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Cluster analysis is an exploratory method used to find groups or 
clusters of similar data points. Classical hierarchical cluster analysis 
requires a matrix containing the distances between the items to be 
clustered. To compute a distance matrix, a metric or distance measure 
between any two data points is required. Functional methods offer 
many methods for computing distance matrixes, as was seen in 
Chapter 1, where the distance measure was taken as the integrated 
squared distance or  distance between the two functions first 
derivatives.

Here we consider two examples involving daily measurements of 
precipitation and mean daily temperature at 35 Canadian weather 
stations over a one-year period. The functions provide an estimate of 
the expected daily temperatures at these stations. Ideally, additional 
years of observations would be desirable for analysis. We proceed by 
regularizing or smoothing the data, and then using the resulting 
functions to cluster the weather stations. As in the example in 
Chapter 1, the distance measure is obtained from the first derivatives 
of the smoothed functions.
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CLUSTERING PRECIPITATION DATA

We first consider the daily precipitation data, and begin by smoothing 
the data using the construct function fVector. Daily precipitation is 
often highly variable with no precipitation on some days and a large 
amount of precipitation on others. Moreover, dry spells can last for 
quite some time, as can rainy periods. We are interested in the 
“expected” precipitation function, but we have only one year of 
measurements. Because we are interested in the first derivative 
function (the rate of change of the expected precipitation) and not in 
the measurement errors about the function, cross validation for these 
errors is not really helpful and we simply smooth until we seem to 
have an appropriate amount of smoothing by examining the first 
derivative of the smoothed function:

> sPrec <- fVector(fWeather$fPrec, 
             penalty=list(lambda=100000, linDop=fDop(2)))
> par(mfrow=c(2, 1))
> plot(sPrec, main=”Precipitation Functions”)
> plot(fVector(sPrec, linDop=fDop(1)), 
       main=”Precipitation Derivatives”)

In this code the unsmoothed precipitation functions are contained in 
the fPrec variable in the fWeather data frame (see the help file for 
fWeather). The smoothed functions are displayed in Figure 10.1. 
Looking at this Figure, the precipitation functions and their 
derivatives are reasonably smooth, giving a fairly good idea of the 
trend in the precipitation over the year that the data was measured. 

Standardizing Some patterns are evident in the expected precipitation functions, but 
precipitation is highly variable, depending to a considerable extent on 
local situations. For example, the western sides of mountains on the 
west coast of North America tend to get more rain as the weather 
station elevation increases (because of lifting), but the “trend” in 
weather variation is identical at all elevations. Because of this 
increase, we should be less interested in clustering based solely on the 
amount of precipitation, but rather on the rate of precipitation over 
the course of the year. Therefore, we standardize all weather stations 
to a fixed amount of fifty inches. This is accomplished by first 
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integrating the smoothed precipitation functions over the year to get 
the total amount of precipitation, and then adjusting each function so 
that its integral is 50:

> precInt <- fInt(sPrec)/50
> ssPrec <- fVector(t(t(getCoef(sPrec))/precInt),   
                    getBasis(sPrec), getNames(sPrec))
> par(mfrow=c(2, 1))
> plot(ssPrec, main="Standardized Precipitation")
> plot(fVector(ssPrec, linDop=fDop(1)), main=
       "Derivative of the Standardized Precipitation")

This result is displayed in Figure 10.2, which shows that the patterns 
of precipitation are now much more apparent. Indeed, some stations 
report the bulk of their precipitation over the winter months, while in 
others, most precipitation occurs in the summer.

Figure 10.1: Plot of the “expected” precipitation functions for 35 Canadian weather 
stations (top), with the first derivative (bottom).



Clustering Precipitation Data

159

Clustering To perform a hierarchical cluster analysis, we must first compute the 
between-station distance matrix using S+FDA function fDist. Here 
we use the integrated squared differences in the rate of change of 
precipitation as our clustering criterion. The S-PLUS function hclust
is then used to cluster the data using a complete-linkage algorithm:

> ssPrecDist <- sqrt(fDist(ssPrec, linDop=fDop(1)))
> ssPrecClust <- hclust(ssPrecDist)

Complete linkage is chosen because we want the maximum within 
cluster distance to be small. Rather than plot the cluster tree, we plot 
the means of the seven cluster solution. The cutree function is used to 
identify stations within the seven clusters, as follows:

> ii <- cutree(ssPrecClust, k=7)
> ssPrecMean <- ssPrec[1:7]
> for(i in 1:7) 
      ssPrecMean[i] <- mean(ssPrec[ii==i])
> par(mfrow=c(1, 1))
> plot(ssPrecMean, 

Figure 10.2: The precipitation functions standardized to 50 inches per year.
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       main="Mean Functions for Seven Clusters")
> legend(0, 0.325, as.character(1:7), lty=1:7)

The result is displayed in Figure 10.3, which shows that the cluster 
mean functions exhibit distinct patterns of precipitation.

To see if the clustering result makes sense, we find the cities 
corresponding to the weather stations for each cluster:

• 1) Calgary, Edmonton, Prince Albert, Regina, The Pass,      
Winnipeg

• 2) Churchill, Dawson, Inuvik, Iqaluit, Schefferville, Thunder 
Bay, Uranium City, Whitehorse, Yellowknife

• 3) Charlottetown, Fredericton, Halifax, Prince Rupert, St. 
Johns, Sydney, Yarmouth

• 4) Kamloops, Prince George

• 5) Arvida, Bagotville, London, Montreal, Ottawa, Quebec, 
Sherbrooke, Toronto

• 6) Vancouver, Victoria

Figure 10.3: Mean functions for the seven clusters.
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• 7) Resolute

Some of these results are expected, e.g., we would expect the far 
northern cities in cluster 2 to be similar, and Vancouver and Victoria, 
both in cluster 6, clearly share the same weather pattern being less 
that fifty miles apart and separated only by a body of water. On the 
other hand, we have no reason to believe that Halifax, on the east 
coast, and Prince Rupert, on the west coast, would have the same 
weather patterns, although they are both coastal cities. Clearly 
clustering based upon precipitation patterns is useful in finding 
groups of weather stations with related weather patterns, but 
precipitation patterns alone are insufficient to characterize the 
weather data. 
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CLUSTERING TEMPERATURE DATA

We now consider the temperature data. Unlike the precipitation data, 
here we do not standardize to a constant mean temperature. We look 
at the rate of change of the average daily temperature, rather than at 
the expected average daily temperature function. As with the 
precipitation data, smoothing is used to obtain an “expected” daily 
temperature from a single year of data. 

The S+FDA statements used to smooth the data, perform a cluster 
analysis, and compute and plot the cluster mean functions are as 
follows:

> sTemp <- fVector(fWeather$fTemp, 
               penalty=list(lambda=50000, linDop=fDop(2)))
> sTempDist <- sqrt(fDist(sTemp, linDop=fDop(1)))
> sTempClust <- hclust(sTempDist)
> jj <- cutree(sTempClust, k=7)
> sTempMean <- sTemp[1:7]
> for(i in 1:7) 
      sTempMean[i] <- mean(sTemp[jj==i])
> par(mfrow=c(2,1))
> plot(sTempMean, main=
      "Temperature Cluster Mean Functions")
> plot(fVector(sTempMean), main=
       "Derivatives of Temperature Cluster Mean Functions")
> legend(300, 0.4, as.character(1:7), lty=1:7)

The result is shown in Figure 10.4. 

The temperature-based clusters are composed of the following 
stations. Here the number in parenthesis is the cluster number for the 
plot legend.

1. (3) Calgary, Edmonton, Kamloops, Prince George, Whitehorse

2. (1) Dawson, Prince Albert, Regina, The Pas, Uranium City,     

         Winnipeg, Yellowknife

3. (6) Charlottetown, Halifax, St. Johns, Sydney, Yarmouth

4. (5) Churchill, Iqaluit, Schefferville

5. (4) Arvida, Bagotville, Fredericton, London, Montreal, Ottawa, 
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         Quebec, Sherbrooke, Thunder Bay, Toronto

6. (7) Prince Rupert, Vancouver, Victoria

7. (2) Inuvik, Resolute

Again there are stations whose cluster assignment make sense (e.g., 
cluster 6 (7)), as well as clusters which are difficult to interpret (e.g, 
cluster 2 (1)).

Figure 10.4: The cluster mean functions for temperature (top) and its derivative 
(bottom).
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SUMMARY

Cluster analysis is an exploratory technique. Functional data methods 
offer the advantage of allowing a greater variety of clustering matrixes 
to choose from. The examples involving the clustering of Canadian 
weather stations are meant to be illustrative, since the known 
locations of weather stations can be used to infer which ones should 
exhibit similar weather patterns.The objective is not so much to find 
“real” clusters of stations, but rather to learn how the weather patterns 
at the different stations are related. Some of the clusters obtained 
consist of stations that are located in the same region, which we would 
expect similar to have weather patterns. Other aspects of the 
clustering are harder to interpret (e.g., assignment of Prince Rupert 
and Halifax to the same cluster), although they may also indicate 
relationships in weather patterns for stations at some distance from 
each other. A cluster analysis that accounted for both precipitation 
and temperature (and other weather related variables such as 
humidity) might be preferable, provided a suitable clustering metric 
could be found. 

Methods for determining the number of clusters in functional cluster 
analysis are identical to those in the classical case, and thus are not 
discussed further here.

If groupings for some of the data are known in advance, it may be 
preferable to use a discriminant function analysis to find the variables 
and matrix that best classify the remaining observations. In the 
chapter on functional generalized linear models, we use a form of 
discriminant function analysis, functional logistic models, to classify 
the weather stations. 




