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5d INTRODUCTION 

The goal of getting computers to automatically solve problems is central 
to artificial inteUigence, machine learning, and the broad area encompassed 
by what Turing called "machine intelligence" (Turing, 1948, 1950). In his 
talk entitled AI: Where It Has Been and Where It Is Going, machine learning 
pioneer Arthur Samuel stated the main goal of the fields of machine learning 
and artificial intelligence: 

[T]he aim [is]. . . to get machines to exiiibit behavior, which if done by humans, 
would be assumed to involve the use of intelligence. 

(Samuel, 1983) 

Genetic programming is a systematic method for getting computers to automat
ically solve a problem starting from a high-level statement of what needs to be 
done. Genetic programming is a domain-independent method that genetically 
breeds a population of computer programs to solve a problem. Specifically, ge
netic programming iteratively transforms a population of computer programs 
into a new generation of programs by applying analogs of naturally occurring 
genetic operations. This process is illustrated in Figure 5.1. 

The genetic operations include crossover (sexual recombination), mutation, 
reproduction, gene duplication, and gene deletion. Analogs of developmental 
processes are sometimes used to transform an embryo into a fully developed 
structure. Genetic programming is an extension of the genetic algorithm (Hol
land, 1975), see Chapter 4, in which the structures in the population are not 
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for (i=l; i<100; i++) 

{ 

x+= 2,37 + i; 

if (x > 1000 ) 

return(i); 

} 

Figure 5.1, Main loop of genetic programming. 

fixed-length character strings that encode candidate solutions to a problem, but 
programs that, when executed, are the candidate solutions to the problem. 

Programs are expressed in genetic programming as syntax trees rather than 
as lines of code. For example, the simple expression 

max(x 5î  X, X + 3 * y) 

is represented as shown in Figure 5.2. The tree includes nodes (which we will 
also call points) and links. The nodes indicate the instructions to execute. The 
links indicate the arguments for each instruction. In the following the intemal 
nodes in a tree will be called functions, while the tree's leaves will be called 
terminals. 

In more advanced forms of genetic programming, programs can be com
posed of multiple components (e.g. subroutines). In this case the representa
tion used in genetic programming is a set of trees (one for each component) 
grouped together under a special node called root, as illustrated in Figure 5.3. 
We will call these (sub)trees branches. The number and type of the branches in 
a program, together with certain other features of the structure of the branches, 
form the architecture of the program. 

Genetic programming trees and their corresponding expressions can equiv-
alently be represented in prefix notation (e.g. as Lisp S-expressions). In 
prefix notation, functions always precede their arguments. For example, 
max(x * X, X -f 3 * y) becomes 

(max(*xx)(+x(* 3 y))) 

In this notation, it is easy to see the correspondence between expressions and 
their syntax trees. Simple recursive procedures can convert prefix-notation ex
pressions into infix-notation expressions and vice versa. Therefore, in the fol
lowing, we will use trees and their corresponding prefix-notation expressions 
interchangeably. 
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Figure 5.2. Basic tree-like program representation used in genetic programming. 

5.2 PREPARATORY STEPS OF GENETIC 
PROGRAMMING 

Genetic programming starts from a high-level statement of the requirements 
of a problem and attempts to produce a computer program that solves the prob
lem. 

The human user communicates the high-level statement of the problem 
to the genetic programming algorithm by performing certain well-defined 
preparatory steps. 

The five major preparatory steps for the basic version of genetic program
ming require the human user to specify 

1 the set of terminals (e.g., the independent variables of the problem, zero-
argument functions, and random constants) for each branch of the to-be-
evolved program, 

2 the set of primitive functions for each branch of the to-be-evolved pro
gram, 

3 the fitness measure (for explicitly or implicitly measuring the fitness of 
individuals in the population), 

4 certain parameters for controlling the run, and 

5 the termination criterion and method for designating the result of the run. 

The first two preparatory steps specify the ingredients that are available to 
create the computer programs. A run of genetic programming is a competi
tive search among a diverse population of programs composed of the available 
functions and terminals. 

The identification of the function set and terminal set for a particular prob
lem (or category of problems) is usually a straightforward process. For some 
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problems, the function set may consist of merely the arithmetic functions of ad
dition, subtraction, multiplication, and division as well as a conditional branch
ing operator. The terminal set may consist of the program's extemal inputs 
(independent variables) and numerical constants. 

For many other problems, the ingredients include specialized functions and 
terminals. For example, if the goal is to get genetic programming to automat
ically program a robot to mop the entire floor of an obstacle-laden room, the 
human user must tell genetic programming what the robot is capable of doing. 
For example, the robot may be capable of executing functions such as moving, 
tuming, and swishing the mop. 

If the goal is the automatic creation of a controller, the function set may 
consist of integrators, differentiators, leads, lags, gains, adders, subtractors, 
and the like and the terminal set may consist of signals such as the reference 
signal and plant output. 

If the goal is the automatic synthesis of an analog electrical circuit, the 
function set may enable genetic programming to construct circuits from com
ponents such as transistors, capacitors, and resistors. Once the human user 
has identified the primitive ingredients for a problem of circuit synthesis, the 
same function set can be used to automatically synthesize an amplifier, com
putational circuit, active filter, voltage reference circuit, or any other circuit 
composed of these ingredients. 

The third preparatory step concems the fitness measure for the problem. The 
fitness measure specifies what needs to be done. The fitness measure is the pri
mary mechanism for communicating the high-level statement of the problem's 
requirements to the genetic programming system. For example, if the goal 
is to get genetic programming to automatically synthesize an amplifier, the fit
ness function is the mechanism for teUing genetic programming to synthesize a 
circuit that amplifies an incoming signal (as opposed to, say, a circuit that sup-
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presses the low frequencies of an incoming signal or that computes the square 
root of the incoming signal). The first two preparatory steps define the search 
space whereas the fitness measure impHcitly specifies the search's desired goal. 

The fourth and fifth preparatory steps are administrative. The fourth 
preparatory step entails specifying the control parameters for the run. The most 
important control parameter is the population size. Other control parameters 
include the probabilities of performing the genetic operations, the maximum 
size for programs, and other details of the run. 

The fifth preparatory step consists of specifying the termination criterion 
and the method of designating the result of the run. The termination criterion 
may include a maximum number of generations to be run as well as a problem-
specific success predicate. The single best-so-far individual is then harvested 
and designated as the result of the run. 

5.3 EXECUTIONAL STEPS OF GENETIC 
PROGRAMMING 

After the user has performed the preparatory steps for a problem, the run of 
genetic programming can be launched. Once the run is launched, a series of 
well-defined, problem-independent steps is executed. 

Genetic programming typically starts with a population of randomly gener
ated computer programs composed of the available programmatic ingredients 
(as provided by the human user in the first and second preparatory steps). 

Genetic programming iteratively transforms a population of computer pro
grams into a new generation of the population by applying analogs of naturally 
occurring genetic operations. These operations are applied to individual(s) se
lected from the population. The individuals are probabilistically selected to 
participate in the genetic operations based on their fitness (as measured by the 
fitness measure provided by the human user in the third preparatory step). The 
iterative transformation of the population is executed inside the main genera
tional loop of the run of genetic programming. 

The executional steps of genetic programming are as follows: 

1 Randomly create an initial population (generation 0) of individual com
puter programs composed of the available functions and terminals. 

2 Iteratively perform the following sub-steps (called a generation) on the 
population until the termination criterion is satisfied: 

(a) Execute each program in the population and ascertain its fitness 
(exphcitly or implicitly) using the problem's fitness measure. 

(b) Select one or two individual program(s) from the population with 
a probability based on fitness (with reselection allowed) to partici
pate in the genetic operations in (c). 
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Figure 5.4. Flowchart of genetic programming. 

(c) Create new individual program(s) for the population by applying 
the following genetic operations with specified probabilities: 

i Reproduction: Copy the selected individual program to the 
new population. 

ii Crossover: Create new offspring program(s) for the new pop
ulation by recombining randomly chosen parts from two se
lected programs. 

iii Mutation: Create one new offspring program for the new pop
ulation by randomly mutating a randomly chosen part of one 
selected program. 

iv Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such opera
tions and create one new offspring program for the new pop-
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Figure 5.5. Creation of a seven-point tree using the "Full" initialization method (/ = time). 

ulation by applying the chosen architecture-altering operation 
to one selected program. 

3 After the termination criterion is satisfied, the single best program in 
the population produced during the run (the best-so-far individual) is 
harvested and designated as the result of the run. If the run is successful, 
the result may be a solution (or approximate solution) to the problem. 

Figure 5.4 is a flowchart of genetic programming showing the genetic oper
ations of crossover, reproduction, and mutation as well as the architecture-
altering operations. This flowchart shows a two-offspring version of the 
crossover operation. 

The preparatory steps specify what the user must provide in advance to the 
genetic programming system. Once the run is launched, the executional steps 
as shown in the flowchart (Figure 5.4) are executed. Genetic programming 
is problem-independent in the sense that the flowchart specifying the basic 
sequence of executional steps is not modified for each new run or each new 
problem. 

There is usually no discretionary human intervention or interaction during 
a run of genetic programming (although a human user may exercise judgment 
as to whether to terminate a run). 

Genetic programming starts with an initial population of computer programs 
composed of functions and terminals appropriate to the problem. The indi
vidual programs in the initial population are typically generated by recursively 
generating a rooted point-labeled program tree composed of random choices of 
the primitive functions and terminals (provided by the user as part of the first 
and second preparatory steps). The initial individuals are usually generated 
subject to a pre-estabHshed maximum size (specified by the user as a minor 
parameter as part of the fourth preparatory step). For example, in the ''FuW 
initialization method nodes are taken from the function set until a maximum 
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Figure 5.6. Creation of a five-point tree using the "Grow" initialization method {t — time). 

tree depth is reached. Beyond that depth only terminals can be chosen. Figure 
5.5 shows several snapshots of this process. A variant of this, the "Grow" ini
tialization method, allows the selection of nodes from the whole primitive set 
until the depth limit is reached. Thereafter, it behaves like the "Full" method. 
Figure 5.6 illustrates this process. Pseudo-code for a recursive implementation 
of both the "Full" and the "Grow" methods is given in Figure 5.7. The code 
assumes that programs are represented as prefix-notation expressions. 

In general, after the initialization phase, the programs in the population are 
of different size (number of functions and terminals) and of different shape 
(the particular graphical arrangement of functions and terminals in the program 
tree). 

Each individual program in the population is either measured or compared 
in terms of how well it performs the task at hand (using the fitness measure 
provided in the third preparatory step). For many problems, this measurement 
yields a single explicit numerical value, called T̂ mê '̂ . Normally, fitness evalu
ation requires executing the programs in the population, often multiple times, 
within the genetic programming system. A variety of execution strategies ex
ist, including the (relatively uncommon) off-line or on-line compilation and 
linking and the (relatively common) virtual-machine-code compilation and in
terpretation. 

Interpreting a program tree means executing the nodes in the tree in an order 
that guarantees that nodes are not executed before the value of their arguments 
(if any) is known. This is usually done by traversing the tree in a recursive 
way starting from the root node, and postponing the evaluation of each node 
until the value of its children (arguments) is known. This process is illustrated 
in Figure 5.8, where the numbers to the right of internal nodes represent the 
results of evaluating the subtrees rooted at such nodes. In this example, the 
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procedure: gen_xnd_expr 
arguments: 

func>set 
termjset 
max_d 
method 

results: 

/* A function set */ 
/* A terminal set */ 
/* Maximum depth for expressions */ 
/* Either "Fuir or 'Vrow'' */ 

expr 
begin 

if maxjd 

/* An expression in prefix notation */ 

0 or method = "Grow" and random digit = 1 then 
expr = choosej:andom_element( term_set ) 

else 
func = choosB-random-element ( func_set ) 
for i = 1 to arity(fanc): 

argi = gen-md-expr(func^set, termset, max^d - i, method ) ; 
expr = (func, arg_l, arg^, ...); 

endif 
end 

Figure 5.7. Pseudo-code for recursive program generation with the "Full" and "Grow" meth
ods. 

3 - 0 X M 3 ^ 0 X - 2 

Figure 5.8. Example interpretation of a syntax tree (terminal x is a variable with value — 1). 

independent variable X evaluates to —1. Figure 5.9 gives a pseudo-code im
plementation of the interpretation procedure. The code assumes that programs 
are represented as prefix-notation expressions and that such expressions can be 
treated as Hsts of components (where a construct like expr{i) can be used to 
read or set component / of expression expr). 

Irrespective of the execution strategy adopted, the fitness of a program may 
be measured in many different ways, including, for example, in terms of the 
amount of error between its output and the desired output, the amount of time 
(fuel, money, etc) required to bring a system to a desired target state, the accu-
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procedure: eval 
arguments: 

expr / * An expression in prefix notation */ 
results: 

value /* A number */ 
begin 

if expr is a list then /* Non-terminal */ 
proc =: expr(l) 
value = proc(eval(expr(2)),eval(expr(3)),...) 

else / * Terminal */ 
if expr is a variable or a constant then 

value = expr 
else /* O-arity function */ 

value = expr() 
endif 

endif 
end 

Figure 5.9, Typical interpreter for genetic programming. 

racy of the program in recognizing patterns or classifying objects into classes, 
the payoff that a game-playing program produces, or the compliance of a com
plex structure (such as an antenna, circuit, or controller) with user-specified 
design criteria. The execution of the program sometimes retums one or more 
expHcit values. Altematively, the execution of a program may consist only of 
side effects on the state of a world (e.g., a robot's actions). Altematively, the 
execution of a program may yield both return values and side effects. 

The fitness measure is, for many practical problems, multi-objective in the 
sense that it combines two or more different elements. In practice, the different 
elements of the fitness measure are in competition with one another to some 
degree. 

For many problems, each program in the population is executed over a rep
resentative sample of different ^m^55 cases. These fitness cases may represent 
different values of the program's input(s), different initial conditions of a sys
tem, or different environments. Sometimes the fitness cases are constructed 
probabilistically. 

The creation of the initial random population is, in effect, a bhnd random 
search of the search space of the problem. It provides a baseline for judging 
future search efforts. Typically, the individual programs in generation 0 all 
have exceedingly poor fitness. Nonetheless, some individuals in the population 
are (usually) more fit than others. The differences in fitness are then exploited 
by genetic programming. Genetic programming applies Darwinian selection 
and the genetic operations to create a new population of offspring programs 
from the current population. 
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Figure 5.10. Example of two-child crossover between syntax trees. 

The genetic operations include crossover (sexual recombination), mutation, 
reproduction, and the architecture-altering operations. Given copies of two 
parent trees, typically, crossover involves randomly selecting a crossover point 
(which can equivalently be thought of as either a node or a link between nodes) 
in each parent tree and swapping the sub-trees rooted at the crossover points, 
as exemplified in Figure 5.10. Often crossover points are not selected with uni
form probability. A frequent strategy is, for example, to select internal nodes 
(functions) 90% of the times, and any node for the remaining 10% of the times. 
Traditional mutation consists of randomly selecting a mutation point in a tree 
and substituting the sub-tree rooted there with a randomly generated sub-tree, 
as illustrated in Figure 5.11. Mutation is sometimes implemented as crossover 
between a program and a newly generated random program (this is also known 
as "headless chicken" crossover). Reproduction involves simply copying cer
tain individuals into the new population. Architecture altering operations will 
be discussed later in this chapter. 

The genetic operations described above are applied to individual(s) that are 
probabilistically selected from the population based on fitness. In this proba
bilistic selection process, better individuals are favored over inferior individu
als. However, the best individual in the population is not necessarily selected 
and the worst individual in the population is not necessarily passed over. 

After the genetic operations are performed on the current population, the 
population of offspring (i.e. the new generation) replaces the current population 
(i.e. the now-old generation). This iterative process of measuring fitness and 
performing the genetic operations is repeated over many generations. 

The run of genetic programming terminates when the termination criterion 
(as provided by the fifth preparatory step) is satisfied. The outcome of the run 
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Figure 5.11. Example of sub-tree mutation. 

is specified by the method of result designation. The best individual ever en
countered during the run (i.e. the best-so-far individual) is typically designated 
as the result of the run. 

All programs in the initial random population (generation 0) of a run of 
genetic programming are syntactically valid, executable programs. The ge
netic operations that are performed during the run (i.e. crossover, mutation, 
reproduction, and the architecture-altering operations) are designed to produce 
offspring that are syntactically valid, executable programs. Thus, every indi
vidual created during a run of genetic programming (including, in particular, 
the best-of-run individual) is a syntactically vahd, executable program. 

There are numerous alternative implementations of genetic programming 
that vary from the preceding brief description, 

5.4 EXAMPLE OF A RUN OF GENETIC 
PROGRAMMING 

To provide concreteness, this section contains an illustrative run of genetic 
programming in which the goal is to automatically create a computer program 
whose output is equal to the values of the quadratic polynomial x^+x + \ in the 
range from — 1 to -f 1. That is, the goal is to automatically create a computer 
program that matches certain numerical data. This process is sometimes called 
system identification or symbolic regression. 

We begin with the five preparatory steps. The purpose of the first two 
preparatory steps is to specify the ingredients of the to-be-evolved program. 
Because the problem is to find a mathematical function of one independent 
variable, the terminal set (inputs to the to-be-evolved program) includes the 
independent variable, x. The terminal set also includes numerical constants. 
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That is, the terminal set, T, is 

T = {X,m] 

Here 9̂  denotes constant numerical terminals in some reasonable range (say 
from-5.0 to+5.0). 

The preceding statement of the problem is somewhat flexible in that it does 
not specify what functions may be employed in the to-be-evolved program. 
One possible choice for the function set consists of the four ordinary arith
metic functions of addition, subtraction, multipHcation, and division. This 
choice is reasonable because mathematical expressions typically include these 
functions. Thus, the function set, F, for this problem is 

F = { + , - , * , % } 

The two-argument -f, —, *, and % functions add, subtract, multiply, and divide, 
respectively. To avoid run-time errors, the division function % is protected: it 
retums a value of 1 when division by 0 is attempted (including 0 divided by 0), 
but otherwise retums the quotient of its two arguments. 

Each individual in the population is a composition of functions from the 
specified function set and terminals from the specified terminal set. 

The third preparatory step involves constructing the fitness measure. The 
purpose of the fitness measure is to specify what the human wants. The high-
level goal of this problem is to find a program whose output is equal to the 
values of the quadratic polynomial x^ +x + \, Therefore, the fitness assigned 
to a particular individual in the population for this problem must reflect how 
closely the output of an individual program comes to the target polynomial 
x^ + ^ + 1. The fitness measure could be defined as the value of the integral 
(taken over values of the independent variable x between —1.0 and +1.0) of the 
absolute value of the differences (errors) between the value of the individual 
mathematical expression and the target quadratic polynomial x^ + x + 1. A 
smaller value of fitness (error) is better. A fitness (error) of zero would indicate 
a perfect fit. 

For most problems of symbolic regression or system identification, it is not 
practical or possible to analytically compute the value of the integral of the 
absolute error. Thus, in practice, the integral is numerically approximated us
ing dozens or hundreds of different values of the independent variable x in the 
range between —1.0 and +1.0. 

The population size in this small illustrative example will be just four. In 
actual practice, the population size for a run of genetic programming consists 
of thousands or millions of individuals. In actual practice, the crossover oper
ation is commonly performed on about 90% of the individuals in the popula
tion; the reproduction operation is performed on about 8% of the population; 
the mutation operation is performed on about 1% of the population; and the 



140 KOZA AND POLI 

(d) 

x'+\ 

Figure 5.12. Initial population of four randomly created individuals of generation 0. 

architecture-altering operations are performed on perhaps 1% of the popula
tion. Because this illustrative example involves an abnormally small popu
lation of only four individuals, the crossover operation will be performed on 
two individuals and the mutation and reproduction operations will each be per
formed on one individual. For simpHcity, the architecture-altering operations 
are not used for this problem. 

A reasonable termination criterion for this problem is that the run will con
tinue from generation to generation until the fitness of some individual gets 
below 0.01. In this contrived example, the run will (atypically) yield an alge
braically perfect solution (for which the fitness measure attains the ideal value 
of zero) after merely one generation. 

Now that we have performed the five preparatory steps, the run of genetic 
programming can be launched. That is, the executional steps shown in the 
flowchart of Figure 5.4 are now performed. 

Genetic programming starts by randomly creating a population of four indi
vidual computer programs. The four programs are shown in Figure 5.12 in the 
form of trees. 

The first randomly constructed program tree (Figure 5.12(a)) is equivalent 
to the mathematical expression x -f 1. A program tree is executed in a depth-
first way, from left to right, in the style of the LISP programming language. 
Specifically, the addition function (+) is executed with the variable x and the 
constant value 1 as its two arguments. Then, the two-argument subtraction 
function (—) is executed. Its first argument is the value retumed by the just-
executed addition function. Its second argument is the constant value 0. The 
overall result of executing the entire program tree is thus x + \. 

The first program (Figure 5.12(a)) was constructed using the ''Grow" 
method, by first choosing the subtraction function for the root (top point) of 
the program tree. The random construction process continued in a depth-first 
fashion (from left to right) and chose the addition function to be the first argu
ment of the subtraction function. The random construction process then chose 
the terminal x to be the first argument of the addition function (thereby termi-
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Figure 5.13. The fitness of each of the four randomly created individuals of generation 0 is 
equal to the area between two curves. 

nating the growth of this path in the program tree). The random construction 
process then chose the constant terminal 1 as the second argument of the ad
dition function (thereby terminating the growth along this path). Finally, the 
random construction process chose the constant terminal 0 as the second argu
ment of the subtraction function (thereby terminating the entire construction 
process). 

The second program (Figure 5.12(b)) adds the constant terminal 1 to the 
result of multiplying ;c by A: and is equivalent to x^+\. The third program 
(Figure 5.12(c)) adds the constant terminal 2 to the constant terminal 0 and 
is equivalent to the constant value 2. The fourth program (Figure 5.12(d)) is 
equivalent to JC. 

Randomly created computer programs will, of course, typically be very poor 
at solving the problem at hand. However, even in a population of randomly 
created programs, some programs are better than others. The four random in
dividuals from generation 0 in Figure 5.12 produce outputs that deviate from 
the output produced by the target quadratic function x^ -}- JC -H 1 by different 
amounts. In this particular problem, fitness can be graphically illustrated as 
the area between two curves. That is, fitness is equal to the area between the 
parabola x^ -f- A: -f-1 and the curve representing the candidate individual. Fig
ure 5.13 shows (as shaded areas) the integral of the absolute value of the errors 
between each of the four individuals in Figure 5.12 and the target quadratic 
function x'^ -\- x + I. The integral of absolute error for the straight line x -h I 
(the first individual) is 0.67 (Figure 5.13(a)). The integral of absolute error 
for the parabola x^ -\- 1 (the second individual) is 1.0 (Figure 5.13(b)). The 
integrals of the absolute errors for the remaining two individuals are 1.67 (Fig
ure 5.13(c)) and 2.67 (Figure 5.13(d)), respectively. 

As can be seen in Figure 5.13, the straight line x -\- \ (Figure 5.13(a)) is 
closer to the parabola x^ -|- x -f-1 in the range from —1 to -1-1 than any of its 
three cohorts in the population. This straight line is, of course, not equivalent 
to the parabola x^-\-x + \. This best-of-generation individual from generation 0 
is not even a quadratic function. It is merely the best candidate that happened 
to emerge from the blind random search of generation 0. In the valley of the 
blind, the one-eyed man is king. 
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Figure 5,14. Population of generation 1 (after one reproduction, one mutation, and one two-
offspring crossover operation). 

After the fitness of each individual in the population is ascertained, genetic 
programming then probabilistically selects relatively more fit programs from 
the population. The genetic operations are applied to the selected individu
als to create offspring programs. The most commonly employed methods for 
selecting individuals to participate in the genetic operations are toumament se
lection and fitness-proportionate selection. In both methods, the emphasis is 
on selecting relatively fit individuals. An important feature common to both 
methods is that the selection is not greedy. Individuals that are known to be 
inferior will be selected to a certain degree. The best individual in the popu
lation is not guaranteed to be selected. Moreover, the worst individual in the 
population will not necessarily be excluded. Anything can happen and nothing 
is guaranteed. 

We first perform the reproduction operation. Because the first individual 
(Figure 5.12(a)) is the most fit individual in the population, it is very Hkely 
to be selected to participate in a genetic operation. Let us suppose that this 
particular individual is, in fact, selected for reproduction. If so, it is copied, 
without alteration, into the next generation (generation 1). This is shown in 
Figure 5.14(a) as part of the population of the new generation. 

We next perform the mutation operation. Because selection is probabihstic, 
it is possible that the third best individual in the population (Figure 5.12(c)) 
is selected. One of the three nodes of this individual is then randomly picked 
as the site for the mutation. In this example, the constant terminal 2 is picked 
as the mutation site. This program is then randomly mutated by deleting the 
entire subtree rooted at the picked point (in this case, just the constant termi
nal 2) and inserting a subtree that is randomly grown in the same way that the 
individuals of the initial random population were originally created. In this par
ticular instance, the randomly grown subtree computes the quotient of x and x 
using the protected division operation %. The resulting individual is shown in 
Figure 5.14(b). This particular mutation changes the original individual from 
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one having a constant value of 2 into one having a constant value of 1. This 
particular mutation improves fitness from 1.67 to 1.00. 

Finally, we perform the crossover operation. Because the first and second 
individuals in generation 0 are both relatively fit, they are likely to be selected 
to participate in crossover. The selection (and reselection) of relatively more 
fit individuals and the exclusion and extinction of unfit individuals is a char
acteristic feature of Darwinian selection. The first and second programs are 
mated sexually to produce two offspring (using the two-offspring version of 
the crossover operation). One point of the first parent (Figure 5.12(a)), namely 
the + function, is randomly picked as the crossover point for the first parent. 
One point of the second parent (Figure 5.12(b)), namely its leftmost terminal x, 
is randomly picked as the crossover point for the second parent. The crossover 
operation is then performed on the two parents. The two offspring are shown 
in Figures 5.14(c) and 5.14(d). One of the offspring (Figure 5.14(c)) is equiv
alent to X and is not noteworthy. However, the other offspring (Figure 5.14(d)) 
is equivalent to jĉ  -fx + 1 and has a fitness (integral of absolute errors) of zero. 
Because the fitness of this individual is below 0.01, the termination criterion 
for the run is satisfied and the run is automatically terminated. This best-so-far 
individual (Figure 5.14(d)) is designated as the result of the run. This individ
ual is an algebraically correct solution to the problem. 

Note that the best-of-run individual (Figure 5.14(d)) incorporates a good 
trait (the quadratic term x^) from the second parent (Figure 5.12(b)) with two 
other good traits (the linear term x and constant term of 1) from the first parent 
(Figure 5.12(a)). The crossover operation produced a solution to this problem 
by recombining good traits from these two relatively fit parents into a superior 
(indeed, perfect) offspring. 

In summary, genetic programming has, in this example, automatically cre
ated a computer program whose output is equal to the values of the quadratic 
polynomial x^ -\- x + \m the range from —1 to -f-1. 

5.5 FURTHER FEATURES OF GENETIC 
PROGRAMMING 

Various advanced features of genetic programming are not covered by the 
foregoing illustrative problem and the foregoing discussion of the preparatory 
and executional steps of genetic programming. 

5.5.1 Constrained Syntactic Structures 
For certain simple problems (such as the illustrative problem above), the 

search space for a run of genetic programming consists of the unrestricted set 
of possible compositions of the problem's functions and terminals. However, 
for many problems, a constrained syntactic structure imposes restrictions on 
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how the functions and terminals may be combined. Consider, for example, a 
function that instructs a robot to turn by a certain angle. In a typical imple
mentation of this hypothetical function, the function's first argument may be 
required to return a numerical value (representing the desired turning angle) 
and its second argument may be required to be a follow-up command (e.g., 
move, turn, stop). In other words, the functions and terminals permitted in the 
two argument subtrees for this particular function are restricted. These restric
tions are implemented by means of syntactic rules of construction. 

A constrained syntactic structure (sometimes called strong typing) is a 
grammar that specifies the functions or terminals that are permitted to appear 
as a specified argument of a specified function in the program tree. 

When a constrained syntactic structure is used, there are typically multi
ple function sets and multiple terminal sets. The rules of construction specify 
where the different function sets or terminal sets may be used. 

When a constrained syntactic structure is used, all the individuals in the 
initial random population (generation 0) are created so as to comply with the 
constrained syntactic structure. All genetic operations (i.e. crossover, muta
tion, reproduction, and the architecture-altering operations) that are performed 
during the run are designed to produce offspring that comply with the require
ments of the constrained syntactic structure. Thus, all individuals (including, 
in particular, the best-of-run individual) that are produced during the run of ge
netic programming will necessarily comply with the requirements of the con
strained syntactic structure. 

5.5.2 Automatically Defined Functions 
Human computer programmers organize sequences of reusable steps into 

subroutines. They then repeatedly invoke the subroutines—typically with dif
ferent instantiations of the subroutine's dummy variables (formal parameters). 
Reuse eliminates the need to ''reinvent the wheel" on each occasion when a 
particular sequence of steps may be useful. Reuse makes it possible to exploit 
a problem's modularities, symmetries, and regularities (and thereby potentially 
accelerate the problem-solving process). 

Programmers commonly organize their subroutines into hierarchies. 
The automatically defined function (ADF) is one of the mechanisms by 

which genetic programming implements the parametrized reuse and hierar
chical invocation of evolved code. Each ADF resides in a separate function-
defining branch within the overall multi-part computer program (see Fig
ure 5.3). When ADFs are being used, a program consists of one (or more) 
function-defining branches (i.e. ADFs) as well as one or more main result-
producing branches. An ADF may possess zero, one, or more dummy vari
ables (formal parameters). The body of an ADF contains its work-performing 
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steps. Each ADF belongs to a particular program in the population. An ADF 
may be called by the program's main result-producing branch, another ADF, 
or another type of branch (such as those described below). Recursion is some
times allowed. Typically, the ADFs are invoked with different instantiations of 
their dummy variables. 

The work-performing steps of the program's main result-producing branch 
and the work-performing steps of each ADF are automatically and simultane
ously created during the run of genetic programming. 

The program's main result-producing branch and its ADFs typically have 
different function and terminal sets. A constrained syntactic structure is used 
to implement ADFs. 

Automatically defined functions are the focus of Genetic Programming II: 
Automatic Discovery of Reusable Programs (Koza, 1994a) and the videotape 
Genetic Programming II Videotape: The Next Generation (Koza, 1994b). 

5.5.3 Automatically Defined Iterations, Loops, Recursions 
and Stores 

Automatically defined iterations, automatically defined loops, and automat
ically defined recursions provide means (in addition to ADFs) to reuse code. 

Automatically defined stores provide means to reuse the result of executing 
code. 

Automatically defined iterations, automatically defined loops, automatically 
defined recursions, and automatically defined stores are described in Genetic 
Programming III: Darwinian Invention and Problem Solving (Koza et al., 
1999a). 

5.5.4 Program Architecture and Architecture-Altering 
Operations 

The architecture of a program consists of 

1 the total number of branches, 

2 the type of each branch (e.g., result-producing branch, automatically 
defined function, automatically defined iteration, automatically defined 
loop, automatically defined recursion, or automatically defined store), 

3 the number of arguments (if any) possessed by each branch, and 

4 if there is more than one branch, the nature of the hierarchical references 
(if any) allowed among the branches. 

There are three ways by which genetic programming can arrive at the archi
tecture of the to-be-evolved computer program: 
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1 The human user may prespecify the architecture of the overall program 
(i.e. perform an additional architecture-defining preparatory step). That 
is, the number of preparatory steps is increased from the five previously 
itemized to six. 

2 The run may employ evolutionary selection of the architecture (as de
scribed in Koza, 1994a), thereby enabling the architecture of the overall 
program to emerge from a competitive process during the run of genetic 
programming. When this approach is used, the number of preparatory 
steps remains at the five previously itemized. 

3 The run may employ the architecture-altering operations (Koza, 1994c, 
1995; Koza et al., 1999a), thereby enabling genetic programming to au
tomatically create the architecture of the overall program dynamically 
during the run. When this approach is used, the number of preparatory 
steps remains at the five previously itemized. 

5.5.5 Genetic Programming Problem Solver 
The Genetic Programming Problem Solver (GPPS) is described in 

Kozaetal. (1999a, Part 4). 
If GPPS is being used, the user is relieved of performing the first and second 

preparatory steps (concerning the choice of the terminal set and the function 
set). The function set for GPPS consists of the four basic arithmetic functions 
(addition, subtraction, multipHcation, and division) and a conditional operator 
(i.e. functions found in virtually every general-purpose digital computer that 
has ever been built). The terminal set for GPPS consists of numerical constants 
and a set of input terminals that are presented in the form of a vector. 

By employing this generic function set and terminal set, GPPS reduces the 
number of preparatory steps from five to three. 

GPPS relies on the architecture-altering operations to dynamically create, 
duplicate, and delete subroutines and loops during the run of genetic program
ming. Additionally, in version 2.0 of GPPS, the architecture-altering opera
tions are used to dynamically create, duphcate, and delete recursions and inter
nal storage. Because the architecture of the evolving program is automatically 
determined during the run, GPPS eliminates the need for the user to specify in 
advance whether to employ subroutines, loops, recursions, and internal stor
age in solving a given problem. It similarly eliminates the need for the user to 
specify the number of arguments possessed by each subroutine. And, GPPS 
eliminates the need for the user to specify the hierarchical arrangement of the 
invocations of the subroutines, loops, and recursions. That is, the use of GPPS 
relieves the user of performing the preparatory step of specifying the program's 
architecture. 
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Table 5.1, Eight criteria for saying that an automatically created result is human-competitive. 

Criterion 

A The result was patented as an invention in the past, is an im
provement over a patented invention, or would qualify today as 
a patentable new invention. 

B The result is equal to or better than a result that was accepted 
as a new scientific result at the time when it was published in a 
peer-reviewed scientific journal. 

C The result is equal to or better than a result that was placed into 
a database or archive of results maintained by an internationally 
recognized panel of scientific experts. 

D The result is publishable in its own right as a new scientific 
result—independent of the fact that the result was mechanically 
created. 

E The result is equal to or better than the most recent human-
created solution to a long-standing problem for which there has 
been a succession of increasingly better human-created solu
tions. 

F The result is equal to or better than a result that was considered 
an achievement in its field at the time it was first discovered. 

G The result solves a problem of indisputable difficulty in its field. 
H The result holds its own or wins a regulated competition involv

ing human contestants (in the form of either live human players 
or human-written computer programs). 

5.5.6 Developmental Genetic Programming 
Developmental genetic programming is used for problems of synthesizing 

analog electrical circuits, as described in Part 5 of Koza et al. (1999a). When 
developmental genetic programming is used, a complex structure (such as an 
electrical circuit) is created from a simple initial structure (the embryo). 

5.6 HUMAN-COMPETITIVE RESULTS PRODUCED 
BY GENETIC PROGRAMMING 

Samuel's statement (quoted above) reflects the goal articulated by the pio
neers of the 1950s in the fields of artificial intelligence and machine learning, 
namely to use computers to automatically produce human-like results. Indeed, 
getting machines to produce human-like results is the reason for the existence 
of the fields of artificial intelHgence and machine leaming. 
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Table 5.2. Thirty-six instances of human-competitive results produced by genetic programming. 

Claimed instance Basis for 
claim of 
human-
competit
iveness 

B,F 

B,F 

Reference 

Spectoretal., 1998 

Spectoretal., 1999a 

10 

11 

12 

13 
14 

15 

16 
17 

19 

Creation of a better-than-classical quantum algorithm 
for the Deutsch-Jozsa "early promise" problem 
Creation of a better-than-classical quantum algorithm 
for Grover's database search problem 
Creation of a quantum algorithm for the depth-two 
AND/OR query problem that is better than any pre
viously published result 
Creation of a quantum algorithm for the depth-one OR 
query problem that is better than any previously pub
lished result 
Creation of a protocol for communicating information 
through a quantum gate that was previously thought 
not to permit such communication 
Creation of a novel variant of quantum dense coding 

Creation of a soccer-playing program that won its first 
two games in the Robo Cup 1997 competition 
Creation of a soccer-playing program that ranked in 
the middle of the field of 34 human-written programs 
in the Robo Cup 1998 competition 
Creation of four different algorithms for the trans
membrane segment identification problem for proteins 
Creation of a sorting network for seven items using 
only 16 steps 
Rediscovery of the Campbell ladder topology for low-
pass and highpass filters 
Rediscovery of the Zobel '*M-derived half section" 
and "constant K'' filter sections 
Rediscovery of the Cauer (elliptic) topology for filters 
Automatic decomposition of the problem of synthe
sizing a crossover filter 
Rediscovery of a recognizable voltage gain stage and 
a Darlington emitter-follower section of an amplifier 
and other circuits 
Synthesis of 60 and 96 decibel amplifiers 
Synthesis of analog computational circuits for squar
ing, cubing, square root, cube root, logarithm, and 
Gaussian functions 
Synthesis of a real-time analog circuit for time-
optimal control of a robot 
Synthesis of an electronic thermometer 

D 

D 

D 

D 

H 

H 

Spector et al., 1999b; 
Barnumetal.,2000 

Barnumetal.,2000 

Spector and Bernstein, 
2002 

Spector and Bernstein, 
2002 
Luke, 1998 

Andre and Teller, 1999 

B,E 

A,D 

A,F 

A,F 

A,F 
A,F 

A,F 

A,F 
A, D,G 

G 

A,G 

Koza et 
1999 
Koza et al. 

Kozaetal. 

Koza et al. 

Koza et al. 
Koza et al. 

Koza et al. 

Koza et al.; 
Koza et al.; 

Koza et al.; 

Koza et al., 

al., 1994a, 

,1999 

,1999,2003 

,1999 

,1999 
,1999 

,1999 

,1999 
,1999 

,1999 

,1999 
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Table 5.2, (Continued) 

Claimed instance Basis for 
claim of 
human-
competit-

Reference 

20 Synthesis of a voltage reference circuit 
21 Creation of a cellular automata rule for the majority 

classification problem that is better than the Gacs-
Kurdyumov-Levin rule and all other known rules 
written by humans 

22 Creation of motifs that detect the D-E-A-D box fam
ily of proteins and the manganese superoxide dismu-
tase family 

23 Synthesis of topology for a PID-D2 (proportional, in
tegrative, derivative, and second derivative) controller 

24 Synthesis of an analog circuit equivalent to Philbrick 
circuit 

25 Synthesis of NAND circuit 
26 Simultaneous synthesis of topology, sizing, place

ment, and routing of analog electrical circuits 
27 Synthesis of topology for a PID (proportional, integra

tive, and derivative) controller 
28 Rediscovery of negative feedback 

29 Synthesis of a low-voltage balun circuit 
30 Synthesis of a mixed analog-niigital variable capacitor 

circuit 
31 Synthesis of a high-current load circuit 
32 Synthesis of a voltage-current conversion circuit 
33 Synthesis of a cubic signal generator 
34 Synthesis of a tunable integrated active filter 
35 Creation of PID tuning rules that outperform the 

Ziegler-Nichols and Astrom-Hagglund tuning rules 
36 Creation of three non-PID controllers that outper

form a PID controller that uses the Ziegler-Nichols 
or Astrom-Hagglund tuning rules 

A,G 
D,E 

Kozaetal., 1999 
Kozaetal., 1999 

c 

A,F 

A,F 

A,F 
G 

A,F 

A, E, F, 
G 
A 
A 

A 
A 
A 
A 
A, B, D, 
E,F,G 
A, B, D, 
E,F,G 

Koza et al. 

Koza et al. 

Koza et al. 

Koza et al. 
Koza et al. 

Koza et al. 

Kozaet al. 

Koza et al. 
Koza et al.. 

Kozaet al.. 
Koza et al.. 
Koza et al.. 
Koza et al.. 
Koza et al.. 

Koza et al., 

,1999 

,2003 

,2003 

,2003 
,2003 

,2003 

,2003 

,2003 
,2003 

,2003 
,2003 
,2003 
,2003 
,2003 

,2003 

To make the notion of human-competitiveness more concrete, we say that a 
result is "human-competitive" if it satisfies one or more of the eight criteria in 
Table 5.1. 

As can be seen from Table 5.1, the eight criteria have the desirable attribute 
of being at arms-length from the fields of artificial intelligence, machine learn
ing, and genetic programming. That is, a result cannot acquire the rating of 
"human competitive" merely because it is endorsed by researchers inside the 
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specialized fields that are attempting to create machine intelhgence. Instead, a 
result produced by an automated method must earn the rating of ''human com
petitive" independent of the fact that it was generated by an automated method. 

Table 5.2 fists the 36 human-competitive instances (of which we are aware) 
where genetic programming has produced human-competitive results. Each 
entry in the table is accompanied by the criteria (from Table 5.1) that establish 
the basis for the claim of human-competitiveness. 

There are now 23 instances where genetic programming has duplicated 
the functionafity of a previously patented invention, infringed a previously 
patented invention, or created a patentable new invention (see criterion A in 
Table 5.1). Specifically, there are 15 instances where genetic programming 
has created an entity that either infringes or duplicates the functionality of a 
previously patented twentieth-century invention, six instances where genetic 
programming has done the same with respect to an invention patented after 
January 1st, 2000, and two instances where genetic programming has created 
a patentable new invention. The two new inventions are general-purpose con
trollers that outperform controllers employing tuning rules that have been in 
widespread use in industry for most of the twentieth century. 

5.7 SOME PROMISING AREAS FOR FUTURE 
APPLICATION 

Since its early beginnings, the field of genetic and evolutionary computation 
has produced a cornucopia of results. 

Genetic programming and other methods of genetic and evolutionary com
putation may be especially productive in areas having some or all of the fol
lowing characteristics: 

• where the inter-relationships among the relevant variables are unknown 
or poorly understood (or where it is suspected that the current under
standing may possibly be wrong), 

• where finding the size and shape of the ultimate solution to the problem 
is a major part of the problem, 

• where large amounts of primary data requiring examination, classifica
tion, and integration are accumulating in computer readable form, 

• where there are good simulators to test the performance of tentative so
lutions to a problem, but poor methods to directly obtain good solutions, 

• where conventional mathematical analysis does not, or cannot, provide 
analytic solutions, 

• where an approximate solution is acceptable (or is the only result that is 
ever likely to be obtained), or 
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• where small improvements in performance are routinely measured (or 
easily measurable) and highly prized. 

5.8 GENETIC PROGRAMMING THEORY 
Genetic programming is a search technique that explores the space of com

puter programs. As discussed above, the search for solutions to a problem 
starts from a group of points (random programs) in this search space. Those 
points that are of above average quality are then used to generate a new gen
eration of points through crossover, mutation, reproduction and possibly other 
genetic operations. This process is repeated over and over again until a termi
nation criterion is satisfied. 

If we could visuahze this search, we would often find that initially the popu
lation looks a bit like a cloud of randomly scattered points, but that, generation 
after generation, this cloud changes shape and moves in the search space fol
lowing a well defined trajectory. Because genetic programming is a stochas
tic search technique, in different runs we would observe different trajectories. 
These, however, would very likely show very clear regularities to our eye that 
could provide us with a deep understanding of how the algorithm is searching 
the program space for the solutions to a given problem. We could probably 
readily see, for example, why genetic programming is successful in finding 
solutions in certain runs and with certain parameter settings, and unsuccessful 
in/with others. 

Unfortunately, it is normally impossible to exactly visualize the program 
search space due to its high dimensionality and complexity, and so we cannot 
just use our senses to understand and predict the behavior of genetic program
ming. 

In this situation, one approach to gain an understanding of the behavior 
of a genetic programming system is to perform many real runs and record 
the variations of certain numerical descriptors (like the average fitness or the 
average size of the programs in the population at each generation, the average 
difference between parent and offspring fitness, etc). Then, one can try to 
hypothesize explanations about the behavior of the system that are compatible 
with (and could explain) the empirical observations. 

This exercise is very error prone, though, because a genetic programming 
system is a complex adaptive system with ziUions of degrees of freedom. So, 
any small number of statistical descriptors is likely to be able to capture only 
a tiny fraction of the complexities of such a system. This is why in order to 
understand and predict the behavior of genetic programming (and indeed of 
most other evolutionary algorithms) in precise terms we need to define and 
then study mathematical models of evolutionary search. 
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Schema theories are among the oldest, and probably the best-known classes 
of models of evolutionary algorithms. A schema (plural, schemata) is a set 
of points in the search space sharing some syntactic feature. Schema theories 
provide information about the properties of individuals of the population be
longing to any schema at a given generation in terms of quantities measured at 
the previous generation, without having to actually run the algorithm. 

For example, in the context of genetic algorithms operating on binary 
strings, a schema is, syntactically, a string of symbols from the alphabet 
{0, 1,* }, like *10*1. The character * is interpreted as a "don't care" symbol, 
so that, semantically, a schema represents a set of bit strings. For example the 
schema* 10*1 represents a set of four strings: {01001,01011, 11001, 11011}. 

Typically, schema theorems are descriptions of how the number (or the pro
portion) of members of the population belonging to (or matching) a schema 
varies over time. 

For a given schema H the selection/crossover/mutation process can be seen 
as a Bemoulh trial, because a newly created individual either samples or does 
not sample H. Therefore, the number of individuals sampling H at the next 
generation, m{H, r-|-1) is a binomial stochastic variable. So, if we denote with 
oi{H, t) the success probability of each trial (i.e. the probability that a newly 
created individual samples H), an exact schema theorem is simply 

E{m{H,t + \)] = Ma{H,t) 

where M is the population size and £"[. ] is the expectation operator. Holland's 
and other approximate schema theories (Holland, 1975; Goldberg, 1989; Whit
ley, 1994) normally provide a lower bound for a(H, t) or, equivalently, for 
E[m{H, t-\-\)\ For example, several schema theorems for one-point crossover 
and point mutation have the following form: 

a{H,t)>p{H,t){\-p,nf^"^ 
L{H) 

1 — Pc rO" 

where m{H, t) is number of individuals in the schema H at generation t, M 
is the population size, p{H, t) is the selection probabiUty for strings in H 
at generation r, p^ is the mutation probability, 0{H) is the schema order, 
i.e. number of defining bits, pc is the crossover probability, L{H) is the defin
ing length, i.e. distance between the furthest defining bits in H, and Â  is the 
bitstring length. The factor a differs in the different formulation of the schema 
theorem: or = 1 — m{H, t)/M in Holland (1975), where one of the parents 
was chosen randomly, irrespective of fitness; cr = 1 in Goldberg (1989); and 
G = \ - p(H, t) in Whitley (1994). 

More recently, Stephens and Waelbroeck (1997, 1999) have produced exact 
formulations for a(H,t), which are now known as "exact" schema theorems 
for genetic algorithms. These, however, are beyond the scope of this chapter. 
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The theory of schemata in genetic programming has had a slow start, one 
of the difficulties being that the variable size tree structure in genetic program
ming makes it more difficult to develop a definition of genetic programming 
schema having the necessary power and flexibility. Several alternatives have 
been proposed in the literature, which define schemata as composed of one or 
multiple trees or fragments of trees. Here, however, we will focus only on a 
particular one, which was proposed by Poli and Langdon (1997, 1998) since 
this has later been used to develop an exact and general schema theory for 
genetic programming (PoH and McPhee, 2001; Langdon and PoH, 2002). 

In this definition, syntactically, a genetic programming schema is a tree 
with some "don't care" nodes which represents exactly one primitive func
tion or terminal. Semantically, a schema represents all programs that 
match its size, shape and defining (non-"don't care") nodes. For example, 
the schema H = (DON'T CARE x(+ y DON'T CARE)) represents the programs 
(-f X (+ y x)), (+ X (-f- y y)), (* x (-f y x)), etc. 

The exact schema theorem in Poli and McPhee (2001) gives the expected 
proportion of individuals matching a schema in the next generation as a func
tion of information about schemata in the current generation. The calculation 
is non-trivial, but it is easier than one might think. 

Let us assume, for simphcity, that only reproduction and (one-offspring) 
crossover are performed. Because these two operators are mutually exclusive, 
for a generic schema H we then have 

oi{H, t) = Pr [an individual in H is obtained via reproduction] 

-f Pr [an offspring matching H is produced by crossover] 

Then, assuming that reproduction is performed with probability pr and 
crossover with probabihty pc (with p^ + pc = 1), we obtain 

«( / / , t) = Pr X Pr [an individual in H is selected for cloning] 

the parents and the crossover points 
are such that the offspring matches H +/7cPr 

Clearly, the first probability in this expression is simply the selection prob
ability for members of the schema H as dictated by, say, fitness-proportionate 
selection or tournament selection. So, 

Pr [selecting an individual in //for cloning] = /?(//, t) 

We now need to calculate the second term in a{H, t): that is, the probability 
that the parents have shapes and contents compatible with the creation of an 
offspring matching / / , and that the crossover points in the two parents are such 
that exactly the necessary material to create such an offspring is swapped. This 
is the harder part of the calculation. 
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An observation that helps simplify the problem is that, although the proba
bility of choosing a particular crossover point in a parent depends on the actual 
size and shape of such a parent, the process of crossover point selection is inde
pendent from the actual primitives present in the parent tree. So, for example, 
the probability of choosing any crossover point in the program (+ x (+ y x)) 
is identical to the probability of choosing any crossover point in the program 
(ANDDl (ORDl D2)). This is because the two programs have exactly the 
same shape. Thanks to this observation we can write 

Pr 
the parents and the crossover points 
are such that the offspring matches H 

Choosing crossover points 
i and j in shapes k and / E E P' 

For all pairs of For all crossover 
parent shapes k, I points /, j in 

shapes k and / 

xPr 
Selecting parents with shapes k and /, such that if 
crossed at points / and j produce an offspring in H 

If, for simplicity, we assume that crossover points are selected with uniform 
probability, then 

Pr 
Choosing crossover points 
i and j in shapes k and / 

1 1 

nodes in shape k nodes in shape / 

So, we are left with the problem of calculating the probability of selecting 
(for crossover) parents having specific shapes while at the same time having 
an arrangement of primitives such that, if crossed over at certain predefined 
points, they produce an offspring matching a particular schema of interest. 

Again, here we can simplify the problem by considering how crossover pro
duces offspring: it excises a subtree rooted at the chosen crossover point in a 
parent, and replaces it with a subtree excised from the chosen crossover point 
in the other parent. This means that the offspring will have the right shape and 
primitives to match the schema of interest if and only if, after the excision of 
the chosen subtree, the first parent has shape and primitives compatible with 
the schema, and the subtree to be inserted has shape and primitives compatible 
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with the schema. That is, 

Pr 

= Pr 

xPr 

Selecting parents with shapes k and /, such that if 
crossed over at points / and j produce an offspring in H 

Selecting a root-donating parent with shape k 
such that its upper part w.r.t. crossover 
point / matches the upper part of H w.r.t. / 

Selecting a subtree-donating parent with shape / 
such that its lower part w.r.t. crossover 
point j matches the lower part of H w.r.t. / 

These two selection probabilities can be calculated exactly. However, the cal
culation requires the introduction of several other concepts and notation, which 
are beyond the introductory nature of this chapter. These definitions, the com
plete theory and a number of examples and applications can be found in Poli 
(2001), Langdon and Poh (2002), and Poh and McPhee (2003a, 2003b). 

Although exact schema theoretic models of genetic programming have be
come available only very recently, they have already started shedding some 
light on fundamental questions regarding the how and why genetic program
ming works. Importantly, other important theoretical models of genetic pro
gramming have recently been developed which add even more to our theoret
ical understanding of genetic programming. These, however, go well beyond 
the scope of this chapter. The interested reader should consult Langdon and 
PoH (2002) and Poli and McPhee (2003a, 2003b) for more information. 

5.9 TRICKS OF THE TRADE 
Newcomers to the field of genetic programming often ask themselves 

(and/or other more experienced genetic programmers) questions such as the 
following: 

1 What is the best way to get started with genetic programming? Which 
papers should I read? 

2 Should I implement my own genetic programming system or should I 
use an existing package? If so, what package should I use? 

Let us start with the first question. A variety of sources of information about 
genetic programming are available (many of which are listed in the follow
ing section). Consulting information available on the Web is certainly a good 
way to get quick answers for a newcomer who wants to know what genetic pro
gramming is. The answer, however, will often be too shallow for someone who 
really wants to apply genetic programming to solve practical problems. People 
in this position should probably invest some time going through more detailed 
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accounts such as Koza (1992), Banzhaf et al. (1998a) and Langdon and Poll 
(2002), or some of the monographs listed in the following section. Technical 
papers may be the next stage. The literature on genetic programming is now 
quite extensive. So, although this is easily accessible thanks to the complete 
onhne bibhography listed in the next section, newcomers will often need to 
be selective in what they read, at least initially. The objective here may be 
different for different types of readers. Practitioners should probably identify 
and read only papers which deal with the problem they are interested in. Re
searchers and Ph.D. students interested in developing a deeper understanding 
of genetic programming should also make sure they identify and read as many 
seminal papers as possible, including papers or books on empirical and theo
retical studies on the inner mechanisms and behavior of genetic programming. 
These are frequently cited in other papers and so can easily be identified. 

The answer to the second question depends on the particular experience 
and background of the questioner. Implementing a simple genetic program
ming system from scratch is certainly an excellent way to make sure one really 
understands the mechanics of genetic programming. In addition to being an 
exceptionally useful exercise, this will always result in programmers know
ing their systems so well that they will have no problems customizing them 
for specific purposes (e.g., by adding new, apphcation specific genetic oper
ators, implementing unusual, knowledge-based initialization strategies, etc). 
All of this, however, requires reasonable programming skills and the will to 
thoroughly test the resulting system until it fully behaves as expected. If the 
skills or the time are not available, then the best way to get a working ge
netic programming application is to retrieve one of the many public-domain 
genetic programming implementations and adapt this for the user's purposes. 
This process is faster, and good implementations are often quite robust, effi
cient, well-documented and comprehensive. The small price to pay is the need 
to study the available documentation and examples. These often explain also 
how to modify the genetic programming system to some extent. However, 
deeper modifications (such as the introduction of new or unusual operators) 
will often require studying the actual source code of the system and a substan
tial amount of trial and error. Good, publicly-available GP implementations 
include LIL-GP from Bill Punch, ECJ from Sean Luke and DGPC from David 
Andre. 

5.10 CONCLUSIONS 
In his seminal 1948 paper entitled Intelligent Machinery, Turing identi

fied three ways by which human-competitive machine intelUgence might be 
achieved. In connection with one of those ways, Turing (1948) said: 

There is the genetical or evolutionary search by which a combination of genes is 
looked for, the criterion being the survival value. 
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Turing did not specify how to conduct the "genetical or evolutionary search" 
for machine intelHgence. In particular, he did not mention the idea of a 
population-based parallel search in conjunction with sexual recombination 
(crossover) as described in John Holland's 1975 book Adaptation in Natural 
and Artificial Systems. However, in his 1950 paper Computing Machinery and 
Intelligence, Turing did point out that 

We cannot expect to find a good child-machine at the first attempt. One must 
experiment with teaching one such machine and see how well it learns. One can 
then try another and see if it is better or worse. There is an obvious connection 
between this process and evolution, by the identifications... 

Structure of the child machine = Hereditary material 

Changes of the child machine = Mutations 

Natural selection = Judgment of the experimenter. 

That is, Turing perceived in 1948 and 1950 that one possibly productive 
approach to machine intelligence would involve an evolutionary process in 
which a description of a computer program (the hereditary material) undergoes 
progressive modification (mutation) under the guidance of natural selection 
(i.e. selective pressure in the form of what we now call "fitness"). 

Today, many decades later, we can see that indeed Turing was right. Ge
netic programming has started fulfilling Turing's dream by providing us with 
a systematic method, based on Darwinian evolution, for getting computers to 
automatically solve hard real-life problems. To do so, it simply requires a 
high-level statement of what needs to be done (and enough computing power). 

Turing also understood the need to evaluate objectively the behavior exhib
ited by machines, to avoid human biases when assessing their intelUgence. 
This led him to propose an imitation game, now know as the Turing test 
for machine intelligence, whose goals are wonderfully summarized by Arthur 
Samuel's position statement quoted in the introduction to this chapter. 

At present, genetic programming is certainly not in a position to produce 
computer programs that would pass the full Turing test for machine intelli
gence, and it might not be ready for this immense task for centuries. Nonethe
less, thanks to the constant technological improvements in genetic program
ming technology, in its theoretical foundations and in computing power, ge
netic programming has been able to solve tens of difficult problems with 
human-competitive results (see Table 5.2) in the recent past. These are a small 
step towards fulfilling Turing and Samuel's dreams, but they are also early 
signs of things to come. It is, indeed, arguable that in a few years' time genetic 
programming will be able to routinely and competently solve important prob
lems for us in a variety of specific domains of appUcation, even when running 
on a single personal computer, thereby becoming an essential collaborator for 
many human activities. This, we believe, will be a remarkable step forward 
towards achieving true, human-competitive machine intelligence. 
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SOURCES OF ADDITIONAL INFORMATION 

Sources of information about genetic programming include the following. 

• Genetic Programming: On the Programming of Computers by Means 
of Natural Selection (Koza, 1992) and the accompanying videotape Ge
netic Programming: The Movie (Koza and Rice, 1992). 

• Genetic Programming II: Automatic Discovery of Reusable Programs 
(Koza, 1994a) and the accompanying videotape Genetic Programming 
II Videotape: The Next Generation (Koza, 1994b). 

• Genetic Programming III: Darwinian Invention and Problem Solving 
(Koza et al., 1999a) and the accompanying videotape Genetic Program
ming III Videotape: Human-Competitive Machine Intelligence (Koza et 
al, 1999b). 

• Genetic Programming IV Routine Human-Competitive Machine Intelli
gence (Koza et al., 2003); 

• Genetic Programming: An Introduction (Banzhaf et al., 1998a). 

• Genetic Programming and Data Structures: Genetic Programming + 
Data Structures = Automatic Programming! (Langdon, 1998) in the 
series on genetic programming from Kluwer. 

• Automatic Re-engineering of Software Using Genetic Programming 
(Ryan, 1999) in the series on genetic programming from Kluwer. 

• Data Mining Using Grammar Based Genetic Programming and Appli
cations (Wong and Leung, 2000) in the series on genetic programming 
from Kluwer. 

• Principia Evolvica: Simulierte Evolution mit Mathematica (Jacob, 1997, 
in German) and Illustrating Evolutionary Computation with Mathemat
ica (Jacob, 2001). 

• Genetic Programming (Iba, 1996, in Japanese). 

• Evolutionary Program Induction of Binary Machine Code and Its Appli
cation (Nordin, 1997). 

• Foundations of Genetic Programming (Langdon and PoH, 2002). 

• Emergence, Evolution, Intelligence: Hydroinformatics (Babovic, 1996). 

• Theory of Evolutionary Algorithms and Application to System Synthesis 
(Blickle, 1997). 
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• edited collections of papers such as the three Advances in Genetic Pro
gramming books from the MIT Press (Kinnear, 1994; Angehne and Kin-
near, 1996; Spector et al., 1999a). 

• Proceedings of the Genetic Programming Conference (Koza et al., 1996, 
1997, 1998). 

• Proceedings of the Annual Genetic and Evolutionary Computation Con
ference (GECCO) (combining the formerly annual Genetic Program
ming Conference and the formerly biannual International Conference 
on Genetic Algorithms) operated by the International Society for Ge
netic and Evolutionary Computation (ISGEC) and held starting in 1999 
(Banzhaf et al, 1999; Whitley et al., 2000; Spector et al., 2001; Langdon 
et al., 2002). 

• Proceedings of the Annual Euro-GP Conferences held starting in 1998 
(Banzhaf et al., 1998b; Poh et al., 1999, 2000; Miller et al., 2001; Foster 
et al., 2002). 

• Proceedings of the Workshop of Genetic Programming Theory and Prac
tice organized by the Centre for Study of Complex Systems of the Uni
versity of Michigan (to be pubhshed by Kluwer). 

The Genetic Programming and Evolvable Machines journal (from 
Kluwer) started in April 2000. 

Web sites such as www.genetic-programming.org and www.genetic-
programming, com . 

LISP code for implementing genetic programming, available in Koza 
(1992), and genetic programming implementations in other lan
guages such as C, C+-I-, or Java (web sites such as www.genetic-
programming.org contain links to computer code in various program
ming languages). 

Early papers on genetic programming, such as the Stanford Univer
sity Computer Science Department Technical Report Genetic Program
ming: A Paradigm for Genetically Breeding Populations of Computer 
Programs to Solve Problems (Koza, 1990) and the paper Hierarchical 
Genetic Algorithms Operating on Populations of Computer Programs, 
presented at the 11th International Joint Conference on Artificial Intelli
gence in Detroit (Koza, 1989). 

An annotated bibliography of the first 100 papers on genetic program
ming (other than those of which John Koza was the author or co-author) 
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in Appendix F of Genetic Programming II: Automatic Discovery of 
Reusable Programs (Koza, 1994a). 

• Langdon's bibliography at http://www.cs.bham.ac.uk/wbl/biblio/ or 
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html. 
This bibliography is the most extensive in the field of genetic program
ming and contains over 3034 papers (as of January 2003) and over 880 
authors. It provides on-line access to many of the papers. 
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