 
composites, having the four particle shapes described above, is shown in Fig. 
7.36(b). Clearly, particle shape has a significant influence on the overall 
tensile behavior of the composite. The unit-cylinder particles clearly 
strengthen the composite more than the other three shapes for a given 
reinforcement fraction. This, however, does not imply that particles with 
sharp corners have a more pronounced strengthening effect, as shown by the 
case of "double-cone" particles, possessing the "sharpest" type of corners. A 
detailed analysis (Shen et al., 1995) showed that the unit-cylinder and 
double-cone particles result in the highest and lowest degrees of 
"disturbance" of the local plastic flow paths in the matrix, respectively. This 
directly reflects the different extents of constrained plastic flow and hence 
the strengthening behavior in the composite. The reader is referred to other 
simple unit-cell approaches focusing on various aspects of elasto-plastic 
behavior of short fiber and particle reinforced composites, such as 
reinforcement particle fracture (LLorca, 1995; Steglich et al., 1999), 
reinforcement clustering (Christman et al., 1989; Toda et al., 1998), matrix 
void growth (LLorca et al., 1991), and residual stress from thermal 
treatments and processing (Levy and Papazian, 199 1 ; Dutta et al., 1993). 

The thermal expansion mismatch between the reinforcement and the matrix 
results in thermal stresses within the composite upon cooling from the 
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Fig. 7.34 Coarsening and increase in precipitate spacing in the matrix of 
2080/SiC/2OP-T8 overaged at various temperatures for 24 h (after Chawla et al., 

True Strain 

Fig. 7.35 Decrease in strength due to overaging of 2080-T8 and 2080/SiCp-T8 
composites (after Shen and Chawla, 2001). The reduction in strength is similar 
for all materials. Coarser precipitates result in a larger interprecipitate spacing 
and easier bypass by dislocations. 
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processing temperature to ambient temperature. As mentioned above, in 
actual composites thermal residual stresses are relieved by plastic 
deformation in the matrix, resulting in indirect strengthening. Figure 7.37 
shows the calculated tensile stress-strain curves for 20% Sic reinforced A1 
alloy utilizing the unit-cylinder particles (Fig. 7.36(a)), with and without the 
presence of thermal residual stress. As before, the matrix was taken to be an 
isotropically hardening elastic-plastic material in the model. The thermal 
residual stresses were calculated for a composite cooled from the 
solutionizing temperature of 500°C, where the composite is in a relatively 
stress-free state, to room temperature, 20°C. Also included in the figure is 
the stress-strain response used for the pure matrix. During cooling the matrix 
near the particlelmatrix interface undergoes yielding. This has direct bearing 
on subsequent loading of the material. It can be seen in Fig. 7.37 that in the 
presence of thermal stresses a smaller slope is observed at the early stage of 
deformation, due to the slightly smaller apparent modulus arising from prior 
plastic deformation. When compared with the material free of residual 
stresses, higher values of the average axial stress were observed. This means 
that the existence of residual stresses enhanced the initial strain hardening 
rate in the material. Comparing the curves for the pure matrix and for the 
composite without thermal residual stresses, direct strengthening effects are 
observed. The higher flow stress for the composite is a direct consequence of 
load transfer fi-om the matrix to the reinforcement, which is also related to 
the constrained plastic flow within the matrix. A comparison of the two 
curves of the composite reveals the indirect strengthening effect. In the 
model strain hardening caused by cooling-induced plasticity leads to 
subsequent higher strength for the composite with thermal stresses 
incorporated (after the crossover point). In actual materials thermal 
mismatch-induced dislocation punching renders higher matrix strength due 
to strain hardening. Thus, when appropriate constitutive models are chosen 
(e.g., hardening plasticity rather than perfect plasticity in the present case), 
continuum-based numerical modeling can provide insights into the 
deformation mechanisms. 

Simple shaped single particle and multiparticle models can provide useful 
insight into deformation. Microstructure-based models, however, more 
accurately predict the deformation behavior of the composites (Chawla et al., 
2003; Chawla et al., 2004; Ganesh and Chawla, 2004). This is because in 
actual composites the particles are highly irregular in shape and commonly 
contain sharp corners, so spherical particles are not necessarily a realistic 
choice for simulation. Thus, while simplifications in unit cell models may 
aid in computation, they fail to capture the complex morphology, size, and 
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Fig. 7.36 (a) 
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Fig. 7.37 Tensile stress-strain curves for Al/SiC/20, utilizing the unit-cylinder 
particles with and without thermal residual stress (after Shen et al., 1994). 
Hardening caused by cooling-induced plasticity leads to higher strength for the 
composite. 

spatial distribution of the reinforcement. It follows that an accurate 
simulation of the mechanical behavior of material can only be obtained by 
incorporating actual three-dimensional (3D) microstructure morphologies as 
a basis for the model. 

A comparison of the modeled 3D response using the actual microstructure 
versus a simplified representation of spherical particles is shown in Fig. 
7.38. The spatial distribution of the particles in both models is about the 
same. Note that the angular particles are under a much larger stress than the 
spherical particles, indicating more load transfer to the angular particles. The 
stress in the spherical particles is quite uniform, while that in the angular 
particles is not. The plastic strain contours in the matrix are also quite 
different. More localization of strain is observed in the model with angular 
particles. This simple comparison shows that, indeed, the microstructure- 
based model predictions are quite different from those of simplified 
spherical particles. Thus, modeling of the material using the actual 
microstmcture is extremely important. 



236 Chapter 7 

Fig. 7.38 Comparison between 3D finite element models incorporating (i) 
actual microstructure and (ii) approximation to spherical particles: (a) FEM 
models, (b) stress distribution in particles, and (c) plastic strain in matrix. Note 
that the microstructure model exhibits much higher stress in the particles and 
larger and more inhomogeneous plastic strain than the simplified spherical 
particle model. 
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A comparison of Young's modulus predicted by unit cell models versus the 
microstructure-based model was shown in chapter 6.  The microstructure- 
based model was closest to the experiment (Chawla et al., 2004). A 
comparison of the overall stress-strain curve (elastic and plastic parts) of the 
3D microstructure simulation to the experiment is shown in Fig. 7.39. These 
simulations incorporate a cooling step in the model, from the solution 
treating temperature of 493°C to 25OC. The prismatic rectangle and 
microstructure-based models both predict the experimental behavior quite 
well. Nevertheless, the microstructure-based models more faithfully 
represent the experimental behavior. More importantly, the localized 
plasticity that results from the sharp and angular nature of Sic  particles, can 
only be captured in the microstructure-based model. Thus, other models that 
approximate the shape of the particles to ellipsoids underestimate the extent 
of strengthening. 

The effect of particle clustering has also been modeled using FEM. Segurado 
et al. (2003) conducted 3D finite element simulations of clustered 
composites. They showed that within a particle cluster, the stresses in the 
particles are much higher than the average particle stress, Fig. 7.40(a). With 
an increase in particle clustering, the standard deviation of the particle stress 
increased significantly, Fig. 7.40(b). In a practical sense, this would cause 
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Fig. 7.39 Comparison of stress-strain predictions from various FEM models 
after cooling (after Chawla et al., 2004). The 3D microstructure model (from 
two random regions in the microstructure) is most accurate in predicting the 
exoerimentallv observed behavior. 
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particle fracture at a much lower far-field applied stress, Fig. 7.40(c) 
compared to a composite with homogeneous distribution. 

Deng and Chawla (2005) developed model microstructures, consisting of 
circular reinforcement particles in a metallic matrix. The microstructures had 
varying degrees of particle clustering, as quantified by the coefficient of 
variance in particle spacing (see inset). The tensile behavior of the 
microstructure was modeled using two-dimensional (2D) finite element 
analysis. Matrix plasticity and particle fracture were explicitly modeled. All 
the particles had a homogeneous strength of 1 GPa. The plastic strain 
distribution in the matrix is much more homogeneous in the homogeneous 
particle arrangement, Fig. 7.41(a), although the plastic strain is intensified in 
the region of particle fracture. In the clustered particle microstructure, larger 
stresses develop which results in particle fracture within the cluster, Fig. 
7.41(b). A lower degree of plastic strain is observed. The modeled stress- 
strain response shows that the clustered microstructure has a lower 
"ductility," although matrix fracture was not modeled. This model verifies 
the experimental results of Murphy et al. (1998), described above. 

Shen and Chawla (2001) and Shen et al., (2001) explored the correlation 
between macro-hardness and tensile properties of particle-reinforced metal 
matrix composites. It was shown that, unlike most monolithic metals and 
alloys, hardness does not necessarily scale with the overall strength of 
particle-reinforced metal matrix composites, Fig. 7.42. The hardness test 
may significantly overestimate the overall tensile and yield strengths of 
composites containing large reinforcement particles, which are prone to 
fracture during deformation processing andlor tensile loading. The 
predominant local compressive stress state in a hardness test prevents the 
pre-existing fractured particles from weakening the material during 
indentation. For composites having relatively small reinforcement particles, 
a unique relationship between hardness and tensilelyield strength did not 
exist, even when the material was essentially free of pre-existing fractured 
particles. This was especially true in cases where the strength of the A1 
matrix was relatively low. The tendency of higher hardness for particle- 
reinforced composites can be attributed to the localized increase in particle 
concentration directly underneath the indenter during hardness testing, Fig. 
7.43. This was illustrated by micromechanical modeling using the finite 
element method. Under indentation, the material system with discrete 
particles exhibits a higher resistance to deformation than the homogenized 
system having exactly the same overall stress-strain behavior, Fig. 7.44 
(Shen et al., 2001). These findings are true even when the particle size is 



7. monotonic behavior 

, . # . I .  

0.01 0.02 0.03 0.04 I 
Strain Strain 

(4 

Fig 7.40 (a) 3D finite element model consisting of perfectly spherical Sic 
particles in an A1 matrix (after Segurado et al., 2003; courtesy of J. LLorca). The 
model consists of 49 particles and 7 "clusters." The stress within the cluster is 
higher than the average stress. (b) Standard deviation of stress in particles with 
increasing clustering, for a given strain, and (c) fraction of broken particles 
predicted. 5 and are the volume fraction of particles (15%) in the composite 
and within the cluster, respectively. 
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Fig 7.41 Two-dimensional (2D) finite element analysis of the effect of particle 
clustering (after Deng and Chawla, 2005): (a) model microstructures consisting of 
circular Sic particles in Al, showing particle fracture within the cluster and (b) 
Predicted tensile stress-strain behavior; all particles were assumed to have a 
strength of 1 GPa. The clustered microstructure has a lower "ductility." 
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Fig. 7.42 Correlation between macro-hardness ar,d tensile properties of particle- 
reinforced MMCs (after Shen et al., 2001). Tkilike most monolithic metals and 
alloys, hardness does not necesss,rily scale with strength of MMCs. 
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Fig. 7.43 Deformation behavior of particle reinforced MMCs during 
microindentation (after Shen and Chawla, 2001): (a) localized increase in 
particle concentration due to plastic flow of the matrix and (b) localized 
particle fracture, indicated by the arrows. 
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Fig. 7.44 Finite element model of indentation in (a) homogeneous material and 
(b) particle reinforced composite. In the model, both materials had the same 
macroscopic tensile constitutive behavior (after Shen et al., 2001). Under 
indentation, the material system with discrete particles exhibited a higher 
resistance to deformation. 

7.4 FRACTURE TOUGHNESS 

The fracture toughness of particle reinforced MMCs is controlled by several 
factors. These include: (a) volume fraction of reinforcement, (b) interparticle 
spacing and strength of particles, (c) spatial distribution of particles (i.e., 
particle clustering), and (d) microstructure of matrix and interface region (as 
controlled by heat-treatment in age-hardenable alloys). Figure 7.45 is a 
compilation of toughness in several composite systems, as a function of 
reinforcement volume fraction (Manoharan et al., 1993, Hunt et al., 1993, 
and Beck Tan et al., 1994). Note that all the composites show a decrease in 
toughness with increasing volume fraction of reinforcement. The toughness 
appears to reach a "plateau" at volume fractions of 20% and above. The 
decrease in toughness, shown in above, can be explained by an increase in 
stress triaxiality with increasing volume fraction of particles (similar to what 
takes place during tensile loading of the composite). 

The effect of particle size is less clear-cut. This is because decreasing 
particle size results in a lower interparticle spacing. In addition, it also 
results in an increase in strength of ceramic particle, because of a lower 
probability of encountering a strength-limiting flaw. It has been shown that 
the degree of clustering increases with decreasing particle size (Hunt et al., 
1993), and that the degree of indirect strengthening increases with 
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Figure 7.45 Toughness of several particle reinforced MMCs as a function of 
reinforcement volume fraction (after Manoharan et al., 1993, Hunt et al., 1993, 
and Beck Tan et al., 1994). All the composites show a decrease in toughness 
with increasing volume fraction, reaching a "plateau" at volume fraction of 
about 20% and above. 
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Figure 7.46 Effect of particle size on toughness of a 2080/SiC, composite, at 
three volume fractions (after Hunt et al., 1993). For a given volume fraction, the 
toughness of the composite decreases slightly with decreasing particle size. 
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decreasing particle size (Arsenault and Shi, 1986). Figure 7.46 shows the 
decrease in toughness of a 2080/SiCp composite with increasing strength, at 
three volume fractions and as a function of particle size. The curve for the 
largest particle size is farthest left, because of the decrease in the strength of 
the composite with increasing particle size. It is interesting to note that, for a 
given volume fraction, the toughness of the composite decreases slightly 
with decreasing particle size. The effect of particle size on toughness was 
also investigated by Kamat et al. (1989). They studied the fracture toughness 
behavior of A1203 particle reinforced A1 matrix composites at volume 
fractions of 10 and 20% A1203, and several particle sizes ranging between 5 
and 50 pm. At large particle sizes (> 15 pm), particle fracture was 
hypothesized to cause unstable crack growth and much lower crack growth 
toughness. At smaller particle diameter, interfacial decohesion took place. In 
this lower particle size (and lower interparticle spacing) regime, the behavior 
of the composites was found to follow the model of Rice and Johnson, where 
particlelmatrix decohesion is assumed to take place at the interface ahead of 
the main crack. The coalescence of voids arising from particlelmatrix 
decohesion is facilitated by a decrease in interparticle spacing. Their model 
showed the ratio of toughness-to-fracture strength, JI,/of, to be directly 
proportional to the interparticle diameter, A: 

The fracture toughness is also influenced by the degree of clustering of 
particles. Lloyd (1995) obtained varying degrees of clustering by varying the 
cooling rate of a cast A356/SiC/1SP composite, Fig. 7.47. As mentioned in 
Chapter 4, faster cooling rates result in less time for particle pushing from 
dendrites, resulting in a more homogeneous distribution of particles. This 
work clearly shows that with increasing clustering (quantified by an increase 
in minimum edge-to-edge spacing of particles), the toughness decreases. 
This stems from an increase in stress triaxiality caused by particle clusters. 
The toughness is also very much affected by matrix microstructure. 
Manoharan and Lewandowski (1990) studied the fracture toughness 
behavior of Sic particle reinforced A1 matrix composites, Fig. 7.48. The 
materials were heat treated to the underaged and overaged condition and had 
the same nominal tensile strength. The fracture toughness in the two heat 
treated conditions was quite different. In the UA condition the toughness 
was twice as large as that of the OA material. This was attributed to a 
transition in fracture mode from particle-fracture controlled (UA) to 
interfacial decohesion (OA). The ease of interfacial decohesion was 
explained by coarsening of precipitates and weakening at the particlelmatrix 
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Fig. 7.47 Effect of particle clustering on toughness of a cast A356lSiC115, 
composite (after Lloyd, 1995). With increasing clustering (quantified by 
minimum edge-to-edge spacing of the particles), the toughness decreases. 

Ultimate tensile strength (MPa) 

Fig. 7.48 Effect of matrix microstructure on the fracture toughness-tensile 
strength relationship in particle reinforced MMCs (after Lewandowski, 2000; 
Hunt et al.; 1993, Karnat et al., 1989). For a given tensile strength, the toughness 
is higher in the underaged condition vis-A-vis the overaged condition. 
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Loading velocity, Y (m*ss') 

Fig. 7.49 Effect of loading velocity on the fracture toughness of a 6061/SiC/22, 
(after Wang and Kobayashi, 1997). Above a loading velocity of 10 mls, the 
fracture toughness increased significantly. 

interface. In the unreinforced alloy the toughness in both UA and OA 
conditions was similar. 

The toughness of particle reinforced MMCs has also been shown to be a 
function of loading velocity. Wang and Kobayashi (1997) examined the 
effect of loading velocity on the fracture toughness of a 6061/SiC/22,, Fig. 
7.49. At a loading velocity above 10 m/s, the fracture toughness increased 
significantly. Fractographic analysis showed that matrix dimples were 
deeper and the damage zone extended to a longer distance at the faster 
loading rate. It was postulated that the very fast loading rate did not allow 
enough time for interaction and coalescence between cracks and voids. 
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