
Chapter 4

GENETIC ALGORITHMS

Kumara Sastry, David Goldberg
University of Illinois, USA

Graham Kendall
University of Nottingham, UK

4.1 INTRODUCTION
Genetic algorithms (GAs) are search methods based on principles of natu­

ral selection and genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975).
We start with a brief introduction to simple genetic algorithms and associated
terminology.

GAs encode the decision variables of a search problem into finite-length
strings of alphabets of certain cardinality. The strings which are candidate
solutions to the search problem are referred to as chromosomes, the alphabets
are referred to as genes and the values of genes are called alleles. For example,
in a problem such as the travehng salesman problem, a chromosome represents
a route, and a gene may represent a city. In contrast to traditional optimization
techniques, GAs work with coding of parameters, rather than the parameters
themselves.

To evolve good solutions and to implement natural selection, we need a mea­
sure for distinguishing good solutions from bad solutions. The measure could
be an objective function that is a mathematical model or a computer simula­
tion, or it can be a subjective function where humans choose better solutions
over worse ones. In essence, the fitness measure must determine a candidate
solution's relative fitness, which will subsequently be used by the GA to guide
the evolution of good solutions.

Another important concept of GAs is the notion of population. Unlike tra­
ditional search methods, genetic algorithms rely on a population of candidate
solutions. The population size, which is usually a user-specified parameter, is
one of the important factors affecting the scalability and performance of ge­
netic algorithms. For example, small population sizes might lead to premature

98 SASTRX GOLDBERG AND KENDALL

convergence and yield substandard solutions. On the other hand, large popula­
tion sizes lead to unnecessary expenditure of valuable computational time.

Once the problem is encoded in a chromosomal manner and a fitness mea­
sure for discriminating good solutions from bad ones has been chosen, we can
start to evolve solutions to the search problem using the following steps:

1 Initialization. The initial population of candidate solutions is usually
generated randomly across the search space. However, domain-specific
knowledge or other information can be easily incorporated.

2 Evaluation, Once the population is initiahzed or an offspring population
is created, the fitness values of the candidate solutions are evaluated.

3 Selection. Selection allocates more copies of those solutions with higher
fitness values and thus imposes the survival-of-the-fittest mechanism on
the candidate solutions. The main idea of selection is to prefer bet­
ter solutions to worse ones, and many selection procedures have been
proposed to accomplish this idea, including roulette-wheel selection,
stochastic universal selection, ranking selection and tournament selec­
tion, some of which are described in the next section.

4 Recombination. Recombination combines parts of two or more parental
solutions to create new, possibly better solutions (i.e. offspring). There
are many ways of accomplishing this (some of which are discussed in
the next section), and competent performance depends on a properly
designed recombination mechanism. The offspring under recombination
will not be identical to any particular parent and will instead combine
parental traits in a novel manner (Goldberg, 2002).

5 Mutation. While recombination operates on two or more parental chromo­
somes, mutation locally but randomly modifies a solution. Again, there
are many variations of mutation, but it usually involves one or more
changes being made to an individual's trait or traits. In other words,
mutation performs a random walk in the vicinity of a candidate solution.

6 Replacement. The offspring population created by selection, recombi­
nation, and mutation replaces the original parental population. Many
replacement techniques such as elitist replacement, generation-wise re­
placement and steady-state replacement methods are used in GAs.

7 Repeat steps 2-6 until a terminating condition is met.

Goldberg (1983, 1999a, 2002) has likened GAs to mechanistic versions of
certain modes of human innovation and has shown that these operators when
analyzed individually are ineffective, but when combined together they can

GENETIC ALGORITHMS 99

work well. This aspect has been explained with the concepts of iho, fundamen­
tal intuition and innovation intuition. The same study compares a combina­
tion of selection and mutation to continual improvement (a form of hill climb­
ing), and the combination of selection and recombination to innovation (cross-
fertilizing). These analogies have been used to develop a design-decomposition
methodology and so-called competent GAs—that solve hard problems quickly,
rehably, and accurately—both of which are discussed in the subsequent sec­
tions.

This chapter is organized as follows. The next section provides details of
individual steps of a typical genetic algorithm and introduces several popu­
lar genetic operators. Section 4.1.2 presents a principled methodology of de­
signing competent genetic algorithms based on decomposition principles. Sec­
tion 4.1.3 gives a brief overview of designing principled efficiency-enhancement
techniques to speed up genetic and evolutionary algorithms.

4.1.1 Basic Genetic Algorithm Operators
In this section we describe some of the selection, recombination, and muta­

tion operators commonly used in genetic algorithms.

4.1.1.1 Selection Methods. Selection procedures can be broadly clas­
sified into two classes as follows.

Fitness Proportionate Selection This includes methods such as roulette-wheel
selection (Holland, 1975; Goldberg, 1989b) and stochastic universal se­
lection (Baker, 1985; Grefenstette and Baker, 1989). In roulette-wheel
selection, each individual in the population is assigned a roulette wheel
slot sized in proportion to its fitness. That is, in the biased roulette wheel,
good solutions have a larger slot size than the less fit solutions. The
roulette wheel is spun to obtain a reproduction candidate. The roulette-
wheel selection scheme can be implemented as follows:

1 Evaluate the fitness, fi, of each individual in the population.

2 Compute the probability (slot size), p,, of selecting each member
of the population: pi = fi/Yl'j=\ fj-> where n is the population
size.

3 Calculate the cumulative probability, <y,, for each individual: qi =

T!j=xPj-
4 Generate a uniform random number, r € (0, 1].

5 \ir < q\ then select the first chromosome, x\, else select the indi­
vidual Xi such that qt^x < r < qi.

6 Repeat steps 4-5 n times to create n candidates in the mating pool.

100 SASTRY, GOLDBERG AND KENDALL

To illustrate, consider a population with five individuals {n = 5), with
the fitness values as shown in the table below. The total fitness, X^"=i / ;
= 28 + 18 + 14 + 9 + 26 = 95. The probability of selecting an individual
and the corresponding cumulative probabilities are also shown in the
table below.

Chromosome*
Fitness, /
Probability, pi
Cumulative probabil­
ity, qi

1
28

28/95 = 0.295
0.295

2
18

0.189
0.484

3
14

0.147
0.631

4
9

0.095
0.726

5
26

0.274
1.000

Now if we generate a random number r, say 0.585, then the third chromo­
some is selected as q2 = 0.484 < 0.585 < q^ = 0.631.

Ordinal Selection This includes methods such as tournament selection
(Goldberg et al., 1989b), and truncation selection (Miihlenbein and
Schlierkamp-Voosen, 1993). In tournament selection, s chromosomes
are chosen at random (either with or without replacement) and entered
into a tournament against each other. The fittest individual in the group
ofk chromosomes wins the tournament and is selected as the parent. The
most widely used value of s is 2. Using this selection scheme, n tourna­
ments are required to choose n individuals. In truncation selection, the
top (l/s)th of the individuals get s copies each in the mating pool.

4.1.1.2 Recombination (Crossover) Operators. After selection, indi­
viduals from the mating pool are recombined (or crossed over) to create new,
hopefully better, offspring. In the GA literature, many crossover methods have
been designed (Goldberg, 1989b; Booker et al., 1997; Spears, 1997) and some
of them are described in this section. Many of the recombination operators
used in the literature are problem-specific and in this section we will introduce
a few generic (problem independent) crossover operators. It should be noted
that while for hard search problems, many of the following operators are not
scalable, they are very useful as a first option. Recently, however, researchers
have achieved significant success in designing scalable recombination opera­
tors that adapt Hnkage which will be briefly discussed in Section 4.1.2.

In most recombination operators, two individuals are randomly selected and
are recombined with a probability pc, called the crossover probabifity. That is,
a uniform random number, r, is generated and if r < pc, the two randomly
selected individuals undergo recombination. Otherwise, that is, if r > pc, the
two offspring are simply copies of their parents. The value of pc can either be
set experimentally, or can be set based on schema-theorem principles (Gold­
berg, 1989b, 2002; Goldberg and Sastry, 2001).

GENETIC ALGORITHMS 101

One point crossover
Crossover point

0 0

1 0

0 1 0 0

1 1 1 1

0 0 1 1] 1

1 0 0 1 0 0

Parent chromosomes Offspring chromosomes

Two point crossover
Crossover points

0 0

1 0

0 1 0

1 1 1

0

1

0 0 1 1 1 0 .

1 0 0 1 0 1

Parent chromosomes
Offspring chromosomes

Uniform crossover

0 0 0 1 0 0

1 0 1 1 1 1

1 0 0 1 0 1

0 0 1 1 1 0

Parent chromosomes Offspring chromosomes

Figure 4.1. One-point, two-point, and uniform crossover methods.

A;-point Crossover One-point, and two-point crossovers are the simplest and
most widely applied crossover methods. In one-point crossover, illustrated in
Figure 4.1, a crossover site is selected at random over the string length, and
the alleles on one side of the site are exchanged between the individuals. In
two-point crossover, two crossover sites are randomly selected. The alleles
between the two sites are exchanged between the two randomly paired indi­
viduals. Two-point crossover is also illustrated in Figure 4.1. The concept of
one-point crossover can be extended to /:-point crossover, where k crossover
points are used, rather than just one or two.

Uniform Crossover Another common recombination operator is uniform
crossover (Syswerda, 1989; Spears and De Jong, 1994). In uniform crossover,
illustrated in Figure 4.1, every allele is exchanged between the a pair of ran­
domly selected chromosomes with a certain probability, pe, known as the
swapping probability. Usually the swapping probability value is taken to be
0.5.

Uniform Order-Based Crossover The ^-point and uniform crossover meth­
ods described above are not well suited for search problems with permutation
codes such as the ones used in the traveling salesman problem. They often cre­
ate offspring that represent invalid solutions for the search problem. Therefore,

102 SASTRY, GOLDBERG AND KENDALL

Parent? J

Parent P2

Template

A

E

B^

B

C^

D

D

^

E

IF
F

^

G

A

0 1 1 0 0 1 0

ChildCi | E | B | C | D | G | F | A |

ChildC2 | A | B | D | C | E | G | F |

Figure 4.2. Illustration of uniform order crossover.

when solving search problems with permutation codes, a problem-specific re­
pair mechanism is often required (and used) in conjunction with the above
recombination methods to always create valid candidate solutions.

Another alternative is to use recombination methods developed specifically
for permutation codes, which always generate valid candidate solutions. Sev­
eral such crossover techniques are described in the following paragraphs start­
ing with the uniform order-based crossover.

In uniform order-based crossover, two parents (say Pi and P2) are randomly
selected and a random binary template is generated (see Figure 4.2). Some of
the genes for offspring Ci are filled by taking the genes from parent P] where
there is a one in the template. At this point we have Ci partially filled, but
it has some "gaps". The genes of parent Pi in the positions corresponding to
zeros in the template are taken and sorted in the same order as they appear in
parent P2. The sorted list is used to fill the gaps in C]. Offspring C2 is created
by using a similar process (see Figure 4.2).

Order-Based Crossover The order-based crossover operator (Davis, 1985)
is a variation of the uniform order-based crossover in which two parents are
randomly selected and two random crossover sites are generated (see Fig­
ure 4.3). The genes between the cut points are copied to the children. Starting
from the second crossover site copy the genes that are not already present in
the offspring from the alternative parent (the parent other than the one whose
genes are copied by the offspring in the initial phase) in the order they appear.
For example, as shown in Figure 4.3, for offspring Ci, since alleles C, D, and E
are copied from the parent Pi, we get alleles B, G, F, and A from the parent P2.
Starting from the second crossover site, which is the sixth gene, we copy alle­
les B and G as the sixth and seventh genes respectively. We then wrap around
and copy alleles F and A as the first and second genes.

GENETIC ALGORITHMS 103

Pi

P2

A B

C B

C D E

G ^ F

F G

D A

ChildCi | ? | ? | C | D | E | ? | ? |

ChildC2 | ? | ? | G | E | F | ? | ? |

ChildCi | F | A | C | D | E | B | G |

Child C2 | C | D | G E F | A | B |

Figure 4.3. Illustration of order-based crossover.

Parent P

Parent P

1 | 9 | 8 | 4

2 | 8 | 7 | 1 1
A 1

V \ ' \ 1

5 1 6 7

2 1 3 |To
t ^ I

1 \ 1 ' 1 \ 1

1 1 3 1 2 j ^
7| sRr^ 1

\ ' I

Child Ci

Child C2

9

T
8

lo
4

1

2

5

1
3

~6~

10

7

1

Y
5

T
6

T
JLI
T]

Figure 4.4. Illustration of partially matched crossover.

Partially Matched Crossover (PMX) Apart from always generating valid
offspring, the PMX operator (Goldberg and Lingle, 1985) also preserves or-
derings within the chromosome. In PMX, two parents are randomly selected
and two random crossover sites are generated. Alleles within the two crossover
sites of a parent are exchanged with the alleles corresponding to those mapped
by the other parent. For example, as illustrated in Figure 4.4 (reproduced from
Goldberg (1989b) with permission), looking at parent Pi, the first gene within
the two crossover sites, 5, maps to 2 in P2. Therefore, genes 5 and 2 are
swapped in Pi. Similarly we swap 6 and 3, and 10 and 7 to create the offspring
Ci. After all exchanges it can be seen that we have achieved a dupHcation
of the ordering of one of the genes in between the crossover point within the
opposite chromosome, and vice versa.

104 SASTRY, GOLDBERG AND KENDALL

Parent P, 9 8 2

Parent P. 1

1 7 4

4 5 6

5 10 6 3

10

Child Ci III i i 1 1

Child Ci ii|: l| fil
1

Child Ci 1 9 1 1 1 1 1

1

Child Ci 9_[2 1 3 1 i j 5

Child C2 n ^ | 8 7 2 T 4 [T

4 | 1 | 6 | 1

'

4J7 [^[6_[l0|
T[y[l0l9 1 3

Figure 4.5. Illustration of cycle crossover.

Cycle Crossover (CX) We describe cycle crossover (Oliver et al., 1987) with
help of a simple illustration (reproduced from Goldberg (1989b) with permis­
sion). Consider two randomly selected parents Pi and P2 as shown in Fig­
ure 4.5 that are solutions to a traveling salesman problem. The offspring C]
receives the first variable (representing city 9) from Pi, We then choose the
variable that maps onto the same position in P2. Since city 9 is chosen from Pi
which maps to city 1 in P2, we choose city 1 and place it into Ci in the same
position as it appears in Pi (fourth gene), as shown in Figure 4.5. City 1 in Pi
now maps to city 4 in P2, so we place city 4 in Ci in the same position it oc­
cupies in Pi (sixth gene). We continue this process once more and copy city 6
to the ninth gene of Ci from Pi. At this point, since city 6 in Pi maps to city 9
in P2, we should take city 9 and place it in Ci, but this has already been done,
so we have completed a cycle; which is where this operator gets its name. The
missing cities in offspring Ci is filled from P2. Offspring C2 is created in the
same way by starting with the first city of parent P2 (see Figure 4.5).

4.1.1.3 Mutation Operators. If we use a crossover operator, such
as one-point crossover, we may get better and better chromosomes but the
problem is, if the two parents (or worse, the entire population) has the same
allele at a given gene then one-point crossover will not change that. In other
words, that gene will have the same allele forever. Mutation is designed to

GENETIC ALGORITHMS 105

overcome this problem in order to add diversity to the population and ensure
that it is possible to explore the entire search space.

In evolutionary strategies, mutation is the primary variation/search opera­
tor. For an introduction to evolutionary strategies see, for example, Back et
al. (1997). Unlike evolutionary strategies, mutation is often the secondary op­
erator in GAs, performed with a low probability. One of the most common
mutations is the bit-flip mutation. In bitwise mutation, each bit in a binary
string is changed (a 0 is converted to 1, and vice versa) with a certain proba­
bility, pm, known as the mutation probability. As mentioned earher, mutation
performs a random walk in the vicinity of the individual. Other mutation oper­
ators, such as problem-specific ones, can also be developed and are often used
in the literature.

4.1.1.4 Replacement. Once the new offspring solutions are created
using crossover and mutation, we need to introduce them into the parental
population. There are many ways we can approach this. Bear in mind that the
parent chromosomes have already been selected according to their fitness, so
we are hoping that the children (which includes parents which did not undergo
crossover) are among the fittest in the population and so we would hope that
the population will gradually, on average, increase its fitness. Some of the most
common replacement techniques are outlined below.

Delete-all This technique deletes all the members of the current population
and replaces them with the same number of chromosomes that have just
been created. This is probably the most common technique and will
be the technique of choice for most people due to its relative ease of
implementation. It is also parameter-free, which is not the case for some
other methods.

Steady-state This technique deletes n old members and replaces them with
n new members. The number to delete and replace, n, at any one time
is a parameter to this deletion technique. Another consideration for this
technique is deciding which members to delete from the current popula­
tion. Do you delete the worst individuals, pick them at random or delete
the chromosomes that you used as parents? Again, this is a parameter to
this technique.

Steady-state-no-duplicates This is the same as the steady-state technique but
the algorithm checks that no duplicate chromosomes are added to the
population. This adds to the computational overhead but can mean that
more of the search space is explored.

106 SASTRZ GOLDBERG AND KENDALL

4.1.2 Competent Genetic Algorithms

While using innovation for explaining the working mechanisms of GAs is
very useful, as a design metaphor it poses difficulty as the processes of innova­
tion are themselves not well understood. However, if we want GAs to success­
fully solve increasingly difficult problems across a wide spectrum of areas, we
need a principled, but mechanistic way of designing genetic algorithms. The
last few decades have witnessed great strides toward the development of so-
called competent genetic algorithms—GAs that solve hard problems, quickly,
reliably, and accurately (Goldberg, 1999a). From a computational standpoint,
the existence of competent GAs suggests that many difficult problems can be
solved in a scalable fashion. Furthermore, it significantly reduces the burden
on a user to decide on a good coding or a good genetic operator that accompa­
nies many GA applications. If the GA can adapt to the problem, there is less
reason for the user to have to adapt the problem, coding, or operators to the
GA.

In this section we briefly review some of the key lessons of competent GA
design. Specifically, we restrict the discussion to selectorecombinative GAs
and focus on the cross-fertilization type of innovation and briefly discuss key
facets of competent GA design. Using Holland's notion of a building block
(Holland, 1975), Goldberg proposed decomposing the problem of designing
a competent selectorecombinative GA (Goldberg et al., 1992a). This design
decomposition has been explained in detail elsewhere (Goldberg, 2002), but is
briefly reviewed below.

Know that GAs Process Building Blocks The primary idea of selectorecom­
binative GA theory is that genetic algorithms work through a mechanism
of decomposition and reassembly. Holland (1975) called well-adapted
sets of features that were components of effective solutions building
blocks (BBs). The basic idea is that GAs (1) implicitly identify building
blocks or sub-assemblies of good solutions, and (2) recombine different
sub-assemblies to form very high performance solutions.

Understand BB Hard Problems From the standpoint of cross-fertilizing in­
novation, problems that are hard have BBs that are hard to acquire. This
may be because the BBs are complex, hard to find, or because different
BBs are hard to separate, or because low-order BBs may be misleading
or deceptive (Goldberg, 1987, 1989a; Goldberg et al., 1992b; Deb and
Goldberg, 1994).

Understand BB Growth and Timing Another key idea is that BBs or no­
tions exist in a kind of competitive market economy of ideas, and steps
must be taken to ensure that the best ones (1) grow and take over a dom-

GENETIC ALGORITHMS 107

inant market share of the population, and (2) the growth rate can neither
be too fast, nor too slow.

The growth in market share can be easily satisfied (Goldberg and Sas-
try, 2001) by appropriately setting the crossover probability, pc, and the
selection pressure, s, so that

Pc < (4.1)

where e is the probability of BB disruption.

Two other approaches have been used in understanding time. It is not
appropriate in a basic tutorial like this to describe them in detail, but we
give a few example references for the interested reader.

Takeover time models, where the dynamics of the best individual is
modeled (Goldberg and Deb, 1991; Sakamoto and Goldberg, 1997;
Cantu-Paz, 1999; Rudolph, 2000).

Selection-intensity models, where approaches similar to those in quan­
titative genetics (Bulmer, 1985) are used and the dynamics of
the average fitness of the population is modeled (Muhlenbein and
Schlierkamp-Voosen, 1993; Thierens and Goldberg, 1994a, 1994b;
Back, 1995; Miller and Goldberg, 1995, 1996a; Voigt et al, 1996).

The time models suggest that for a problem of size i, with all BBs of
equal importance or salience, the convergence time, tc, of GAs is given
by Miller and Goldberg (1995) to be

tc = ^ V € (4.2)

where / is the selection intensity (Bulmer, 1985), which is a parameter
dependent on the selection method and selection pressure. For tourna­
ment selection, / can be approximated in terms of s by the following
relation (Bhckle and Thiele, 1995):

/ = y2(log(^)- log(y4.141og(.))) (4.3)

On the other hand, if the BBs of a problem have different sahence, then
the convergence time scales-up differently. For example, when the BBs
of a problem are exponentially scaled, with a particular BB being ex­
ponentially better than the others, then the convergence time, tc, of a
GA is linear with the problem size (Thierens et al., 1998) and can be

108 SASTRY, GOLDBERG AND KENDALL

represented as follows:

tc = - l o g 2 . (4 4^
log (l - I/V3)

To summarize, the convergence time of GAs is O (^/tj-O (I) (see
Chapter 1, Introduction, for an explanation of the O notation).

Understand BB Supply and Decision Making One role of the population is
to ensure adequate supply of the raw building blocks in a population.
Randomly generated populations of increasing size will, with higher
probability, contain larger numbers of more complex BBs (Holland,
1975; Goldberg, 1989c; Goldberg et al., 2001). For a problem with
m building blocks, each consisting of A: alphabets of cardinality x> the
population size, n, required to ensure the presence of at least one copy
of all the raw building blocks is given by Goldberg et al. (2001) as

n = x''\ogm-\-kx''logx (4.5)

Just ensuring the raw supply is not enough, decision making among dif­
ferent, competing notions (BBs) is statistical in nature, and as we in­
crease the population size, we increase the likelihood of making the best
possible decisions (De Jong, 1975; Goldberg and Rudnick, 1991; Gold­
berg et al., 1992a; Harik et al., 1999). For an additively decomposable
problem with m building blocks of size k each, the population size re­
quired to not only ensure supply, but also ensure correct decision making
is approximately given by Harik et al. (1999) as

n = —
^ <^BBr,k

2 d
2^-v/mlogQ! (4.6)

where d/asB is the signal-to-noise ratio (Goldberg et al., 1992a), and
oc is the probabihty of incorrectly deciding among competing building
blocks. In essence, the population-sizing model consists of the following
components:

• Competition complexity, quantified by the total number of compet­
ing building blocks, 2^.

• Subcomponent complexity, quantified by the number of building
blocks, m.

• Ease of decision making, quantified by the signal-to-noise ratio,
d/Obb-

• Probabilistic safety factor, quantified by the coefficient — logo;.

GENETIC ALGORITHMS 109

On the other hand, if the building blocks are exponentially scaled, the
population size, n, scales as (Rothlauf, 2002; Thierens et al., 1998; Gold­
berg, 2002)

n = -Co'^^l^mXoga (4.7)
d

where Co is a constant dependent on the drift effects (Crow and Kimura,
1970; Goldberg and Segrest, 1987; Asoh and Muhlenbein, 1994).
To summarize, the complexity of the population size required by GAs is
0(2^V^)-C>(2^m).

Identify BBs and Exchange Them Perhaps the most important lesson of cur­
rent research in GAs is that the identification and exchange of BBs is the
critical path to innovative success. First-generation GAs usually fail in
their ability to promote this exchange reliably. The primary design chal­
lenge to achieving competence is the need to identify and promote effec­
tive BB exchange. Theoretical studies using \hQ facetwise modeling ap­
proach (Thierens, 1999; Sastry and Goldberg, 2002, 2003) have shown
that while fixed recombination operators such as uniform crossover, due
to inadequacies of effective identification and exchange of BBs, demon­
strate polynomial scalability on simple problems, they scale-up expo­
nentially, with problem size on boundedly-difficult problems. The mix­
ing models also yield a control map delineating the region of good per­
formance for a GA, Such a control map can be a useful tool in visual­
izing GA sweet-spots and provide insights in parameter settings (Gold­
berg, 1999a). This is in contrast to recombination operators that can
automatically and adaptively identify and exchange BBs, which scale up
polynomially (subquadratically-quadratically) with problem size.

Efforts in the principled design of effective BB identification and exchange
mechanisms have led to the development of competent genetic algorithms.
Competent GAs solve hard problems quickly, reliably, and accurately. Hard
problems are loosely defined as those problems that have large sub-solutions
that cannot be decomposed into simpler sub-solutions, or have badly scaled
sub-solutions, or have numerous local optima, or are subject to a high stochas­
tic noise. While designing a competent GA, the objective is to develop an
algorithm that can solve problems with bounded difficulty and exhibit a poly­
nomial (usually subquadratic) scale-up with the problem size.

Interestingly, the mechanics of competent GAs vary widely, but the prin­
ciples of innovative success are invariant. Competent GA design began with
the development of the messy genetic algorithm (Goldberg et al., 1989), cul­
minating in 1993 with ihtfast messy GA (Goldberg et al., 1993). Since those
early scalable results, a number of competent GAs have been constructed using
different mechanism styles. We will categorize these approaches and provide

110 SASTRY, GOLDBERG AND KENDALL

some references for the interested reader, but a detailed treatment is beyond the
scope of this tutorial.

Perturbation techniques, such as the messy GA (Goldberg et al., 1989),
the fast messy GA (Goldberg et al., 1993), the gene expression
messy GA (Kargupta, 1996), the linkage identification by nonhnearity
check/linkage identification by detection GA (Munetomo and Goldberg,
1999; Heckendom and Wright, 2004), and the dependency structure ma­
trix driven genetic algorithm (Yu et al., 2003).

Linkage adaptation techniques, such as the linkage learning GA (Harik and
Goldberg, 1997; Harik, 1997).

Probabilistic model building techniques, such as population based incre­
mental learning (Baluja, 1994), the univariate model building algorithm
(Muhlenbein and PaaB, 1996), the compact GA (Harik et al., 1998), the
extended compact GA (Harik, 1999), the Bayesian optimization algo­
rithm (Pelikan et al., 2000), the iterated distribution estimation algorithm
(Bosman and Thierens, 1999), and the hierarchical Bayesian optimiza­
tion algorithm (Pelikan and Goldberg, 2001). More details regarding
these algorithms are given elsewhere (Pelikan et al., 2002; Larraiiaga
and Lozano, 2002; Pehkan, 2005).

4.1.3 Enhancement of Genetic Algorithms to Improve
Efficiency and/or Effectiveness

The previous section presented a brief account of competent GAs. These
GA designs have shown promising results and have successfully solved hard
problems requiring only a subquadratic number of function evaluations. In
other words, competent GAs usually solve an ^-variable search problem, re­
quiring only 0(i^) number of function evaluations. While competent GAs
take problems that were intractable with first-generation GAs and render them
tractable, for large-scale problems, the task of computing even a subquadratic
number of function evaluations can be daunting. If the fitness function is a
complex simulation, model, or computation, then a single evaluation might
take hours, even days. For such problems, even a subquadratic number of
function evaluations is very high. For example, consider a 20-bit search prob­
lem and assume that a fitness evaluation takes one hour. We will require about
half a month to solve the problem. This places a premium on a variety of ef­
ficiency enhancement techniques. Also, it is often the case that a GA needs
to be integrated with problem-specific methods in order to make the approach
really effective for a particular problem. The literature contains a very large
number of papers which discuss enhancements of GAs. Once again, a detailed
discussion is well beyond the scope of the tutorial, but we provide four broad

GENETIC ALGORITHMS 111

categories of GA enhancement and examples of appropriate references for the
interested reader.

Parallelization, where GAs are run on multiple processors and the computa­
tional resource is distributed among these processors (Cantu-Paz, 1997,
2000). Evolutionary algorithms are by nature parallel, and many differ­
ent parallelization approaches can be used, such as a simple master-slave
parallel GA (Grefenstette, 1981), a coarse-grained architecture (Pettey
et al., 1987), a fine-grained architecture (Robertson, 1987; Gorges-
Schleuter, 1989; Manderick and Spiessens, 1989), or a hierarchical ar­
chitecture (Goldberg, 1989b; Gorges-Schleuter, 1997; Lin et al., 1997).
Regardless of how parallelization is carried out, the key idea is to dis­
tribute the computational load on several processors thereby speeding-
up the overall GA run. Moreover, there exists a principled design theory
for developing an efficient parallel GA and optimizing the key facts of
parallel architecture, connectivity, and deme size (Cantu-Paz, 2000).

For example, when the function evaluation time, Tf, is much greater than
the communication time, T ,̂ which is very often the case, then a simple
master-slave parallel GA—where the fitness evaluations are distributed
over several processors and the rest of the GA operations are performed
on a single processor—can yield hnear speed-up when the number of

processors is less than or equal to •(hrn, and optimal speed-up when the

number of processors equals J j-n, where n is the population size.

Hybridization can be an extremely effective way of improving the perfor­
mance and effectiveness of Genetic Algorithms. The most common
form of hybridization is to couple GAs with local search techniques and
to incorporate domain-specific knowledge into the search process. A
common form of hybridization is to incorporate a local search opera­
tor into the Genetic Algorithm by applying the operator to each mem­
ber of the population after each generation. This hybridization is often
carried out in order to produce stronger results than the individual ap­
proaches can achieve on their own. However, this improvement in so­
lution quality usually comes at the expense of increased computational
time (e.g. Burke et al., 2001). Such approaches are often called Memetic
Algorithms in the literature. This term was first used by Moscato
(1989) and has since been employed very widely. For more details
about memetic algorithms in general, see Krasnogor and Smith (2005),
Krasnogor et al. (2004), Moscato and Gotta (2003) and Moscato (1999).

Of course, the hybridization of GAs can take other forms. Examples
include:

112 SASTRY, GOLDBERG AND KENDALL

• Initializing a GA population: e.g. Burke et al. (1998), Fleurent and
Ferland (1994), Watson et al. (1999).

• Repairing infeasible solutions into legal ones: e.g. Ibaraki (1997).

• Developing specialized heuristic recombination operators:
e.g. Burke et al. (1995).

• Incorporating a case-based memory (experience of past attempts)
into the GA process (Louis and McDonnell, 2004).

• Heuristically decomposing large problems into smaller sub-
problems before employing a memetic algorithm: e.g. Burke and
Newall (1999).

Hybrid genetic algorithm and memetic approaches have demonstrated
significant success in difficult real word application areas. A very small
number of examples are included below (many more examples can be
seen in the wider literature):

• University timetabling: examination timetabling (Burke et al.,
1996, 1998; Burke and Newall, 1999) and course timetabling
(Paechteretal., 1995, 1996).

• Machine schedufing (Cheng and Gen, 1997).

• Electrical power systems: unit commitment problems (Valenzuala
and Smith, 2002); electricity transmission network maintenance
scheduling (Burke and Smith, 1999); thermal generator mainte­
nance scheduling (Burke and Smith, 2000).

• Sports scheduling (Costa, 1995).

• Nurse rostering (Burke et al., 2001).

• Warehouse scheduling (Watson et al., 1999).

While GA practitioners have often understood that real-world or com­
mercial applications often require hybridization, there has been limited
effort devoted to developing a theoretical underpinning of genetic algo­
rithm hybridization. However, the following list contains examples of
work which has aimed to answer critical issues such as

• the optimal division of labor between global and local searchers
(or the right mix of exploration and exploitation) (Goldberg and
Voessner, 1999);

• the effect of local search on sampling (Hart and Belew, 1996);

• hybrid GA modeling issues (Whitely, 1995).

GENETIC ALGORITHMS 113

The papers cited in this section are only a tiny proportion of the Hterature
on hybrid genetic algorithms but they should provide a starting point for
the interested reader. However, although there is a significant body of
hterature existing on the subject, there are many research directions still
to be explored. Indeed, considering the option of hybridizing a GA with
other approaches is one of the suggestions we give in the Tricks of the
Trade section at the end of the chapter.

Time continuation, where the capabilities of both mutation and recombina­
tion are utilized to obtain a solution of as high quality as possible with a
given limited computational resource (Goldberg, 1999b; Srivastava and
Goldberg, 2001; Sastry and Goldberg, 2004a, 2004b). Time utiHzation
(or continuation) exploits the tradeoff between the search for solutions
with a large population and a single convergence epoch or using a small
population with multiple convergence epochs.

Early theoretical investigations indicate that when the BBs are of equal
(or nearly equal) salience and both recombination and mutation opera­
tors have the linkage information, then a small population with multi­
ple convergence epochs is more efficient. However, if the fitness func­
tion is noisy or has overlapping building blocks, then a large population
with a single convergence epoch is more efficient (Sastry and Goldberg,
2004a, 2004b). On the other hand, if the BBs of the problem are of
non-uniform salience, which essentially means that they require serial
processing, then a small population with multiple convergence epochs is
more efficient (Goldberg, 1999b). Nevertheless, much work needs to be
done to develop a principled design theory for efficiency enhancement
via time continuation and to design competent continuation operators to
reinitiahze populations between epochs.

Evaluation relaxation, where an accurate, but computationally expensive fit­
ness evaluation is replaced with a less accurate, but computationally in­
expensive fitness estimate. The low-cost, less-accurate fitness estimate
can either be (1) exogenous, as in the case of surrogate (or approximate)
fitness functions (Jin, 2003), where extemal means can be used to de­
velop the fitness estimate, or (2) endogenous, as in the case of fitness
inheritance (Smith et al., 1995) where the fitness estimate is computed
internally and is based on parental fitnesses.

Evaluation relaxation in GAs dates back to early, largely empirical work
of Grefenstette and Fitzpatrick (1985) in image registration (Fitzpatrick
et al., 1984) where significant speed-ups were obtained by reduced ran­
dom sampling of the pixels of an image. Approximate evaluation has
since been used extensively to solve complex optimization problems

114 SASTRX GOLDBERG AND KENDALL

across many applications, such as structural engineering (Barthelemy
and Haftka, 1993) and warehouse scheduling at Coors Brewery (Watson
etal , 1999).

While early evaluation relaxation studies were largely empirical in na­
ture, design theories have since been developed to understand the ef­
fect of approximate surrogate functions on population sizing and conver­
gence time and to optimize speed-ups in approximate fitness functions
with known variance (Miller and Goldberg, 1996b) in, for example, sim­
ple functions of known variance or known bias (Sastry, 2001), and in
fitness inheritance (Sastry et al, 2001, 2004; Pelikan and Sastry, 2004).

4.2 TRICKS OF THE TRADE
In this section we present some suggestions for the reader who is new to the

area of genetic algorithms and wants to know how best to get started. Fortu­
nately, the ideas behind genetic algorithms are intuitive and the basic algorithm
is not complex. Here are some basic tips.

• Start by using an "off the shelf" genetic algorithm. It is pointless devel­
oping a complex GA, if your problem can be solved using a simple and
standard implementation.

• There are many excellent software packages that allow you to implement
a genetic algorithm very quickly. Many of the introductory texts are
suppHed with a GA implementation and GA-LIB is probably seen as the
software of choice for many people (see below).

• Consider carefully your representation. In the early days, the majority of
implementations used a bit representation which was easy to implement.
Crossover and mutation were simple. However, many other representa­
tions are now used, some utilizing complex data structures. You should
carry out some research to determine what is the best representation for
your particular problem.

• A basic GA will allow you to implement the algorithm and the only
thing you have to supply is an evaluation function. If you can achieve
this, then this is the fastest way to get a prototype system up and running.
However, you may want to include some problem specific data in your
algorithm. For example, you may want to include your own crossover
operators (in order to guide the search) or you may want to produce the
initial population using a constructive heuristic (to give the GA a good
starting point).

• In recent times, many researchers have hybridized GAs with other search
methods (see Section 4.1.3). Perhaps the most common method is to in-

GENETIC ALGORITHMS 115

elude a loeal seareher after the crossover and mutation operators (some­
times known as a memetic algorithm). This local searcher might be
something as simple as a hill cHmber, which acts on each chromosome
to ensure it is at a local optimum before the evolutionary process starts
again.

• There are many parameters required to run a genetic algorithm (which
can be seen as one of the shortcomings). At a minimum you have the
population size, the mutation probability, and the crossover probability.
The problem with having so many parameters to set is that it can take a
lot of experimentation to find a set of values which solves your particular
problem to the required quality. A broad rule of thumb, to start with, is
to use a mutation probability of 0.05 (De Jong, 1975), a crossover rate
of 0.6 (De Jong, 1975) and a population size of about 50. These three
parameters are just an example of the many choices you are going to
have to make to get your GA implementation working. To provide just
a small sample: which crossover operator should you use?... which mu­
tation operator?... Should the crossover/mutation rates be dynamic and
change as the run progresses? Should you use a local search operator?
If so, which one, and how long should that be allowed to run for? What
selection technique should you use? What replacement strategy should
you use? Fortunately, many researchers have investigated many of these
issues and the additional sources section below provides many suitable
references.

SOURCES OF ADDITIONAL INFORMATION

Software
• GALib, http://lancet.mit.edu/ga/. If you want GA software then GALIB

should probably be your first port of call. The description (from the web
page) says

GAlib contains a set of C++ genetic algorithm objects. The library in­
cludes tools for using genetic algorithms to do optimization in any C++
program using any representation and genetic operators. The documenta­
tion includes an extensive overview of how to implement a genetic algo­
rithm as well as examples illustrating customizations to the GAlib classes.

• GARAGe, http://garage.cps.msu.edu/. Genetic Algorithms Research
and Applications Group.

• LGADOSinColey(1999).

• NeuroDimension, http://www.nd.com/genetic/

116 SASTRY, GOLDBERG AND KENDALL

• Simple GA (SGA) in Goldberg (1989b).

• Solver.com, http://www.solver.com/

• Ward Systems Group Inc., http://www.wardsystems.com/

• Other packages, http://www-2.cs.cmu.edu/afs/cs/project/
ai-repository/ai/areas/genetic/ga/systems/O.html. This URL contains
links to a number of genetic algorithm software libraries.

Introductory Material
There are many pubhcations which give excellent introductions to ge­

netic algorithms: see Holland (1975), Davis (1987), Goldberg (1989b), Davis
(1991), Beasley et al. (1993), Forrest (1993), Reeves (1995), Michalewicz
(1996), Mitchell (1996), Falkenauer (1998), Coley (1999), and Man
etal. (1999).

Memetic Algorithms
There are some excellent introductory texts for memetic algorithms: see

RadcHffe and Surry (1994), Moscato (1999, 2001), Moscato and Gotta (2003),
Hart et al. (2004), Krasnogor et al. (2004), Krasnogor and Smith (2005).

You might also like to refer to the Memetic Algorithms Home Page at

• http://www.densis.fee.unicamp.br/~moscato/memetic_home.html

Historical Material
An excellent work which brings together the early pioneering work in the

field is Fogel (1998).

Conferences and Journals
There are a number of journals and conferences which publish papers con­

cerned with genetic algorithms. The key conferences and journals are listed
below, but remember that papers on Genetic Algorithms are published in many
other outlets too.

Journals

• Evolutionary Computation, http://mitpress.mit.edu/
catalog/item/default. asp?tid=25&ttype=4

• Genetic Programming and Evolvable Machines,
http://www.kluweronline.com/issn/1389-2576/contents

GENETIC ALGORITHMS 117

• IEEE Transactions on Evolutionary Computation,
http://www.ieee-nns.org/pubs/tec/

Conferences

• Congress on Evolutionary Computation (CEC)

• Genetic and Evolutionary Computation Conference (GECCO)

• Parallel Problem Solving in Nature (PPSN)

• Simulated Evolution and Learning (SEAL)

References
Asoh, H. and Miihlenbein, H., 1994, On the mean convergence time of evolu­

tionary algorithms without selection and mutation, Parallel Problem Solving
from Nature III, Lecture Notes in Computer Science, Vol. 866, pp. 98-107.

Back, T., 1995, Generalized convergence models for tournament—and
{ix, k)—selection, Proc. 6th Int. Conf. on Genetic Algorithms, pp. 2-8.

Back, T., Fogel, D. B. and Michalewicz, Z., 1997, Handbook of Evolutionary
Computation, Oxford University Press, Oxford.

Baker, J. E., 1985, Adaptive selection methods for genetic algorithms, Proc.
Int. Conf. on Genetic Algorithms and Their Applications, pp. 101-111.

Baluja, S., 1994, Population-based incremental learning: A method of integrat­
ing genetic search based function optimization and competitive learning.
Technical Report CMU-CS-94-163, Carnegie Mellon University.

Barthelemy, J.-F. M. and Haftka, R. T., 1993, Approximation concepts for op­
timum structural design—a review. Struct. Optim. 5:129-144.

Beasley, D., Bull, D. R. and Martin, R. R., 1993, An overview of genetic algo­
rithms: Part 1, fundamentals, Univ. Comput. 15:58-69.

Bhckle, T. and Thiele, L., 1995, A mathematical analysis of tournament selec­
tion, Proc. 6th Int. Conf. on Genetic Algorithms, pp. 9-16.

Booker, L. B., Fogel, D. B., Whitley, D. and Angeline, P. J., 1997, Recombina­
tion, in: The Handbook of Evolutionary Computation, T. Back, D. B. Fogel,
and Z. Michalewicz, eds, chapter E3.3, pp. C3.3:l-C3.3:27, lOP Pubhshing
and Oxford University Press, Philadelphia, PA.

Bosman, P. A. N. and Thierens, D., 1999, Linkage information processing in
distribution estimation algorithms, Proc. 1999 Genetic and Evolutionary
Computation Conf, pp. 60-67.

Bremermann, H. J., 1958, The evolution of intelligence. The nervous system
as a model of its environment. Technical Report No, 1, Department of Math­
ematics, University of Washington, Seattle, WA.

Bulmer, M. G., 1985, The Mathematical Theory of Quantitative Genetics, Ox­
ford University Press, Oxford.

118 SASTRY, GOLDBERG AND KENDALL

Burke, E. K. and Newall, J. P., 1999, A multi-stage evolutionary algorithm for
the timetable problem, IEEE Trans. Evol. Comput. 3:63-74.

Burke, E. K. and Smith, A, J., 1999, A memetic algorithm
to schedule planned maintenance, ACM J. Exp. Algor. 41,
www.jea.acm.org/1999/BurkeMemetic/ ISSN 1084-6654.

Burke, E. K. and Smith, A. J., 2000, Hybrid Evolutionary Techniques for the
Maintenance Scheduling Problem, IEEE Trans. Power Syst. 15:122-128.

Burke, E. K., Elliman, D. G. and Weare, R.F., 1995, SpeciaUsed recombi-
native operators for timetabling problems, in: Evolutionary Computing:
AISB Workshop 1995 T. Fogarty, ed.. Lecture Notes in Computer Science,
Vol. 993, pp. 75-85, Springer, Berlin.

Burke, E. K., Newall, J. P. and Weare, R. F., 1996, A memetic algorithm for
university exam timetabling, in: The Practice and Theory of Automated
Timetabling I, E. K. Burke and P. Ross, eds. Lecture Notes in Computer
Science, Vol. 1153, pp. 241-250, Springer, Berlin.

Burke, E. K., Newall, J. P. and Weare, R. F., 1998, Initialisation strategies
and diversity in evolutionary timetabling, Evol. Comput. J. (special issue
on Scheduling) 6:81-103.

Burke, E. K., CowHng, P. I., De Causmaecker, P. and Vanden Berghe, G., 2001,
A memetic approach to the nurse rostering problem, Appl. Intell. 15:199-
214.

Cantii-Paz, E., 1997, A summary of research on parallel genetic algorithms
IIUGAL Report No. 97003, General Engineering Department, University of
Illinois at Urbana-Champaign, Urbana, IL.

Cantu-Paz, E., 1999, Migration pohcies and takeover times in parallel genetic
algorithms, in: Proc. Genetic and Evolutionary Computation Conf, p. 775,
Morgan Kaufmann, San Francisco.

Cantu-Paz, E., 2000, Efficient and Accurate Parallel Genetic Algorithms,
Kluwer, Boston, MA.

Cheng, R. W. and Gen, M., 1997, Parallel machine scheduhng problems using
memetic algorithms, Comput. Indust. Eng., 33:761-764.

Coley, D. A., 1999, An Introduction to Genetic Algorithms for Scientists and
Engineers, World Scientific, New York.

Costa, D., 1995, An evolutionary tabu search algorithm and the nhl scheduling
problem, INFOR 33:161-178.

Crow, J. F. and Kimura, M., 1970, An Introduction of Population Genetics
Theory, Harper and Row, New York.

Davis, L., 1985, Applying algorithms to epistatic domains, in: Proc. Int. Joint
Conf. on Artifical Intelligence, pp. 162-164.

Davis, L. D. (ed), 1987, Genetic Algorithms and Simulated Annealing, Pitman,
London.

GENETIC ALGORITHMS 119

Davis, L. (ed), 1991, Handbook of Genetic Algorithms, Van Nostrand Rein-
hold, New York.

De Jong, K. A., 1975, An analysis of the behavior of a class of genetic adap­
tive systems. Doctoral Dissertation, University of Michigan, Ann Arbor, MI
(University Microfilms No. 76-9381) {Dissertation Abs. Int. 36:5140B).

Deb, K. and Goldberg, D. E., 1994, Sufficient conditions for deceptive and
easy binary functions, Ann. Math. Artif. Intell. 10:385-408.

Falkenauer E., 1998, Genetic Algorithms and Grouping Problems, Wiley, New
York.

Fitzpatrick, J. M., Grefenstette, J. J. and Van Gucht, D., 1984, Image registra­
tion by genetic search, in: Proc. IEEE Southeast Conf., IEEE, Piscataway,
NJ, pp. 460-464.

Fleurent, C. and Ferland, J., 1994, Genetic hybrids for the quadratic assignment
problem, in: DIMACS Series in Mathematics and Theoretical Computer Sci­
ence, Vol. 16, pp. 190-206.

Fogel, D. B., 1998, Evolutionary Computation: The Fossil Record, IEEE, Pis­
cataway, NJ.

Forrest, S., 1993, Genetic algorithms: Principles of natural selection applied to
computation, Science 261:872-878.

Eraser, A. S., 1957, Simulation of genetic systems by automatic digital com­
puters. II: Effects of Unkage on rates under selection. Austral. J. Biol. Sci.
10:492-499.

Goldberg, D. E., 1983, Computer-aided pipeline operation using genetic algo­
rithms and rule learning. Doctoral Dissertation,. University of Michigan,
Ann Arbor, MI.

Goldberg, D. E., 1987, Simple genetic algorithms and the minimal deceptive
problem, in: Genetic Algorithms and Simulated Annealing, L. Davis, ed.,
chapter 6, pp. 74-88, Morgan Kaufmann, Los Altos, CA.

Goldberg, D. E., 1989a, Genetic algorithms and Walsh functions: Part II, de­
ception and its analysis. Complex Syst. 3:153-171.

Goldberg, D. E., 1989b, Genetic Algorithms in Search Optimization and Ma­
chine Learning, Addison-Wesley, Reading, MA.

Goldberg, D. E., 1989c, Sizing populations for serial and parallel genetic algo­
rithms, in: Proc. 3rd Int. Conf. on Genetic Algorithms, pp. 70-79.

Goldberg, D. E., 1999a, The race, the hurdle, and the sweet spot: Lessons from
genetic algorithms for the automation of design innovation and creativity, in:
Evolutionary Design by Computers, P. Bentley, ed., chapter 4, pp. 105-118,
Morgan Kaufmann, San Mateo, CA.

Goldberg, D. E., 1999b, Using time efficiently: Genetic-evolutionary algo­
rithms and the continuation problem, in: Proc. Genetic and Evolutionary
Computation Conf, pp. 212-219.

120 SASTRY, GOLDBERG AND KENDALL

Goldberg, D. E., 2002, Design of Innovation: Lessons From and For Competent
Genetic Algorithms, Kluwer, Boston, MA,

Goldberg, D. E. and Deb, K., 1991, A comparative analysis of selection
schemes used in genetic algorithms. Foundations of Genetic Algorithms,
G. J. E. Rawlins, ed., pp. 69-93.

Goldberg, D. E., Deb, K. and Clark, J. H., 1992a, Genetic algorithms, noise,
and the sizing of populations, Complex Syst. 6:333-362.

Goldberg, D. E., Deb, K. and Horn, J., 1992b, Massive multimodality, de­
ception, and genetic algorithms, Parallel Problem Solving from Nature II,
pp. 37-46, Elsevier, New York.

Goldberg, D. E., Deb, K., Kargupta, H. and Harik, G., 1993, Rapid, accurate
optimization of difficult problems using fast messy genetic algorithms, in:
Proc. Int. Conf on Genetic Algorithms, pp. 56-64.

Goldberg, D. E., Korb, B. and Deb, K., 1989, Messy genetic algorithms: Mo­
tivation, analysis, and first results. Complex Syst. 3:493-530.

Goldberg, D. E. and Lingle, R., 1985, Alleles, loci, and the TSP, in: Proc. 1st
Int. Conf on Genetic Algorithms, pp. 154-159.

Goldberg, D. E. and Rudnick, M., 1991, Genetic algorithms and the variance
of fitness. Complex Syst. 5:265-278.

Goldberg, D. E. and Sastry, K., 2001, A practical schema theorem for genetic
algorithm design and tuning, in: Proc. of the Genetic and Evolutionary Com­
putation Conf, pp. 328-335.

Goldberg, D. E., Sastry, K. and Latoza, T., 2001, On the supply of build­
ing blocks, in: Proc. of the Genetic and Evolutionary Computation Conf,
pp. 336-342.

Goldberg, D. E. and Segrest, R, 1987, Finite Markov chain analysis of genetic
algorithms, in: Proc. 2nd Int. Conf on Genetic Algorithms, pp. 1-8.

Goldberg, D. E. and Voessner, S., 1999, Optimizing global-local search
hybrids, in: Proc. of the Genetic and Evolutionary Computation Conf,
pp. 220-228.

Gorges-Schleuter, M., 1989, ASPARAGOS: An asynchronous parallel ge­
netic optimization strategy, in: Proc. 3rd Int. Conf on Genetic Algorithms,
pp. 422-428.

Gorges-Schleuter, M., 1997, ASPARAGOS96 and the traveling salesman prob­
lem, in: Proc. IEEE Int. Conf on Evolutionary Computation, pp. 171-174.

Grefenstette, J. J., 1981, Parallel adaptive algorithms for function optimization.
Technical Report No. CS-81-19, Computer Science Department, Vanderbilt
University, Nashville, TN.

Grefenstette, J. J. and Baker, J. E., 1989, How genetic algorithms work: A
critical look at impficit parallelism, in: Proc. 3rd Int. Conf on Genetic Al­
gorithms, pp. 20-27.

GENETIC ALGORITHMS 121

Grefenstette, J. J. and Fitzpatrick, J. M., 1985, Genetic search with approxi­
mate function evaluations, in: Proc, Int. Conf. on Genetic Algorithms and
Their Applications, pp. 112-120.

Harik, G. R., 1997, Learning linkage to eficiently solve problems of bounded
difficulty using genetic algorithms, Doctoral Dissertation, University of
Michigan, Ann Arbor, ML

Harik, G., 1999, Linkage learning via probabilistic modehng in the ECGA,
IIUGAL Report No, 99010, University of IlHnois at Urbana-Champaign, Ur-
bana, IL.

Harik, G., Cantu-Paz, E., Goldberg, D. E. and Miller, B. L., 1999, The gam­
bler's ruin problem, genetic algorithms, and the sizing of populations, Evol.
Comput. 7:231-253.

Harik, G. and Goldberg, D. E., 1997, Learning linkage. Foundations of Genetic
Algorithms, 4:247-262.

Harik, G., Lobo, F. and Goldberg, D. E., 1998, The compact genetic algorithm,
in: Proc. IEEE Int. Conf. on Evolutionary Computation, pp. 523-528.

Hart, W. E. and Belew, R. K., 1996, Optimization with genetic algorithm hy­
brids using local search, in: Adaptive Individuals in Evolving Populations,
R. K. Belew, and M. Mitchell, eds, pp. 483-494, Addison-Wesley, Reading,
MA.

Hart, W., Krasnogor, N. and Smith, J. E. (eds), 2004, Special issue on memetic
algorithms, Evol. Comput. 12 No. 3.

Heckendom, R. B. and Wright, A. H., 2004, Efficient linkage discovery by
limited probing, Evol. Comput. 12:517-545.

Holland, J. H., 1975, Adaptation in Natural and Artificial Systems, University
of Michigan Press, Ann Arbor, MI.

Ibaraki, T., 1997, Combinations with other optimization methods, in: Hand­
book of Evolutionary Computation, T. Back, D. B. Fogel, and Z.
Michalewicz, eds, pp. D3:l-D3:2, Institute of Physics Pubhshing and Ox­
ford University Press, Bristol and New York.

Jin, Y., 2003, A comprehensive survey of fitness approximation in evolutionary
computation, Soft Comput. J. (in press).

Kargupta, H., 1996, The gene expression messy genetic algorithm, in: Proc.
Int. Conf on Evolutionary Computation, pp. 814-819.

Krasnogor, N., Hart, W. and Smith, J. (eds), 2004, Recent Advances in Memetic
Algorithms, Studies in Fuzziness and Soft Computing, Vol. 166, Springer,
Berhn.

Krasnogor, N. and Smith, J. E., 2005, A tutorial for competent memetic al­
gorithms: model, taxonomy and design issues, IEEE Trans. Evol. Comput.,
accepted for publication.

Louis, S. J. and McDonnell, J., 2004, Learning with case injected genetic al­
gorithms, IEEE Trans. Evol. Comput. 8:316-328.

122 SASTRY, GOLDBERG AND KENDALL

Larranaga, P. and Lozano, J. A. (eds), 2002, Estimation of Distribution Algo­
rithms, Kluwer, Boston, MA.

Lin, S.-C, Goodman, E. D. and Punch, W. K, 1997, Investigating parallel ge­
netic algorithms on job shop scheduling problem, 6th Int. Conf. on Evolu­
tionary Programming, pp. 383-393.

Man, K. K, Tang, K. S. and Kwong, S., 1999, Genetic Algorithms: Concepts
and Design, Springer, London.

Manderick, B. and Spiessens, P., 1989, Fine-grained parallel genetic algo­
rithms, in: Proc, 3rd Int. Conf. on Genetic Algorithms, pp. 428-433.

Memetic Algorithms Home Page:
http://www.densis.fee.unicamp.br/~moscato/memetic_home.html

Michalewicz, Z., 1996, Genetic Algorithms + Data Structures = Evolution
Programs, 3rd edn. Springer, Berlin.

Miller, B. L. and Goldberg, D. E., 1995, Genetic algorithms, tournament selec­
tion, and the effects of noise, Complex Syst. 9:193-212.

Miller, B. L. and Goldberg, D. E., 1996a, Genetic algorithms, selection
schemes, and the varying effects of noise, Evol. Comput. 4:113-131.

Miller, B. L. and Goldberg, D. E., 1996b, Optimal sampHng for genetic algo­
rithms, Intelligent Engineering Systems through Artificial Neural Networks
(ANNIE'96), Vol. 6, pp. 291-297, ASME Press, New York.

Mitchell, M., 1996, Introduction to Genetic Algorithms, MIT Press, Boston,
MA.

Moscato, P., 1989, On evolution, search, optimization, genetic algorithms and
martial arts: Towards memetic algorithms. Technical Report C3P 826, Cal-
tech Concurrent Computation Program, Califomia Institute of Technology,
Pasadena, CA.

Moscato, P., 1999, Part 4: Memetic algorithms, in: New Ideas in Optimization,
D. Come, M. Dorigo and F. Glover, eds, pp. 217-294, McGraw-Hill, New
York.

Moscato, P., 2001, Memetic algorithms, in: Handbook of Applied Optimiza­
tion, Section 3.6.4, P. M. Pardalos and M. G. C. Resende, eds, Oxford Uni­
versity Press, Oxford.

Moscato, P. and Cotta, C , 2003, A gentle introduction to memetic algorithms,
in: Handbook ofMetaheuristics, F. Glover and G. Kochenberger, eds. Chap­
ter 5, Kluwer, Norwell, MA.

Mlihlenbein, H. and PaaB, G., 1996, From recombination of genes to the es­
timation of distributions I. Binary parameters, in: Parallel Problem Solving
from Nature IV, Lecture Notes in Computer Science, Vol. 1141, Springer,
Berhn.

Mlihlenbein, H. and Schlierkamp-Voosen, D., 1993, Predictive models for the
breeder genetic algorithm: I. continous parameter optimization, Evol. Com­
put. 1:25^9.

GENETIC ALGORITHMS 123

Munetomo, M. and Goldberg, D. E., 1999, Linkage identification by non-
monotonicity detection for overlapping functions, Evol Comput. 1:111-
398.

Oliver, J. M., Smith, D. J. and Holland, J. R. C , 1987, A study of permutation
crossover operators on the travelling salesman problem, in: Proc. 2nd Int.
Conf. on Genetic Algorithms, pp. 224-230.

Paechter, B., Gumming, A., Norman, M. G. and Luchian, H., 1996, Extensions
to a memetic timetabling system. The Practice and Theory of Automated
Timetabling I, E. K. Burke and P. Ross, eds, Lecture Notes in Computer
Science, Vol. 1153, Springer, Berlin, pp. 251-265.

Paechter, B., Gumming, A. and Luchian, H., 1995, The use of local search sug­
gestion lists for improving the solution of timetable problems with evolu­
tionary algorithms. Evolutionary Computing: AISB Workshop 1995, T. Fog-
arty, ed., Lecture Notes in Computer Science, Vol. 993, Springer, Berlin,
pp. 86-93.

Pelikan, M., 2005, Hierarchical Bayesian Optimization Algorithm: Toward a
New Generation of Evolutionary Algorithm, Springer, Berlin.

Pelikan, M. and Goldberg, D. E., 2001, Escaping hierarchical traps with com­
petent genetic algorithms, in: Proc. Genetic and Evolutionary Computation
Co/i/, pp. 511-518.

Pelikan, M., Goldberg, D. E. and Cantu-Paz, E., 2000, Linkage learning, esti­
mation distribution, and Bayesian networks, Evol. Comput. 8:314-341.

Pelikan, M., Lobo, F. and Goldberg, D. E., 2002, A survey of optimization by
building and using probabilistic models, Comput. Optim. Appl. 21:5-20.

Pelikan, M. and Sastry, K., 2004, Fitness inheritance in the Bayesian optimiza­
tion algorithm, in: Proc. Genetic and Evolutionary Computation Confer­
ence, Vol. 2, pp. 48-59.

Pettey, C. C., Leuze, M. R. and Grefenstette, J. J., 1987, A parallel genetic
algorithm, in: Proc. 2nd Int. Conf. on Genetic Algorithms, pp. 155-161.

Radcliffe, N. J. and Surry, P. D., 1994, Formal memetic algorithms. Evolu­
tionary Computing: AISB Workshop 1994, T. Fogarty, ed.. Lecture Notes in
Computer Science, Vol. 865, pp. 1-16, Springer, Berlin.

Reeves, C. R., 1995, Genetic algorithms, in: Modern Heuristic Techniques for
Combinatorial Problems, C. R. Reeves, ed., McGraw-Hill, New York.

Robertson, G. G., 1987, Parallel implementation of genetic algorithms in a
classifier system, in: Proc. 2nd Int. Conf. on Genetic Algorithms, pp. 140-
147.

Rothlauf, F., 2002, Representations for Genetic and Evolutionary Algorithms,
Springer, BerUn.

Rudolph, G., 2000, Takeover times and probabilities of non-generational selec­
tion rules, in: Proc. Genetic and Evolutionary Computation Conf, pp. 903-
910.

124 SASTRY, GOLDBERG AND KENDALL

Sakamoto, Y. and Goldberg, D. E,, 1997, Takeover time in a noisy environ­
ment, in: Proc. 7th Int. Conf. on Genetic Algorithms, pp. 160-165.

Sastry, K., 2001, Evaluation-relaxation schemes for genetic and evolutionary
algorithms, Master's Thesis, General Engineering Department, University
of Illinois at Urbana-Champaign, Urbana, IL.

Sastry, K. and Goldberg, D. E., 2002, Analysis of mixing in genetic algorithms:
A survey, IlliGAL Report No. 2002012, University of Illinois at Urbana-
Champaign, Urbana, IL.

Sastry, K. and Goldberg, D. E., 2003, Scalability of selectorecombinative ge­
netic algorithms for problems with tight hnkage, in: Proc. 2003 Genetic and
Evolutionary Computation Conf, pp. 1332-1344.

Sastry, K. and Goldberg, D. E., 2004a, Designing competent mutation opera­
tors via probabihstic model building of neighborhoods, in: Proc. 2004 Ge­
netic and Evolutionary Computation Conference II, Lecture Notes in Com­
puter Science, Vol. 3103, Springer, Berlin, pp. 114-125.

Sastry, K. and Goldberg, D. E., 2004b, Let's get ready to rumble: Crossover
versus mutation head to head, in: Proc. 2004 Genetic and Evolutionary
Computation Conf II, Lecture Notes in Computer Science, Vol. 3103,
Springer, Berlin, pp. 126-137.

Sastry, K., Goldberg, D. E., & Pelikan, M., 2001, Don't evaluate, inherit, in:
Proc. Genetic and Evolutionary Computation Conf, pp. 551-558.

Sastry, K., Pelikan, M. and Goldberg, D. E., 2004, Efficiency enhancement of
genetic algorithms building-block-wise fitness estimation, in: Proc. IEEE
Int. Congress on Evolutionary Computation, pp. 720-727.

Smith, R., Dike, B. and Stegmann, S., 1995, Fitness inheritance in genetic al­
gorithms, in: Proc. ACM Symp. on Applied Computing, pp. 345-350, ACM,
New York.

Spears, W., 1997, Recombination parameters, in: The Handbook of Evolution­
ary Computation, T. Back, D. B. Fogel and Z. Michalewicz, eds. Chap­
ter El.3, lOP Publishing and Oxford University Press, Philadelphia, PA,
pp. E1.3:l-E1.3:13.

Spears, W. M. and De Jong, K. A., 1994, On the virtues of parameterized uni­
form crossover, in: Proc. 4th Int. Conf. on Genetic Algorithms.

Srivastava, R. and Goldberg, D. E., 2001, Verification of the theory of genetic
and evolutionary continuation, in: Proc. Genetic and Evolutionary Compu­
tation Conf, pp. 551-558.

Syswerda, G., 1989, Uniform crossover in genetic algorithms, in: Proc. 3rd Int.
Conf. on Genetic Algorithms, pp. 2-9.

Thierens, D., 1999, Scalability problems of simple genetic algorithms, Evol.
Comput. 7:331-352.

GENETIC ALGORITHMS 125

Thierens, D. and Goldberg, D. E., 1994a, Convergence models of genetic al­
gorithm selection schemes, in: Parallel Problem Solving from Nature III,
pp. 116-121.

Thierens, D. and Goldberg, D. E., 1994b, Elitist recombination: An integrated
selection recombination GA, in: Proc. 1st IEEE Conf. on Evolutionary Com­
putation, pp. 508-512.

Thierens, D., Goldberg, D. E. and Pereira, A. G., 1998, Domino convergence,
drift, and the temporal-salience structure of problems, in: Proc. IEEE Int.
Conf. on Evolutionary Computation, pp. 535-540.

Valenzuala, J. and Smith, A. E., 2002, A seeded memetic algorithm for large
unit commitment problems, J. Heuristics, 8:173-196.

Voigt, H.-M., Miihlenbein, H. and Schlierlcamp-Voosen, D., 1996, The re­
sponse to selection equation for skew fitness distributions, in: Proc. Int.
Conf on Evolutionary Computation, pp. 820-825.

Watson, J. P., Rana, S., Whitely, L. D. and Howe, A. E., 1999, The impact of
approximate evaluation on the performance of search algorithms for ware­
house scheduling, J. Scheduling, 2:79-98.

Whitley, D., 1995, Modeling hybrid genetic algorithms, in Genetic Algorithms
in Engineering and Computer Science, G. Winter, J. Periaux, M. Galan and
P Cuesta, eds, Wiley, New York, pp. 191-201.

Yu, T.-L., Goldberg, D. E., Yassine, A. and Chen, Y.-P, 2003, A genetic algo­
rithm design inspired by organizational theory: Pilot study of a dependency
structure matrix driven genetic algorithm. Artificial Neural Networks in En­
gineering (ANNIE 2003), pp. 327-332.

