
Chapter 6 

MICROMECHANICS 

In this chapter, we examine a variety of means of calculating elastic and 
physical properties of metal matrix composites, given the same constants for 
the individual components and the arrangement of components in the 
composite; and thermal stresses generated because of mismatch in the 
coefficient of thermal expansion (CTE) of the components. In fact, most of 
the material discussed in this chapter is applicable to all kind of composites. 
Specifically, we provide a micromechanical description of physical 
properties such as density, thermal expansion coefficients, thermal and 
electrical conductivity, and various elastic constants. Of particular interest 
are methods or expressions that predict elastic constants of composites 
because of the generally high anisotropy found in composites. A description 
of conventional and microstructure-based finite element techniques to 
predict the elastic and thermal constants is also provided. 

We briefly review the theory of elasticity and the concept of number of 
independent elastic constants required for a fiber reinforced composite. We 
then provide expressions for the elastic constants as per different schemes 
available. This is followed by a description of physical properties and 
thermal stresses in composites. 

6.1 ELASTIC CONSTANTS OF A FIBER REINFORCED 
COMPOSITE 

Hooke's law relates the second rank stress tensor,oij, and the second rank 

strain tensor, and can be written as: 
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where Cijkl is a fourth-rank tensor called the elastic stiffness tensor and the 

indices i, j, k, and l? have values of 1, 2, and 3. The stress and strain tensors, 
being second rank, have 32 = 9 components each. The stiffness tensor is a 
fourth rank tensor, it has 34 = 81 components. Stress, strain, and stiffness are 
symmetric tensors, i.e., oij = oji , E,, = E,, , and Ciike = Ckqji = Cjiek = Cjike . 
These symmetry relationships reduce the maximum number of independent 
elastic constants to 21. Hooke's law in (Eq. 6.1) can then be simplified and 
rewritten in a contracted notation more appropriate for matrix operations as 
follows: 

0. = C..&. ' 'J J (6.2) 

In a similar manner we can write Hooke's law in terms of the elastic 
compliance matrix, Sij , as: 

Ei = S..<T. 
1J J (6.3) 

Both Cij and Sij are 6 x 6 symmetric matrices, i.e., Cij = C ji and S.. = S ji . 
1J 

Also, the stiffness and the compliance matrices are inverse of each other, 
i.e.: 

where [I] is the identity matrix. The total number of independent constants 
required to describe the elastic behavior of a material completely decreases 
with increasing symmetry elements present. Table 6.1 presents a summary. 

Table 6.1: Independent elastic constants for systems of different symmetry. 

Constants 

Orthorhombic 

I I 

Constants 
9 

Tetragonal 
I I 

~ 1 1 , ~ 1 2 , ~ 1 3 , ~ 2 2 , ~ 2 3 , ~ 3 3 , ~ 4 4 , ~ ~ ~ , c 6 6  

Hexagonal 
I I 

6 

Cubic 
I I 

Cll ,C12rC13,C33,C44,C66 

5 

Isotropic 

c1l,c12,c13,c33,c44 

3 cll,c12,c44 

2 C11,C12 
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For an isotropic material, there are only two independent elastic constants. 
For a material with cubic symmetry, we need three independent elastic 
constants. The most general situation is that of the triclinic system (not 
shown in Table 6.1) in which there are no symmetry elements present; it 
requires 21 independent elastic constants. For a material with cubic 
symmetry, we can write Hooke's law in an extended form as follows: 

Note that there are only three independent constants. For an isotropic 
material, the number of independent constants is reduced from 3 to 2 
because of the following relationship: 

In engineering usage, for an isotropic material, any two of the following four 
constants will suffice: Young's modulus (E), Poisson's ratio (v), shear 
modulus (G), and bulk modulus (K). This is because of the following 
relationships among the four constants: 

E 
and v = - 1  

2G 

Thus, only two of the four constants for an isotropic material are 
independent. 
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A unidirectionally reinforced fiber reinforced composite with fibers arranged 
in a random manner in the transverse section is said to be transversely 
isotropic, i.e., there is no preferred direction in the 2-3 plane, see Fig. 6.1. 
Such an arrangement of fibers gives us the same elements as the hexagonal 
crystal, i.e., five independent elastic constants are needed to fully describe 
the elastic behavior of such a composite. Note that this follows from the 
disposition of long fibers in a matrix, even though the two components, fiber 
and matrix, may individually be isotropic in nature. On the other hand, a 
particle or whiskerlshort fiber reinforced composite, with no preferential 
alignment of reinforcement, can be treated as an isotropic material. We 
describe a variety of approaches to obtain the elastic constants of the 
composite below, given the elastic constants of the individual components. 

6.1.1 Strength of Materials Approach 

We can get some quick estimates of elastic constants of a composite by 
using the strength of materials approach. Here we make simplifying 
assumptions of uniform strain or uniform stress in the constituents of the 
composite. The results are satisfactory for E l l  and v12, but underestimate EZ2 
and GI2. We use ECc and E l l  interchangeably to indicate longitudinal 
Young's modulus in the fiber direction. Similarly, E,, and E22 indicate 
Young's modulus in the direction transverse to the fiber axis. Two simple 

t 
Fiber axis 

Fig. 6.1 A unidirectionally reinforced fiber reinforced composite with fibers 
arranged in a random in the transverse (2-3) plane. Such a composite is called 
transversely isotropic. 
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cases are isostrain and isostress models for Young's modulus of a 
unidirectionally aligned, fiber reinforced composite, see Fig. 6.2. We shall 
also derive expressions for the principal shear modulus and principal 
Poisson's ratio. 

Longitudinal Young's Modulus 

If we apply the isostrain condition to a unidirectional, fiber reinforced 
composite loaded along the fiber direction, we get the longitudinal Young's 
modulus, E,, or El l ,  of the composite. The isostrain condition says that the 
strains in the fiber, matrix, and composite are identical, see Fig. 6.2; i.e.: 

Fig. 6.2 Longitudinal (ECr) and transverse (E,,) Young's moduli for a 
unidirectionally reinforced fiber reinforced composite. 
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where E is the strain, At is the change in length, to is the original length, and 
the subscripts f, m, and c t  indicate fiber, matrix, and composite in the 
longitudinal direction, respectively. 

For components behaving elastically, we can use Hooke's law for a uniaxial 
stress acting on the fiber and the matrix: 

Of = E f  ECe and 0, =EmEce 

where o is the stress, E is the Young's modulus, and the subscripts have the 
meanings given above. 

The applied load on the composite, PC, is partitioned between the fiber and 
the matrix, i.e.: 

where Pf and P, indicate the load on the fiber and matrix, respectively. 
Converting loads into stresses, we can write: 

From this we get the following expressions: 

It turns out that predictions given by Eq. 6.5 are quite reasonable. As an 
example, Fig. 6.3 shows the linear dependence of longitudinal Young's 
modulus of a tungsten fiber reinforced copper as a function of fiber volume 
fraction (McDanels et al., 1965). 
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Fig. 6.3 Linear dependence of longitudinal Young's modulus of tungsten fiber 
reinforced copper as a function of fiber volume fraction (after McDanels et al., 
1965). 

Transverse Young's Modulus 

The transverse modulus, E,, or E22, can be estimated by applying an isostress 
condition, i.e., the fiber, matrix, and composite experience the same stress, 
Fig. 6.2. Thus: 

Of = O m  =act (6.7) 

where the subscript ct denotes the composite in the transverse direction, and 
the other subscripts have the significance given earlier. 

The total displacement of the composite in the thickness direction, At ,  is the 
sum of the displacement in the fiber, Atf, and that in the matrix, At,. We can 
then write the following relationship for the displacement in the thickness 
direction: 

At, =Atm +Atf 

Let the original thickness of the composite be t,. Dividing throughout by t,, 
the gage length, we get the strain in the transverse direction: 
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Also. we can write the volume fractions of fiber and matrix as: 

Using Hooke's Law, we can rewrite Eq. (6.8) as: 

1 - v m  +Vr 
Ect E m  Eft 

We should point out that when computing Young's modulus in the 
transverse direction, we have chosen the transverse modulus of the fiber, Eft. 
This is especially important when the fiber is anisotropic, for example, 
carbon fiber. 

Poisson's Ratio 

Consider a composite containing unidirectionally aligned fibers loaded in 
tension parallel to the fibers, see Fig. 6.4. The composite will extend 
longitudinally by (direction 1) and contract transversely by ~2 (direction 
2). The contraction in direction 2 due to all the fibers will be -qVf vf, where 
Vf is the fiber volume fraction and vf is the Poisson's ratio of the fiber. The 
contraction due to the matrix will be -qVm v,, where V, is the matrix 
volume fraction and v, is the Poisson's ratio of the matrix. 

The total contraction of the composite in direction 2 is then given by: 
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Fig. 6.4 The two Poisson's ratios in an anisotropic material. The principal 
Poisson's ratio (v12) gives the transverse strain caused by an axial stress. The 
secondary Poisson's ratio (vzl) gives the axial strain caused by a transversely 
applied stress. 

Defining the principal Poisson's ratio of the composite as v12 = - E~/E, we 
get: 

V,2 = Vf vf +Vm Vm 

Shear Modulus 

In the case of longitudinal or principal shear modulus, both the fiber and 
matrix are subjected to the same shear stress as shown in Fig. 6.5. Note that 
the fibers have been bundled together to show total shear in all the fibers. 
We can write the shear strain in the matrix and fiber as follows: 

and 

The total shear displacement in the composite, A, is given by: 

where y is the average shear strain in the composite and t is the thickness of 
the composite. We can then write the total shear displacement as the sum of 
the shear displacements of the components: 
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Fig. 6.5 A unidirectional fiber reinforced composite loaded in shear parallel to 
the fibers. 

Shear strain, y, is nothing but shear stress divided by shear modulus, GI2, 
l.e.,: 

6.1.2 Micromechanical Approaches 

In this section we include the following important techniques: 

Self-consistent field methods 
Variational calculus methods 
Numerical methods 

Brief descriptions of these as well as some key results are presented below. 

Self-consistent Field Methods: The strength of materials approach 
described above involves gross simplification of uniform stress (isostress) or 
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uniform strain (isostrain). Self-consistent (SC) models improve on the 
internal stress and strain fields by introducing a simplified geometry of the 
phases. It should be pointed out, though, that in these techniques one still 
makes approximations of microstmcture, i.e., the actual microstmcture is not 
used. In one version, the phase geometry is represented by one single fiber 
embedded in a matrix cylinder. This outer cylinder is embedded in an 
infinite, homogeneous material whose properties are taken to be the average 
properties of the composite. In the second version, a three-cylinder model is 
used. The intermediate cylinder surrounding the fiber has the properties of 
the matrix. The outermost cylinder has average properties of the composite. 
The radii of the cylinders are dictated by the fiber volume fraction. A 
uniform load, applied at infinity, introduces a uniform strain field in the 
fiber. Elastic constants are then obtained from this strain field. The results 
obtained are independent of fiber arrangements in the matrix and, in general, 
are reliable at low fiber volume fractions (Vf), reasonable at intermediate Vf, 
and unreliable at high Vf (Hill, 1964). 

Variational Calculus or Energy Methods: Energy methods involving 
variational calculus can be used to obtain bounds on a property of the 
composite. These techniques are also called bounding methods. Effective 
elastic constants (or compliances) of a composite (a heterogeneous system) 
are obtained from those of a homogeneous system with the same free energy. 
In simple terms, we can describe the rationale behind these methods as 
follows. Consider a linear elastic solid under deformation. We can express 
the strain energy stored in this solid in terms of a strain field: 

and in terms of stress field: 

These two expressions are equivalent for a homogeneous material but not for 
a heterogeneous material. The difference between these two expressions for 
a heterogeneous material (i.e., a composite) can be exploited to obtain the 
upper and lower bounds. Specifically, the theorem of least work gives the 
lower bound while the theorem of minimum potential energy provides the 
upper bound. There is a considerable amount of literature available on the 
subject; see, for example, Paul (1960); Hermans (1967); Hashin and Rosen 
(1964); Whitney and Riley (1966). 
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These bounding methods do not predict properties exactly, but give upper 
and lower bounds on elastic constants. The property is determined exactly 
only if the upper and lower bounds coincide. More often than not, the upper 
and lower bounds are not very close. Only when these bounds are close 
enough can we safely use them as indicators of the material behavior. It 
turns out that this is the case for longitudinal properties of a unidirectionally 
aligned fiber reinforced composite such as longitudinal constants (Ell, v12), 
but they can be far apart in case of transverse and shear properties (E22 and 
(312). 

Hill (1965) derived bounds for the elastic constants. In particular, he put 
rigorous bounds on the longitudinal Young's modulus, E, in terms of bulk 
modulus in plane strain (k,), Poisson's ratio (v), and the shear modulus (G) 
of the two phases. No restrictions were made on fiber form or packing 
geometry. The bulk modulus in plane strain, k,, is the modulus for lateral 
dilation with zero longitudinal strain and is given by: 

The bounds on the longitudinal modulus, Ecc, are: 

We can readily verify, from Eq. 6.10, that deviations from the rule of 
mixtures for Ecc are quite small. If we substitute some values of practical 
composites, such as silicon carbide fibers in an aluminum matrix, we find 
that the deviations in ECc from the rule of mixtures are < 2%. Note that the 
deviation from the rule-of-mixtures value comes in from the (vf - v32 
factor. For vf = v,, we have Ece given precisely by the rule-of-mixtures 
expression. Numerical simulations confirm that Hill's bounds are the best 
possible general bounds for linear elastic behavior of unidirectionally 
aligned fiber reinforced composites under axial loading (Ross011 et al., 2005) 

For Poisson's ratio of a unidirectionally aligned fiber composite, Hill also 
showed that 

v12 > vfVf + vmVm for ( ~ f  - vA(kpf - kpm) > 0, 
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and v12 < vfVf + vmVm for (vf - v,J(kpf - k,,) < 0 (6.1 1) 

If vf < v, and Ef >> Em, then, vI2  will be less than that predicted by the rule 
of mixtures (= vfVf + v,V,). It is easy to see that the bounds on v12 are not 
as close as the ones on Ecc. This is because (vf - v 3  appears in the case of 
v12 (Eq. 6.13), while (vf - v d 2  appears in the case of Ece (Eq. 6.10). If (vf - 
v,) is very small, the bounds will be close enough to allow us to write: 

We can summarize the results of Hashin and Rosen (1964) and Hill (1965) 
as follows. For a transversely isotropic composite, with fibers along 
direction 1 and the 2-3 plane being the transverse (isotropic) plane, the 
equations for five independent moduli are given below. 

Plane-strain bulk modulus, k23: 

where k, and kf are the plane-strain bulk moduli of the matrix and fiber, 
respectively. The plain-strain bulk modulus is defined as: 

In-plane shear modulus, GI2: 

Longitudinal Young's modulus, El 1 : 

For most practical purposes the last term is negligible in the above 
expression. 

Longitudinal Poisson's ratio, v12: 
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Transverse plane shear modulus, G23: 

In this case, the upper and lower bounds are not coincident. The lower bound 
is: 

The upper bound is: 

where 

For particulate composites, Hashin (1962) proposed a composite sphere 
assembly model wherein the composite is made up of units consisting of a 
spherical particle and its surrounding matrix shell. In each spherical unit, the 
volume fractions of the particle and matrix are the same, but the spherical 
units can be of any size. Figure 6.6 shows such an assembly. Hashin 
analyzed this model by variational calculus methods and obtained a closed- 
form solution for the bulk modulus and upper and Power bounds for the 
effective sRear modulus. The bulk modulus, K, is given by: 
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Fig. 6.6 A composite made up of an assemblage of spherical particles 
surrounded by their respective matrix shells. The volume fractions of phases are 
maintained constant in each unit; individual units can be of any size. 

where K, G, and V indicate the bulk modulus, shear modulus, and volume 
fraction, respectively, and the subscripts p and m refer to the particle and the 
matrix, respectively. Hashin and Shtrikman (1963) and Rosen (1973) have 
also analyzed macroscopically isotropic, particulate composite with an 
arbitrary internal phase geometry and only phase volume fractions being 
specified. The bounds of Hashin and Shtrikman on the bulk modulus, K and 
shear modulus, G are given below: 
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where K, > K, and G, > G,. For K, < K, and G, < G, the inequalities will 
be reversed. Treating the particulate composite as an isotropic material, we 
can obtain the bounds on the Young's modulus of the composite, E,, by 
using the following relationship: 

We can easily use this relationship to obtain the bounds on Young's 
modulus. For 0.5 < EJE, < 3, the bounds are close enough to give us a value 
within -10 % of the true modulus. 

6.1.3 Semi-Empirical Expressions 

Halpin and Tsai (1967) and Halpin and Kardos (1976) used an empirical 
approach to obtain some generalized equations which give quite satisfactory 
results for unidirectional composites compared to the complicated 
micromechanical equations. These equations contain adjustable fitting 
parameters and work quite well at low fiber volume fractions. They can also 
provide useful estimates of properties of composites containing oriented 
short fibers or whiskers. The adjustable parameters must be obtained from 
experimental data or must conform to some analytical solution. One uses a 
single equation of the form: 

where p represents one of the various moduli of the composite, e.g., Ell,  E22, 
GI2 or G23; pf and p, are the corresponding matrix and fiber moduli, 
respectively; Vf is the fiber volume fraction; and q is a measure of 
reinforcement which depends on the boundary conditions (fiber geometry, 
fiber distribution, and loading conditions). The term 5 is a fitting parameter 
that is used to make Eq. (6.13) conform to the experimental data. The 
function 6 in Eq. (6.13) is constructed in such a way that we get the two 
extreme values of property corresponding to Vf = 0 and 1, i.e., when Vf = 0, 
we have p = p, and when Vf = 1, we get p = pf. Furthermore, the form of q 
is such that: 
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These two extremes provide the bounds, although not necessarily tight 
bounds, on the properties of the composite. For example, for the transverse 
modulus of the composite E,, or E22, we can write: 

Comparing these expressions with the exact elasticity solutions, one can 
obtain a value of 5. Note that, in principle, 5 can range form 0 to =. 5 can be 
thought of as a measure of the "effectiveness" of fiber reinforcement. For 
small values of 5, fibers are less effective than for large values of 5. For 
computing E,,, 5 = 1 or 2 works for hexagonal or square array of fibers, 
respectively. One can also point out some limiting values of q. The term qVf 
is akin to reduced fiber volume fraction. For a homogeneous material, q = 0. 
For very stiff fibers, q = 1 while for very compliant inclusions (e.g., voids) q 
= -115. Figure 6.7 shows plots of Young's modulus, E, as function of 
volume fraction of S i c  particles in 2080 A1 matrix, as per lower and upper 
bounds of Hashin-Shtrikman expressions, Halpin-Tsai expression, and the 
experimental values measured in the longitudinal and transverse directions 
(Ganesh and Chawla, 2005). Note that Hashin-Shtrikman and Halpin-Tsai 
expressions treat the composite to be an isotropic material. The experimental 
results show that because of particle alignment caused by extrusion, the 
longitudinal values of modulus are higher than the transverse values. The 
experimental values fall somewhere between the Hashin-Shtrikman upper 
and lower bounds. Figure 6.8 shows similar plots for a composite where the 
particles are distributed in a homogenous manner, a WCICo composite 
(Koopman et al., 2002). 
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Fig. 6.7 Young's modulus, E as a function of S i c  particle reinforcement 
showing lower and upper bounds of Hashin-Shtrikman, Halpin-Tsai expression, 
and the experimental values measured in the longitudinal (L) and transverse (T) 
directions (after Ganesh and Chawla, 2005). The experimental results show 
difference between longitudinal and transverse directions because of particle 
alignment caused by extrusion. Hashin-Shtrikman, Halpin-Tsai expressions 
treat the composite to be isotropic which is not quite true in this case. 
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Fig. 6.8 Young's modulus, E as a function of volume fraction of WC in a 
WCICo composite (after Koopman et al., 2002) 
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6.1.4 Eshelby Method or Equivalent Homogeneous Inclusion Technique 

Eshelby (1957) formulated the problem of an elastic ellipsoidal inclusion 
embedded in an elastic matrix subjected to a displacement, with uniform 
strain field, an infinite distance away from the inclusion. The Eshelby 
technique provides the solution to a general problem of an infinite medium 
containing an inclusion. It involves replacing the real inclusion by an 
inclusion made of matrix (hence the use of expression equivalent 
homogeneous inclusion) but with a proper misfit strain, called equivalent 
transformation strain. The resultant stress field is the same as that for the 
real inclusions. In very simple terms, we can outline the technique as 
follows: 

Cut a piece of material from the unstressed, homogenous matrix 
leaving a hole. 
Allow the cut piece of material to undergo a shape change that 
corresponds to a transformation strain, E'. 
Insert the transformed inclusion back into the original hole, preventing 
interfacial sliding, and then releasing the tractions. This requires the 
application of surface tractions so that the transformed shape of the 
inclusion can be fit back into the original hole. 

A constrained strain, E' is developed in the inclusion relative to the initial 
shape. The Eshelby tensor, S, relates the constrained strain, E" to the 
transformation strain, E', by: 

The Eshelby tensor is a function of the aspect ratio of the inclusion (or 
reinforcement) and the Poisson's ratio of the matrix. The reinforcement 
(short fibers, whiskers, or particles) are represented as prolate spheroids. The 
equation for such an inclusion in terms of Cartesian coordinates is: 

where c/a represents the aspect ratio of the inclusion and cla > 1.  

The important general result of the Eshelby analysis is that for an ellipsoidal 
inclusion the resulting stress and strain in the inclusion are homogeneous. 
The strains in the matrix and in the inclusion are therefore related 



156 Chapter 6 

algebraically. We can write for the stress in the inclusion, q, in terms of 
stiffness of the material, C,, and the elastic strain in the inclusion as: 

In a composite, the ellipsoid inclusion or reinforcement will generally be 
stiffer than the matrix, i.e., the reinforcement has elastic constants, Ci. The 
inclusion being a different material than the matrix, we need to replace E' 

with an equivalent strain. With appropriate rearrangement, the resulting 
stress in the inclusion is 

Now, eC f Seteq, since Ci #C,. However, we can find an equivalent 
homogenous transformation strain, et, such that the equivalent inclusion 
resembles the inhomogeneity, i.e.: 

From Eq. (6.14), we can obtain the transformation strain for any shape 
change, E~,, and stiffness mismatch (Ci - C d  as: 

This then gives the stress in the reinforcement as: 

This expression allows us to calculate the internal stresses in the inclusion. It 
is valid when the concentration of the inclusion phase is small. If this is not 
so, the interaction of the fields from the other inclusions would affect the 
average fields in the matrix and the reinforcement. The main advantage of 
the Eshelby tensor is that it allows us to determine the stress and strain in the 
inclusion without worrying about the complex stress field in the matrix. 
Determining the full field values can be an extremely difficult proposition 
depending on the geometry and the selected load case. 

The Eshelby method would work nicely if the composite had ellipsoidal 
inclusions of arbitrary aspect ratios. The reinforcements, however, are 
generally of any shape causing singularities and problems in the local fields. 



6. micromechanics 157 

The averaging schemes, in general, break down for some reinforcement 
shapes and if there occurs a clustering of particles or fibers. Last but not 
least, the effect of shape and spatial distribution of particles can become 
quite marked when constrained plastic deformation occurs in one of the 
phases, for example, in a WC/Co composite. 

6.1.5 Numerical Methods 

As an alternative to analytical analysis, numerical techniques such as finite 
element method (FEM) have become very popular, especially when the 
geometry of the component and thermomechanical history of the composite 
can be incorporated into the simulation of the properties. One common 
approach is to use a unit-cell model, where one or more reinforcement, fibers 
or particles, are embedded within the matrix, to simulate a composite 
material with a periodic array of reinforcement. It should be noted that in 
actual composites the particles commonly contain sharp corners, so spherical 
particles are not necessarily a realistic choice for simulation. Microstructure- 
based finite element techniques have been employed that are able to 
incorporate the "true" microstructures, that take into consideration particle 
morphology and clustering of particles, as a basis for analysis using finite 
element techniques (Chawla et al., 2003, Chawla et al., 2004). Figure 6.9 
shows a microstructure-based model and two unit-cell models. 

Chawla et al. (2003) applied an object oriented finite element technique to 
particulate reinforced metal matrix composites from images (micrographs) 
of real systems. In particular, the effect of reinforcement particle volume 
fraction and alignment (with respect to the loading axis) on the anisotropy of 
elastic properties was investigated. Chawla et al. (2004) obtained numerical 

Microstructure Rectangular prism Sphere 

Fig. 6.9 Comparison of different types of numerical models: microstructure- 
based, unit cell rectangular prism, and unit cell sphere (after Chawla et al., 
2004) 
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predictions of the effective Young's modulus for an AlISiC, composite, 
which are shown in Table 6.2. The unit cylinder particle has a greater 
stiffening effect than the spherical particle. Clearly, load transfer by a shear- 
lag type of mechanism (see chapter 7) is more effective across a planar 
interface than a spherical interface. 

The advantage of using a three-dimensional (3D) microstructure-based 
model is shown by a comparison of the predicted Young's modulus of the 
composite, versus typical prismatic (rectangular) and spherical unit cell 
models, Table 6.2. The highest and lowest simulated moduli and strength 
were obtained by the prismatic rectangle unit cell and sphere unit cell, 
respectively. This can be attributed to the highest degree of load transfer for 
the prismatic, rectangular particle than for the spherical particles. The 3D 
microstructural models, from two different regions of the material, exhibited 
a higher degree of strengthening, since the actual microstructure 
incorporated the inherent aspect ratio and alignment of the S i c  particles 
along the loading direction. A comparison of all predicted moduli with 
experimental tensile data on the same composite, from Chawla et al. (2004), 
shows that the result from the 3D microstructure model correlates very well 
with the experimentally determined Young's modulus value of 108 GPa 
(Ganesh and Chawla, 2004). 

6.2 PHYSICAL PROPERTIES 

In this section we provide expressions for some important physical 
properties such as density, coefficients of thermal expansion, and electrical 
and thermal conductivity. 

6.2.1 Density 

Density of a material is mass per unit volume. Density is one property for 
which the rule-of-mixtures works for any composite irrespective of the 

Table 6.2 Young's Modulus Predicted by Various Finite Element Models 
and Comparison to Experiment (Chawla et al., 2004) 

Unit Cell - S ~ h e r e  
u 

100 

Method I Young's Modulus (GPa) 
Unit Cell - Rectangular Prism I13 

3D Microstructure 
Experiment (Ganesh and Chawla, 2004) 

107.4 + 0.4 
107.9 + 0.7 
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distribution of the constituents. The mass of a composite is the sum of the 
masses of the constituents. Thus: 

where m represents the mass and the subscripts c, m, and r indicate 
composite, matrix, and reinforcement, respectively. The above equation is 
valid even in the presence of voids in the composite. For the volume of the 
composite, we can write: 

where v denotes the volume of a component while the subscripts c, m, r, and 
v indicate composite, matrix, reinforcement, and void, respectively. We can 
then write in terms of mass fractions and volume fractions of the composite 
the following two expressions: 

For the density of the composite, we can write: 

An experimental measurement of density of a composite is frequently used 
to test for the presence of any porosity in the composite. It is worth pointing 
out that should there be any interfacial reaction between the components of a 
composite, the reaction product(s) should be treated as additional 
component(s) of the composite. 

6.2.2 Coefficient of Thermal Expansion (CTE), a 

Most materials, with very few exceptions, expand when heated, i.e., their 
volume increases. This of course stems from the atomic or molecular 
vibrations that materials undergo at all temperatures. The amplitude of these 
vibrations increases with temperature. We can characterize this in terms of a 
volumetric coefficient of thermal expansion, P, defined as: 



p.. ='(") 
V 6T 
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where V is the volume of the material, T is its temperature and the two 
indices of the volumetric coefficient of thermal expansion indicate that it is a 
second rank tensor. 

We can also define a linear coefficient of thermal expansion, a, as: 

where E is the strain and a is another second-rank symmetric tensor. The 
coefficient of thermal expansion, a, does not have a constant value over a 
very large range of temperature. Over a small temperature range, AT, we 
write: 

It is instructive to recall that the sum of the diagonal terms of the strain 
tensor represent the volume change, i.e., 

1 
a=-k11+&22 3 +c331 

For small strains, 
P.. =3a.. 
1J 1J 

In matrix notation, we can write: 

In contracted notation, the above expression takes the following form: 
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If we are interested in finding the CTE in any arbitrary direction [hkl] in the 
plane of a fiber reinforced composite, we need to use the direction cosines 
formula. Let a h k l  be the CTE along a direction [hkl] that has direction 
cosines nl, n2, and n3. 

2 ahkl = aL + (a1 I - a,) cos 8 

where we have taken al = a1 1, parallel to the fiber axis and a2 = a3 = aL,  
perpendicular to the fiber axis. Also, we have made use of the relationship 
nI2 + n22 + n32 = 1. 8 is the angle between direction [hkl] and the fiber axis. 

Expressions for CTE of Composites 

In general, the CTE of a composite is different from that given by a simple 
rule of mixtures (afVf + amVm). This is because the presence of 
reinforcement, with an expansion coefficient less than that of the matrix, 
introduces a mechanical constraint on the matrix. The degree of constraint is 
also dependent on the nature of the reinforcement, e.g., a fiber will cause a 
greater constraint on the matrix than a particle. 

Many models have been proposed to predict the coefficients of thermal 
expansion (CTE) of fibrous and particulate composites. Experimental 
determination of these coefficients and analysis of the general thermal 
expansion characteristics of a variety of composites are available in the 
literature; see for example, Turner (1946); Kerner (1956); Rosen and Hashin 
(1970); Schapery (1968); Marom and Weinberg (1975); Vaidya and Chawla 
(1994). 
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Unidirectionally Aligned Fibrous Composites 

In fiber reinforced composites, two thermal expansion coefficients are 
needed: a,, in the longitudinal direction and a,, in the transverse direction. 
Fibers generally have a lower expansion coefficient than that of the matrix. 
Thus, the fibers mechanically constrain the matrix resulting in a,, being 
generally smaller than a,, for the composite. At low Vf, it is possible that the 
transverse expansion coefficient of a fibrous composite, a,,, may be greater 
than the CTE of the matrix by itself. Long, stiff fibers prevent the matrix 
from expanding in the longitudinal direction, which forces the matrix to 
expand more than usual in the transverse direction. Schapery (1968) put 
bounds on the coefficient of thermal expansion of a unidirectional fiber 
reinforced composite. These bounds are quite narrow in the longitudinal 
direction. The following assumptions are made in this analysis: 

(a) The bonding between the fiber and matrix is perfect and mechanical 
in nature, i.e., no chemical interaction is allowed. 

(b) The fibers are continuous and perfectly aligned. 
(c) The properties of the constituents do not change with temperature. 
(d) Poisson's ratios of the components are not very different. 

Expressions for expansion coefficient of a fibrous composite are as follows. 
The longitudinal expansion coefficient for the composite is: 

The transverse expansion coefficient is: 

a,, E (I + v,)a,~, + (1 + v,)a,~, - a,,V 

For low fiber volume fractions, Vf > 0.2 or 0.3, a,, can be approximated by 

a,, = (I + V, )a,~, + a, V, 

Anisotropy in expansion can be reduced if the composite contains randomly 
oriented short fibers or whiskers in three dimensions. Fore such a composite, 
the isotropic thermal expansion coefficient is given by: 
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a= a c ,  + 2% 
3 

Particle Reinforced Composites 

One can regard a particulate composite as a homogeneous material in a 
statistical sense, i.e., assuming a uniform distribution of the particles in the 
matrix, Fig. 6.10. Volumes fractions of the two phases are: 

V, and V2(= 1 -VI)  

Volumetric CTE of a composite consisting of spherical particles dispersed in 
a matrix (Kerner, 1956) is given by: 

Kerner's expression does not differ significantly from the rule of mixtures 
because the particle constraints the matrix a lot less than fibers. The 

- 
Fig. 6.10 Schematic of a particulate composite. 
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Schapery solution (Schapery, 1968), gives upper and lower bounds for the 
thermal expansion coefficient. The upper bound is given by: 

and the lower bound is: 

where Kc is the bulk modulus of the composite and is obtained from the 
Hashin-Shtrikman analytical model (Hashin and Shtrikman, 1963) described 
above. 

The expression of the linear CTE of a particulate composite has also been 
given by Turner (1946): 

Turner's expression, generally, gives an expansion coefficient much lower 
than the rule-of-mixtures value. 

The models described above have been used extensively to predict the 
experimental behavior of particle reinforced MMCs. Elomari et al. (1997) 
studied the CTE behavior of S i c  particle reinforced pure A1 matrix 
composites, in the volume fraction range of 47-55% particles. The S i c  
particles were oxidized prior to matrix infiltration to minimize interfacial 
reaction. In their study the rule-of-mixtures predicted the highest CTE, 
followed by the predictions of Kerner, Schapery, and Turner, which was the 
lowest. The experimental data were in between the broad range between 
Kerner and Schapery predictions. Similar trends were observed by 
Sadanandam et al. (1992) for composites of 2124 A1 reinforced with S i c  
(10,20%), A1203 (20%), and T i c  (20%). Vaidya and Chawla (1994) 
measured CTE in several particle reinforced composites, 2014/SiC/17,, 
2014/A1203/17p, 8090 (Al-Li)/SiC/15p, 6061/SiC/15,, 6061/B4C/15,. 
Kerner's model was closest to experiment, although the Turner model 
predictions were much lower than the experiment. They attributed this to the 
fact that the Kerner's model is close to the rule of mixtures approximation 
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when the constraint term is small, i.e., since the reinforcement is in 
particulate form, the constraint is not as large as that from fiber 
reinforcement. 

Chawla et al. (2005) studied the thermal expansion behavior of extruded S i c  
particle reinforced A1 matrix composites, using 2D microstructures as the 
basis for the models, Fig. 6.1 1(a). The stress state in the composite was very 
much influenced by the morphology and distribution of the S i c  particles, 
Fig. 6.1 1(b). The stress was highest at the particlelmatrix interface, while the 
matrix between closely-spaced particles was also under high thermal stress. 
"Networks" of high stress regions, linking particles in the composite, were 
also observed. The CTE of the composites was measured in three different 

(b) 

Fig. 6.11 (a) 2D microstructure used as the basis for finite element modeling of 
thermal expansion behavior in extruded Sic particle reinforced A1 matrix 
composites (b) von Mises stress distribution after thermal expansion. The stress 
state in the composite was very much influenced by the morphology and 
distribution of the S ic  particles (after Chawla et al., 2005). 
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orientations: longitudinal (parallel to the extrusion axis), transverse (normal 
to the extrusion axis but in the extrusion plane), and short transverse (normal 
to the extrusion axis, and out of the plane). They also showed that the Turner 
prediction was below the experimental values, while the Schapery bounds 
were somewhat higher than the experiments, Fig. 6.12(a). Using the 
microstructure-based models, better agreement was obtained with 
experiments than with the analytical models above. Because of the 2D nature 
of the model, however, the predictions were slightly higher than the 
experimental values, Fig. 6.12(b). 

Effect of lntegace on CTE of a Composite 

As we have described above, most models predict a value of thermal 
expansion coefficient of a composite that is less than that given by a simple 
rule of mixtures (ROM). The CTE of the composite is generally less than the 
ROM value because the presence of ceramic particles (usually of low a) 
introduces a constraint on the expansion of the metallic matrix (usually of 
high a). In this regard, it is important to point out that interface can exert 
some influence on the value of CTE, especially for very small particle size. 

Xu et al. (1994) examined the effect of particle size on the thermal 
expansion of AlITiC, composites, in which the T i c  particle size was varied. 
In this system, the interface is semi-coherent (Mitra et al., 1993). The 
particle volume fraction was maintained constant at about 15% while two 
particle sizes were used, 0.7 pm and 4 pm. Figure 6.13 shows the values of 
coefficient of thermal expansion (CTE) for the two composites (circles and 
squares). Also plotted in Fig. 6.13 are the CTE values for pure aluminum 
and titanium carbide. The 4 pm particle composite showed, consistently, a 
higher CTE than the 0.7 pm particle composite. Note that the CTE of the 4 
ym particle composite is very close to the rule of mixture (ROM) value, 
while that of the 0.7 ym particle composite is not, implying that more 
constraint on the aluminum matrix is caused by the 0.7 ym particle than by 
the 4.0 pm particle. A very good interfacial bond between the T i c  particle 
and matrix exists. Although no chemical compound formation was observed 
in the interfacial area, lattice distortion in the interfacial area was observed. 
The thickness of this region of strain localization varied between 10-50 nm 
(Mitra et al., 1993). Such a lattice distortion at the interface will affect the 
CTE value of the composites. Since the interfacial area is related to the 
particle size, the volume of such a lattice distortion layer will depend on the 
particle size, and, accordingly, the effect of the particle size on the CTE of 
the composites will vary with the particle size as well as shape. For a given 
particle volume fraction, the smaller particle size, the greater the volume 
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Fig. 6.12 (a) Comparison of experimentally determined CTE in extruded 2080 
AlISiC, matrix composites, along with analytical predictions by Schapery and 
Turner, and (b) 2D microstructure-based FEM predictions. The effect of CTE 
anisotropy is more adequately captured by the microstructure-based model 
(after Chawla et al., 2005). 
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Fig. 6.13 CTE versus temperature for Tic particle reinforced A1 composites 
with different particle size (after Xu et al., 1994). The 4 ym particle composite 
showed, consistently, a higher CTE than the 0.7 pm particle composite. The 
modified rule of mixtures (ROM) prediction, which includes the CTE of the 
interface, predicted the experimental behavior very well. 

fraction of interfacial zone. Figure 6.14(a) illustrates the effect of particle 
size on the interfacial zone size for a given volume fraction of particle. A 
quantitative comparison of volume fraction of interfacial zone, Vi, between 
two particle size composites is shown in Fig 6.14(b). If the thickness of the 
distortion layer is assumed to be 25 nm, Vi can be 3%, which is quite 
significant. This interfacial zone will be constrained to expand or contract 
with the particle, and thus, CTE of this zone will be closer to that of the 
particle than that of the metal matrix. In order to explain the effect of the 
particle size on the CTE of the particle reinforced metal matrix composite, 
consider that the composite consists of a matrix phase, a particulate 
reinforcement, and an interfacial zone to which a CTE different from that of 
the matrix can be ascribed. In this approximation, the constraint on the 
matrix expansion is thus embedded in the interfacial zone term. We can then 
write for the CTE of a three-component composite as follows: 
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where the subscripts, c, p, m, and i, denote the composite, particle, matrix, 
and interfacial zone, respectively. The interfacial zone volume fraction, Vi, 
was calculated by the interfacial area and the thickness of the lattice 
distortion layer. The best fit CTE curves using Equation (6.21) for the 4.0 
pm and 0.7 ym particle composites are obtained for the same assumed value 
q but different Vi, see the solid lines with data points in Fig. 6.13. The 

Particle size I 

I 

10 25 50 
Thickness of interfacial zone Um) 

(b) 
Fig. 6.14 (a) Schematic of the effect of particle size on fraction of interfacial zone. 
A smaller particle size results in a larger interfacial area. (b) Quantitative 
measurements of interfacial zone in AlITiC, composites. A larger interfacial zone 
will have a stronger effect on the CTE of the composite (after Xu et al., 1994). 



170 Chapter 6 

apparent CTE values for the interfacial zone are also shown in Fig. 6.13. The 
agreement between the prediction (Eq. 6.21) and the experimental results 
confirms the effect of particle size on the CTE of this particle reinforced 
composite. 

A lower CTE may also result from an interfacial phase between particle and 
matrix. Elomari et al. (1997) studied the CTE behavior of Sic particle 
reinforced pure A1 matrix composites. The Sic  particles were oxidized prior 
to matrix infiltration to minimize interfacial reaction. A thin Si02 coating 
formed on the particles resulted in a lower CTE than that of unoxidized 
materials. Furthermore, a decrease in particles size (i.e., more surface area 
for oxides to form) also resulted in reduced CTE. 

Other Factors Influencing CTE of Composites 

In addition to the interface, the CTE of particle reinforced MMCs is affected 
by several other factors. These include: Plasticity due to CTE mismatch 
between reinforcement and matrix, during heating or cooling; reinforcement 
fracture, residual stress, and local stresses at points of contact between 
reinforcement. Lee et al. (1991), for example, noted that the experimentally 
measured CTE in A1 alloytSiC, composites was lower than that of model 
predictions by Paul (1960). They postulated that the irregular shape of the 
Sic  particles may cause different thermal stress fields relative to perfectly 
spherical particles. Furthermore, an incompressible plastic layer may form at 
the particletmatrix interface, and result in lower expansion of the matrix, and 
thus, the overall composite. 

The CTE may also be affected the particle fracture. Elomari et al. (1996) 
examined the CTE in particle reinforced MMCs, 6061/A1203/10, and 20,, 
with increasing particle fracture. An increase in particle fracture resulted in 
increased CTE. Residual stress also has an important effect on CTE. Chang 
et al. (2000) studied the CTE behavior of 40 vol.% A1203 particle reinforced 
A1 matrix composites. Water-quenched simples had a lower CTE than 
furnace cooled simples. This was attributed to thermal residual stresses 
present in the water-quenched samples. At temperatures above 100°C the 
CTE increased, and were closer to the prediction by Kerner. This was 
attributed to a relief in the residual stresses with increasing temperature. 
Shen et al. (1994) used a unit-cell FEM approach to model the thermal 
expansion behavior of Sic  particle reinforced A1 matrix composites. They 
showed that residual stress increased the apparent CTE of the composite, 
since the residual stress in the metal matrix has a tensile component. Shen et 
al. (1994) also showed that the CTE is much less sensitive to particle 
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distribution (clustering) than tensile stiffness. This was attributed to the fact 
that for an elastically deforming, isotropic composite, the effective CTE is 
given as (per Hashin-Shtrikman and Schapery, for example): 

11K-11K2 
a = a2 + (a, -a2) 

l l K l  -11K2 

where K is the bulk modulus and the subscripts 1 and 2 refer to ductile and 
brittle phases. From this equation one can see that the CTE is highly 
dependent on K, which is relatively insensitive to the distribution of particles 
in the matrix of the composite. Interestingly, the contiguity of a phase had a 
significant effect on CTE. For example, when the brittle phase is continuous, 
an additional constraint is placed on the expansion of the ductile phase. 
Microvoid nucleation and propagation at points where particles touch or at 
pre-existing processing-induced voids may also cause a deviation in strain 
versus temperature, with slight increase in CTE taking place (Balch et al., 
1996). 

6.2.3 Thermal Conductivity 

Thermal conductivity is another thermal property of great importance. Some 
general background on thermal conductivity is given in the inset. A 
composite consisting of unidirectionally aligned carbon fibers in an 
aluminum matrix can show extremely high thermal conductivity along the 
fiber direction, especially if pitch-based carbon fibers are used. This is 
because pitch-based carbon fibers have very high thermal conductivity along 
the fiber axis. Thus, depending on the volume fraction of carbon fiber used, 
the thermal conductivity of a CIA1 composite along the fiber direction can be 
greater than that of even copper. The thermal conductivity transverse to the 
fibers in such a composite will be about two-thirds that of aluminum. Such a 
CIA1 composite can find applications in heat transfer applications where 
weight reduction is an important consideration. Examples of such 
applications might include high-density, high-speed integrated-circuit 
packages for computers and base plates for electronic equipment (see the 
chapter on applications, Chapter 11). Another possibility is to use this 
composite to dissipate heat from the leading edges of wings in high-speed 
airplanes. Tungsten carbidelcobalt composites are used extensively in 
operations such as metal cutting or rock drilling where they experience very 
high temperatures. The ability to dissipate heat away from the wear surface, 
and thus avoid any localized temperature-induced softening, depends on the 
thermal conductivity of the composite. In WCICo composite, both phonons 
(quanta of lattice waves) and electrons contribute to thermal conductivity. In 
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ceramics, only phonon (lattice) thermal conductivity contributes to the total 
thermal conductivity. 

The heat flow in a material is proportional to the temperature gradient, and 
the constant of proportionality is called the thermal conductivity. In indicia1 
notation, the equation for heat transfer is 

where qi is the heat flux along xi axis, dT/dx is the temperature gradient 

across a surface that is perpendicular to the x j  axis, and the coefficient, kij 

is called thermal conductivity. Thermal conductivity is also a second-rank 
tensor, note the two indexes. Similar to thermal expansion coefficient, the 
second rank, symmetric thermal conductivity tensor, kij , in an isotropic 

material reduces to a scalar number, k. In an orthotropic material, we need 
three constants along the three principal axes: k l l ,  k22,  and k33. In a 
transversely isotropic material such as a unidirectionally reinforced fibrous 
composite, there will be two constants: kcl, in the axial direction and kc, in 
the transverse direction. The thermal conductivity in the axial direction, kCl 
can be predicted by a rule-of-mixtures type expression (Behrens, 1968) 

where kfl is the thermal conductivity of the fiber in the axial direction and k, 
is the thermal conductivity of the isotropic matrix. This relationship is 
similar to the rule-of-mixtures in the longitudinal direction for the Young's 
modulus obtained by action-in-parallel. 

Thermal conductivity of a unidirectionally aligned fiber composite (i.e., 
transversely isotropic) in the transverse direction can be approximated by the 
action-in-series model. This would give: 

Halpin-Tsai-Kardos equations can be used to obtain the following 
expression for the transverse thermal conductivity of a composite containing 
unidirectionally aligned fibers: 
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Transport Properties 

Electrical and thermal conductivities represent two very important 
transport properties. Electrical resistivity, p, is the inverse of electrical 
conductivity, o. Electrical resistance of a piece of metal of length, L, 
and cross-sectional area, A, is given by: 

Ohm's law relates the voltage drop, V and current, I as V= IR. Another 
form of Ohm's laws is as follows: 

where J is the current density (current per unit area) I/A (~m-*) ,  E is the 
electric field (~m-'), and a is the electrical conductivity (C'rn-I), which 
is equal to I/p. Metals are generally good conductors with cr on the 
order of lo7 S2-'m-'. In general, impurities, solid solution alloying, 
plastic deformation reduce the electrical conductivity of metals. 

The heat flow in a material is proportional to the temperature gradient, 
and the constant of proportionality is called the thermal conductivity. 
The basic equation has the form: 

where q i  is the heat flux along xiaxis,dT/dxi is the temperature 

gradient across a surface that is perpendicular to the x axis, and kIj is 

the thermal conductivity. Thermal conductivity is also second-rank 
tensor, note the two indexes. Another form of heat transfer equation is 

where q, is the heat flux, AT is the temperature gradient and kij the 
thermal conductivity tensor (WImK). Equations A and B are 
mathematically similar. In these equations, the quantity on the left hand 
side is the response to the stimulus on the right hand side. The two are 
related via a constant of proportionality (a and k) which is a tensor of 
rank two. For cubic symmetry, the tensor reduces to a scalar. 
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where we have taken 5 equal to 1. 

For a unidirectionally reinforced fibrous composite, if we know the thermal 
conductivity in directions 1 and 2, we can find the thermal conductivity k, 
and k, in any arbitrary directions, x and y, respectively, by the following 
equations: 

where 0 is the angle measured from the x-axis to the l-axis and k,, can be 
considered to be a thermal coupling coefficient. 

6.2.4 Electrical Conductivity 

In terms of electrical conductivity, most metal matrix composites are 
mixtures of good electrical conductors (e.g., Cu, Al, Ti, etc.) and insulators 
(e.g., B, C, Sic,  A1203, etc.). There are exceptions such as WICu composites. 
Some general background on electrical conductivity is given in the inset. 
The conductivity (thermal or electrical) of a composite will depend on the 
conductivity characteristics of the matrix, reinforcement, volume fraction 
and aspect ratio and shape of the reinforcement, and, of course, the 
interfacial characteristics (Weber et al., 2003a, 2003b; Weber, 2005). In 
particular, interfacial resistance will vary with the form and size of 
reinforcement and the connectivity of the phases. Weber (2005) analyzed the 
influence of reinforcement size on the electrical conductivity of a metal 
matrix composite. He explained the observed size effect in terms of 
additional scattering of the conduction electrons at the metal/ceramic particle 
interface. The scattering effect of dislocations, generated by plastic 
deformation in the metal matrix during cooling from the processing 
temperature, on electrical conductivity was not significant. 

For the simple case of a fiber reinforced composite, assuming no significant 
interfacial effect, we can write for the resistivity of the composite in the axial 
direction, in a manner similar to other rule-of-mixtures type relationships, 

Pce = PI V1 + p2V2 
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where p is the electrical resistivity, V is volume fraction of a phase, and the 
subscripts c.e, 1, and 2 designate the composite in the longitudinal direction 
and the two components of the composite, respectively. Or in terms of 
electrical conductivity, o (unfortunately, it is customary to use the same 
symbol as that for strength), we can write: 

In the transverse direction, we have: 

where the symbols have the significance given earlier. There is a logarithmic 
expression also: 

log oc = v, logo1 + v2 logo2 

Of course, one can generalize these expressions to more than two composites 
in the composite, should that be the case. One can also use self-consistent 
models to obtain the electrical conductivity of a composite, see for example, 
Hale (1976). 

An important point that needs to be emphasized here is that the electrical 
resistivity (and therefore electrical conductivity) of the metal matrix in a 
composite is likely to be different from that of the unreinforced metal. This 
is because of possible plastic deformation during processing which will 
introduce dislocations due to thermal mismatch between the matrix and the 
reinforcement. The dislocations in turn will increase the resistivity of the 
matrix. Unlike the unreinforced metal, one cannot recover electrical 
conductivity by resorting to an annealing treatment because the annealing 
treatment will again cause plastic deformation of the matrix because of the 
thermal mismatch between the components. 

Thermal stresses are internal stresses that arise when a constraint on free 
dimensional change of a body exists (Chawla, 1973a, 1973b). In the absence 
of this constraint, the body can experience free thermal strains without any 
accompanying thermal stresses. In a composite material, this constraint 
comes from the fact that it is made of dissimilar materials, i.e., materials 
having different coefficients of thermal expansion. Thermal stresses result 
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in a composite because of the ever present mismatch in the coefficients of 
thermal expansion of the reinforcement and the matrix (Aa = cl, - a,). 
Thermal strain, in the absence of any temperature gradients, is given by 
AaAT, where AT is the amplitude of temperature change. During cooling 
from the processing temperatures, a large magnitude of thermal stresses can 
result because of the thermal mismatch between the reinforcement (particle, 
short fiber or long fiber) and the matrix. Thermal stresses generated will 
depend on the reinforcement volume fraction, reinforcement geometry, 
thermal mismatch, temperature interval (Tfinal - Tini,ial), and modulus ratio, 
EJE,, where the subscript r denotes the reinforcement. Generally, a, > a,, 
i.e., on cooling from Tinitial to Tfinal (Tinitpal > Tfinal ), the matrix would tend to 
contract more than the reinforcement, putting the reinforcement in 
compression and the matrix in tension. That is the explanation in simple 
terms. In reality, it is complex three-dimensional situation. We derive below 
the analytical expressions for (three-dimensional) thermal stress components 
in two types of composites: a central particle surrounded by its associated 
spherical matrix shell and a central fiber surrounded by its cylindrical shell 
of matrix. The following assumptions are made in this analysis: 

Matrix and reinforcement obey Hooke's law. 
Elastic reinforcement is embedded in an elastic continuum of matrix. 
No chemical reactions between reinforcement and matrix. 

In what follows, we need to use the following sets of relationships to solve 
problems in elasticity involving a complex state of stress: 

Equations of equilibrium of forces 
Equations of compatibility 
Constitutive equations (stress-strain relations) 
Boundary conditions 

6.3.1 Thermal Stresses in Particulate Composites 

Consider a particulate composite consisting of small ceramic particles 
distributed in a ceramic matrix. If we regard this composite as an assembly 
of elastic spheres of uniform size embedded in an infinite elastic continuum, 
then it can be shown from the theory of elasticity (Timoshenko and Goodier, 
1951; Brooksbank and Andrews, 1970) that an axially symmetrical stress 
distribution will result around each particle. Figure 6.15 shows a schematic 
of such a particle reinforced composite. Let us say that each particle has a 
radius, a while the surrounding matrix sphere has the outer radius, b. This 
spherical symmetry problem calls for the use of spherical coordinates, r, 0, 
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Fig. 6.15 Thermal stress distribution, on cooling, in a particulate composite 
that has CTE of matrix, a, > particle CTE, a,. The particle is under a uniform 
pressure, P, while the matrix has radial and tangential stress components, 
radial and tangential components in the matrix vary with distance as l/r3. 

and cp as indicated in Fig. 6.15. We have the following stress, strain, and 
displacement components: 

or, 00  = ov 

Er, El3 = Eq7 

u, = u, independent of 8 or cp 

The stress-strain and strain-displacement relationships are: 
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The equilibrium equation for this spherical problem is 

From Eqs. (6.22) and (6.23), we get the following 
equation: 

The solution to this differential equation is: 

(6.23) 

governing differential 

This is the general solution that gives the displacement as a function of radial 
distance. We can obtain our stress components by applying the following 
boundary conditions relevant to our problem: 

(i) stress vanishes at the free surface (i.e., at r = b) 

(ii) the radial stress at the interface (r = a) is the interfacial pressure, P, 
i.e., or (a) = - P . 

When we apply these boundary conditions, we find that the stresses in the 
particle are: 

while the stresses in the matrix are: 

-P[$-v,] and o r m  - 
1 - v, 
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The expression for P becomes: 

In the above expressions, Vp is the particle volume fraction, a is the particle 
radius, b is the matrix outer radius, and other symbols have the significance 
given earlier. A schematic of the stress distribution in the particulate 
composite is shown in the bottom half of Fig. 6.15 for case of cooling for a 
particulate composite that has CTE of matrix, a, > particle CTE, %. We can 
summarize the main results for a particulate composite as follows: 

The particle is under a uniform pressure, P. 

The matrix has radial and tangential stress components that vary as 
ur3. 

The radial component goes to zero at the free surface, r = b, as per 
our boundary conditions. The tangential component has a nonzero 
value at the free surface. 

6.3.2 Thermal Stresses in Fiber Reinforced Composites 

This important problem has been analyzed by a number of researchers 
(Poritsky, 1934; Hull and Berger, 1934; Chawla and Metzger, 1972; Scherer, 
1986; Herrmann and Wang, 1991; Hsueh et al., 1988). In the case of a 
unidirectionally reinforced fibrous composite, it is convenient to use polar 
coordinates because of the inherent cylindrical symmetry. Figure 6.16 shows 
the basic fiberlmatrix unit consisting of a central fiber (radius, a) surrounded 
by its sleeve of matrix (outer radius, b). The matrix outer radius, b, will 
depend on the volume fraction of the matrix. Such a simple axisymmetric 
model can be used to obtain the three-dimensional state of thermal stress up 
to a moderate fiber volume fraction. 

The axial symmetry means that we can treat the problem in terms of the 
principal stresses that are independent of 8. We derive expressions for the 
thermal stresses in a two-element cylindrical composite. For the axial 
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symmetric case under consideration, the radial and circumferential stresses 
will have expressions of the following form (Poritsky, 1934; Hull and 
Berger, 1934; Chawla and Metzger, 1972): 

The only equilibrium equation for this rotationally symmetric problem is: 

From Eqs. (6.27) and (6.28), we get the governing differential equation for 
our problem: 
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d2u 1 du u -+----=o 
dr2 r d r  r2 

The general solution to this differential equation is: 

This relationship between displacement, u and radial distance, r needs to be 
solved for each component, central fiber and outer matrix sleeve by applying 
boundary conditions. Thus, in component 1 or fiber, we have: 

and in component 2 or matrix, we have: 

The constants of integrations in these expressions need to be obtained by 
applying our boundary conditions. The boundary conditions are: 

(i) Stress vanishes at the free surface, i.e., or2 = 0 at r = b. 
(ii) Continuity of displacement at the fiberlmatrix interface, i.e., ul = u2 
at r = a. 
(iii) Continuity of radial stress at the fiberlmatrix interface, i.e., orl = 0,2 

at r = a. 
(iv) The radial displacement, u must vanish at the axis of symmetry, i.e., 
U, = 0 at r = 0. 

By using these boundary conditions, we can determine the constant of 
integration in Eqs. (6.31) and (6.32). The last condition gives C2 to be 
identically zero because if that were not so, ul will become infinity at r = 0. 
That leaves us with three equations and three unknowns. Since ceramic 
fibers used to reinforce metals remain elastic until fracture but the metal can 
undergo plastic deformation in response to the thermal stresses generated, 
we give below full expressions for the three stress components in the matrix. 
These are: 



Chapter 6 

where we have omitted the subscript m, and the constants A and B have the 
following expressions: 

and v, = v f  = v  

This thermoelastic solution can provide information about the magnitude of 
the elastic stresses involved and if the elastic range will be exceeded or not. 
In the case of a metallic matrix, it is likely to deform plastically in response 
to these thermal stresses (Chawla, 1973a; Chawla, 1973b; Arsenault and 
Fisher, 1983; Christman and Suresh, 1988). We can draw some important 
conclusions from Figure 6.17: 

(i) Axial stress is uniform in fiber and matrix, although its magnitude is 
different in the two and depends on the respective elastic constants. 

(ii) In the fiber, i.e., the central component f, od and oef are equal in 
magnitude and sense. In the matrix, i.e., the sleeve, om and oe, vary as [ I  - 
(b5Ir5)l and [1 + (b5/r5)], respectively. 

(iii) When either the temperature difference or the expansion coefficient 
difference goes to zero, the thermal stresses vanish, as expected. 

As an illustration, the variation of thermal stresses generated in the 
magnesium matrix in an alumina fiberlmagnesium matrix as a function of 
radial distance from the interface is plotted in Fig. 6.18. The stress values 
correspond a cooling of -1°C. Normalized radial distance is used, i.e., rla = 1 
corresponds to the interface. Note the constant value of the axial stress. Also 
to be noted is the compressive radial stress, which is highest at the 
fiberlmatrix interface and goes to zero at the free surface. The tangential 
stress is tensile in nature, highest at the interface and drops to a positive 
value at the surface. 
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2 1 2 

Fig. 6.17 Schematic of three-dimensional stress distribution in a fiber reinforced 
composite. 1 and 2 indicate fiber and matrix, respectively. 

Fig. 6.18 Thermal stress distribution in magnesium matrix in an alumina 
fiberlmagnesium matrix composite as a function of radial distance from the 
interface. The stress values correspond a cooling of -l°C. Normalized radial 
distance is used, i.e., rla = 1 corresponds to the interface. 
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