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Principal differential analysis (Ramsay 1996) estimates linear systems of 
ordinary differential equations approximately satisfied by functional 
data. This is of interest in physical processes, where, for example, the 
one-dimensional motion of an object is a function of time that solves 
an ordinary differential equation.   The Maxwell equations are 
another well known physical example. Biological, chemical and other 
phenomena also often satisfy ordinary differential equations, and 
discovering the form of these equations can help to understand the 
nature of the underlying process. 

More formally, for a sample of functions , principal 

differential analysis determines a linear differential operator of 

degree  and/or a function  for which for all . 

Here  is defined as:

where the operator notation has the following interpretation: 

 and , the  derivative of . 

In principal, both the forcing function  and the linear differential 
operator weights (coefficients)  may be functional data objects. 

However, the current implementation may not be reliable unless the 
linear differential operator is known to have constant coefficients. 
Methods that better handle more general linear differential operators 
are under active research, and will be added to S+FDA in the future. 

Given the form of  and the , the linear differential equation 

is estimated by least squares (or penalized least squares). Either  

or one of the  must be known. Computational procedures are 

discussed in Chapter 14 of Ramsay and Silverman (1997). Penalized 
least squares estimation minimizes the criterion:

which reduces to a least squares criterion if the penalty term is 
omitted.
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The function  is called the forcing function since, when , it 
corresponds to the external force applied to a physical system. If  
is identically zero, the resulting differential equation is said to be 
homogeneous. Otherwise the system is nonhomogeneous.

When the forcing function  and/or weight functions  are 
unknown, principal differential analysis can be used to estimate them 
and elucidate the process underlying the functions . 

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of basis functions that 
may be considerably more compact than the current representation. 
This follows from the fact that all solutions to a linear differential 
equation can be expressed as the sum of:

•  a particular solution 

and 

• a linear combination of basis functions for the null space or 
kernel of the linear differential operator.

Although the current implementation of S+FDA cannot currently 
handle arbitrary bases, such a representation may nevertheless be 
useful in an analysis. 
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S+FDA FUNCTIONS FOR PRINCIPAL DIFFERENTIAL 
ANALYSIS

The S+FDA function fPDA estimates the weight functions for the 

linear differential operator , and/or the forcing function,  .   
The fPDA object is a list with two components:

• an object of class fLinDop which gives the coefficients of the 
estimated linear differential operator. 

• an object of class fFunction which gives the estimated forcing 
function.

The fPDA object also has fitted.values and residuals from 
predictions of the original functional data as attributes. 

There is a predict method for fPDA objects that calls a function 
fLinDopSolve to solve the linear differential equation. The fitting for 
prediction is done by linear regression involving the kernel basis 
functions of the linear differential operator and a particular solution to 
the differential equation if there is a nonzero forcing function. See 
Ramsay and Silverman (1997) for more details.
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RADIOACTIVE DECAY EXAMPLE

Consider radioactive decay defined by 

where  is the amount of a chemical element present at time ,  
is the rate constant intrinsic to the element, and  is the rate of 
decay.   The linear differential operator is:

The goal is to estimate .

To illustrate the S+FDA principal differential analysis function, fPDA,
we construct an example of functional data described by the above 
radioactive decay equation. We simulate data for iodine 131, for 
which  when the unit of time is days.

> rateConstantI131 <- 0.0864
> Time <- 0:50 
> Y <- matrix(0, 51, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10) 
      Y[,j] <- (100 + rnorm(1, sd=10))*
                           exp(rateConstantI131*Time)

Since the differential equation is of order one, we use a B-spline basis 
of order four so that the first derivative will be a smooth cubic spline. 

> basis <- bsplineBasis(c(0,50), norder=4, nbasis=10)

The functional data object created from the basis is:

> fY <- fVector(basis, Y)

Plot the functional data (see Figure 11.1:):

> par(mfrow=c(1, 1))
> plot(fY, main="Radioactive Decay of Iodine 131")
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To estimate the rate constant, we first call fPDA.   

> decayPDAconst <- 
             fPDA(fY, weights=list(constantBasis(fDomain=          
                              c(0, 50)), 1), forcing=0)

Here we have set weights=list(constantBasis(fDomain= c(0,50)),
1) to indicate that the first order coefficient is known to be equal to 1, 
and the zeroth order coefficient needs to be estimated. We use a 
constantBasis to ensure that the estimated coefficient is a constant.

The value of the rate constant estimate is then given as follows:

> rateConstantEstimate <-
                      fEval(decayPDAconst$linDop[[1]], 25)
> rateConstantEstimate
           [,1] 
[1,] 0.08638197

(since the coefficient is constant it suffices to evaluate the weight 
function at any point in the domain).

Figure 11.1: Functional data for radioactive decay of Iodine 131.
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The following code plots the original functional data object, the 
predictions produced by predict.fPDA, the residuals from the 
predictions, and the operator residuals ( ):

> predictions <- predict(decayPDAconst)
> par(mfrow=c(2, 2))
> plot(fY, main="Original Functional Data")
> plot(predictions$fitted, 
       main="Predicted Functional Data")
> plot(predictions$residuals, 
       main="Residuals of Predicted Values")
> Lx <- fEval(fY, fArg=Time, linDop=decayPDAconst$linDop) 
> plot(fVector(getBasis(fY), y=Lx), 
       main="Differential Operator Residuals")

In the example just given, we chose a constant basis because of the 
theoretical equation of decay. But it may be of interest to know what 
fPDA would estimate if we did not make this assumption. 

> decayPDAvar <- fPDA(fY, weights=list(NULL, 1), forcing=0)

Figure 11.2: Functional data, predicted fitted values, residuals of predicted values, 
and operator residuals, when constant coefficients are assumed.
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Setting the first element of weights to NULL causes the basis of the 
functional data fY to be used in estimating the forcing function.   
More generally, a basis can be specified for each unknown function in 
the linear differential equation.

Plot the estimated rate of decay. 

> plot(decayPDAvar$linDop[[1]], 
       ylab="Decay Rate Estimate", xlab="Domain", 
       main="Decay Rate Estimate, using inherited basis")
> abline(h=-0.0864)

Figure 11.3: shows that on average the estimated rate of decay is close 
to the theoretical rate. However, there are edge effects, hinting at the 
difficulties to be encountered in situations where less is known about 
the underlying process, and one or more coefficients are estimated 
using a nonconstant basis.

Figure 11.3: Estimated rate of decay, using the basis of the functional data object. 
The horizontal line is drawn at the theoretical decay rate.
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HARMONIC OSCILLATOR EXAMPLE

A mechanical system is characterized by an external force applied to 
the system, together with internal or external frictional forces or 
viscosity. The classic example is a weight suspended from a spring. 
The spring will oscillate when the weight is attached to it provided the 
weight is not too heavy. This motion will fade over time depending 
on the viscosity of the air or other medium in which the system is 
situated.

The equation of motion for a harmonic oscillator with external force 
 is:

where  is the damping constant and  is the square of the natural 

oscillating frequency. 

Underdamped 
+ Resonance 

The second-order equation of motion describes an underdamped 

system if . In this case, oscillation will occur. If the forcing 

function exhibits periodicty, the oscillation is called resonance. An 
analytic solution is known when the forcing function is of the form 

, where  is the resonance frequency. A particular 
solution in this case is 

A general solution to the differential equation can be obtained by 
adding the particular solution to the homogeneous solution, which 
(ignoring the phase shift) is 

under the assumption that the system is underdamped. The following 
code simulates such a system and plots the resulting functional data:
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> k0 <- 2
> k1 <- .5
> hconst <- fconst <- 10
> phase <- 0
> nu <- 1/3

> pi2nu <- 2*pi*nu
> a <- pi2nu*k1
> b <- k0 - pi2nu*pi2nu
> d <- a*a + b*b
> A <- a/d
> B <- b/d

> tt <- seq(from=0, to=5, length=101)
> Y <- matrix(0, 101, 10)
> set.seed(0) # seed for reproducing random numbers
> for(j in 1:10) 
     Y[,j] <- hconst*exp(-k1*tt/2)*sin(sqrt(k0)*tt+phase) +    
       fconst*(A*sin(pi2nu*tt) + B*cos(pi2nu*tt)) + rnorm(1)

Figure 11.4: Simulated functional data for an underdamped harmonic oscillator 
with resonance.
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Now we compute the constant coefficients of the linear differential 
operator assuming that the forcing function is known:

> par(mfrow=c(1, 1))
> basis <- bsplineBasis(c(0, 5), norder=5, nbasis=20)
> fY <- fVector(basis, Y)
> plot(fY, main="Underdamped + Resonance")

# compute constant coeffs using known forcing function
> forcing <- fFunction(basis, fconst * cos(pi2nu*tt))
> oscPDAconst <- fPDA(fY, weights=
                      list(constantBasis(c(0, 5)),
                           constantBasis(c(0, 5)), 1), 
                      forcing=forcing)
> k0 <- fEval(oscPDAconst$linDop[[1]], 2.5)
> k0
         [,1] 
[1,] 2.021411
> k1 <- fEval(oscPDAconst$linDop[[2]], 2.5)
> k1
          [,1] 
[1,] 0.504323

The resulting coefficients are quite close to the true values underlying 
the simulated data.

In this case fPDA also gives a good estimate of the forcing function 
when the linear differential operator is known:

> oscPDAforc <- fPDA(fY, weights=list(2, .5, 1),
                     forcing=basis)
> plot(ans1$forcing, main="Estimated Forcing Function 
                            (known LDO)")
> lines(tt, fEval(forcing, tt), lty=6)
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However, if we attempt to estimate the linear differential operator 
coefficients as well as the forcing function, the resulting least squares 
problem is ill-conditioned.

> oscPDAall <- fPDA(fY, weights=list(constantBasis(c(0,5)), 
                   constantBasis(c(0, 5)), 1),forcing=basis)
Warning in fPDA(fY, weights = list(constantBasis(c(..:
                 least-squares system is ill-conditioned

The ill-conditioning warning is usually means that the results will not 
be accurate, as is the case for this example. The constant weights are 
estimated to be 0 and 0.083, far from their true values of 2 and 0.5, 
respectively. The forcing function estimate is plotted below:

> plot(oscPDAall$forcing, main="Forcing Function Estimate")

Figure 11.5: Forcing function for underdamped harmonic oscillator estimated by 
fPDA when the linear differential operator is known. The dotted line is the true 
forcing function underlying the simulated data.
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> lines(tt, fEval(forcing, tt), lty=6)

It may in some instances be possible to avoid ill-conditioning by 
increasing the arguments k or nbasis to fPDA (these affect the 
accuracy of the projections used in computing inner products for least 
squares), but in this case we weren’t able to find a suitable set of 
inputs. It is also possible to include penalty terms on the weight 
functions and/or their derivatives, or on the derivatives of the forcing 
function, in fPDA to regularize principal differential analysis, but there 
are no systematic guidelines for doing so with the current 
implementation. New methods under development incorporate 
regularization mechanisms, and we plan to include them in future 
editions of this library.

Figure 11.6: Estimate forcing function when weights are assumed constant but 
unknown. The dotted line is the true forcing function underlying the simulated data.
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LIP MOVEMENT EXAMPLE

The lip movement data, first used in the chapter on registration, 
consists of twenty replications measuring the vertical lip position as a 
single individual says the syllable “bob”. In order to perform 
principal differential analysis, first register and smooth the curves. 
The S+FDA code for creating, registering, and smoothing the lip data 
is as follows:

> lipBasis <- fBasis(type="bspline",fDomain=c(0, 1),
                     nbasis=31,params=(c(1:25)/26))
> fLip <- fVector(object=lipBasis, y=lipmat, fArgs=liptime,
                  fNames=list(NormalizedTime=liptime, 
                  Replications=seq(20), Units="mm"))
> regLip1 <- fRegister(fLip, mean(fLip), nDeriv=1,
                       maxIter=120, lambda=0.1, 
                       criterion=1, penalty=0.0005)
> regLip1 <- fRegister(fLip,mean(regLip1$fReg), nDeriv=1,
                       maxIter=120, lambda=0.1, 
                       criterion=1, penalty=0.0005)
> yLip <- fVector(regLip1$fReg, penalty=
                  list(lambda=1.e-10, linDop=fDop(2)))

Note in this code that the registration is performed on the derivatives 
rather than the functions. 

Because the lower lip is part of a mechanical system, with certain 
natural resonance frequencies and a stiffness or resistance to 
movement, it seems appropriate to explore to what extent this 
method can be expressed it terms of the second-order differential 
equation typically used to analyze such systems, in which the linear 
differential operator 

is a generalization of the which one used for the harmonic oscillator 
example in the previous section. Strictly speaking, the mechanical 
interpretation of the differential equations does not hold if the weight 
coefficients are allowed to be functions rather than constants, but 
higher-order effects can be ignored if they do not vary too rapidly 
with time. The principal differential analysis estimates, assuming 
nonconstant weights, are computed as follows:
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> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1), 
                 forcing=0)

We set forcing=0 to indicate that the differential equation is assumed 
to be homogeneous (no forcing function). A plot of the residuals for 
the homogeneous fit with the weight functions estimated by fPDA, as 
given in Figure 11.7:, is calculated as follows.

> lipPDA <- fPDA(yLip, weights=list(NULL, NULL, 1), 
                 forcing=0)
# calculate and plot residual Lx
> lipResiduals <- fEval(yLip, fArg=liptime,
                        linDop=lipPDA$linDop)

> keep <- liptime >= 0.1 & liptime <= 0.9
> matplot(liptime[keep], lipResiduals[keep,], type="l")

Points at the ends of the plot have been removed in order to eliminate 
edge effects near 0 and 1. 

Figure 11.7: Operator residuals from the second-order differential equation fit to the 
lip movement data.
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Although the residual results are not nearly as small as we would 
prefer (for comparison, the largest magnitude of the second 
derivatives is near 500), they still appear to be more or less random, 
indicating that the linear differential operator is capturing the 
functional behavior. 

Kernel Basis 
Functions

Like principal components, principal differential analysis allows re-
expressing the functional data in terms of a set of coefficients that may 
be much smaller than the current representation. Although the 
current implementation of S+FDA does not allow arbitrary bases, this 
property may still be useful in an analysis.

 Specifically, if  is a linear differential operator of degree , then 
there are  linearly independent functions  (the kernel 

basis functions) that span the null space or kernel of , that is, for which 

. The kernel basis functions are determined by  

constraints, which may include initial conditions and/or boundary 
conditions.

In the theory of linear ordinary differential equations, all solutions to 
the homogeneous equation are linear combinations of the kernel 
basis functions. If the weight functions defining  are determined by 
principal differential analysis, and residuals for the ordinary 
differential equation are small, then for homogeneous equations there 
should be a linear combination of the form 

in which the residual terms  are relatively small. 

For nonhomogeneous equations, any solution can be expressed as the 
sum of a particular solution and a linear combination of the kernel 
basis functions. So if  is a particular solution, then the functional 
data have the following representation: 
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Since each of the observed functions  is a solution, up to a 

random error, then the average function,  is also a 

solution with a random error, but the random error for  is  

times smaller than for each function . Thus, when the errors are 

small,  approximates a particular solution to the differential 
equation, and consequently a good fit of the centered functions 

 can be obtained as a linear combination of the kernel 

basis functions. Notice the similarity with functional principal 
components analysis, which finds a set of (orthogonal) functions that 
can be used to re-express the functions  such that the integrated 

squared error  is minimized. 

Change of 
Basis

A set of kernel basis functions,  for a linear differential 
operator can be computed via the function fLinDopSolve:

> lipKernData <- fLinDopSolve(linDop=lipPDA$linDop, 
                              x=liptime)
> lipKern <- fVector(lipKernData, basis=getBasis(yLip))
> par(mfrow=c(2, 1))
> plot(lipKern[1], main="First Kernel Basis Function")
> plot(lipKern[2], main="Second Kernel Basis Function")
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The resulting basis is displayed in Figure 11.8. Notice that the first 
kernel basis function has a much larger range than the second one 
indicating, perhaps, that the first basis function is more important.

The S+FDA function fLinDopSolve is based on the adaptive ordinary 
differential equation solvers DLSODA and DLSODI (Hindmarsh 1983; 
Petzold 1983). Initial conditions may be specified through the 
initialValues argument. Different initial conditions can lead to 
different kernel basis functions, but all sets of kernel basis functions 
span the same function space and are thus equivalent for our 
purposes.

Given the kernel basis functions for a linear differential operator, the 
function fLinDopFit can be used to obtain a representation of a 
function in terms of the kernel basis. Below we compute this fit for the 
lip motion data, from which the linear differential operator was 
derived.

> lipFit <- fLinDopFit(yLip, linDop=lipPDA$linDop)
> par(mfrow=c(2, 1))

Figure 11.8: Kernel basis functions for the linear differential operator fit by 
principal differential analysis to the lip force data.
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> plot(lipFit$fitted.values, main="Fitted Values")
> plot(lipFit$residuals, main="Residual Functions")

The fit is accomplished via least-squares projection of the observed 
functions onto the kernel basis. The fitted functions and the residuals 
for the registered lip movement functions are displayed in Figure 
11.9. Note the difference between these residuals and those shown in 
Figure 11.7, which displays values of the linear differential operator 
applied to yLip, which are viewed as “residuals” when homogeneity is 
assumed. 

The fitted curves appear to be quite similar to the registered and 
smoothed lip curve functions, although the residual functions indicate 
that the fit is not perfect. Nevertheless, these residual functions are 
relatively small, with a range of about 25% of the range of the lip 
curves proper.

The residuals and fitted values given above are precisely those that 
would be obtained from predict applied to lipPDA, because the 
linear differential operator and data input to fLinDopFit came from 

Figure 11.9: Lip curves and residuals from the fit of the lip motion data to the kernel 
basis functions for the linear differential operator determined by fPDA.
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the principal differential analysis. Function fLinDopFit differs from 
the predict method for fPDA objects in that instead of an fPDA object 
it takes as input a linear differential operator and (optionally) a forcing 
function, and returns the predictors (kernel basis functions) and 
coefficients from the fit as well as the fitted values and residuals. 

Comparison
with PCA 

Because of its relationship to functional principal components, it is 
useful to compare the fit obtained from the kernel basis functions 
obtained with the homogeneous functions with the fit obtained using 
a functional principal components analysis. Here we use the 
integrated residual variance as a measure of “goodness of fit”. This 
statistic has meaning for both the functional principal components 
solution and for the functional principal differential analysis solutions, 
but is minimized in the functional principal components models - we 
expect, apriori, that principal differential analysis will not do as well 
as the principal component analysis in predicting variation in our lip 
movement data (if the same number of “parameters” are estimated). 
However, if the principal differential analysis solution explains a good 
deal of the functions variance, then we would have some evidence 
that the estimated linear differential equation has the correct form and 
closely models the process that generated the data. 

In the following code we compute the harmonics using function fPCA
as well as the fitted values for fPDA, and computed the integrated 
variance using functions fInt and fVar.

> ansPCA <- fPCA(~yLip)
> phi <- double(3)
> phi[1] <- fInt(fVar(yLip, bivariate=F))
> phi[2] <- fInt(fVar(fVector(getCoef(yLip)
           -outer(c(getCoef(mean(yLip))), rep(1, 20))
           -getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),
            getBasis(yLip)), bivariate=F))
> phi[3] <- fInt(fVar(predict(lipPDA)$residuals, 
                      bivariate=F))

> par(mfrow=c(1, 1))
> plot(fVar(yLip, bivariate=F), xlab="t", ylab="Var(f(t))",
       main="Variance Functions", ylim=c(0,5))
> lines(fVar(fVector(getCoef(yLip)
        - outer(c(getCoef(mean(yLip))), rep(1,20))
        - getCoef(ansPCA$harmonics) %*% t(ansPCA$scores),
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        getBasis(yLip)),bivariate=F), lty=2)
> lines(fVar(predict(lipPDA)$residuals, bivariate=F), 
        lty=3)
> legend(0.6, 5, c("Mean", "PCA", "PDA"), lty=1:3)

The plot of the variance functions shown in Figure 11.10:.

Finally, we compute an “r-squared”-like measure for goodness of fit 
based upon these integrated variances:

> Rsq <- 1-phi[2:3]/phi[1]
> names(Rsq) <- c("PCA", "PDA")
> Rsq
      PCA       PDA 
 0.9147264 0.4107527

From both the R-squared statistics and the variance function plots we 
see that the two harmonic functional principal component solution 
provides the best fit, as expected. 

Figure 11.10: Variance functions for PCA and PDA analyses of the lip motion data.
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Summary An unique aspect of functional data analysis is its ability to provide 
insight into the processes underlying the functional data. The goal of 
principal differential analysis - to find an underlying differential 
equation describing the behavior a sample of observations - is an 
exciting and powerful idea. The simple least-squares approach 
currently implemented in S+FDA is limited in what it can handle. 
However, new iterative approaches under development for principal 
differential analysis show great promise for improvement, and in the 
next release of this library, we expect to significantly enhance the 
methods provided here.




