
1

Installation 3
Object-oriented Programming 3

Introductory Tutorial (Height Data) 4
Selecting the Basis Functions 5
Smoothing 7

A Linear Model for the Height Data 12
Discussion 14

Cluster Analysis of the Height Data 15
Computing a Distance Matrix 15
Displaying the Cluster Mean Functions 17
Between Cluster Distances 18
Summary 19
Multidimensional Scaling 19

FDA Flow Chart 21

INTRODUCTION 1

Chapter 1 Introduction

2

Functional data arise in many fields of research. Measurements are
often best thought of as functions, even in cases where the data is
gathered at a relatively small number of points. Examples include
weather changes, stock prices, bone shapes, growth rates, health
status indicators, and tumor size.

For time-dependent data, observations may be viewed as realizations
of a smooth function of time that have been measured (with
error) at specific time points , but which could have been measured

at any time. Spatial functional data is also common, e.g., the length of
a bone along an axis, the concentration of a drug in a tissue as a
function of depth, yearly mean temperature as a function of location.

Historically, functional data have been analyzed using multivariate or
time-series methods at discrete measurement points. Analyzing
functional data instead as functions has several advantages:

• Functions, unlike raw data, can be evaluated at any “time”
point. This is important because it allows the use of statistical
methods requiring evenly-spaced measurements and allows
extrapolation for use in predictions or treatment decisions.

• Functional methods (e.g., functional principal components,
functional canonical correlation) apply even when the data
have been gathered at irregular intervals, or at different times
on different subjects, when multivariate analogues of these
methods are either inappropriate or unavailable.

• Derivatives and integrals of functions may provide important
information about the underlying process. For example,
knowledge of the direction and rate of change of a patient’s
temperature may be more important than knowledge of the
patient’s current temperature.

Functional methods can also be used when the parameters to be
estimated are functions. Ramsay and Silverman (1997) use smoothing
spline methods for density estimation, and to estimate the link
function in generalized linear models. Another example is regression
splines for fitting time-dependent hazard regression models
(Kooperberg and Clarkson, 1997).

y t

t
j

3

S+FDA integrates functional data analysis methods into S-PLUS. It
includes a complete commercial implementation of the exploratory
methods of Ramsay and Silverman (1997, 2002), featuring:

• methods for transforming observed data to a smoothed
functional form,

• predicting a functional or nonfunctional variable as a
function of one or more functional or nonfunctional variables,

• finding and rotating the functional ‘‘principal components’’ of
a functional variable,

• finding the canonical correlations between two functional
variables, and

• performing a ‘‘principal differential analysis’’.

S+FDA also incorporates more recent innovations and extensions,
such as allowing the use of functions with arbitrary bases, and
providing methods for functional generalized linear models and
functional cluster analysis.

Installation To install the software:

• Go to the website: http://www.insightful.com/
downloads/libraries/default.asp

• Follow the on-screen Setup instructions; default settings are
recommended.

Object-
oriented
Programming

S+FDA makes use of the object-oriented capabilities of the S-PLUS
language. In object-oriented programming, constructor functions
create structured data “objects” that are assigned a class (which
typically has the same name as the constructor). The object-oriented
paradigm allows users to apply generic functions (such as plot) to
these classed objects, the details of which are handled transparently
through class-specific functions or “methods”. This simplifies
programming by avoiding the need to explicitly invoke different
functions or to have additional function arguments when generic
operations are applied to objects of different structures.

y t

Chapter 1 Introduction

4

 INTRODUCTORY TUTORIAL (HEIGHT DATA)

We illustrate some exploratory functional data analysis methods using
the Berkeley height data (Tuddenham and Snyder, 1954). The
corresponding data frame, heightData, is included in the S+FDA
library. This data contains the heights of 54 female (columns 2 to 55)
and 39 male (columns 56 to 94) children observed at 31 times from
age 1 to age 18. The times of measurement are included as the
variable age (column 1). We first inspect the data graphically by
plotting the height curves as follows:

#Set up the plot and label
> plot(heightData$age, heightData[,2], type="n",
 ylim=range(unlist(heightData[,2:55])),
 xlab="Age (years)", ylab="Height (cm)",
 main="Female Height Data")
#draw the height curves
> matlines(heightData$age,as.matrix(heightData[,2:55]))

The result is shown in Figure 1.1.

Figure 1.1: Female height data.

Female Height Data

Age (years)

H
e

ig
h

t
(c

m
)

5 10 15

8
0

1
0

0
1

2
0

1
4

0
1

6
0

1
8

0

Introductory Tutorial (Height Data)

5

Although the data appear as smooth curves, only 31 discrete values of
height were measured. The curves are produced by connecting these
discrete points with straight lines.

As a functional data analysis application, we fit a function to each
height curve using linear least squares. The function is represented as
a linear combination of basis functions and coefficients that

vary from one height function to the next:

There are a variety of choices for the basis functions, e.g., B-splines,
Fourier series, and exponential series. Once the basis is chosen, the
coefficients are estimated based on the observed data. In Figure 1.1, a
polygonal basis of connected line segments is used to draw the curves.

 Although the functional representation almost always differs from the
data at the points of observation, these differences are assumed to be
small in the sense that the coefficients capture the information

contained in the discretized curve. In most analyses, the raw data is
ignored once the have been estimated because it is simpler to

work with the functional form. The assumption is that the within-
subject variance in the estimates is small compared to the

between-subject variance.

Warning When the number of observations for estimating the is small to

moderate or when the within-subject variance of the estimates is

large, a mixed-effects model may be preferred so that information
may be combined across subjects.

Selecting the
Basis
Functions

To perform a functional data analysis, we must first choose an
appropriate set of basis functions. In the example above, 16 B-spline
basis functions of order 6 were used. Since the order of a polynomial
basis is the degree plus one, this basis consists of 16 piecewise
polynomial splines of degree 5. By default, the interior knots for the 16

b
j
t

j

f x
j
b
j
t

j 1=

n
b

=

j

j

j

j

j

Chapter 1 Introduction

6

basis functions are equally spaced over the range of the independent
variable (the two exterior knots are placed at the endpoints of the
function domain). Since height is being viewed as a function of age,
the appropriate domain for the basis functions is the age span of the
data. The following forms an object of class “bsplineBasis” for the
height data:

> heightBasis <- bsplineBasis(fDomain
 =range(heightData$age), nbasis=16,norder=6)

The basis functions, displayed in Figure 1.2, are equally spaced over
the domain:

> plot(heightBasis, main="B-spline Basis Functions")

Now that we have defined a basis, we need to calculate the
coefficients for each height curve. Since there are 93 subjects in this
dataset, there should be 93 sets of coefficients (one set for each
function). The S+FDA function fVector takes the basis, the data
matrix, and the independent variable, and returns an object of class
“fVector” containing the linear least-squares estimates of the
coefficients. An “fVector” object has two additional attributes:

Figure 1.2: A set of 16 B-spline basis functions.

B-spline Basis Functions

5 10 15

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Introductory Tutorial (Height Data)

7

“basis”, which stores the basis used in the fit, and “fNames”, which
stores labeling information for the data. In the code below, we also
specify names for the independent variable (age), the subjects (child),
and the units of the response (height). These names are used in the
plotting and printing functions.

> fHgt <- fVector(object=heightBasis, y=heightData[,2:94],
 fArgs=heightData$age,
 fNames=list(age=heightData$age,
 child=names(heightData)[2:94], height='cm'))

Extract the estimated coefficients, basis functions, and function names
from fHgt using the commands getCoef(fHgt), getBasis(fHgt), and
getNames(fHgt), respectively.

Smoothing Although the basis functions smooth the curves, additional smoothing
may be beneficial. The S-PLUS functions for creating functional data
objects allow specification of a smoothing penalty in the least-squares
objective. The penalty also requires a smoothing parameter, lambda.
You may estimate an optimal lambda by minimizing a generalized
cross validation statistic. See section Generalized Cross Validation on
page 82 for more details.

Smoothing techniques are largely exploratory in nature, and are
discussed in more detail in Chapter 4 of this manual, as well as in
Chapter 4 of Ramsay and Silverman (1997). We will have occasion to
use smoothing techniques for most of the functional data analysis
methods provided in S+FDA.

As an example, penalize the squared second derivative with a penalty
parameter lambda=0.001:

> fHgt2 <- fVector(object=heightBasis,
 y=heightData[, 2:94], fArgs=heightData$age,
 penalty=list(lambda=0.001, linDop=fDop(2)),
 fNames=list(age=heightData$age,
 child=names(heightData)[2:94], height='cm'))

Compare with the original data of Figure 1.1 to see how closely the
smoothed functions fit the data. The S-PLUS function fEval evaluates
an object of class “fVector” at any point in the domain of the basis.
Here, we evaluate the 54 spline curves for the females at the original

Chapter 1 Introduction

8

age values (heightData$age), calculate the difference between
predicted and observed heights, and then plot the curve differences at
the given ages:

> hgtFemale<-fEval(fHgt2[1:54], heightData$age)

> plot(heightData$age, hgtFemale[,1], type="n",
 ylim=range(hgtFemale-as.matrix(heightData[,2:55])),
 xlab="Age (years)", ylab="Height Difference (cm)",
 main="Female Height Differences with Splines")
> matpoints(heightData$age,
 hgtFemale-as.matrix(heightData[, 2:55]), pch="o")

The resulting plot is given in Figure 1.3.

The maximum deviation between the spline approximation and the
true heights is about 1.5 cm compared with height values of 80 cm or
more (see Figure 1.1). These differences are small enough that we
consider the smoothed functions to be acceptable for subsequent
analysis.

Figure 1.3: Difference between predicted and actual female height data when using
cubic B-splines for function representation.

Introductory Tutorial (Height Data)

9

Given a representation of the data as an fVector object, it is easy to
conduct several kinds of exploratory analyses with S+FDA. Here, we
compute the first two derivatives of height with respect to time. We
begin with the first derivative:

> plot(fVector(fHgt2[1:54], linDop = fDop(1)),
 xlab="age (years)",
 ylab="First Derivative of Height (cm/year)",
 main="Female Height, First Derivative")

The result is displayed in Figure 1.4.

Despite the large number of curves in Figure 1.4, some general trends
are apparent: there appears to be an acceleration in growth around
age 4, with a second acceleration after age 10. Further exploratory
analysis, such as plotting the mean of the 54 derivative functions, may
help reveal more structure.

The plot of the second derivatives is produced in a similar fashion:

Figure 1.4: First derivatives of the functional representation of the female height
data. The second derivative was penalized for smoothing, with penalty parameter
0.001.

Chapter 1 Introduction

10

> plot(fVector(fHgt2[1:54], linDop=fDop(2)),
 xlab="Age (years)",
 ylab="Second Derivative of Height (cm/year^2)",
 main="Female Height, Second Derivative")

The result is displayed in Figure 1.5.

The large function values near the endpoints in both derivative plots
are due to lack of information concerning values outside the interval.
Smoothing by penalizing a higher derivative would reduce the
variation at the endpoints, although possibly at the risk of
oversmoothing the function. Such considerations are discussed in
more detail in the chapter on smoothing.

Because we use splines of degree five (order 6) when fitting the
functions, the second derivatives are smooth, cubic splines. Had we fit
the raw data with cubic splines (order 4), the second derivative curves
would have been piecewise linear. In general, if an analysis requires a

Figure 1.5: Second derivatives of the functional representation of the female height
data. The second derivative was penalized for smoothing, with penalty parameter
0.001.

Introductory Tutorial (Height Data)

11

smooth kth derivative, and smoothness in higher derivatives is
unimportant, splines of degree k+3 (order k+4) should be used to fit
the functions so that the kth derivative will be a cubic spline.

The ease with which you can examine the derivatives is a direct
consequence of the functional approach, and one of its main
advantages. By regarding the height measurements for each person as
a smooth curve, you are no longer constrained by discrete
observation times.

Chapter 1 Introduction

12

A LINEAR MODEL FOR THE HEIGHT DATA

Now consider a functional linear model for predicting sex in terms of
the growth rate, the first derivative of the height curve. Since the
dependent variable is binary, this model can also be considered a
discriminant function for predicting sex in terms of the growth rate.

For the height data, fit a functional linear model as follows:

> predLm <- fLM(sex~-1+fVector(fHgt, linDop=fDop(1)),
 data.frame(fHgt=fHgt,
 sex=c(rep(1,54), rep(0,39))))

Here the -1 in the model formula eliminates the intercept, which is
already contained in the B-splines. The coefficients in the resulting
model are functional. The first coefficient estimate may be plotted as
follows:

> plot(predLm$coef[[1]], xlab="age", ylab="beta",
 main="Coefficient Function")

The resulting plot is shown in Figure 1.6.

Figure 1.6: The function of coefficients predicting sex in terms of the height function.

Coefficient Function

age

b
e

ta

5 10 15

-0
.0

5
0

.0
0

.0
5

0
.1

0
0

.1
5

0
.2

0

A Linear Model for the Height Data

13

The effect of the growth rate on the linear model prediction has a
maximum around age 5, is positive again at around age 11, and is
negative during the puberty growth spurt after age 11. The negative
lobe after age 11 predicts maleness, when the boys have their growth
spurts, but the girls are finished theirs.

To see how well the resulting model can discriminate between males
and females, plot the fitted values:

> score <- getCoef(predLm$fitted.values)

> plot(as.factor(c(rep("F",54),rep("M",39))),
 score, main="Linear Model Predicted Values")

The results are displayed in Figure 1.7.

Most females have a score above 0.5, and most males have a score
below 0.5, so that growth rates are an effective means of classifying
the observations.

Figure 1.7: Predicted height scores for each sex

0
.0

0
.5

1
.0

1
.5

Linear Model Predicted Values

s
c
o

re

F M

sex

Chapter 1 Introduction

14

Discussion In this simple example of a functional linear model, we have again
used derivative information, this time to predict the sex of the
individual. Although the results for this example are good, generally
predictions based on functional linear models should be viewed with
caution. When the independent variable is functional, so are the
coefficient estimates, and outliers may significantly influence the
outcome (overfitting). Methods to avoid overfitting, particularly
smoothing methods, are discussed in more detail in the chapter on
functional linear models.

Cluster Analysis of the Height Data

15

CLUSTER ANALYSIS OF THE HEIGHT DATA

One approach to cluster analysis is to search for natural groups of
observations by examining “distances” between observations. For the
height data discussed in the previous section, clustering can be based
on a Euclidean or other distance measure between the observed
heights at the observation times (the ages). Specifying these distances
requires that all individuals be measured at the same times. This
requirement can be met by first converting the observed data to
functional form. Once this is accomplished, a much broader class of
distance measures becomes available. For example, derivatives can
be incorporated into the distance metrics. For the height data, we
might be interested in patterns of growth curves related to the growth
rate (the velocity, i.e., first derivative) or the rate of change in the
growth rate (the acceleration, i.e., second derivative). If, for example,
our main interest is the growth rate, then we could define the distance
between the growth curve functions and for two

individuals as the square root of the integrated squared distance
between the first derivatives of the two height curves:

This distance measurement is based on the rate of change of growth,
as opposed to the final height achieved.

Computing a
Distance
Matrix

For the clustering example, we consider only the height data starting
from age 3. The reason for this is that the data in infancy are
unstable, and the transition to standing height around age 2
introduces a significant perturbation. We recompute the smoothed
fHgt from age 3:

> ageRange <- heightData$age >= 3
> heightBasis <- bsplineBasis(fDomain
 =range(heightData$age[ageRange]),
 nbasis=16, norder=6)
> fHgt3 <- fVector(object=heightBasis,

f1 t f2 t

d f1 t f2 t
df1 t

dt

df2 t

dt
---------------–

2
td

t

=

Chapter 1 Introduction

16

 y=heightData[ageRange,2:94],
 fArgs=heightData$age[ageRange],
 penalty=list(lambda=0.001, linDop=fDop(2)),
 fNames=list(age=heightData$age[ageRange],
 child=names(heightData)[2:94],
 height='cm'))

The choice of lambda=0.001 is determined by a procedure described
in section Generalized Cross Validation on page 82 .

The S+FDA function fDist computes distance matrices from
functional data. The following S-PLUS code computes a distance
matrix whose element contains the square root of the integrated
squared distance between the first derivatives of growth functions ()
and () for the height data:

> distHgt <- sqrt(fDist(fHgt3, linDop=fDop(1)))

Now we can apply any clustering method based on distance matrices.
For example, the S-PLUS function hclust computes clusters for a
variety of hierarchical clustering methods from a distance matrix.
Here we use average-linkage clustering:

> clustHgt <- hclust(distHgt, method="average")

 A plot of the cluster tree label according to sex is obtained as follows:

> sex <- as.factor(c(rep("F", 54), rep("M", 39)))
> plclust(clustHgt, labels=as.character(sex))

i j

i

j

Cluster Analysis of the Height Data

17

The result is displayed in Figure 1.8:

Displaying the
Cluster Mean
Functions

Since we have heights for both males and females, it would seem
natural to group the data by sex. The labeling in Figure 1.8 shows that
this grouping is supported by the cluster analysis, indicating that
males and females generally have different growth patterns. Only one
male appears in the female subtree, and relatively few females appear
in the male subtree. To investigate this further, we apply the S-PLUS
function cutree to obtain the two-group solution:

> g <- 2
> groupsHgt <- cutree(clustHgt, k=g)

The clusters are as defined by a horizontal line at about distance 9.5
in Figure 1.8. The frequency of males and females in each of the
groups is easily obtained using the S-PLUS function crosstabs:

> crosstabs(~groupsHgt+sex)

for which an abbreviated output is shown below:

Figure 1.8: Complete linkage cluster tree labeled according to sex.

F

F

F

F

F F

F

F

F

F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F

F

F
F

F

F

F

F

F

F
FF

F

F

FF F

F

F

F

F

F

F

F

F

F
F

F

F
F

M

M M

M
M

M

M M

M

M

M

M
M

M

M

M

M

M

M

M

M

MM

M

M

M M

M

M

M

M

MM

M

M

M

M
M

M

2
4

6
8

1
0

Chapter 1 Introduction

18

 |F |M |RowTotl|
-------+-------+-------+-------+
1 |49 | 1 |50 |
-------+-------+-------+-------+
2 | 5 |38 |43 |
-------+-------+-------+-------+
ColTotl|54 |39 |93 |
-------+-------+-------+-------+

Group 1 is predominantly female and group 2 predominantly male.
We split the data into a list grouped by cluster, and plot the function
and derivative means for each group:

> splitGroups <- split(fHgt3, groupsHgt)
> par(mfrow=c(2,1))
> plot(1, 20, type="n", xlab="age", ylab="height",
 main="Group Mean Function Heights",
 xlim=c(0, 19), ylim=c(60,200))
> temp <- lapply(1:g, function(i)
 lines(mean(splitGroups[[i]]), lty=i, col=i))
> legend(1, 190, paste(1:g), col=1:g, lty=1:g)
> plot(15, 20, type="n", xlab="age", ylab="height",
 main="Group Mean Derivative Heights",
 xlim=c(0, 19), ylim=c(0,30))
> temp <- lapply(1:g, function(i)
 lines(mean(fVector(splitGroups[[i]],
 linDop=fDop(1))), lty=i))
> legend(15, 29, paste(1:g), col=1:g,
 lty=1:g, background=0)

The results are shown in Figure 1.9. Since derivatives were used to
define the distances, one would expect cluster differences to be
reflected in their means, shown in the lower half of Figure 1.9. The
display shows that the behavior of the clusters differs with respect to
the time and duration of the growth spurt around puberty. There is
also a difference in the groups around age 5 where group 1 (mostly
females) tends to have a minor growth spurt that is not present in
mostly-male group 2.

Between
Cluster
Distances

Hierarchical clustering methods produce a grouping for a given
number of clusters, but do not include a mechanism for selecting the
correct number of clusters. The choice of two groups was based on
informal inspection of the clustering tree (Figure 1.8). Because of the

Cluster Analysis of the Height Data

19

small number of cross-overs from males to females, the two-group
solution (males versus females) would seem satisfactory. However, if
the labeling according to sex were not available, we would be
unlikely to reach this conclusion.

Summary This clustering example illustrates the flexibility of functional data
analysis methods - when the data are thought of as functions, distance
measures based on derivatives are possible, and derivatives can be
used to analyze group structure.

Multidimen-
sional Scaling

Multidimensional scaling is also possible once a distance matrix is
available. We applied the S-PLUS function cmdscale to the distance
matrix (using the command cmdscale(distHgt)) to do a simple
multidimensional scaling analysis. In a plot of the (two dimensional)
solution (not shown), the males and females are well separated.

Figure 1.9: The mean function (top) and its first derivative for the two groups in
Figure 1.8

Group Mean Function Heights

age

h
e

ig
h
t

0 5 10 15

6
0

8
0

1
2

0
1
6

0
2
0

0
1
2

Group Mean Derivative Heights

h
e

ig
h
t

0 5 10 15

0
5

1
0

1
5

2
0

2
5

3
0

1
2

Group Mean Function Heights

age

h
e

ig
h
t

0 5 10 15

6
0

8
0

1
2

0
1
6

0
2
0

0

1
2

Group Mean Derivative Heights

age

h
e

ig
h
t

0 5 10 15

0
5

1
0

1
5

2
0

2
5

3
0

1
2

Chapter 1 Introduction

20

The S+FDA library offers many other methods for functional data
analysis. These are discussed more fully in subsequent chapters, as
well as in Ramsay and Silverman (1997, 2002).

FDA Flow Chart

21

FDA FLOW CHART

The flowchart in Figure 1.10 represents the organization of this
manual.

Each box in the flowchart represents a chapter. Functional data
analysis begins by selecting a basis to represent discrete data in
functional form. The data typically correspond to a sample of
functions, so that registration to remove unimportant differences (e.g.
phase and/or amplitude variations) between samples may be
necessary. Although the basis representation usually provides some
smoothing, it is often desirable to apply one or more smoothing
operations before analysis. This smoothing may be accomplished via
a penalty on a linear differential operator applied to the functions.

Once a functional data object has been created, it can be analyzed
and transformed in ways that are not possible for discrete data. You
may perform various arithmetic operations, including differentiation
and integration. In addition, a variety of analyses from discrete data
analysis have functional analogs: linear and generalized linear

Figure 1.10: FDA flowchart.

Regist rat ion

Principal
Component

Analysis

Cannonical
Correlat ion

Analysis

Linear
Models

Cluster
Analysis

Principal
Different ial

Analysis

Generalized
Linear
Models

Data Bases

Funct ional
Data

Objects

Linear
Different ial

Operat ors /
Smoothing

Funct ional

Operat ions

Chapter 1 Introduction

22

generalized linear modeling, principal component and canonical
correlation analysis, and cluster analysis. Principal differential
analysis, which has no analog for discrete data, is another option for
functional data.

