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Functional data arise in many fields of research.  Measurements are 
often best thought of as functions, even in cases where the data is 
gathered at a relatively small number of points.   Examples include  
weather changes,  stock prices,  bone shapes,  growth rates,  health 
status indicators, and tumor size.   

For time-dependent data, observations may be viewed as realizations 
of a smooth function  of time that have been measured (with 
error) at specific  time points , but which could have been measured 

at any time. Spatial functional data is also common, e.g., the length of 
a bone along an axis, the concentration of a drug in a tissue as a 
function of depth, yearly mean temperature as a function of location.

Historically, functional data have been analyzed using multivariate or 
time-series methods at discrete measurement points.   Analyzing 
functional data instead as functions has several advantages:

• Functions, unlike raw data, can be evaluated at any “time” 
point. This is important because it allows the use of statistical 
methods requiring evenly-spaced measurements and allows 
extrapolation for use in predictions or treatment decisions. 

• Functional methods (e.g., functional principal components, 
functional canonical correlation) apply even when the data 
have been gathered at irregular intervals, or at different times 
on different subjects, when multivariate analogues of these 
methods are either inappropriate or unavailable.

• Derivatives and integrals of functions may provide important 
information about the underlying process. For example, 
knowledge of the direction and rate of change of a patient’s 
temperature may be more important than knowledge of the 
patient’s current temperature.

Functional methods can also be used when the parameters to be 
estimated are functions. Ramsay and Silverman (1997) use smoothing 
spline methods for density estimation, and to estimate the link 
function in generalized linear models. Another example is regression 
splines for fitting time-dependent hazard regression models 
(Kooperberg and Clarkson, 1997). 
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S+FDA integrates functional data analysis methods into S-PLUS. It 
includes a complete commercial implementation of the exploratory 
methods of Ramsay and Silverman (1997, 2002), featuring: 

• methods for transforming observed data to a smoothed 
functional form, 

• predicting a functional or nonfunctional variable  as a 
function of one or more functional or nonfunctional variables, 

• finding and rotating the functional ‘‘principal components’’ of 
a functional variable, 

• finding the canonical correlations between two functional 
variables, and 

• performing a ‘‘principal differential analysis’’.

S+FDA also incorporates more recent innovations and extensions, 
such as allowing the use of functions with arbitrary bases, and 
providing methods for functional generalized linear models and 
functional cluster analysis. 

Installation To install the software:

• Go to the website: http://www.insightful.com/
downloads/libraries/default.asp

• Follow the on-screen Setup instructions; default settings are 
recommended.

Object-
oriented
Programming

S+FDA makes use of the object-oriented capabilities of the S-PLUS 
language. In object-oriented programming, constructor functions 
create structured data “objects” that are assigned a class (which 
typically has the same name as the constructor). The object-oriented 
paradigm allows users to apply generic functions (such as plot) to 
these classed objects, the details of which are handled transparently 
through class-specific functions or “methods”. This simplifies 
programming by avoiding the need to explicitly invoke different 
functions or to have additional function arguments when generic 
operations are applied to objects of different structures.
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 INTRODUCTORY TUTORIAL (HEIGHT DATA)

We illustrate some exploratory functional data analysis methods using 
the Berkeley height data (Tuddenham and Snyder, 1954). The 
corresponding data frame, heightData, is included in the S+FDA 
library. This data contains the heights of 54 female (columns 2 to 55) 
and 39 male (columns 56 to 94) children observed at 31 times from 
age 1 to age 18. The times of measurement are included as the 
variable age (column 1). We first inspect the data graphically by 
plotting the height curves as follows:

#Set up the plot and label
> plot(heightData$age, heightData[,2], type="n",
       ylim=range(unlist(heightData[,2:55])),
       xlab="Age (years)", ylab="Height (cm)", 
       main="Female Height Data")
#draw the height curves
> matlines(heightData$age,as.matrix(heightData[,2:55]))

The result is shown in Figure 1.1.

Figure 1.1: Female height data.
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Although the data appear as smooth curves, only 31 discrete values of 
height were measured. The curves are produced by connecting these 
discrete points with straight lines.

As a functional data analysis application, we fit a function to each 
height curve using linear least squares. The function is represented as 
a linear combination of basis functions  and coefficients  that 

vary from one height function to the next:

There are a variety of choices for the basis functions, e.g., B-splines, 
Fourier series, and exponential series. Once the basis is chosen, the 
coefficients are estimated based on the observed data. In Figure 1.1, a 
polygonal basis of connected line segments is used to draw the curves.

 Although the functional representation almost always differs from the 
data at the points of observation, these differences are assumed to be 
small in the sense that the coefficients  capture the information 

contained in the discretized curve. In most analyses, the raw data is 
ignored once the  have been estimated because it is simpler to 

work with the functional form. The assumption is that the within-
subject variance in the  estimates is small compared to the 

between-subject variance. 

Warning When the number of observations for estimating the  is small to 

moderate or when the within-subject variance of the  estimates is 

large, a mixed-effects model may be preferred so that information 
may be combined across subjects.

Selecting the 
Basis
Functions

To perform a functional data analysis, we must first choose an 
appropriate set of basis functions. In the example above, 16 B-spline 
basis functions of order 6 were used. Since the order of a polynomial 
basis is the degree plus one, this basis consists of 16 piecewise 
polynomial splines of degree 5. By default, the interior knots for the 16 
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basis functions are equally spaced over the range of the independent 
variable (the two exterior knots are placed at the endpoints of the 
function domain). Since height is being viewed as a function of age, 
the appropriate domain for the basis functions is the age span of the 
data. The following forms an object of class “bsplineBasis” for the 
height data:

> heightBasis <- bsplineBasis(fDomain
              =range(heightData$age), nbasis=16,norder=6)

The basis functions, displayed in Figure 1.2, are equally spaced over 
the domain:

> plot(heightBasis, main="B-spline Basis Functions")

Now that we have defined a basis, we need to calculate the 
coefficients for each height curve. Since there are 93 subjects in this 
dataset, there should be 93 sets of coefficients (one set for each 
function). The S+FDA function fVector takes the basis, the data 
matrix, and the independent variable, and returns an object of class 
“fVector” containing the linear least-squares estimates of the 
coefficients. An “fVector” object has two additional attributes: 

Figure 1.2: A set of 16 B-spline basis functions.
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“basis”, which stores the basis used in the fit, and “fNames”, which 
stores labeling information for the data. In the code below, we also 
specify names for the independent variable (age), the subjects (child), 
and the units of the response (height). These names are used in the 
plotting and printing functions.

> fHgt <- fVector(object=heightBasis, y=heightData[,2:94],
               fArgs=heightData$age, 
               fNames=list(age=heightData$age, 
                child=names(heightData)[2:94], height='cm'))

Extract the estimated coefficients, basis functions, and function names 
from fHgt using the commands getCoef(fHgt), getBasis(fHgt), and 
getNames(fHgt), respectively.

Smoothing Although the basis functions smooth the curves, additional smoothing 
may be beneficial. The S-PLUS functions for creating functional data 
objects allow specification of a smoothing  penalty in the least-squares 
objective. The penalty also requires a smoothing parameter, lambda.
You may estimate an optimal lambda by minimizing a generalized 
cross validation statistic.  See section Generalized Cross Validation on 
page 82 for more details. 

Smoothing techniques are largely exploratory in nature, and are 
discussed in more detail in Chapter 4 of this manual, as well as in 
Chapter 4 of Ramsay and Silverman (1997). We will have occasion to 
use smoothing techniques for most of the functional data analysis 
methods provided in S+FDA.

As an example, penalize the squared second derivative with a penalty 
parameter lambda=0.001:

> fHgt2 <- fVector(object=heightBasis, 
             y=heightData[, 2:94], fArgs=heightData$age,
             penalty=list(lambda=0.001, linDop=fDop(2)),
             fNames=list(age=heightData$age,
             child=names(heightData)[2:94], height='cm'))

Compare with the original data of Figure 1.1 to see how closely the 
smoothed functions fit the data. The S-PLUS function fEval evaluates 
an object of class “fVector” at any point in the domain of the basis. 
Here, we evaluate the 54 spline curves for the females at the original 
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age values (heightData$age), calculate the difference between 
predicted and observed heights, and then plot the curve differences at 
the given ages:

> hgtFemale<-fEval(fHgt2[1:54], heightData$age)

> plot(heightData$age, hgtFemale[,1], type="n",
        ylim=range(hgtFemale-as.matrix(heightData[,2:55])), 
       xlab="Age (years)", ylab="Height Difference (cm)", 
       main="Female Height Differences with Splines")
> matpoints(heightData$age,
       hgtFemale-as.matrix(heightData[, 2:55]), pch="o")

The resulting plot is given in Figure 1.3.

The maximum deviation between the spline approximation and the 
true heights is about 1.5 cm compared with height values of 80 cm or 
more (see Figure 1.1). These differences are small enough that we 
consider the smoothed functions to be acceptable for subsequent 
analysis. 

Figure 1.3: Difference between predicted and actual female height data when using 
cubic B-splines for function representation.
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Given a representation of the data as an fVector object, it is easy to 
conduct several kinds of exploratory analyses with S+FDA. Here, we 
compute the first two derivatives of height with respect to time. We 
begin with the first derivative:

> plot(fVector(fHgt2[1:54], linDop = fDop(1)), 
       xlab="age (years)", 
       ylab="First Derivative of Height (cm/year)",
       main="Female Height, First Derivative")

The result is displayed in Figure 1.4.

Despite the large number of curves in Figure 1.4, some general trends 
are apparent: there appears to be an acceleration in growth around 
age 4, with a second acceleration after age 10. Further exploratory 
analysis, such as plotting the mean of the 54 derivative functions, may 
help reveal more structure. 

The plot of the second derivatives is produced in a similar fashion: 

Figure 1.4: First derivatives of the functional representation of the female height 
data. The second derivative was penalized for smoothing, with penalty parameter 
0.001.
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> plot(fVector(fHgt2[1:54], linDop=fDop(2)), 
       xlab="Age (years)",
       ylab="Second Derivative of Height (cm/year^2)",
       main="Female Height, Second Derivative")

The result is displayed in Figure 1.5. 

The large function values near the endpoints in both derivative plots 
are due to lack of information concerning values outside the interval. 
Smoothing by penalizing a higher derivative would reduce the 
variation at the endpoints, although possibly at the risk of 
oversmoothing the function. Such considerations are discussed in 
more detail in the chapter on smoothing. 

Because we use splines of degree five (order 6) when fitting the 
functions, the second derivatives are smooth, cubic splines. Had we fit 
the raw data with cubic splines (order 4), the second derivative curves 
would have been piecewise linear. In general, if an analysis requires a 

Figure 1.5: Second derivatives of the functional representation of the female height 
data. The second derivative was penalized for smoothing, with penalty parameter 
0.001. 
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smooth kth derivative, and smoothness in higher derivatives is 
unimportant, splines of degree k+3 (order k+4) should be used to fit 
the functions so that the kth derivative will be a cubic spline.

The ease with which you can examine the derivatives is a direct 
consequence of the functional approach, and one of its main 
advantages. By regarding the height measurements for each person as 
a smooth curve, you are no longer constrained by discrete 
observation times. 
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A LINEAR MODEL FOR THE HEIGHT DATA

Now consider a functional linear model for predicting sex in terms of 
the growth rate, the first derivative of the height curve. Since the 
dependent variable is binary, this model can also be considered a 
discriminant function for predicting sex in terms of the growth rate. 

For the height data, fit a functional linear model as follows:

> predLm <- fLM(sex~-1+fVector(fHgt, linDop=fDop(1)), 
                data.frame(fHgt=fHgt,
                sex=c(rep(1,54), rep(0,39))))

Here the -1 in the model formula eliminates the intercept, which is 
already contained in the B-splines. The coefficients in the resulting 
model are functional. The first coefficient estimate may be plotted as 
follows:

> plot(predLm$coef[[1]], xlab="age", ylab="beta",
       main="Coefficient Function")

The resulting plot is shown in Figure 1.6. 

Figure 1.6: The function of coefficients predicting sex in terms of the height function.
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The effect of the growth rate on the linear model prediction has a 
maximum around age 5, is positive again at around age 11, and is 
negative during the puberty growth spurt after age 11. The negative 
lobe after age 11 predicts maleness, when the boys have their growth 
spurts, but the girls are finished theirs.

To see how well the resulting model can discriminate between males 
and females, plot the fitted values:

> score <- getCoef(predLm$fitted.values)

> plot(as.factor(c(rep("F",54),rep("M",39))), 
       score, main="Linear Model Predicted Values")

The results are displayed in Figure 1.7. 

Most females have a score above 0.5, and most males have a score 
below 0.5, so that growth rates are an effective means of classifying 
the observations. 

Figure 1.7: Predicted height scores for each sex
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Discussion In this simple example of a functional linear model, we have again 
used derivative information, this time to predict the sex of the 
individual. Although the results for this example are good, generally 
predictions based on functional linear models should be viewed with 
caution. When the independent variable is functional, so are the 
coefficient estimates, and outliers may significantly influence the 
outcome (overfitting). Methods to avoid overfitting, particularly 
smoothing methods, are discussed in more detail in the chapter on 
functional linear models. 
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CLUSTER ANALYSIS OF THE HEIGHT DATA

One approach to cluster analysis is to search for natural groups of 
observations by examining “distances” between observations. For the 
height data discussed in the previous section, clustering can be based 
on a Euclidean or other distance measure between the observed 
heights at the observation times (the ages). Specifying these distances 
requires that all individuals be measured at the same times. This 
requirement can be met by first converting the observed data to 
functional form. Once this is accomplished, a much broader class of 
distance measures becomes available. For example, derivatives can 
be incorporated into the distance metrics. For the height data, we 
might be interested in patterns of growth curves related to the growth 
rate (the velocity, i.e., first derivative) or the rate of change in the 
growth rate (the acceleration, i.e., second derivative). If, for example, 
our main interest is the growth rate, then we could define the distance 
between the growth curve functions  and  for two 

individuals as the square root of the integrated squared distance 
between the first derivatives of the two height curves: 

This distance measurement is based on the rate of change of growth, 
as opposed to the final height achieved.

Computing a 
Distance
Matrix

For the clustering example, we consider only the height data starting 
from age 3.  The reason for this is that the data in infancy are 
unstable, and the transition to standing height around age 2 
introduces a significant perturbation. We recompute the smoothed 
fHgt from age 3:

> ageRange <- heightData$age >= 3
> heightBasis <- bsplineBasis(fDomain
                       =range(heightData$age[ageRange]),
                       nbasis=16, norder=6)
> fHgt3 <- fVector(object=heightBasis,
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               y=heightData[ageRange,2:94],
               fArgs=heightData$age[ageRange],
               penalty=list(lambda=0.001, linDop=fDop(2)),
               fNames=list(age=heightData$age[ageRange], 
                           child=names(heightData)[2:94], 
                           height='cm'))

The choice of lambda=0.001 is determined by a procedure described 
in section Generalized Cross Validation on page 82 .

The S+FDA function fDist computes distance matrices from 
functional data. The following S-PLUS code computes a distance 
matrix whose  element contains the square root of the integrated 
squared distance between the first derivatives of growth functions ( ) 
and ( ) for the height data: 

> distHgt <- sqrt(fDist(fHgt3, linDop=fDop(1)))

Now we can apply any clustering method based on distance matrices.   
For example, the S-PLUS function hclust computes clusters for a 
variety of hierarchical clustering methods from a distance matrix. 
Here we use average-linkage clustering:

> clustHgt <- hclust(distHgt, method="average")

 A plot of the cluster tree label according to sex is obtained as follows:

> sex <- as.factor(c(rep("F", 54), rep("M", 39)))
> plclust(clustHgt, labels=as.character(sex))

i j
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The result is displayed in Figure 1.8:

Displaying the 
Cluster Mean 
Functions

Since we have heights for both males and females, it would seem 
natural to group the data by sex. The labeling in Figure 1.8 shows that 
this grouping is supported by the cluster analysis, indicating that 
males and females generally have different growth patterns. Only one 
male appears in the female subtree, and relatively few females appear 
in the male subtree. To investigate this further, we apply the S-PLUS 
function cutree to obtain the two-group solution:

> g <- 2
> groupsHgt <- cutree(clustHgt, k=g)

The clusters are as defined by a horizontal line at about distance 9.5 
in Figure 1.8. The frequency of males and females in each of the 
groups is easily obtained using the S-PLUS function crosstabs:

> crosstabs(~groupsHgt+sex)

for which an abbreviated output is shown below:

Figure 1.8: Complete linkage cluster tree labeled according to sex.
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       |F      |M      |RowTotl|
-------+-------+-------+-------+
1      |49     | 1     |50     |
-------+-------+-------+-------+
2      | 5     |38     |43     |
-------+-------+-------+-------+
ColTotl|54     |39     |93     |
-------+-------+-------+-------+

Group 1 is predominantly female and group 2 predominantly male. 
We split the data into a list grouped by cluster, and plot the function 
and derivative means for each group:

> splitGroups <- split(fHgt3, groupsHgt)
> par(mfrow=c(2,1))
> plot(1, 20, type="n", xlab="age", ylab="height", 
       main="Group Mean Function Heights",
       xlim=c(0, 19), ylim=c(60,200))
> temp <- lapply(1:g, function(i) 
            lines(mean(splitGroups[[i]]), lty=i, col=i))
> legend(1, 190, paste(1:g), col=1:g, lty=1:g)
> plot(15, 20, type="n", xlab="age", ylab="height",
       main="Group Mean Derivative Heights",
       xlim=c(0, 19), ylim=c(0,30)) 
> temp <- lapply(1:g, function(i)
                 lines(mean(fVector(splitGroups[[i]], 
                       linDop=fDop(1))), lty=i))
> legend(15, 29, paste(1:g), col=1:g, 
         lty=1:g, background=0)

The results are shown in Figure 1.9. Since derivatives were used to 
define the distances, one would expect cluster differences to be 
reflected in their means, shown in the lower half of Figure 1.9. The 
display shows that the behavior of the clusters differs with respect to 
the time and duration of the growth spurt around puberty. There is 
also a difference in the groups around age 5 where group 1 (mostly 
females) tends to have a minor growth spurt that is not present in 
mostly-male group 2.

Between 
Cluster
Distances

Hierarchical clustering methods produce a grouping for a given 
number of clusters, but do not include a mechanism for selecting the 
correct number of clusters. The choice of two groups was based on 
informal inspection of the clustering tree (Figure 1.8). Because of the 
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small number of cross-overs from males to females, the two-group 
solution (males versus females) would seem satisfactory. However, if 
the labeling according to sex were not available, we would be 
unlikely to reach this conclusion.

Summary This clustering example illustrates the flexibility of functional data 
analysis methods - when the data are thought of as functions, distance 
measures based on derivatives are possible, and derivatives can be 
used to analyze group structure. 

Multidimen-
sional Scaling 

Multidimensional scaling is also possible once a distance matrix is 
available. We applied the S-PLUS function cmdscale to the distance 
matrix (using the command cmdscale(distHgt) ) to do a simple 
multidimensional scaling analysis. In a plot of the (two dimensional) 
solution (not shown), the males and females are well separated. 

Figure 1.9: The mean function (top) and its first derivative for the two groups in 
Figure 1.8
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The S+FDA library offers many other methods for functional data 
analysis. These are discussed more fully in subsequent chapters, as 
well as in Ramsay and Silverman (1997, 2002).
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FDA FLOW CHART

The flowchart in Figure 1.10 represents the organization of this 
manual.

Each box in the flowchart represents a chapter. Functional data 
analysis begins by selecting a basis to represent discrete data in 
functional form. The data typically correspond to a sample of 
functions,  so that registration to remove unimportant differences (e.g. 
phase and/or amplitude variations) between samples may be 
necessary. Although the basis representation usually provides some 
smoothing, it is often desirable to apply one or more smoothing 
operations before analysis. This smoothing may be accomplished via 
a penalty on a linear differential operator applied to the functions. 

Once a functional data object has been created, it can be analyzed 
and transformed in ways that are not possible for discrete data. You 
may perform various arithmetic operations, including differentiation 
and integration. In addition, a variety of analyses  from discrete data 
analysis have functional analogs: linear and generalized linear 

Figure 1.10: FDA flowchart.

Regist rat ion

Principal
Component

Analysis

Cannonical
Correlat ion

Analysis

Linear
Models

Cluster
Analysis

Principal
Different ial

Analysis

Generalized
Linear
Models

Data Bases

Funct ional
Data

Objects

Linear
Different ial

Operat ors /
Smoothing

Funct ional

Operat ions



Chapter 1  Introduction

22

generalized linear modeling, principal component and canonical 
correlation analysis, and cluster analysis. Principal differential 
analysis, which has no analog for discrete data, is another option for 
functional data.




