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4.1 INTRODUCTION 
Genetic algorithms (GAs) are search methods based on principles of natu­

ral selection and genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). 
We start with a brief introduction to simple genetic algorithms and associated 
terminology. 

GAs encode the decision variables of a search problem into finite-length 
strings of alphabets of certain cardinality. The strings which are candidate 
solutions to the search problem are referred to as chromosomes, the alphabets 
are referred to as genes and the values of genes are called alleles. For example, 
in a problem such as the travehng salesman problem, a chromosome represents 
a route, and a gene may represent a city. In contrast to traditional optimization 
techniques, GAs work with coding of parameters, rather than the parameters 
themselves. 

To evolve good solutions and to implement natural selection, we need a mea­
sure for distinguishing good solutions from bad solutions. The measure could 
be an objective function that is a mathematical model or a computer simula­
tion, or it can be a subjective function where humans choose better solutions 
over worse ones. In essence, the fitness measure must determine a candidate 
solution's relative fitness, which will subsequently be used by the GA to guide 
the evolution of good solutions. 

Another important concept of GAs is the notion of population. Unlike tra­
ditional search methods, genetic algorithms rely on a population of candidate 
solutions. The population size, which is usually a user-specified parameter, is 
one of the important factors affecting the scalability and performance of ge­
netic algorithms. For example, small population sizes might lead to premature 
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convergence and yield substandard solutions. On the other hand, large popula­
tion sizes lead to unnecessary expenditure of valuable computational time. 

Once the problem is encoded in a chromosomal manner and a fitness mea­
sure for discriminating good solutions from bad ones has been chosen, we can 
start to evolve solutions to the search problem using the following steps: 

1 Initialization. The initial population of candidate solutions is usually 
generated randomly across the search space. However, domain-specific 
knowledge or other information can be easily incorporated. 

2 Evaluation, Once the population is initiahzed or an offspring population 
is created, the fitness values of the candidate solutions are evaluated. 

3 Selection. Selection allocates more copies of those solutions with higher 
fitness values and thus imposes the survival-of-the-fittest mechanism on 
the candidate solutions. The main idea of selection is to prefer bet­
ter solutions to worse ones, and many selection procedures have been 
proposed to accomplish this idea, including roulette-wheel selection, 
stochastic universal selection, ranking selection and tournament selec­
tion, some of which are described in the next section. 

4 Recombination. Recombination combines parts of two or more parental 
solutions to create new, possibly better solutions (i.e. offspring). There 
are many ways of accomplishing this (some of which are discussed in 
the next section), and competent performance depends on a properly 
designed recombination mechanism. The offspring under recombination 
will not be identical to any particular parent and will instead combine 
parental traits in a novel manner (Goldberg, 2002). 

5 Mutation. While recombination operates on two or more parental chromo­
somes, mutation locally but randomly modifies a solution. Again, there 
are many variations of mutation, but it usually involves one or more 
changes being made to an individual's trait or traits. In other words, 
mutation performs a random walk in the vicinity of a candidate solution. 

6 Replacement. The offspring population created by selection, recombi­
nation, and mutation replaces the original parental population. Many 
replacement techniques such as elitist replacement, generation-wise re­
placement and steady-state replacement methods are used in GAs. 

7 Repeat steps 2-6 until a terminating condition is met. 

Goldberg (1983, 1999a, 2002) has likened GAs to mechanistic versions of 
certain modes of human innovation and has shown that these operators when 
analyzed individually are ineffective, but when combined together they can 
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work well. This aspect has been explained with the concepts of iho, fundamen­
tal intuition and innovation intuition. The same study compares a combina­
tion of selection and mutation to continual improvement (a form of hill climb­
ing), and the combination of selection and recombination to innovation (cross-
fertilizing). These analogies have been used to develop a design-decomposition 
methodology and so-called competent GAs—that solve hard problems quickly, 
rehably, and accurately—both of which are discussed in the subsequent sec­
tions. 

This chapter is organized as follows. The next section provides details of 
individual steps of a typical genetic algorithm and introduces several popu­
lar genetic operators. Section 4.1.2 presents a principled methodology of de­
signing competent genetic algorithms based on decomposition principles. Sec­
tion 4.1.3 gives a brief overview of designing principled efficiency-enhancement 
techniques to speed up genetic and evolutionary algorithms. 

4.1.1 Basic Genetic Algorithm Operators 
In this section we describe some of the selection, recombination, and muta­

tion operators commonly used in genetic algorithms. 

4.1.1.1 Selection Methods. Selection procedures can be broadly clas­
sified into two classes as follows. 

Fitness Proportionate Selection This includes methods such as roulette-wheel 
selection (Holland, 1975; Goldberg, 1989b) and stochastic universal se­
lection (Baker, 1985; Grefenstette and Baker, 1989). In roulette-wheel 
selection, each individual in the population is assigned a roulette wheel 
slot sized in proportion to its fitness. That is, in the biased roulette wheel, 
good solutions have a larger slot size than the less fit solutions. The 
roulette wheel is spun to obtain a reproduction candidate. The roulette-
wheel selection scheme can be implemented as follows: 

1 Evaluate the fitness, fi, of each individual in the population. 

2 Compute the probability (slot size), p,, of selecting each member 
of the population: pi = fi/Yl'j=\ fj-> where n is the population 
size. 

3 Calculate the cumulative probability, <y,, for each individual: qi = 

T!j=xPj-
4 Generate a uniform random number, r € (0, 1]. 

5 \ir < q\ then select the first chromosome, x\, else select the indi­
vidual Xi such that qt^x < r < qi. 

6 Repeat steps 4-5 n times to create n candidates in the mating pool. 
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To illustrate, consider a population with five individuals {n = 5), with 
the fitness values as shown in the table below. The total fitness, X^"=i / ; 
= 28 + 18 + 14 + 9 + 26 = 95. The probability of selecting an individual 
and the corresponding cumulative probabilities are also shown in the 
table below. 

Chromosome* 
Fitness, / 
Probability, pi 
Cumulative probabil­
ity, qi 

1 
28 

28/95 = 0.295 
0.295 

2 
18 

0.189 
0.484 

3 
14 

0.147 
0.631 

4 
9 

0.095 
0.726 

5 
26 

0.274 
1.000 

Now if we generate a random number r, say 0.585, then the third chromo­
some is selected as q2 = 0.484 < 0.585 < q^ = 0.631. 

Ordinal Selection This includes methods such as tournament selection 
(Goldberg et al., 1989b), and truncation selection (Miihlenbein and 
Schlierkamp-Voosen, 1993). In tournament selection, s chromosomes 
are chosen at random (either with or without replacement) and entered 
into a tournament against each other. The fittest individual in the group 
ofk chromosomes wins the tournament and is selected as the parent. The 
most widely used value of s is 2. Using this selection scheme, n tourna­
ments are required to choose n individuals. In truncation selection, the 
top (l/s)th of the individuals get s copies each in the mating pool. 

4.1.1.2 Recombination (Crossover) Operators. After selection, indi­
viduals from the mating pool are recombined (or crossed over) to create new, 
hopefully better, offspring. In the GA literature, many crossover methods have 
been designed (Goldberg, 1989b; Booker et al., 1997; Spears, 1997) and some 
of them are described in this section. Many of the recombination operators 
used in the literature are problem-specific and in this section we will introduce 
a few generic (problem independent) crossover operators. It should be noted 
that while for hard search problems, many of the following operators are not 
scalable, they are very useful as a first option. Recently, however, researchers 
have achieved significant success in designing scalable recombination opera­
tors that adapt Hnkage which will be briefly discussed in Section 4.1.2. 

In most recombination operators, two individuals are randomly selected and 
are recombined with a probability pc, called the crossover probabifity. That is, 
a uniform random number, r, is generated and if r < pc, the two randomly 
selected individuals undergo recombination. Otherwise, that is, if r > pc, the 
two offspring are simply copies of their parents. The value of pc can either be 
set experimentally, or can be set based on schema-theorem principles (Gold­
berg, 1989b, 2002; Goldberg and Sastry, 2001). 
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One point crossover 
Crossover point 

0 0 

1 0 

0 1 0 0 

1 1 1 1 

0 0 1 1 ] 1 

1 0 0 1 0 0 

Parent chromosomes Offspring chromosomes 

Two point crossover 
Crossover points 

0 0 

1 0 

0 1 0 

1 1 1 

0 

1 

0 0 1 1 1 0 . 

1 0 0 1 0 1 

Parent chromosomes 
Offspring chromosomes 

Uniform crossover 

0 0 0 1 0 0 

1 0 1 1 1 1 

1 0 0 1 0 1 

0 0 1 1 1 0 

Parent chromosomes Offspring chromosomes 

Figure 4.1. One-point, two-point, and uniform crossover methods. 

A;-point Crossover One-point, and two-point crossovers are the simplest and 
most widely applied crossover methods. In one-point crossover, illustrated in 
Figure 4.1, a crossover site is selected at random over the string length, and 
the alleles on one side of the site are exchanged between the individuals. In 
two-point crossover, two crossover sites are randomly selected. The alleles 
between the two sites are exchanged between the two randomly paired indi­
viduals. Two-point crossover is also illustrated in Figure 4.1. The concept of 
one-point crossover can be extended to /:-point crossover, where k crossover 
points are used, rather than just one or two. 

Uniform Crossover Another common recombination operator is uniform 
crossover (Syswerda, 1989; Spears and De Jong, 1994). In uniform crossover, 
illustrated in Figure 4.1, every allele is exchanged between the a pair of ran­
domly selected chromosomes with a certain probability, pe, known as the 
swapping probability. Usually the swapping probability value is taken to be 
0.5. 

Uniform Order-Based Crossover The ^-point and uniform crossover meth­
ods described above are not well suited for search problems with permutation 
codes such as the ones used in the traveling salesman problem. They often cre­
ate offspring that represent invalid solutions for the search problem. Therefore, 
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Parent? J 
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B^ 
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C^ 

D 

D 
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E 

IF 
F 

^ 

G 

A 
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ChildCi | E | B | C | D | G | F | A | 

ChildC2 | A | B | D | C | E | G | F | 

Figure 4.2. Illustration of uniform order crossover. 

when solving search problems with permutation codes, a problem-specific re­
pair mechanism is often required (and used) in conjunction with the above 
recombination methods to always create valid candidate solutions. 

Another alternative is to use recombination methods developed specifically 
for permutation codes, which always generate valid candidate solutions. Sev­
eral such crossover techniques are described in the following paragraphs start­
ing with the uniform order-based crossover. 

In uniform order-based crossover, two parents (say Pi and P2) are randomly 
selected and a random binary template is generated (see Figure 4.2). Some of 
the genes for offspring Ci are filled by taking the genes from parent P] where 
there is a one in the template. At this point we have Ci partially filled, but 
it has some "gaps". The genes of parent Pi in the positions corresponding to 
zeros in the template are taken and sorted in the same order as they appear in 
parent P2. The sorted list is used to fill the gaps in C]. Offspring C2 is created 
by using a similar process (see Figure 4.2). 

Order-Based Crossover The order-based crossover operator (Davis, 1985) 
is a variation of the uniform order-based crossover in which two parents are 
randomly selected and two random crossover sites are generated (see Fig­
ure 4.3). The genes between the cut points are copied to the children. Starting 
from the second crossover site copy the genes that are not already present in 
the offspring from the alternative parent (the parent other than the one whose 
genes are copied by the offspring in the initial phase) in the order they appear. 
For example, as shown in Figure 4.3, for offspring Ci, since alleles C, D, and E 
are copied from the parent Pi, we get alleles B, G, F, and A from the parent P2. 
Starting from the second crossover site, which is the sixth gene, we copy alle­
les B and G as the sixth and seventh genes respectively. We then wrap around 
and copy alleles F and A as the first and second genes. 
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Pi 

P2 

A B 

C B 

C D E 

G ^ F 

F G 

D A 

ChildCi | ? | ? | C | D | E | ? | ? | 

ChildC2 | ? | ? | G | E | F | ? | ? | 

ChildCi | F | A | C | D | E | B | G | 

Child C2 | C | D | G E F | A | B | 

Figure 4.3. Illustration of order-based crossover. 
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Figure 4.4. Illustration of partially matched crossover. 

Partially Matched Crossover (PMX) Apart from always generating valid 
offspring, the PMX operator (Goldberg and Lingle, 1985) also preserves or-
derings within the chromosome. In PMX, two parents are randomly selected 
and two random crossover sites are generated. Alleles within the two crossover 
sites of a parent are exchanged with the alleles corresponding to those mapped 
by the other parent. For example, as illustrated in Figure 4.4 (reproduced from 
Goldberg (1989b) with permission), looking at parent Pi, the first gene within 
the two crossover sites, 5, maps to 2 in P2. Therefore, genes 5 and 2 are 
swapped in Pi. Similarly we swap 6 and 3, and 10 and 7 to create the offspring 
Ci. After all exchanges it can be seen that we have achieved a dupHcation 
of the ordering of one of the genes in between the crossover point within the 
opposite chromosome, and vice versa. 
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Figure 4.5. Illustration of cycle crossover. 

Cycle Crossover (CX) We describe cycle crossover (Oliver et al., 1987) with 
help of a simple illustration (reproduced from Goldberg (1989b) with permis­
sion). Consider two randomly selected parents Pi and P2 as shown in Fig­
ure 4.5 that are solutions to a traveling salesman problem. The offspring C] 
receives the first variable (representing city 9) from Pi, We then choose the 
variable that maps onto the same position in P2. Since city 9 is chosen from Pi 
which maps to city 1 in P2, we choose city 1 and place it into Ci in the same 
position as it appears in Pi (fourth gene), as shown in Figure 4.5. City 1 in Pi 
now maps to city 4 in P2, so we place city 4 in Ci in the same position it oc­
cupies in Pi (sixth gene). We continue this process once more and copy city 6 
to the ninth gene of Ci from Pi. At this point, since city 6 in Pi maps to city 9 
in P2, we should take city 9 and place it in Ci, but this has already been done, 
so we have completed a cycle; which is where this operator gets its name. The 
missing cities in offspring Ci is filled from P2. Offspring C2 is created in the 
same way by starting with the first city of parent P2 (see Figure 4.5). 

4.1.1.3 Mutation Operators. If we use a crossover operator, such 
as one-point crossover, we may get better and better chromosomes but the 
problem is, if the two parents (or worse, the entire population) has the same 
allele at a given gene then one-point crossover will not change that. In other 
words, that gene will have the same allele forever. Mutation is designed to 
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overcome this problem in order to add diversity to the population and ensure 
that it is possible to explore the entire search space. 

In evolutionary strategies, mutation is the primary variation/search opera­
tor. For an introduction to evolutionary strategies see, for example, Back et 
al. (1997). Unlike evolutionary strategies, mutation is often the secondary op­
erator in GAs, performed with a low probability. One of the most common 
mutations is the bit-flip mutation. In bitwise mutation, each bit in a binary 
string is changed (a 0 is converted to 1, and vice versa) with a certain proba­
bility, pm, known as the mutation probability. As mentioned earher, mutation 
performs a random walk in the vicinity of the individual. Other mutation oper­
ators, such as problem-specific ones, can also be developed and are often used 
in the literature. 

4.1.1.4 Replacement. Once the new offspring solutions are created 
using crossover and mutation, we need to introduce them into the parental 
population. There are many ways we can approach this. Bear in mind that the 
parent chromosomes have already been selected according to their fitness, so 
we are hoping that the children (which includes parents which did not undergo 
crossover) are among the fittest in the population and so we would hope that 
the population will gradually, on average, increase its fitness. Some of the most 
common replacement techniques are outlined below. 

Delete-all This technique deletes all the members of the current population 
and replaces them with the same number of chromosomes that have just 
been created. This is probably the most common technique and will 
be the technique of choice for most people due to its relative ease of 
implementation. It is also parameter-free, which is not the case for some 
other methods. 

Steady-state This technique deletes n old members and replaces them with 
n new members. The number to delete and replace, n, at any one time 
is a parameter to this deletion technique. Another consideration for this 
technique is deciding which members to delete from the current popula­
tion. Do you delete the worst individuals, pick them at random or delete 
the chromosomes that you used as parents? Again, this is a parameter to 
this technique. 

Steady-state-no-duplicates This is the same as the steady-state technique but 
the algorithm checks that no duplicate chromosomes are added to the 
population. This adds to the computational overhead but can mean that 
more of the search space is explored. 



106 SASTRZ GOLDBERG AND KENDALL 

4.1.2 Competent Genetic Algorithms 

While using innovation for explaining the working mechanisms of GAs is 
very useful, as a design metaphor it poses difficulty as the processes of innova­
tion are themselves not well understood. However, if we want GAs to success­
fully solve increasingly difficult problems across a wide spectrum of areas, we 
need a principled, but mechanistic way of designing genetic algorithms. The 
last few decades have witnessed great strides toward the development of so-
called competent genetic algorithms—GAs that solve hard problems, quickly, 
reliably, and accurately (Goldberg, 1999a). From a computational standpoint, 
the existence of competent GAs suggests that many difficult problems can be 
solved in a scalable fashion. Furthermore, it significantly reduces the burden 
on a user to decide on a good coding or a good genetic operator that accompa­
nies many GA applications. If the GA can adapt to the problem, there is less 
reason for the user to have to adapt the problem, coding, or operators to the 
GA. 

In this section we briefly review some of the key lessons of competent GA 
design. Specifically, we restrict the discussion to selectorecombinative GAs 
and focus on the cross-fertilization type of innovation and briefly discuss key 
facets of competent GA design. Using Holland's notion of a building block 
(Holland, 1975), Goldberg proposed decomposing the problem of designing 
a competent selectorecombinative GA (Goldberg et al., 1992a). This design 
decomposition has been explained in detail elsewhere (Goldberg, 2002), but is 
briefly reviewed below. 

Know that GAs Process Building Blocks The primary idea of selectorecom­
binative GA theory is that genetic algorithms work through a mechanism 
of decomposition and reassembly. Holland (1975) called well-adapted 
sets of features that were components of effective solutions building 
blocks (BBs). The basic idea is that GAs (1) implicitly identify building 
blocks or sub-assemblies of good solutions, and (2) recombine different 
sub-assemblies to form very high performance solutions. 

Understand BB Hard Problems From the standpoint of cross-fertilizing in­
novation, problems that are hard have BBs that are hard to acquire. This 
may be because the BBs are complex, hard to find, or because different 
BBs are hard to separate, or because low-order BBs may be misleading 
or deceptive (Goldberg, 1987, 1989a; Goldberg et al., 1992b; Deb and 
Goldberg, 1994). 

Understand BB Growth and Timing Another key idea is that BBs or no­
tions exist in a kind of competitive market economy of ideas, and steps 
must be taken to ensure that the best ones (1) grow and take over a dom-
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inant market share of the population, and (2) the growth rate can neither 
be too fast, nor too slow. 

The growth in market share can be easily satisfied (Goldberg and Sas-
try, 2001) by appropriately setting the crossover probability, pc, and the 
selection pressure, s, so that 

Pc < (4.1) 

where e is the probability of BB disruption. 

Two other approaches have been used in understanding time. It is not 
appropriate in a basic tutorial like this to describe them in detail, but we 
give a few example references for the interested reader. 

Takeover time models, where the dynamics of the best individual is 
modeled (Goldberg and Deb, 1991; Sakamoto and Goldberg, 1997; 
Cantu-Paz, 1999; Rudolph, 2000). 

Selection-intensity models, where approaches similar to those in quan­
titative genetics (Bulmer, 1985) are used and the dynamics of 
the average fitness of the population is modeled (Muhlenbein and 
Schlierkamp-Voosen, 1993; Thierens and Goldberg, 1994a, 1994b; 
Back, 1995; Miller and Goldberg, 1995, 1996a; Voigt et al, 1996). 

The time models suggest that for a problem of size i, with all BBs of 
equal importance or salience, the convergence time, tc, of GAs is given 
by Miller and Goldberg (1995) to be 

tc = ^ V € (4.2) 

where / is the selection intensity (Bulmer, 1985), which is a parameter 
dependent on the selection method and selection pressure. For tourna­
ment selection, / can be approximated in terms of s by the following 
relation (Bhckle and Thiele, 1995): 

/ = y2( log(^)- log(y4.141og( . ) ) ) (4.3) 

On the other hand, if the BBs of a problem have different sahence, then 
the convergence time scales-up differently. For example, when the BBs 
of a problem are exponentially scaled, with a particular BB being ex­
ponentially better than the others, then the convergence time, tc, of a 
GA is linear with the problem size (Thierens et al., 1998) and can be 
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represented as follows: 

tc = - l o g 2 . (4 4^ 
log ( l - I/V3) 

To summarize, the convergence time of GAs is O (^/tj-O (I) (see 
Chapter 1, Introduction, for an explanation of the O notation). 

Understand BB Supply and Decision Making One role of the population is 
to ensure adequate supply of the raw building blocks in a population. 
Randomly generated populations of increasing size will, with higher 
probability, contain larger numbers of more complex BBs (Holland, 
1975; Goldberg, 1989c; Goldberg et al., 2001). For a problem with 
m building blocks, each consisting of A: alphabets of cardinality x> the 
population size, n, required to ensure the presence of at least one copy 
of all the raw building blocks is given by Goldberg et al. (2001) as 

n = x''\ogm-\-kx''logx (4.5) 

Just ensuring the raw supply is not enough, decision making among dif­
ferent, competing notions (BBs) is statistical in nature, and as we in­
crease the population size, we increase the likelihood of making the best 
possible decisions (De Jong, 1975; Goldberg and Rudnick, 1991; Gold­
berg et al., 1992a; Harik et al., 1999). For an additively decomposable 
problem with m building blocks of size k each, the population size re­
quired to not only ensure supply, but also ensure correct decision making 
is approximately given by Harik et al. (1999) as 

n = — 
^ <^BBr,k 

2 d 
2^-v/mlogQ! (4.6) 

where d/asB is the signal-to-noise ratio (Goldberg et al., 1992a), and 
oc is the probabihty of incorrectly deciding among competing building 
blocks. In essence, the population-sizing model consists of the following 
components: 

• Competition complexity, quantified by the total number of compet­
ing building blocks, 2^. 

• Subcomponent complexity, quantified by the number of building 
blocks, m. 

• Ease of decision making, quantified by the signal-to-noise ratio, 
d/Obb-

• Probabilistic safety factor, quantified by the coefficient — logo;. 



GENETIC ALGORITHMS 109 

On the other hand, if the building blocks are exponentially scaled, the 
population size, n, scales as (Rothlauf, 2002; Thierens et al., 1998; Gold­
berg, 2002) 

n = -Co'^^l^mXoga (4.7) 
d 

where Co is a constant dependent on the drift effects (Crow and Kimura, 
1970; Goldberg and Segrest, 1987; Asoh and Muhlenbein, 1994). 
To summarize, the complexity of the population size required by GAs is 
0(2^V^)-C>(2^m). 

Identify BBs and Exchange Them Perhaps the most important lesson of cur­
rent research in GAs is that the identification and exchange of BBs is the 
critical path to innovative success. First-generation GAs usually fail in 
their ability to promote this exchange reliably. The primary design chal­
lenge to achieving competence is the need to identify and promote effec­
tive BB exchange. Theoretical studies using \hQ facetwise modeling ap­
proach (Thierens, 1999; Sastry and Goldberg, 2002, 2003) have shown 
that while fixed recombination operators such as uniform crossover, due 
to inadequacies of effective identification and exchange of BBs, demon­
strate polynomial scalability on simple problems, they scale-up expo­
nentially, with problem size on boundedly-difficult problems. The mix­
ing models also yield a control map delineating the region of good per­
formance for a GA, Such a control map can be a useful tool in visual­
izing GA sweet-spots and provide insights in parameter settings (Gold­
berg, 1999a). This is in contrast to recombination operators that can 
automatically and adaptively identify and exchange BBs, which scale up 
polynomially (subquadratically-quadratically) with problem size. 

Efforts in the principled design of effective BB identification and exchange 
mechanisms have led to the development of competent genetic algorithms. 
Competent GAs solve hard problems quickly, reliably, and accurately. Hard 
problems are loosely defined as those problems that have large sub-solutions 
that cannot be decomposed into simpler sub-solutions, or have badly scaled 
sub-solutions, or have numerous local optima, or are subject to a high stochas­
tic noise. While designing a competent GA, the objective is to develop an 
algorithm that can solve problems with bounded difficulty and exhibit a poly­
nomial (usually subquadratic) scale-up with the problem size. 

Interestingly, the mechanics of competent GAs vary widely, but the prin­
ciples of innovative success are invariant. Competent GA design began with 
the development of the messy genetic algorithm (Goldberg et al., 1989), cul­
minating in 1993 with ihtfast messy GA (Goldberg et al., 1993). Since those 
early scalable results, a number of competent GAs have been constructed using 
different mechanism styles. We will categorize these approaches and provide 
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some references for the interested reader, but a detailed treatment is beyond the 
scope of this tutorial. 

Perturbation techniques, such as the messy GA (Goldberg et al., 1989), 
the fast messy GA (Goldberg et al., 1993), the gene expression 
messy GA (Kargupta, 1996), the linkage identification by nonhnearity 
check/linkage identification by detection GA (Munetomo and Goldberg, 
1999; Heckendom and Wright, 2004), and the dependency structure ma­
trix driven genetic algorithm (Yu et al., 2003). 

Linkage adaptation techniques, such as the linkage learning GA (Harik and 
Goldberg, 1997; Harik, 1997). 

Probabilistic model building techniques, such as population based incre­
mental learning (Baluja, 1994), the univariate model building algorithm 
(Muhlenbein and PaaB, 1996), the compact GA (Harik et al., 1998), the 
extended compact GA (Harik, 1999), the Bayesian optimization algo­
rithm (Pelikan et al., 2000), the iterated distribution estimation algorithm 
(Bosman and Thierens, 1999), and the hierarchical Bayesian optimiza­
tion algorithm (Pelikan and Goldberg, 2001). More details regarding 
these algorithms are given elsewhere (Pelikan et al., 2002; Larraiiaga 
and Lozano, 2002; Pehkan, 2005). 

4.1.3 Enhancement of Genetic Algorithms to Improve 
Efficiency and/or Effectiveness 

The previous section presented a brief account of competent GAs. These 
GA designs have shown promising results and have successfully solved hard 
problems requiring only a subquadratic number of function evaluations. In 
other words, competent GAs usually solve an ^-variable search problem, re­
quiring only 0(i^) number of function evaluations. While competent GAs 
take problems that were intractable with first-generation GAs and render them 
tractable, for large-scale problems, the task of computing even a subquadratic 
number of function evaluations can be daunting. If the fitness function is a 
complex simulation, model, or computation, then a single evaluation might 
take hours, even days. For such problems, even a subquadratic number of 
function evaluations is very high. For example, consider a 20-bit search prob­
lem and assume that a fitness evaluation takes one hour. We will require about 
half a month to solve the problem. This places a premium on a variety of ef­
ficiency enhancement techniques. Also, it is often the case that a GA needs 
to be integrated with problem-specific methods in order to make the approach 
really effective for a particular problem. The literature contains a very large 
number of papers which discuss enhancements of GAs. Once again, a detailed 
discussion is well beyond the scope of the tutorial, but we provide four broad 
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categories of GA enhancement and examples of appropriate references for the 
interested reader. 

Parallelization, where GAs are run on multiple processors and the computa­
tional resource is distributed among these processors (Cantu-Paz, 1997, 
2000). Evolutionary algorithms are by nature parallel, and many differ­
ent parallelization approaches can be used, such as a simple master-slave 
parallel GA (Grefenstette, 1981), a coarse-grained architecture (Pettey 
et al., 1987), a fine-grained architecture (Robertson, 1987; Gorges-
Schleuter, 1989; Manderick and Spiessens, 1989), or a hierarchical ar­
chitecture (Goldberg, 1989b; Gorges-Schleuter, 1997; Lin et al., 1997). 
Regardless of how parallelization is carried out, the key idea is to dis­
tribute the computational load on several processors thereby speeding-
up the overall GA run. Moreover, there exists a principled design theory 
for developing an efficient parallel GA and optimizing the key facts of 
parallel architecture, connectivity, and deme size (Cantu-Paz, 2000). 

For example, when the function evaluation time, Tf, is much greater than 
the communication time, T ,̂ which is very often the case, then a simple 
master-slave parallel GA—where the fitness evaluations are distributed 
over several processors and the rest of the GA operations are performed 
on a single processor—can yield hnear speed-up when the number of 

processors is less than or equal to •(hrn, and optimal speed-up when the 

number of processors equals J j-n, where n is the population size. 

Hybridization can be an extremely effective way of improving the perfor­
mance and effectiveness of Genetic Algorithms. The most common 
form of hybridization is to couple GAs with local search techniques and 
to incorporate domain-specific knowledge into the search process. A 
common form of hybridization is to incorporate a local search opera­
tor into the Genetic Algorithm by applying the operator to each mem­
ber of the population after each generation. This hybridization is often 
carried out in order to produce stronger results than the individual ap­
proaches can achieve on their own. However, this improvement in so­
lution quality usually comes at the expense of increased computational 
time (e.g. Burke et al., 2001). Such approaches are often called Memetic 
Algorithms in the literature. This term was first used by Moscato 
(1989) and has since been employed very widely. For more details 
about memetic algorithms in general, see Krasnogor and Smith (2005), 
Krasnogor et al. (2004), Moscato and Gotta (2003) and Moscato (1999). 

Of course, the hybridization of GAs can take other forms. Examples 
include: 
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• Initializing a GA population: e.g. Burke et al. (1998), Fleurent and 
Ferland (1994), Watson et al. (1999). 

• Repairing infeasible solutions into legal ones: e.g. Ibaraki (1997). 

• Developing specialized heuristic recombination operators: 
e.g. Burke et al. (1995). 

• Incorporating a case-based memory (experience of past attempts) 
into the GA process (Louis and McDonnell, 2004). 

• Heuristically decomposing large problems into smaller sub-
problems before employing a memetic algorithm: e.g. Burke and 
Newall (1999). 

Hybrid genetic algorithm and memetic approaches have demonstrated 
significant success in difficult real word application areas. A very small 
number of examples are included below (many more examples can be 
seen in the wider literature): 

• University timetabling: examination timetabling (Burke et al., 
1996, 1998; Burke and Newall, 1999) and course timetabling 
(Paechteretal., 1995, 1996). 

• Machine schedufing (Cheng and Gen, 1997). 

• Electrical power systems: unit commitment problems (Valenzuala 
and Smith, 2002); electricity transmission network maintenance 
scheduling (Burke and Smith, 1999); thermal generator mainte­
nance scheduling (Burke and Smith, 2000). 

• Sports scheduling (Costa, 1995). 

• Nurse rostering (Burke et al., 2001). 

• Warehouse scheduling (Watson et al., 1999). 

While GA practitioners have often understood that real-world or com­
mercial applications often require hybridization, there has been limited 
effort devoted to developing a theoretical underpinning of genetic algo­
rithm hybridization. However, the following list contains examples of 
work which has aimed to answer critical issues such as 

• the optimal division of labor between global and local searchers 
(or the right mix of exploration and exploitation) (Goldberg and 
Voessner, 1999); 

• the effect of local search on sampling (Hart and Belew, 1996); 

• hybrid GA modeling issues (Whitely, 1995). 
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The papers cited in this section are only a tiny proportion of the Hterature 
on hybrid genetic algorithms but they should provide a starting point for 
the interested reader. However, although there is a significant body of 
hterature existing on the subject, there are many research directions still 
to be explored. Indeed, considering the option of hybridizing a GA with 
other approaches is one of the suggestions we give in the Tricks of the 
Trade section at the end of the chapter. 

Time continuation, where the capabilities of both mutation and recombina­
tion are utilized to obtain a solution of as high quality as possible with a 
given limited computational resource (Goldberg, 1999b; Srivastava and 
Goldberg, 2001; Sastry and Goldberg, 2004a, 2004b). Time utiHzation 
(or continuation) exploits the tradeoff between the search for solutions 
with a large population and a single convergence epoch or using a small 
population with multiple convergence epochs. 

Early theoretical investigations indicate that when the BBs are of equal 
(or nearly equal) salience and both recombination and mutation opera­
tors have the linkage information, then a small population with multi­
ple convergence epochs is more efficient. However, if the fitness func­
tion is noisy or has overlapping building blocks, then a large population 
with a single convergence epoch is more efficient (Sastry and Goldberg, 
2004a, 2004b). On the other hand, if the BBs of the problem are of 
non-uniform salience, which essentially means that they require serial 
processing, then a small population with multiple convergence epochs is 
more efficient (Goldberg, 1999b). Nevertheless, much work needs to be 
done to develop a principled design theory for efficiency enhancement 
via time continuation and to design competent continuation operators to 
reinitiahze populations between epochs. 

Evaluation relaxation, where an accurate, but computationally expensive fit­
ness evaluation is replaced with a less accurate, but computationally in­
expensive fitness estimate. The low-cost, less-accurate fitness estimate 
can either be (1) exogenous, as in the case of surrogate (or approximate) 
fitness functions (Jin, 2003), where extemal means can be used to de­
velop the fitness estimate, or (2) endogenous, as in the case of fitness 
inheritance (Smith et al., 1995) where the fitness estimate is computed 
internally and is based on parental fitnesses. 

Evaluation relaxation in GAs dates back to early, largely empirical work 
of Grefenstette and Fitzpatrick (1985) in image registration (Fitzpatrick 
et al., 1984) where significant speed-ups were obtained by reduced ran­
dom sampling of the pixels of an image. Approximate evaluation has 
since been used extensively to solve complex optimization problems 
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across many applications, such as structural engineering (Barthelemy 
and Haftka, 1993) and warehouse scheduling at Coors Brewery (Watson 
etal , 1999). 

While early evaluation relaxation studies were largely empirical in na­
ture, design theories have since been developed to understand the ef­
fect of approximate surrogate functions on population sizing and conver­
gence time and to optimize speed-ups in approximate fitness functions 
with known variance (Miller and Goldberg, 1996b) in, for example, sim­
ple functions of known variance or known bias (Sastry, 2001), and in 
fitness inheritance (Sastry et al, 2001, 2004; Pelikan and Sastry, 2004). 

4.2 TRICKS OF THE TRADE 
In this section we present some suggestions for the reader who is new to the 

area of genetic algorithms and wants to know how best to get started. Fortu­
nately, the ideas behind genetic algorithms are intuitive and the basic algorithm 
is not complex. Here are some basic tips. 

• Start by using an "off the shelf" genetic algorithm. It is pointless devel­
oping a complex GA, if your problem can be solved using a simple and 
standard implementation. 

• There are many excellent software packages that allow you to implement 
a genetic algorithm very quickly. Many of the introductory texts are 
suppHed with a GA implementation and GA-LIB is probably seen as the 
software of choice for many people (see below). 

• Consider carefully your representation. In the early days, the majority of 
implementations used a bit representation which was easy to implement. 
Crossover and mutation were simple. However, many other representa­
tions are now used, some utilizing complex data structures. You should 
carry out some research to determine what is the best representation for 
your particular problem. 

• A basic GA will allow you to implement the algorithm and the only 
thing you have to supply is an evaluation function. If you can achieve 
this, then this is the fastest way to get a prototype system up and running. 
However, you may want to include some problem specific data in your 
algorithm. For example, you may want to include your own crossover 
operators (in order to guide the search) or you may want to produce the 
initial population using a constructive heuristic (to give the GA a good 
starting point). 

• In recent times, many researchers have hybridized GAs with other search 
methods (see Section 4.1.3). Perhaps the most common method is to in-
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elude a loeal seareher after the crossover and mutation operators (some­
times known as a memetic algorithm). This local searcher might be 
something as simple as a hill cHmber, which acts on each chromosome 
to ensure it is at a local optimum before the evolutionary process starts 
again. 

• There are many parameters required to run a genetic algorithm (which 
can be seen as one of the shortcomings). At a minimum you have the 
population size, the mutation probability, and the crossover probability. 
The problem with having so many parameters to set is that it can take a 
lot of experimentation to find a set of values which solves your particular 
problem to the required quality. A broad rule of thumb, to start with, is 
to use a mutation probability of 0.05 (De Jong, 1975), a crossover rate 
of 0.6 (De Jong, 1975) and a population size of about 50. These three 
parameters are just an example of the many choices you are going to 
have to make to get your GA implementation working. To provide just 
a small sample: which crossover operator should you use?... which mu­
tation operator?... Should the crossover/mutation rates be dynamic and 
change as the run progresses? Should you use a local search operator? 
If so, which one, and how long should that be allowed to run for? What 
selection technique should you use? What replacement strategy should 
you use? Fortunately, many researchers have investigated many of these 
issues and the additional sources section below provides many suitable 
references. 

SOURCES OF ADDITIONAL INFORMATION 

Software 
• GALib, http://lancet.mit.edu/ga/. If you want GA software then GALIB 

should probably be your first port of call. The description (from the web 
page) says 

GAlib contains a set of C++ genetic algorithm objects. The library in­
cludes tools for using genetic algorithms to do optimization in any C++ 
program using any representation and genetic operators. The documenta­
tion includes an extensive overview of how to implement a genetic algo­
rithm as well as examples illustrating customizations to the GAlib classes. 

• GARAGe, http://garage.cps.msu.edu/. Genetic Algorithms Research 
and Applications Group. 

• LGADOSinColey(1999). 

• NeuroDimension, http://www.nd.com/genetic/ 



116 SASTRY, GOLDBERG AND KENDALL 

• Simple GA (SGA) in Goldberg (1989b). 

• Solver.com, http://www.solver.com/ 

• Ward Systems Group Inc., http://www.wardsystems.com/ 

• Other packages, http://www-2.cs.cmu.edu/afs/cs/project/ 
ai-repository/ai/areas/genetic/ga/systems/O.html. This URL contains 
links to a number of genetic algorithm software libraries. 

Introductory Material 
There are many pubhcations which give excellent introductions to ge­

netic algorithms: see Holland (1975), Davis (1987), Goldberg (1989b), Davis 
(1991), Beasley et al. (1993), Forrest (1993), Reeves (1995), Michalewicz 
(1996), Mitchell (1996), Falkenauer (1998), Coley (1999), and Man 
etal. (1999). 

Memetic Algorithms 
There are some excellent introductory texts for memetic algorithms: see 

RadcHffe and Surry (1994), Moscato (1999, 2001), Moscato and Gotta (2003), 
Hart et al. (2004), Krasnogor et al. (2004), Krasnogor and Smith (2005). 

You might also like to refer to the Memetic Algorithms Home Page at 

• http://www.densis.fee.unicamp.br/~moscato/memetic_home.html 

Historical Material 
An excellent work which brings together the early pioneering work in the 

field is Fogel (1998). 

Conferences and Journals 
There are a number of journals and conferences which publish papers con­

cerned with genetic algorithms. The key conferences and journals are listed 
below, but remember that papers on Genetic Algorithms are published in many 
other outlets too. 

Journals 

• Evolutionary Computation, http://mitpress.mit.edu/ 
catalog/item/default. asp?tid=25&ttype=4 

• Genetic Programming and Evolvable Machines, 
http://www.kluweronline.com/issn/1389-2576/contents 
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• IEEE Transactions on Evolutionary Computation, 
http://www.ieee-nns.org/pubs/tec/ 

Conferences 

• Congress on Evolutionary Computation (CEC) 

• Genetic and Evolutionary Computation Conference (GECCO) 

• Parallel Problem Solving in Nature (PPSN) 

• Simulated Evolution and Learning (SEAL) 
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