
165

S+FDA Functions for Principal Differential Analysis 168

Radioactive Decay Example 169

Harmonic Oscillator Example 173
Underdamped + Resonance 173

Lip Movement Example 178
Kernel Basis Functions 180
Change of Basis 181
Comparison with PCA 184
Summary 186

PRINCIPAL DIFFERENTIAL
ANALYSIS 11

Chapter 11 Principal Differential Analysis

166

Principal differential analysis (Ramsay 1996) estimates linear systems of
ordinary differential equations approximately satisfied by functional
data. This is of interest in physical processes, where, for example, the
one-dimensional motion of an object is a function of time that solves
an ordinary differential equation. The Maxwell equations are
another well known physical example. Biological, chemical and other
phenomena also often satisfy ordinary differential equations, and
discovering the form of these equations can help to understand the
nature of the underlying process.

More formally, for a sample of functions , principal

differential analysis determines a linear differential operator of

degree and/or a function for which for all .

Here is defined as:

where the operator notation has the following interpretation:

 and , the derivative of .

In principal, both the forcing function and the linear differential
operator weights (coefficients) may be functional data objects.

However, the current implementation may not be reliable unless the
linear differential operator is known to have constant coefficients.
Methods that better handle more general linear differential operators
are under active research, and will be added to S+FDA in the future.

Given the form of and the , the linear differential equation

is estimated by least squares (or penalized least squares). Either

or one of the must be known. Computational procedures are

discussed in Chapter 14 of Ramsay and Silverman (1997). Penalized
least squares estimation minimizes the criterion:

which reduces to a least squares criterion if the penalty term is
omitted.

fj t j 1 n=

L

m t Lfj t t j

L

L i t D
i

i 0=

m

=

D
0
fj t fj t= D

i
fj t

d
i
fj t

dt
i

--------------= i
th

fj t

t

i t

t i t

t

i t

167

The function is called the forcing function since, when , it
corresponds to the external force applied to a physical system. If
is identically zero, the resulting differential equation is said to be
homogeneous. Otherwise the system is nonhomogeneous.

When the forcing function and/or weight functions are
unknown, principal differential analysis can be used to estimate them
and elucidate the process underlying the functions .

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of basis functions that
may be considerably more compact than the current representation.
This follows from the fact that all solutions to a linear differential
equation can be expressed as the sum of:

• a particular solution

and

• a linear combination of basis functions for the null space or
kernel of the linear differential operator.

Although the current implementation of S+FDA cannot currently
handle arbitrary bases, such a representation may nevertheless be
useful in an analysis.

Lfj s s–
2
s penalty+d

j 1=

n

t m 2=

t

t i t

fj t

Chapter 11 Principal Differential Analysis

168

S+FDA FUNCTIONS FOR PRINCIPAL DIFFERENTIAL
ANALYSIS

The S+FDA function fPDA estimates the weight functions for the

linear differential operator , and/or the forcing function, .
The fPDA object is a list with two components:

• an object of class fLinDop which gives the coefficients of the
estimated linear differential operator.

• an object of class fFunction which gives the estimated forcing
function.

The fPDA object also has fitted.values and residuals from
predictions of the original functional data as attributes.

There is a predict method for fPDA objects that calls a function
fLinDopSolve to solve the linear differential equation. The fitting for
prediction is done by linear regression involving the kernel basis
functions of the linear differential operator and a particular solution to
the differential equation if there is a nonzero forcing function. See
Ramsay and Silverman (1997) for more details.

i t

L t

Radioactive Decay Example

169

RADIOACTIVE DECAY EXAMPLE

Consider radioactive decay defined by

where is the amount of a chemical element present at time ,
is the rate constant intrinsic to the element, and is the rate of
decay. The linear differential operator is:

The goal is to estimate .

To illustrate the S+FDA principal differential analysis function, fPDA,
we construct an example of functional data described by the above
radioactive decay equation. We simulate data for iodine 131, for
which when the unit of time is days.

> rateConstantI131 <- 0.0864
> Time <- 0:50
> Y <- matrix(0, 51, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10)
 Y[,j] <- (100 + rnorm(1, sd=10))*
 exp(rateConstantI131*Time)

Since the differential equation is of order one, we use a B-spline basis
of order four so that the first derivative will be a smooth cubic spline.

> basis <- bsplineBasis(c(0,50), norder=4, nbasis=10)

The functional data object created from the basis is:

> fY <- fVector(basis, Y)

Plot the functional data (see Figure 11.1:):

> par(mfrow=c(1, 1))
> plot(fY, main="Radioactive Decay of Iodine 131")

y t ky t–=

y t t k

y t

L D
1

kD
0

+=

k

k 0.0864=

Chapter 11 Principal Differential Analysis

170

To estimate the rate constant, we first call fPDA.

> decayPDAconst <-
 fPDA(fY, weights=list(constantBasis(fDomain=
 c(0, 50)), 1), forcing=0)

Here we have set weights=list(constantBasis(fDomain= c(0,50)),
1) to indicate that the first order coefficient is known to be equal to 1,
and the zeroth order coefficient needs to be estimated. We use a
constantBasis to ensure that the estimated coefficient is a constant.

The value of the rate constant estimate is then given as follows:

> rateConstantEstimate <-
 fEval(decayPDAconst$linDop[[1]], 25)
> rateConstantEstimate
 [,1]
[1,] 0.08638197

(since the coefficient is constant it suffices to evaluate the weight
function at any point in the domain).

Figure 11.1: Functional data for radioactive decay of Iodine 131.

Radioactive Decay of Iodine 131

time

a
m

o
u

n
t

0 10 20 30 40 50

0
2

0
4

0
6

0
8

0
1

0
0

Radioactive Decay Example

171

The following code plots the original functional data object, the
predictions produced by predict.fPDA, the residuals from the
predictions, and the operator residuals ():

> predictions <- predict(decayPDAconst)
> par(mfrow=c(2, 2))
> plot(fY, main="Original Functional Data")
> plot(predictions$fitted,
 main="Predicted Functional Data")
> plot(predictions$residuals,
 main="Residuals of Predicted Values")
> Lx <- fEval(fY, fArg=Time, linDop=decayPDAconst$linDop)
> plot(fVector(getBasis(fY), y=Lx),
 main="Differential Operator Residuals")

In the example just given, we chose a constant basis because of the
theoretical equation of decay. But it may be of interest to know what
fPDA would estimate if we did not make this assumption.

> decayPDAvar <- fPDA(fY, weights=list(NULL, 1), forcing=0)

Figure 11.2: Functional data, predicted fitted values, residuals of predicted values,
and operator residuals, when constant coefficients are assumed.

Lf

Original Functional Data

time

a
m

o
u
n

t

0 10 20 30 40 50

0
2
0

4
0

6
0

8
0

1
0

0

Predicted Functional Data

time

a
m

o
u
n

t

0 10 20 30 40 50

0
2
0

4
0

6
0

8
0

1
0

0

Residuals of Predicted Values

time

re
s

id
u
a

ls

0 10 20 30 40 50

-0
.0

0
5

0
.0

0
.0

0
5

0
.0

1
0

Differential Operator Residuals

args

v
a

rs

0 10 20 30 40 50

-0
.0

0
5

0
.0

0
5

0
.0

1
5

Chapter 11 Principal Differential Analysis

172

Setting the first element of weights to NULL causes the basis of the
functional data fY to be used in estimating the forcing function.
More generally, a basis can be specified for each unknown function in
the linear differential equation.

Plot the estimated rate of decay.

> plot(decayPDAvar$linDop[[1]],
 ylab="Decay Rate Estimate", xlab="Domain",
 main="Decay Rate Estimate, using inherited basis")
> abline(h=-0.0864)

Figure 11.3: shows that on average the estimated rate of decay is close
to the theoretical rate. However, there are edge effects, hinting at the
difficulties to be encountered in situations where less is known about
the underlying process, and one or more coefficients are estimated
using a nonconstant basis.

Figure 11.3: Estimated rate of decay, using the basis of the functional data object.
The horizontal line is drawn at the theoretical decay rate.

Decay Rate Estimate, using inherited basis

Domain

D
e

c
a

y
 R

a
te

 E
s
ti
m

a
te

0 10 20 30 40 50

0
.0

8
6

2
0

0
.0

8
6

3
0

0
.0

8
6

4
0

Harmonic Oscillator Example

173

HARMONIC OSCILLATOR EXAMPLE

A mechanical system is characterized by an external force applied to
the system, together with internal or external frictional forces or
viscosity. The classic example is a weight suspended from a spring.
The spring will oscillate when the weight is attached to it provided the
weight is not too heavy. This motion will fade over time depending
on the viscosity of the air or other medium in which the system is
situated.

The equation of motion for a harmonic oscillator with external force
 is:

where is the damping constant and is the square of the natural

oscillating frequency.

Underdamped
+ Resonance

The second-order equation of motion describes an underdamped

system if . In this case, oscillation will occur. If the forcing

function exhibits periodicty, the oscillation is called resonance. An
analytic solution is known when the forcing function is of the form

, where is the resonance frequency. A particular
solution in this case is

A general solution to the differential equation can be obtained by
adding the particular solution to the homogeneous solution, which
(ignoring the phase shift) is

under the assumption that the system is underdamped. The following
code simulates such a system and plots the resulting functional data:

f

D
2
y k1Dy k0y+ + f=

k1 k0

k1 2 k0

C 2 tcos 2

A 2 tsin B 2 tcos+

C k1
t

2
---– t k0sinexp

Chapter 11 Principal Differential Analysis

174

> k0 <- 2
> k1 <- .5
> hconst <- fconst <- 10
> phase <- 0
> nu <- 1/3

> pi2nu <- 2*pi*nu
> a <- pi2nu*k1
> b <- k0 - pi2nu*pi2nu
> d <- a*a + b*b
> A <- a/d
> B <- b/d

> tt <- seq(from=0, to=5, length=101)
> Y <- matrix(0, 101, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10)
 Y[,j] <- hconst*exp(-k1*tt/2)*sin(sqrt(k0)*tt+phase) +
 fconst*(A*sin(pi2nu*tt) + B*cos(pi2nu*tt)) + rnorm(1)

Figure 11.4: Simulated functional data for an underdamped harmonic oscillator
with resonance.

Underdamped + Resonance

args

v
a

rs

0 1 2 3 4 5

-1
0

-5
0

5
1

0

Harmonic Oscillator Example

175

Now we compute the constant coefficients of the linear differential
operator assuming that the forcing function is known:

> par(mfrow=c(1, 1))
> basis <- bsplineBasis(c(0, 5), norder=5, nbasis=20)
> fY <- fVector(basis, Y)
> plot(fY, main="Underdamped + Resonance")

compute constant coeffs using known forcing function
> forcing <- fFunction(basis, fconst * cos(pi2nu*tt))
> oscPDAconst <- fPDA(fY, weights=
 list(constantBasis(c(0, 5)),
 constantBasis(c(0, 5)), 1),
 forcing=forcing)
> k0 <- fEval(oscPDAconst$linDop[[1]], 2.5)
> k0
 [,1]
[1,] 2.021411
> k1 <- fEval(oscPDAconst$linDop[[2]], 2.5)
> k1
 [,1]
[1,] 0.504323

The resulting coefficients are quite close to the true values underlying
the simulated data.

In this case fPDA also gives a good estimate of the forcing function
when the linear differential operator is known:

> oscPDAforc <- fPDA(fY, weights=list(2, .5, 1),
 forcing=basis)
> plot(ans1$forcing, main="Estimated Forcing Function
 (known LDO)")
> lines(tt, fEval(forcing, tt), lty=6)

Chapter 11 Principal Differential Analysis

176

However, if we attempt to estimate the linear differential operator
coefficients as well as the forcing function, the resulting least squares
problem is ill-conditioned.

> oscPDAall <- fPDA(fY, weights=list(constantBasis(c(0,5)),
 constantBasis(c(0, 5)), 1),forcing=basis)
Warning in fPDA(fY, weights = list(constantBasis(c(..:
 least-squares system is ill-conditioned

The ill-conditioning warning is usually means that the results will not
be accurate, as is the case for this example. The constant weights are
estimated to be 0 and 0.083, far from their true values of 2 and 0.5,
respectively. The forcing function estimate is plotted below:

> plot(oscPDAall$forcing, main="Forcing Function Estimate")

Figure 11.5: Forcing function for underdamped harmonic oscillator estimated by
fPDA when the linear differential operator is known. The dotted line is the true
forcing function underlying the simulated data.

Estimated Forcing Function (known LDO)

args

v
a

rs

0 1 2 3 4 5

-1
0

-5
0

5
1

0

Harmonic Oscillator Example

177

> lines(tt, fEval(forcing, tt), lty=6)

It may in some instances be possible to avoid ill-conditioning by
increasing the arguments k or nbasis to fPDA (these affect the
accuracy of the projections used in computing inner products for least
squares), but in this case we weren’t able to find a suitable set of
inputs. It is also possible to include penalty terms on the weight
functions and/or their derivatives, or on the derivatives of the forcing
function, in fPDA to regularize principal differential analysis, but there
are no systematic guidelines for doing so with the current
implementation. New methods under development incorporate
regularization mechanisms, and we plan to include them in future
editions of this library.

Figure 11.6: Estimate forcing function when weights are assumed constant but
unknown. The dotted line is the true forcing function underlying the simulated data.

Forcing Function Estimate

args

v
a

rs

0 1 2 3 4 5

-3
0

-2
0

-1
0

0
1

0
2

0

Chapter 11 Principal Differential Analysis

178

LIP MOVEMENT EXAMPLE

The lip movement data, first used in the chapter on registration,
consists of twenty replications measuring the vertical lip position as a
single individual says the syllable “bob”. In order to perform
principal differential analysis, first register and smooth the curves.
The S+FDA code for creating, registering, and smoothing the lip data
is as follows:

> lipBasis <- fBasis(type="bspline",fDomain=c(0, 1),
 nbasis=31,params=(c(1:25)/26))
> fLip <- fVector(object=lipBasis, y=lipmat, fArgs=liptime,
 fNames=list(NormalizedTime=liptime,
 Replications=seq(20), Units="mm"))
> regLip1 <- fRegister(fLip, mean(fLip), nDeriv=1,
 maxIter=120, lambda=0.1,
 criterion=1, penalty=0.0005)
> regLip1 <- fRegister(fLip,mean(regLip1$fReg), nDeriv=1,
 maxIter=120, lambda=0.1,
 criterion=1, penalty=0.0005)
> yLip <- fVector(regLip1$fReg, penalty=
 list(lambda=1.e-10, linDop=fDop(2)))

Note in this code that the registration is performed on the derivatives
rather than the functions.

Because the lower lip is part of a mechanical system, with certain
natural resonance frequencies and a stiffness or resistance to
movement, it seems appropriate to explore to what extent this
method can be expressed it terms of the second-order differential
equation typically used to analyze such systems, in which the linear
differential operator

is a generalization of the which one used for the harmonic oscillator
example in the previous section. Strictly speaking, the mechanical
interpretation of the differential equations does not hold if the weight
coefficients are allowed to be functions rather than constants, but
higher-order effects can be ignored if they do not vary too rapidly
with time. The principal differential analysis estimates, assuming
nonconstant weights, are computed as follows:

0 t f t 1 t D
1
f t D

2
f t+ +

Lip Movement Example

179

> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1),
 forcing=0)

We set forcing=0 to indicate that the differential equation is assumed
to be homogeneous (no forcing function). A plot of the residuals for
the homogeneous fit with the weight functions estimated by fPDA, as
given in Figure 11.7:, is calculated as follows.

> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1),
 forcing=0)
calculate and plot residual Lx
> lipResiduals <- fEval(yLip, fArg=liptime,
 linDop=lipPDA$linDop)

> keep <- liptime >= 0.1 & liptime <= 0.9
> matplot(liptime[keep], lipResiduals[keep,], type="l")

Points at the ends of the plot have been removed in order to eliminate
edge effects near 0 and 1.

Figure 11.7: Operator residuals from the second-order differential equation fit to the
lip movement data.

0.2 0.4 0.6 0.8

-2
0

0
-1

0
0

0
1

0
0

2
0

0
3

0
0

Chapter 11 Principal Differential Analysis

180

Although the residual results are not nearly as small as we would
prefer (for comparison, the largest magnitude of the second
derivatives is near 500), they still appear to be more or less random,
indicating that the linear differential operator is capturing the
functional behavior.

Kernel Basis
Functions

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of coefficients that may
be much smaller than the current representation. Although the
current implementation of S+FDA does not allow arbitrary bases, this
property may still be useful in an analysis.

 Specifically, if is a linear differential operator of degree , then
there are linearly independent functions (the kernel

basis functions) that span the null space or kernel of , that is, for which

. The kernel basis functions are determined by

constraints, which may include initial conditions and/or boundary
conditions.

In the theory of linear ordinary differential equations, all solutions to
the homogeneous equation are linear combinations of the kernel
basis functions. If the weight functions defining are determined by
principal differential analysis, and residuals for the ordinary
differential equation are small, then for homogeneous equations there
should be a linear combination of the form

in which the residual terms are relatively small.

For nonhomogeneous equations, any solution can be expressed as the
sum of a particular solution and a linear combination of the kernel
basis functions. So if is a particular solution, then the functional
data have the following representation:

L m

m u1 u2 um

L

Lui 0= m

L

fj t ijui t j t+

i 1=

m

=

j t

x t

fj t x t ijui t j t+

i 1=

m

+=

Lip Movement Example

181

Since each of the observed functions is a solution, up to a

random error, then the average function, is also a

solution with a random error, but the random error for is

times smaller than for each function . Thus, when the errors are

small, approximates a particular solution to the differential
equation, and consequently a good fit of the centered functions

 can be obtained as a linear combination of the kernel

basis functions. Notice the similarity with functional principal
components analysis, which finds a set of (orthogonal) functions that
can be used to re-express the functions such that the integrated

squared error is minimized.

Change of
Basis

A set of kernel basis functions, for a linear differential
operator can be computed via the function fLinDopSolve:

> lipKernData <- fLinDopSolve(linDop=lipPDA$linDop,
 x=liptime)
> lipKern <- fVector(lipKernData, basis=getBasis(yLip))
> par(mfrow=c(2, 1))
> plot(lipKern[1], main="First Kernel Basis Function")
> plot(lipKern[2], main="Second Kernel Basis Function")

fj t

f t
1
n
--- fj t

j 1=

n

=

f t n

fj t

f t

fj t f t–

fj t

j t

u1 u2 um

Chapter 11 Principal Differential Analysis

182

The resulting basis is displayed in Figure 11.8. Notice that the first
kernel basis function has a much larger range than the second one
indicating, perhaps, that the first basis function is more important.

The S+FDA function fLinDopSolve is based on the adaptive ordinary
differential equation solvers DLSODA and DLSODI (Hindmarsh 1983;
Petzold 1983). Initial conditions may be specified through the
initialValues argument. Different initial conditions can lead to
different kernel basis functions, but all sets of kernel basis functions
span the same function space and are thus equivalent for our
purposes.

Given the kernel basis functions for a linear differential operator, the
function fLinDopFit can be used to obtain a representation of a
function in terms of the kernel basis. Below we compute this fit for the
lip motion data, from which the linear differential operator was
derived.

> lipFit <- fLinDopFit(yLip, linDop=lipPDA$linDop)
> par(mfrow=c(2, 1))

Figure 11.8: Kernel basis functions for the linear differential operator fit by
principal differential analysis to the lip force data.

First Kernel Basis Function

0.0 0.2 0.4 0.6 0.8 1.0

-0
.5

0
.0

0
.5

1
.0

Second Kernel Basis Function

0.0 0.2 0.4 0.6 0.8 1.0

-0
.0

4
0

.0
0

.0
2

0
.0

4

Lip Movement Example

183

> plot(lipFit$fitted.values, main="Fitted Values")
> plot(lipFit$residuals, main="Residual Functions")

The fit is accomplished via least-squares projection of the observed
functions onto the kernel basis. The fitted functions and the residuals
for the registered lip movement functions are displayed in Figure
11.9. Note the difference between these residuals and those shown in
Figure 11.7, which displays values of the linear differential operator
applied to yLip, which are viewed as “residuals” when homogeneity is
assumed.

The fitted curves appear to be quite similar to the registered and
smoothed lip curve functions, although the residual functions indicate
that the fit is not perfect. Nevertheless, these residual functions are
relatively small, with a range of about 25% of the range of the lip
curves proper.

The residuals and fitted values given above are precisely those that
would be obtained from predict applied to lipPDA, because the
linear differential operator and data input to fLinDopFit came from

Figure 11.9: Lip curves and residuals from the fit of the lip motion data to the kernel
basis functions for the linear differential operator determined by fPDA.

Fitted Functions

args

v
a

rs

0.0 0.2 0.4 0.6 0.8 1.0

-1
0

-5
0

5
1
0

1
5

Residual Functions

args

v
a

rs

0.0 0.2 0.4 0.6 0.8 1.0

-2
0

2
4

Chapter 11 Principal Differential Analysis

184

the principal differential analysis. Function fLinDopFit differs from
the predict method for fPDA objects in that instead of an fPDA object
it takes as input a linear differential operator and (optionally) a forcing
function, and returns the predictors (kernel basis functions) and
coefficients from the fit as well as the fitted values and residuals.

Comparison
with PCA

Because of its relationship to functional principal components, it is
useful to compare the fit obtained from the kernel basis functions
obtained with the homogeneous functions with the fit obtained using
a functional principal components analysis. Here we use the
integrated residual variance as a measure of “goodness of fit”. This
statistic has meaning for both the functional principal components
solution and for the functional principal differential analysis solutions,
but is minimized in the functional principal components models - we
expect, apriori, that principal differential analysis will not do as well
as the principal component analysis in predicting variation in our lip
movement data (if the same number of “parameters” are estimated).
However, if the principal differential analysis solution explains a good
deal of the functions variance, then we would have some evidence
that the estimated linear differential equation has the correct form and
closely models the process that generated the data.

In the following code we compute the harmonics using function fPCA
as well as the fitted values for fPDA, and computed the integrated
variance using functions fInt and fVar.

> ansPCA <- fPCA(~yLip)
> phi <- double(3)
> phi[1] <- fInt(fVar(yLip, bivariate=F))
> phi[2] <- fInt(fVar(fVector(getCoef(yLip)
 -outer(c(getCoef(mean(yLip))), rep(1, 20))
 -getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),
 getBasis(yLip)), bivariate=F))
> phi[3] <- fInt(fVar(predict(lipPDA)$residuals,
 bivariate=F))

> par(mfrow=c(1, 1))
> plot(fVar(yLip, bivariate=F), xlab="t", ylab="Var(f(t))",
 main="Variance Functions", ylim=c(0,5))
> lines(fVar(fVector(getCoef(yLip)
 - outer(c(getCoef(mean(yLip))), rep(1,20))
 - getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),

Lip Movement Example

185

 getBasis(yLip)),bivariate=F), lty=2)
> lines(fVar(predict(lipPDA)$residuals, bivariate=F),
 lty=3)
> legend(0.6, 5, c("Mean", "PCA", "PDA"), lty=1:3)

The plot of the variance functions shown in Figure 11.10:.

Finally, we compute an “r-squared”-like measure for goodness of fit
based upon these integrated variances:

> Rsq <- 1-phi[2:3]/phi[1]
> names(Rsq) <- c("PCA", "PDA")
> Rsq
 PCA PDA
 0.9147264 0.4107527

From both the R-squared statistics and the variance function plots we
see that the two harmonic functional principal component solution
provides the best fit, as expected.

Figure 11.10: Variance functions for PCA and PDA analyses of the lip motion data.

Variance Functions

t

V
a

r(
f(

t)
)

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

Mean
PCA
PDA

Chapter 11 Principal Differential Analysis

186

Summary An unique aspect of functional data analysis is its ability to provide
insight into the processes underlying the functional data. The goal of
principal differential analysis - to find an underlying differential
equation describing the behavior a sample of observations - is an
exciting and powerful idea. The simple least-squares approach
currently implemented in S+FDA is limited in what it can handle.
However, new iterative approaches under development for principal
differential analysis show great promise for improvement, and in the
next release of this library, we expect to significantly enhance the
methods provided here.

