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Foreword 

This is not so much a foreword as a testimonial. As I embarked on the 
pleasant journey of reading through the chapters of this book, I became con
vinced that this is one of the best sources of introductory material on the search 
methodologies topic to be found. The book's subtitle, "Introductory Tutorials 
in Optimization and Decision Support Techniques", aptly describes its aim, 
and the editors and contributors to this volume have achieved this aim with 
remarkable success. 

The chapters in this book are exemplary in giving useful guidelines for im
plementing the methods and frameworks described. They are tutorials in the 
way tutorials ought to be designed. I found no chapter that did not contain 
interesting and relevant information, and found several chapters that can only 
be qualified as dehghtful. 

Those of us who have devoted a substantial portion of our energies to the 
study and elaboration of search methodologies often wish we had a simple 
formula for passing along the core notions to newcomers to the area. (I must 
confess, by the way, that I qualify as a relative newcomer to some of the ar
eas in this volume.) While simplicity, hke beauty, to some degree lies in the 
eyes of the beholder, and no universal or magical formula for achieving it ex
ists, this book comes much closer to reaching such a goal than I would have 
previously considered possible. It will occupy a privileged position on my list 
of recommended reading for students and colleagues who want to get a taste 
for the basics of search methodologies, and who have an interest in equipping 
themselves to probe more deeply. 

If good books may be likened to ladders that help us ascend to higher rungs 
of knowledge and understanding, we all know there are nevertheless many 
books written in technical areas that seem to be more like stumbling blocks, 
or at best broken stepping stools that deposit us in isolated nooks offering no 
clear access to continued means of ascent. Not so the present book. Its chapters 
lead to ideal sites for continued exploration, and offer compelling motivation 
for further pursuit of its ideas and frameworks. If my reckoning is not com
pletely amiss, those who read this volume will find abundant reasons for shar-
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ing my conviction that we owe its editors and authors a true debt of gratitude 
for putting this work together. 

Fred Glover, Professor 
Leeds School of Business, University of Colorado 
Boulder, CO, USA 



Preface 

We first had the idea for this book over three years ago. It grew out of a 
one day workshop entitled, Introductory Tutorials in Search, Optimization and 
Decision Support Methodologies (INTROS), which was held in Nottingham 
in August 2003. The aim of the workshop was to dehver basic introductions 
to a broad spectrum of search methodologies from across disciplinary bound
aries. It was supported by the UK Engineering and Physical Sciences Research 
Council (EPSRC) and the London Mathematical Society (LMS) and was at
tended by over one hundred delegates from all over the world. We were very 
fortunate to have eleven of the world's leading scientists in search methodolo
gies presenting a range of stimulating and highly informative tutorials. All 
of the INTROS presenters have contributed to this volume and we have en
hanced the content by inviting additional, specifically targeted, complementary 
chapters. We are pleased to be able to present such a comprehensive, multi-
disciplinary collection of tutorials in this crucially important research area. 

We would like to take this opportunity to thank the many people who have 
contributed towards the preparation of this book. We owe a great debt of grat
itude to the authors of the chapters. As one would expect from such a distin
guished group of scientists, they have prepared their excellent contributions in 
a thoroughly reliable and professional manner. Without them, of course, the 
book would not have been possible. We are extremely grateful to our copy 
editor. Piers Maddox who excelled himself in bringing together, into one co
herent structure, the various documents that we sent to him. We are also very 
grateful to Gary Folven, Carolyn Ford and their staff at Springer who have 
provided us with invaluable advice and support during every step of the way. 
We would like to offer our gratitude to Fred Glover for writing the foreword 
for the book. His warm praise is particularly pleasing. A special thank you 
should go to Emma-Jayne Dann and Alison Payne for all the administrative 
support they have given us, both in the preparation of this volume and in the 
organization of the INTROS workshop that underpinned it. We are also very 
thankful to EPSRC and LMS for the financial support they gave us to hold this 
workshop. Finally, we offer a special thank you to the INTROS delegates for 
their enthusiasm and their encouragement. 
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We hope you enjoy reading this volume as much as we have enjoyed putting 
it together. We are already planning a second edition and, if you have any com
ments which can help us improve the book, please do not hesitate to contact 
us. We would welcome your advice. 

EDMUND K. BURKE AND GRAHAM KENDALL 

ekb@cs.nott.ac.uk and gxk@cs.nott.ac.uk 
June 2005 



Chapter 1 

INTRODUCTION 

Edmund K. Burke, Graham Kendall 
Automated Scheduling, Optimisation and Planning Research Group 
The School of Computer Science and IT, University of Nottingham, UK 

1.1 INTER-DISCIPLINARY DECISION SUPPORT: 
MOTIVATION 

The investigation of search and optimization technologies underpins the de
velopment of decision support systems in a wide variety of applications across 
industry, commerce, science and government. There is a significant level of 
diversity among optimization and computational search applications. This can 
be evidenced by noting that a very small selection of such applications includes 
transport scheduling, bioinformatics optimization, personnel rostering, medi
cal decision support and timetabling. More examples of relevant applications 
can be seen in Pardalos and Resende (2002), Leung (2004) and Dell'Amico et 
al. (1997). The exploration of decision support methodologies is a crucially im
portant research area. The potential impact of more effective and more efficient 
decision support methodologies is enormous and can be illustrated by consid
ering just a few of the potential benefits: more efficient production scheduling 
can lead to significant financial savings; higher quality personnel rosters lead 
to a more contented workforce; more efficient healthcare scheduling will lead 
to faster treatment (which could save lives); more effective cutting/packing 
systems can reduce waste; better delivery schedules can reduce fuel emissions. 

This research area has received significant attention from the scientific com
munity across many different academic disciplines. Indeed, a quick look at 
any selection of key papers which have impacted upon search, optimization 
and decision support will demonstrate that the authors have been based in a 
number of different departments including Computer Science, Mathematics, 
Engineering, Business, Management, and others. It is clearly the case that 
the investigation and development of decision support methodologies is inher
ently multi-disciphnary. It lies firmly at the interface of Operational Research 
and Artificial Intelhgence (among other disciplines). However, not only is the 
underlying methodology inherently inter-disciplinary but the broad range of 
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application areas also cuts across many disciplines and industries. We firmly 
believe that scientific progress in this crucially important area will be made 
far more effectively and far more quickly by adopting a broad and inclusive 
multi-discipUnary approach to the international scientific agenda in this field. 
The way forward is inter-disciplinary. 

This observation provides one of the key motivations for this book. The 
book is aimed primarily at first-year postgraduate students and final-year un
dergraduate students. However, we have also aimed it at practitioners and at 
the experienced researcher who wants a brief introduction to the broad range 
of decision support methodologies that is available in the scientific literature. 
In our experience, the key texts for these methodologies lie across a variety of 
volumes. This reflects the broad range of disciplines that are represented here. 
We wanted to bring together a series of entry-level tutorials, written by world-
leading scientists from across the disciplinary range, in one single volume. 

1.2 THE STRUCTURE OF THE BOOK 
This book was originally motivated by the thought of being able to give first 

year Ph.D. students a single volume that would give them a basic introduction 
to the various search and optimization techniques that they might need to use 
during their research. In this respect the book can be read in a sequential man
ner. However, each chapter also stands alone and so the book can be dipped 
into when you come across a technique which you are not familiar with, or just 
need to find some general references on a particular topic. 

If you want to read the book all the way through, we hope that the way we 
have ordered the chapters makes sense. We start by introducing (in Chapters 
2 and 3) some classical search and optimization techniques which, although 
not always suitable (particularly when your problem has a very large search 
space), are still important to have in your ''tool box" of methodologies. Many 
of the other chapters introduce various search and optimization techniques, 
some of which have been used for over 30 years (e.g. genetic algorithms. 
Chapter 4) and some which are relatively new (e.g artificial immune systems. 
Chapter 13). Some of the chapters consider some of the more theoretical as
pects of search and optimization. The chapter by Darrell Whitley and John Paul 
Watson, for example, introduces Complexity Theory and the No Free Lunch 
Theorem (Chapter 11) whilst Colin Reeves considers Fitness Landscapes in 
Chapter 19. 

One element of every chapter is a section called Tricks of the Trade. We 
recognize that it is sometimes difficult to know where to start when you first 
come across a new problem. Which technique or methodology is the most 
appropriate? This is a very difficult question to answer and forms the basis of 
much research in the area. It often requires experiments with a range of these 
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techniques. Tricks of the Trade is designed to give you some guidelines on 
how you should get started and what you should do, if you run into problems. 
Although tricks of the trade is towards the end of each chapter, we believe that 
it could be one of the first sections you read. 

We have also included Sources of Additional Information in every chapter. 
These sections are designed as pointers to useful books, web pages, etc, which 
might be where you turn to next, once you have read the chapter in this book. 

As this book is aimed primarily at the beginner (first-year Ph.D. student, 
final-year undergraduate, practitioner/researcher learning a new technique, etc) 
we thought it might be useful to explain some basic concepts which many 
books just assume that the reader already knows. Indeed, our own Ph.D. stu
dents and final-year undergraduates often make this complaint. We realize that 
the following list is not complete. Nor can it ever be, as we are not aiming 
to write a comprehensive encyclopedia. If you feel that any important terms 
are missing, please let the editors (authors of this introduction) know and we 
will consider including them in future editions. All of these concepts are, pur
posely, explained in an informal way so that we can get the basic ideas across 
to the reader. More formal definitions can be found elsewhere (see the Sources 
of Additional Information and References), including in the chapters of this 
book. 

1.3 BASIC CONCEPTS AND UNDERLYING ISSUES 
In this section we will go through a number of basic terms and issues and 

offer a simple description or explanation. In the spirit of attempting to explain 
these concepts to beginners, we will restrict the formal presentation of these 
concepts as much as possible. Instead, we will attempt to explain the basic 
ideas which underpin the terminology and the (often mathematical) formula
tions. Many of these terms are described and discussed throughout the book 
(see the index). 

Artificial intelligence Artificial Intelligence is a broad term which can be 
thought of as covering the goal of developing computer systems which can 
solve problems which are usually associated with requiring human level in
telligence. There are a number of different definitions of the term and there 
has been a significant amount of debate about it. However, the philosophical 
arguments about what is or is not Artificial Intelligence do not fall within the 
remit of this book. The interested reader is directed to the following (small) 
sample of general AI books: Negnevitsky (2005), Russell and Norvig (2003), 
Callan (2003), Luger (2002), MacCarthy (1996), Cawsey (1998), Rich and 
Knight (1991) and Nilsson (1998). 
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Operational research (Operations research) These two terms are com
pletely interchangeable and are often abbreviated to OR. Different countries 
tend to use one or other of the terms but there is no significant difference. The 
field was estabHshed in the 1930s and early 1940s as scientists in Britain be
came involved in the operational activities of Britain's radar stations. After 
the war, the field expanded into applications within industry, commerce and 
govemment and spread throughout the world. Gass and Harris, in the preface 
to their excellent Encyclopedia of Operations Research and Management Sci
ence (Gass and Harris, 2001), present several definitions. However, as with 
Artificial InteUigence (above), we are not really concerned with the intricacies 
of different definitions in this book. The first definition they give says 

Operations Research is the application of the methods of science to complex 
problems arising in the direction and management of large systems of men, ma
chines, materials and money in industry, business, government and defense. 

This presents a reasonable summary of what the term means. For more dis
cussion, and a range of definitions, on the topic, see Bronson and Naadimuthu 
(1997), Carter and Price (2001), Hillier and Lieberman (2005), Taha (2002), 
Urry (1991) and Winston (2004). For an excellent and fascinating early history 
of the field see Kirby (2003). 

Management science This term is sometimes abbreviated to MS and it can, 
to all intents and purposes, be interchanged with OR. Definitions can be found 
in Gass and Harris (2001). However, they sum up the use of these terms nicely 
in their preface when they say 

Together, OR and MS may be thought of as the science of operational processes, 
decision making and management. 

Feasible and infeasible solutions The idea of feasible and infeasible solu
tions is intuitive but let us consider the specific problem of cutting and packing, 
so that we have a concrete example which we can relate to. This problem arises 
in many industries: for example, in the textile industry where pieces for gar
ments have to be cut from rolls of material, in the newspaper industry where 
the various text and pictures have to be laid out on the page and in the metal 
industry where metal shapes have to be cut from larger pieces of metal—see 
Dowsland and Dowsland (1992) for a more detailed review of this area. Of 
course, all these industries are different but let us consider a generic problem 
where we have to place a number of pieces onto a larger piece so that we can 
cut out the smaller pieces. Given this generic problem a feasible solution can 
be thought of as all the shapes being placed onto the larger sheet so that none 
of them overlap and all the pieces lie within the confines of the larger sheet. If 
some of the pieces overlap each other or do not fit onto the larger sheet, then 
the solution is infeasible. Of course, the problem definition is important when 
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considering whether or not a given solution is feasible. For example, we could 
relax the constraint that says that all of the shapes have to be placed on the 
larger sheet, as our problem might state that we are trying to cut out as many 
of the smaller shapes as possible, but it is not imperative that we include all 
the smaller pieces. A feasible solution is often defined as one that satisfies the 
hard constraints (see below). 

Hard constraints For any given problem, there are usually constraints (con
ditions) that have to be satisfied. These are often called hard constraints. To 
continue with the cutting and packing example from above, the condition that 
no pieces can overlap is an example of a hard constraint. To take a new ex
ample, if we consider a nurse rostering problem, then an example of a hard 
constraint is the condition that no nurse can be allocated to two different shifts 
at the same time. If we violate a hard constraint, it leads to an infeasible so
lution. More information about research on nurse rostering problems can be 
seen in Burke et al. (2004). 

Soft constraints and evaluation functions A soft constraint is a condition 
that we would hke to satisfy but which is not absolutely essential. As an ex
ample, from nurse rostering again, we may have a soft constraint that says that 
we would like nurses to be able to express preferences about which shifts they 
would like to work. However, if this constraint is not fully met, a solution is 
still feasible. It just means that another solution which does meet the condi
tion (i.e. more nurses have their personal working preferences met) would be 
of higher quality. Of course, there could be many competing soft constraints, 
which may provide a trade off in the evaluation function (measure of the qual
ity of the solution which is also sometimes known as the objective, fitness or 
penalty function), as the improvement of one soft constraint may cause other 
soft constraint(s) to become worse. This is a situation where a multi-objective 
approach might be apphcable (see Chapter 10). 

Many problems have an evaluation function represented by a sum of each of 
the penalty values obtained for not satisfying each of the various constraints. 
Some problems simply ignore the hard constraints in the evaluation function 
and just disregard infeasible solutions. Another approach is to set a penalty 
value for the hard constraints but to set it very high so that any solution which 
violates the hard constraints is given a very high evaluation. A further possi
bility is to have dynamic penalties so that, at the start of the search, the hard 
constraints are given relatively low penalty values, so that the infeasible search 
space is explored. As the search progresses, the hard constraint penalty val
ues are gradually raised so that the search eventually only searches the feasible 
regions of the search space. 
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Deterministic search This term refers to a search method or algorithm which 
always returns the same answer, given exactly the same input and starting con
ditions. Several of the methods presented in this book are not deterministic i.e. 
there is an element of randomness in the approach so that different runs on ex
actly the same starting conditions can produce different solutions. Note, how
ever, that the term ''non-deterministic''' can mean something more than simply 
not being deterministic. See Chapter 11 for an explanation. 

Optimization Within the context of this book, optimization can be thought 
of as the process of attempting to find the best possible solution amongst all 
those available. Therefore, the task of optimization is to model your prob
lem in terms of some evaluation function (which represents the quality of a 
given solution) and then employ a search algorithm to minimize (or maximize, 
depending on the problem) that objective function. Most of the chapters in 
this book are describing methodologies which are aiming to optimize some 
function. However, most of the problems are so large that it is impossible to 
guarantee that the solution obtained is the optimal one. The term optimization 
can lead to confusion because it is sometimes also used to describe a process 
which returns the guaranteed optimal solution (which is, of course, subtly dif
ferent from the process which just aims to find the best solution possible). 

Local and global optimum Figure 1.1 illustrates the difference between a 
local and global optimum. A local optimum is a point in the search space where 
all neighboring solutions are worse than the current solution. In Figure 1.1, 
there are four local optima. A global optimum is a point in the search space 
where all other points in the search space are worse than (or equal to) the 
current one. 

Exhaustive search By carrying out an exhaustive search, you search every 
possible solution and return the optimal (best) one. For small problems, this is 
an acceptable strategy, but as problems become larger it becomes impossible 
to carry out an exhaustive search. The types of problem that often occur in real 
world search and optimization problems tend to grow very large very quickly. 
We will illustrate this by considering a very well known problem: the travel
ing salesman problem (often referred to as TSP). This can be thought of as the 
problem of attempting to minimize the distance taken by a traveling salesman 
who has to visit a certain number of cities exactly once and return home. See 
Johnson and McGeoch (1997) or Lawler et al. (1990) for more details about 
the TSP. With a very small number of cities, the number of possible solutions 
is relatively small and a computer method can easily exhaustively check all 
possibilities (the search space) and return the best one. For example, the prob
lem with five cities has a search space of size 12. So all 12 possibihties can 
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be very easily checked. However, for a 50-city problem (10 times the number 
of cities), the number of solutions rises to about 10^ .̂ Michalewicz and Fo-
gel, in their excellent book on modem heuristics, consider exactly this 50 city 
problem. They say. 

There are only 1,000,000,000,000,000,000,000 [10^^] liters of water on the planet 
so a 50-city TSP has an unimaginably large search space. Literally, it's so large 
that as human, we simply can't conceive of sets with this many elements. 

(Michalewicz and Fogel, 2004) 

Therefore, for large problems (and large does not have to be that large), an 
exhaustive search is simply not an option. However, even if it is a possibility 
(i.e. the search space is small enough to allow us to carry out an exhaustive 
search) we must know how to systematically navigate the search space. This 
is not always possible. 

Complexity This term refers to the study of how difficult search and opti
mization problems are to solve. It is covered in Chapter 11. 

Order (Big O notation) This term and an associated notation is used at vari
ous places in this book and so we define it here. Suppose we have two functions 
f{x) and g{x) where x is, of course, a variable. We say that g{x) is of the order 
of f{x) written g{x) = 0( / (x) ) if, for some constant value K, g{x) < Kf(x) 
for all values of ^ which are greater than K. This notation is often used when 
discussing the time complexity of search algorithms. In a certain sense, f{x) 
bounds g(x) once the values of x get beyond the value of K. 

Heuristics When faced with the kind of problem discussed in the exhaustive 
search section above, we have to accept that we need to develop an approach 
to obtain high-quality solutions—but optimality cannot be guaranteed (without 
checking out all the possibihties). Such an approach is called a heuristic. The 
following two definitions provide good descriptions. 

A heuristic technique (or simply heuristic) is a method which seeks good (i.e. 
near-optimal) solutions at a reasonable computation cost without being able to 
guarantee optimality, and possibly not feasibility. Unfortunately, it may not even 
be possible to state how close to optimality a particular heuristic solution is. 

(Reeves, 1996) 

A "rule of thumb" based on domain knowledge from a particular application, 
that gives guidance in the solution of a problem Heuristics may thus be very 
valuable most of the time but their results or performance cannot be guaranteed. 

(Oxford Dictionary of Computing, 1996) 

There are many heuristic methods available to us. Some examples are simu
lated anneaUng (Chapter 7), genetic algorithms (Chapter 4), genetic program
ming (Chapter 5) and tabu search (Chapter 6). The term "approximate" is 
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sometimes used in connection with heuristic methods but it is important not to 
confuse with approximation methods (see Chapter 18). 

Constructive heuristics Constructive heuristics refer to the process of build
ing an initial solution from scratch. Take university examination timetabling 
as an example (Burke and Petrovic, 2002; Petrovic and Burke, 2004; Schaerf, 
1999). One way to generate a solution is to start with an empty timetable and 
gradually schedule examinations until they are all timetabled. The order in 
which the examinations are placed onto the timetable is often important. Ex
aminations which are more difficult to schedule (as determined by a heuristic 
measure of difficulty) are scheduled first in the hope that the easier examina
tions can fit around the difficult ones. 

Constructive heuristics are usually thought of as being fast as they are often 
a single-pass approach. 

Local search heuristics Local search can be thought of as a heuristic mecha
nism where we consider neighbors of the current solution as potential replace
ments. If we accept a new solution from this neighborhood, then we move 
to that solution and then consider its neighbors (see hill climbing (below) for 
some initial discussion of this point). What we mean by neighbor is dependent 
upon the problem solving situation that we are confronted with. Some of the 
techniques presented in this book can be described as local search methods. 
For example, see simulated annealing (Chapter 7) and tabu search (Chapter 6). 
Hill climbing is also a local search method (see below). For more information 
about local search see Aarts and Lenstra (1997). Note the difference between 
a constructive heuristic which builds a solution from scratch and a local search 
heuristic which moves from one solution to another. It is often the case that a 
constructive heuristic is used to generate a solution which is employed as the 
starting point for local search. 

Hill climbing Hill climbing is probably the most basic local search algo
rithm. It is easy to understand and implement but suffers from getting stuck 
at a local optimum (see below). In the following discussion, we will assume 
we are trying to maximize a certain value. Of course, minimizing a certain 
value is just an analogous problem, but then we would be descending rather 
than climbing. 

The idea behind hill climbing is to take the current solution and generate a 
neighbor solution (see local search) and move to that solution only if it has a 
higher value of the evaluation function (see above). The algorithm terminates 
when we cannot find a better-quality solution. The problem with hill cHmb-
ing is that it can easily get stuck in a local optimum (see above). Consider 
Figure 1.1. 
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Global 
Optimum 

Local Optima 

Current 
Solution 

Figure LL Hill Climbing getting stuck in a local optimum and the concept of local and global 
optima. 

If the current solution is the one shown in Figure 1.1, then hill climbing 
will only be able to find one of the local optima shown (the one directly above 
it in this case). At that point, there will be no other better solutions in its 
neighborhood and the algorithm will terminate. 

Both simulated anneahng (Chapter 7) and tabu search (Chapter 6) are vari
ations of hill chmbing but they incorporate a mechanism to help the search 
escape from local optima. 

Metaheuristics This term refers to a certain class of heuristic methods. Fred 
Glover first used it and he defines it (Glover, 1997) as follows: 

A meta-heuristic refers to a master strategy that guides and modifies other heuris
tics to produce solutions beyond those that are normally generated in a quest for 
local optimality. The heuristics guided by such a meta-strategy may be high 
level procedures or may embody nothing more than a description of available 
moves for transforming one solution into another, together with an associated 
evaluation rule. 

Osman and Kelly (1996) offer the following definition: 

A meta-heuristic is an iterative generation process which guides a subordinate 
heuristic 

The study and development of metaheuristics has become an extremely im
portant area of research into search methodologies. In common usage, in the 
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literature, the term tends to be used to refer to the broad collection of relatively 
sophisticated heuristic methods that include simulated annealing, tabu search, 
genetic algorithms, ant colony methods and others (all of which are discussed 
in detail in this book). The term is employed sometimes with and sometimes 
without the hyphen in the literature. It is also sometimes interchanged with 
the term "modem heuristics" (see Ray ward-Smith et al. (1996). For more in
formation about metaheuristics, see Glover and Kochenberger (2003), Osman 
and Kelly (1996), Voss et al. (1999), Ribeiro and Hansen (2002) and Resende 
and de Sousa (2004). 

Evolutionary methods Evolutionary methods can be thought of as repre
senting a subset of the metaheuristic approaches and are typified by the fact that 
they maintain a population of candidate solutions and these solutions compete 
for survival. Such approaches are inspired by evolution in nature. 

Some of the methods in this book are evolutionary. Chapter 4 (Genetic 
Algorithms) represents perhaps the best known evolutionary approach but there 
are many others including genetic programming (Chapter 5) and ant algorithms 
(Chapter 14). 

Hyper-heuristics Hyper-heuristics can be confused with metaheuristics but 
the distinction between the two terms is quite clear. Hyper-heuristics are sim
ply methods which search through a search space of heuristics (or search meth
ods). They can be defined as heuristics to choose heuristics. Most implemen
tations of metaheuristics explore a search space of solutions to a given prob
lem but they can be (and sometimes are) employed as hyper-heuristics. The 
term hyper-heuristic only tells you that we are operating on a search space of 
heuristics. It tells you nothing else. We may be employing a metaheuristic to 
do this search and we may not. The actual search space being explored may 
include metaheuristics and it may not (but very little work has actually been 
done which includes metaheuristics among the search space being addressed). 
Chapter 17 describes hyper-heuristics in more detail and readers are also re
ferred to Burke et al. (2003). 

1.4 SOURCES OF ADDITIONAL INFORMATION 
This section provides a hst of joumals (in alphabetical order) across a range 

of disciplines that regularly pubhsh papers upon aspects of decision support 
methodologies. This list is certainly not exhaustive. However, it provides a 
starting point for the new researcher and that is the sole purpose of presenting 
it here. We have purposefully not provided URL links to the joumals as many 
will change after going to press, but an internet search for the journal title will 
quickly locate the home page. 
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ACM Journal of Experimental Algorithmics 

Annals Of Operations Research 

Applied Artificial Intelligence 

Applied Intelligence 

Artificial Intelligence 

Artificial Life 

Computational Intelligence 

Computer Journal 

Computers & Industrial Engineering 

Computers & Operations Research 

Decision Support Systems 

Engineering Optimization 

European Journal Of Information Systems 

European Journal Of Operational Research 

Evolutionary Computation 

Fuzzy Sets And Systems 

Genetic Programming and Evolvable Machines 

IEEE Transactions On Computers 

IEEE Transactions On Evolutionary Computation 

IEEE Transactions On Fuzzy Systems 

IEEE Transactions On Neural Networks 

IEEE Transactions On Systems Man And Cybernetics Part A—Systems 
And Humans 

IEEE Transactions On Systems Man And Cybernetics Part B—Cybernetics 

IEEE Transactions On Systems Man And Cybernetics Part C—Applications 
And Review 

HE Transactions 

INFORMS Journal On Computing 
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Interfaces 

International Journal Of Systems Science 

International Transactions On Operational Research 

Journal Of Artificial Intelligence Research 

Journal Of Global Optimization 

Journal Of Heuristics 

Journal Of Optimization Theory And Applications 

Journal of Scheduling 

Journal Of The ACM 

Journal Of The Operational Research Society 

Knowledge-Based Systems 

Machine Learning 

Management Science 

Mathematical Programming: Series A and B 

Mathematics of Operations Research 

Neural Computation 

Neural Computing & Applications 

Neural Networks 

Neurocomputing 

Omega - International Journal of Management Science 

Operations Research 

Operations Research Letters 

OR Spectrum 

SIAM Journal on Computing 

SIAM Journal On Optimization 

The following fist of references just includes those volumes and papers 
which give an overview of search and optimization methodologies and some 
well studied search/optimization problems. More detailed bibliographies and 
sources of additional information are given at the end of each chapter through
out the book. 
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CLASSICAL TECHNIQUES 

Kathryn A. Dowsland 
Gower Optimal Algorithms Ltd 
Swansea, UK 
and 
The School of Computer Science and IT 
University of Nottingham, UK 

2.1 INTRODUCTION 
The purpose of this chapter is to provide an introduction to three classi

cal search techniques, branch and bound, dynamic programming and network 
flow programming, all of which have a well estabhshed record in the solu
tion of both classical and practical problems. All three have their origins in, 
or prior to, the 1950s and were the result of a surge in interest in the use of 
mathematical techniques for the solution of practical problems. The timing 
was in part due to developments in Operations Research in World War 11, but 
was also spurred on by increasing competition in the industrial sector and the 
promise of readily accessible computing power in the foreseeable future. A 
fourth technique belonging to this class, that of Integer Programming, is cov
ered in Chapter 3. Given their age, it is not surprising that they no longer 
generate the same level of excitement as the more modem approaches covered 
elsewhere in this volume, and as a result they are frequently overlooked. This 
effect is reinforced as many texts such as this omit them—presumably because 
they have already been covered by a range of sources aimed at a wide variety of 
different abilities and backgrounds. In this volume we provide an introduction 
to these well-established classics alongside their more modem counterparts. 
Although they have shortcomings, many of which the more recent approaches 
were designed to address, they still have a role to play both as stand-alone 
techniques and as important ingredients in hybridized solution methods. 

The chapter is meant for beginners and it is possible to understand and use 
the techniques covered without any prerequisite knowledge. However, some of 
the examples in the chapter are based on problems in graph theory. In all cases, 
the problems and speciahst terms are defined in full, but a basic knowledge of 
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graph theory terminology such as that provided in Balakrishnan (1997) would 
be useful. Some of the examples also belong to a class of problems known 
as linear programs (LPs) and some of the discussion in the section on net
work flows makes use of the relationship between network flow problems and 
linear programming problems. Although knowledge of LPs is not necessary 
to understand the algorithms or examples as these are all couched in purely 
combinatorial terms we start the chapter with a brief introduction to linear pro
gramming. Further details can be found in Anderson et al. (1997). 

The chapter is organized as follows. The overview of LPs is followed by 
three sections introducing branch and bound, dynamic programming and net
work flow programming. In each case an introductory description is followed 
by two or more examples of their use in solving different problems, includ
ing a worked numerical example in each case. Each section ends with a brief 
discussion of more advanced issues. Section 2.6 looks at some problems that 
frequently occur as sub-problems in the solution of more complex problems 
and suggests algorithms based on the techniques covered in Sections 2.3-2.5 
for their solution. Section 2.7 takes a brief look at potential future applications 
and Section 2.8 provides some hints and tips on how to get started with each of 
the techniques. Additional sources of information not covered in the references 
are given at the end of the chapter. 

2.2 LINEAR PROGRAMMING 
2.2.1 Introduction 

This section provides a brief overview of those aspects of LPs that are rele
vant to the remainder of this chapter. We start by outlining the basic features of 
an LP model and then go on to look at an important concept of such models— 
that of duality. We do not go into any detail with regard to solution algorithms 
for two reasons. Firstly, they are not necessary in order to understand the 
material presented in the remainder of the chapter. Secondly, LP packages and 
solution code are available from a wide variety of sources so that it is no longer 
necessary for a potential user to develop their own solution code. 

2.2.2 The Linear Programming Form 
A linear programming problem is an optimization problem in which both 

the objective (i.e. the expression that is to be optimized) and the constraints 
on the solution can be expressed as a series of linear expressions in the de
cision variables. If the problem has n variables then the constraints define a 
set of hyper-planes in «-dimensional space. These are the boundaries of an n-
dimensional region that defines the set of feasible solutions to the problem and 
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is known as the feasible region. The following example illustrates the form of 
a simple linear programming problem. 

A Simple Example A clothing manufacturer makes three different styles of 
T-shirt. Style 1 requires 7.5 minutes of cutting time, 12 minutes of sewing 
time, 3 minutes of packaging time and sells at a profit of £3. Style 2 requires 
8 minutes of cutting time, 9 minutes of sewing time, 4 minutes of packaging 
time and makes £5 profit. Style 3 requires 4 minutes of cutting time, 8 minutes 
of sewing time and 2 minutes of packaging time and makes £4 profit. The 
company wants to determine production quantities of each style for the coming 
month. They have an order for 1000 T-shirts of style 1 that must be met, and 
have a total of 10 000 minutes available for cutting, 18 000 minutes for sewing 
and 9000 minutes available for packaging. Assuming that they will be able sell 
as many T-shirts as they produce in any of the styles, how many of each should 
they make in order to maximize their profit? 

We can formulate the problem mathematically as follows. First we define 
three decision variables x\, xi and xi, representing the number of T-shirts man
ufactured in styles 1, 2 and 3 respectively. Then the whole problem can be 
written as 

maximize 3xi + 5^2 + 4x3 

subject to 7.5A;] + 8x2 + 4JC3 

\2x\ + 9x2 + 8x3 

3x] + 4x2 + 2x3 

Xi 

X i , X 2 , X 3 

< 

< 

< 

> 

> 

10000 

18000 

9000 

1000 

0 

(2.1) 
(2.2) 

(2.3) 

(2.4) 

(2.5) 

(2.6) 

Expression (2.1) defines the profit. This is what we need to maximize and 
is known as the objective function. The remaining expressions are the con
straints. Constraints (2.2)-(2.4) ensure that the hours required for cutting, 
sewing and packaging do not exceed those available. Constraint (2.5) ensures 
that at least 1000 T-shirts of style 1 are produced and constraint (2.6) stipu
lates that all the decision variables must be non-negative. Note that all the 
expressions are linear in the decision variables, and we therefore have a finear 
programming formulation of the problem. 
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The General LP Format In general a linear program is any problem of the 
form 

max (or min) V^ CiXt 

n 

such that y^^i/-^/ ~ bi (2.7) 

n 

i=\ 

where ~ is one of >, = or <. 
The important point about a Hnear programming model is that the feasible 

region is a convex space and the objective function is a convex function. Opti
mization theory therefore tells us that as long as the variables can take on any 
real non-negative values (possibly bounded above) then the optimal solution 
can be found at an extreme point of the feasible region. It is also possible to 
derive conditions that tell us whether or not a given extreme point is optimal. 
Standard LP solution approaches based on these observations can solve prob
lems involving many thousands of variables in reasonable time. As we will 
see later in this chapter there are special cases where these techniques work 
even when the variables are constrained to take on integer or binary values. 
The general case where the variables are constrained to be integer, known as 
integer programming, is more difficult and is covered in Chapter 3. 

Although it makes sense when formulating LPs to use the flexibihty of the 
formulation above in allowing either a maximization or minimization objective 
and any combination of inequalities and equalities for the constraints, much 
linear programming theory (and therefore the solution approaches based on 
the theory) assume that the problem has been converted to a standard form in 
which the objective is expressed in terms of a maximization problem, all the 
constraints apart from the non-negativity conditions are expressed as equal
ities, all right-hand side values b^ ... ,bm are non-negative and all decision 
variables are non-negative. A general formulation can be converted into this 
form by the following steps. 

1 If the problem is a minimization problem the signs of the objective co
efficients c i , . . . , ĉ  are changed. 

2 Any variable not constrained to be non-negative is written as the differ
ence between two non-negative variables. 

3 Any constraint with a negative right-hand side is multiplied by — L 
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4 Any constraint which is an inequahty is converted to an equahty by the 
introduction of a new variable, (known as a slack variable) to the left-
hand side. The variable is added in the case of a < constraint and sub
tracted in the case of a > constraint. The formulation is often written in 
matrix form: 

max CX 

s.t. AX ^b (2.8) 

X > 0 

where C = ( c i , . . . , Q ) , b = (Z?i,..., bm)^, X = (x i , . . . , Xn)^ and A = 
\^ij )mxn' 

2.2.3 Duality 

An important concept in hnear programming is that of duality. For a maxi
mization problem in which all the constraints are < constraints and all variables 
are non-negative, i.e. a problem of the form 

max CX 

s.t. AX <b (2.9) 

X > 0 

the dual is defined as 

min b^Y 

s.t. A^Y > C^ (2.10) 

F > 0 

The original problem is known as the primal. Note that there is a dual variable 
yi associated with each constraint in the primal problem and a dual constraint 
associated with each variable Xf in the primal. (The dual of a primal with a 
more general formulation can be derived by using rules similar to those used to 
convert a problem into standard form to convert the primal into the above form, 
with equahty constraints being replaced by the equivalent two inequahties.) 

The dual has the important property that the value of the objective in the op
timal solution to the primal problem is the same as the optimal solution for the 
dual problem. Moreover, the theorem of complementary slackness states that if 
both dual and primal have been converted to standard form, with 5 ] , . . . , 5^ the 
slack variables in the primal problem and ^ i , . . . , ^̂  the slack variables in the 
dual, then if X = (x i , . . . , jĉ ) is feasible for the dual and Y = {y\, ... ,ym)'i^ 
feasible for the primal, X and Y are optimal solutions to the primal and dual 
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respectively if and only if 5,_y, = 0, V/ = l,m and ejXj = 0, Vy = l ,n. 
This relationship is an important feature in the specialist solution algorithm for 
the minimum cost network flow algorithm presented later in this chapter and 
underpins other LP-based solution approaches. 

2.2.4 Solution Techniques 

Solution approaches for linear programming fall into two categories. 
Simplex-type methods search the extreme points of the feasible region of the 
primal or the dual problem until the optimality conditions are satisfied. The 
technique dates from the seminal work of Dantzig (1951). Since then the basic 
technique has been refined in a number of ways to improve the overall effi
ciency of the search and to improve its operation on problems with specific 
characteristics. Variants of the simplex approach are available in a number of 
specialist software packages, as a feature of some spreadsheet packages, and 
as freeware from various web-based sources. 

Although they perform well in practice, simplex-based procedures suffer 
from the disadvantage that they have poor worst-case time-performance guar
antees. This deficiency led to the investigation of interior point methods, so 
called because they search a path of solutions through the interior of the fea
sible region in such a way as to arrive at an optimal point when they hit the 
boundary. Practical interior point methods can be traced back to the work of 
Kamarkar (1984), although Khachiyan's (1979) ellipsoid method was the first 
LP algorithm with a polynomial time guarantee. Recent interior point methods 
have proved efficient, in particular for large LPs, and there has also been some 
success with hybridizations of interior point and simplex approaches. While 
the choice of solution approach may be important for very large or difficult 
problems, for most purposes standard available code based on simplex-type 
approaches should suffice. 

2.3 BRANCH AND BOUND 

2.3.1 Introduction 

When faced with the problem of finding an optimum over a finite set of alter
natives an obvious approach is to enumerate all the alternatives and then select 
the best. However, for anything other than the smallest problems such an ap
proach will be computationally infeasible. The rationale behind the branch and 
bound algorithm is to reduce the number of alternatives that need to be consid
ered by repeatedly partitioning the problem into a set of smaller sub-problems 
and using local information in the form of bounds to eliminate those that can 
be shown to be sub-optimal. The simplest branch and bound implementations 
are those based on a constructive approach in which partial solutions are built 



CLASSICAL TECHNIQUES 25 

Figure 2.1. Shortest path network. 

Up one element at a time. We therefore start by introducing the technique in 
this context before going on to show how it can be extended to its more general 
form. 

Assume that we have a problem whose solutions consist of finite vectors of 
the form (^i, A:2, . . . , x^) where k may vary from solution to solution. Those 
combinations of values that form feasible vectors are determined by the prob
lem constraints. The set of all possible solutions can be determined by taking 
each feasible value for xi, then for each xi considering all compatible values 
for X2, then for each partial solution (xi,X2,...) considering all compatible 
^3 etc. This process can be represented as a tree in which the branches at 
level i correspond to the choices for x, given the choices already made for 
X\, . . . , Xi — \, and the nodes at level / correspond to the partial solutions of the 
first / elements. This is illustrated with reference to Figures 2.1 and 2.2. Fig
ure 2.2 is the tree enumerating all simple routes (i.e. routes without loops) from 
S to F in the network shown in Figure 2.1. The branches at level 1 represent 
all the possibilities for leaving S and the branches at lower levels represent all 
the possibilities for extending the partial solution represented by the previous 
branches by one further link. The node at the top of the tree is sometimes 
referred to as the root, and the relationship between a given node and one im
mediately below is sometimes referred to as parent/child or father/son. All 
nodes that can be reached from the current node by traveling down the tree 
are referred to as descendants and nodes without any descendants are terminal 
nodes. 

If we wish to search the tree in an ordered fashion we need to define a set 
of rules determining the order in which the branches are to be explored. This 
is known as the branching strategy. The two simplest strategies are known 
as depth-first search and breadth-first search. Depth-first search (also known 
as branch and backtrack) moves straight down a sequence of branches until 
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Figure 2.2. Tree enumerating all simple routes. 

a terminal node is reached before backtracking up to the nearest junction. If 
there are any unexplored branches below this junction it will select one of 
these, again continuing downwards until a terminal node is reached. If all 
children of the current node have been explored, the search backtracks to 
the previous node and continues from there. In contrast, breadth-first search 
enumerates all the branches at one level before moving on to the next level. 
Depth-first search is likely to find a feasible solution early and it does not 
have the vast storage requirements of breadth-first search. However, breadth-
first search allows comparisons to be made across the tree, facilitating re
moval of dominated sub-solutions. In Figure 2.2 the nodes are numbered 
in depth-first search order using a strategy of ordering the branches at each 
level from left to right. For a breadth-first search the search order would be 
1, 2, 12, 22, 3, 13, 16, 19, 23, 29,4, 11, etc. 

As mentioned above, although it is possible to enumerate the whole tree in 
a small example like this, the size of the tree grows explosively with problem 
size, and for most real-life problems complete enumeration is not possible. 
For example, complete enumeration of all feasible allocations of n tasks to n 
machines would result in a tree with n! terminal nodes (i.e. ^2Ax 10'^ terminal 
nodes for 20 machines). The branch and bound process allows us to prove that 
some partial solutions cannot lead to optimal solutions and to cut them and 
their descendants from the search tree—a process known as pruning. This is 
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achieved through the use of upper and lower bounds satisfying lower-bound < 
z < upper-bound, where z is the optimal solution obtained over all descendants 
of the current node. For a minimization problem the upper bound is a quantity 
UB such that we know we can do at least as well as UB. This is usually 
the best feasible solution found so far. The lower bound at node /, L5, is 
an optimistic estimate of the best solution that can be obtained by completing 
the partial solution at node /, i.e. we know that in exploring below node i we 
cannot do better than LB,. Nodes where LBi > UB need not be explored 
further and we say that they are fathomed. When all nodes are fathomed the 
upper bound is the optimal solution. Note that for a maximization problem the 
roles of the upper and lower bounds are reversed. 

2.3.2 Branch and Bound Based on Partial Solutions 
The success of a branch and bound implementation for a large problem de

pends on the number of branches that can be pruned successfully. This is 
largely dependent on the quality of the bounds, but the branching strategy can 
also have a significant effect on the number of nodes that need to be explored. 
The basic branch and bound approach and the influence of bound quality and 
branching strategy will be illustrated with reference to our shortest path exam
ple. 

Example 1. Finding the Shortest Path We start by illustrating the use of 
simple bounds to prune the tree using the branching strategy defined by the 
node numbering. Our upper bound will be the cost of the shortest path found 
to date. Thus at the start we have UB = oo. For the local lower bound at each 
node in the search tree we will simply use the sum of the costs on the links 
traveled so far. Table 2.1 gives details of the order in which the nodes are 
visited and the upper and lower bounds at each node. 

The first seven branches correspond to the construction of the first path 
SABCDEF and the lower bound column gives the cost incurred by the par
tial solution at each stage. Note that when we reach node 7 we have our first 
complete path and so the upper bound is reduced to the cost of the path, i.e. 33. 
We now know that the optimal solution cannot be worse than 33. From node 7 
we backtrack via nodes 6 and 5 to the junction at node 4 before continuing 
down the tree. Each time a cheaper path is completed the upper bound is re
duced but the local lower bounds remain below the upper bound until we reach 
node 16. Here the cost of the partial solution SCD =16 and the upper bound 
is 15. Thus this node is fathomed, and we backtrack immediately to node 12. 
Similarly, nodes 19, 27 and 29 are fathomed by the bounds and the branches 
below them can be pruned. When the search is complete the cost of the opti
mal solution is UB = \4 and is given by the path to node 26, SDCBF. All the 
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Table 2.1. Using simple bounds to prune the tree. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 

Node 

1 
2 
3 
4 
5 
6 
7 
6 
5 
4 
8 
9 
8 
10 
8 

LB 

0 
7 
13 
15 
21 
32 
33 
32 
21 
15 
20 
31 
20 
21 
20 

UB 

oo 
oo 
oo 
oo 
oo 
oo 
33 
33 
33 
33 
33 
33 
33 
21 
21 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 

Node 

4 
3 
11 
3 
2 
1 
12 
13 
14 
13 
15 
13 
12 
16 
12 

LB 

15 
13 
16 
13 
7 
0 
10 
12 
18 
12 
15 
12 
10 
16 
10 

UB 

21 
21 
16 
16 
16 
16 
16 
16 
16 
16 
15 
15 
15 
15 
15 

31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 

Node 

19 
12 
1 
22 
23 
24 
25 
24 
26 
24 
23 
27 
23 
22 
29 

LB 

15 
10 
0 
3 
9 
11 
17 
11 
14 
11 
9 
14 
9 
3 
14 

UB 

15 
15 
15 
15 
15 
15 
15 
15 
14 
14 
14 
14 
14 
14 
14 

branches represented by the dotted Hnes in Figure 2.2 have been pruned and 
the search has been reduced from 33 to 23 branches. 

This is already a significant reduction but we can do better by strengthening 
the bounds. The bound is based on the cost to date and does not make use of 
any estimate of the possible future cost. This can easily be incorporated in two 
ways. First we know that we must leave the current vertex along a link to an 
unvisited vertex. Thus we will incur an additional cost of at least as much as 
the cost of the cheapest such link. Similarly, we must eventually enter F. Thus 
we must incur an additional cost at least as great as the cheapest hnk into F 
from the current vertex or a previously unvisited vertex. However, we cannot 
simply add both these quantities to the original bound as, at vertices adjacent 
to F, this will incur double counting. This highhghts the need for caution when 
combining different bounds into a more powerful bound. We can now define 
our new lower bound LBi as follows. 

Let {x\,.,. ,Xj) be the current partial solution. Define L\ = cost of path 
( ^ 1 , . . . , jCy), L2 = cheapest Hnk from Xj to an unvisited vertex and L3 = cheap
est link into F from any vertex other than those in path (x\,... ,Xj^i). Then 
LBi = L] + L2 + L3 if Xj is not adjacent to F, LBi = L\ + max(L2, L3) 
otherwise. Table 2.2 gives details of the search using this new bound. 

Note how the lower bound is now higher at each node and a good estimate of 
the cost of each path is obtained before the path is completed. Lower bounds of 
00 are recorded whenever the branches from a particular node are exhausted. 
There is more work incurred in calculating this bound, not only because the 
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Table 2.2. Search using improved bounds. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Node 

1 
2 
3 
4 
5 
6 
7 
6 
5 
4 
8 
9 

LB 
(Li,L2,L2) 

4(0, 3, 1) 
14(7, 6, 1) 

15(13,2,1) 
21(15,5,1) 

33(21,11,1) 
33(32, 1, 1) 

33 
oo 
oo 

21(15,5,1) 
21(20, 1, 1) 

oo 

UB 

oo 
00 

oo 
00 

oo 
00 

33 
33 
33 
33 
33 
33 

13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

Node 

8 
10 
8 
4 
3 
11 
3 
2 
1 
12 
13 
14 
13 

LB 
(Li,L2,L2) 

21(20, 1,1) 
21 
oo 
oo 

16(13,3,1) 
16 
oo 
00 

4(0, 3, 1) 
13(10,2,1) 
15(12,3,1) 

oo 
15(12,3,1) 

UB 

33 
21 
21 
21 
21 
16 
16 
16 
16 
16 
16 
16 
16 

26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

Node 

15 
13 
12 
1 
22 
23 
24 
25 
24 
26 
24 
23 
22 

LB 
(Li,L2,L2) 

15 
oo 

16(10,5,1) 
4(0, 3, 1) 
10(3, 6, 1) 
12(9, 2, 1) 

14(11,3,1) 
oo 

14(11,3,1) 
14 

17(11,6,1) 
15(9,5,1) 

15(3,11,1) 

UB 

15 
15 
15 
15 
15 
15 
15 
15 
15 
14 
14 
14 
14 

Table 2.3. Search using improved branching strategy. 

LB LB LB 
Node (Li,L2,L3) UB Node (Li ,L2,13) UB Node (L^, Lj, L3) UB 

1 
2 
3 
4 
5 

1 
22 
23 
24 
26 

4(0, 3, 1) 
10(3,6,1) 
12(9,2,1) 

14(11,3,1) 
14 

00 

00 

00 

00 

14 

6 
7 
8 
9 
10 

24 
23 
22 
1 
2 

17(11,6,1) 
15(9,5,1) 

15(3, 11,1) 
8(0,7,1) 

14(7, 6,1) 

14 
14 
14 
14 
14 

11 
12 
13 
14 
15 

1 
12 
13 
12 

11(0,10,1) 
13(10,2,1) 

15(121,3,1) 
17(10,6,1) 

14 
14 
14 
14 

actual calculation is more complex, but also because the bound at a given node 
may change when returning to the node in a backtracking step. This strength
ens the bound and reduces the total number of branches searched to 19. 

Finally, we consider the branching strategy. So far we have used simple 
depth first search taking the branches at each node in the given order. In gen
eral, the efficiency of the search will be increased if the upper bound can be 
reduced sooner, or if the levels of the tree can be organized so as to incur high 
lower bounds closer to the root of the tree. Here we apply a strategy that will 
favor the former, and bias the search towards finding shorter routes first. This 
is achieved by exploring the branches at each node in increasing cost order in
stead of from left to right. Table 2.3 shows the result of the search using this 
strategy. 
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Now the search starts by selecting the D branch from the root node and 
quickly finds the optimal solution of 14. This results in early pruning of the 
nodes from the other two branches and the whole search is completed in seven 
branches. 

This example has illustrated how the size of the search tree is dependent on 
both the quality of the bounds and the branching strategy. However, it should 
be noted that this is not the most efficient way of solving the shortest path 
problem and better approaches are suggested in Section 2.6. Nevertheless, 
since early papers on the technique in the early 1960s, it has proved successful 
in solving a wide range of both classical and practical problems. Examples 
include algorithms for a range of graph-theoretic problems, for example node 
coloring (Brown, 1972; Zykov, 1949), cHque and independent set problems 
(Bron and Kerbosch, 1973), location problems (Erlenkotter, 1978; Jarivnen et 
al., 1972) and the traveling salesman problem (Little et al., 1963; Held and 
Karp, 1970; Balas and Christofides, 1981), and for several classical combi
natorial optimization problems such as knapsack problems (Martello and Toth, 
1981,1990), set covering and set partitioning (Garfinkel and Nemhauser, 1969) 
and generalized assignment problems (Ross and Soland, 1975). We use one of 
these. Brown's graph coloring algorithm, to consolidate the ideas of the last 
section. 

Example 2. Brown's Algorithm for Graph Coloring An example of a 
problem that has been tackled using a variety of branch and bound approaches 
is that of graph coloring. The graph coloring problem is that of minimizing 
the number of colors needed to color the vertices of a graph so no two ad
jacent vertices are given the same color. The graph coloring problem is an 
interesting example as it is the underlying model for many timetabling and 
scheduHng problems. Brown's 1972 algorithm is an example of a branch and 
bound approach based on partial solutions. The algorithm is a straightforward 
application of the branch and bound process using simple bounds. As with 
the shortest path problem, its efficiency can be improved by applying some 
intelligence to the branching strategy. However, the strength of the algorithm 
lies in its backtracking strategy that essentially prunes away branches by back
tracking up several levels at a time where appropriate. The algorithm can be 
summarized as follows. 

The branches in the tree correspond to the decision to color a given vertex 
in a given color. In the simplest version, the vertices are pre-ordered and the 
branches at level / correspond to choosing a color for the iih vertex. The col
ors are also ordered and the branches at each node are searched in color order. 
The upper bound is given by the number of colors in the best solution to date 
and the lower bound on each partial solution is given by the number of colors 
used up to that point. If the upper bound is equal to Q, then when the search 
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backtracks to a vertex vi for which there are no un-explored branches corre
sponding to colors below Q in the ordering, that node is obviously bounded 
and a further backtracking step must be executed. Rather than simply back
tracking to the previous node, the search recognizes the fact that in order to 
progress it is necessary for an altemative color to become free for u/. This 
will only be achieved if a neighbor of Vt is uncolored. Therefore, the search 
backtracks up the tree until a neighbor of Vi is encountered before attempting 
a forward branch. If further backtracking, say at vertex Vj, is required before 
Vi has been successfully re-colored then re-coloring a neighbor Vj may also 
achieve the desired result so Vj 's neighbors are added to those of vi in defining 
a potential backtracking node. In order to manage this backtracking strategy 
in a complex search, those vertices that are neighbors of backtracking vertices 
are stored in a queue in reverse order and branching takes place from the first 
vertex in the queue. A formal definition of the algorithm is given below. The 
list of identifiers, / , is the set of nodes which trigger the bounding condition 
and Queue is an ordered fist of the neighbors of elements in 7. 

Step 0. Define orderings 
Order the vertices 1, 2 , . . . , n and colors ci, C2, 
r ~ ( 0 denotes neighbors of vertex / which precede / in the ordering. 

Step L Find initial coloring. 
Color the vertices in order using the lowest indexed feasible color. 

Step 2. Store new solution. 
Let q be the number of colors used. Set the upper bound equal to q 
and store the current ^-coloring. Set Ust of identifiers, 7 = 0. 

Step 3, Backtrack, 
3.1 Find first vertex corresponding to local LB = q. 
Let r be the first vertex colored q. 
3.2 Update list of backtracking vertices and corresponding queue of 
neighbors. 
Remove all j < i^ from J, 
S e t / = / U { / * } . 
Set Queue = [J r~(j) in reverse order. 

3.3 Backtrack to level defined by first vertex on the queue. 
Let i' be the first vertex on the queue. Let q' be its color. 
If i' = k and vertices 1, 2 , . . . , A: are colored ci, C2 , . . . , c^ then STOR 
Stored solution is optimal. 
Otherwise uncolor all / > i', 

Step 4, Branch, 
4,1 RecolorV, 
Color V in the first feasible color [q^ + \,q' + 2,.., ,q -- \], 
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If no feasible color set /* = /' and go to 3.2. 
4.2 Recolor remaining vertices. 
Attempt to color vertices i = V + \,n'm colors \io q — \ using first 
feasible color. 
If vertex / requires color q then set /* = i and go to 3.2. 
Otherwise go to step 2. 

Note that Steps 1 and 4.2 amalgamate several forward branches into one 
step, building on the partial coloring until the bounding condition is reached. 
Similarly, in Step 3.3 several backtracking steps are amalgamated. Note also 
that the lower bounds are not stored explicitly as the first node with a local 
lower bound of q will always correspond to the point where color q was used 
for the first time. 

The algorithm is illustrated with reference to the graph in Figure 2.3 using 
the given ordering of the vertices and colors in alphabetical order: 

Step 1. Initial coloring = lA, IB, 3A, 4C, 5A, 6Z), IB, 8D; q=A. 
Step 2. J = ®. 
Step 3. i* = 6, 7 = {6}. Queue = {4, 2, 1}. Backtrack to node 4. q' = C. 

Partial coloring = lA, 2B, 3A. 
Step 4. Vertex 4 already colored in ^ — \; i* = 4; go to 3.2. 
Step 3. J = {6, 4}. Queue = {3, 2, 1}. Backtrack to node 3. q' = A. 

Partial coloring= lA, 25. 
Step 4. Color 3 in color C and continue coloring \A, 2B, 3C, 4A, 5B, 6C, 

7A,^C;q = 3. 
Step 2. J = 0. 
Step 5. /* = 3; 7 = {3}; Queue = {2}. Stopping condition reached and 

solution with ^ = 3 is an optimal solution in three colors. 

As with the shortest path implementation, the efficiency of the search can 
be improved by an intelligent ordering of the vertices to encourage good solu
tions to be found more quickly. The simplest improvement is to pre-order the 
vertices in decreasing degree order. However, there is no reason why the or
dering of the vertices should remain the same throughout the tree, and greater 
efficiency gains can be obtained using some form of dynamic ordering such 
as selecting the vertex with the largest number of colors already used on its 
neighbors to color next—a strategy known as DSATUR. It is also worth con
sidering the stopping condition in terms of the vertex ordering. The condition 
is valid because backtracking beyond the point where vertices 1 to A: are col
ored in colors liok will simply result in equivalent colorings with a different 
permutation of colors. This condition will be achieved more quickly if the or-
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Figure 2.3. Coloring example. 

deling starts with a large clique. Thus a good strategy is to find a large clique 
and place these vertices in a fixed order at the start and then to use a dynamic 
ordering for the remaining vertices. 

2.3.3 A Generalization 
So far the discussion has focused on search trees based on building up partial 

solutions. Such approaches have proved popular for a variety of problems. 
However, they are just a special case of a more general strategy in which the 
branches correspond to adding constraints to the problem. In the case of a 
partial solution, the constraints take the form x, = a,. The more general format 
underpins the branch and bound strategy for integer programming and will be 
treated in detail in Chapter 3. Therefore we will not go into detail here. Instead 
we will briefly illustrate the approach with an alternative tree search approach 
to the graph coloring problem. 

Zykov's Algorithm for Graph Coloring Consider any two non-adjacent 
vertices Vi and Vj. In any solution to the graph coloring problem there are 
two possibilities. Either they will be allocated the same color or they will 
be allocated different colors. The optimal solution subject to them being in the 
same color is the optimal coloring in a graph with v, and vj merged into a single 
vertex, while the optimal solution in the latter case is the optimal coloring in 
the original graph with edge (vi, Vj) added. Obviously the better of these two 
solutions is optimal with respect to the original problem. We also observe 
that if we continue a sequence of adding edges and/or merging vertices in an 
arbitrary graph then we will eventually be left with a complete graph (i.e. a 
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Figure 2.4. Zykov's search tree for optimal coloring: c(0 denotes color of vertex /. 

graph in which every vertex is adjacent to every other). A complete graph with 
n vertices obviously requires n colors. These observations form the basis of 
Zykov's algorithm (1949) in which there are two branches at each level of the 
tree corresponding to the decision as to whether two non-adjacent vertices will 
be allocated the same or different colors. The two child nodes represent the 
coloring problems in the two suitably modified graphs and the terminal nodes 
will all be complete graphs. The smallest complete graph defines the optimal 
coloring. 

This is illustrated in Figure 2.4, which shows the search tree that results 
from the problem of finding the optimal coloring of the sub-graph defined by 
vertices 1, 2, 3, 4 and 6 of the graph in Figure 2.3. 

The left-hand branch at each level constrains two non-adjacent vertices to be 
the same color and the child node is obtained by taking the graph at the parent 
node and merging the two vertices. The right-hand branch constrains the same 
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two vertices to be different colors and the child is formed by adding an edge 
between the two relevant vertices in the parent graph. Branching continues 
until the resulting child is a complete graph. Here the terminal nodes reading 
from left to right are compete graphs of size 4, 3, 4, 4 and 5 respectively. 
The optimal solution is given by the complete graph on three vertices in which 
vertices 1 and 4 are allocated to one color, 3 and 6 to a second color and vertex 2 
to the third. 

A suitable upper bound is again the best solution found so far. A lower 
bound on the optimal coloring in each sub-graph can be defined by the largest 
clique it contains (a clique is a set of vertices such that each vertex in the 
set is adjacent to every other). Finding the largest clique is itself a difficult 
problem but a heuristic can be used to get a good estimate. In Figure 2.4, 
using a depth first search and exploring the c{i) = c(j) branch first at each 
node, we might recognize that the parent of the node representing the optimal 
solution contains two cliques of size 3. Similarly, its parent contains cliques 
of size 3. Thus we can backtrack straight up to the root node saving a total 
of four branches. Branching strategies can be designed to produce dense sub
graphs quickly, thereby increasing the chances of finding large cHques early in 
the tree. More recent versions of the algorithm make use of theoretical results 
that state that certain classes of graph, known as perfect graphs, are easy to 
color. Branching strategies are designed to produce graphs belonging to one 
of the classes of perfect graph as early in the tree as possible. These can then 
be colored optimally, thus saving all the branches required in order to reduce 
them to complete graphs. See Golumbic (1980) for a wide ranging treatment 
of perfect graphs and associated algorithms. 

2.3.4 Other Issues 
Bounds The most important feature of a branch and bound algorithm is prob
ably the quahty of the bounds, and it is usually worth putting considerable ef
fort into ensuring that these are as tight as possible. In the case of lower bounds 
this is often achieved by exploiting as much information about the problem as 
possible. For example, Dowsland (1987) used a clique model to solve a class 
of packing problems known as the pallet loading problem. She combined the 
bounds in a published maximum clique algorithm with bounds derived from 
geometric aspects of the physical problem and showed that the percentage of 
problems solved within a given time frame rose from 75% to 95%. In some 
cases a problem may become easy to solve if some of the constraints are re
moved. This is a process known as relaxation and the solution to the relaxed 
problem will always provide a vahd bound on the solution to the original prob
lem. This approach was used by Christofides and Whitlock (1977) in their 
solution to a guillotine cutting problem in which a large stock-sheet of mate-
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rial must be cut into a set of smaller rectangular pieces, using a sequence of 
guillotine cuts, so as to maximize the value of the cut pieces. In their ver
sion of the problem the demand for pieces of each dimension was constrained, 
whereas the unconstrained version of the problem is relatively easy to solve. 
Their solution uses a tree search in which each branch represents a cut, and the 
nodes define the set of rectangles in a partial solution. Bounds are obtained by 
solving the unconstrained problems for each of the sub-rectangles in the partial 
solution. Although such relaxation bounds can be quite effective, there is often 
a gap between them and the solution to the constrained problem. This gap can 
sometimes be reduced by incorporating a suitable penalty for the violated con
straints into the objective function. This is the basis of Lagrangian relaxation 
that has proved a popular bound for a variety of branch and bound algorithms. 
For example, Beasley (1985) uses the approach for a non-guillotine version of 
the cutting stock problem. In Lagrangian relaxation an iterative approach is 
used to set parameters that will increase the tightness of the bound. Such an 
approach is obviously time-consuming but for moderately sized problems in 
a wide variety of application areas the computational effort is well worth the 
number of branches it saves. Details of Lagrangian relaxation can be found in 
Fisher (1985). 

The search efficiency is also influenced by the upper bound. As we have 
seen, pruning is more effective when good solutions are found early. Earlier 
pruning may result if a heuristic is used before the start of the search to find 
a good solution that can be used as an upper bound at the outset. Similarly, 
using a heuristic to complete a partial solution and provide a local upper bound 
should also help in fathoming nodes without branching all the way down to 
terminal nodes. 

It is also worth noting here that bounding conditions based on information 
other than numeric upper and lower bounds may be useful in avoiding infeasi-
ble solutions or solutions that are simply permutations or sub-sets of solutions 
already found. An example of this approach is the maximal clique algorithm 
of Bron and Kerbosch (1973) which includes bounding conditions based on 
relationships between the branches already explored and those yet to be visited 
from a given node. 

Branching There are also issues concerning branching strategies that have 
not been discussed. We have assumed that the search is always carried out 
in a depth first manner. An alternative that can be successful if the bounds 
are able to give a good estimate of the quality of solutions below each branch 
is to use the best-first strategy, in which nodes at different levels across the 
breadth of tree may be selected to be evaluated next according to an appropriate 
definition of "best". In our examples the ordering of branches was geared 
towards finding good solutions as early as possible. An alternative strategy 
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is to select branches that will encourage bounding conditions to be satisfied 
sooner rather than later. This approach is taken by Bron and Kerbosch in their 
branch and bound algorithm for finding cliques in a graph. At each node the 
next branch is chosen so as to encourage the bounding condition to occur as 
early as possible. Comparisons between this version and a version in which the 
branches are selected in the natural order show that the advantage, in terms of 
computation time, of using the more complex strategy increases rapidly with 
problem size. 

Miscellaneous Although good bounds and branching strategies have resulted 
in many successful branch and bound algorithms, it should be noted that the 
size of the search tree will tend to grow exponentially with the problem size. It 
is therefore important to make sure that the underlying tree is as small as pos
sible. For example, thought should be given to avoiding branches that lead to 
solutions that are symmetric to each other if at all possible. It may also be pos
sible to apply some form of problem reduction in a pre-processing phase. For 
example, Garfinkel and Nemhauser (1969) outline a set of reductions for both 
set covering and set partitioning problems. It should also be noted that such 
a strategy may provide further reductions when applied to the sub-problems 
produced within the search itself. 

Finally, it is worth noting that in many implementations, the optimal solu
tion is found quickly and most of the search time is spent in proving that this is 
in fact the optimal solution. Thus, if there is insufficient time to complete the 
search the best solution to date can be taken as a heuristic solution to the prob
lem. A useful trick that will guarantee a heuristic solution within a x 100% of 
the optimum is to replace the upper bound with UB{\— a). The tighter bound 
should enable the search to be completed more quickly. 

2.4 DYNAMIC PROGRAMMING 
2.4.1 Introduction 

Like branch and bound, dynamic programming (DP) is a procedure that 
solves optimization problems by breaking them down into simpler problems. 
It solves the problem in stages, dealing with all options at a particular stage be
fore moving on to the next. In this sense it can often be represented as a breadth 
first search. However, unlike the levels of the tree in branch and bound which 
partition the problem by adding constraints, the stages in DP are linked by a 
recursive relationship. The name dynamic programming derives from its popu
larity in solving problems that require decisions to be made over a sequence of 
time periods. Even when this is not the case the name dynamic programming 
is still widely used, but the term multistage programming is sometimes used as 
an alternative. 



38 DOWSLAND 

The basis of DP is Bollman's principle of optimality (Bellman, 1957) which 
states that ''the sub-policy of an optimal policy is itself optimal with regard to 
start and end states". As an illustration, consider the shortest route problem. If 
we are told that in Figure 2.1 the optimal route from S to F goes via E then we 
can be sure that that part of the route from S to E is the optimal route between 
S and E, and that part from E to F is the optimal route from E to F. In other 
words, each sub-path of the optimal path is itself the shortest path between its 
start and end points. Any DP implementation has four main ingredients. These 
are stages, states, decisions and policies. At each stage, for each feasible state 
we make a decision as to how to achieve the next stage. The decisions are 
then combined into sub-poUcies that are themselves combined into an overall 
optimal pohcy. DP is a very general technique that has been appHed at varying 
levels of complexity. These have been classified into four levels: determin
istic, stochastic, adaptive and residual. Our treatment here will be limited to 
deterministic problems. 

The design of a DP algorithm for a particular problem involves three tasks: 
the definition of the stages and states, the derivation of a simple formula for 
the cost/value of the starting stage/state(s) and the derivation of a recursive 
relationship for all states at stage k in terms of previous stages and states. 

The definition of the stages and states will obviously depend on the problem 
being tackled, but there are some definitions that are common. Stages are 
frequently defined in terms of time periods from the start or end of the planning 
horizon, or in terms of an expanding subset of variables that may be included 
at each stage. Common definitions of states are the amount of produce in stock 
or yet to be produced, the size or capacity of an entity such as a stock-sheet, 
container, factory, budget, etc, or the destination already reached in a routing 
problem. 

2.4.2 Developing a DP Model 

Forward Recursion and the Unbounded Knapsack Problem We will 
firstly illustrate the concepts of DP by reference to a classical optimization 
problem—the unbounded knapsack problem. The problem can be stated as 
follows. Given a container of capacity b and a set of n items of size Wi and 
value Vi fori = 1 , . . . , ^, such that the number of each item available is un
bounded, maximize the value of items that can be packed into the container 
without exceeding the capacity. 



The problem can be formulated as follows: 

max 

s.t. 

n 

n 

i=z\ 

Xi > 0 and integer 
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(2.11) 

(2.12) 

where Xi = the number of copies of item / in the solution. 
We can formulate this problem as a DP as follows. Define F/^S) to be the 

maximum value for a container of capacity S using items of sizes \ to k. Here 
the items available represent the stages and the capacity available, the states. 
Fi (S) is the value that can be obtained if the only pieces available are those of 
type 1. This is given by 

Fi(S) = mt(^)vi (2.13) 

All that remains is to define a recursive relationship for F^iS) in terms of previ
ous stages and states. This is achieved as follows. The optimal solution either 
makes use of at least one item of type ^, or it does not contain any items of type 
k. In the latter case, F^(5) = F^_i (5). In the former case, one copy of item k 
takes up Wk units of capacity and adds vj^ units of value. Bellman's principle 
tells us that the remaining S — w/^ units of capacity must be packed optimally. 
This packing may contain further items of type k and is given by Fk(S — Wk). 
Thus we have for ^ > 1, 

FkiS) = max{F^_i(5), F^(5 - Wk) + Vk) for S > wj, 

= Fk-] (S) otherwise Fk(S) = Fĵ _i(5*) otherwise 

The solution to the overall problem is given by F^ib). We will illustrate the 
procedure with the following example. 

Let n = 3, b = 19, w\, W2, it;3 = 3, 5 and 7 respectively and ui, V2, 1̂3 = 4, 7 
and 10 respectively. The values of F^iS) for /: = 1, 3 and 5 = 0, 19 are given 
in Table 2.4. The values in column A: = 1 are first calculated using (2.13). 
Then the subsequent columns are calculated in order starting from the top and 
working down using (2.14). For S > Wk the appropriate value is obtained by 
comparing the value in row S in the previous column with the sum of v^ and the 
value in the current column Wk rows up. The value of 27 in row 19, column 3 
tells us that the optimal value is 27. In order to determine how this solution is 
achieved we need to work backwards. We need to find out whether this value 
came from F2(19) or F3(19 — 7) + 10. The latter option is the correct one. 
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Table 2.4. Unbounded knapsack calculations. 

S/k 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 

0 
0 
0 
4 
4 
4 
8 
8 
8 
12 

2 

0 
0 
0 
4 
4 
7 
8 
8 
11 
12 

3 

0 
0 
0 
4 
4 
7 
8 
10 
11 
12 

S/k 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

1 

12 
12 
16 
16 
16 
20 
20 
20 
24 
24 

2 

14 
15 
16 
18 
19 
21 
22 
23 
25 
26 

3 

14 
15 
17 
18 
20 
21 
22 
24 
25 
27 

We therefore record one item of type 3 and check the source of the value 17 
in 7^3(12). This is either F2(12) or ^3(5) + 10. Once again the latter option is 
correct. We record a second item of type 3 and move to FjiS). F^iS) = ^2(5) 
so we check the source of the value of ^2(5) = 7*2 (0) + 7. Thus we record an 
item of type 2. As we have reached the top row of the table corresponding to 
capacity = 0 the solution is completed and is given by jci = 0, ;C2 = 1, JC3 = 2. 

Backward Recursion and a Production Planning Problem In the above 
example the recursion worked in a forward direction with the stages corre
sponding to an increasing subset of variables. Our second example is taken 
from the field of production planning and is typical of many multi-period prob
lems in that it is solved using backwards recursion, i.e. by working backwards 
from the end of the planning period. The problem can be summarized as fol
lows. 

Production of a single product is to be planned over a fixed horizon of n 
time periods. At the start there are So units in stock and no stock is required 
at the end. Each time period r, has a known demand J, which must be met. 
Up to Q units can be produced in any one time period. The cost of making q 
units is given by c(q) and economies of scale mean that c(q) is not linear in q. 
Surplus units can be stored from one time period to the next at a warehousing 
cost of w per unit. There are natural definitions of the stages and states for this 
problem in terms of the time periods and stock levels. However, there is no 
simple formula for deciding what should be done in time period 1. Instead, we 
reorder the time periods in reverse order and relate stage k to period (n — k). If 
we start the last period with S units in stock, then we must meet the demand <i„ 
exactly as we are to finish without any surplus. Thus we must produce dn — S 
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units. The formula for the optimal policy at the starting stage is therefore 

FQ{S) = c{dn - S) (2.15) 

We now need to define a recursive formula for F^iS) in terms of previous 
stages. If we start period n — k with S units in stock and make q units we 
end with S -\- q — dn-k in stock. This will incur a warehousing cost and will 
define the starting stock for the next time period. The optimal policy from this 
point on has already been calculated as Fk_\ {S + q — dn-k)- Thus the recursive 
formula is given by 

Fk{S) = min {c{q) + w{S + q- dn-k) + Pk-\ {S-\-q - dn-k)] 
dn-k-S<q<Q 

(2.16) 
The lower limit on q ensures that production is sufficient to meet demand. 

We also need to define the set of states that need to examined at each stage k. 
This can be limited in three ways. First, there is no point in having more stock 
than can be sold in the remaining time periods. Second, it is not possible to 
have more stock than could be produced up to that time period less that already 
sold. Third, it is not feasible to have a stock level that will not allow demand 
in future periods to be met. Thus, for period n — k WQ have MlNk < S < 
min{MAXU, MAX2^}, where 

n n—k—l 

MAXlk = J2 di MkXlk = 5o + Y. ^Q~ '̂̂  
i=n—k j = l 

and 

MIN^ = max 10, max V (di - Q) \ 
n-k<j<n '^—', 

I t=n—k ) 

Once again we illustrate the formulation with a concrete example. Let n = 4, 
Q = 5, So = 1, w =£2000 and production costs and demands be as given in 
Table 2.5. 

Working in units of £1000 the calculations for the stages are then 

Stage 0. 
MAXlo = 2, MAX2o = 6, MINQ = 0. 
Fo(0) = c(2) = 13, Fo(l) = c(l) = 7, Fo(2) = c(0) = 0. 

Stage 1. 
MAXli = 3, MAX2i = 2, MINi = 0. 
Fi(0) = min{c(l)+0-w; + Fo(0),c(2) + l.u; + Fo(l),c(3) + 2-u; + Fo(2)} 
= "lin {7 + 0 + 1 3 , 13 + 2 + 7, 16 + 4 + 0} = 20. 
Fi (1) = min {0 + 0 + 1 3 , 7 + 2 + 7, 13 + 4 + 0} = 13. 
Fi(2) = min {0 + 2 + 7, 7 + 4 + 0} = 9. 
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Table 2.5. Production costs and demands. 

Production costs 

Units 
Cost (flOOOs) 

0 1 2 
0 7 13 

3 
16 

4 
20 

5 
24 

Demands 

Period 
Demand 

1 2 3 
3 6 1 

4 
2 

Stage 2. 
MAXI2 = 9, MAX2i = 3, MINi = 1. 
F2(l) = min {24 + 0 + 20} = 44. 
F2(2) = min{20 + 0 + 20, 24 + 2+13} = 39. 
F2(3) = min {16 + 0 + 20, 20 + 2 + 13, 24 + 4 + 9} = 35. 

Stage 3. 
We do not need to calculate limits on S as we know that starting 
stock = 1. 
7̂ 3(1) = min {16 + 2 + 44, 20 + 4 + 39, 24 + 6 + 35} = 62. 

Note that in many cases the full range of values for q from S — dn-k to Q 
have not been included in the minimization as they would lead to overstocking 
or under stocking. For example, in calculating F\ (0) we do not consider any 
value of q above 3 as this would give more than two units at the start of the 
last time period. Similarly, we do consider q less than 3 in 7̂ 3(1) as we need at 
least one unit in stock at the start of time period 2. 

As with the knapsack problem, the calculations give the cost of the optimal 
solution but we need to work backwards in order to derive the optimal solution. 
Starting with ^3(1) we note that the minimum value resulted from manufactur
ing three units, which leaves one unit in stock once the demand for three units 
has been met. Thus, the policy from time period 2 onwards is given by ^2(1). 
This is optimized by producing five units, leaving 0 in stock. We therefore 
move to F\ (0) which is optimized in two way—producing 1 and leaving 0 in 
stock or producing 3 and leaving 2 in stock. This implies that there are two 
optimal solutions. The former is completed using Fo(0) and the latter using 
Fo(2). The two solutions are summarized in Table 2.6. 

2.4.3 Other Issues 
One of the main criticisms of a dynamic programming approach is that the 

number of sub-problems that need to be solved is dependent not only on the 
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Table 2.6. The two optimal solutions. 

Production plan 1 
Cost (£) 

Starting Closing production + 
Period stock Make Sell stock warehousing 

1 
2 
3 
4 

Total 

Period 

1 
2 
3 
4 

Total 

1 
1 
0 
2 

Starting 
stock 

1 
1 
0 
0 

3 
5 
3 
0 

3 
6 
1 
2 

Production plar 

Make 

3 
5 
1 
2 

Sell 

3 
6 
1 
2 

3 
0 
2 
0 

i 2 

Closing 
stock 

3 
0 
0 
0 

18 000 
24000 
20000 

0 
62000 

Cost (£) 

production + 
warehousing 

18 000 
24000 

7000 
13 000 
62000 

Stages but also on the states. While the number of stages is usually related 
to the size of the problem in the traditional sense (i.e. is a function of the 
number of variables) the number of states are frequently related to the size 
of the constants in the problem. For example, in the knapsack problem the 
number of states depends on the capacity of the container, while the number 
of states for the production planning problem are essentially bounded by a 
function of the maximum production capacity, Q. For real-life problems such 
quantities may be extremely large. This is often exacerbated by the fact that the 
states may be multi-dimensional. For example, in the standard DP formulation 
for two-dimensional cutting problems the states are defined by rectangles of 
dimension X x F. Our two examples were also relatively simple in that the 
recursive relationship relied only on the solutions at the previous stage. Many 
DP formulations require recursive relationships that use all previous stages, 
thus necessitating the results of all previous calculations to be stored, resulting 
in pressure on available memory in addition to long computation times. It is 
therefore important that some thought is given to reducing the number of states. 
Findlay et al. (1989) use a model similar to our production planning example 
to plan daily production in an oil field so as to meet a quarterly production 
target. The states at each stage are given by the amount still to be produced 
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before the end of the quarter. Thus in their basic model the number of states 
is given by the number of days in the quarter multiphed by the total quarterly 
target. However, there are upper and lower bounds on daily production and by 
using these to produce three bounds on the feasible states at each stage, the 
total size of the search space can be reduced to less than half its original size. 

Although the need to calculate and store all sub-solutions is often seen as 
a drawback of DP it can also be viewed as an advantage, as there is no need 
to carry out a whole new set of calculations if circumstances change. For 
example, in the production planning example, if for some reason we only man
aged to make two units instead of three in the third period, we could adopt 
the optimal policy from that point on simply by selecting the policy given by 
Fi(l) instead of F\{2). This flexibility is cited as one of the reasons for the 
choice of DP as a solution technique by Findlay et al. (1989), as oil produc
tion is regularly affected by problems that may cause a shortfall in production 
on a particular day. Another example of the usefulness of being able to ac
cess the solutions to all sub-problems without additional computational effort 
arises in the solution of two-dimensional cutting problems. The bounds used 
by Christofides and Whitlock (1977) in their branch and bound algorithm cited 
in the previous section are calculated using a DP approach. The bound at the 
root node requires the solution to the unconstrained guillotine cutting problem 
in a rectangle of dimensions X x Y and the bounds at the other nodes require 
solutions to the same problem in smaller rectangles. These are precisely the 
problems solved in the various stages. Therefore, once the bound at the root 
node has been calculated, bounds for all the other nodes are available without 
further computation. 

It is also worth emphasizing that DP is a very general approach. While this 
can be regarded as one of its strengths it can also be a drawback in that there are 
few rules to guide a beginner in its use for a completely new problem. In many 
cases it is relatively easy to define the stages of an implementation but it is more 
difficult to find a suitable definition for the states. Although there are examples 
of DP being used to solve a variety of problems, the vast majority still lie in the 
areas of multi-period planning, routing and knapsack-type problems, where it 
is relatively easy to adapt existing approaches. We have already mentioned the 
production planning problem tackled by Findlay et al. (1989). Other examples 
are a multi-period model for cricketing strategy (Clarke and Norman, 1999), 
a model for optimizing the route taken in orienteering (Hayes and Norman, 
1984), and a multiple choice knapsack model for pollution control (Bouzaher 
etal., 1990). 



CLASSICAL TECHNIQUES 45 

2.5 NETWORK FLOW PROGRAMMING 
2.5.1 Introduction 

Network flow programming deals with the solution of problems that can 
be modeled in terms of the flow of a commodity through a network. At first 
glance it appears that such models might be very hmited in their application, 
perhaps encompassing areas such as the flow of current in electrical networks, 
the flow of fluids in pipeline networks, information flow in communications 
networks and traffic flow in road or rail networks. However, their scope is far 
wider. They not only encompass a wide range of graph and network problems 
that appear to have little to do with flows, such as shortest path, spanning tree, 
matching and location problems, but also model a wide range of other prob
lems ranging from scheduhng and allocation problems to the analysis of medi
cal x-rays. Network flow problems can be categorized as integer programming 
problems with a special structure. For the basic network flow models that deal 
with homogeneous flows this structure impacts on the solution process in two 
ways. First, the constraint matrix of the LP formulation has the property that 
it is totally unimodular. This imphes that any solution at the extreme points 
of the feasible region will be integer valued. From a practical point of view 
this means that as long as all the constants in a problem are integer valued then 
solution via the simplex method will also be integer valued. Thus integer pro
grams that have the special structure of a network flow problem can be solved 
without recourse to any of the specialist IP techniques described in Chapter 3. 
However, the structure of the problem also means that it can be solved directly 
by combinatorial algorithms that are simpler to implement than the full simplex 
algorithm. The inspiration for, and the verification of, the optimality of these 
procedures is rooted in the underlying LP theory. We will start by looking at 
the maximum flow problem, the simplest but least flexible of the network flow 
formulations, in order to introduce the basic concepts and building blocks that 
will be used in the solution of a more flexible model, the minimum cost flow 
problem. 

2.5.2 The Maximum Flow Problem 
Introduction The maximum flow problem is that of maximizing the amount 
of flow that can travel from source S to sink T in a network with capacities or 
upper bounds on the flow through each of its arcs. The problem can be stated 
as follows: 

Let S = source, T = sink, xij = flow in arc (/, j). 
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(7,4) 

(9,4) 

Figure 2.5. Maximum flow principle. 

V = total flow from S toT, uij = upper bound on arc (/, j), 

max V 

s.t. Yl ^'j ~ Jl •̂ '̂' 
((, j)eA (k, i) 6 A 

= Vifi = S 
= -Vifi = T 
0 for all other / 

Xij < Uij for all (i, j) 6 A 

Xij > 0 

(2.17) 

(2.18) 

Constraints (2,17) ensure that the total flow arriving at the sink and the flow 
leaving the source are both equal to the objective, V, while at all other nodes 
the amount of flow entering the node is equal to that leaving. 

As stated above, the problem could be solved by applying the simplex al
gorithm to the above formulation. However, a simpler and more intuitive al
gorithm is the Ford-Fulkerson labeling algorithm (Ford and Fulkerson, 1956) 
that is based on the idea of flow augmenting chains. Given a feasible flow in a 
network (i.e. a flow satisfying constraints (2.17) and (2.18)), siflow augment
ing chain from S to T is a chain of arcs (in any orientation) such that the flow 
can be increased in forward arcs and decreased in backward arcs. This concept 
will be illustrated with reference to Figure 2,5, 

The two-part labels on the arcs represent the capacity and the flow respec
tively, A total of seven units of flow travel from S to T, We can increase this 
flow along a chain of arcs in two ways. We could take chain {(S,B), (B,C), 
(C,T)) made up entirely of forward arcs and increase the flow by three units. 
The limit of the increase is three, as any larger increase would violate the ca-
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pacity of arc (C,T). Alternatively we could take the chain {(S,B), (A,B), (A,T)}, 
in which arc (A,B) is a backward arc as it is oriented in the opposite direction 
to the chain. Using this chain we can increase the flow by four units by in
creasing the flow in arcs (S,B) and (C,T) and decreasing the flow in arc (A,B). 
This will have the effect of diverting four units of flow from (A,B) to (A,T), 
thus allowing an additional four units to arrive at B from S, The limit of four 
units derives from the fact that this will reduce the flow in (A,B) to 0. Ford 
and Fulkerson proved the result that a flow is optimal if and only if it has no 
flow augmenting chain. This suggests that the maximum flow problem can 
be solved by repeatedly finding a flow augmenting chain and augmenting the 
flows in the chain, until no flow augmenting chain exists. The Ford-Fulkerson 
labehng algorithm provides a mechanism for doing this while guaranteeing to 
identify a flow augmenting chain if it exists. It builds up one or more partial 
chains by successively labehng nodes with a two-part label (/?/, bi) where pi 
defines the predecessor of node / in the chain and bt is an upper bound on the 
capacity of the chain up to node /. The objective is either to reach node T in 
which case a flow augmenting chain has been found, or to terminate without 
reaching T, in which case no flow augmenting chain exists. 

The Ford-Fulkerson Labeling Algorithm For maximum flow from source 
S to sink T. 

Notation: xij is the current flow in arc (/, j ) , uij is the capacity of arc (/, j). 
Step I. Find an initial feasible flow (all flows = 0 will do). Find a flow aug
menting chain as follows. 
Step 2. Label S(—, oo) and set all other nodes as unlabeled. 
Step 3. Select a forward arc (/, j) from a labeled to an unlabeled node such 
that Uij — Xij > 0, or select a backward arc (j, i) from an unlabeled node to a 
labeled such that Xij > 0. If no such arc exists STOP current flow is maximal. 
Step 4. If forward arc label jii, min{&/, Uij — Xij}. If backward arc label 
ii-j.minibj.Xij}. 
Step 5. If T not labeled go to step 3. Otherwise adjust flow as follows. 
Step 6. Trace path back from T using labels pi to determine preceding node. 
Increase flows in forward arcs on the path by bj and decrease flows in back
ward arcs on the path by bj. 
Step 7. Go to step 2. 

We illustrate the algorithm with reference to Figure 2.5. We start with the 
given flow. 
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Labeling: S ( - , oo), B(S, min(oo, 8 - 0) = 8), C(B, min(8, 9 - 4) = 5), 
T(C, min(5 ,1-4) = 3), bj = 3. 

Thus we can augment the flow by three units. Using the labels pi and work
ing back from pj we get chain S, B, C, T. All arcs are forward so the flow is 
increased by three units in each to give (S,A) seven units, (S,B) three units, 
(A,B) four units, (A,T) three units, (B,C) seven units, (C,T) seven units. 

Attempt to find a flow augmenting chain given updated flows. 
Labeling: S ( - , oo), B(S, 5), C(B, 2), A(-B, 4), T(A, 4). 

Note that in this small example we can see that labeling C will lead to a dead 
end. However, we have labeled it here to show that in the general case all la
beled nodes need not appear in the final augmenting chain. The chain is given 
by SBAT where the link from B to A is backward so that flow is decreased 
by four units on this hnk and increased on all others. This gives: (S,A) seven 
units, (S,B) seven units, (A,B) zero units, (A,T) seven units, (B,C) seven units, 
(C,T) seven units. 

Attempt to find a flow augmenting chain given updated flows. 
Labeling: S(-, oo), B(S, 1), C(B, 1). 

No further nodes are available for labeling. Thus the current flow of 14 units 
is optimal. 

2.5.3 Minimum Cost Flow Problem 
Introduction Having introduced the basic concepts via the maximum flow 
problem we now move on to the more flexible model of the minimum cost flow 
in a closed network. This problem consists of a cyclic network, i.e. a network 
without a source and sink, and has upper and lower bounds on the capacities 
of the arcs as well as a cost associated with each arc. The objective is to find 
a feasible flow in the network such that the total cost is minimized. The LP 
formulation to the problem is as follows. 
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Let Xij be the flow in arc (/, y), M,y the upper bound on arc (/, j), lij the 
lower bound on arc (/, j) and c^ the cost: 

min Y^ CijXij 

s.t J2 ^iJ- H ^^'=0 W (2.19) 

(/j*)€i4 ( / : , / ) G A 

Xij < Uij Va, ;•) G A (2.20) 

^y > hj V(/, y) € A (2.21) 

Xij > 0 V(/, j) € A 
Constraint (2.19) ensures that the flow into each node equals that flowing out, 
while constraints (2.20) and (2.21) are the upper and lower bound constraints 
respectively. As with the maximum flow problem, this problem can be solved 
using the simplex method, but there are also a number of specialist solution 
techniques. Here we introduce one of these—the out-of-kilter algorithm. 

The Out-of-Kilter Algorithm The derivation of the out-of-kilter algorithm 
(Minty, 1960; Fulkerson, 1961) is based on Unear programming theory, but the 
algorithm can be implemented without any prior LP knowledge. We associate 
a real number 7r(/) with each node /. These numbers are sometimes called node 
potentials and are simply the dual variables associated with the flow balancing 
constraints (2.19). By using the optimality conditions for linear programming 
to determine equations for the dual variables associated with constraints (2.20) 
and (2.21) in terms of Cy, 7r(0 and 7v(j), and using the complementary slack
ness conditions, it can be shown that the solution is optimal if and only if the 
following kilter conditions are satisfied for each arc (/, j): 

m if Xij = lij then Cy -̂  7r(/) — 7r(y) > 0 

• if lij < Xij < Uij then ĉ - -\-Tt(i) — 7T(J) = 0 

m if Xij = Uij then c^ + 7r(/) — 7r(y') < 0 

For a given arc we can represent these conditions diagrammatically by a 
two-dimensional plot in which x^ is plotted on the x-axis and c,y +n{i) — 7T{j) 
is plotted on the >'-axis. The set of all points satisfying the kilter conditions 
form two vertical lines defined by A; = Uj for >' > 0 and x = Uij for y < 0, 
connected by a horizontal line segment from (/^, 0) to (M,̂  , 0). This is called 
the kilter line and diagram is a kilter diagram. Figure 2.7 shows the six kilter 
diagrams relating to the arcs of the network in Figure 2.6. 

The bold lines are the kilter lines. The markers on the diagrams are plots of 
(xij, Cij -I- 7r(/) — 7T{J)) for different flows and potentials. When the marker 
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(1,3,-1) 

Figure 2.6, Minimum cost flow problem: the three-part-labels are (//j, uij, cij). 

lies on the kilter line the corresponding arc is said to be in kilter, if not it is 
said to be out of kilter. We will refer to this figure again when we illustrate the 
out-of-kilter algorithm. 

The out-of-kilter algorithm works with solutions that satisfy the flow bal
ance constraints (2.19), but may violate the upper and lower bounds. By chang
ing the flows or the potentials it gradually moves each arc into kilter without 
moving any other arc away from the kilter Hne in the process. It can be stated 
as follows. 

Out-of-kilter algorithm for min-cost flow in a closed network. Find an ini
tial flow satisfying the flow balance equations and a set of node potentials 
Tt{i) ¥/. Let y{i, j) = ctj +7t{i) — Tc{j) (note that all flows and potentials = 
0 will do). 

If yO\ ; ) > 0, ^minO', ; ) = mm{XijJij), ^maxO\ j) = max(X/y , //y). 

If yO*, ; ) = 0, Xminii. j) = miniXij, Uj), XmaxO', j) = max(X/y , W/^). 

If jO\ ; ) < 0, XminO', ; ) = min(^,7, w/y), XmaxO\ j) = max(x,7, w/y). 
While any arcs out of kilter and procedure is successful do. 
Attempt to update flows. 
Select and out-of-kilter arc (/?, q). 
If X(p , q) > Xminip. q) then set S = p, t = q, V = Xpg - Xmmip. q)' 

lfx{p, q) < Xmaxip.q) then stis = q,t = p,v = x^^^ip, q) - Xpg. 
Attempt to find a flow augmenting chain from 5* to Mo carry up to v addi

tional units of flow without using (p, q) and without exceeding Xmax(̂  j) in 
forward arcs or falling below ;Cmin(̂  j) in backward arcs. [Note: this can be 
achieved by starting the labeHng algorithm with s{—,v) and respecting x^ax 
and jCmin when adjusting the flows.] 
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If successful increase flow in the chain and increase/decrease flow 'm{p,q) 
by bj. Otherwise attempt to update node potentials as follows. 

Let L be the set of all arcs (/, j) labeled at one end and not the other such 
that/y <Xij < Uij. 

For those arcs in L labeled at /: \i y{i, j) > 0 set (5/y = yii, j), otherwise 
set 8ij = 00. 

For those arcs in L labeled at j : ify(i,j) < 0 set (5,j = -yii J), otherwise set 
8ij = CO. 

Set 8 = min (5^ : (/, j) e L}. 
If 8 = 0 then stop—no feasible flow. Otherwise set 7T(k) = n(k) -i-8 for all 

unlabeled nodes and update y(i, j) for all arcs labeled at one end and not the 
other. 

Repeat. 

When the algorithm terminates either all the arcs are in kilter and the current 
flows are optimal or no feasible solution exists. 

We illustrate the algorithm with reference to the network in Figure 2.6 and 
the kilter diagrams in Figure 2.7. Note that ;Cmin and Xmax are simply the mini
mum and maximum flow values that ensure that an arc never crosses or moves 
further away from the kilter line in a horizontal direction and 8 serves the same 
purpose for moves in a vertical direction. 

Initialization: We start with all flows and potentials equal to zero. Thus 
Cij -\- 7T{i) — nij) is simply the arc cost for all arcs. This situation is given by 
the solid circles in Figure 2.7. Note that arcs (A, D) and (C, D) are already 
in kilter, but arc (D, A) is not, even though its flow lies within its lower and 
upper bounds. 

Iteration 1: We select out-of-kilter arc {A, B). We would like to increase 
the flow in this arc by three units. Thus v = ?>, s = B,t = A. 

Labeling: B(—, 3), D(B, 3), A(D, 3). Labeling has been successful. There
fore we increase flow in chain {{B, D), (D, A)} and in arc (A, B) by three units 
and update x^m and .̂ maxV updated arcs. This is shown by the solid squares in 
Figure 2.7. Note that arc {A, B) is now in kilter. 

Iteration 2: Select out-of-kilter arc (B, C), s = C, t = B, v = 2. 
Labeling: C(—, 2); no further labeHng possible as we cannot increase flow 

in (C, D) without moving away from the kilter hne. L = {(C, D)} and as 
(C, D) is labeled at C, so 8CD = 2. Note that this is the maximum distance 
this arc can move down without leaving the kilter line. 

Unlabeled nodes are A, B, D. Increase potentials on these nodes by two to 
give 7r(A) = 2, niB) = 2,7r(C) = 0,7r(D) = 2. This wifl change the y(i, j) 
values for arcs (B, C) and (C, D) as shown by the soUd triangles. Note that 
for (C, D) this also changes Xmax-
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Figure 2.7. Kilter diagrams for Figure 2.6 problem. 

Iteration 3: We try again with arc (B, C), s = C,t = B,v = 2. 
Labeling: C(—, 2), D(C, 2), A(D, 2); no further labeling is possible as flow 

in (A, B) is at full capacity and decreasing flow in (B, D) will move away from 
the kilter line. L = {(A, B), (B, D)}. 8AB = oo, 8BD = 3,8 = 3. 

Unlabeled node B. Increase Tt(B) by three, giving TT(A) = 2, 7r(^) = 5, 
Tc(C) = 0, 7t(D) = 2 and changing positions of arcs (A, B), (B, C) and 
(5, D) as given by the soHd diamonds. Arc (B, D) is now in kilter and has a 
new value for Xmin. 
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Iteration 4: We try again with arc {B, C), s = C,t = B,v = 2, 
Labeling: C ( - , 2), DiC 2), B(-D, 2). t is labeled. 
Adjust flows in chain {(C, D), (B, D)} and increase flow in (5, C) by two 

units as shown by the unfilled triangles. Arc (B, C) is now in kilter. 
Iteration 5: Select only remaining out of kilter arc (D, A), s = A, t = D, 

v = 2. 
Labeling: A(—, 2), D(A, 2). r is labeled. Increase flow in (D, A) and 

(A, D) by two units as shown by the unfilled squares. 
All arcs are in kilter, therefore the solution is optimal. Flows are as given 

by the last update for each arc, i.e. XAB = 3, XAD = 2, XBC = 2, XBD = 1̂  
xcD = 2 and XOA = 5, with a total cost of —13. 

2.5.4 Other Issues 

The previous sections introduced two relatively simple algorithms for the 
maximum flow and minimum cost flow problems. The out-of-kilter algorithm 
also has the advantage that it is easy to find an initial solution as the upper 
and lower bounds do not need to be satisfied. However, these are not neces
sarily the most efficient algorithms in each case. For example, it is possible 
to design pathological cases of the max-flow problem for which the number 
of iterations made by the Ford-Fulkerson algorithm is only bounded by the 
capacity on the arcs. There are also inherent inefficiencies in the algorithms 
in that subsequent iterations may need to recalculate labels already calculated 
in previous iterations. A more efficient algorithm is the network simplex algo
rithm which can be found in Ahuja et al. (1993). The algorithm is so called 
because it can be shown that the iterations used to improve an initial solution 
correspond exactly to those computed by the simplex method, but the special 
structure of the problem means that the algorithm can be expressed purely in 
network terms without recourse to the simplex tableau. For large problems the 
additional efficiencies of the network simplex algorithm may pay off, but for 
small to moderate problems the out-of-kilter algorithm should be fast enough, 
and has the advantage that it is easy to implement from scratch and that code 
is available from a number of sources. 

As already mentioned, the efficiency of network flow solution algorithms 
means that it is worthwhile attempting to model any new problem as a net
work flow problem. A wide range of problems can be modeled using the two 
formulations already given. However, the scope of network flow approaches 
is even wider when we consider problems that can be modeled using the dual 
formulations of network flow problems. Examples of this type of model in
clude Mamer and Smith's (1982) approach to an infield repair kit problem and 
Johnson's (1968) open cast mine planning problem. Even when the network 
model is not flexible enough to incorporate all the constraints in a problem it 
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may still provide an effective optimization tool. For example, Glover et al. 
(1982) model the problem of determining the allocation of space on aircraft 
to different fare structures as a min-cost flow problem. Their model does not 
incorporate all the constraints needed to model the problem and thus infeasi-
ble solutions may be returned. If this occurs the solution is excluded from the 
model and the solution process reiterated until a feasible solution results. The 
authors comment that this was far more efficient than attempting to include all 
such constraints directly into an IP model. 

We have limited our focus to problems in which flows are homogeneous and 
there is no gain or leakage of flow along an arc. Problems in which multiple 
commodities share the arc capacities and problems where flow is not preserved 
along an arc have also been widely studied. Unlike the simple problems cov
ered here, both these problems are NP-complete (see Chapter 11). Algorithms 
for solving such problems are beyond the scope of this chapter but can be found 
in many network flow texts. Ahuja et al. (1993) give a comprehensive treat
ment of network flows including models, algorithms and practical applications. 

2.6 SOME USEFUL MODELS 
The previous sections have outlined three general approaches to optimiza

tion problems. In this section we focus on two classes of problem that fre
quently occur as sub-problems in the solution of larger or more complex prob
lems over a wide range of application areas. In each case solution approaches 
based on the methods covered in the previous sections are described. 

2.6.1 Shortest Path Problems: Dynamic Programming 
Approaches 

The first class of common sub-problems are those involving shortest paths. 
As observed in Section 2.3, the branch and bound shortest path algorithm pre
sented there is not the most efficient way of tackling such problems. In this 
section more efficient approaches based on dynamic programming are pre
sented. We start by considering the problem of finding the shortest path from 
a source vertex, s, to all other vertices in a graph. 

Bellman's Shortest Path Algorithm This problem can be solved by Bell
man's shortest path algorithm in which the stages are defined by the number 
of links allowed in the path and the states are defined by the vertices. The 
formulae for the starting state and the recursive relationship can be defined as 
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follows: 

FQCD) = 0 if u = 5, FQ{V) = oo otherwise 

Fk{v) = min \ Fk-\ {v), min Fk-\ {w) + ĉ u; 

where gjt is the set of vertices whose values were updated at stage k and E is 
the set of links in the network. Bellman's shortest path algorithm can then be 
stated as follows: 

Set FQ{v)yv € V 
While Qk^&mdk <ndo 

Calculate Fkiv)yv e V and determine Qk 
End while 
If Qj^ = 0 then Fic(v) defines length of shortest path from s to i;Vi' 
If k = n and Qk 7^ ^ then network contains negative cost circuits and 
shortest paths cannot be defined. 

If paths from every vertex to every other are required then rather than ex
ecute Bellman's algorithm n times it is more efficient to use Floyd's shortest 
path algorithm (Floyd, 1962). 

Floyd's Shortest Path Algorithm This is also a DP-type approach but in this 
case FkiiJ) represents the shortest path between / and j allowing only vertices 
1 to /: as intermediate points. The initial states are given by Fo{i,j) = Cij, 
where Cij is the cost of link {ij), and the recursive relationship by Fk{i,j) = 
min{Fk^i(i,j), Fk^\{i,k) + Fk-\{k,j)]. As FkiiJ) = 0 V ,̂ unless the network 
contains a negative cost circuit neither Fk(i,k) or Fk(kJ) will be updated dur
ing iteration k. Therefore, the subscript k is usually dropped in practice and 
matrix F(i,j) is overwritten at each iteration. The algorithm can then be stated 
as follows. 

Step I. 
k = 0, F(i, j) = c{i, jMi, j). 

Step 2. 
Wk = l,n 
Wi = \,n sii ^ k and F(i, k) ^ oo 
'ij = \,nsij^k and F{k, j) 7̂  00 
F{i, j) = mm{F{i, j), F(i, k) + Fik, j)} 
if F(i,i) < 0 for any / STOP (negative cost circuit detected) 
end loops 
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It should also be noted here that if all costs are non-negative then an al
gorithm due to Dijkstra (1959) is a more efficient than Bellman's algorithm. 
Dijkstra's algorithm can be found in most basic texts covering graph and net
work algorithms (e.g. Ahuja et al., 1993). 

2.6.2 Transportation Assignment and Transhipment: 
Network Flow Approaches 

In this section we consider a second commonly occurring class of sub-
problems—the family of transportation-type problems, including the assign
ment and transhipment problems. All three problems can be modeled as mini
mum cost flow problems. Once the appropriate model has been derived, solu
tions can be obtained using the out-of-kilter algorithm or any other minimum 
cost flow algorithm. The focus of this section is therefore on defining appro
priate models. 

The Transportation Problem The transportation problem is that of deter
mining the amount of product to be supplied from each of a given set of supply 
points to each of a given set of demand points, given upper bounds on availabil
ity at each supplier, known demands at each demand point, and transportation 
costs per unit supplied by supplier / to demand point j . The problem can be 
formulated as follows: 

n m 

m i n ^ ^ Q y x , , 

n 
s.t. ^ Xij > dj (2.22) 

j = i 

L!^'7 ^ 
7 = 1 

We can model this problem as a minimum cost flow network by defining nodes, 
arcs, lower and upper bounds and costs as follows. 

Nodes: 

• A dummy source node S. 

• A dummy sink node T. 

• One node for each supplier, / = l,n. 

• One node for each demand point j , j = \,m. 

Arcs: 
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• An arc from each supplier node / to each demand node j with lower 
bound = 0, upper bound = 5/ and cost = c/y. Note that if all Cij > 0 
then the upper bound can be replaced by min {si ,dj}, 

• An arc from S to each suppHer node with lower bound = 0, upper bound 
= Si and cost = 0. 

• An arc from each demand node, j , to T with lower bound = dj upper 
bound = M, where M is some suitably large number and cost = 0. Note 
if all Cij > 0 then the upper bound can be replaced by dj. 

n 

• An arc from T to S with lower bound = 0, upper bound =J2si, and cost 
= 0. =̂1 

The minimum cost flow in the network defined above will give the optimal 
solution to the transportation problem and the flows in the arcs (/, j) define the 
value of the variables Xij. 

Many management science and operational research texts cover the stepping 
stone algorithm or MODI method for the transportation problem. It is inter
esting to note that the rules used by the MODI method for determining those 
Xij that should be considered for increase are precisely the kilter conditions 
that define those arcs that lie to the left of the kilter line in the network flow 
model, and that the stepping stone process for finding a suitable path to up
date the solution corresponds to finding a flow augmenting chain. Many texts 
also suggest a heuristic method known as Vogel's approximation method, or 
VAM, to obtain an initial solution. This approach can be taken to find an initial 
flow in the above model, thus reducing the number of iterations required when 
compared with a starting solution of 0. 

The Assignment and Transhipment Problems Several relatives of the trans
portation problem are regularly encountered as sub-problems in more complex 
models. Here we consider the assignment and transhipment problems. 

The assignment problem is that of assigning tasks to resources. It is as
sumed that there are n tasks and n resources and a cost Cij associated with 
the assignment of task / to resource j . The objective is to assign each task to 
exactly one resource and each resource to exactly one task such that the to
tal cost of the assignments is minimized. This problem can be regarded as a 
transportation problem in which n = m and Si = dj = 1, V/ and Vy. Thus 
any assignment problem can be modeled using the transportation model above 
with the appropriate values for Si and dj. 

The transhipment problem is a transportation problem in which goods may 
travel from supplier to demand point via any or none of a set of intermedi
ate points—known as transhipment points. These points may also be supply 
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points or demand points in their own right. The network flow model for the 
transportation problem can easily be adapted to the transhipment model by 
adding new nodes for the transhipment points and adding arcs from each sup
ply point and to each demand point with appropriate bounds and transhipment 
costs. If a transhipment point is also a supply point or demand point then it is 
also connected to 5' or r respectively. 

2.6.3 Other Useful Models 
The above classes of problem are two of the most frequently occurring 

sub-problems that can be solved using the methods covered in this chapter. 
Two other classes of problem that deserve special mention are the binary and 
bounded knapsack problems and matching problems in bipartite graphs. 

We have already presented a dynamic programming approach for the un
bounded knapsack problem in Section 2.4. The binary version of the problem 
occurs when at most one piece of each type is available. An effective solution 
approach to this problem is a tree search in which there are two branches from 
each node, one corresponding to fixing the value of a variable, xi at 0 and the 
other to fixing the same variable at 1. Upper and lower bounds are easily ob
tained, simply by sorting the variables in Vi/Wf order and adding each to the 
knapsack in turn, until the capacity is exceeded. In its basic form the algorithm 
is an implementation of the standard integer programming branch and bound 
algorithm as discussed in Chapter 3. However, the bounds can be improved 
by adding problem specific information. Martello and Toth (1990) give details 
of several variants of the method and suggest a series of increasingly powerful 
bounds. They also show how the method can be extended to the more general 
case in which the variables are not binary, but are restricted by upper bounds. 

Matching problems also occur widely. A matching in a graph is a set of 
edges no two of which have a vertex in common. Maximum matching prob
lems in arbitrary graphs can be solved using the blossom algorithm due to 
Edmonds, and described in Ahuja et al. (1993). However, if the graph is bi
partite, i.e. the vertices can be partitioned into two subsets such that there are 
no edges between any two vertices in the same subset, then the problem can 
be solved more simply using network-flow-type algorithms. Such models are 
useful in practice, as bipartite graphs often appear in allocation or scheduling 
problems. 

2.7 AREAS FOR FUTURE APPLICATION 
In this section we outhne some potential areas for the future application of 

the methods described in this chapter. All three approaches have been used 
extensively in the solution of a broad range of problems for several decades. 
The increase in computer power available to individuals and organizations 
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since their introduction has led to a continuously expanding range of prob
lems that can be solved to optimality within a feasible amount of time. At 
the same time, theoretical advances in potential application areas have lead to 
improved bounds, once again increasing the scope of branch and bound ap
proaches. There are currently many researchers active in each of the areas. 
Thus it is likely that we will continue to see new theoretical developments as 
well as new branch and bound or DP implementations for old problems and 
the application of classical approaches to new practical problems. However, 
there is also considerable potential for combining these techniques with some 
of the more modem approaches covered elsewhere in this book. Indeed there 
is considerable evidence that this is already happening. Such integration can 
be at one of three levels: pre- or post-processing, true hybridization, and cross-
fertihzation of ideas. We take a brief look at each of these in turn. 

2.7.1 Pre- and Post-processing 
The simplest form of integration is to use a classical approach as part of a 

staged solution to a problem. Tree search approaches are often used to enu
merate all the variables required for the optimization phase of the problem. 
For example, in crew scheduHng problems the set of feasible tours of duty 
satisfying all the necessary constraints are enumerated first and then these are 
used as input to an optimization algorithm, or in the case of timetabling and 
scheduling problems the allocation of events to rooms may be carried out in a 
post-processing phase once the schedule has been determined. In other cases 
pre-processing may be used to reduce the size of the solution space. For exam
ple, Dowsland and Thompson (2000) solve a nurse scheduling problem using 
tabu search. Before calling the tabu search routine they use a tree search ap
proach to solve a modified knapsack problem that enables them to determine 
the precise number of additional nurses required to cover the weekly demand 
on a ward. This allows them to minimize the size of the solution space and to 
simplify the evaluation function in the tabu search part of the solution process. 

2.7.2 True Hybrids 
A greater degree of integration is provided by true hybrid techniques ap

proaches in which a classical approach is embedded into a modem search tool 
or vice versa. Many researchers have already tried this. There are several in
stances of the integration of branch and bound with genetic algorithms. For 
example, Cotta et al. (1995) use a tree search to find the best child from a set of 
possibiHties given by a loosely defined crossover, while Nagar et al. (1995) use 
a genetic algorithm (see Chapter 4) to search out a promising set of ranges on 
the values of a series of variables and then use a tree search to find the optimal 
solution within the range. Classical techniques have also been embedded into 
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neighborhood search approaches such as simulated anneahng (see Chapter 7), 
tabu search (see Chapter 6) and variable depth search. For example, there are 
many problems in which the variables can be partitioned into two sets, A and 
B, such that if the values of A are fixed the problem of optimizing B reduces 
to a network flow problem. The size of the solution space can be reduced to 
cover only the variables in A, with each solution being completed by solving 
for the variables in B. Network-flow-type problems are especially amenable to 
this sort of role, as neighborhood moves will typically involve changing a cost 
or bound, or adding or deleting an arc. All of these changes can be accommo
dated in the out-of-kilter algorithm using the previous solution to initialize the 
solution process for its neighbor(s), thus minimizing the computational effort 
in resolving each new sub-problem. Examples of this type of strategy include 
Hindi et al. (2003) who solve transhipment sub-problems to complete solutions 
in their variable depth search approach to lot sizing problem, and Dowsland 
and Thompson (2000) who use a network flow problem to allocate nurses on 
days to the moming or aftemoon shifts. This reduces the number of variables 
in the search space for each nurse by up to a factor of 32. 

As discussed in other chapters, many neighborhood searches can be im
proved by extending the size of the neighborhood. One way of doing this is to 
introduce chains of moves. Rather than select a chain at random or enumer
ate all chains in the neighborhood, it makes sense to find optimal or improv
ing chains directly using some form of shortest path algorithm. For example, 
Dowsland (1998) uses a mixture of tree search and Floyd's algorithm to find 
improving chains of moves for a nurse scheduHng problem. Other forms of 
compound moves may not involve chains. In such cases other techniques can 
be used to find optimal moves. For example. Potts and van de Velde (1995) 
use dynamic programming to search for good moves in neighborhoods made 
up of multiple swaps for the traveling salesman problem. Gutin (1999) also 
considers the TSP but utilizes a bipartite matching problem in order to deter
mine the best option from a neighborhood defined by removing and reinserting 
k vertices in the tour. Other researchers have worked with this neighborhood 
for different definitions of/:. 

2.7.3 Cross-fertilization 

As well as true hybrid techniques such as those outlined above there are also 
examples of cross-fertilization of ideas in which an ingredient from a classical 
approach has been embedded into a more modem method. One example is the 
incorporation of bounds into a heuristic search in order to avoid or leave non-
promising areas of the solution space. Hindi et al. (2003) use this strategy in 
their variable depth search approach to avoid wasting time in solving tranship
ment problems when it can be shown that the resulting solution cannot result 
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in an improvement, while Dowsland (1998) uses bounds in combination with a 
tabu Hst to avoid wasting time in areas of the search space that cannot lead to a 
better solution than the best found so far. Similar approaches have been taken 
with genetic algorithms by Tamura et al. (1994) and Dowsland et al. (2004) 
who use mutation and crossover respectively to destroy partial solutions that 
exceed a tree-search-type bound. A second example of cross-fertiHzation is in 
the use of ejection chains, a concept suggested by Glover and Laguna (1997) 
that is a generalization of altemating chains—a term used for the way in which 
flow is updated in certain classes of network flow problems. 

2.8 TRICKS OF THE TRADE 
2.8.1 Introduction 

For newcomers to the field, the prospect of applying any of the above tech
niques to a given problem can appear daunting. This section suggests a few tips 
on overcoming this feeling and getting started on a basic implementation, and 
then going on to identify possible areas for algorithm improvement. We start 
with a few general observations that apply to all three techniques and follow 
this with more specialist advice for each of the techniques in turn. 

1 Get a basic understanding of the technique and how it might be applied 
to a given problem. This involves reading suitable books and articles. 
Due to the relatively long history of the techniques covered in this chap
ter there is a wealth of introductory material available. Although some 
of the seminal material and/or early texts in each field provide valuable 
insights and technical detail they often use specialist terminology and 
can be difficult to understand. Therefore they are probably best left until 
some practical experience has been gained, and the best place to start 
would be one of the more up-to-date texts given in the references and 
sources of additional information at the end of this chapter. These will 
provide a thorough background but may not include examples that are 
closely related to the reader's own problem. It is therefore desirable to 
supplement these sources with journal articles related to the relevant ap
plication area. 

2 Don't reinvent the wheel There are many pubHshed articles describing 
implementations of these techniques to classical combinatorial optimiza
tion problems. If your problem can be formulated as, or is closely related 
to, one of these problems then it is likely that an effective implementa
tion has already been published, and in many cases suitable code may 
also be readily available. Sometimes the relationship to a classical prob
lem is obvious from the problem definition, but this is not always the 
case. It is therefore well worth considering different ways of modehng 
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a problem, e.g. using graph-theoretic models or trying different LP-type 
formulations and comparing these with well-known classical problems. 

3 Don Y be too pessimistic. Although the complexity of most branch and 
bound and dynamic programming algorithms is Hkely to be exponen
tial (or at best pseudo-polynomial) they can still be effective tools for 
solving moderately sized problems to optimality, and may well compete 
with the more modem methods described later in this book when used as 
heuristics. While there may be many good practical reasons for select
ing a heuristic rather than an exact approach to a problem, many real-life 
NP-hard problems (see Chapter 11) have proved amenable to solution by 
both branch and bound and dynamic programming. However, this may 
require a little ingenuity on the part of the algorithm designer. If the 
initial implementation seems too slow or memory intensive it is well 
worth spending some time and effort trying to make improvements. The 
situation with regard to network flow programming is somewhat differ
ent, in that the simple models covered in detail in this chapter can all be 
solved to guaranteed optimality in polynomial time and are the obvious 
first-choice approaches for problems that have the required structure. 

2*8.2 Tips for Branch and Bound 
The issues arising in developing and implementing a branch-and-bound ap

proach can be broadly divided into three categories. 

1 Representations. For most problems there are several different potential 
tree search representations and search strategies each of which will im
pact differently on solution time and quahty. In order to appreciate this 
it is worth reading articles that use different representations for the same 
problem. Before starting to code any implementation think about what 
you have read in relation to your own problem. You should also think 
about whether you want to apply a depth-first search or if there may be 
advantages in a more memory intensive breadth or best-first search, 

2 Coding. Although it is relatively easy for a beginner to construct a tree 
search on paper it can be difficult to translate this into computer code. 
We therefore recommend finding code or detailed pseudo-code for a sim
ilar tree structure to the one you are planning on and using it as a tem
plate for your own program structure. It is also often helpful to code the 
three operations of branching, backtracking and checking the bounding 
conditions separately. It is also a good idea to start with very simple 
bounds and a branching strategy based on a natural ordering of the ver
tices and test on a small problem, building up more sophisticated bounds 
and branching strategies as necessary. 
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3 Performance, Once the basic code is working the following pointers will 
help in getting the best out of an implementation. 

Analyse the time taken to calculate the bounds and their effectiveness in 
cutting branches and consider how the trade-off influences overall com
putation time. While computationally expensive bounds or branching 
strategies are likely to increase solution times for small problems, they 
may well come into their own as problem size grows. 

In the same way as it is important to test heuristics for solution quality on 
problem instances that closely match those on which they are to be used 
in terms of both problem size and characteristics, so it is important to 
ensure that a branch and bound approach will converge within a realistic 
time-scale on typical problem instances. 

Remember that branch and bound can be used as a heuristic approach, 
either by stopping after a given time or by strengthening the bound to 
search for solutions that improve on the best so far by at least a%. In 
this case it is important to consider whether you want to bias the search 
towards finding good solutions early or precipitating the bounding con
ditions earlier. 

2.83 Tips for Dynamic Programming 
Due to its generahty, getting started with dynamic programming can be dif

ficult but the following pointers may be of assistance. 

1 Representation, When faced with a new problem simply deciding on the 
definition of stages and states that form the basis of a correct dynamic 
programming formulation can be difficult, and access to a successful for
mulation to a similar problem can be invaluable. As a starting point it is 
worth considering if the problem can be classified as a multi-period op
timization problem, routing problem, or knapsack-type problem. If so, 
then there are a wealth of examples in standard texts or journal articles 
that should help. 

Remember that the objective is to produce something that is consider
ably more efficient than complete enumeration. Therefore, it is impor
tant to ensure that the calculations relating to the first stage are trivial, 
and that there is a relatively simple recursive relationship that can be 
used to move from one stage to the next. If there is no apparent solu
tion when defining the stages in a forwards direction then consider the 
possibility of backward recursion. 

2 Performance, DP can be expensive both in terms of computational time 
and storage requirements and the main cause of this is the number of 
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states. Therefore, once a basic structure has been determined it is worth
while considering ways of cutting down on the number of states that 
need to be evaluated. It is also worthwhile ensuring that only those 
stages/states that may be required for future reference be stored. 

If the environment requires the solution of several similar problems, e.g. 
if the DP is being used to calculate bounds or optimize large neigh
borhoods, consider whether or not the different problems could all be 
regarded as sub-problems of one large problem, thereby necessitating 
just one DP to be solved as a pre-processing stage. As with branch and 
bound, it is important to ensure that the time and memory available are 
sufficient for typical problem instances. 

2.8.4 Tips for Network Flow Programming 

The problems facing a beginner with network flow programming are dif
ferent in that there are standard solution algorithms available off-the-peg, so 
that the only skill involved is that of modeling. Because these algorithms are 
readily available and operate in polynomial time then it is certainly worth con
sidering whether any new problem might be amenable to modeling in this way. 
Some tips for recognizing such problems are given below. 

If the problem involves physical flows through physical networks then the 
model is usually obvious. However, remember that network flow models sim
ply define an abstract structure that can applied to a variety of other prob
lems. Typical pointers to possible network flow models are allocation problems 
(where flow from i to j represents the fact that / is allocated to y), sequencing 
problems (where flow from / to j represents the fact that / is a predecessor 
of j ) , and problems involving the selection of cells in matrices (where flow 
from / to j represents the selection of cell (/,7)). However, this hst is by no 
means exhaustive. 

Other tips for modeling problems as network flows are to remember that 
network links usually represent important problem variables and that even if 
the given problem does not have an obvious network flow structure the dual 
problem might. In addition, although typical practical problems will be too 
large and complex to draw the whole network it is worthwhile making a sim
plified sketch of potential nodes and links. If the problem has complexities 
such as hierarchies of resources, multiple pricing structures, etc., this may be 
facilitated by simpHfying the problem first and then trying to expand it without 
compromising the network flow structure. 

2.9 CONCLUSIONS 

Although the classical techniques described in this chapter were developed 
to meet the challenges of optimization within the context of the computer tech-
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nology of the 1950s, they are still apphcable today. The rapid rate of increase 
of computing power per unit cost in the intervening years has obviously meant 
a vast increase in the size of problems that can be tackled. However, this is not 
the sole reason for the increase. Research into ways of improving efficiency 
has been continuous both on a problem-specific and generic basis—for exam
ple all the techniques lend themselves well to parallelization. Nevertheless, 
they do have drawbacks. The scope of network flow programming is limited 
to problems with a given structure, while the more general methods of branch 
and bound and DP may require vast amounts of computer resource. DP so
lutions to new problems are often difficult to develop whereas it may not be 
easy to find good bounds for a branch and bound approach to messy practical 
problems. Hence the need for the more recent techniques described elsewhere 
in this volume. 

However, it should be noted that these techniques have not eclipsed the clas
sical approaches, and there are many problems for which one of the techniques 
described here is still the best approach. Where this is not the case and a more 
modem approach is appropriate it is still possible that some form of hybrid 
techniques may enhance performance by using the strengths of one approach 
to minimize the weaknesses of another. 

SOURCES OF ADDITIONAL INFORMATION 
Basic material on DP and network flows can be found in most undergraduate 

texts in management science and OR. Their treatment of branch and bound 
tends to be limited to integer programming. The generic version of branch 
and bound covered in this chapter can be found in most texts on combinatorial 
algorithms/optimization, or in subject oriented texts (e.g. algorithmic graph 
theory, knapsack problems). Below are a small sample of relevant sources of 
information: 

• http.7/www.informs.org/Resources/ (INFORMS OR/MS Resource Col
lection: links to B&B, DP and network flow sources). 

• http://www.ms.ic.ac.uk/jeb/or/contents.html (Dr J. Beasley, Imperial Col
lege). 

• http://web.mit.edu/~jorhn/www/ (Professor J. Orlin, MIT). 

• http://www.math.ilstu.edu/~sennott/ (Sennott, 1998). 

• Bather, J., 2000, Decision Theory: An Introduction to Dynamic Pro
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3.1 INTRODUCTION 
Over the last 20 years, the combination of faster computers, more reliable 

data, and improved algorithms has resulted in the near-routine solution of many 
integer programs of practical interest. Integer programming models are used 
in a wide variety of apphcations, including scheduling, resource assignment, 
planning, supply chain design, auction design, and many, many others. In this 
tutorial, we outline some of the major themes involved in creating and solving 
integer programming models. 

The foundation of much of analytical decision making is linear program
ming. In a linear program, there are variables, constraints, and an objective 
function. The variables, or decisions, take on numerical values. Constraints are 
used to limit the values to a feasible region. These constraints must be linear 
in the decision variables. The objective function then defines which particu
lar assignment of feasible values to the variables is optimal: it is the one that 
maximizes (or minimizes, depending on the type of the objective) the objec
tive function. The objective function must also be linear in the variables. See 
Chapter 2 for more details about Linear Programming. 

Linear programs can model many problems of practical interest, and modem 
linear programming optimization codes can find optimal solutions to problems 
with hundreds of thousands of constraints and variables. It is this combina
tion of modeling strength and solvabiHty that makes Hnear programming so 
important. 
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Integer programming adds additional constraints to linear programming. An 
integer program begins with a linear program, and adds the requirement that 
some or all of the variables take on integer values. This seemingly innocu
ous change greatly increases the number of problems that can be modeled, 
but also makes the models more difficult to solve. In fact, one frustrating as
pect of integer programming is that two seemingly similar formulations for the 
same problem can lead to radically different computational experience: one 
formulation may quickly lead to optimal solutions, while the other may take 
an excessively long time to solve. 

There are many keys to successfully developing and solving integer pro
gramming models. We consider the following aspects: 

• be creative in formulations, 

• find integer programming formulations with a strong relaxation, 

• avoid symmetry, 

• consider formulations with many constraints, 

• consider formulations with many variables, 

• modify branch-and-bound search parameters. 

To fix ideas, we will introduce a particular integer programming model, 
and show how the main integer programming algorithm, branch-and-bound, 
operates on that model. We will then use this model to illustrate the key ideas 
to successful integer programming. 

3.1.1 Facility Location 

We consider a facihty location problem. A chemical company owns four 
factories that manufacture a certain chemical in raw form. The company would 
like to get in the business of refining the chemical. It is interested in building 
refining facilities, and it has identified three possible sites. Table 3.1 contains 
variable costs, fixed costs, and weekly capacities for the three possible refining 
facility sites, and weekly production amounts for each factory. The variable 
costs are in dollars per week and include transportation costs. The fixed costs 
are in dollars per year. The production amounts and capacities are in tons per 
week. 

The decision maker who faces this problem must answer two very different 
types of questions: questions that require numerical answers (for example, 
how many tons of chemical should factory / send to the site-y refining facility 
each week?) and questions that require yes-no answers (for example, should 
the site-y facility be constructed?). While we can easily model the first type 
of question by using continuous decision variables (by letting Xij equal the 
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Table 3.1. Facility location problem. 

Variable cost 

Fixed cost 
Capacity 

factory 1 
factory 2 
factory 3 
factory 4 

1 

25 
15 
20 
25 

500 000 
1500 

S i t e 
2 

20 
25 
15 
15 

500000 
1500 

3 

15 
20 
25 
15 

500000 
1500 

Production 

1000 
1000 
500 
500 

number of tons of chemical sent from factory / to site j each week), we cannot 
do this with the second. We need to use integer variables. If we let yj equal 1 
if the site-y refining facihty is constructed and 0 if it is not, we quickly arrive 
at an IP formulation of the problem: 

minimize 52 • 25xii + 52 • 20xi2 + 52 • 15xi3 
+ 52 . 15x21 + 52 • 25x22 + 52 • 20x23 
+ 52 • 20x31 + 52 • 15x32 + 52 • 25x33 
+ 52 • 25x41 + 52 • 15x42 + 52 • 15x43 
+ 500000^1 + 500 000^2 +500 000>'3 

subject to 1̂1 + x\2 + Xi3 = 1000 
X2\ +X22 +JC23 = 1000 
•̂ 31 +-^32+ -̂ 33 = 500 
X41 + X42 + X43 = 500 

•̂ 11 +-^21 +-^31 +M\ < 1500)^1 
x\2 + X22 + X32 + X42 < 1500_y2 
•̂ 13 + -̂ 23 + -̂ 33 + -̂ 43 < 1500^3 

Xij > 0 for all / and j 

>^y€{0, 1} for all 7 

The objective is to minimize the yearly cost, the sum of the variable costs 
(which are measured in dollars per week) and the fixed costs (which are mea
sured in dollars per year). The first set of constraints ensures that each factory's 
weekly chemical production is sent somewhere for refining. Since factory 1 
produces 1000 tons of chemical per week, factory 1 must ship a total of 1000 
tons of chemical to the various refining facilities each week. The second set 
of constraints guarantees two things: (1) if a facihty is open, it will operate 
at or below its capacity, and (2) if a facility is not open, it will not operate 
at all. If the site-1 facility is open (yi = 1) then the factories can send it up 
to 1500^1 = 1500 • 1 = 1500 tons of chemical per week. If it is not open 
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(_yj =: 0), then the factories can send it up to 1500};i = 1500 0 = 0 tons per 
week. 

This introductory example demonstrates the need for integer variables. It 
also shows that with integer variables, one can model simple logical require
ments (if a facility is open, it can refine up to a certain amount of chemical; 
if not, it cannot do any refining at all). It turns out that with integer variables, 
one can model a whole host of logical requirements. One can also model fixed 
costs, sequencing and scheduling requirements, and many other problem as
pects. 

3.1.2 Solving the Facility Location IP 
Given an integer program (IP), there is an associated Hnear program (LR) 

called the linear relaxation. It is formed by dropping (relaxing) the integrality 
restrictions. Since (LR) is less constrained than (IP), the following are imme
diate: 

• If (IP) is a minimization problem, the optimal objective value of (LR) is 
less than or equal to the optimal objective value of (IP). 

If (IP) is a maximization problem, the optimal objective value of (LR) is 
greater than or equal to the optimal objective value of (IP), 

If (LR) is infeasible, then so is (IP). 

If all the variables in an optimal solution of (LR) are integer-valued, then 
that solution is optimal for (IP) too. 

• If the objective function coefficients are integer-valued, then for mini
mization problems, the optimal objective value of (IP) is greater than 
or equal to the ceiling of the optimal objective value of (LR). For max
imization problems, the optimal objective value of (IP) is less than or 
equal to the floor of the optimal objective value of (LR). 

In summary, solving (LR) can be quite useful: it provides a bound on the 
optimal value of (IP), and may (if we are lucky) give an optimal solution to 
(IP). 

For the remainder of this section, we will let (IP) stand for the Facility Lo
cation integer program and (LR) for its linear programming relaxation. When 
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we solve (LR), we obtain 

Objective 
•^11 X.\2 Xi3 

X2\ X22 -^23 

•̂ 31 -^32 -^33 

X41 X^2 -^43 

y \ yi 3̂ 3 

3340000 
• • 1000 

1000 • • 
• 500 • 
• 500 • 
2 2 2 
3 3 3 

This solution has factory 1 send all 1000 tons of its chemical to site 3, factory 
2 send all 1000 tons of its chemical to site 1, factory 3 send all 500 tons to site 
2, and factory 4 send all 500 tons to site 2. It constructs two-thirds of a refining 
facility at each site. Although it costs only 3340 000 dollars per year, it cannot 
be implemented; all three of its integer variables take on fractional values. 

It is tempting to try to produce a feasible solution by rounding. Here, if we 
round y\, yi, and ^3 from 2/3 to 1, we get lucky (this is certainly not always the 
case!) and get an integer feasible solution. Although we can state that this is a 
good solution—its objective value of 3840000 is within 15% of the objective 
value of (LR) and hence within 15% of optimal—we cannot be sure that it is 
optimal. 

So how can we find an optimal solution to (IP)? Examining the optimal 
solution to (LR), we see that >'], yi, and _y3 are fractional. We want to force y\, 
yi, and y2, to be integer valued. We start by branching on _yi, creating two new 
integer programming problems. In one, we add the constraint y\ = 0. In the 
other, we will add the constraint '̂i = 1. Note that any optimal solution to (IP) 
must be feasible for one of the two subproblems. 

After we solve the hnear programming relaxations of the two subproblems, 
we can display what we know in a tree, as shown in Figure 3.1. 

Note that the optimal solution to the left subproblem's LP relaxation is in
teger valued. It is therefore an optimal solution to the left subproblem. Since 
there is no point in doing anything more with the left subproblem, we mark it 
with an "x" and focus our attention on the right subproblem. 

Both y2 and y^ are fractional in the optimal solution to the right subprob
lem's LP relaxation. We want to force both variables to be integer valued. Al
though we could branch on either variable, we will branch on ^2- That is, we 
will create two more subproblems, one with y2 = 0 and the other with j2 = 1 • 
After we solve the LP relaxations, we can update our tree, as in Figure 3.2. 

Note that we can immediately "x out" the left subproblem; the optimal 
solution to its LP relaxation is integer valued. In addition, by employing a 
bounding argument, we can also x out the right subproblem. The argument 
goes like this: Since the objective value of its LP relaxation (3636666|) is 
greater than the objective value of our newly found integer feasible solution 
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j ] = 0 

1 3340000 

1 • -1000 
1000 • • 

• 500 • 

• 500 • 
2 2 2 
3 3 3 > ' 1 = 1 

3730000 

• 1000 

500 500 

500 • 

500 • 

1 1 

3470000 

1000 • 

500 • 

• 500 

1 \ 

1000 

2 

3 1 

Figure 3.1. Intermediate branch and bound tree. 

(3470000), the optimal value of the right subproblem must be higher than 
(worse than) the objective value of our newly found integer feasible solution. 
So there is no point in expending any more effort on the right subproblem. 

Since there are no active subproblems (subproblems that require branching), 
we are done. We have found an optimal solution to (IP). The optimal solution 
has factories 2 and 3 use the site-1 refining facility and factories 1 and 4 use the 
site-3 facility. The site-1 and site-3 facihties are constructed. The site-2 facility 
is not. The optimal solution costs 3470000 dollars per year, 370000 dollars 
per year less than the solution obtained by rounding the solution to (LR). 

This method is called branch and bound, and is the most common method 
for finding solutions to integer programming formulations. 

3.1.3 Difficulties with Integer Programs 
While we were able to get the optimal solution to the example integer pro

gram relatively quickly, it is not always the case that branch and bound quickly 
solves integer programs. In particular, it is possible that the bounding aspects 
of branch and bound are not invoked, and the branch and bound algorithm can 
then generate a huge number of subproblems. In the worst case, a problem 
with n binary variables (variables that have to take on the value 0 or 1) can 
have 2^ subproblems. This exponential growth is inherent in any algorithm for 
integer programming, unless P = NP (see Chapter 11 for more details), due to 
the range of problems that can be formulated within integer programming. 
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Ji=0 

3340000 

• -1000 

1000 • • 

• 500 • 

• 500 • 
2 2 2 
3 3 3 y,=l 

3730000 

• 1000 

500 500 

500 • 

500 • 

1 1 ^2=0 

3470000 

• • 1000 

1000 • • 

500 • • 

• 500 • 

1 ^ 2 
'• 3 3 

} ^ 2 = 1 

3470000 

1000 

500 

1 

1000 

500 
1 

3636 666f 

1000 
500 500 

I 

500 • 

500 • 

1 1 

Figure 3,2. Final branch and bound tree. 

Despite the possibility of extreme computation time, there are a number 
of techniques that have been developed to increase the likelihood of finding 
optimal solutions quickly. After we discuss creativity in formulations, we will 
discuss some of these techniques. 

3.2 BE CREATIVE IN FORMULATIONS 
At first, it may seem that integer programming does not offer much over lin

ear programming: both require linear objectives and constraints, and both have 
numerical variables. Can requiring some of the variables to take on integer 
values significantly expand the capabiHty of the models? Absolutely: integer 
programming models go far beyond the power of Hnear programming models. 
The key is the creative use of integrality to model a wide range of common 
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structures in models. Here we outline some of the major uses of integer vari
ables. 

3.2.1 Integer Quantities 
The most obvious use of integer variables is when an integer quantity is 

required. For instance, in a production model involving television sets, an inte
gral number of television sets might be required. Or, in a personnel assignment 
problem, an integer number of workers might be assigned to a shift. 

This use of integer variables is the most obvious, and the most over-used. 
For many applications, the added ''accuracy" in requiring integer variables is 
far outweighed by the greater difficulty in finding the optimal solution. For 
instance, in the production example, if the number of televisions produced is 
in the hundreds (say the fractional optimal solution is 202.7) then having a plan 
with the rounded off value (203 in this example) is likely to be appropriate in 
practice. The uncertainty of the data almost certainly means that no production 
plan is accurate to four figures! Similarly, if the personnel assignment problem 
is for a large enterprise over a year, and the linear programming model suggests 
154.5 people are required, it is probably not worthwhile to invoke an integer 
programming model in order to handle the fractional parts. 

However, there are times when integer quantities are required. A production 
system that can produce either two or three aircraft carriers and a personnel 
assignment problem for small teams of five or six people are examples. In 
these cases, the addition of the integrality constraint can mean the difference 
between useful models and irrelevant models. 

3.2.2 Binary Decisions 
Perhaps the most used type of integer variable is the binary variable: an 

integer variable restricted to take on the values 0 or 1. We will see a number of 
uses of these variables. Our first example is in modeling binary decisions. 

Many practical decisions can be seen as ''yes" or ''no" decisions: Should we 
construct a chemical refining facifity in site j (as in the introduction)? Should 
we invest in project B? Should we start producing new product Y? For many 
of these decisions, a binary integer programming model is appropriate. In 
such a model, each decision is modeled with a binary variable: setting the 
variable equal to 1 corresponds to making the "yes" decision, while setting it 
to 0 corresponds to going with the "no" decision. Constraints are then formed 
to correspond to the effects of the decision. 

As an example, suppose we need to choose among projects A, B, C, and 
D. Each project has a capital requirement ($1 milHon, $2.5 million, $4 milhon, 
and $5 million respectively) and an expected return (say, $3 million, $6 million, 
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$13 million, and $16 million). If we have $7 million to invest, which projects 
should we take on in order to maximize our expected return? 

We can formulate this problem with binary variables XA, A:B, XQ, and XD 
representing the decision to take on the corresponding project. The effect of 
taking on a project is to use up some of the funds we have available to invest. 
Therefore, we have a constraint: 

JCA + 2.5.̂ 3 + 4xc + 5XD < 7 

Our objective is to maximize the expected profit: 

Maximize 3xi + 6x2 + 13^3 + 15x4 

In this case, binary variables let us make the yes-no decision on whether to 
invest in each fund, with a constraint ensuring that our overall decisions are 
consistent with our budget. Without integer variables, the solution to our model 
would have fractional parts of projects, which may not be in keeping with the 
needs of the model. 

3.2.3 Fixed Charge Requirements 
In many production applications, the cost of producing x of an item is 

roughly linear except for the special case of producing no items. In that case, 
there are additional savings since no equipment or other items need be pro
cured for the production. This leads to o. fixed charge structure. The cost for 
producing x of an item is 

• 0, ifx = 0 

• C] + C2X, if X > 0 for constants c\, C2 

This type of cost structure is impossible to embed in a linear program. With 
integer programming, however, we can introduce a new binary variable y. The 
value _y = 1 is interpreted as having non-zero production, while >' = 0 means 
no production. The objective function for these variables then becomes 

c\y + C2X 

which is appropriately linear in the variables. It is necessary, however, to add 
constraints that link the x and y variables. Otherwise, the solution might be 
y = Q and x = 10, which we do not want. If there is an upper bound M on 
how large x can be (perhaps derived from other constraints), then the constraint 

X < My 

correctly links the two variables. If _y = 0 then x must equal 0; if >' = 1 then x 
can take on any value. Technically, it is possible to have the values x = 0 and 
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y = \ with this formulation, but as long as this is modeling a fixed cost (rather 
than a fixed profit), this will not be an optimal (cost minimizing) solution. 

This use of "M" values is common in integer programming, and the result is 
called a "Big-M model". Big-M models are often difficult to solve, for reasons 
we will see. 

We saw this fixed-charge modeling approach in our initial facility location 
example. There, the y variables corresponded to opening a refining facility 
(incurring a fixed cost). The x variables correspond to assigning a factory 
to the refining facility, and there was an upper bound on the volume of raw 
material a refinery could handle. 

3.2.4 Logical Constraints 
Binary variables can also be used to model complicated logical constraints, 

a capability not available in linear programming. In a facility location problem 
with binary variables y\, yi, y^, y^, and ys corresponding to the decisions to 
open warehouses at locations 1, 2, 3, 4 and 5 respectively, complicated rela
tionships between the warehouses can be modeled with linear functions of the 
y variables. Here are a few examples: 

• At most one of locations 1 and 2 can be opened: y\+ yi <\. 

• Location 3 can only be opened if location 1 is _y3 < >'i. 

• Location 4 cannot be opened if locations 2 or 3 are such that y^ + yi S^ 
or>'4 + >'3 < 1-

• If location 1 is open, either locations 2 or 5 must be y2 + y5>y\-

Much more complicated logical constraints can be formulated with the addi
tion of new binary variables. Consider a constraint of the form: ?>x\ +Ax2 < 10 
OR Ax\ -f 2x2 > 12. As written, this is not a linear constraint. However, if we 
let M be the largest either \'ix\ +4jC2| or |4x] -f 2x21 can be, then we can define 
a new binary variable z which is 1 only if the first constraint is satisfied and 0 
only if the second constraint is satisfied. Then we get the constraints 

3x1 -h 4x2 < 10 -h (M - 10)(1 - z) 

4x] -f- 2x2 > 12 - (M -f \2)z 

When z = 1, we obtain 

3x] 4-4x2 < 10 

4x] + 2x2 > -M 

When z = 0, we obtain 

3xi -f- 4x2 < M 

4xi -f-2x2 > 12 
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This correctly models the original nonlinear constraint. 
As we can see, logical requirements often lead to Big-M-type formulations. 

3.2.5 Sequencing Problems 
Many problems in sequencing and scheduling require the modeling of the 

order in which items appear in the sequence. For instance, suppose we have a 
model in which there are items, where each item / has a processing time on a 
machine pt. If the machine can only handle one item at a time and we let ti 
be a (continuous) variable representing the start time of item / on the machine, 
then we can ensure that items / and j are not on the machine at the same time 
with the constraints 

tj > ti + Pi IF tj > ti 

ti > tj + pj IF tj < ti 

This can be handled with a new binary variable j/y which is 1 if ti < tj and 0 
otherwise. This gives the constraints 

tj >ti+pi-Mil -y) 

ti > tj + Pj - My 

for sufficiently large M. If j is 1 then the second constraint is automatically 
satisfied (so only the first is relevant) while the reverse happens for y = 0. 

3.3 FIND FORMULATIONS WITH STRONG 
RELAXATIONS 

As the previous section made clear, integer programming formulations can 
be used for many problems of practical interest. In fact, for many problems, 
there are many alternative integer programming formulations. Finding a ''good" 
formulation is key to the successful use of integer programming. The defini
tion of a good formulation is primarily computational: a good formulation is 
one for which branch and bound (or another integer programming algorithm) 
will find and prove the optimal solution quickly. Despite this empirical aspect 
of the definition, there are some guidelines to help in the search for good for
mulations. The key to success is to find formulations whose linear relaxation 
is not too different from the underlying integer program. 

We saw in our first example that solving hnear relaxations was key to the 
basic integer programming algorithm. If the solution to the initial hnear relax
ation is integer, then no branching need be done and integer programming is 
no harder than linear programming. Unfortunately, finding formulations with 
this property is very hard to do. But some formulations can be better than other 
formulations in this regard. 
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Let us modify our facility location problem by requiring that every factory 
be assigned to exactly one refinery (incidentally, the optimal solution to our 
original formulation happened to meet this requirement). Now, instead of hav
ing Xij be the tons sent from factory / to refinery j , we define X/j to be 1 if 
factory / is serviced by refinery j . Our formulation becomes 

Minimize 1000 • 52 • 25xii + 1000 • 52 • 20xi2 + 1000 • 52 • \5xu 
+ 1000 • 52 • 15x21 + 1000 • 52 • 25x22 + 1000 • 52 • 20x23 
+ 500 • 52 • 20x31 + 500 • 52 • 15x32 + 500 • 52 • 25x33 
+ 500 • 52 • 25x41 + 500 • 52 • 15x42 + 500 • 52 • 15x43 
+ 500000^1 + 500000);2 + 500000};3 

Subjectto x i i+xi2 + xi3 = l 
Xl\ + X22 + ^23 = 1 
•̂ 31 +-^32+-^33 = 1 
X41 + X42 + X43 = 1 

1000x11 + 1000x21 +500x31 +500x41 < 1500>'i 
1000x12 + 1000x22 + 500x32 + 500x42 < \5my2 
1000X13 + 1000X23 + 500X33 + 500X43 < 1500^3 

Xij €{0,1} for all / and j 

>',€{0, 1} for ally. 

Let us call this formulation the base formulation. This is a correct formulation 
to our problem. There are alternative formulations, however. Suppose we add 
to the base formulation the set of constraints 

Xij < yj for all / and j 

Call the resulting formulation the expanded formulation. Note that it too is 
an appropriate formulation for our problem. At the simplest level, it appears 
that we have simply made the formulation larger: there are more constraints so 
the linear programs solved within branch-and-bound will likely take longer to 
solve. Is there any advantage to the expanded formulation? 

The key is to look at non-integer solutions to linear relaxations of the two 
formulations: we know the two formulations have the same integer solutions 
(since they are formulations of the same problem), but they can differ in non-
integer solutions. Consider the solution xi3 = 1,X2] = l,-^32 = l,-^42 = 
1, >'! = 2/3, y2 = 2/3, _y3 = 2/3. This solution is feasible to the Hnear relax
ation of the base formulation but is not feasible to the linear relaxation of the 
expanded formulation. If the branch-and-bound algorithm works on the base 
formulation, it may have to consider this solution; with the expanded formula
tion, this solution can never be examined. If there are fewer fractional solutions 
to explore (technically, fractional extreme point solutions), branch and bound 
will typically terminate more quickly. 
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Since we have added constraints to get the expanded formulation, there is 
no non-integer solution to the hnear relaxation of the expanded formulation 
that is not also feasible for the linear relaxation of the base formulation. We 
say that the expanded formulation is tighter than the base formulation. 

In general, tighter formulations are to be preferred for integer programming 
formulations even if the resulting formulations are larger. Of course, there 
are exceptions: if the size of the formulation is much larger, the gain from 
the tighter formulation may not be sufficient to offset the increased linear pro
gramming times. Such cases are definitely the exception, however: almost 
invariably, tighter formulations are better formulations. For this particular in
stance, the Expanded Formulation happens to provide an integer solution with
out branching. 

There has been a tremendous amount of work done on finding tighter formu
lations for different integer programming models. For many types of problems, 
classes of constraints (or cuts) to be added are known. These constraints can 
be added in one of two ways: they can be included in the original formulation 
or they can be added as needed to remove fractional values. The latter case 
leads to a branch and cut approach, which is the subject of Section 3.6. 

A cut relative to a formulation has to satisfy two properties: first, every fea
sible integer solution must also satisfy the cut; second, some fractional solution 
that is feasible to the linear relaxation of the formulation must not satisfy the 
cut. For instance, consider the single constraint 

3;ci + 5JC2 + 8;c3 + 10x4 < 16 

where the Xi are binary variables. Then the constraint x^ -\- X4 < 1 is a cut 
(every integer solution satisfies it and, for instance x = (0, 0, .5, 1) does not) 
but X] + ^2 + -̂ 3 + ^4 < 4 is not a cut (no fractional solutions removed) nor is 
-̂ 1 + ^2 + ^3 £ 2 (which incorrectly removes ;c = (1, 1, 1, 0). 

Given a formulation, finding cuts to add to it to strengthen the formulation 
is not a routine task. It can take deep understanding, and a bit of luck, to find 
improving constraints. 

One generally useful approach is called the Chvatal (or Gomory-Chvatal) 
procedure. Here is how the procedure works for ' '<" constraints where all the 
variables are non-negative integers: 

1 Take one or more constraints, multiply each by a non-negative constant 
(the constant can be different for different constraints). Add the resulting 
constraints into a single constraint. 

2 Round down each coefficient on the left-hand side of the constraint. 

3 Round down the right-hand side of the constraint. 
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The result is a constraint that does not cut off any feasible integer solutions. 
It may be a cut if the effect of rounding down the right-hand side of the con
straint is more than the effect of rounding down the coefficients. 

This is best seen through an example. Taking the constraint above, let us 
take the two constraints 

2>xx + 5;c2 + 8;c3 + 10;c4 < 16 x^<\ 

If we multiply each constraint by 1/9 and add them we obtain 

3/9JC1 + 5/9x2 + 9/9JC3 + \0/9x^ < 17/9 

Now, round down the left-hand coefficients (this is valid since the x variables 
are non-negative and it is a "<" constraint): 

^3+^4 < 17/9 

Finally, round down the right-hand side (this is vahd since the x variables are 
integer) to obtain 

^3 + ^4 :£ 1 

which turns out to be a cut. Notice that the three steps have differing effects 
on feasibihty. The first step, since it is just taking a linear combination of con
straints, neither adds nor removes feasible values; the second step weakens the 
constraint, and may add additional fractional values; the third step strengthens 
the constraint, ideally removing fractional values. 

This approach is particularly useful when the constants are chosen so that no 
rounding down is done in the second step. For instance, consider the following 
set of constraints (where the xt are binary variables): 

•̂ 1 + -̂ 2 :̂  1 ^2 + -̂ 3 :̂  1 x\ -^ X3 < I 

These types of constraints often appear in formulations where there are lists 
of mutually exclusive variables. Here, we can multiply each constraint by 1/2 
and add them to obtain 

^1 + 2̂ + 3̂ < 3/2 

There is no rounding down on the left-hand side, so we can move on to round
ing down the right-hand side to obtain 

^1 +^2 +-^3 < 1 

which, for instance, cuts off the solution x = (1/2, 1/2, 1/2). 
In cases where no rounding down is needed on the left-hand side but there 

is rounding down on the right-hand side, the result has to be a cut (relative 
to the included constraints). Conversely, if no rounding down is done on the 
right-hand side, the result cannot be a cut. 
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In the formulation section, we mentioned that "Big-M" formulations often 
lead to poor formulations. This is because the linear relaxation of such a for
mulation often allows for many fractional values. For instance, consider the 
constraint (all variables are binary) 

xi +A;2 + X3 < 1000}; 

Such constraints often occur in facility location and related problems. This 
constraint correctly models a requirement that the x variables can be 1 only 
if y is also 1, but does so in a very weak way. Even if the x values of the 
linear relaxation are integer, y can take on a very small value (instead of the 
required 1). Here, even forx = (1,1,1), y need only be 3/1000 to make the 
constraint feasible. This typically leads to very bad branch-and-bound trees: 
the linear relaxation gives little guidance as to the "true" values of the variables. 

The following constraint would be better: 

•̂ 1 + ^2 + ^3 < 'iy 

which forces _y to take on larger values. This is the concept of making the M 
in Big-M as small as possible. Better still would be the three constraints 

^1 < ^̂  X2<y X2 <y 

which force y to be integer as soon as the x values are. 
Finding improved formulations is a key concept to the successful use of in

teger programming. Such formulations typically revolve around the strength 
of the linear relaxation: does the relaxation well-represent the underlying inte
ger program? Finding classes of cuts can improve formulations. Finding such 
classes can be difficult, but without good formulations, integer programming 
models are unlikely to be successful except for very small instances. 

3.4 AVOID SYMMETRY 
Symmetry often causes integer programming models to fail. Branch-and-

bound can become an extremely inefficient algorithm when the model being 
solved displays many symmetries. 

Consider again our facility location model. Suppose instead of having just 
one refinery at a site, we were permitted to have up to three refineries at a 
site. We could modify our model by having variables yj, Zj and Wj for each 
site (representing the three refineries). In this formulation, the cost and other 
coefficients for yj are the same as for Zj and Wj. The formulation is straight
forward, but branch and bound does very poorly on the result. 

The reason for this is symmetry: for every solution in the branch-and-bound 
tree with a given y, z, and w, there is an equivalent solution with z taking on y's 
values, w taking on z's and _y taking on w. This greatly increases the number 
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of solutions that the branch-and-bound algorithm must consider in order to find 
and prove the optimality of a solution. 

It is very important to remove as many symmetries in a formulation as pos
sible. Depending on the problem and the symmetry, this removal can be done 
by adding constraints, fixing variables, or modifying the formulation. 

For our facihty location problem, the easiest thing to do is to add the con
straints 

yj ^ Zj > Wj for all j 

Now, at a refinery site, Zj can be non-zero only if yj is non-zero, and Wj is 
non-zero only if both yj and Zj are. This partially breaks the symmetry of this 
formulation, though other symmetries (particularly in the x variables) remain. 

This formulation can be modified in another way by redefining the variables. 
Instead of using binary variables, let yj be the number of refineries put in 
location j . This removes all of the symmetries at the cost of a weaker linear 
relaxation (since some of the strengthenings we have explored require binary 
variables). 

Finally, to illustrate the use of variable fixing, consider the problem of col
oring a graph with K colors: we are given a graph with node set V and edge 
set E and wish to determine if we can assign a value v{i) to each node / such 
that v(i) e {I,,.., K} and vii) # v(j) for all (/, ; ) e E. 

We can formulate this problem as an integer programming by defining a 
binary variable xtk to be 1 if / is given color k and 0 otherwise. This leads to 
the constraints 

Y j Xik = 1 for all / (every node gets a color) 
k 

Xik + Xjk = 1 for all k, (i, j) e E (no adjacent get the same) 

Xik € {0. 1) for all /, k 

The graph coloring problem is equivalent to determining if the above set of 
constraints is feasible. This can be done by using branch-and-bound with an 
arbitrary objective value. 

Unfortunately, this formulation is highly symmetric. For any coloring of 
graph, there is an equivalent coloring that arises by permuting the coloring 
(that is, permuting the set { 1 , . . . , A:} in this formulation). This makes branch 
and bound very ineffective for this formulation. Note also that the formulation 
is very weak, since setting xik = 1//: for all i,k is a feasible solution to the 
linear relaxation no matter what E is. 

We can strengthen this formulation by breaking the symmetry through vari
able fixing. Consider a clique (set of mutually adjacent vertices) of the graph. 
Each member of the clique has to get a different color. We can break the 
symmetry by finding a large (ideally maximum sized) cHque in the graph and 
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setting the colors of the cHque arbitrarily, but fixed. So if the clique has size 
kc, we would assign the colors 1 , . . . , ^̂  to members of the clique (adding in 
constraints forcing the corresponding x values to be 1). This greatly reduces 
the symmetry, since now only permutations among the colors kc + \,..., K 
are valid. This also removes the xik = l/k solution from consideration. 

3.5 CONSIDER FORMULATIONS WITH MANY 
CONSTRAINTS 

Given the importance of the strength of the linear relaxation, the search for 
improved formulations often leads to sets of constraints that are too large to 
include in the formulation. For example, consider a single constraint with non-
negative coefficients: 

a]X] + a2X2 + fl3^3 H h «n-^n < b 

where the x/ are binary variables. Consider a subset S of the variables such 
that Ylies ^' ^ b- T^^ constraint 

i€S 

is valid (it is not violated by any feasible integer solution) and cuts off frac
tional solutions as long as S is minimal. These constraints are called cover 
constraints. We would then like to include this set of constraints in our formu
lation. 

Unfortunately, the number of such constraints can be very large. In general, 
it is exponential in n, making it impractical to include the constraints in the 
formulation. But the relaxation is much tighter with the constraints. 

To handle this problem, we can choose to generate only those constraints 
that are needed. In our search for an optimal integer solution, many of the 
constraints are not needed. If we can generate the constraints as we need them, 
we can get the strength of the improved relaxation without the huge number of 
constraints. 

Suppose our instance is 

Maximize 9x] 4- 14̂ :2 + lOxj + 32^4 

Subject to 3x] -f 5x2 + 8x3 -f IOX4 < 16 

Xi €{0,1} 

The optimal solution to the linear relaxation is x* = (1,0.6, 0, 1) with objec
tive 49.4. Now consider the set 5 = (xj, X2, X4). The constraint 

.̂ 1 + X2 + X4 < 2 
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is a cut that x* violates. If we add that constraint to our problem, we get a 
tighter formulation. Solving this model gives solution ^ = (1, 0, 0.375, 1) and 
objective 48.5. The constraint 

3̂ + 4̂ :̂  1 

is a vaHd cover constraint that cuts off this solution. Adding this constraint 
and solving gives solution x = (0, 1, 0, 1) with objective 46. This is the op
timal solution to the original integer program, which we have found only by 
generating cover inequalities. 

In this case, the cover inequalities were easy to see, but this process can 
be formalized. A reasonable heuristic for identifying violated cover inequali
ties would be to order the variables by decreasing a/x* then add the variables 
to the cover S until X]/G5 ^i ^ ^' ^^^^ heuristic is not guaranteed to find 
violated cover inequalities (for that, a knapsack optimization problem can be 
formulated and solved) but even this simple heuristic can create much stronger 
formulations without adding too many constraints. 

This idea is formalized in the branch-and-cut approach to integer program
ming. In this approach, a formulation has two parts: the explicit constraints 
(denoted Ax < b) and the implicit constraints {A'x < b'). Denote the ob
jective function as Maximize ex. Here we will assume that all x are integral 
variables, but this can be easily generalized. 

Step L Solve the linear program Maximize ex subject io Ax <b to get optimal 
relaxation solution x*. 
Step 2. If X* integer, then stop, x* is optimal. 
Step 3. Try to find a constraint a'x < b' from the implicit constraints such that 
a'x^ > b. If found, add a'x < b to the Ax < b constraint set and go to step 1. 
Otherwise, do branch-and-bound on the current formulation. 

In order to create a branch-and-cut model, there are two aspects: the defini
tion of the implicit constraints, and the definition of the approach in Step 3 to 
find violated inequahties. The problem in Step 3 is referred to as the separation 
problem and is at the heart of the approach. For many sets of constraints, no 
good separation algorithm is known. Note, however, that the separation prob
lem might be solved heuristically: it may miss opportunities for separation and 
therefore invoke branch-and-bound too often. Even in this case, it often hap
pens that the improved formulations are sufficiently tight to greatly decrease 
the time needed for branch-and-bound. 

This basic algorithm can be improved by carrying out cut generation within 
the branch and bound tree. It may be that by fixing variables, different con
straints become violated and those can be added to the subproblems. 
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3.6 CONSIDER FORMULATIONS WITH MANY 
VARIABLES 

Just as improved formulations can result from adding many constraints, 
adding many variables can lead to very good formulations. Let us begin with 
our graph coloring example. Recall that we are given a graph with vertices 
V and edges E and want to assign a value v{i) to each node / such that 
v{i) ^ v{j) for all (/, y) e E. Our objective is to use the minimum num
ber of different values (before, we had a fixed number of colors to use: in this 
section we will use the optimization version rather than the feasibility version 
of this problem). 

Previously, we described a model using binary variables xi^ denoting whether 
node / gets color k or note. As an alternative model, let us concentrate on the 
set of nodes that gets the same color. Such a set must be an independent set (a 
set of mutually non-adjacent nodes) of the graph. Suppose we fisted all inde
pendent sets of the graph: 5i, ^ 2 , . . . , 5^. Then we can define binary variables 
Jb J25. . . , Jm with the interpretation that yj = 1 means that independent set 
Sj is part of the coloring, and yj = 0 means that independent set Sj is not part 
of the coloring. Now our formulation becomes 

Minimize T j ^ j 

j 

Subject to V" j j = 1 for all / e V 
j'JeSj 

yj e {0, Ijforall j € { l , . . . ,m} 

The constraint states that every node must be in some independent set of the 
coloring. 

This formulation is a much better formulation that our xi^ formulation. This 
formulation does not have the symmetry problems of the previous formulation 
and results in a much tighter linear relaxation. Unfortunately, the formulation 
is impractical for most graphs because the number of independent sets is ex
ponential in the number of nodes, leading to an impossibly large formulation. 

Just as we could handle an exponential number of constraints by generating 
them as needed, we can also handle an exponential number of variables by 
variable generation: the creation of variables only as they are needed. In order 
to understand how to do this, we will have to understand some key concepts 
from linear programming. 
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Consider a linear program, where the variables are indexed by j and the 
constraints indexed by /: 

Maximize /^^CjXj 
j 

Subject to ŷ <3!/7-̂ /7 < bi for all / 
j 

Xj > 0 for all j 

When this linear program is solved, the result is the optimal solution x*. In 
addition, however, there is a value called the dual value, denoted jr,, associated 
with each constraint. This value gives the marginal change in the objective 
value as the right-hand side for the corresponding constraint is changed. So if 
the right-hand side of constraint / changes to Z?, + A, then the objective will 
change by 7r,A (there are some technical details ignored here involving how 
large A can be for this to be a valid calculation: since we are only concerned 
with marginal calculations, we can ignore these details). 

Now, suppose there is a new variable Xn+\, not included in the original for
mulation. Suppose it could be added to the formulation with corresponding 
objective coefficient c„+i and coefficients a/,„+i. Would adding the variable 
to the formulation result in an improved formulation? The answer is certainly 
"no" in the case when 

i 

In this case, the value gained from the objective is insufficient to offset the 
cost charged marginally by the effect on the constraints. We need Cn+\ — 
J2i <^i,n+i^i > 0 in order to possibly improve on our solution. 

This leads to the idea of variable generation. Suppose you have a formula
tion with a huge number of variables. Rather than solve this huge formulation, 
begin with a smaller number of variables. Solve the linear relaxation and get 
dual values n. Using TT, determine if there is one (or more) variables whose in
clusion might improve the solution. If not, then the linear relaxation is solved. 
Otherwise, add one or more such variables to the formulation and repeat. 

Once the linear relaxation is solved, if the solution is integer, then it is op
timal. Otherwise, branch and bound is invoked, with the variable generation 
continuing in the subproblems. 

Key to this approach is the algorithm for generating the variables. For a 
huge number of variables it is not enough to check all of them: that would 
be too time consuming. Instead, some sort of optimization problem must be 
defined whose solution is an improving variable. We illustrate this for our 
graph coloring problem. 
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Suppose we begin with a limited set of independent sets and solve our re
laxation over them. This leads to a dual value 7ti for each node. For any other 
independent set 5, if X]/€5 ̂ / > 1. then S corresponds to an improving vari
able. We can write this problem using binary variables zt corresponding to 
whether / is in S or not: 

Maximize Y^^/^/ 

Subject to Zi + Z; < 1 for all (/, y) e E 

Zi e {0,1} for all/ 

This problem is called the maximum weighted independent set (MWIS) prob
lem, and, while the problem is formally hard, effective methods have been 
found for solving it for problems of reasonable size. 

This gives a variable generation approach to graph coloring: begin with a 
small number of independent sets, then solve the MWIS problem, adding in 
independent sets until no independent set improves the current solution. If the 
variables are integer, then we have the optimal coloring. Otherwise we need to 
branch. 

Branching in this approach needs special care. We need to branch in such a 
way that our subproblem is not affected by our branching. Here, if we simply 
branch on the yj variables (so have one branch with yj = 1 and another with 
yj = 0), we end up not being able to use the MWIS model as a subproblem. 
In the case where yj = 0 we need to find an improving set, except that Sj 
does not count as improving. This means we need to find the second most 
improving set. As more branching goes on, we may need to find the third most 
improving, the fourth most improving, and so on. To handle this, specialized 
branching routines are needed (involving identifying nodes that, on one side of 
the branch, must be the same color and, on the other side of the branch, cannot 
be the same color). 

Variable generation together with appropriate branching rules and variable 
generation at the subproblems is a method known as branch and price. This 
approach has been very successful in attacking a variety of very difficult prob
lems over the last few years. 

To summarize, models with a huge number of variables can provide very 
tight formulations. To handle such models, it is necessary to have a variable 
generation routine to find improving variables, and it may be necessary to mod
ify the branching method in order to keep the subproblems consistent with that 
routine. Unlike constraint generation approaches, heuristic variable generation 
routines are not enough to ensure optimality: at some point it is necessary to 
prove conclusively that the right variables are included. Furthermore, these 
variable generation routines must be applied at each node in the branch-and-
bound tree if that node is to be crossed out from further analysis. 
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3.7 MODIFY BRANCH-AND-BOUND PARAMETERS 

Integer programs are solved with computer programs. There are a number 
of computer programs available to solve integer programs. These range from 
basic spreadsheet-oriented systems to open-source research codes to sophis
ticated commercial applications. To a greater or lesser extent, each of these 
codes offers parameters and choices that can have a significant affect on the 
solvability of integer programming models. For most of these parameters, the 
only way to determine the best choice for a particular model is experimenta
tion: any choice that is uniformly dominated by another choice would not be 
included in the software. 

Here are some common, key choices and parameters, along with some com
ments on each. 

3.7.1 Description of Problem 

The first issue to be handled is to determine how to describe the integer 
program to the optimization routine(s). Integer programs can be described 
as spreadsheets, computer programs, matrix descriptors, and higher-level lan
guages. Each has advantages and disadvantages with regards to such issues as 
ease-of-use, solution power, flexibility and so on. For instance, implementing 
a branch-and-price approach is difficult if the underlying solver is a spread
sheet program. Using ''callable hbraries" that give access to the underlying 
optimization routines can be very powerful, but can be time-consuming to de
velop. 

Overall, the interface to the software will be defined by the software. It is 
generally useful to be able to access the software in multiple ways (callable 
libraries, high level languages, command line interfaces) in order to have full 
flexibihty in solving. 

3.7.2 Linear Programming Solver 

Integer programming relies heavily on the underlying linear programming 
solver. Thousands or tens of thousands of linear programs might be solved in 
the course of branch-and-bound. Clearly a faster linear programming code can 
result in faster integer programming solutions. Some possibihties that might 
be offered are primal simplex, dual simplex, or various interior point methods. 
The choice of solver depends on the problem size and structure (for instance, 
interior point methods are often best for very large, block-structured models) 
and can differ for the initial linear relaxation (when the solution must be found 
''from scratch") and subproblem linear relaxations (when the algorithm can 
use previous solutions as a starting basis). The choice of algorithm can also be 
affected by whether constraint and/or variable generation are being used. 
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3.73 Choice of Branching Variable 

In our description of branch-and-bound, we allowed branching on any frac
tional variable. When there are multiple fractional variables, the choice of 
variable can have a big effect on the computation time. As a general guideline, 
more 'Important" variables should be branched on first. In a facility location 
problem, the decisions on opening a facility are generally more important than 
the assignment of a customer to that facility, so those would be better choices 
for branching when a choice must be made. 

3.7.4 Choice of Subproblem to Solve 

Once multiple subproblems have been generated, it is necessary to choose 
which subproblem to solve next. Typical choices are depth-first search, breadth-
first search, or best-bound search. Depth-first search continues fixing variables 
for a single problem until integrahty or infeasibility results. This can lead 
quickly to an integer solution, but the solution might not be very good. Best-
bound search works with subproblems whose linear relaxation is as large (for 
maximization) as possible, with the idea that subproblems with good linear 
relaxations may have good integer solutions. 

3.7.5 Direction of Branching 

When a subproblem and a branching variable have been chosen, there are 
multiple subproblems created corresponding to the values the variable can take 
on. The ordering of the values can affect how quickly good solutions can be 
found. Some choices here are a fixed ordering or the use of estimates of the 
resulting linear relaxation value. With fixed ordering, it is generally good to 
first try the more restrictive of the choices (if there is a difference). 

3.7.6 Tolerances 

It is important to note that while integer programming problems are pri
marily combinatorial, the branch-and-bound approach uses numerical linear 
programming algorithms. These methods require a number of parameters giv
ing allowable tolerances. For instance, if ;c/ = 0.998 should Xj be treated as 
the value 1 or should the algorithm branch on Xj ? While it is tempting to give 
overly big values (to allow for faster convergence) or small values (to be ''more 
accurate"), either extreme can lead to problems. While for many problems, the 
default values from a quality code are sufficient, these values can be the source 
of difficulties for some problems. 
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3.8 TRICKS OF THE TRADE 

After reading this tutorial, all of which is about ''tricks of the trade", it is 
easy to throw one's hands up and give up on integer programming! There are 
so many choices, so many pitfalls, and so much chance that the combinatorial 
explosion will make solving problems impossible. Despite this complexity, 
integer programming is used routinely to solve problems of practical interest. 
There are a few key steps to make your integer programming implementation 
go well. 

• Use state-of-the-art software. It is tempting to use software because it is 
easy, or available, or cheap. For integer programming, however, not hav
ing the most current software embedding the latest techniques can doom 
your project to failure. Not all such software is commercial. The COIN-
OR project is an open-source effort to create high-quahty optimization 
codes. 

• Use a modehng language. A modeling language, such as OPL, Mosel, 
AMPL, or other language can greatly reduce development time, and al
lows for easy experimentation of alternatives. Callable Hbraries can give 
more power to the user, but should be reserved for ''final implementa
tions", once the model and solution approached are known. 

• If an integer programming model does not solve in a reasonable amount 
of time, look at the formulation first, not the solution parameters. The 
default settings of current software are generally pretty good. The prob
lem with most integer programming formulations is the formulation, not 
the choice of branching rule, for example. 

• Solve some small instances and look at the solutions to the Hnear re
laxations. Often constraints to add to improve a formulation are quite 
obvious from a few small examples. 

• Decide whether you need "optimal" solutions. If you are consistently 
getting within 0.1 % of optimal, without proving optimality, perhaps you 
should declare success and go with the solutions you have, rather than 
trying to hunt down that final gap. 

• Try radically different formulations. Often, there is another formulation 
with completely different variables, objective, and constraints that will 
have a much different computational experience. 

3.9 CONCLUSIONS 

Integer programming models represent a powerful approach to solving hard 
problems. The bounds generated from linear relaxations are often sufficient 
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to greatly cut down on the search tree for these problems. Key to successful 
integer programming is the creation of good formulations. A good formulation 
is one where the linear relaxation closely resembles the underlying integer pro
gram. Improved formulations can be developed in a number of ways, including 
finding formulations with tight relaxations, avoiding symmetry, and creating 
and solving formulations that have an exponential number of variables or con
straints. It is through the judicious combination of these approaches, combined 
with fast integer programming computer codes that the practical use of integer 
programming has greatly expanded in the last 20 years. 

SOURCES OF ADDITIONAL INFORMATION 
Integer programming has existed for more than 50 years and has developed 

a huge literature. This bibliography therefore makes no effort to be compre
hensive, but rather provides initial pointers for further investigation. 

General Integer Programming There are a number of excellent recent mono
graphs on integer programming. The classic is Nemhauser and Wolsey 
(1988). A book updating much of the material is Wolsey (1998). Schri-
jver (1998) is an outstanding reference book, covering the theoretical 
underpinnings of integer programming. 

Integer Programming Formulations There are relatively few books on for
mulating problems. An exception is Williams (1999). In addition, most 
operations research textbooks offer examples and exercises on formu
lations, though many of the examples are not of realistic size. Some 
choices are Winston (1997), Taha (2002), and HilHer and Lieberman 
(2002). 

Branch and Bound Branch and bound traces back to the 1960s and the work 
of Land and Doig (1960). Most basic textbooks (see above) give an 
outline of the method (at the level given in this tutorial). 

Branch and Cut The cutting plane approach dates back to the late 1950s and 
the work of Gomory (1958), whose cutting planes are applicable to any 
integer program. Juenger et al. (1995) provides a survey of the use of 
cutting plane algorithms for specialized problem classes. 

As a computational technique, the work of Crowder et al. (1983) showed 
how cuts could greatly improve basic branch-and-bound. 

For an example of the success of such approaches for solving extremely 
large optimization problems, see Applegate et al. (1998). 

Branch and Price Bamhart et al. (1998) is an excellent survey of this ap
proach. 
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Implementations There are a number of very good implementations that al
low the optimization of realistic integer programs. Some of these are 
commercial, like the CPLEX implementation of ILOG, Inc. (CPLEX, 
2004). Bixby et al. (1999) gives a detailed description of the advances 
that this software has made. 

Another commercial product is Xpress-MP from Dash, with the text
book by Gueret et al. (2002) providing a very nice set of examples and 
applications. 

COIN-OR (2004) provides an open-source initiative for optimization. 
Other approaches are described by Ralphs and Ladanyi (1999) and by 
Cordieretal. (1999). 
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4.1 INTRODUCTION 
Genetic algorithms (GAs) are search methods based on principles of natu

ral selection and genetics (Fraser, 1957; Bremermann, 1958; Holland, 1975). 
We start with a brief introduction to simple genetic algorithms and associated 
terminology. 

GAs encode the decision variables of a search problem into finite-length 
strings of alphabets of certain cardinality. The strings which are candidate 
solutions to the search problem are referred to as chromosomes, the alphabets 
are referred to as genes and the values of genes are called alleles. For example, 
in a problem such as the travehng salesman problem, a chromosome represents 
a route, and a gene may represent a city. In contrast to traditional optimization 
techniques, GAs work with coding of parameters, rather than the parameters 
themselves. 

To evolve good solutions and to implement natural selection, we need a mea
sure for distinguishing good solutions from bad solutions. The measure could 
be an objective function that is a mathematical model or a computer simula
tion, or it can be a subjective function where humans choose better solutions 
over worse ones. In essence, the fitness measure must determine a candidate 
solution's relative fitness, which will subsequently be used by the GA to guide 
the evolution of good solutions. 

Another important concept of GAs is the notion of population. Unlike tra
ditional search methods, genetic algorithms rely on a population of candidate 
solutions. The population size, which is usually a user-specified parameter, is 
one of the important factors affecting the scalability and performance of ge
netic algorithms. For example, small population sizes might lead to premature 
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convergence and yield substandard solutions. On the other hand, large popula
tion sizes lead to unnecessary expenditure of valuable computational time. 

Once the problem is encoded in a chromosomal manner and a fitness mea
sure for discriminating good solutions from bad ones has been chosen, we can 
start to evolve solutions to the search problem using the following steps: 

1 Initialization. The initial population of candidate solutions is usually 
generated randomly across the search space. However, domain-specific 
knowledge or other information can be easily incorporated. 

2 Evaluation, Once the population is initiahzed or an offspring population 
is created, the fitness values of the candidate solutions are evaluated. 

3 Selection. Selection allocates more copies of those solutions with higher 
fitness values and thus imposes the survival-of-the-fittest mechanism on 
the candidate solutions. The main idea of selection is to prefer bet
ter solutions to worse ones, and many selection procedures have been 
proposed to accomplish this idea, including roulette-wheel selection, 
stochastic universal selection, ranking selection and tournament selec
tion, some of which are described in the next section. 

4 Recombination. Recombination combines parts of two or more parental 
solutions to create new, possibly better solutions (i.e. offspring). There 
are many ways of accomplishing this (some of which are discussed in 
the next section), and competent performance depends on a properly 
designed recombination mechanism. The offspring under recombination 
will not be identical to any particular parent and will instead combine 
parental traits in a novel manner (Goldberg, 2002). 

5 Mutation. While recombination operates on two or more parental chromo
somes, mutation locally but randomly modifies a solution. Again, there 
are many variations of mutation, but it usually involves one or more 
changes being made to an individual's trait or traits. In other words, 
mutation performs a random walk in the vicinity of a candidate solution. 

6 Replacement. The offspring population created by selection, recombi
nation, and mutation replaces the original parental population. Many 
replacement techniques such as elitist replacement, generation-wise re
placement and steady-state replacement methods are used in GAs. 

7 Repeat steps 2-6 until a terminating condition is met. 

Goldberg (1983, 1999a, 2002) has likened GAs to mechanistic versions of 
certain modes of human innovation and has shown that these operators when 
analyzed individually are ineffective, but when combined together they can 
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work well. This aspect has been explained with the concepts of iho, fundamen
tal intuition and innovation intuition. The same study compares a combina
tion of selection and mutation to continual improvement (a form of hill climb
ing), and the combination of selection and recombination to innovation (cross-
fertilizing). These analogies have been used to develop a design-decomposition 
methodology and so-called competent GAs—that solve hard problems quickly, 
rehably, and accurately—both of which are discussed in the subsequent sec
tions. 

This chapter is organized as follows. The next section provides details of 
individual steps of a typical genetic algorithm and introduces several popu
lar genetic operators. Section 4.1.2 presents a principled methodology of de
signing competent genetic algorithms based on decomposition principles. Sec
tion 4.1.3 gives a brief overview of designing principled efficiency-enhancement 
techniques to speed up genetic and evolutionary algorithms. 

4.1.1 Basic Genetic Algorithm Operators 
In this section we describe some of the selection, recombination, and muta

tion operators commonly used in genetic algorithms. 

4.1.1.1 Selection Methods. Selection procedures can be broadly clas
sified into two classes as follows. 

Fitness Proportionate Selection This includes methods such as roulette-wheel 
selection (Holland, 1975; Goldberg, 1989b) and stochastic universal se
lection (Baker, 1985; Grefenstette and Baker, 1989). In roulette-wheel 
selection, each individual in the population is assigned a roulette wheel 
slot sized in proportion to its fitness. That is, in the biased roulette wheel, 
good solutions have a larger slot size than the less fit solutions. The 
roulette wheel is spun to obtain a reproduction candidate. The roulette-
wheel selection scheme can be implemented as follows: 

1 Evaluate the fitness, fi, of each individual in the population. 

2 Compute the probability (slot size), p,, of selecting each member 
of the population: pi = fi/Yl'j=\ fj-> where n is the population 
size. 

3 Calculate the cumulative probability, <y,, for each individual: qi = 

T!j=xPj-
4 Generate a uniform random number, r € (0, 1]. 

5 \ir < q\ then select the first chromosome, x\, else select the indi
vidual Xi such that qt^x < r < qi. 

6 Repeat steps 4-5 n times to create n candidates in the mating pool. 
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To illustrate, consider a population with five individuals {n = 5), with 
the fitness values as shown in the table below. The total fitness, X^"=i / ; 
= 28 + 18 + 14 + 9 + 26 = 95. The probability of selecting an individual 
and the corresponding cumulative probabilities are also shown in the 
table below. 

Chromosome* 
Fitness, / 
Probability, pi 
Cumulative probabil
ity, qi 

1 
28 

28/95 = 0.295 
0.295 

2 
18 

0.189 
0.484 

3 
14 

0.147 
0.631 

4 
9 

0.095 
0.726 

5 
26 

0.274 
1.000 

Now if we generate a random number r, say 0.585, then the third chromo
some is selected as q2 = 0.484 < 0.585 < q^ = 0.631. 

Ordinal Selection This includes methods such as tournament selection 
(Goldberg et al., 1989b), and truncation selection (Miihlenbein and 
Schlierkamp-Voosen, 1993). In tournament selection, s chromosomes 
are chosen at random (either with or without replacement) and entered 
into a tournament against each other. The fittest individual in the group 
ofk chromosomes wins the tournament and is selected as the parent. The 
most widely used value of s is 2. Using this selection scheme, n tourna
ments are required to choose n individuals. In truncation selection, the 
top (l/s)th of the individuals get s copies each in the mating pool. 

4.1.1.2 Recombination (Crossover) Operators. After selection, indi
viduals from the mating pool are recombined (or crossed over) to create new, 
hopefully better, offspring. In the GA literature, many crossover methods have 
been designed (Goldberg, 1989b; Booker et al., 1997; Spears, 1997) and some 
of them are described in this section. Many of the recombination operators 
used in the literature are problem-specific and in this section we will introduce 
a few generic (problem independent) crossover operators. It should be noted 
that while for hard search problems, many of the following operators are not 
scalable, they are very useful as a first option. Recently, however, researchers 
have achieved significant success in designing scalable recombination opera
tors that adapt Hnkage which will be briefly discussed in Section 4.1.2. 

In most recombination operators, two individuals are randomly selected and 
are recombined with a probability pc, called the crossover probabifity. That is, 
a uniform random number, r, is generated and if r < pc, the two randomly 
selected individuals undergo recombination. Otherwise, that is, if r > pc, the 
two offspring are simply copies of their parents. The value of pc can either be 
set experimentally, or can be set based on schema-theorem principles (Gold
berg, 1989b, 2002; Goldberg and Sastry, 2001). 
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One point crossover 
Crossover point 

0 0 

1 0 

0 1 0 0 

1 1 1 1 

0 0 1 1 ] 1 

1 0 0 1 0 0 

Parent chromosomes Offspring chromosomes 

Two point crossover 
Crossover points 

0 0 

1 0 

0 1 0 

1 1 1 

0 

1 

0 0 1 1 1 0 . 

1 0 0 1 0 1 

Parent chromosomes 
Offspring chromosomes 

Uniform crossover 

0 0 0 1 0 0 

1 0 1 1 1 1 

1 0 0 1 0 1 

0 0 1 1 1 0 

Parent chromosomes Offspring chromosomes 

Figure 4.1. One-point, two-point, and uniform crossover methods. 

A;-point Crossover One-point, and two-point crossovers are the simplest and 
most widely applied crossover methods. In one-point crossover, illustrated in 
Figure 4.1, a crossover site is selected at random over the string length, and 
the alleles on one side of the site are exchanged between the individuals. In 
two-point crossover, two crossover sites are randomly selected. The alleles 
between the two sites are exchanged between the two randomly paired indi
viduals. Two-point crossover is also illustrated in Figure 4.1. The concept of 
one-point crossover can be extended to /:-point crossover, where k crossover 
points are used, rather than just one or two. 

Uniform Crossover Another common recombination operator is uniform 
crossover (Syswerda, 1989; Spears and De Jong, 1994). In uniform crossover, 
illustrated in Figure 4.1, every allele is exchanged between the a pair of ran
domly selected chromosomes with a certain probability, pe, known as the 
swapping probability. Usually the swapping probability value is taken to be 
0.5. 

Uniform Order-Based Crossover The ^-point and uniform crossover meth
ods described above are not well suited for search problems with permutation 
codes such as the ones used in the traveling salesman problem. They often cre
ate offspring that represent invalid solutions for the search problem. Therefore, 
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Parent? J 

Parent P2 

Template 

A 

E 

B^ 

B 

C^ 

D 

D 

^ 

E 

IF 
F 

^ 

G 

A 

0 1 1 0 0 1 0 

ChildCi | E | B | C | D | G | F | A | 

ChildC2 | A | B | D | C | E | G | F | 

Figure 4.2. Illustration of uniform order crossover. 

when solving search problems with permutation codes, a problem-specific re
pair mechanism is often required (and used) in conjunction with the above 
recombination methods to always create valid candidate solutions. 

Another alternative is to use recombination methods developed specifically 
for permutation codes, which always generate valid candidate solutions. Sev
eral such crossover techniques are described in the following paragraphs start
ing with the uniform order-based crossover. 

In uniform order-based crossover, two parents (say Pi and P2) are randomly 
selected and a random binary template is generated (see Figure 4.2). Some of 
the genes for offspring Ci are filled by taking the genes from parent P] where 
there is a one in the template. At this point we have Ci partially filled, but 
it has some "gaps". The genes of parent Pi in the positions corresponding to 
zeros in the template are taken and sorted in the same order as they appear in 
parent P2. The sorted list is used to fill the gaps in C]. Offspring C2 is created 
by using a similar process (see Figure 4.2). 

Order-Based Crossover The order-based crossover operator (Davis, 1985) 
is a variation of the uniform order-based crossover in which two parents are 
randomly selected and two random crossover sites are generated (see Fig
ure 4.3). The genes between the cut points are copied to the children. Starting 
from the second crossover site copy the genes that are not already present in 
the offspring from the alternative parent (the parent other than the one whose 
genes are copied by the offspring in the initial phase) in the order they appear. 
For example, as shown in Figure 4.3, for offspring Ci, since alleles C, D, and E 
are copied from the parent Pi, we get alleles B, G, F, and A from the parent P2. 
Starting from the second crossover site, which is the sixth gene, we copy alle
les B and G as the sixth and seventh genes respectively. We then wrap around 
and copy alleles F and A as the first and second genes. 
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Pi 

P2 

A B 

C B 

C D E 

G ^ F 

F G 

D A 

ChildCi | ? | ? | C | D | E | ? | ? | 

ChildC2 | ? | ? | G | E | F | ? | ? | 

ChildCi | F | A | C | D | E | B | G | 

Child C2 | C | D | G E F | A | B | 

Figure 4.3. Illustration of order-based crossover. 
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Figure 4.4. Illustration of partially matched crossover. 

Partially Matched Crossover (PMX) Apart from always generating valid 
offspring, the PMX operator (Goldberg and Lingle, 1985) also preserves or-
derings within the chromosome. In PMX, two parents are randomly selected 
and two random crossover sites are generated. Alleles within the two crossover 
sites of a parent are exchanged with the alleles corresponding to those mapped 
by the other parent. For example, as illustrated in Figure 4.4 (reproduced from 
Goldberg (1989b) with permission), looking at parent Pi, the first gene within 
the two crossover sites, 5, maps to 2 in P2. Therefore, genes 5 and 2 are 
swapped in Pi. Similarly we swap 6 and 3, and 10 and 7 to create the offspring 
Ci. After all exchanges it can be seen that we have achieved a dupHcation 
of the ordering of one of the genes in between the crossover point within the 
opposite chromosome, and vice versa. 
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Parent P, 9 8 2 

Parent P. 1 

1 7 4 

4 5 6 

5 10 6 3 

10 

Child Ci III i i 1 1 

Child Ci ii|: l| fil 
1 

Child Ci 1 9 1 1 1 1 1 

1 

Child Ci 9_[ 2 1 3 1 i j 5 

Child C2 n ^ | 8 7 2 T 4 [ T 

4 | 1 | 6 | 1 

' 

4J7 [^[6_[l0| 
T[y[l0l9 1 3 

Figure 4.5. Illustration of cycle crossover. 

Cycle Crossover (CX) We describe cycle crossover (Oliver et al., 1987) with 
help of a simple illustration (reproduced from Goldberg (1989b) with permis
sion). Consider two randomly selected parents Pi and P2 as shown in Fig
ure 4.5 that are solutions to a traveling salesman problem. The offspring C] 
receives the first variable (representing city 9) from Pi, We then choose the 
variable that maps onto the same position in P2. Since city 9 is chosen from Pi 
which maps to city 1 in P2, we choose city 1 and place it into Ci in the same 
position as it appears in Pi (fourth gene), as shown in Figure 4.5. City 1 in Pi 
now maps to city 4 in P2, so we place city 4 in Ci in the same position it oc
cupies in Pi (sixth gene). We continue this process once more and copy city 6 
to the ninth gene of Ci from Pi. At this point, since city 6 in Pi maps to city 9 
in P2, we should take city 9 and place it in Ci, but this has already been done, 
so we have completed a cycle; which is where this operator gets its name. The 
missing cities in offspring Ci is filled from P2. Offspring C2 is created in the 
same way by starting with the first city of parent P2 (see Figure 4.5). 

4.1.1.3 Mutation Operators. If we use a crossover operator, such 
as one-point crossover, we may get better and better chromosomes but the 
problem is, if the two parents (or worse, the entire population) has the same 
allele at a given gene then one-point crossover will not change that. In other 
words, that gene will have the same allele forever. Mutation is designed to 
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overcome this problem in order to add diversity to the population and ensure 
that it is possible to explore the entire search space. 

In evolutionary strategies, mutation is the primary variation/search opera
tor. For an introduction to evolutionary strategies see, for example, Back et 
al. (1997). Unlike evolutionary strategies, mutation is often the secondary op
erator in GAs, performed with a low probability. One of the most common 
mutations is the bit-flip mutation. In bitwise mutation, each bit in a binary 
string is changed (a 0 is converted to 1, and vice versa) with a certain proba
bility, pm, known as the mutation probability. As mentioned earher, mutation 
performs a random walk in the vicinity of the individual. Other mutation oper
ators, such as problem-specific ones, can also be developed and are often used 
in the literature. 

4.1.1.4 Replacement. Once the new offspring solutions are created 
using crossover and mutation, we need to introduce them into the parental 
population. There are many ways we can approach this. Bear in mind that the 
parent chromosomes have already been selected according to their fitness, so 
we are hoping that the children (which includes parents which did not undergo 
crossover) are among the fittest in the population and so we would hope that 
the population will gradually, on average, increase its fitness. Some of the most 
common replacement techniques are outlined below. 

Delete-all This technique deletes all the members of the current population 
and replaces them with the same number of chromosomes that have just 
been created. This is probably the most common technique and will 
be the technique of choice for most people due to its relative ease of 
implementation. It is also parameter-free, which is not the case for some 
other methods. 

Steady-state This technique deletes n old members and replaces them with 
n new members. The number to delete and replace, n, at any one time 
is a parameter to this deletion technique. Another consideration for this 
technique is deciding which members to delete from the current popula
tion. Do you delete the worst individuals, pick them at random or delete 
the chromosomes that you used as parents? Again, this is a parameter to 
this technique. 

Steady-state-no-duplicates This is the same as the steady-state technique but 
the algorithm checks that no duplicate chromosomes are added to the 
population. This adds to the computational overhead but can mean that 
more of the search space is explored. 
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4.1.2 Competent Genetic Algorithms 

While using innovation for explaining the working mechanisms of GAs is 
very useful, as a design metaphor it poses difficulty as the processes of innova
tion are themselves not well understood. However, if we want GAs to success
fully solve increasingly difficult problems across a wide spectrum of areas, we 
need a principled, but mechanistic way of designing genetic algorithms. The 
last few decades have witnessed great strides toward the development of so-
called competent genetic algorithms—GAs that solve hard problems, quickly, 
reliably, and accurately (Goldberg, 1999a). From a computational standpoint, 
the existence of competent GAs suggests that many difficult problems can be 
solved in a scalable fashion. Furthermore, it significantly reduces the burden 
on a user to decide on a good coding or a good genetic operator that accompa
nies many GA applications. If the GA can adapt to the problem, there is less 
reason for the user to have to adapt the problem, coding, or operators to the 
GA. 

In this section we briefly review some of the key lessons of competent GA 
design. Specifically, we restrict the discussion to selectorecombinative GAs 
and focus on the cross-fertilization type of innovation and briefly discuss key 
facets of competent GA design. Using Holland's notion of a building block 
(Holland, 1975), Goldberg proposed decomposing the problem of designing 
a competent selectorecombinative GA (Goldberg et al., 1992a). This design 
decomposition has been explained in detail elsewhere (Goldberg, 2002), but is 
briefly reviewed below. 

Know that GAs Process Building Blocks The primary idea of selectorecom
binative GA theory is that genetic algorithms work through a mechanism 
of decomposition and reassembly. Holland (1975) called well-adapted 
sets of features that were components of effective solutions building 
blocks (BBs). The basic idea is that GAs (1) implicitly identify building 
blocks or sub-assemblies of good solutions, and (2) recombine different 
sub-assemblies to form very high performance solutions. 

Understand BB Hard Problems From the standpoint of cross-fertilizing in
novation, problems that are hard have BBs that are hard to acquire. This 
may be because the BBs are complex, hard to find, or because different 
BBs are hard to separate, or because low-order BBs may be misleading 
or deceptive (Goldberg, 1987, 1989a; Goldberg et al., 1992b; Deb and 
Goldberg, 1994). 

Understand BB Growth and Timing Another key idea is that BBs or no
tions exist in a kind of competitive market economy of ideas, and steps 
must be taken to ensure that the best ones (1) grow and take over a dom-
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inant market share of the population, and (2) the growth rate can neither 
be too fast, nor too slow. 

The growth in market share can be easily satisfied (Goldberg and Sas-
try, 2001) by appropriately setting the crossover probability, pc, and the 
selection pressure, s, so that 

Pc < (4.1) 

where e is the probability of BB disruption. 

Two other approaches have been used in understanding time. It is not 
appropriate in a basic tutorial like this to describe them in detail, but we 
give a few example references for the interested reader. 

Takeover time models, where the dynamics of the best individual is 
modeled (Goldberg and Deb, 1991; Sakamoto and Goldberg, 1997; 
Cantu-Paz, 1999; Rudolph, 2000). 

Selection-intensity models, where approaches similar to those in quan
titative genetics (Bulmer, 1985) are used and the dynamics of 
the average fitness of the population is modeled (Muhlenbein and 
Schlierkamp-Voosen, 1993; Thierens and Goldberg, 1994a, 1994b; 
Back, 1995; Miller and Goldberg, 1995, 1996a; Voigt et al, 1996). 

The time models suggest that for a problem of size i, with all BBs of 
equal importance or salience, the convergence time, tc, of GAs is given 
by Miller and Goldberg (1995) to be 

tc = ^ V € (4.2) 

where / is the selection intensity (Bulmer, 1985), which is a parameter 
dependent on the selection method and selection pressure. For tourna
ment selection, / can be approximated in terms of s by the following 
relation (Bhckle and Thiele, 1995): 

/ = y2( log(^)- log(y4.141og( . ) ) ) (4.3) 

On the other hand, if the BBs of a problem have different sahence, then 
the convergence time scales-up differently. For example, when the BBs 
of a problem are exponentially scaled, with a particular BB being ex
ponentially better than the others, then the convergence time, tc, of a 
GA is linear with the problem size (Thierens et al., 1998) and can be 
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represented as follows: 

tc = - l o g 2 . (4 4^ 
log ( l - I/V3) 

To summarize, the convergence time of GAs is O (^/tj-O (I) (see 
Chapter 1, Introduction, for an explanation of the O notation). 

Understand BB Supply and Decision Making One role of the population is 
to ensure adequate supply of the raw building blocks in a population. 
Randomly generated populations of increasing size will, with higher 
probability, contain larger numbers of more complex BBs (Holland, 
1975; Goldberg, 1989c; Goldberg et al., 2001). For a problem with 
m building blocks, each consisting of A: alphabets of cardinality x> the 
population size, n, required to ensure the presence of at least one copy 
of all the raw building blocks is given by Goldberg et al. (2001) as 

n = x''\ogm-\-kx''logx (4.5) 

Just ensuring the raw supply is not enough, decision making among dif
ferent, competing notions (BBs) is statistical in nature, and as we in
crease the population size, we increase the likelihood of making the best 
possible decisions (De Jong, 1975; Goldberg and Rudnick, 1991; Gold
berg et al., 1992a; Harik et al., 1999). For an additively decomposable 
problem with m building blocks of size k each, the population size re
quired to not only ensure supply, but also ensure correct decision making 
is approximately given by Harik et al. (1999) as 

n = — 
^ <^BBr,k 

2 d 
2^-v/mlogQ! (4.6) 

where d/asB is the signal-to-noise ratio (Goldberg et al., 1992a), and 
oc is the probabihty of incorrectly deciding among competing building 
blocks. In essence, the population-sizing model consists of the following 
components: 

• Competition complexity, quantified by the total number of compet
ing building blocks, 2^. 

• Subcomponent complexity, quantified by the number of building 
blocks, m. 

• Ease of decision making, quantified by the signal-to-noise ratio, 
d/Obb-

• Probabilistic safety factor, quantified by the coefficient — logo;. 
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On the other hand, if the building blocks are exponentially scaled, the 
population size, n, scales as (Rothlauf, 2002; Thierens et al., 1998; Gold
berg, 2002) 

n = -Co'^^l^mXoga (4.7) 
d 

where Co is a constant dependent on the drift effects (Crow and Kimura, 
1970; Goldberg and Segrest, 1987; Asoh and Muhlenbein, 1994). 
To summarize, the complexity of the population size required by GAs is 
0(2^V^)-C>(2^m). 

Identify BBs and Exchange Them Perhaps the most important lesson of cur
rent research in GAs is that the identification and exchange of BBs is the 
critical path to innovative success. First-generation GAs usually fail in 
their ability to promote this exchange reliably. The primary design chal
lenge to achieving competence is the need to identify and promote effec
tive BB exchange. Theoretical studies using \hQ facetwise modeling ap
proach (Thierens, 1999; Sastry and Goldberg, 2002, 2003) have shown 
that while fixed recombination operators such as uniform crossover, due 
to inadequacies of effective identification and exchange of BBs, demon
strate polynomial scalability on simple problems, they scale-up expo
nentially, with problem size on boundedly-difficult problems. The mix
ing models also yield a control map delineating the region of good per
formance for a GA, Such a control map can be a useful tool in visual
izing GA sweet-spots and provide insights in parameter settings (Gold
berg, 1999a). This is in contrast to recombination operators that can 
automatically and adaptively identify and exchange BBs, which scale up 
polynomially (subquadratically-quadratically) with problem size. 

Efforts in the principled design of effective BB identification and exchange 
mechanisms have led to the development of competent genetic algorithms. 
Competent GAs solve hard problems quickly, reliably, and accurately. Hard 
problems are loosely defined as those problems that have large sub-solutions 
that cannot be decomposed into simpler sub-solutions, or have badly scaled 
sub-solutions, or have numerous local optima, or are subject to a high stochas
tic noise. While designing a competent GA, the objective is to develop an 
algorithm that can solve problems with bounded difficulty and exhibit a poly
nomial (usually subquadratic) scale-up with the problem size. 

Interestingly, the mechanics of competent GAs vary widely, but the prin
ciples of innovative success are invariant. Competent GA design began with 
the development of the messy genetic algorithm (Goldberg et al., 1989), cul
minating in 1993 with ihtfast messy GA (Goldberg et al., 1993). Since those 
early scalable results, a number of competent GAs have been constructed using 
different mechanism styles. We will categorize these approaches and provide 
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some references for the interested reader, but a detailed treatment is beyond the 
scope of this tutorial. 

Perturbation techniques, such as the messy GA (Goldberg et al., 1989), 
the fast messy GA (Goldberg et al., 1993), the gene expression 
messy GA (Kargupta, 1996), the linkage identification by nonhnearity 
check/linkage identification by detection GA (Munetomo and Goldberg, 
1999; Heckendom and Wright, 2004), and the dependency structure ma
trix driven genetic algorithm (Yu et al., 2003). 

Linkage adaptation techniques, such as the linkage learning GA (Harik and 
Goldberg, 1997; Harik, 1997). 

Probabilistic model building techniques, such as population based incre
mental learning (Baluja, 1994), the univariate model building algorithm 
(Muhlenbein and PaaB, 1996), the compact GA (Harik et al., 1998), the 
extended compact GA (Harik, 1999), the Bayesian optimization algo
rithm (Pelikan et al., 2000), the iterated distribution estimation algorithm 
(Bosman and Thierens, 1999), and the hierarchical Bayesian optimiza
tion algorithm (Pelikan and Goldberg, 2001). More details regarding 
these algorithms are given elsewhere (Pelikan et al., 2002; Larraiiaga 
and Lozano, 2002; Pehkan, 2005). 

4.1.3 Enhancement of Genetic Algorithms to Improve 
Efficiency and/or Effectiveness 

The previous section presented a brief account of competent GAs. These 
GA designs have shown promising results and have successfully solved hard 
problems requiring only a subquadratic number of function evaluations. In 
other words, competent GAs usually solve an ^-variable search problem, re
quiring only 0(i^) number of function evaluations. While competent GAs 
take problems that were intractable with first-generation GAs and render them 
tractable, for large-scale problems, the task of computing even a subquadratic 
number of function evaluations can be daunting. If the fitness function is a 
complex simulation, model, or computation, then a single evaluation might 
take hours, even days. For such problems, even a subquadratic number of 
function evaluations is very high. For example, consider a 20-bit search prob
lem and assume that a fitness evaluation takes one hour. We will require about 
half a month to solve the problem. This places a premium on a variety of ef
ficiency enhancement techniques. Also, it is often the case that a GA needs 
to be integrated with problem-specific methods in order to make the approach 
really effective for a particular problem. The literature contains a very large 
number of papers which discuss enhancements of GAs. Once again, a detailed 
discussion is well beyond the scope of the tutorial, but we provide four broad 
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categories of GA enhancement and examples of appropriate references for the 
interested reader. 

Parallelization, where GAs are run on multiple processors and the computa
tional resource is distributed among these processors (Cantu-Paz, 1997, 
2000). Evolutionary algorithms are by nature parallel, and many differ
ent parallelization approaches can be used, such as a simple master-slave 
parallel GA (Grefenstette, 1981), a coarse-grained architecture (Pettey 
et al., 1987), a fine-grained architecture (Robertson, 1987; Gorges-
Schleuter, 1989; Manderick and Spiessens, 1989), or a hierarchical ar
chitecture (Goldberg, 1989b; Gorges-Schleuter, 1997; Lin et al., 1997). 
Regardless of how parallelization is carried out, the key idea is to dis
tribute the computational load on several processors thereby speeding-
up the overall GA run. Moreover, there exists a principled design theory 
for developing an efficient parallel GA and optimizing the key facts of 
parallel architecture, connectivity, and deme size (Cantu-Paz, 2000). 

For example, when the function evaluation time, Tf, is much greater than 
the communication time, T ,̂ which is very often the case, then a simple 
master-slave parallel GA—where the fitness evaluations are distributed 
over several processors and the rest of the GA operations are performed 
on a single processor—can yield hnear speed-up when the number of 

processors is less than or equal to •(hrn, and optimal speed-up when the 

number of processors equals J j-n, where n is the population size. 

Hybridization can be an extremely effective way of improving the perfor
mance and effectiveness of Genetic Algorithms. The most common 
form of hybridization is to couple GAs with local search techniques and 
to incorporate domain-specific knowledge into the search process. A 
common form of hybridization is to incorporate a local search opera
tor into the Genetic Algorithm by applying the operator to each mem
ber of the population after each generation. This hybridization is often 
carried out in order to produce stronger results than the individual ap
proaches can achieve on their own. However, this improvement in so
lution quality usually comes at the expense of increased computational 
time (e.g. Burke et al., 2001). Such approaches are often called Memetic 
Algorithms in the literature. This term was first used by Moscato 
(1989) and has since been employed very widely. For more details 
about memetic algorithms in general, see Krasnogor and Smith (2005), 
Krasnogor et al. (2004), Moscato and Gotta (2003) and Moscato (1999). 

Of course, the hybridization of GAs can take other forms. Examples 
include: 
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• Initializing a GA population: e.g. Burke et al. (1998), Fleurent and 
Ferland (1994), Watson et al. (1999). 

• Repairing infeasible solutions into legal ones: e.g. Ibaraki (1997). 

• Developing specialized heuristic recombination operators: 
e.g. Burke et al. (1995). 

• Incorporating a case-based memory (experience of past attempts) 
into the GA process (Louis and McDonnell, 2004). 

• Heuristically decomposing large problems into smaller sub-
problems before employing a memetic algorithm: e.g. Burke and 
Newall (1999). 

Hybrid genetic algorithm and memetic approaches have demonstrated 
significant success in difficult real word application areas. A very small 
number of examples are included below (many more examples can be 
seen in the wider literature): 

• University timetabling: examination timetabling (Burke et al., 
1996, 1998; Burke and Newall, 1999) and course timetabling 
(Paechteretal., 1995, 1996). 

• Machine schedufing (Cheng and Gen, 1997). 

• Electrical power systems: unit commitment problems (Valenzuala 
and Smith, 2002); electricity transmission network maintenance 
scheduling (Burke and Smith, 1999); thermal generator mainte
nance scheduling (Burke and Smith, 2000). 

• Sports scheduling (Costa, 1995). 

• Nurse rostering (Burke et al., 2001). 

• Warehouse scheduling (Watson et al., 1999). 

While GA practitioners have often understood that real-world or com
mercial applications often require hybridization, there has been limited 
effort devoted to developing a theoretical underpinning of genetic algo
rithm hybridization. However, the following list contains examples of 
work which has aimed to answer critical issues such as 

• the optimal division of labor between global and local searchers 
(or the right mix of exploration and exploitation) (Goldberg and 
Voessner, 1999); 

• the effect of local search on sampling (Hart and Belew, 1996); 

• hybrid GA modeling issues (Whitely, 1995). 



GENETIC ALGORITHMS 113 

The papers cited in this section are only a tiny proportion of the Hterature 
on hybrid genetic algorithms but they should provide a starting point for 
the interested reader. However, although there is a significant body of 
hterature existing on the subject, there are many research directions still 
to be explored. Indeed, considering the option of hybridizing a GA with 
other approaches is one of the suggestions we give in the Tricks of the 
Trade section at the end of the chapter. 

Time continuation, where the capabilities of both mutation and recombina
tion are utilized to obtain a solution of as high quality as possible with a 
given limited computational resource (Goldberg, 1999b; Srivastava and 
Goldberg, 2001; Sastry and Goldberg, 2004a, 2004b). Time utiHzation 
(or continuation) exploits the tradeoff between the search for solutions 
with a large population and a single convergence epoch or using a small 
population with multiple convergence epochs. 

Early theoretical investigations indicate that when the BBs are of equal 
(or nearly equal) salience and both recombination and mutation opera
tors have the linkage information, then a small population with multi
ple convergence epochs is more efficient. However, if the fitness func
tion is noisy or has overlapping building blocks, then a large population 
with a single convergence epoch is more efficient (Sastry and Goldberg, 
2004a, 2004b). On the other hand, if the BBs of the problem are of 
non-uniform salience, which essentially means that they require serial 
processing, then a small population with multiple convergence epochs is 
more efficient (Goldberg, 1999b). Nevertheless, much work needs to be 
done to develop a principled design theory for efficiency enhancement 
via time continuation and to design competent continuation operators to 
reinitiahze populations between epochs. 

Evaluation relaxation, where an accurate, but computationally expensive fit
ness evaluation is replaced with a less accurate, but computationally in
expensive fitness estimate. The low-cost, less-accurate fitness estimate 
can either be (1) exogenous, as in the case of surrogate (or approximate) 
fitness functions (Jin, 2003), where extemal means can be used to de
velop the fitness estimate, or (2) endogenous, as in the case of fitness 
inheritance (Smith et al., 1995) where the fitness estimate is computed 
internally and is based on parental fitnesses. 

Evaluation relaxation in GAs dates back to early, largely empirical work 
of Grefenstette and Fitzpatrick (1985) in image registration (Fitzpatrick 
et al., 1984) where significant speed-ups were obtained by reduced ran
dom sampling of the pixels of an image. Approximate evaluation has 
since been used extensively to solve complex optimization problems 
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across many applications, such as structural engineering (Barthelemy 
and Haftka, 1993) and warehouse scheduling at Coors Brewery (Watson 
etal , 1999). 

While early evaluation relaxation studies were largely empirical in na
ture, design theories have since been developed to understand the ef
fect of approximate surrogate functions on population sizing and conver
gence time and to optimize speed-ups in approximate fitness functions 
with known variance (Miller and Goldberg, 1996b) in, for example, sim
ple functions of known variance or known bias (Sastry, 2001), and in 
fitness inheritance (Sastry et al, 2001, 2004; Pelikan and Sastry, 2004). 

4.2 TRICKS OF THE TRADE 
In this section we present some suggestions for the reader who is new to the 

area of genetic algorithms and wants to know how best to get started. Fortu
nately, the ideas behind genetic algorithms are intuitive and the basic algorithm 
is not complex. Here are some basic tips. 

• Start by using an "off the shelf" genetic algorithm. It is pointless devel
oping a complex GA, if your problem can be solved using a simple and 
standard implementation. 

• There are many excellent software packages that allow you to implement 
a genetic algorithm very quickly. Many of the introductory texts are 
suppHed with a GA implementation and GA-LIB is probably seen as the 
software of choice for many people (see below). 

• Consider carefully your representation. In the early days, the majority of 
implementations used a bit representation which was easy to implement. 
Crossover and mutation were simple. However, many other representa
tions are now used, some utilizing complex data structures. You should 
carry out some research to determine what is the best representation for 
your particular problem. 

• A basic GA will allow you to implement the algorithm and the only 
thing you have to supply is an evaluation function. If you can achieve 
this, then this is the fastest way to get a prototype system up and running. 
However, you may want to include some problem specific data in your 
algorithm. For example, you may want to include your own crossover 
operators (in order to guide the search) or you may want to produce the 
initial population using a constructive heuristic (to give the GA a good 
starting point). 

• In recent times, many researchers have hybridized GAs with other search 
methods (see Section 4.1.3). Perhaps the most common method is to in-
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elude a loeal seareher after the crossover and mutation operators (some
times known as a memetic algorithm). This local searcher might be 
something as simple as a hill cHmber, which acts on each chromosome 
to ensure it is at a local optimum before the evolutionary process starts 
again. 

• There are many parameters required to run a genetic algorithm (which 
can be seen as one of the shortcomings). At a minimum you have the 
population size, the mutation probability, and the crossover probability. 
The problem with having so many parameters to set is that it can take a 
lot of experimentation to find a set of values which solves your particular 
problem to the required quality. A broad rule of thumb, to start with, is 
to use a mutation probability of 0.05 (De Jong, 1975), a crossover rate 
of 0.6 (De Jong, 1975) and a population size of about 50. These three 
parameters are just an example of the many choices you are going to 
have to make to get your GA implementation working. To provide just 
a small sample: which crossover operator should you use?... which mu
tation operator?... Should the crossover/mutation rates be dynamic and 
change as the run progresses? Should you use a local search operator? 
If so, which one, and how long should that be allowed to run for? What 
selection technique should you use? What replacement strategy should 
you use? Fortunately, many researchers have investigated many of these 
issues and the additional sources section below provides many suitable 
references. 

SOURCES OF ADDITIONAL INFORMATION 

Software 
• GALib, http://lancet.mit.edu/ga/. If you want GA software then GALIB 

should probably be your first port of call. The description (from the web 
page) says 

GAlib contains a set of C++ genetic algorithm objects. The library in
cludes tools for using genetic algorithms to do optimization in any C++ 
program using any representation and genetic operators. The documenta
tion includes an extensive overview of how to implement a genetic algo
rithm as well as examples illustrating customizations to the GAlib classes. 

• GARAGe, http://garage.cps.msu.edu/. Genetic Algorithms Research 
and Applications Group. 

• LGADOSinColey(1999). 

• NeuroDimension, http://www.nd.com/genetic/ 
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• Simple GA (SGA) in Goldberg (1989b). 

• Solver.com, http://www.solver.com/ 

• Ward Systems Group Inc., http://www.wardsystems.com/ 

• Other packages, http://www-2.cs.cmu.edu/afs/cs/project/ 
ai-repository/ai/areas/genetic/ga/systems/O.html. This URL contains 
links to a number of genetic algorithm software libraries. 

Introductory Material 
There are many pubhcations which give excellent introductions to ge

netic algorithms: see Holland (1975), Davis (1987), Goldberg (1989b), Davis 
(1991), Beasley et al. (1993), Forrest (1993), Reeves (1995), Michalewicz 
(1996), Mitchell (1996), Falkenauer (1998), Coley (1999), and Man 
etal. (1999). 

Memetic Algorithms 
There are some excellent introductory texts for memetic algorithms: see 

RadcHffe and Surry (1994), Moscato (1999, 2001), Moscato and Gotta (2003), 
Hart et al. (2004), Krasnogor et al. (2004), Krasnogor and Smith (2005). 

You might also like to refer to the Memetic Algorithms Home Page at 

• http://www.densis.fee.unicamp.br/~moscato/memetic_home.html 

Historical Material 
An excellent work which brings together the early pioneering work in the 

field is Fogel (1998). 

Conferences and Journals 
There are a number of journals and conferences which publish papers con

cerned with genetic algorithms. The key conferences and journals are listed 
below, but remember that papers on Genetic Algorithms are published in many 
other outlets too. 

Journals 

• Evolutionary Computation, http://mitpress.mit.edu/ 
catalog/item/default. asp?tid=25&ttype=4 

• Genetic Programming and Evolvable Machines, 
http://www.kluweronline.com/issn/1389-2576/contents 
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• IEEE Transactions on Evolutionary Computation, 
http://www.ieee-nns.org/pubs/tec/ 

Conferences 

• Congress on Evolutionary Computation (CEC) 

• Genetic and Evolutionary Computation Conference (GECCO) 

• Parallel Problem Solving in Nature (PPSN) 

• Simulated Evolution and Learning (SEAL) 
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5d INTRODUCTION 

The goal of getting computers to automatically solve problems is central 
to artificial inteUigence, machine learning, and the broad area encompassed 
by what Turing called "machine intelligence" (Turing, 1948, 1950). In his 
talk entitled AI: Where It Has Been and Where It Is Going, machine learning 
pioneer Arthur Samuel stated the main goal of the fields of machine learning 
and artificial intelligence: 

[T]he aim [is]. . . to get machines to exiiibit behavior, which if done by humans, 
would be assumed to involve the use of intelligence. 

(Samuel, 1983) 

Genetic programming is a systematic method for getting computers to automat
ically solve a problem starting from a high-level statement of what needs to be 
done. Genetic programming is a domain-independent method that genetically 
breeds a population of computer programs to solve a problem. Specifically, ge
netic programming iteratively transforms a population of computer programs 
into a new generation of programs by applying analogs of naturally occurring 
genetic operations. This process is illustrated in Figure 5.1. 

The genetic operations include crossover (sexual recombination), mutation, 
reproduction, gene duplication, and gene deletion. Analogs of developmental 
processes are sometimes used to transform an embryo into a fully developed 
structure. Genetic programming is an extension of the genetic algorithm (Hol
land, 1975), see Chapter 4, in which the structures in the population are not 
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Generate 
Population 
of Random 
Programs 

Run Programs 
and Evaluate 
their Fitness 

Breed 
Fitter 
Programs 

for (i=l; i<100; i++) 

{ 

x+= 2,37 + i; 

if (x > 1000 ) 

return(i); 

} 

Figure 5.1, Main loop of genetic programming. 

fixed-length character strings that encode candidate solutions to a problem, but 
programs that, when executed, are the candidate solutions to the problem. 

Programs are expressed in genetic programming as syntax trees rather than 
as lines of code. For example, the simple expression 

max(x 5î  X, X + 3 * y) 

is represented as shown in Figure 5.2. The tree includes nodes (which we will 
also call points) and links. The nodes indicate the instructions to execute. The 
links indicate the arguments for each instruction. In the following the intemal 
nodes in a tree will be called functions, while the tree's leaves will be called 
terminals. 

In more advanced forms of genetic programming, programs can be com
posed of multiple components (e.g. subroutines). In this case the representa
tion used in genetic programming is a set of trees (one for each component) 
grouped together under a special node called root, as illustrated in Figure 5.3. 
We will call these (sub)trees branches. The number and type of the branches in 
a program, together with certain other features of the structure of the branches, 
form the architecture of the program. 

Genetic programming trees and their corresponding expressions can equiv-
alently be represented in prefix notation (e.g. as Lisp S-expressions). In 
prefix notation, functions always precede their arguments. For example, 
max(x * X, X -f 3 * y) becomes 

(max(*xx)(+x(* 3 y))) 

In this notation, it is easy to see the correspondence between expressions and 
their syntax trees. Simple recursive procedures can convert prefix-notation ex
pressions into infix-notation expressions and vice versa. Therefore, in the fol
lowing, we will use trees and their corresponding prefix-notation expressions 
interchangeably. 
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Figure 5.2. Basic tree-like program representation used in genetic programming. 

5.2 PREPARATORY STEPS OF GENETIC 
PROGRAMMING 

Genetic programming starts from a high-level statement of the requirements 
of a problem and attempts to produce a computer program that solves the prob
lem. 

The human user communicates the high-level statement of the problem 
to the genetic programming algorithm by performing certain well-defined 
preparatory steps. 

The five major preparatory steps for the basic version of genetic program
ming require the human user to specify 

1 the set of terminals (e.g., the independent variables of the problem, zero-
argument functions, and random constants) for each branch of the to-be-
evolved program, 

2 the set of primitive functions for each branch of the to-be-evolved pro
gram, 

3 the fitness measure (for explicitly or implicitly measuring the fitness of 
individuals in the population), 

4 certain parameters for controlling the run, and 

5 the termination criterion and method for designating the result of the run. 

The first two preparatory steps specify the ingredients that are available to 
create the computer programs. A run of genetic programming is a competi
tive search among a diverse population of programs composed of the available 
functions and terminals. 

The identification of the function set and terminal set for a particular prob
lem (or category of problems) is usually a straightforward process. For some 
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Figure 53. Multi-tree program representation. 

problems, the function set may consist of merely the arithmetic functions of ad
dition, subtraction, multiplication, and division as well as a conditional branch
ing operator. The terminal set may consist of the program's extemal inputs 
(independent variables) and numerical constants. 

For many other problems, the ingredients include specialized functions and 
terminals. For example, if the goal is to get genetic programming to automat
ically program a robot to mop the entire floor of an obstacle-laden room, the 
human user must tell genetic programming what the robot is capable of doing. 
For example, the robot may be capable of executing functions such as moving, 
tuming, and swishing the mop. 

If the goal is the automatic creation of a controller, the function set may 
consist of integrators, differentiators, leads, lags, gains, adders, subtractors, 
and the like and the terminal set may consist of signals such as the reference 
signal and plant output. 

If the goal is the automatic synthesis of an analog electrical circuit, the 
function set may enable genetic programming to construct circuits from com
ponents such as transistors, capacitors, and resistors. Once the human user 
has identified the primitive ingredients for a problem of circuit synthesis, the 
same function set can be used to automatically synthesize an amplifier, com
putational circuit, active filter, voltage reference circuit, or any other circuit 
composed of these ingredients. 

The third preparatory step concems the fitness measure for the problem. The 
fitness measure specifies what needs to be done. The fitness measure is the pri
mary mechanism for communicating the high-level statement of the problem's 
requirements to the genetic programming system. For example, if the goal 
is to get genetic programming to automatically synthesize an amplifier, the fit
ness function is the mechanism for teUing genetic programming to synthesize a 
circuit that amplifies an incoming signal (as opposed to, say, a circuit that sup-
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presses the low frequencies of an incoming signal or that computes the square 
root of the incoming signal). The first two preparatory steps define the search 
space whereas the fitness measure impHcitly specifies the search's desired goal. 

The fourth and fifth preparatory steps are administrative. The fourth 
preparatory step entails specifying the control parameters for the run. The most 
important control parameter is the population size. Other control parameters 
include the probabilities of performing the genetic operations, the maximum 
size for programs, and other details of the run. 

The fifth preparatory step consists of specifying the termination criterion 
and the method of designating the result of the run. The termination criterion 
may include a maximum number of generations to be run as well as a problem-
specific success predicate. The single best-so-far individual is then harvested 
and designated as the result of the run. 

5.3 EXECUTIONAL STEPS OF GENETIC 
PROGRAMMING 

After the user has performed the preparatory steps for a problem, the run of 
genetic programming can be launched. Once the run is launched, a series of 
well-defined, problem-independent steps is executed. 

Genetic programming typically starts with a population of randomly gener
ated computer programs composed of the available programmatic ingredients 
(as provided by the human user in the first and second preparatory steps). 

Genetic programming iteratively transforms a population of computer pro
grams into a new generation of the population by applying analogs of naturally 
occurring genetic operations. These operations are applied to individual(s) se
lected from the population. The individuals are probabilistically selected to 
participate in the genetic operations based on their fitness (as measured by the 
fitness measure provided by the human user in the third preparatory step). The 
iterative transformation of the population is executed inside the main genera
tional loop of the run of genetic programming. 

The executional steps of genetic programming are as follows: 

1 Randomly create an initial population (generation 0) of individual com
puter programs composed of the available functions and terminals. 

2 Iteratively perform the following sub-steps (called a generation) on the 
population until the termination criterion is satisfied: 

(a) Execute each program in the population and ascertain its fitness 
(exphcitly or implicitly) using the problem's fitness measure. 

(b) Select one or two individual program(s) from the population with 
a probability based on fitness (with reselection allowed) to partici
pate in the genetic operations in (c). 
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Figure 5.4. Flowchart of genetic programming. 

(c) Create new individual program(s) for the population by applying 
the following genetic operations with specified probabilities: 

i Reproduction: Copy the selected individual program to the 
new population. 

ii Crossover: Create new offspring program(s) for the new pop
ulation by recombining randomly chosen parts from two se
lected programs. 

iii Mutation: Create one new offspring program for the new pop
ulation by randomly mutating a randomly chosen part of one 
selected program. 

iv Architecture-altering operations: Choose an architecture-
altering operation from the available repertoire of such opera
tions and create one new offspring program for the new pop-
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Figure 5.5. Creation of a seven-point tree using the "Full" initialization method (/ = time). 

ulation by applying the chosen architecture-altering operation 
to one selected program. 

3 After the termination criterion is satisfied, the single best program in 
the population produced during the run (the best-so-far individual) is 
harvested and designated as the result of the run. If the run is successful, 
the result may be a solution (or approximate solution) to the problem. 

Figure 5.4 is a flowchart of genetic programming showing the genetic oper
ations of crossover, reproduction, and mutation as well as the architecture-
altering operations. This flowchart shows a two-offspring version of the 
crossover operation. 

The preparatory steps specify what the user must provide in advance to the 
genetic programming system. Once the run is launched, the executional steps 
as shown in the flowchart (Figure 5.4) are executed. Genetic programming 
is problem-independent in the sense that the flowchart specifying the basic 
sequence of executional steps is not modified for each new run or each new 
problem. 

There is usually no discretionary human intervention or interaction during 
a run of genetic programming (although a human user may exercise judgment 
as to whether to terminate a run). 

Genetic programming starts with an initial population of computer programs 
composed of functions and terminals appropriate to the problem. The indi
vidual programs in the initial population are typically generated by recursively 
generating a rooted point-labeled program tree composed of random choices of 
the primitive functions and terminals (provided by the user as part of the first 
and second preparatory steps). The initial individuals are usually generated 
subject to a pre-estabHshed maximum size (specified by the user as a minor 
parameter as part of the fourth preparatory step). For example, in the ''FuW 
initialization method nodes are taken from the function set until a maximum 
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Figure 5.6. Creation of a five-point tree using the "Grow" initialization method {t — time). 

tree depth is reached. Beyond that depth only terminals can be chosen. Figure 
5.5 shows several snapshots of this process. A variant of this, the "Grow" ini
tialization method, allows the selection of nodes from the whole primitive set 
until the depth limit is reached. Thereafter, it behaves like the "Full" method. 
Figure 5.6 illustrates this process. Pseudo-code for a recursive implementation 
of both the "Full" and the "Grow" methods is given in Figure 5.7. The code 
assumes that programs are represented as prefix-notation expressions. 

In general, after the initialization phase, the programs in the population are 
of different size (number of functions and terminals) and of different shape 
(the particular graphical arrangement of functions and terminals in the program 
tree). 

Each individual program in the population is either measured or compared 
in terms of how well it performs the task at hand (using the fitness measure 
provided in the third preparatory step). For many problems, this measurement 
yields a single explicit numerical value, called T̂ mê '̂ . Normally, fitness evalu
ation requires executing the programs in the population, often multiple times, 
within the genetic programming system. A variety of execution strategies ex
ist, including the (relatively uncommon) off-line or on-line compilation and 
linking and the (relatively common) virtual-machine-code compilation and in
terpretation. 

Interpreting a program tree means executing the nodes in the tree in an order 
that guarantees that nodes are not executed before the value of their arguments 
(if any) is known. This is usually done by traversing the tree in a recursive 
way starting from the root node, and postponing the evaluation of each node 
until the value of its children (arguments) is known. This process is illustrated 
in Figure 5.8, where the numbers to the right of internal nodes represent the 
results of evaluating the subtrees rooted at such nodes. In this example, the 
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procedure: gen_xnd_expr 
arguments: 

func>set 
termjset 
max_d 
method 

results: 

/* A function set */ 
/* A terminal set */ 
/* Maximum depth for expressions */ 
/* Either "Fuir or 'Vrow'' */ 

expr 
begin 

if maxjd 

/* An expression in prefix notation */ 

0 or method = "Grow" and random digit = 1 then 
expr = choosej:andom_element( term_set ) 

else 
func = choosB-random-element ( func_set ) 
for i = 1 to arity(fanc): 

argi = gen-md-expr(func^set, termset, max^d - i, method ) ; 
expr = (func, arg_l, arg^, ...); 

endif 
end 

Figure 5.7. Pseudo-code for recursive program generation with the "Full" and "Grow" meth
ods. 

3 - 0 X M 3 ^ 0 X - 2 

Figure 5.8. Example interpretation of a syntax tree (terminal x is a variable with value — 1). 

independent variable X evaluates to —1. Figure 5.9 gives a pseudo-code im
plementation of the interpretation procedure. The code assumes that programs 
are represented as prefix-notation expressions and that such expressions can be 
treated as Hsts of components (where a construct like expr{i) can be used to 
read or set component / of expression expr). 

Irrespective of the execution strategy adopted, the fitness of a program may 
be measured in many different ways, including, for example, in terms of the 
amount of error between its output and the desired output, the amount of time 
(fuel, money, etc) required to bring a system to a desired target state, the accu-



136 KOZAANDPOLI 

procedure: eval 
arguments: 

expr / * An expression in prefix notation */ 
results: 

value /* A number */ 
begin 

if expr is a list then /* Non-terminal */ 
proc =: expr(l) 
value = proc(eval(expr(2)),eval(expr(3)),...) 

else / * Terminal */ 
if expr is a variable or a constant then 

value = expr 
else /* O-arity function */ 

value = expr() 
endif 

endif 
end 

Figure 5.9, Typical interpreter for genetic programming. 

racy of the program in recognizing patterns or classifying objects into classes, 
the payoff that a game-playing program produces, or the compliance of a com
plex structure (such as an antenna, circuit, or controller) with user-specified 
design criteria. The execution of the program sometimes retums one or more 
expHcit values. Altematively, the execution of a program may consist only of 
side effects on the state of a world (e.g., a robot's actions). Altematively, the 
execution of a program may yield both return values and side effects. 

The fitness measure is, for many practical problems, multi-objective in the 
sense that it combines two or more different elements. In practice, the different 
elements of the fitness measure are in competition with one another to some 
degree. 

For many problems, each program in the population is executed over a rep
resentative sample of different ^m^55 cases. These fitness cases may represent 
different values of the program's input(s), different initial conditions of a sys
tem, or different environments. Sometimes the fitness cases are constructed 
probabilistically. 

The creation of the initial random population is, in effect, a bhnd random 
search of the search space of the problem. It provides a baseline for judging 
future search efforts. Typically, the individual programs in generation 0 all 
have exceedingly poor fitness. Nonetheless, some individuals in the population 
are (usually) more fit than others. The differences in fitness are then exploited 
by genetic programming. Genetic programming applies Darwinian selection 
and the genetic operations to create a new population of offspring programs 
from the current population. 
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Figure 5.10. Example of two-child crossover between syntax trees. 

The genetic operations include crossover (sexual recombination), mutation, 
reproduction, and the architecture-altering operations. Given copies of two 
parent trees, typically, crossover involves randomly selecting a crossover point 
(which can equivalently be thought of as either a node or a link between nodes) 
in each parent tree and swapping the sub-trees rooted at the crossover points, 
as exemplified in Figure 5.10. Often crossover points are not selected with uni
form probability. A frequent strategy is, for example, to select internal nodes 
(functions) 90% of the times, and any node for the remaining 10% of the times. 
Traditional mutation consists of randomly selecting a mutation point in a tree 
and substituting the sub-tree rooted there with a randomly generated sub-tree, 
as illustrated in Figure 5.11. Mutation is sometimes implemented as crossover 
between a program and a newly generated random program (this is also known 
as "headless chicken" crossover). Reproduction involves simply copying cer
tain individuals into the new population. Architecture altering operations will 
be discussed later in this chapter. 

The genetic operations described above are applied to individual(s) that are 
probabilistically selected from the population based on fitness. In this proba
bilistic selection process, better individuals are favored over inferior individu
als. However, the best individual in the population is not necessarily selected 
and the worst individual in the population is not necessarily passed over. 

After the genetic operations are performed on the current population, the 
population of offspring (i.e. the new generation) replaces the current population 
(i.e. the now-old generation). This iterative process of measuring fitness and 
performing the genetic operations is repeated over many generations. 

The run of genetic programming terminates when the termination criterion 
(as provided by the fifth preparatory step) is satisfied. The outcome of the run 
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Figure 5.11. Example of sub-tree mutation. 

is specified by the method of result designation. The best individual ever en
countered during the run (i.e. the best-so-far individual) is typically designated 
as the result of the run. 

All programs in the initial random population (generation 0) of a run of 
genetic programming are syntactically valid, executable programs. The ge
netic operations that are performed during the run (i.e. crossover, mutation, 
reproduction, and the architecture-altering operations) are designed to produce 
offspring that are syntactically valid, executable programs. Thus, every indi
vidual created during a run of genetic programming (including, in particular, 
the best-of-run individual) is a syntactically vahd, executable program. 

There are numerous alternative implementations of genetic programming 
that vary from the preceding brief description, 

5.4 EXAMPLE OF A RUN OF GENETIC 
PROGRAMMING 

To provide concreteness, this section contains an illustrative run of genetic 
programming in which the goal is to automatically create a computer program 
whose output is equal to the values of the quadratic polynomial x^+x + \ in the 
range from — 1 to -f 1. That is, the goal is to automatically create a computer 
program that matches certain numerical data. This process is sometimes called 
system identification or symbolic regression. 

We begin with the five preparatory steps. The purpose of the first two 
preparatory steps is to specify the ingredients of the to-be-evolved program. 
Because the problem is to find a mathematical function of one independent 
variable, the terminal set (inputs to the to-be-evolved program) includes the 
independent variable, x. The terminal set also includes numerical constants. 
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That is, the terminal set, T, is 

T = {X,m] 

Here 9̂  denotes constant numerical terminals in some reasonable range (say 
from-5.0 to+5.0). 

The preceding statement of the problem is somewhat flexible in that it does 
not specify what functions may be employed in the to-be-evolved program. 
One possible choice for the function set consists of the four ordinary arith
metic functions of addition, subtraction, multipHcation, and division. This 
choice is reasonable because mathematical expressions typically include these 
functions. Thus, the function set, F, for this problem is 

F = { + , - , * , % } 

The two-argument -f, —, *, and % functions add, subtract, multiply, and divide, 
respectively. To avoid run-time errors, the division function % is protected: it 
retums a value of 1 when division by 0 is attempted (including 0 divided by 0), 
but otherwise retums the quotient of its two arguments. 

Each individual in the population is a composition of functions from the 
specified function set and terminals from the specified terminal set. 

The third preparatory step involves constructing the fitness measure. The 
purpose of the fitness measure is to specify what the human wants. The high-
level goal of this problem is to find a program whose output is equal to the 
values of the quadratic polynomial x^ +x + \, Therefore, the fitness assigned 
to a particular individual in the population for this problem must reflect how 
closely the output of an individual program comes to the target polynomial 
x^ + ^ + 1. The fitness measure could be defined as the value of the integral 
(taken over values of the independent variable x between —1.0 and +1.0) of the 
absolute value of the differences (errors) between the value of the individual 
mathematical expression and the target quadratic polynomial x^ + x + 1. A 
smaller value of fitness (error) is better. A fitness (error) of zero would indicate 
a perfect fit. 

For most problems of symbolic regression or system identification, it is not 
practical or possible to analytically compute the value of the integral of the 
absolute error. Thus, in practice, the integral is numerically approximated us
ing dozens or hundreds of different values of the independent variable x in the 
range between —1.0 and +1.0. 

The population size in this small illustrative example will be just four. In 
actual practice, the population size for a run of genetic programming consists 
of thousands or millions of individuals. In actual practice, the crossover oper
ation is commonly performed on about 90% of the individuals in the popula
tion; the reproduction operation is performed on about 8% of the population; 
the mutation operation is performed on about 1% of the population; and the 
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Figure 5.12. Initial population of four randomly created individuals of generation 0. 

architecture-altering operations are performed on perhaps 1% of the popula
tion. Because this illustrative example involves an abnormally small popu
lation of only four individuals, the crossover operation will be performed on 
two individuals and the mutation and reproduction operations will each be per
formed on one individual. For simpHcity, the architecture-altering operations 
are not used for this problem. 

A reasonable termination criterion for this problem is that the run will con
tinue from generation to generation until the fitness of some individual gets 
below 0.01. In this contrived example, the run will (atypically) yield an alge
braically perfect solution (for which the fitness measure attains the ideal value 
of zero) after merely one generation. 

Now that we have performed the five preparatory steps, the run of genetic 
programming can be launched. That is, the executional steps shown in the 
flowchart of Figure 5.4 are now performed. 

Genetic programming starts by randomly creating a population of four indi
vidual computer programs. The four programs are shown in Figure 5.12 in the 
form of trees. 

The first randomly constructed program tree (Figure 5.12(a)) is equivalent 
to the mathematical expression x -f 1. A program tree is executed in a depth-
first way, from left to right, in the style of the LISP programming language. 
Specifically, the addition function (+) is executed with the variable x and the 
constant value 1 as its two arguments. Then, the two-argument subtraction 
function (—) is executed. Its first argument is the value retumed by the just-
executed addition function. Its second argument is the constant value 0. The 
overall result of executing the entire program tree is thus x + \. 

The first program (Figure 5.12(a)) was constructed using the ''Grow" 
method, by first choosing the subtraction function for the root (top point) of 
the program tree. The random construction process continued in a depth-first 
fashion (from left to right) and chose the addition function to be the first argu
ment of the subtraction function. The random construction process then chose 
the terminal x to be the first argument of the addition function (thereby termi-
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Figure 5.13. The fitness of each of the four randomly created individuals of generation 0 is 
equal to the area between two curves. 

nating the growth of this path in the program tree). The random construction 
process then chose the constant terminal 1 as the second argument of the ad
dition function (thereby terminating the growth along this path). Finally, the 
random construction process chose the constant terminal 0 as the second argu
ment of the subtraction function (thereby terminating the entire construction 
process). 

The second program (Figure 5.12(b)) adds the constant terminal 1 to the 
result of multiplying ;c by A: and is equivalent to x^+\. The third program 
(Figure 5.12(c)) adds the constant terminal 2 to the constant terminal 0 and 
is equivalent to the constant value 2. The fourth program (Figure 5.12(d)) is 
equivalent to JC. 

Randomly created computer programs will, of course, typically be very poor 
at solving the problem at hand. However, even in a population of randomly 
created programs, some programs are better than others. The four random in
dividuals from generation 0 in Figure 5.12 produce outputs that deviate from 
the output produced by the target quadratic function x^ -}- JC -H 1 by different 
amounts. In this particular problem, fitness can be graphically illustrated as 
the area between two curves. That is, fitness is equal to the area between the 
parabola x^ -f- A: -f-1 and the curve representing the candidate individual. Fig
ure 5.13 shows (as shaded areas) the integral of the absolute value of the errors 
between each of the four individuals in Figure 5.12 and the target quadratic 
function x'^ -\- x + I. The integral of absolute error for the straight line x -h I 
(the first individual) is 0.67 (Figure 5.13(a)). The integral of absolute error 
for the parabola x^ -\- 1 (the second individual) is 1.0 (Figure 5.13(b)). The 
integrals of the absolute errors for the remaining two individuals are 1.67 (Fig
ure 5.13(c)) and 2.67 (Figure 5.13(d)), respectively. 

As can be seen in Figure 5.13, the straight line x -\- \ (Figure 5.13(a)) is 
closer to the parabola x^ -|- x -f-1 in the range from —1 to -1-1 than any of its 
three cohorts in the population. This straight line is, of course, not equivalent 
to the parabola x^-\-x + \. This best-of-generation individual from generation 0 
is not even a quadratic function. It is merely the best candidate that happened 
to emerge from the blind random search of generation 0. In the valley of the 
blind, the one-eyed man is king. 
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Figure 5,14. Population of generation 1 (after one reproduction, one mutation, and one two-
offspring crossover operation). 

After the fitness of each individual in the population is ascertained, genetic 
programming then probabilistically selects relatively more fit programs from 
the population. The genetic operations are applied to the selected individu
als to create offspring programs. The most commonly employed methods for 
selecting individuals to participate in the genetic operations are toumament se
lection and fitness-proportionate selection. In both methods, the emphasis is 
on selecting relatively fit individuals. An important feature common to both 
methods is that the selection is not greedy. Individuals that are known to be 
inferior will be selected to a certain degree. The best individual in the popu
lation is not guaranteed to be selected. Moreover, the worst individual in the 
population will not necessarily be excluded. Anything can happen and nothing 
is guaranteed. 

We first perform the reproduction operation. Because the first individual 
(Figure 5.12(a)) is the most fit individual in the population, it is very Hkely 
to be selected to participate in a genetic operation. Let us suppose that this 
particular individual is, in fact, selected for reproduction. If so, it is copied, 
without alteration, into the next generation (generation 1). This is shown in 
Figure 5.14(a) as part of the population of the new generation. 

We next perform the mutation operation. Because selection is probabihstic, 
it is possible that the third best individual in the population (Figure 5.12(c)) 
is selected. One of the three nodes of this individual is then randomly picked 
as the site for the mutation. In this example, the constant terminal 2 is picked 
as the mutation site. This program is then randomly mutated by deleting the 
entire subtree rooted at the picked point (in this case, just the constant termi
nal 2) and inserting a subtree that is randomly grown in the same way that the 
individuals of the initial random population were originally created. In this par
ticular instance, the randomly grown subtree computes the quotient of x and x 
using the protected division operation %. The resulting individual is shown in 
Figure 5.14(b). This particular mutation changes the original individual from 
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one having a constant value of 2 into one having a constant value of 1. This 
particular mutation improves fitness from 1.67 to 1.00. 

Finally, we perform the crossover operation. Because the first and second 
individuals in generation 0 are both relatively fit, they are likely to be selected 
to participate in crossover. The selection (and reselection) of relatively more 
fit individuals and the exclusion and extinction of unfit individuals is a char
acteristic feature of Darwinian selection. The first and second programs are 
mated sexually to produce two offspring (using the two-offspring version of 
the crossover operation). One point of the first parent (Figure 5.12(a)), namely 
the + function, is randomly picked as the crossover point for the first parent. 
One point of the second parent (Figure 5.12(b)), namely its leftmost terminal x, 
is randomly picked as the crossover point for the second parent. The crossover 
operation is then performed on the two parents. The two offspring are shown 
in Figures 5.14(c) and 5.14(d). One of the offspring (Figure 5.14(c)) is equiv
alent to X and is not noteworthy. However, the other offspring (Figure 5.14(d)) 
is equivalent to jĉ  -fx + 1 and has a fitness (integral of absolute errors) of zero. 
Because the fitness of this individual is below 0.01, the termination criterion 
for the run is satisfied and the run is automatically terminated. This best-so-far 
individual (Figure 5.14(d)) is designated as the result of the run. This individ
ual is an algebraically correct solution to the problem. 

Note that the best-of-run individual (Figure 5.14(d)) incorporates a good 
trait (the quadratic term x^) from the second parent (Figure 5.12(b)) with two 
other good traits (the linear term x and constant term of 1) from the first parent 
(Figure 5.12(a)). The crossover operation produced a solution to this problem 
by recombining good traits from these two relatively fit parents into a superior 
(indeed, perfect) offspring. 

In summary, genetic programming has, in this example, automatically cre
ated a computer program whose output is equal to the values of the quadratic 
polynomial x^ -\- x + \m the range from —1 to -f-1. 

5.5 FURTHER FEATURES OF GENETIC 
PROGRAMMING 

Various advanced features of genetic programming are not covered by the 
foregoing illustrative problem and the foregoing discussion of the preparatory 
and executional steps of genetic programming. 

5.5.1 Constrained Syntactic Structures 
For certain simple problems (such as the illustrative problem above), the 

search space for a run of genetic programming consists of the unrestricted set 
of possible compositions of the problem's functions and terminals. However, 
for many problems, a constrained syntactic structure imposes restrictions on 
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how the functions and terminals may be combined. Consider, for example, a 
function that instructs a robot to turn by a certain angle. In a typical imple
mentation of this hypothetical function, the function's first argument may be 
required to return a numerical value (representing the desired turning angle) 
and its second argument may be required to be a follow-up command (e.g., 
move, turn, stop). In other words, the functions and terminals permitted in the 
two argument subtrees for this particular function are restricted. These restric
tions are implemented by means of syntactic rules of construction. 

A constrained syntactic structure (sometimes called strong typing) is a 
grammar that specifies the functions or terminals that are permitted to appear 
as a specified argument of a specified function in the program tree. 

When a constrained syntactic structure is used, there are typically multi
ple function sets and multiple terminal sets. The rules of construction specify 
where the different function sets or terminal sets may be used. 

When a constrained syntactic structure is used, all the individuals in the 
initial random population (generation 0) are created so as to comply with the 
constrained syntactic structure. All genetic operations (i.e. crossover, muta
tion, reproduction, and the architecture-altering operations) that are performed 
during the run are designed to produce offspring that comply with the require
ments of the constrained syntactic structure. Thus, all individuals (including, 
in particular, the best-of-run individual) that are produced during the run of ge
netic programming will necessarily comply with the requirements of the con
strained syntactic structure. 

5.5.2 Automatically Defined Functions 
Human computer programmers organize sequences of reusable steps into 

subroutines. They then repeatedly invoke the subroutines—typically with dif
ferent instantiations of the subroutine's dummy variables (formal parameters). 
Reuse eliminates the need to ''reinvent the wheel" on each occasion when a 
particular sequence of steps may be useful. Reuse makes it possible to exploit 
a problem's modularities, symmetries, and regularities (and thereby potentially 
accelerate the problem-solving process). 

Programmers commonly organize their subroutines into hierarchies. 
The automatically defined function (ADF) is one of the mechanisms by 

which genetic programming implements the parametrized reuse and hierar
chical invocation of evolved code. Each ADF resides in a separate function-
defining branch within the overall multi-part computer program (see Fig
ure 5.3). When ADFs are being used, a program consists of one (or more) 
function-defining branches (i.e. ADFs) as well as one or more main result-
producing branches. An ADF may possess zero, one, or more dummy vari
ables (formal parameters). The body of an ADF contains its work-performing 
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steps. Each ADF belongs to a particular program in the population. An ADF 
may be called by the program's main result-producing branch, another ADF, 
or another type of branch (such as those described below). Recursion is some
times allowed. Typically, the ADFs are invoked with different instantiations of 
their dummy variables. 

The work-performing steps of the program's main result-producing branch 
and the work-performing steps of each ADF are automatically and simultane
ously created during the run of genetic programming. 

The program's main result-producing branch and its ADFs typically have 
different function and terminal sets. A constrained syntactic structure is used 
to implement ADFs. 

Automatically defined functions are the focus of Genetic Programming II: 
Automatic Discovery of Reusable Programs (Koza, 1994a) and the videotape 
Genetic Programming II Videotape: The Next Generation (Koza, 1994b). 

5.5.3 Automatically Defined Iterations, Loops, Recursions 
and Stores 

Automatically defined iterations, automatically defined loops, and automat
ically defined recursions provide means (in addition to ADFs) to reuse code. 

Automatically defined stores provide means to reuse the result of executing 
code. 

Automatically defined iterations, automatically defined loops, automatically 
defined recursions, and automatically defined stores are described in Genetic 
Programming III: Darwinian Invention and Problem Solving (Koza et al., 
1999a). 

5.5.4 Program Architecture and Architecture-Altering 
Operations 

The architecture of a program consists of 

1 the total number of branches, 

2 the type of each branch (e.g., result-producing branch, automatically 
defined function, automatically defined iteration, automatically defined 
loop, automatically defined recursion, or automatically defined store), 

3 the number of arguments (if any) possessed by each branch, and 

4 if there is more than one branch, the nature of the hierarchical references 
(if any) allowed among the branches. 

There are three ways by which genetic programming can arrive at the archi
tecture of the to-be-evolved computer program: 
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1 The human user may prespecify the architecture of the overall program 
(i.e. perform an additional architecture-defining preparatory step). That 
is, the number of preparatory steps is increased from the five previously 
itemized to six. 

2 The run may employ evolutionary selection of the architecture (as de
scribed in Koza, 1994a), thereby enabling the architecture of the overall 
program to emerge from a competitive process during the run of genetic 
programming. When this approach is used, the number of preparatory 
steps remains at the five previously itemized. 

3 The run may employ the architecture-altering operations (Koza, 1994c, 
1995; Koza et al., 1999a), thereby enabling genetic programming to au
tomatically create the architecture of the overall program dynamically 
during the run. When this approach is used, the number of preparatory 
steps remains at the five previously itemized. 

5.5.5 Genetic Programming Problem Solver 
The Genetic Programming Problem Solver (GPPS) is described in 

Kozaetal. (1999a, Part 4). 
If GPPS is being used, the user is relieved of performing the first and second 

preparatory steps (concerning the choice of the terminal set and the function 
set). The function set for GPPS consists of the four basic arithmetic functions 
(addition, subtraction, multipHcation, and division) and a conditional operator 
(i.e. functions found in virtually every general-purpose digital computer that 
has ever been built). The terminal set for GPPS consists of numerical constants 
and a set of input terminals that are presented in the form of a vector. 

By employing this generic function set and terminal set, GPPS reduces the 
number of preparatory steps from five to three. 

GPPS relies on the architecture-altering operations to dynamically create, 
duplicate, and delete subroutines and loops during the run of genetic program
ming. Additionally, in version 2.0 of GPPS, the architecture-altering opera
tions are used to dynamically create, duphcate, and delete recursions and inter
nal storage. Because the architecture of the evolving program is automatically 
determined during the run, GPPS eliminates the need for the user to specify in 
advance whether to employ subroutines, loops, recursions, and internal stor
age in solving a given problem. It similarly eliminates the need for the user to 
specify the number of arguments possessed by each subroutine. And, GPPS 
eliminates the need for the user to specify the hierarchical arrangement of the 
invocations of the subroutines, loops, and recursions. That is, the use of GPPS 
relieves the user of performing the preparatory step of specifying the program's 
architecture. 
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Table 5.1, Eight criteria for saying that an automatically created result is human-competitive. 

Criterion 

A The result was patented as an invention in the past, is an im
provement over a patented invention, or would qualify today as 
a patentable new invention. 

B The result is equal to or better than a result that was accepted 
as a new scientific result at the time when it was published in a 
peer-reviewed scientific journal. 

C The result is equal to or better than a result that was placed into 
a database or archive of results maintained by an internationally 
recognized panel of scientific experts. 

D The result is publishable in its own right as a new scientific 
result—independent of the fact that the result was mechanically 
created. 

E The result is equal to or better than the most recent human-
created solution to a long-standing problem for which there has 
been a succession of increasingly better human-created solu
tions. 

F The result is equal to or better than a result that was considered 
an achievement in its field at the time it was first discovered. 

G The result solves a problem of indisputable difficulty in its field. 
H The result holds its own or wins a regulated competition involv

ing human contestants (in the form of either live human players 
or human-written computer programs). 

5.5.6 Developmental Genetic Programming 
Developmental genetic programming is used for problems of synthesizing 

analog electrical circuits, as described in Part 5 of Koza et al. (1999a). When 
developmental genetic programming is used, a complex structure (such as an 
electrical circuit) is created from a simple initial structure (the embryo). 

5.6 HUMAN-COMPETITIVE RESULTS PRODUCED 
BY GENETIC PROGRAMMING 

Samuel's statement (quoted above) reflects the goal articulated by the pio
neers of the 1950s in the fields of artificial intelligence and machine learning, 
namely to use computers to automatically produce human-like results. Indeed, 
getting machines to produce human-like results is the reason for the existence 
of the fields of artificial intelHgence and machine leaming. 
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Table 5.2. Thirty-six instances of human-competitive results produced by genetic programming. 

Claimed instance Basis for 
claim of 
human-
competit
iveness 

B,F 

B,F 

Reference 

Spectoretal., 1998 

Spectoretal., 1999a 

10 

11 

12 

13 
14 

15 

16 
17 

19 

Creation of a better-than-classical quantum algorithm 
for the Deutsch-Jozsa "early promise" problem 
Creation of a better-than-classical quantum algorithm 
for Grover's database search problem 
Creation of a quantum algorithm for the depth-two 
AND/OR query problem that is better than any pre
viously published result 
Creation of a quantum algorithm for the depth-one OR 
query problem that is better than any previously pub
lished result 
Creation of a protocol for communicating information 
through a quantum gate that was previously thought 
not to permit such communication 
Creation of a novel variant of quantum dense coding 

Creation of a soccer-playing program that won its first 
two games in the Robo Cup 1997 competition 
Creation of a soccer-playing program that ranked in 
the middle of the field of 34 human-written programs 
in the Robo Cup 1998 competition 
Creation of four different algorithms for the trans
membrane segment identification problem for proteins 
Creation of a sorting network for seven items using 
only 16 steps 
Rediscovery of the Campbell ladder topology for low-
pass and highpass filters 
Rediscovery of the Zobel '*M-derived half section" 
and "constant K'' filter sections 
Rediscovery of the Cauer (elliptic) topology for filters 
Automatic decomposition of the problem of synthe
sizing a crossover filter 
Rediscovery of a recognizable voltage gain stage and 
a Darlington emitter-follower section of an amplifier 
and other circuits 
Synthesis of 60 and 96 decibel amplifiers 
Synthesis of analog computational circuits for squar
ing, cubing, square root, cube root, logarithm, and 
Gaussian functions 
Synthesis of a real-time analog circuit for time-
optimal control of a robot 
Synthesis of an electronic thermometer 

D 

D 

D 

D 

H 

H 

Spector et al., 1999b; 
Barnumetal.,2000 

Barnumetal.,2000 

Spector and Bernstein, 
2002 

Spector and Bernstein, 
2002 
Luke, 1998 

Andre and Teller, 1999 

B,E 

A,D 

A,F 

A,F 

A,F 
A,F 

A,F 

A,F 
A, D,G 

G 

A,G 

Koza et 
1999 
Koza et al. 

Kozaetal. 

Koza et al. 

Koza et al. 
Koza et al. 

Koza et al. 

Koza et al.; 
Koza et al.; 

Koza et al.; 

Koza et al., 

al., 1994a, 

,1999 

,1999,2003 

,1999 

,1999 
,1999 

,1999 

,1999 
,1999 

,1999 

,1999 
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Table 5.2, (Continued) 

Claimed instance Basis for 
claim of 
human-
competit-

Reference 

20 Synthesis of a voltage reference circuit 
21 Creation of a cellular automata rule for the majority 

classification problem that is better than the Gacs-
Kurdyumov-Levin rule and all other known rules 
written by humans 

22 Creation of motifs that detect the D-E-A-D box fam
ily of proteins and the manganese superoxide dismu-
tase family 

23 Synthesis of topology for a PID-D2 (proportional, in
tegrative, derivative, and second derivative) controller 

24 Synthesis of an analog circuit equivalent to Philbrick 
circuit 

25 Synthesis of NAND circuit 
26 Simultaneous synthesis of topology, sizing, place

ment, and routing of analog electrical circuits 
27 Synthesis of topology for a PID (proportional, integra

tive, and derivative) controller 
28 Rediscovery of negative feedback 

29 Synthesis of a low-voltage balun circuit 
30 Synthesis of a mixed analog-niigital variable capacitor 

circuit 
31 Synthesis of a high-current load circuit 
32 Synthesis of a voltage-current conversion circuit 
33 Synthesis of a cubic signal generator 
34 Synthesis of a tunable integrated active filter 
35 Creation of PID tuning rules that outperform the 

Ziegler-Nichols and Astrom-Hagglund tuning rules 
36 Creation of three non-PID controllers that outper

form a PID controller that uses the Ziegler-Nichols 
or Astrom-Hagglund tuning rules 

A,G 
D,E 

Kozaetal., 1999 
Kozaetal., 1999 

c 

A,F 

A,F 

A,F 
G 

A,F 

A, E, F, 
G 
A 
A 

A 
A 
A 
A 
A, B, D, 
E,F,G 
A, B, D, 
E,F,G 

Koza et al. 

Koza et al. 

Koza et al. 

Koza et al. 
Koza et al. 

Koza et al. 

Kozaet al. 

Koza et al. 
Koza et al.. 

Kozaet al.. 
Koza et al.. 
Koza et al.. 
Koza et al.. 
Koza et al.. 

Koza et al., 

,1999 

,2003 

,2003 

,2003 
,2003 

,2003 

,2003 

,2003 
,2003 

,2003 
,2003 
,2003 
,2003 
,2003 

,2003 

To make the notion of human-competitiveness more concrete, we say that a 
result is "human-competitive" if it satisfies one or more of the eight criteria in 
Table 5.1. 

As can be seen from Table 5.1, the eight criteria have the desirable attribute 
of being at arms-length from the fields of artificial intelligence, machine learn
ing, and genetic programming. That is, a result cannot acquire the rating of 
"human competitive" merely because it is endorsed by researchers inside the 
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specialized fields that are attempting to create machine intelhgence. Instead, a 
result produced by an automated method must earn the rating of ''human com
petitive" independent of the fact that it was generated by an automated method. 

Table 5.2 fists the 36 human-competitive instances (of which we are aware) 
where genetic programming has produced human-competitive results. Each 
entry in the table is accompanied by the criteria (from Table 5.1) that establish 
the basis for the claim of human-competitiveness. 

There are now 23 instances where genetic programming has duplicated 
the functionafity of a previously patented invention, infringed a previously 
patented invention, or created a patentable new invention (see criterion A in 
Table 5.1). Specifically, there are 15 instances where genetic programming 
has created an entity that either infringes or duplicates the functionality of a 
previously patented twentieth-century invention, six instances where genetic 
programming has done the same with respect to an invention patented after 
January 1st, 2000, and two instances where genetic programming has created 
a patentable new invention. The two new inventions are general-purpose con
trollers that outperform controllers employing tuning rules that have been in 
widespread use in industry for most of the twentieth century. 

5.7 SOME PROMISING AREAS FOR FUTURE 
APPLICATION 

Since its early beginnings, the field of genetic and evolutionary computation 
has produced a cornucopia of results. 

Genetic programming and other methods of genetic and evolutionary com
putation may be especially productive in areas having some or all of the fol
lowing characteristics: 

• where the inter-relationships among the relevant variables are unknown 
or poorly understood (or where it is suspected that the current under
standing may possibly be wrong), 

• where finding the size and shape of the ultimate solution to the problem 
is a major part of the problem, 

• where large amounts of primary data requiring examination, classifica
tion, and integration are accumulating in computer readable form, 

• where there are good simulators to test the performance of tentative so
lutions to a problem, but poor methods to directly obtain good solutions, 

• where conventional mathematical analysis does not, or cannot, provide 
analytic solutions, 

• where an approximate solution is acceptable (or is the only result that is 
ever likely to be obtained), or 
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• where small improvements in performance are routinely measured (or 
easily measurable) and highly prized. 

5.8 GENETIC PROGRAMMING THEORY 
Genetic programming is a search technique that explores the space of com

puter programs. As discussed above, the search for solutions to a problem 
starts from a group of points (random programs) in this search space. Those 
points that are of above average quality are then used to generate a new gen
eration of points through crossover, mutation, reproduction and possibly other 
genetic operations. This process is repeated over and over again until a termi
nation criterion is satisfied. 

If we could visuahze this search, we would often find that initially the popu
lation looks a bit like a cloud of randomly scattered points, but that, generation 
after generation, this cloud changes shape and moves in the search space fol
lowing a well defined trajectory. Because genetic programming is a stochas
tic search technique, in different runs we would observe different trajectories. 
These, however, would very likely show very clear regularities to our eye that 
could provide us with a deep understanding of how the algorithm is searching 
the program space for the solutions to a given problem. We could probably 
readily see, for example, why genetic programming is successful in finding 
solutions in certain runs and with certain parameter settings, and unsuccessful 
in/with others. 

Unfortunately, it is normally impossible to exactly visualize the program 
search space due to its high dimensionality and complexity, and so we cannot 
just use our senses to understand and predict the behavior of genetic program
ming. 

In this situation, one approach to gain an understanding of the behavior 
of a genetic programming system is to perform many real runs and record 
the variations of certain numerical descriptors (like the average fitness or the 
average size of the programs in the population at each generation, the average 
difference between parent and offspring fitness, etc). Then, one can try to 
hypothesize explanations about the behavior of the system that are compatible 
with (and could explain) the empirical observations. 

This exercise is very error prone, though, because a genetic programming 
system is a complex adaptive system with ziUions of degrees of freedom. So, 
any small number of statistical descriptors is likely to be able to capture only 
a tiny fraction of the complexities of such a system. This is why in order to 
understand and predict the behavior of genetic programming (and indeed of 
most other evolutionary algorithms) in precise terms we need to define and 
then study mathematical models of evolutionary search. 
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Schema theories are among the oldest, and probably the best-known classes 
of models of evolutionary algorithms. A schema (plural, schemata) is a set 
of points in the search space sharing some syntactic feature. Schema theories 
provide information about the properties of individuals of the population be
longing to any schema at a given generation in terms of quantities measured at 
the previous generation, without having to actually run the algorithm. 

For example, in the context of genetic algorithms operating on binary 
strings, a schema is, syntactically, a string of symbols from the alphabet 
{0, 1,* }, like *10*1. The character * is interpreted as a "don't care" symbol, 
so that, semantically, a schema represents a set of bit strings. For example the 
schema* 10*1 represents a set of four strings: {01001,01011, 11001, 11011}. 

Typically, schema theorems are descriptions of how the number (or the pro
portion) of members of the population belonging to (or matching) a schema 
varies over time. 

For a given schema H the selection/crossover/mutation process can be seen 
as a Bemoulh trial, because a newly created individual either samples or does 
not sample H. Therefore, the number of individuals sampling H at the next 
generation, m{H, r-|-1) is a binomial stochastic variable. So, if we denote with 
oi{H, t) the success probability of each trial (i.e. the probability that a newly 
created individual samples H), an exact schema theorem is simply 

E{m{H,t + \)] = Ma{H,t) 

where M is the population size and £"[. ] is the expectation operator. Holland's 
and other approximate schema theories (Holland, 1975; Goldberg, 1989; Whit
ley, 1994) normally provide a lower bound for a(H, t) or, equivalently, for 
E[m{H, t-\-\)\ For example, several schema theorems for one-point crossover 
and point mutation have the following form: 

a{H,t)>p{H,t){\-p,nf^"^ 
L{H) 

1 — Pc rO" 

where m{H, t) is number of individuals in the schema H at generation t, M 
is the population size, p{H, t) is the selection probabiUty for strings in H 
at generation r, p^ is the mutation probability, 0{H) is the schema order, 
i.e. number of defining bits, pc is the crossover probability, L{H) is the defin
ing length, i.e. distance between the furthest defining bits in H, and Â  is the 
bitstring length. The factor a differs in the different formulation of the schema 
theorem: or = 1 — m{H, t)/M in Holland (1975), where one of the parents 
was chosen randomly, irrespective of fitness; cr = 1 in Goldberg (1989); and 
G = \ - p(H, t) in Whitley (1994). 

More recently, Stephens and Waelbroeck (1997, 1999) have produced exact 
formulations for a(H,t), which are now known as "exact" schema theorems 
for genetic algorithms. These, however, are beyond the scope of this chapter. 
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The theory of schemata in genetic programming has had a slow start, one 
of the difficulties being that the variable size tree structure in genetic program
ming makes it more difficult to develop a definition of genetic programming 
schema having the necessary power and flexibility. Several alternatives have 
been proposed in the literature, which define schemata as composed of one or 
multiple trees or fragments of trees. Here, however, we will focus only on a 
particular one, which was proposed by Poli and Langdon (1997, 1998) since 
this has later been used to develop an exact and general schema theory for 
genetic programming (PoH and McPhee, 2001; Langdon and PoH, 2002). 

In this definition, syntactically, a genetic programming schema is a tree 
with some "don't care" nodes which represents exactly one primitive func
tion or terminal. Semantically, a schema represents all programs that 
match its size, shape and defining (non-"don't care") nodes. For example, 
the schema H = (DON'T CARE x(+ y DON'T CARE)) represents the programs 
(-f X (+ y x)), (+ X (-f- y y)), (* x (-f y x)), etc. 

The exact schema theorem in Poli and McPhee (2001) gives the expected 
proportion of individuals matching a schema in the next generation as a func
tion of information about schemata in the current generation. The calculation 
is non-trivial, but it is easier than one might think. 

Let us assume, for simphcity, that only reproduction and (one-offspring) 
crossover are performed. Because these two operators are mutually exclusive, 
for a generic schema H we then have 

oi{H, t) = Pr [an individual in H is obtained via reproduction] 

-f Pr [an offspring matching H is produced by crossover] 

Then, assuming that reproduction is performed with probability pr and 
crossover with probabihty pc (with p^ + pc = 1), we obtain 

«( / / , t) = Pr X Pr [an individual in H is selected for cloning] 

the parents and the crossover points 
are such that the offspring matches H +/7cPr 

Clearly, the first probability in this expression is simply the selection prob
ability for members of the schema H as dictated by, say, fitness-proportionate 
selection or tournament selection. So, 

Pr [selecting an individual in //for cloning] = /?(//, t) 

We now need to calculate the second term in a{H, t): that is, the probability 
that the parents have shapes and contents compatible with the creation of an 
offspring matching / / , and that the crossover points in the two parents are such 
that exactly the necessary material to create such an offspring is swapped. This 
is the harder part of the calculation. 
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An observation that helps simplify the problem is that, although the proba
bility of choosing a particular crossover point in a parent depends on the actual 
size and shape of such a parent, the process of crossover point selection is inde
pendent from the actual primitives present in the parent tree. So, for example, 
the probability of choosing any crossover point in the program (+ x (+ y x)) 
is identical to the probability of choosing any crossover point in the program 
(ANDDl (ORDl D2)). This is because the two programs have exactly the 
same shape. Thanks to this observation we can write 

Pr 
the parents and the crossover points 
are such that the offspring matches H 

Choosing crossover points 
i and j in shapes k and / E E P' 

For all pairs of For all crossover 
parent shapes k, I points /, j in 

shapes k and / 

xPr 
Selecting parents with shapes k and /, such that if 
crossed at points / and j produce an offspring in H 

If, for simplicity, we assume that crossover points are selected with uniform 
probability, then 

Pr 
Choosing crossover points 
i and j in shapes k and / 

1 1 

nodes in shape k nodes in shape / 

So, we are left with the problem of calculating the probability of selecting 
(for crossover) parents having specific shapes while at the same time having 
an arrangement of primitives such that, if crossed over at certain predefined 
points, they produce an offspring matching a particular schema of interest. 

Again, here we can simplify the problem by considering how crossover pro
duces offspring: it excises a subtree rooted at the chosen crossover point in a 
parent, and replaces it with a subtree excised from the chosen crossover point 
in the other parent. This means that the offspring will have the right shape and 
primitives to match the schema of interest if and only if, after the excision of 
the chosen subtree, the first parent has shape and primitives compatible with 
the schema, and the subtree to be inserted has shape and primitives compatible 
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with the schema. That is, 

Pr 

= Pr 

xPr 

Selecting parents with shapes k and /, such that if 
crossed over at points / and j produce an offspring in H 

Selecting a root-donating parent with shape k 
such that its upper part w.r.t. crossover 
point / matches the upper part of H w.r.t. / 

Selecting a subtree-donating parent with shape / 
such that its lower part w.r.t. crossover 
point j matches the lower part of H w.r.t. / 

These two selection probabilities can be calculated exactly. However, the cal
culation requires the introduction of several other concepts and notation, which 
are beyond the introductory nature of this chapter. These definitions, the com
plete theory and a number of examples and applications can be found in Poli 
(2001), Langdon and Poh (2002), and Poh and McPhee (2003a, 2003b). 

Although exact schema theoretic models of genetic programming have be
come available only very recently, they have already started shedding some 
light on fundamental questions regarding the how and why genetic program
ming works. Importantly, other important theoretical models of genetic pro
gramming have recently been developed which add even more to our theoret
ical understanding of genetic programming. These, however, go well beyond 
the scope of this chapter. The interested reader should consult Langdon and 
PoH (2002) and Poli and McPhee (2003a, 2003b) for more information. 

5.9 TRICKS OF THE TRADE 
Newcomers to the field of genetic programming often ask themselves 

(and/or other more experienced genetic programmers) questions such as the 
following: 

1 What is the best way to get started with genetic programming? Which 
papers should I read? 

2 Should I implement my own genetic programming system or should I 
use an existing package? If so, what package should I use? 

Let us start with the first question. A variety of sources of information about 
genetic programming are available (many of which are listed in the follow
ing section). Consulting information available on the Web is certainly a good 
way to get quick answers for a newcomer who wants to know what genetic pro
gramming is. The answer, however, will often be too shallow for someone who 
really wants to apply genetic programming to solve practical problems. People 
in this position should probably invest some time going through more detailed 
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accounts such as Koza (1992), Banzhaf et al. (1998a) and Langdon and Poll 
(2002), or some of the monographs listed in the following section. Technical 
papers may be the next stage. The literature on genetic programming is now 
quite extensive. So, although this is easily accessible thanks to the complete 
onhne bibhography listed in the next section, newcomers will often need to 
be selective in what they read, at least initially. The objective here may be 
different for different types of readers. Practitioners should probably identify 
and read only papers which deal with the problem they are interested in. Re
searchers and Ph.D. students interested in developing a deeper understanding 
of genetic programming should also make sure they identify and read as many 
seminal papers as possible, including papers or books on empirical and theo
retical studies on the inner mechanisms and behavior of genetic programming. 
These are frequently cited in other papers and so can easily be identified. 

The answer to the second question depends on the particular experience 
and background of the questioner. Implementing a simple genetic program
ming system from scratch is certainly an excellent way to make sure one really 
understands the mechanics of genetic programming. In addition to being an 
exceptionally useful exercise, this will always result in programmers know
ing their systems so well that they will have no problems customizing them 
for specific purposes (e.g., by adding new, apphcation specific genetic oper
ators, implementing unusual, knowledge-based initialization strategies, etc). 
All of this, however, requires reasonable programming skills and the will to 
thoroughly test the resulting system until it fully behaves as expected. If the 
skills or the time are not available, then the best way to get a working ge
netic programming application is to retrieve one of the many public-domain 
genetic programming implementations and adapt this for the user's purposes. 
This process is faster, and good implementations are often quite robust, effi
cient, well-documented and comprehensive. The small price to pay is the need 
to study the available documentation and examples. These often explain also 
how to modify the genetic programming system to some extent. However, 
deeper modifications (such as the introduction of new or unusual operators) 
will often require studying the actual source code of the system and a substan
tial amount of trial and error. Good, publicly-available GP implementations 
include LIL-GP from Bill Punch, ECJ from Sean Luke and DGPC from David 
Andre. 

5.10 CONCLUSIONS 
In his seminal 1948 paper entitled Intelligent Machinery, Turing identi

fied three ways by which human-competitive machine intelUgence might be 
achieved. In connection with one of those ways, Turing (1948) said: 

There is the genetical or evolutionary search by which a combination of genes is 
looked for, the criterion being the survival value. 
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Turing did not specify how to conduct the "genetical or evolutionary search" 
for machine intelHgence. In particular, he did not mention the idea of a 
population-based parallel search in conjunction with sexual recombination 
(crossover) as described in John Holland's 1975 book Adaptation in Natural 
and Artificial Systems. However, in his 1950 paper Computing Machinery and 
Intelligence, Turing did point out that 

We cannot expect to find a good child-machine at the first attempt. One must 
experiment with teaching one such machine and see how well it learns. One can 
then try another and see if it is better or worse. There is an obvious connection 
between this process and evolution, by the identifications... 

Structure of the child machine = Hereditary material 

Changes of the child machine = Mutations 

Natural selection = Judgment of the experimenter. 

That is, Turing perceived in 1948 and 1950 that one possibly productive 
approach to machine intelligence would involve an evolutionary process in 
which a description of a computer program (the hereditary material) undergoes 
progressive modification (mutation) under the guidance of natural selection 
(i.e. selective pressure in the form of what we now call "fitness"). 

Today, many decades later, we can see that indeed Turing was right. Ge
netic programming has started fulfilling Turing's dream by providing us with 
a systematic method, based on Darwinian evolution, for getting computers to 
automatically solve hard real-life problems. To do so, it simply requires a 
high-level statement of what needs to be done (and enough computing power). 

Turing also understood the need to evaluate objectively the behavior exhib
ited by machines, to avoid human biases when assessing their intelUgence. 
This led him to propose an imitation game, now know as the Turing test 
for machine intelligence, whose goals are wonderfully summarized by Arthur 
Samuel's position statement quoted in the introduction to this chapter. 

At present, genetic programming is certainly not in a position to produce 
computer programs that would pass the full Turing test for machine intelli
gence, and it might not be ready for this immense task for centuries. Nonethe
less, thanks to the constant technological improvements in genetic program
ming technology, in its theoretical foundations and in computing power, ge
netic programming has been able to solve tens of difficult problems with 
human-competitive results (see Table 5.2) in the recent past. These are a small 
step towards fulfilling Turing and Samuel's dreams, but they are also early 
signs of things to come. It is, indeed, arguable that in a few years' time genetic 
programming will be able to routinely and competently solve important prob
lems for us in a variety of specific domains of appUcation, even when running 
on a single personal computer, thereby becoming an essential collaborator for 
many human activities. This, we believe, will be a remarkable step forward 
towards achieving true, human-competitive machine intelligence. 
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SOURCES OF ADDITIONAL INFORMATION 

Sources of information about genetic programming include the following. 

• Genetic Programming: On the Programming of Computers by Means 
of Natural Selection (Koza, 1992) and the accompanying videotape Ge
netic Programming: The Movie (Koza and Rice, 1992). 

• Genetic Programming II: Automatic Discovery of Reusable Programs 
(Koza, 1994a) and the accompanying videotape Genetic Programming 
II Videotape: The Next Generation (Koza, 1994b). 

• Genetic Programming III: Darwinian Invention and Problem Solving 
(Koza et al., 1999a) and the accompanying videotape Genetic Program
ming III Videotape: Human-Competitive Machine Intelligence (Koza et 
al, 1999b). 

• Genetic Programming IV Routine Human-Competitive Machine Intelli
gence (Koza et al., 2003); 

• Genetic Programming: An Introduction (Banzhaf et al., 1998a). 

• Genetic Programming and Data Structures: Genetic Programming + 
Data Structures = Automatic Programming! (Langdon, 1998) in the 
series on genetic programming from Kluwer. 

• Automatic Re-engineering of Software Using Genetic Programming 
(Ryan, 1999) in the series on genetic programming from Kluwer. 

• Data Mining Using Grammar Based Genetic Programming and Appli
cations (Wong and Leung, 2000) in the series on genetic programming 
from Kluwer. 

• Principia Evolvica: Simulierte Evolution mit Mathematica (Jacob, 1997, 
in German) and Illustrating Evolutionary Computation with Mathemat
ica (Jacob, 2001). 

• Genetic Programming (Iba, 1996, in Japanese). 

• Evolutionary Program Induction of Binary Machine Code and Its Appli
cation (Nordin, 1997). 

• Foundations of Genetic Programming (Langdon and PoH, 2002). 

• Emergence, Evolution, Intelligence: Hydroinformatics (Babovic, 1996). 

• Theory of Evolutionary Algorithms and Application to System Synthesis 
(Blickle, 1997). 
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• edited collections of papers such as the three Advances in Genetic Pro
gramming books from the MIT Press (Kinnear, 1994; Angehne and Kin-
near, 1996; Spector et al., 1999a). 

• Proceedings of the Genetic Programming Conference (Koza et al., 1996, 
1997, 1998). 

• Proceedings of the Annual Genetic and Evolutionary Computation Con
ference (GECCO) (combining the formerly annual Genetic Program
ming Conference and the formerly biannual International Conference 
on Genetic Algorithms) operated by the International Society for Ge
netic and Evolutionary Computation (ISGEC) and held starting in 1999 
(Banzhaf et al, 1999; Whitley et al., 2000; Spector et al., 2001; Langdon 
et al., 2002). 

• Proceedings of the Annual Euro-GP Conferences held starting in 1998 
(Banzhaf et al., 1998b; Poh et al., 1999, 2000; Miller et al., 2001; Foster 
et al., 2002). 

• Proceedings of the Workshop of Genetic Programming Theory and Prac
tice organized by the Centre for Study of Complex Systems of the Uni
versity of Michigan (to be pubhshed by Kluwer). 

The Genetic Programming and Evolvable Machines journal (from 
Kluwer) started in April 2000. 

Web sites such as www.genetic-programming.org and www.genetic-
programming, com . 

LISP code for implementing genetic programming, available in Koza 
(1992), and genetic programming implementations in other lan
guages such as C, C+-I-, or Java (web sites such as www.genetic-
programming.org contain links to computer code in various program
ming languages). 

Early papers on genetic programming, such as the Stanford Univer
sity Computer Science Department Technical Report Genetic Program
ming: A Paradigm for Genetically Breeding Populations of Computer 
Programs to Solve Problems (Koza, 1990) and the paper Hierarchical 
Genetic Algorithms Operating on Populations of Computer Programs, 
presented at the 11th International Joint Conference on Artificial Intelli
gence in Detroit (Koza, 1989). 

An annotated bibliography of the first 100 papers on genetic program
ming (other than those of which John Koza was the author or co-author) 
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in Appendix F of Genetic Programming II: Automatic Discovery of 
Reusable Programs (Koza, 1994a). 

• Langdon's bibliography at http://www.cs.bham.ac.uk/wbl/biblio/ or 
http://liinwww.ira.uka.de/bibliography/Ai/genetic.programming.html. 
This bibliography is the most extensive in the field of genetic program
ming and contains over 3034 papers (as of January 2003) and over 880 
authors. It provides on-line access to many of the papers. 
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TABU SEARCH 

Michel Gendreau, Jean-Yves Potvin 
Departement d'informatique et de recherche operationnelle 
and Centre de recherche sur les transports^ Universite de Montreal, Canada 

6.1 INTRODUCTION 
Over the last 15 years, hundreds of papers presenting applications of tabu 

search, a heuristic method originally proposed by Glover (1986), to various 
combinatorial problems have appeared in the operations research literature: 
see, for example, Glover and Laguna (1997), Glover et al. (1993b), Osman 
and Kelly (1996), Pardalos and Resende (2002), Ribeiro and Hansen (2002) 
and Voss et al. (1999). In several cases, the methods described provide so
lutions very close to optimality and are among the most effective, if not the 
best, to tackle the difficult problems at hand. These successes have made tabu 
search extremely popular among those interested in finding good solutions to 
the large combinatorial problems encountered in many practical settings. Sev
eral papers, book chapters, special issues and books have surveyed the rich tabu 
search literature (a list of some of the most important references is provided at 
the end of this chapter). In spite of this abundant literature, there still seem 
to be many researchers who, while they are eager to apply tabu search to new 
problem settings, find it difficult to properly grasp the fundamental concepts of 
the method, its strengths and its limitations, and to come up with effective im
plementations. The purpose of this chapter is thus to focus on the fundamental 
concepts of tabu search. Throughout the chapter, two relatively straightfor
ward, yet challenging and relevant, problems will be used to illustrate these 
concepts: the job shop scheduling problem and the capacitated plant location 
problem. These will be introduced in the following section. 

6.2 ILLUSTRATIVE PROBLEMS 

6.2.1 The Job-Shop ScheduHng Problem 

The job-shop scheduling problem is one of the most studied problems in 
combinatorial optimization and a large number of papers and books deal with 



166 GENDREA U AND POTVIN 

the numerous procedures that have been proposed to solve it, including several 
tabu search implementations. Although a large number of variants are found 
in the literature (and even more in the real world), the "classical" problem can 
be stated as follows. We first assume that n jobs must be scheduled on m ma
chines. Each job corresponds to a fixed sequence of m operations, one per 
machine, where each operation must be processed on a specific machine for 
a specified duration. Note that the processing order on the machines does not 
need to be the same from one job to another. Each machine can process at most 
one operation at a time and, once started, an operation must be completed with
out interruption. The goal is to assign operations to time slots on the machines 
in order to minimize the maximum completion time of the jobs, which is also 
known as the makespan. A solution to this problem can be seen as a set of m 
permutations of the n jobs, one for each machine, with the associated machine 
schedules (Anderson et al, 1997). 

6.2.2 The Capacitated Plant Location Problem 
The capacitated plant location problem is one of the basic problems in loca

tion theory. It is encountered in many application settings that involve locating 
facilities with limited capacity to provide services. The problem can be for
mally described as follows. A set of customers / with demands di,i € /, for 
some product are to be served from plants located in a subset of sites from a 
given set J of "potential sites". For each site j € J, the fixed cost of "opening" 
the plant at j is / , and its capacity is Kj. The cost of transporting one unit of 
the product from site j to customer / is c,y. The objective is to minimize the 
total cost, i.e. the sum of the fixed costs for open plants and the transportation 
costs. 

Letting Xij (i e I, j € J) denote the quantity shipped from site j to cus
tomer i (the Xij are the so-called flow variables) and yj (j e 7) be a 0-1 
variable indicating whether or not the plant at site j is open (the yj are the lo
cation variables), the problem can be formulated as the following mathematical 
program: 

Minimize ^ = X ! >̂̂ "̂ + X ] S ^^J^^J 
jeJ iel jeJ 

subject to Y^ Xij = di,i e I 

J^Xij < KjyjJ € J 
iel 

Xij >0,ieI,jeJ 

yje{0,l}JeJ 
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REMARK 6.1 For any vector y of location variables, optimal (w,rJ, to this 
plant configuration) values for the flow variables x{y) can be retrieved by 
solving the associated transportation problem: 

Minimize z{y) = ^ 2 ^ ^ij^tj 
iel jeJ 

subject to V^ Xij = di,i e I 

iel 

^ij >OJeI,jeJ 

If y = y^^ the optimal location variable vector, the optimal solution to the 
original problem is simply given by (y^, x{y^)). 

REMARK Q,2 An optimal solution of the original problem can always be 
found at an extreme point of the polyhedron of feasible flow vectors deflned 
by the constraints 

^Xij =diJ e I 

J2xij <KjJe J 
iel 
Xij >OJeIJeJ 

This property follows from the fact that the capacitated plant location problem 
can be interpreted as a flxed-charge problem defined in the space of the flow 
variables. This fixed-charge problem has a concave objective function that 
always admits an extreme point minimum. The optimal values for the location 
variables can easily be obtained from the optimal flow vector by setting yj 
equal to 1 when ^ Xij > 0, and to 0 otherwise, 

iel 

6.3 BASIC CONCEPTS 

6.3.1 Historical Background 
Before introducing the basic concepts of tabu search, we beheve it is useful 

to go back in time to try to better understand the genesis of the method and 
how it relates to previous work. 

Heuristics, i.e. approximate solution techniques, have been used since the 
beginnings of operations research to tackle difficult combinatorial problems. 
With the development of complexity theory in the early 1970s, it became 
clear that, since most of these problems were indeed NP-hard, there was Httle 
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hope of ever finding efficient exact solution procedures for them. This reahza-
tion emphasized the role of heuristics for solving the combinatorial problems 
that were encountered in real-life applications and that needed to be tackled, 
whether or not they were NP-hard. While many different approaches were 
proposed and experimented with, the most popular ones were based on hill 
climbing. The latter can roughly be summarized as an iterative search proce
dure that, starting from an initial feasible solution, progressively improves it by 
applying a series of local modifications or moves (for this reason, hill climbing 
is in the family of local search methods). At each iteration, the search moves to 
an improving feasible solution that differs only slightly from the current one. 
In fact, the difference between the previous and the new solution amounts to 
one of the local modifications mentioned above. The search terminates when 
no more improvement is possible. At this point, we have a local optimum 
with regard to the local modifications considered by the hill climbing method. 
Clearly, this is an important limitation of the method: unless one is extremely 
lucky, this local optimum will often be a fairly mediocre solution. The qual
ity of the solution obtained and computing times are usually highly dependent 
upon the ''richness" of the set of transformations (moves) considered at each 
iteration. 

In 1983, a new heuristic approach called simulated annealing (see Chap
ter 7) (Kirkpatrick et al., 1983) was shown to converge to an optimal solution 
of a combinatorial problem, albeit in infinite computing time. Based on anal
ogy with statistical mechanics, simulated anneahng could be interpreted as a 
form of controlled random walk in the space of feasible solutions. The emer
gence of simulated annealing indicated that one could look for other ways to 
tackle combinatorial optimization problems and spurred the interest of the re
search community. In the following years, many other new approaches, mostly 
based on analogies with natural phenomena, were proposed such as tabu search 
(the subject of this chapter), ant systems (see Chapter 14) (Dorigo, 1992) and 
threshold methods (Dueck and Scheuer, 1990). Together with some older ones, 
in particular genetic algorithms (see Chapter 4) (Holland, 1975), they gained an 
increasing popularity. Now collectively known under the name of metaheuris-
tics, a term originally coined by Glover (1986), these methods have become, 
over the last 15 years, the leading edge of heuristic approaches for solving 
combinatorial optimization problems. 

6.3.2 Tabu Search 
Fred Glover proposed in 1986 a new approach, which he called tabu search, 

to allow hill cUmbing to overcome local optima. In fact, many elements of this 
first tabu search proposal, and some elements of later elaborations, had already 
been introduced in Glover (1977), including short-term memory to prevent the 



TABU SEARCH 169 

reversal of recent moves, and longer-term frequency memory to reinforce at
tractive components. The basic principle of tabu search is to pursue the search 
whenever a local optimum is encountered by allowing non-improving moves; 
cycling back to previously visited solutions is prevented by the use of mem
ories, called tabu lists, that record the recent history of the search. The key 
idea to exploit information to guide the search can be linked to the informed 
search methods proposed in the late 1970s in the field of artificial intelligence 
(Nilsson, 1980). It is interesting to note that, in 1986 also, Hansen proposed 
an approach similar to tabu search, which he named steepest ascent/mildest 
descent (Hansen, 1986). It is also important to remark that Glover did not see 
tabu search as a proper heuristic, but rather as a metaheuristic, i.e. a general 
strategy for guiding and controlling "inner" heuristics specifically tailored to 
the problems at hand. 

6.3.3 Search Space and Neighborhood Structure 
As just mentioned, tabu search extends hill climbing methods. In fact, the 

basic tabu search can be seen as simply the combination of hill climbing with 
short-term memories. It follows that the two first basic elements of any tabu 
search heuristic are the definition of its search space and its neighborhood 
structure. 

The search space is simply the space of all possible solutions that can be 
considered (visited) during the search. For instance, in the job shop scheduhng 
problem of Section 6.2.1, the search space could simply be the set of feasible 
solutions to the problem, where each point in the search space corresponds to a 
set of m machine schedules that satisfies all the specified constraints. While in 
that case the definition of the search space seems quite natural, it is not always 
so. Consider now the capacitated plant location problem of Section 6.2.2: the 
feasible space involves both integer location and continuous flow variables that 
are linked by strict conditions; moreover, as has been indicated before, for any 
feasible set of values for the location variables, one can fairly easily retrieve 
optimal values for the flow variables by solving the associated transportation 
problem. In this context, one could obviously use as a search space the full fea
sible space; this would involve manipulating both location and flow variables, 
which is not an easy task. A more attractive search space is the set of feasible 
vectors of location variables, i.e. feasible vectors in (0, l}'-^' (where |7 | is the 
cardinality of set 7), any solution in that space being "completed" to yield a 
feasible solution to the original problem by computing the associated optimal 
flow variables. It is interesting to note that these two possible definitions are 
not the only ones. Indeed, on the basis of Remark 6.2, one could also decide 
to search instead the set of extreme points of the set of feasible flow vectors, 
retrieving the associated location variables by simply noting that a plant must 
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be open whenever some flow is allocated to it. In fact, this type of approach 
was used successfully by Crainic et al. (2000) to solve the fixed charge multi-
commodity network design problem, which is a more general problem that 
includes the capacitated plant location problem as a special case. It is also 
important to note that it is not always a good idea to restrict the search space 
to feasible solutions. In many cases, allowing the search to move to infeasible 
solutions is desirable, and sometimes necessary (see Section 6.4.3 for further 
details). 

Closely linked to the definition of the search space is that of the neighbor
hood structure. At each iteration of tabu search, the local transformations that 
can be applied to the current solution, denoted S, define a set of neighboring 
solutions in the search space, denoted N{S) (the neighborhood of 5'). Formally, 
N{S) is a subset of the search space defined by 

N{S) = solutions obtained by applying a single local transformation 

t o ^ 

In general, for any specific problem at hand, there are many more possible 
(and even, attractive) neighborhood structures than search space definitions. 
This follows from the fact that there may be several plausible neighborhood 
structures for a given definition of the search space. This is easily illustrated 
on our job shop scheduling problem. In order to simpUfy the discussion, we 
assume in the following that the search space is the feasible space. 

Simple neighborhood structures for the job shop scheduling problem are ob
tained by considering the sequence of jobs associated with a machine schedule, 
where the position of a job in the sequence corresponds to its processing order 
on the machine. For example, one can move a job at another position in the 
sequence or interchange the position of two jobs. While these neighborhood 
structures involve only one or two jobs, the neighborhoods they define contain 
all the feasible schedules that can be obtained from the current one either by 
moving any single job at any other position or by interchanging any two jobs. 
Examining these neighborhoods can thus be fairly demanding. In practice, it is 
often possible to reduce the computational burden, by identifying a restricted 
subset of moves that are feasible and can lead to improvements. We refer the 
interested reader to Vaessens et al. (1996) and Anderson et al. (1997) for a 
more detailed discussion of these issues. 

When different definitions of the search space are considered for a given 
problem, neighborhood structures will inevitably differ to a considerable de
gree. This can be illustrated on our capacitated plant location problem. If the 
search space is defined with respect to the location variables, neighborhood 
structures will usually involve the so-called "Add/Drop" and "Swap" moves 
that respectively change the status of one site (i.e. either opening a closed 
facility or closing an open one) and move an open facility from one site to 
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another (this move amounts to perforaiing simultaneously an Add move and 
a Drop move). If, however, the search space is the set of extreme points as
sociated with feasible flow vectors, these moves become meaningless. One 
should instead consider moves defined by the appUcation of pivots to the linear 
programming formulation of the transportation problem, where each pivot op
eration modifies the flow structure to move the current solution to an adjacent 
extreme point. 

The preceding discussion should have clarified a major point: choosing a 
search space and a neighborhood structure is by far the most critical step in the 
design of any tabu search heuristic. It is at this step that one must make the 
best use of the understanding and knowledge one has of the problem at hand. 

6.3.4 Tabus 

Tabus are one of the distinctive elements of tabu search when compared 
to hill climbing. As we already mentioned, tabus are used to prevent cycling 
when moving away from local optima through non-improving moves. The key 
realization here is that when this situation occurs, something needs to be done 
to prevent the search from tracing back its steps to where it came from. This 
is achieved by making certain actions tabu. This might mean not allowing the 
search to return to a recently visited point in the search space or not allowing a 
recent move to be reversed. For example, in the job shop scheduling problem, 
if a job j has been moved to a new position in a machine schedule, one could 
declare tabu moving that job back to its previous position for some number of 
iterations (this number is called the tabu tenure of the move). 

Tabus are stored in a short-term memory of the search (the tabu list) and 
usually only a fixed and fairly limited quantity of information is recorded. In 
any given context, there are several possibilities regarding the recorded infor
mation. One could record complete solutions, but this requires a lot of storage 
and makes it expensive to check whether a potential move is tabu or not; it 
is therefore seldom used. The most commonly used tabus involve recording 
the last few transformations performed on the current solution and prohibit
ing reverse transformations (as in the example above); others are based on key 
characteristics of the solutions themselves or of the moves. 

To better understand how tabus work, let us go back to our reference prob
lems. In the job shop scheduling problem, one could define tabus in several 
ways. To continue our example where a job j has just been moved from po
sition p\ to position pi, one could declare tabu specifically moving back j 
to position p\ from position p2 and record this in the short-term memory as 
the triplet (jf, p2, p\). Note that this type of tabu will not constrain the search 
much, but that cycling may occur if j is then moved to another position 773 and 
then from pi, io p\. A stronger tabu would involve prohibiting moving back j 
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to pi (without consideration for its current position) and be recorded as ( j , p\). 
An even stronger tabu would be to disallow moving j at all, and would simply 
be noted as (j). 

In the capacitated plant location problem, tabus on Add/Drop moves should 
prohibit changing the status of the affected location variable and can be 
recorded by noting its index. Tabus for Swap moves are more complex. They 
could be declared with respect to the site where the faciUty was closed, to the 
site where the facility was opened, to both locations (i.e. changing the status of 
both location variables is tabu), or to the specific swapping operation. 

Multiple tabu lists can be used simultaneously and are sometimes advisable. 
For example, in the capacitated plant location problem, if one uses a neighbor
hood structure that contains both Add/Drop and Swap moves, it might be a 
good idea to keep a separate tabu list for each type of move. 

Standard tabu hsts are usually implemented as circular lists of fixed length. 
It has been shown, however, that fixed-length tabus cannot always prevent cy
cling, and some authors have proposed varying the tabu list length during the 
search (Glover, 1989, 1990; Skorin-Kapov, 1990; Taillard, 1990, 1991). An
other solution is to randomly generate the tabu tenure of each move within 
some specified interval. Using this approach requires a somewhat different 
scheme for recording tabus, which are usually stored as tags in an array. The 
entries in this array typically record the iteration number until which a move is 
tabu. More details are provided in Gendreau et al. (1994), 

6.3.5 Aspiration Criteria 
While central to the tabu search method, tabus are sometimes too powerful. 

They may prohibit attractive moves, even when there is no danger of cycUng, 
or they may lead to an overall stagnation of the search process. It is thus nec
essary to use algorithmic devices that will allow one to revoke (cancel) tabus. 
These are called aspiration criteria. The simplest and most commonly used 
aspiration criterion, found in almost all tabu search implementations, allows a 
tabu move when it results in a solution with an objective value better than that 
of the current best-known solution (since the new solution has obviously not 
been previously visited). Much more complicated aspiration criteria have been 
proposed and successfully implemented (see, for example, de Werra and Hertz 
(1989) and Hertz and de Werra (1991)), but they are rarely used. The key rule 
is that if cycling cannot occur, tabus can be disregarded. 

6.3.6 A Template for Simple Tabu Search 
We are now in the position to give a general template for tabu search, in

tegrating the elements we have seen so far. We suppose that we are trying 
to minimize a function f{S) (sometimes known as an objective or evaluation 
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function) over some domain and we apply the so-called "best improvement" 
version of tabu search, i.e. the version in which one chooses at each iteration 
the best available move (even if this results in an increase in the function f{S)). 
This is the most commonly used version of tabu search. 

Notation: 

S the current solution, 

S* the best-known solution, 

/* value of S*, 

N(S) the neighborhood of S, 

N(S) the "admissible" subset of A (̂5') (i.e. non-tabu or allowed by as
piration), 

T tabu list. 

Initialization: 

Choose (construct) an initial solution SQ. 

Set S := So, / * := fiSo), 5* := So, T := 0. 

Search: 

While termination criterion not satisfied do 

• Select5inargmin[/(y)]; 

S's N(S) 

- if f(S) < /*, then set / * := f(S), S* := S; 

• record tabu for the current move in T (delete oldest entry if necessary); 

Endwhile. 

In this algorithm, argmin returns the subset of solutions in N(S) that mini
mizes / . 
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6.3.7 Termination Criteria 

One may have noticed that we have not specified in our template a teraii-
nation criterion. In theory, the search could go on forever, unless the optimal 
value of the problem at hand is known beforehand. In practice, obviously, the 
search has to be stopped at some point. The most commonly used stopping 
criteria in tabu search are 

• after a fixed number of iterations (or a fixed amount of CPU time); 

• after some number of consecutive iterations without an improvement 
in the objective function value (the criterion used in most implementa
tions); 

• when the objective function reaches a pre-specified threshold value. 

6.3.8 Probabilistic Tabu Search and Candidate Lists 

Normally, one must evaluate the objective function for every element of the 
neighborhood N(S) of the current solution. This can be extremely expensive 
from a computational standpoint. In probabilistic tabu search, only a random 
sample N^(S) of N(S) is considered, thus significantly reducing the computa
tional overhead. Another attractive feature is that the added randomness can 
act as an anti-cycling mechanism. This allows one to use shorter tabu fists 
than would be necessary if a full exploration of the neighborhood was per
formed. One the negative side, it is possible to miss excellent solutions (see 
Section 6.6.3 for more detail). It is also possible to probabifistically select 
when to apply tabu criteria. 

Another way to control the number of moves examined is by means of can
didate list strategies, which provide more strategic ways of generating a useful 
subset N^(S) of iV(5). In fact, the probabifistic approach can be considered 
to be one instance of a candidate list strategy, and may also be used to modify 
such a strategy. Failure to adequately address the issues involved in creat
ing effective candidate lists is one of the more conspicuous shortcomings that 
differentiates a naive tabu search implementation from one that is more solidly 
grounded. Relevant designs for candidate list strategies are discussed in Glover 
and Laguna (1997). We also discuss a useful type of candidate generation ap
proach in Section 6.4.4. 

6.4 EXTENSIONS TO THE BASIC CONCEPTS 

Simple tabu search as described above can sometimes successfully solve 
difficult problems, but in most cases, additional elements have to be included 
in the search strategy to make it fully effective. We now briefly review the most 
important of these. 
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6.4.1 Intensification 
The idea behind the concept of search intensification is that, as an inteUi-

gent human being would probably do, one should explore more thoroughly 
the portions of the search space that seem ''promising" in order to make sure 
that the best solutions in these areas are found. In general, intensification is 
based on some intermediate-term memory, such as a recency memory, in which 
one records the number of consecutive iterations that various ''solution com
ponents" have been present in the current solution without interruption. For 
instance, in the capacitated plant location problem, one could record how long 
each site has had an open facihty. A typical approach to intensification is to 
restart the search from the best currently known solution and to "freeze" (fix) in 
it the components that seem more attractive. To continue with our capacitated 
plant location problem, one could freeze a number of facilities in sites that 
have been often selected in previous iterations and perform a restricted search 
on the other sites. Another technique that is often used consists of changing 
the neighborhood structure to one allowing more powerful or more diverse 
moves. In the capacitated plant location problem, if Add/Drop moves were 
used, Swap moves could be added to the neighborhood structure. In proba-
bihstic tabu search, one could increase the sample size or switch to searching 
without samphng. Intensification is used in many tabu search implementations, 
although it is not always necessary. This is because there are many situations 
where the normal search process is thorough enough. 

6.4.2 Diversification 
One of the main problems of all methods based on local search, and this in

cludes tabu search in spite of the beneficial impact of tabus, is that they tend to 
be too "local" (as their name impHes), i.e. they tend to spend most, if not all, of 
their time in a restricted portion of the search space. The negative consequence 
of this fact is that, although good solutions may be obtained, one may fail to 
explore the most interesting parts of the search space and thus end up with so
lutions that are still far from the optimal ones. Diversification is an algorithmic 
mechanism that tries to alleviate this problem by forcing the search into previ
ously unexplored areas of the search space. It is usually based on some form 
of long-term memory of the search, such as a frequency memory, in which 
one records the total number of iterations (since the beginning of the search) 
that various "solution components" have been present in the current solution or 
have been involved in the selected moves. For instance, in the capacitated plant 
location problem, one could record the number of iterations during which each 
site has had an open facility. In the job shop scheduhng problem, one could 
note how many times each job has been moved. In cases where it is possible 
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to identify useful "regions" of the search space, the frequency memory can be 
refined to track the number of iterations spent in these different regions. 

There are two major diversification techniques. The first, called restart di
versification, involves introducing a few rarely used components in the cur
rent solution (or the best known solution) and restarting the search from this 
point. In the capacitated plant location problem, one could thus open one or 
more facilities at locations that have seldom been used up to that point and 
resume searching from that plant configuration (one could also close facihties 
at locations that have been used the most frequently). In the job shop schedul
ing problem, a job that has not occupied a particular position in a machine 
schedule can be forced to that position. The second diversification method, 
called continuous diversification, integrates diversification considerations di
rectly into the regular searching process. This is achieved by biasing the eval
uation of possible moves by adding to the objective a small term related to 
component frequencies. An extensive discussion on these two techniques is 
provided by Soriano and Gendreau (1996). A third way of achieving diversifi
cation is strategic oscillation which will be discussed in the next section. 

We would like to stress that ensuring proper search diversification is possi
bly the most critical issue in the design of tabu search heuristics. It should be 
addressed with extreme care fairly early in the design phase and revisited if the 
results obtained are not up to expectations. 

6.4.3 Allowing Infeasible Solutions 
Accounting for all problem constraints in the definition of the search space 

often restricts the searching process too much and can lead to mediocre so
lutions. In such cases, constraint relaxation is an attractive strategy, since it 
creates a larger search space that can be explored with "simpler" neighbor
hood structures. Constraint relaxation is easily implemented by dropping se
lected constraints from the search space definition and adding to the objective, 
weighted penalties for constraint violations. In the capacitated plant location 
problem, this can be done by allowing solutions with flows that exceed the 
capacity of one or more plants. This, however, raises the issue of finding cor
rect weights for constraint violations. An interesting way of circumventing 
this problem is to use self-adjusting penalties, i.e. weights are adjusted dynam
ically on the basis of the recent history of the search. Weights are increased 
if only infeasible solutions were encountered in the last few iterations, and 
decreased if all recent solutions were feasible; see Gendreau et al. (1994) for 
further details. Penalty weights can also be modified systematically to drive 
the search to cross the feasibihty boundary of the search space and thus induce 
diversification. This technique, known as strategic oscillation, was introduced 
in Glover (1977) and used since in several successful tabu search procedures. 
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An important early variant oscillates among altemative types of moves, hence 
neighborhood structures, while another oscillates around a selected value for a 
critical function. 

6AA Surrogate and Auxiliary Objectives 
There are many problems for which the true objective function is quite 

costly to evaluate, a typical example being the capacitated plant location prob
lem when one searches the space of location variables. Recall that, in this case, 
computing the objective value for any potential solution entails solving the as
sociated transportation problem. When this occurs, the evaluation of moves 
may become prohibitive, even if sampling is used. An effective approach to 
handle this issue is to evaluate neighbors using a surrogate objective, i.e. a 
function that is correlated to the tme objective, but is less computationally de
manding, in order to identify a small set of promising candidates (potential 
solutions achieving the best values for the surrogate). The true objective is 
then computed for this small set of candidate moves and the best one selected 
to become the new current solution. An example of this approach is found in 
Crainicetal. (1993). 

Another frequently encountered difficulty is that the objective function may 
not provide enough information to effectively drive the search to more interest
ing areas of the search space. A typical illustration of this situation is observed 
when the fixed costs for open plants in the capacitated plant location problem 
are much larger than the transportation costs. In this case, it is indicated to open 
as few plants as possible. It is thus important to define an auxiliary objective 
function to orient the search. Such a function must measure in some way the 
desirable attributes of the solutions. In our example, one could use a function 
that would favor, for the same number of open plants, solutions with plants 
having just a small amount of flow, thus increasing the likelihood of closing 
them in subsequent iterations. It should be noted that developing an effective 
auxihary objective is not always easy and may require a lengthy trial and error 
process. In some other cases, fortunately, the auxiliary objective is obvious 
for anyone famihar with the problem at hand: see the work of Gendreau et al. 
(1993) for an illustration. 

6.5 SOME PROMISING AREAS FOR FUTURE 
APPLICATION 

The concepts and techniques described in the previous sections are suffi
cient to design effective tabu search heuristics for many combinatorial prob
lems. Most early tabu search implementations, several of which were ex
tremely successful, relied indeed almost exclusively on these algorithmic com
ponents (Friden et al., 1989; Hertz and de Werra, 1987; Skorin-Kapov, 1990; 
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Taillard, 1991). Nowadays, however, most leading edge research in tabu search 
makes use of more advanced concepts and techniques. While it is clearly be
yond the scope of an introductory tutorial, such as this one, to review this type 
of advanced material, we would Hke to give readers some insight into it by 
briefly describing some current trends. Readers who wish to leam more about 
this topic should read our survey paper (Gendreau, 2002) and some of the ref
erences provided in this section. 

A large part of the recent research in tabu search deals with various tech
niques for making the search more effective. These include methods for better 
exploitation of the information that becomes available during search and cre
ating better starting points, as well as more powerful neighborhood operators 
and parallel search strategies. For more details, see the taxonomy of Crainic 
et al. (1997), and the survey of Cung et al. (2002). The numerous techniques 
for utilizing the information are of particular significance since they can lead 
to dramatic performance improvements. Many of these rely on elite solutions 
(the best solutions previously encountered) or on parts of these to create new 
solutions, the rationale being that "fragments" of excellent solutions are often 
identified quite early in the search process. However, the challenge is to com
plete these fragments or to recombine them (Glover, 1992; Glover and Laguna, 
1993, 1997; Rochat and Taillard, 1995). Other methods, such as the reactive 
tabu search of Battiti and Tecchiolli (1994), are aimed at finding ways to move 
the search away from local optima that have already been visited. 

Another important trend (this is, in fact, a pervasive trend in the whole 
metaheuristics field) is hybridization, i.e. using tabu search in conjunction with 
other solution approaches such as genetic algorithms (Crainic and Gendreau, 
1999; Fleurent and Ferland, 1996), Lagrangean relaxation (Griinert, 2002), 
constraint programming (Pesant and Gendreau, 1999), and column generation 
(Crainic et al, 2000). A whole chapter on this topic can be found in Glover 
and Laguna (1997). Problem specific information and simple heuristics can 
also be used in conjunction with different components of tabu search. For ex
ample, in Burke et al. (1999), problem-specific heuristics are used to realize 
diversification. 

The hterature on tabu search has also started moving away from its tradi
tional application areas (graph theory problems, scheduling, vehicle routing) 
to new ones: continuous optimization (Rolland, 1996), multi-objective opti
mization (Gandibleux et al. 2000), stochastic programming (Lokketangen and 
Woodruff, 1996), mixed integer programming (Crainic et al., 2000; Lokketan
gen and Glover, 1996), real-time decision problems (Gendreau et al., 1999), 
etc. These new areas confront researchers with new challenges that, in turn, 
call for novel and original extensions of the method. 
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6.6 TRICKS OF THE TRADE 

6.6.1 Getting Started 

Newcomers to tabu search, trying to apply the method to a problem that 
they wish to solve, are often confused about what they need to do to come up 
with a successful implementation. Basically, they do not know where to start. 
We believe that the following step-by-step procedure will help and provides a 
useful framework for getting started. 

A Step-by-Step Procedure 

1 Read one or two good introductory papers to gain some knowledge of the 
concepts and of the vocabulary (see the references provided in ''Sources 
of Additional Information" at the end of this chapter). 

2 Read several papers describing in detail applications in various areas 
to see how the concepts have been actually implemented by other re
searchers (see the references provided in ''Sources of Additional Infor
mation" at the end). 

3 Think a lot about the problem at hand, focusing on the definition of the 
search space and the neighborhood structure. 

4 Implement a simple version based on this search space definition and this 
neighborhood structure. 

5 Collect statistics on the performance of this simple heuristic. It is usually 
useful at this point to introduce a variety of memories, such as frequency 
and recency memories, to really track down what the heuristic does. 

6 Analyse results and adjust the procedure accordingly. It is at this point 
that one should eventually introduce mechanisms for search intensifica
tion and diversification or other intermediate features. Special attention 
should be paid to diversification, since this is often where simple tabu 
search procedures fail. 

6.6.2 More Tips 

In spite of carefully following the procedure outhned above, it is possible 
to end up with a heuristic that produces mediocre results. If this occurs, the 
following tips may prove useful: 

1 If there are constraints, consider penalizing the violation of them. Let
ting the search move to infeasible solutions is often necessary in highly 
constrained problems to allow for a meaningful exploration of the search 
space (see Section 6.4). 
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2 Reconsider the neighborhood structure and change it if necessary. Many 
tabu search implementations fail because the neighborhood structure is 
too simple. In particular, one should make sure that the chosen neighbor
hood structure allows for a sensible evaluation of possible moves (i.e. the 
moves that seem intuitively to move the search in the ''right" direction 
should be the ones that are likely to be selected); it might also be a good 
idea to introduce a surrogate objective (see Section 6.4) to achieve this. 

3 Collect more statistics. For example, recording the number and quality 
of previously visited local optima can be useful to find a good trade-off 
between intensification and diversification 

4 Follow the execution of the algorithm step-by-step on some reasonably 
sized instances (for example: Is the algorithm behaving as expected on 
particular solution configurations? Is the algorithm converging prema
turely?). 

5 Reconsider diversification. As mentioned earlier, this is a critical feature 
in most tabu search implementations. 

6 Experiment with parameter settings. Many tabu search procedures are 
extremely sensitive to parameter settings; it is not unusual to see the per
formance of a procedure dramatically improve after changing the value 
of one or two key parameters (unfortunately, it is not always obvious to 
determine which parameters are the key ones in a given procedure). 

6.6.3 Additional Tips for Probabilistic Tabu Search 

While probabilistic tabu search is an effective way of tackling many prob
lems, it creates difficulties of its own that need to be carefully addressed. The 
most important of these occurs because, more often than not, the best solutions 
retumed by probabilistic tabu search will not be local optima with respect to 
the neighborhood structure being used. This is particularly annoying since, 
when it happens, better solutions can be easily obtained, sometimes even man
ually. An easy way to address this is to simply perform a local improvement 
phase (using the same neighborhood operator) from the best found solution at 
the end of the tabu search itself. One could altemately switch to tabu search 
without sampling (again from the best found solution) for a short duration be
fore completing the algorithm. A possibly more effective technique is to add, 
throughout the search, an intensification step without sampling. This will mean 
that the best solutions available in the various regions of the space explored by 
the method will be found and recorded. This is similar to the method proposed 
by Glover and Laguna (1993). They employed special aspiration criteria for 
allowing the search to reach local optima at useful junctures. 
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6.6.4 Parameter Calibration and Computational Testing 
Parameter calibration and computational experiments are key steps in the 

development of any algorithm. This is particularly true in the case of tabu 
search, since the number of parameters required by most implementations is 
fairly large and the performance of a given procedure can vary quite signifi
cantly when parameter values are modified. The first step in any serious com
putational experimentation is to select a good set of benchmark instances (ei
ther by obtaining them from other researchers or by constructing them), prefer
ably with some reasonable measure of their difficulty and with a wide range of 
size and difficulty. This set should be spht into two subsets, the first one being 
used at the algorithmic design and parameter calibration steps, and the second 
reserved for performing the final computational tests that will be reported in 
the paper(s) describing the heuristic under development. The reason for doing 
so is quite simple: when cahbrating parameters, one always run the risk of 
overfitting, i.e. finding parameter values that are excellent for the instances at 
hand, but poor in general, because these values provide too good a ''fit" (from 
the algorithmic standpoint) to these instances. Methods with several parame
ters should thus be calibrated on much larger sets of instances than ones with 
few parameters to ensure a reasonable degree of robustness. The calibration 
process itself should proceed in several stages: 

1 Perform exploratory testing to find good ranges of parameters. This can 
be done by running the heuristic with a variety of parameter settings. 

2 Fix the value of the parameters that appear to be ''robust": that is, which 
do not seem to have a significant impact on the performance of the algo
rithm. 

3 Perform systematic testing for the other parameters. It is usually more 
efficient to test values for only a single parameter at a time, the others 
being fixed at what appear to be reasonable values. One must be care
ful, however, for cross effects between parameters. For example, assume 
that value x\ for parameter p\ leads to good results when the other pa
rameters are fixed at their default values, and that value X2 for parameter 
P2 leads to good results when the other parameters are fixed at their de
fault values. Then, it might happen that value ^i for parameter p\ and 
value xi for parameter pi lead to poor results. Where such effects exist, 
it can be important to jointly test pairs or triplets of parameters, which 
can be an extremely time-consuming task. 

The paper by Crainic et al. (1993) provides a detailed description of the cah-
bration process for a fairly complex tabu search procedure and can used as a 
guideline for this purpose. 
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6.7 CONCLUSIONS 

Tabu search is a powerful algorithmic approach that has been applied with 
great success to many difficult combinatorial problems. A particularly nice 
feature of tabu search is that it can quite easily handle the "dirty" complicating 
constraints that are typically found in real-life applications. It is thus a really 
practical approach. It is not, however, a panacea: every reviewer or editor of a 
scientific joumal has seen more than his/her share of failed tabu search heuris
tics. These failures stem from two major causes: an insufficient understanding 
of fundamental concepts of the method (and we hope that this tutorial will help 
in alleviating this shortcoming), but also, more often than not, a crippling lack 
of understanding of the problem at hand. One cannot develop a good tabu 
search heuristic for a problem that one does not know well! This is because 
significant problem knowledge is absolutely vital to perform the most basic 
steps of the development of any tabu search procedure, namely the choice of 
a search space and the choice of an effective neighborhood structure. If the 
search space and/or the neighborhood structure are inadequate, no amount of 
tabu search expertise will be sufficient to save the day. A last word of caution: 
to be successful, all metaheuristics need to achieve both depth and breadth in 
their searching process; depth is usually not a problem for tabu search, which 
is quite aggressive in this respect (it generally finds pretty good solutions very 
early in the search), but breadth can be a critical issue. To handle this, it is 
extremely important to develop an effective diversification scheme. 

SOURCES OF ADDITIONAL INFORMATION 

• Good introductory papers on tabu search may be found in Glover and 
Laguna (1993), Glover et al. (1993b), Hertz and de Werra (1991), de 
Werra and Hertz (1989) and, in French, in Soriano and Gendreau (1997). 

The book by Glover and Laguna (1997) is the ultimate reference on tabu 
search. Apart from the fundamental concepts of the method, it presents 
a considerable amount of advanced material, as well as a variety of ap
plications. It is interesting to note that this book contains several ideas 
applicable to tabu search that yet remain to be fully exploited. 

Two issues of Annals of Operations Research devoted respectively to 
Tabu Search (Glover et al., 1993a) and Metaheuristics in Combinato
rial Optimization (Laporte and Osman, 1996) provide a good sample of 
applications of tabu search. 

The books made up from selected papers presented at the Meta-Heuristics 
International Conferences (MIC) are also extremely valuable. At this 
time, the books for the 1995 Breckenridge conference (Osman and Kelly, 
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1996), the 1997 Sophia-Antipolis one (Voss et al., 1999) and the 1999 
Angra dos Reis one (Ribeiro and Hansen, 2002) have been published. 
The proceedings of MIC'2001, held in Porto, are available online at 
http://tew.ruca.ua.ac.be/eume/MIC2001. 

• Two books of interest have recently been published. The one edited by 
Glover and Kochenberger (2003) addresses metaheuristics in general. 
The other, edited by Pardalos and Resende (2002), has a broader scope 
but contains a nice chapter on metaheuristics. 
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7.1 INTRODUCTION 

Many problems in engineering, planning and manufacturing can be modeled 
as that of minimizing or maximizing a cost function over a finite set of discrete 
variables. This class of so-called combinatorial optimization problems has re
ceived much attention over the last two decades and major achievements have 
been made in its analysis (Papadimitriou and Steiglitz, 1982). One of these 
achievements is the separation of this class into two subclasses. The first one 
contains the problems that can be solved efficiently, i.e. problems for which al
gorithms are known that solve each instance to optimality in polynomial time. 
Examples are linear programming, matching and network problems. The sec
ond subclass contains the problems that are notoriously hard, formally referred 
to as NP-hard (see Chapter 11 for more details). For an NP-hard algorithm it is 
generally believed that no algorithm exists that solves each instance in polyno
mial time. Consequently, there are instances that require superpolynomial or 
exponential time to be solved to optimality. Many known problems belong to 
this class and probably the best known example is the travehng salesman prob
lem. The above-mentioned distinction is supported by a general framework in 
computer science called complexity theory; for a detailed introduction and an 
extensive listing of provably hard problems see Garey and Johnson (1979) and 
Ausielloetal. (1999). 

Clearly, hard problems must be handled in practice. Roughly speaking this 
can be done by two types of algorithms of inherently different nature: either 
one may use optimization algorithms that find optimal solutions possibly us
ing large amounts of computation time or one may use heuristic algorithms 
that find approximate solutions in small amounts of computation time. Local 
search algorithms are of the latter type (Aarts and Lenstra, 2003). Simulated 
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annealing, the subject of this chapter, is among the best known local search al
gorithms, since it performs quite well and is widely applicable. In this chapter 
we present the basics of simulated annealing. First, we introduce some ele
mentary local search concepts. We introduce basic simulated annealing as an 
approach following directly from the strong analogy with the physical process 
of the annealing of solids. We analyze the asymptotic performance of basic 
simulated annealing. Next, we present some cooling schedules that allow for 
a finite-time implementation. Finally, we discuss some issues related to the 
practical use of simulated annealing and conclude with some suggestions for 
further reading. 

7.2 LOCAL SEARCH 
Local search algorithms constitute a widely used, general approach to hard 

combinatorial optimization problems. They are typically instantiations of var
ious general search schemes, but all have the same feature of an underlying 
neighborhood function, which is used to guide the search for a good solution. 

An instance of a combinatorial optimization problem consists of a set S of 
feasible solutions and a non-negative cost function / . The problem is to find 
a globally optimal solution i* € S, i.e. a solution with optimal cost /*. A 
neighborhood function is a mapping N : S -^ 2^, which defines for each so
lution / e S a set N(i) c S of solutions that are in some sense close to /. 
The set A (̂0 is called the neighborhood of solution /, and each j e N(i) is 
called a neighbor of /. The simplest form of local search is called iterative im
provement. An iterative improvement algorithm starts with an initial solution 
and then continuously explores neighborhoods for a solution with lower cost. 
If such a solution is found, then the current solution is replaced by this better 
solution. The procedure is continued until no better solutions can be found in 
the neighborhood of the current solution. By definition, iterative improvement 
terminates in a local optimum, i.e. a solution i e S that is at least as good as all 
its neighbors with regard to the cost. Note that the concept of local optimality 
depends on the neighborhood function that is used. 

For many combinatorial optimization problems one can represent solutions 
as sequences or collections of subsets of elements that constitute the solutions; 
examples are tours in the traveling salesman problem (TSP), partitions in the 
graph partitioning problem (GPP), and schedules in the job shop scheduling 
problem (JSSP). These solution representations enable the use of /:-change 
neighborhoods, i.e. neighborhoods that are obtained by defining k exchanges 
of elements in a given sequence or collection of subsets. These so-called ^-
change neighborhoods constitute a class of basic local search algorithms that 
is widely appficable; see Lin (1965) and Lin and Kemighan (1973) for the TSP, 
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Kemighan and Lin (1970) for the GPP, and Van Laarhoven et al. (1992) for the 
JSSP 

As an example we discuss the TSP. In an instance of the TSP we are given 
n cities and an n x ^-matrix [dpg], whose elements denote the distance from 
city p to city q for each pair p, q of cities. A tour is defined as a closed path 
visiting each city exactly once. The problem is to find a tour of minimal length. 
For this problem, a solution is given by a permutation TT = (7r(l) , . . . , 7t(n)), 
Each solution then corresponds uniquely to a tour. The solution space is given 
by 

S = {all permutations ic on n cities} 

The cost function is defined as 

n-l 

fi^) = 2^<^7r(/),7ra+l) +djr(n),7ti\) 

i.e. fin) gives the length of the tour corresponding to jr. Furthermore, we 
have|S| = (^-~l)! 

In the TSP, a neighborhood function Â^̂, called the ^-change neighborhood, 
defines, for each solution /, a neighborhood 5/ consisting of the set of solutions 
that can be obtained from the given solution / by removing W <k edges from 
the tour corresponding to solution /, replacing them with k' other edges such 
that again a tour is obtained, and choosing the direction of the tour arbitrarily 
(Lin, 1965; Lin and Kemighan, 1973). The simplest non-trivial version of this 
is the 2-change neighborhood. In that case we have 

iV = {jr̂  e S I TTMS obtained from jr by a 2-change} 

and 
\N\ = 2 + n ( n - 3 ) , for all jr € S 

Furthermore, it can be shown that each solution j can be obtained from any 
other solution i by at most n — 2 successive 2-changes, which impHes that the 
N2 neighborhood graph is strongly connected. 

In general, local search can be viewed as a walk in a neighborhood graph. 
The node set of the neighborhood graph is given by the set of solutions and 
there is an arc from node / to node j if j is a neighbor of /. The sequence 
of nodes visited by the search process defines a walk. Roughly speaking, the 
two main issues of a local search algorithm are the choice of the neighborhood 
function and the search strategy that is used. Good neighborhoods often take 
advantage of the combinatorial structure of the problem at hand, and are there
fore typically problem dependent. A disadvantage of using iterative improve
ment as search strategy is that it easily gets trapped in poor local optima. To 
avoid this disadvantage—while maintaining the basic principle of local search 
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algorithms, i.e. iteration among neighboring solutions—one can consider the 
extension of accepting, in a limited way, neighboring solutions that yield a 
deterioration in the value of the cost function. This in fact is the basic idea 
underlying simulated annealing. 

7.3 BASIC SIMULATED ANNEALING 
In the early 1980s Kirkpatrick et al. (1983) and independently Cemy (1985) 

introduced the concepts of annealing in combinatorial optimization. Origi
nally these concepts were heavily inspired by an analogy between the physical 
anneahng process of solids and the problem of solving large combinatorial op
timization problems. Since this analogy is quite appealing we use it here as a 
background for introducing simulated annealing. 

In condensed matter physics, anneahng is known as a thermal process for 
obtaining low energy states of a sohd in a heat bath. The process consists of 
the following two steps (Kirkpatrick et al., 1983): 

• increase the temperature of the heat bath to a maximum value at which 
the solid melts; 

• decrease carefully the temperature of the heat bath until the particles 
arrange themselves in the ground state of the solid. 

In the liquid phase, all particles arrange themselves randomly, whereas in the 
ground state of the solid, the particles are arranged in a highly structured lattice, 
for which the corresponding energy is minimal. The ground state of the solid 
is obtained only if the maximum value of the temperature is sufficiently high 
and the coohng is performed sufficiently slowly. Otherwise, the solid will be 
frozen into a meta-stable state rather than into the true ground state. 

Metropolis et al. (1953) introduced a simple algorithm for simulating the 
evolution of a solid in a heat bath to thermal equilibrium. Their algorithm is 
based on Monte Carlo techniques (Binder, 1978) and generates a sequence of 
states of the solid in the following way. Given a current state / of the solid with 
energy £/, then a subsequent state j is generated by applying a perturbation 
mechanism which transforms the current state into a next state by a small dis
tortion, for instance by displacement of a particle. The energy of the next state 
is Ej. If the energy difference, Ej — £/, is less than or equal to zero, the state 
j is accepted as the current state. If the energy difference is greater than zero, 
then the state j is accepted with a probability given by 

where T denotes the temperature of the heat bath and ks is a physical constant 
called the Boltzmann constant. The acceptance rule described above is known 
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as the Metropolis criterion and the algorithm that goes with it is known as 
the Metropolis algorithm. It is known that, if the lowering of the temperature 
is done sufficiently slowly, the solid can reach thermal equihbrium at each 
temperature. In the Metropohs algorithm this is achieved by generating a large 
number of transitions at a given value of the temperature. Thermal equilibrium 
is characterized by the Boltzmann distribution, which gives the probabiHty of 
the solid of being in a state / with energy Ei at temperature T, and which is 
given by 

VT{X = i] = —^ " ^ ^ (7.1) 
Y,tx^{-Ej/kBT) 
j 

where X is a random variable denoting the current state of the solid and the 
summation extends over all possible states. As we indicate below, the Boltz
mann distribution plays an essential role in the analysis of the convergence of 
simulated annealing. 

Returning to simulated annealing, the Metropolis algorithm can be used to 
generate a sequence of solutions of a combinatorial optimization problem by 
assuming the following equivalences between a physical many-particle system 
and a combinatorial optimization problem: 

• solutions in the combinatorial optimization problem are equivalent to 
states of the physical system; 

• the cost of a solution is equivalent to the energy of a state. 

Furthermore, we introduce a control parameter which plays the role of the 
temperature. Simulated annealing can thus be viewed as an iteration of Metro
polis algorithms, executed at decreasing values of the control parameter. 

We can now let go of the physical analogy and formulate simulated anneal
ing in terms of a local search algorithm. To simplify the presentation, we as
sume, in the remainder of this chapter, that we are deahng with a minimization 
problem. The discussion easily translates to maximization problems. For an 
instance (S, / ) of a combinatorial optimization problem and a neighborhood 
function iV, Figure 7.1 describes simulated annealing in pseudo-code. 

The meaning of the four functions in the procedure SIMULATED^ANNEAL-
ING is obvious: INITIALIZE computes a start solution and initial values of the 
parameters c and L; GENERATE selects a solution from the neighborhood of the 
current solution; CALCULATE.LENGTH and CALCULATE_CONTROL compute 
new values for the parameters L and c, respectively. 

As already mentioned, a typical feature of simulated annealing is that, be
sides accepting improvements in cost, it also accepts deteriorations to a limited 
extent. Initially, at large values of c, large deteriorations will be accepted; as c 
decreases, only smaller deteriorations will be accepted and, finally, as the value 
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procedure SIMULATED. ANNEALING; 

begin 

INITIALIZE (/,,«,„ Co, Lo); 
k:=0; 

repeat 

for / := 1 to Lk do 

begin 

GENERATE (y from 5"/); 
i f / ( 7 ) < / ( 0 t h e n / : = ; 
else 
if exp l^^'—^^) > random[0, 1) then / := j 

end; 

k:=k + \; 
CALCULATE. LENGTH (Lk); 
CALCULATE. CONTROL (Q); 

until stopcriterion 

end; 

Figure 7.1. The simulated annealing algorithm in pseudo-code. 

of c approaches 0, no deteriorations will be accepted at all. Furthermore, there 
is no limitation on the size of a deterioration with respect to its acceptance. 
In simulated annealing, arbitrarily large deteriorations are accepted with pos
itive probability; for these deteriorations the acceptance probability is small, 
however. This feature means that simulated annealing, in contrast to iterative 
improvement, can escape from local minima while it still exhibits the favorable 
features of iterative improvement, i.e. simplicity and general applicability. 

Note that the probability of accepting deteriorations is implemented by com
paring the value of exp((/(0 — f(j))/c) with a random number generated 
from a uniform distribution on the interval [0,1). Furthermore, it should be 
obvious that the speed of convergence of the algorithm is determined by the 
choice of the parameters Lk and Q with k = 0,1,..., where Lk and Q denote 
the values of L and k in iteration k of the algorithm. In the next section we will 
argue that under certain mild conditions on the choice of the parameters sim-
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ulated annealing converges asymptotically to globally optimal solutions, and 
that it exhibits an equilibrium behavior from which some performance charac
teristics can be derived. In the subsequent section we present more practical, 
implementation-oriented choices of the parameter values that lead to a finite-
time execution of the algorithm. 

Comparing simulated annealing to iterative improvement, it is evident that 
simulated annealing can be viewed as a generahzation. Simulated annealing 
becomes identical to iterative improvement in the case where the value of the 
control parameter is taken equal to zero. With respect to a comparison be
tween the performance of both algorithms we mention that for most problems 
simulated annealing performs better than iterative improvement, repeated for a 
number of different initial solutions. We return to this subject in the concluding 
sections. 

7.4 MATHEMATICAL MODELING 
Simulated anneahng can be mathematically modeled by means of Markov 

chains (Feller, 1950; Isaacson and Madsen, 1976; Seneta, 1981). In this model, 
we view simulated annealing as a process in which a sequence of Markov 
chains is generated, one for each value of the control parameter. Each chain 
consists of a sequence of trials, where the outcomes of the trials correspond to 
solutions of the problem instance. 

Let {S, f) be a problem instance, N a neighborhood function, and \{k) a 
stochastic variable denoting the outcome of the kih trial. Then the transition 
probability at the ^th trial for each pair i, j € S of outcomes is defined as 

Pij{k) = P{X(/:) = 7|X(A:-1) = /} 

f Gij{ck)Aij{Ck) lii T^y 
= 1 - E Gn{ck)An{c,) ifi = j (7.2) 

where Gy (ck) denotes the generation probability, i.e. the probability of gener
ating a solution j when being at solution /, and A,/ ( Q ) denotes the acceptance 
probability, i.e. the probability of accepting solution j , once it is generated 
from solution /. The most frequently used choice for these probabilities is the 
following (Aarts and Korst, 1989): 

r (r^-l l̂ ^ '̂̂ l'' '^J^^' n^^ 

and 

exp((/(/) - fU))/c) if fU) > f(i) 
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For fixed values of c, the probabilities do not depend on A:, in which case the re
sulting Markov chain is time-independent or homogeneous. Using the theory of 
Markov chains it is fairly straightforward to show that, under the condition that 
the neighborhoods are strongly connected—in which case the Markov chain is 
irreducible and aperiodic—there exist a unique stationary distribution of the 
outcomes. This distribution is the probabiUty distribution of the solutions after 
an infinite number of trials and assumes the following form (Aarts and Korst, 
1989). 

THEOREM 7.1 Given an instance (5, / ) of a combinatorial optimization prob
lem and a suitable neighborhood function, then, after a sufficiently large num
ber of transitions at a fixed value c of the control parameter, applying the 
transition probabilities of(7.2)-(7A), simulated annealing will find a solution 
i € S with a probability given by 

PAX = i} '^ qtic) = - i - exp (-—) (7.5) 
A ô(c) \ c / 

where X is a stochastic variable denoting the current solution obtained by 
simulated annealing and 

iVo(c) = X ; ^ ^ p ( - " ^ ) (7-6) 

denotes a normalization constant. 

A proof of this theorem is beyond the scope of this chapter. For those in
terested, we refer to Aarts and Korst (1989). The probability distribution of 
(7.5) is called the stationary or equilibrium distribution and it is the equivalent 
of the Boltzmann distribution of (7.1). We can now formulate the following 
important result. 

COROLLARY 7.2 Given an instance (S, f) of a combinatorial optimization 
problem and a suitable neighborhood function, and, furthermore, let the prob
ability qi (c) that simulated annealing finds solution i after an infinite number 
of trials at value c of the control parameter be given by (7.5), then^ 

limqiic) = ql = •rr-X(5*)(0 (7.7) 

where S* denotes the set of globally optimal solutions. 

^Let A and A^ c Aho two sets. Then the characteristic function X(AO • ̂  "^ {0̂  1} of the set A^ is defined 
as X{A^)(^) ==lifaeA\ and X{A')(^^ — 0 otherwise. 
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Proof. Using the fact that for all a <0, lim e^ = 1 if a = 0, and 0 otherwise, 
we obtain 

e x p ( - ^ ) 
lim qt {c) = lim 

exp ( £ ^ ) 
= lim 7 ^—^ 

1 0 
= y;^X(5*)(0 + —X(5\s*)(0 

which completes the proof. D 

As already mentioned, the result of this corollary is important since it guar
antees asymptotic convergence of the simulated annealing algorithm to the set 
of globally optimal solutions under the condition that the stationary distribu
tion of (7.5) is attained at each value of c. More specifically, it implies that 
asymptotically optimal solutions are obtained which can be expressed as 

lim lim FAXik) e S*} = \ 
c^O k-^oo 

We end this section with some remarks. 

• It is possible to formulate a more general class of acceptance and gener
ation probabilities than the ones we considered above, and prove asymp
totic convergence to optimality in that case. The probabilities we used 
above are imposed by this more general class in a natural way and used 
in practically all applications reported in the literature. 

• The simulated annealing algorithm can also be formulated as an inhomo-
geneous algorithm, namely as a single inhomogeneous Markov chain, 
where the value of the control parameter c is decreased in between sub
sequent trials. In this case, asymptotic convergence again can be proved. 
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However, an additional condition on the sequence ( Q } of values of the 
control parameter is needed, namely 

\og(k + 2) 

for some constant F that can be related to the neighborhood function that 
is applied. 

• Asymptoticity estimates of the rate of convergence show that the sta
tionary distribution of simulated annealing can only be approximated 
arbitrarily closely if the number of transitions is proportional to \S\^. 
For hard problems, l^l is necessarily exponential in the size of the prob
lem instance, thus, implying that approximating the asymptotic behav
ior arbitrarily close results in an exponential-time execution of simulated 
annealing. Similar results have been derived for the asymptotic conver
gence of the inhomogeneous algorithm. 

Summarizing, simulated anneahng can find optimal solutions with probability 
1 if it is allowed an infinite number of transitions. In Section 7.6 we show 
how a more efficient finite-time implementation of simulated anneahng can 
be obtained. Evidently, this will be at the cost of the guarantee of obtaining 
optimal solutions. Nevertheless, practice shows that high-quality solutions can 
be obtained in this way. 

7.5 EQUILIBRIUM STATISTICS 

In this section, we discuss some characteristic features of simulated anneal
ing under the assumption that we are at equilibrium, i.e. at the stationary distri
bution q(c) given by (7.5). The expected cost E^C/) at equihbrium is defined 
as 

E,(/) =' (/), 

ieS 

= 1^/(0^/(c) (7.8) 
ieS 
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Similarly, the expected squared cost Ec(/^) is defined as 

ieS 

ieS 

Using the above definitions, the variance Var^C/) of the cost is given by 

Var,(/) ^ a^ 

= I](/(0 - E,(/))2p,{X = i] 
ieS 

= Y.(f(i)-{f)c)%(c) 
ieS 

= {f)c-{f)l (7.10) 

The notation {/)c, {f^)c^ and a^ is introduced as shorthand notation, and 
will be used in the remainder of this paper. 

COROLLARY 7.3 Let the stationary distribution be given by {7,5), then the 
following relation holds: 

oc ĉ  
-Af)c = -i (v.ii) 

Proof. The relation can be straightforwardly verified by using (7.8) and by 
substituting the expression for the stationary distribution given by (7.5). • 

COROLLARY 7.4 Let the stationary distribution be given by (7,5), Then we 
have 

l im( / ) . = (/)oo = 7 ^ y ] / ( 0 (7.12) 

l im(/), = r (7.13) 

lim a^ = a^ = -^ ^ ( / ( O - (/)oo)' (7.14) 
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and 

lima,^ = 0 (7.15) 

Proof. The relations can be easily verified by using the definitions of the 
expected cost (7.8) and the variance (7.10), and by substituting the stationary 
distribution of (7.5) and applying similar arguments as in the proof of Corol
lary 7.11. D 

Using (7.11), it follows that during execution of simulated annealing the 
expected cost decreases monotonically—provided equilibrium is reached at 
each value of the control parameter—to its final value, i.e. /*. The dependence 
of the stationary distribution of (7.5) on the control parameter c is the subject 
of the following corollary. 

COROLLARY 7.5 Let (5, / ) denote an instance of a combinatorial optimiza
tion problem with 5* ^ S, and let qt (c) denote the stationary distribution 
associated with simulated annealing and given by (7,5), Then we have 

(i) V/ € 5* 

(ii) V/ e 5\S*, f(i) > if), 

d 
—qiic) < 0 
ac 

d 
—qdc) > 0 
ac 

(Hi) Vi e S\S\ f{i) < ( / ) ^ , 3ci > 0 

a 
-qi(c) < Oifo Ci 

ac 
= 0 ifc = Ci 

> 0 ifc < Ci 

Proof From (7.6) we can derive the following expression: 

yVo(c) = ^ ^ e x p ( : 
9c 
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c (logarithmic scale) 

Figure 7.2. Acceptance ratio as function of the control parameter. 

Hence, we obtain 

dc 
qiic) = 

d exp i^) 
3c No(c) 

/ ( O e x p ( ^ ) e x p ( ^ ) 3 

c2 A^o(c) A^o (̂c) dc 
No(c) 

f{i) -. 
c-

qiic) 

No(c) 

ifd) - {f)c) (7.16) 

Thus, the sign of j^qiic) is determined by the sign of f{i) — {f)c since ^ ^ > 
0, for all / e S and c > 0. 

From (7.11)-(7.13) we have that {f)c increases monotonically from / * to 
(/)oo with increasing c, provided S* ^ S. The remainder of the proof is now 
straightforward. 

If i e S* and S ^ 5"*, then / (O < {f)c. Hence, f^qtic) < 0 (cf. 
(7.16)), which completes the proof of part (i). If / ^ S*, then the sign of 
•^qiic) depends on the value of {f)c. Hence, using (7.16), we have that 
V/ 6 5\5* : Y^qiic) > 0 if f{i) > {f)^, whereas V/ € S\S*, where 
/ (O < {/)oo» there exists a c, > 0 at which f(i) — {f)c changes sign. Conse-
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Figure 7.3. Evolution of simulated annealing for an instance with 100 cities on a regular grid. 

quently, we have 

—qtic) < 0 i f o Q 
ac 

= 0 if c = Q 

> 0 if c < Q 

which completes the proofs of parts (ii) and (iii). D 

From Corollary 7.5 it follows that the probability of finding an optimal so
lution increases monotonically with decreasing c. Furthermore, for each so
lution, not being an optimal one, there exists a positive value of the control 
parameter Q , such that for c < Q, the probabiUty of finding that solution de
creases monotonically with decreasing c. 

We complete this section with some results that illustrate some of the ele
ments discussed in the analysis presented above. For this we need the definition 
of the acceptance ratio co(c) which is defined as 

co(c) = 
number of accepted transitions 

(7.17) 
number of proposed transitions 

Figure 7.2 shows the behavior of the acceptance ratio as a function of the value 
of the control parameter for typical implementations of simulated anneahng. 
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c (logarithmic scale) 

(a) 

c (logarithmic scale) 

(b) 

Figure 7.4, (a) Normalized average value / /\ Jf^, and (b) normalized spreading ^ of the 
cost function, both as a function of the control parameter. 

The figure illustrates the behavior as it would be expected from the acceptance 
criterion given in (7.4). At large values of c, virtually all proposed transitions 
are accepted. As c decreases, ever fewer proposed transitions are accepted, and 
finally, at very small values of c, no proposed transitions are accepted at all. 

Figure 7.3 shows four solutions in the evolution of simulated annealing run
ning on a TSP instance with 100 cities on the positions of a 10 x 10 grid. The 
initial solution at the top left is given by a random sequence among 100 cities, 
which is evidently far from optimal. It looks very chaotic, and the correspond
ing value of the tour length is large. In the course of the optimization process 
the solutions become less and less chaotic (top right and bottom left), and the 
tour length decreases. Finally, the optimal solution shown at the bottom right 
is obtained. This solution has a highly regular pattem for which the tour length 
is minimal. 

Figure 7.4 shows the typical behavior of (a) the normalized average cost 
and (b) the normalized spreading of the cost for simulated annealing as a func
tion of the control parameter c. The typical behavior shown in this figure is 
observed for many different problem instances and is reported in the literature 
by a number of authors (Aarts et al., 1988; Hajek, 1985; Kirkpatrick et al., 
1983; Van Laarhoven and Aarts, 1987; White, 1984). 

From the figures we can deduce some characteristic features of the expected 
cost {f)c and the variance a^ of the cost. First, it is observed that for large 
values of c the average and the spreading of the cost are about constant and 
equal to (/)oo î̂ d a^o, respectively. This behavior is directly explained from 
(7.12) and (7.14), from which it follows that both the average value and the 
spreading of the cost function are constant at large c-values. 
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Secondly, we observe that there exists a threshold value Ct of the control 
parameter for which 

( / )c ,«5( ( / )oo + /*) (7.18) 

and 

^ (7.19) 
< a^ if c <Ct 

Moreover, we mention that Q is roughly the value of c for which a>(c) ^ 0.5. 

7.6 PRACTICAL APPLICATION 
A finite-time implementation of simulated annealing is obtained by gener

ating a sequence of homogeneous Markov chains of finite length at descending 
values of the control parameter. For this, a set of parameters must be specified 
that governs the convergence of the algorithm. These parameters are combined 
in what is called a cooling schedule. A cooling schedule specifies a finite se
quence of values of the control parameter, and a finite number of transitions at 
each value of the control parameter. More precisely, it is specified by 

• an initial value of the control parameter CQ, 

• a decrement function for lowering the value of the control parameter, 

• a final value of the control parameter specified by a stop criterion, and 

• a finite length of each homogeneous Markov chain. 

The search for adequate cooling schedules has been the subject of many studies 
over the past years. Reviews are given by Van Laarhoven and Aarts (1987), 
CoUins et al. (1988), and Romeo and Sangiovanni-Vincentelh (1991). Below 
we discuss some results. 

Most of the existing work on cooling schedules presented in the literature 
deals with heuristic schedules. We distinguish between two broad classes: 
static and dynamic schedules. In a static cooling schedule the parameters are 
fixed; they cannot be changed during execution of the algorithm. In a dynamic 
cooling schedule the parameters are adaptively changed during execution of 
the algorithm. Below we present some examples. 

7.6.1 Static Cooling Schedules 
The following simple schedule is known as the geometric schedule. It orig

inates from the early work on cooUng schedules by Kirkpatrick et al. (1983), 
and is still used in many practical situations. 
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Initial value of the control parameter. To ensure a sufficiently large value of 
co(co), one may choose CQ = A/max, where A/max is the maximal difference 
in cost between any two neighboring solutions. Exact calculation of A/max 
is quite time consuming in many cases. However, one often can give simple 
estimates of its value. 

Lowering the control parameter value. A frequently used decrement func
tion is given by 

Q+i =a 'Ck /: = 0, 1 , . . . 

where a is a positive constant smaller than but close to 1. Typical values He 
between 0.8 and 0.99. 

Final value of the control parameter. The final value is fixed at some small 
value, which may be related to the smallest possible difference in cost between 
two neighboring solutions. 

Markov chain length. The length of Markov chains is fixed by some number 
that may be related to the size of the neighborhoods in the problem instance at 
hand. 

7,6,2 Dynamic Cooling Schedules 

There exist many extensions of the simple static schedule presented above 
that lead to a dynamic schedule. For instance, a sufficiently large value of CQ 
may be obtained by requiring that the initial acceptance ratio co{co) is close 
to 1. This can be achieved by starting off at a small positive value of CQ and 
multiplying it with a constant factor, larger than 1, until the corresponding 
value of co(co), which is calculated from a number of generated transitions, 
is close to 1. Typical values of coico) he between 0.9 and 0.99. An adaptive 
calculation of the final value of the control parameter may be obtained by ter
minating the execution of the algorithm at a Q-value for which the value of 
the cost function of the solution obtained in the last trial of a Markov chain 
remains unchanged for a number of consecutive chains. Clearly, such a value 
exists for each local minimum that is found. The length of Markov chains may 
be determined by requiring that at each value Q , a minimum number of tran
sitions is accepted. However, since transitions are accepted with decreasing 
probability, one would obtain L^ ~> cx) for ĉ  I 0. Therefore, L^ is usually 
bounded by some constant L^ax to avoid extremely long Markov chains for 
small values of Q . 

In addition to this basic dynamic schedule the Hterature presents a number 
of more elaborate schedules. Most of these schedules are based on a statistical 
analysis of simulated annealing using the equihbrium statistics of the previous 
section. 
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1.1 TRICKS OF THE TRADE 
To apply simulated annealing in practice three basic ingredients are needed: 

a concise problem representation, a neighborhood, and a cooling schedule. 
The algorithm is usually implemented as a sequence of homogeneous Markov 
chains of finite length, generated at descending values of the control parameter. 
This is specified by the cooHng schedule. As for the choice of the cooling 
schedule, we have seen in the previous section that there exist some general 
guidelines. However, for the other ingredients no general rules are known that 
guide their choice. The way they are handled is still a matter of experience, 
taste, and skill left to the anneaUng practitioner, and we expect that this will 
not change in the near future. 

Ever since its introduction in 1983, simulated annealing has been applied to 
a large number of different combinatorial optimization problems in areas as di
verse as operations research, VLSI design, code design, image processing, and 
molecular physics. The success of simulated anneahng can be characterized 
by the following elements: 

• performance, i.e. running time and solution quahty, 

• ease of implementation, and 

• applicability and flexibility. 

With respect to the last two items we make the following remarks. It is ap
parent that simulated anneahng is conceptually very simple and quite easy to 
implement. Implementation of the algorithm typically takes only a few hun
dred lines of computer code. Experience shows that implementations for new 
problems often take only a few days. 

With respect to appHcabihty and flexibihty it has become obvious as a re
sult of the overwhelming amount of practical experience that has been gath
ered over the past 20 years that simulated annealing can be considered as one 
of the most flexible and applicable algorithms that exist. However, one must 
bear in mind that it is not always trivial to apply the algorithm effectively to a 
given problem. Finding appropriate neighborhoods requires problem insight, 
and sometimes it is necessary to reformulate the problem or transform it into 
an equivalent or similar problem, before simulated anneahng can be applied 
successfully. An example is graph coloring (Korst and Aarts, 1989). 

With respect to performance, one typically trades of solution quality against 
running times. Performance analyses of simulated annealing algorithms have 
been the subject of many studies. Despite numerous studies it is still difficult 
to judge simulated annealing on its true merits. This is predominantly due 
to the fact that many of these studies lack the depth required to draw reliable 
conclusions. For example, results are often limited to one single run of the 
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algorithm, instead of taking the average over a number of runs, the apphed 
cooHng schedules are often too simple and do not get the best out of the al
gorithm, and results are often not compared to the results obtained with other 
(tailored) algorithms. 

Lining up the most important and consistent results from the literature al
lows the following general observations. 

• Mathematical problems, predominantly based on Johnson et al. (1989, 
1991), and Van Laarhoven and Aarts (1987): 

- For graph partitioning problems, simulated annealing generally per
forms better, both with respect to error and running time, than 
the classical edge-interchange algorithms introduced by Kemighan 
and Lin (1970). 

- For a large class of basic problems, including the graph coloring, 
linear arrangement, matching, quadratic assignment, and schedul
ing problems, simulated annealing finds solutions with an error 
comparable to the error of tailored approximation algorithms but 
at the cost of much larger running times. 

- For some basic problems such as the number partitioning prob
lem and the traveling salesman problem, simulated annealing is 
outperformed by tailored heuristics, both with respect to error and 
running time. 

• Engineering problems (folklore). For many engineering problems, for 
example problems in the field of image processing, VLSI design and 
code design, no tailored approximation algorithms exist. For these prob
lems simulated annealing seems to be a panacea. For instance, for the 
football pool problem (Van Laarhoven et al., 1989), it was able to derive 
solutions better than the best solutions found so far and for the VLSI 
placement problem (Sechen and Sangiovanni-VincenteUi, 1985) it out
performs the time-consuming manual process. For some problems, how
ever, the running time can be very large. 

• Comparing simulated annealing to time-equivalent iterative improve
ment using the same neighborhood function, i.e. repeating iterative im
provement with different initial solutions for an equally long time as the 
running time of simulated annealing and keeping the best solution, re
veals that simulated annealing performs substantially better (smaller er
ror). This difference becomes even more pronounced for larger problem 
instances (Van Laarhoven et al., 1992; Van Laarhoven, 1988). 

• Experience shows that the performance of simulated annealing depends 
as much on the skill and effort that is applied to the implementation as 
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on the algorithm itself. For instance, the choice of an appropriate neigh
borhood function, of an efficient cooling schedule, and of sophisticated 
data structures that allow fast manipulations can substantially reduce the 
error as well as the running time. Thus, in view of this and consider
ing the simple nature of annealing, there lies a challenge in constructing 
efficient and effective implementations of simulated annealing. 

7.8 CONCLUSIONS 
Since its introduction in 1983, simulated annealing has been applied to a 

fairly large amount of different problems in many different areas. More than 
20 years of experience had led to the following general observations. 

• High-quahty solutions can be obtained but sometimes at the cost of large 
amounts of computation time. 

• In many practical situations, where no tailored algorithms are available, 
the algorithm is a real boon due to its general applicability and its ease 
of implementation. 

So, simulated anneafing is an algorithm that all practical mathematicians and 
computer scientists should have in their toolbox. 

SOURCES OF ADDITIONAL INFORMATION 
Introductory textbooks describing both theoretical and practical issues of 

simulated annealing are given by Aarts and Korst (1989) and Van Laarhoven 
and Aarts (1987). Salamon et al. (2002) present a basic text book on simulated 
annealing with recent improvements for practical implementations and refer
ences to software tools. Azencott (1992) presents a theoretical text book on 
parallelization techniques for simulated annealing for the purpose of speeding 
up the algorithm through effective parallel implementations. 

Early proofs of the asymptotic convergence of the homogeneous Markov 
model for simulated annealing are presented by Aarts and Van Laarhoven 
(1985) and Lundy and Mees (1986). Proofs for the inhomogeneous algorithm 
have been pubhshed by Connors and Kumar (1987), Gidas (1985), and Mitra 
et al. (1986). Hajek (1988) was the first to present necessary and sufficient 
conditions for the asymptotic convergence of simulated annealing. Anily and 
Federgruen (1987) present theoretical results on the convergence of simulated 
annealing for a set of acceptance probabilities that are more general than the 
classical Metropolis acceptance probabilities. A comprehensive review of the 
theory of simulated annealing is given by Romeo and Sangiovanni-Vincentelli 
(1991). 

Strenski and Kirkpatrick (1991) present an early analysis of the finite-time 
behavior of simulated anneafing for various cooling schedules. Steinhofel et al. 
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(1998) present a comparative study in which they investigate the performance 
of simulated annealing for different coohng schedules when applied to job 
shop scheduhng. Nourani and Andersen (1998) present a comparative study 
in which they investigate the performance of simulated annealing with cool
ing schedules applying different types of decrement functions for lowering the 
value of the control parameter. Andersen (1996) elaborates on the thermody-
namical analysis of finite-time implementations of simulated annealing. Orosz 
and Jacobson (2002) study the finite-time behavior of a special variant of sim
ulated annealing in which the value of the control parameters is kept constant 
during the annealing process. Park and Kim (1998) present a systematic ap
proach to the problem of choosing appropriate values for the parameters in a 
coohng schedule. 

Vidal (1993) presents an edited collection of papers on practical aspects of 
simulated anneahng, ranging from empirical studies of coohng schedules up 
to implementation issues of simulated annealing for problems in engineering 
and planning. Eglese (1990) presents a survey of the application of simulated 
annealing to problems in operations research. Collins et al. (1988) present 
an annotated bibliography with more than a thousand references to papers on 
simulated annealing. It is organized in two parts; one on the theory, and the 
other on apphcations. The applications range from graph-theoretic problems 
up to problems in engineering, biology, and chemistry. Fox (1993) discusses 
the integration of simulated annealing with other local search heuristics such 
as tabu search and genetic algorithms. 
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8.1 INTRODUCTION 
Variable Neighborhood Search (VNS) is a recent metaheuristic, or frame

work for building heuristics, which exploits systematically the idea of neigh
borhood change, both in the descent to local minima and in the escape from the 
valleys which contain them. In this tutorial we first present the ingredients of 
VNS, i.e. Variable Neighborhood Descent (VND) and Reduced VNS (RVNS) 
followed by the basic and then the general scheme of VNS itself which contain 
both of them. Extensions are presented, in particular Skewed VNS (SVNS) 
which enhances exploration of far-away valleys and Variable Neighborhood 
Decomposition Search (VNDS), a two-level scheme for solution of large in
stances of various problems. In each case, we present the scheme, some illus
trative examples and questions to be addressed in order to obtain an efficient 
implementation. 

Let us consider a combinatorial or global optimization problem 

min/(x) (8.1) 

subject to 
xeX (8.2) 

where f{x) is the objective function to be minimized and X the set oi feasible 
solutions. A solution x* e X is optimal if 

fix*) < fix), VxeX (8.3) 

An exact algorithm for problem (8.1)-(8.2), if one exists, finds an optimal 
solution X*, together with the proof of its optimality, or shows that there is no 
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feasible solution, i.e. X = 0. Moreover, in practice, the time to do so should 
be finite (and not too large); if one deals with a continuous function one must 
admit a degree of tolerance, i.e. stop when a feasible solution x* has been found 
such that 

f(x*)<fix)-^s, WxeX (8.4) 

or 

< 6, Vx e X (8.5) 

for some small positive £. 
Numerous instances of problems of the form (8.1)-(8.2), arising in Opera

tional Research and other fields, are too large for an exact solution to be found 
in reasonable time. It is well known from complexity theory (Garey and John
son, 1979; Papadimitriou, 1994) that thousands of problems are NP-hard, that 
no algorithm with a number of steps polynomial in the size of the instances is 
known and that finding one for any such problem would entail obtaining one 
for any and all of them. Moreover, in some cases where a problem admits a 
polynomial algorithm, the power of this polynomial may be so large that real
istic size instances cannot be solved in reasonable time in the worst case, and 
sometimes also in the average case or most of the time. 

So one is often forced to resort to heuristics, which yield quickly an ap
proximate solution, or sometimes an optimal solution but without proof of its 
optimahty. Some of these heuristics have a worst-case guarantee, i.e. the solu
tion Xh obtained satisfies 

—— < ̂ , Wx e X (8.6) 
f(xh) 

for some s, which is however rarely small. Moreover, this s is usually much 
larger than the error observed in practice and may therefore be a bad guide in 
selecting a heuristic. In addition to avoiding excessive computing time, heuris
tics address another problem: local optima. A local optimum xi of (8.1)-(8.2) 
is such that 

f(xL)<fix). 'ixeNixL)nX (8.7) 

where N(xi) denotes a neighborhood of Xi (ways to define such a neighbor
hood will be discussed below). If there are many local minima, the range of 
values they span may be large. Moreover, the globally optimum value /(;c*) 
may differ substantially from the average value of a local minimum, or even 
from the best such value among many, obtained by some simple heuristic (a 
phenomenon called the Tchebycheff catastrophe: see Baum, 1986). There are, 
however, many ways to get out of local optima and, more precisely, the valleys 
which contain them (or set of solutions from which the descent method under 
consideration leads to them). 
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Metaheuristics are general framework to build heuristics for combinatorial 
and global optimization problems. For discussion of the best-known of them 
the reader is referred to the books of surveys edited by Reeves (1993), Glover 
and Kochenberger (2003) as well as to the tutorials of the present volume. 
Some of the many successful appHcations of metaheuristics are also mentioned 
there. 

Variable Neighborhood Search (Mladenovic and Hansen, 1997; Hansen and 
Mladenovic, 1999, 2001c, 2003) is a recent metaheuristic which systematically 
exploits the idea of neighborhood change, both in descent to local minima and 
in escape from the valleys which contain them. It exploits systematically the 
following facts. 

FACT 1 A local minimum with respect to one neighborhood structure is not 
necessarily so for another; 

FACT 2 A global minimum is a local minimum with respect to all possible 
neighborhood structures. 

FACT 3 For many problems local minima with respect to one or several neigh
borhoods are relatively close to each other 

This last observation, which is empirical, implies that a local optimum often 
provides some information about the global one. This may for instance be 
several variables with the same value in both. However, it is usually not known 
which ones are such. An organized study of the neighborhood of this local 
optimum is therefore in order, until a better one is found. 

Unlike many other metaheuristics, the basic schemes of VNS and its exten
sions are simple and require few, and sometimes no, parameters. Therefore, 
in addition to providing very good solutions, often in simpler ways than other 
methods, VNS gives insight into the reasons for such a performance, which in 
turn can lead to more efficient and sophisticated implementations. 

The tutorial is organized as follows. In the next section, we examine the 
preliminary problem of gathering information about the problem under study, 
and evaluating it. In Section 8.3 the first ingredient of VNS, Variable Neigh
borhood Descent (VND), which is mostly or entirely deterministic, is studied. 
Section 8.4 is devoted to the second ingredient. Reduced Variable Neighbor
hood Search (RVNS), which is stochastic. Both ingredients are merged in 
the basic and the general VNS schemes, described in Section 8.5. Extensions 
are then considered. Skewed Variable Neighborhood Search (SVNS), which 
addresses the problem of getting out of very large valleys is discussed in Sec
tion 8.6. Very large instances of many problems cannot be solved globally in 
reasonable time; Variable Neighborhood Decomposition Search (VNDS) stud
ied in Section 8.7 is a two-level scheme which merges VNS with successive 
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approximation (including a two-level VNS). Various tools for analyzing in de
tail the performance of a VNS heuristic, and then streamlining it, are presented 
in Section 8.8. They include distance-to-target diagrams and valley profiles. 
In each of these sections basic schemes, or tools, are illustrated by examples 
from papers by a variety of authors. Questions to be considered in order to get 
an efficient implementation of VNS are also systematically fisted. Promising 
areas of research are outfined in Section 8.9. Brief conclusions complete the 
tutorial in Section 8.10. Finally, sources of further information are fisted. 

8.2 PRELIMINARIES: DOCUMENTATION 
Once a problem of the form (8.1)-(8.2) has been selected for study and ap

proximate solution by VNS, a preliminary step is to gather in a thorough way 
the papers written about it or closely related problems. This may be a diffi
cult task as papers are often numerous, dispersed among many journals and 
volumes of proceedings and the problem may appear (usually under different 
names) in several fields. Tools such as the ISI Web of Knowledge, NEC Re
search 's Citeseer or even general web browsers such as Google may prove to 
be very useful. 

There are several reasons for studying the literature on the selected problem: 

(i) Evaluating its difficulty. Is it NP-hard? Is it strongly NP-hardl (Does 
it hence admit no fully polynomial approximation scheme?) If it is in 
P, what is the complexity of the best-known exact algorithm, and is it 
sufficiently low for realistic instances to be solvable in reasonable time? 

(ii) Evaluating the performance of previous algorithms. Are there some in
stances of (preferably real-world) data for the problem available (e.g. at 
http://www.informs.org/Resources/Resources/Problem_Instances/)? And 
what are the largest instances solved exactly? 

(iii) Evaluating the performance of previous heuristics. Which metaheuris-
tics have been appfied to this problem? What are the performances of the 
resulting heuristics, in terms of size of problems solved, error and com
puting time (assuming comparison among computing environments, if 
needed, can be done in a fairly realistic way)? 

(iv) What steps are used in the heuristics already proposed? What are the 
corresponding neighborhoods of the current solution? Are codes for 
these heuristics available? Are codes for simple descent methods avail
able? 

The role of question (i) is to help to assess the need for a VNS (or other) 
heuristic for the problem considered. Questions (ii) and (iii) aim at obtain
ing a benchmark to evaluate the performance of the VNS heuristic when it is 
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Initialization. 

Choose / , X, neighborhood structure N{x), initial solution x; 

Current step (Repeat). 

(1) Findx' = argmin^gyv(^)/(x); 

(2) If /(jc') < / (x ) set x' -(r- x" and iterate; otherwise, stop. 

Figure 8.1. Steepest descent heuristic. 

designed and implemented: a good heuristic should obtain optimal solutions 
for most and preferably all instances solved by an exact algorithm (which suf
fers from the additional burden of having to prove optimality). Moreover, the 
new heuristic should do as well as previous ones on most or all instances and 
substantially better than them on quite a few instances to be viewed as a real 
progress (doing slightly better on a few instances is not sufficient). 

Question (iv) aims at providing ingredients for the VNS heuristic, notably 
in its VND component; it also inquires indirectly about directions not yet ex
plored. As a by-product, it raises the question of possible re-use of software, 
which is reasonable for standard steps: for example, a descent with Newton's 
method or a variant thereof. 

8.3 VARIABLE NEIGHBORHOOD DESCENT 
A steepest descent heuristic (known also as best improvement local search) 

consists of choosing an initial solution ;c, finding a direction of steepest de
scent from X, within a neighborhood N{x), and moving to the minimum of 
f{x) within N{x) along that direction; if there is no direction of descent, the 
heuristic stops, and otherwise it is iterated. This set of rules is summarized in 
Figure 8.1. 

Observe that a neighborhood structure N{x) is defined for all .x € X; in 
discrete optimization problems it usually consists of all vectors obtained from 
X by some simple modification, e.g. complementing one or two components 
of a 0-1 vector. Then, at each step, the neighborhood N{x) of x is explored 
completely. As this may be time-consuming, an alternative is to use ihQ first 
descent heuristic. Vectors x' e N{x) are then enumerated systematically and 
a move is made as soon as a descent direction is found. This is summarized in 
Figure 8.2. 

VND is based on Fact 1 of Section 8.1, i.e. a local optimum for a first type of 
move X <- x' (or heuristic, or within the neighborhood Â i (JC)) is not necessary 
for another type of move x <r- x (within neighborhood Niix)). It may thus 



216 HANSEN AND MLADENOVIC 

Initialization, 
Choose / , X, neighborhood structure N{x), initial solution x\ Current step (Repeat). 
(1) Find first solution x' e N(x); 
(2) If f(x^) > fix), find next solution x^^ e N(x); set x^ <- x" and iterate (2); otherwise, set 
X <- x̂  and iterate (1); 
(3) If all solutions of N{x) have been considered, stop. 

Figure 8.2. First descent heuristic. 

be advantageous to combine descent heuristics. This leads to the basic VND 
scheme presented in Figure 8.3. 

Caution should be exercised when applying that scheme. In particular, one 
should consider the following questions: 

(i) What complexity do the different moves have? 

(ii) What is the best order in applying them? 

(iii) Are the moves considered sufficient to ensure a thorough exploration of 
the region containing xl 

(iv) How precise a solution is desired? 

Question (i) aims at selecting and ranking moves: if they involve too many 
elementary changes (e.g. complementing three components or more of a 0-1 
vector), the resulting heuristic may be very slow and often take more time than 
an exact algorithm on small- or medium-sized examples. 

Question (ii) also bears upon computing times in relation to the quahty of 
solutions obtained. A frequent implementation consists of ranking moves by 
order of complexity of their application (which is often synonymous with by 
size of their neighborhoods \Ni{x)\), and retuming to the first one each time a 
direction of descent is found and a step made in that direction. Altematively, 
all moves may be applied in sequence as long as descent is made for some 
neighborhood in the series. 

Question (iii) is a crucial one: for some problems elementary moves are not 
sufficient to leave a narrow valley, and heuristics using them only can give very 
poor results. This is illustrated in Example 8.2 below. 

Finally, the precision desired, as asked for in question (iv), will depend upon 
whether VND is used alone or within some larger framework, such as VNS 
itself. In the former case, one will strive to obtain the best solution possible 
within the allocated computing time; in the latter, one may prefer to get a good 
solution fairly quickly by the deterministic VND and to improve it later by 
faster stochastic search in VNS. 
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Initialization. 
Select the set of neighborhood structures N^, fox I = 1 , . . . , ^max. that will be used in the 
descent; find an initial solution x (or apply the rules to a given x); 
Repeat the following sequence until no improvement is obtained: 
(l)Set€ <- 1; 
(2) Repeat the following steps until i = ^max" 
(a) Exploration of neighborhood. 
Find the best neighbor x^ of JC (X^ e Ni(x)y, 
(b) Move or not. 
If the solution x^ thus obtained is better than JC, set x <- x^ and i ^^ I; otherwise, set € ^^ l + l; 

Figure 8.3. Steps of the basic VND. 

EXAMPLE 8.1 (SIMPLE PLANT LOCATION) (Forasurvey, see Comuejols 
et al, 1990). The simple (or uncapacitated) plant location problem consists of 
locating a set of facilities i among a given set lofm potential locations, with 
fixed costs f, in order to minimize total costs for satisfying the demand of a 
given set of users J with delivery costs Cij, i E I, j e J. It is expressed as 
follows: 

in zp = Y^ fyi + XIZ] ^'J^'J ^^'^^ mm 
i=\ i=\ j = \ 

S.t. 

J]x,, = l, Vje J (8.9) 
i=l 

yi-Xij > 0 , W G / , V j e / (8.10) 

y .e iO, 1}, V / G / (8.11) 

Xij > 0 , V/ € /, Vj e J (8.12) 

where yt = 1 if a facility is located at i, and 0 otherwise; Xij = 1 if demand 
of user j is satisfied from facility i and 0 otherwise. Note that for fixed yi, the 
best solution is defined by 

( 1 if dj = min̂ î ^̂ ::! cij (v îth minimum index i in case of ties) 
0 otherwise 

Therefore, neighborhoods can be defined on the yi: for example, by Ham-
ming distance (or number of components with complementary values). A first 
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heuristic, "greedy", proceeds by opening a facility i with minimum total cost 

ft-^J2<^tj = mm /<+E' (8.13) 

then letting 
Crj = min Qy, Vy (8,14) 

i\yi=\ 

computing the gains gi obtained by opening a facility at i 

gi = J2max{c,y - Cij.O) - // (8.15) 

and iteratively opening the facility for which the gain is larger, as long as it is 
positive. Each iteration takes 0(mn) time. 

Once the greedy heuristic has been applied, an improved solution may be 
obtained by the interchange heuristic which proceeds iteratively to the relo
cation of one facility at a time in the most profitable way. With an efficient 
implementation, the idea of which was suggested by Whitaker (1983) for the 
closely related p-median problem, an iteration of interchange can also be made 
in 0(mn) time. 

Applying in tum Greedy and Interchange is a simple case of VND. Further 
moves in which one facility would be closed and two opened, or two closed and 
one opened, or two opened and two closed would be too costly if all possible 
exchanges are examined. 

EXAMPLE 8.2 (MINIMUM SUM-OF-SQUARES CLUSTERING) Given N 
points ai G R^ the minimum sum-of-squares clustering problem consists of 
partitioning them in M classes (or clusters) Cj such as to minimize the sum of 
squared distances between the points and the centroids J/ of their clusters: 

m 

min Y, E ll«^-^'ll' (8-16) 

where 

^^^^ i:aeeCi 

and ||.|| denotes the Euclidean norm. 
Traditional heuristics for minimum sum-of-squares clustering are 

• H-Means, which proceeds from an initial partition by moving one entity 
Xi from its cluster to another one, in a greedy way, until no further move 
decreases the objective function value, and 
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• K-Means, which proceeds from an initial partition by, altematingly, find
ing the centroids of its clusters, and reassigning entities to the closest 
centroid, until stabiHty is attained. 

Computational experiments (Hansen and Mladenovic, 2001b) show that 
both H-Means and K-Means may lead to very poor results for instances with 
large M and N (the relative error being sometimes greater than 100%). This is 
due to bad exploration of X, or in other words, to difficulties in leaving valleys. 
A new "jump" move, defined as the displacement of a centroid to a point ai 
which does not coincide with a centroid, leads to a new VND heuristic, called 
J-Means, which improves very substantially on both H-Means and K-Means. 

8.4 REDUCED VARIABLE NEIGHBORHOOD 
SEARCH 

Assume a local minimum x of f has been reached. One would then hke 
to leave its valley, and find another deeper one. In the standard versions of 
Variable Neighborhood Search, no previous knowledge of the landscape is as
sumed, or exploited. (Note that interesting hybrid techniques could be built, 
using also values of f{x) at previous iteration points x). Then, the questions 
to be asked are 

(i) in which direction to go? 

(ii) how far? 

(iii) how should one modify moves if they are not successful? 

Question (i) bears upon the possibility of reaching any feasible point x e X, 
or every valley; the simplest answer is to choose a direction at random. For 
problems in 0-1 variables this will amount to complementing some variables; 
for continuous Euclidean problems, drawing angular coefficients at random 
(or, in other words, choosing at random a point on the unit ball around x) takes 
all points of X into account. 

Question (ii) is crucial. Indeed one wants to exploit to the Hmit Fact 2 (Sec
tion 8.1): i.e., in many combinatorial and global optimization problems, local 
optima tend to be close one to another and situated in one (or sometimes sev
eral) small parts of X. So once a local optimum has been reached, it contains 
implicit information about close better, and perhaps globally optimum, ones. 
It is then natural to explore first its vicinity. But, if the valley surrounding the 
local optimum x is large, this may not be sufficient, and what to do next is 
asked for in question (iii). Again, a natural answer is to go further. 

These aims are pursued in the reduced VNS, see Figure 8.4. A set of neigh
borhoods Ni(x), N2{x),,.., Nic^^^(x) will be considered around the current 
point X (which may be or not a local optimum). Usually, these neighborhoods 
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Initialization. 
Select the set of neighborhood structures J\f/^, for k = 1 , . . . , /:max» that will be used in the 
search; find an initial solution x\ choose a stopping condition; 
Repeat the following sequence until the stopping condition is met: 
(1) Set it ^ 1; 
(2) Repeat the following steps until k = /:max-
(a) Shaking. Generate a point x^ at random from the kih neighborhood of x (x^ e Af/dx)); 
(b) Move or not. If this point is better than the incumbent, move there (x <- x^), and continue 
the search with A/i (k <- I); otherwise, set /: <- k + I; 

Figure 8.4. Steps of the reduced VNS. 

will be nested, i.e. each one contains the previous. Then a point is chosen at 
random in the first neighborhood. If its value is better than that of the incum
bent (i.e. fix') < fix)), the search is recentered there ix <- x'). Otherwise, 
one proceeds to the next neighborhood. After all neighborhoods have been 
considered, one begins again with the first, until a stopping condition is satis
fied (usually it will be maximum computing time since the last improvement, 
or maximum number of iterations). 

Due to the nestedness property, the size of successive neighborhoods will be 
increasing. Therefore one will explore more thoroughly close neighborhoods 
of X than farther ones, but nevertheless search within these when no further 
improvements are observed within the first, smaller ones. 

EXAMPLE 8.3 (/7-MEDIAN) (For a survey, see Labbe et aL, 1995). This is 
a location problem very similar to Simple Plant Location. The differences are 
that there are no fixed costs, and that the number of facilities to be opened is 
set at a given value p. It is expressed as follows: 

m n 

mm i" EE^'V^'V (8.18) 
i=\ 7 = 1 

subject to 

E^'7 = 1' Vy (8.19) 
/=i 

yi-Xij > 0, ViJ (8.20) 
m 

J^yi = p (8.21) 

Xij,yi e {0,1} (8.22) 
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Table 8.1. 5934-customer p-median problem. 

p 

100 
200 
300 
400 
500 
700 
800 
900 

1000 

Average 

Obj. value 

(best known) 

2733 817.25 
1809 064.38 
1394715.12 
1145 669.38 
974275.31 
752 068.38 
676 846.12 
613 367.44 
558 802.38 

FT 

6637.48 
14966.05 
20127.91 
23 630.95 
29441.97 
36159.45 
38 887.40 
41 607.78 
44176.27 

28 403.90 

CPU times 

RVNS 

510.20 
663.69 
541.76 
618.62 
954.10 
768.84 
813.38 
731.71 
742.70 

705.00 

VNDS 

6087.75 
14948.37 
17477.51 
22283.04 
10979.77 
32249.00 
20 371.81 
27060.09 
26616.96 

19 786.00 

FI 

0.36 
0.79 
0.65 
0.82 
0.98 
0.64 
0.61 
0.55 
0.73 

0.68 

% Error 

RVNS 

0.15 
0.36 
0.51 
0.59 
0.51 
0.50 
0.53 
0.53 
0.66 

0.48 

VNDS 

0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 
0.00 

0.00 

The Greedy and Interchange heuristics described above for Simple Plant Lo
cation are easily adapted to the p-median problem and, in fact, the latter was 
proposed by Teitz and Bart (1968). 

Fast interchange, using Whitaker's (1983) data structure, applies here also 
(Hansen and Mladenovic, 1997). Refinements have recently been proposed by 
Resende and Wemeck (2003). A comparison between that approach and RVNS 
is made in Hansen et al. (2001), and the results are summarized in Table 8.1. It 
appears that RVNS gives better results than Fast Interchange in 40 times less 
time. 

8.5 BASIC AND GENERAL VARIABLE 
NEIGHBORHOOD SEARCH 

In the previous two sections, we examined how to use variable neighbor
hoods in descent to a local optimum and in finding promising regions for near-
optimal solutions. Merging the tools for both tasks leads to the General Vari
able Neighborhood Search scheme. We first discuss how to combine a local 
search with systematic changes of neighborhoods around the local optimum 
found. We then obtain the Basic VNS scheme presented in Figure 8.5, 

According to this basic scheme, a series of neighborhood structures, which 
define neighborhoods around any point ;t € X of the solution space, are first 
selected. Then the local search is used and leads to a local optimum x. A 
point x' is selected at random within the first neighborhood A/i (x) of x and a 
descent from x' is done with the local search routine. This leads to a new local 
minimum x". At this point, three outcomes are possible: (i) x" = x, i.e. one 
is again at the bottom of the same valley; in this case the procedure is iterated 
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Initialization. Select the set of neighborhood structures A/]t, for /: = 1 , . . . , ^max» that will be 
used in the search; find an initial solution x\ choose a stopping condition; 
Repeat the following sequence until the stopping condition is met: 
{\)Sak <- 1; 
(2) Repeat the following steps until k = /:max' 
(a) Shaking. Generate a point x^ at random from the kth neighborhood of ^ (x^ e Nk{x))\ 
(b) Local search. Apply some local search method with x' as initial solution; denote with x" 
the so obtained local optimum; 
(c) Move or not. If the local optimum x'^ is better than the incumbent x, move there {x <- x^^), 
and continue the search with A/i (A: <~ 1); otherwise, set /: <- /: + 1; 

Figure 8.5. Steps of the basic VNS. 

using the next neighborhood Mk{x), k >2\ (ii) x'' ^ x but f{x'^) > fix), i.e. 
another local optimum has been found, which is not better than the previous 
best solution (or incumbent); in this case too the procedure is iterated using 
the next neighborhood; (iii) x^^ 7̂  x and /(JC^O < / U ) - i-^-. another local 
optimum, better than the incumbent has been found; in this case the search 
is recentered around x^^ and begins again with the first neighborhood. Should 
the last neighborhood be reached without a solution better than the incumbent 
being found, the search begins again at the first neighborhood J\f\ (x) until a 
stopping condition, e.g. a maximum time or maximum number of iterations or 
maximum number of iterations since the last improvement, is satisfied. 

If instead of simple local search, one uses VND and if one improves the 
initial solution found by reduced VNS, one obtains the general VNS scheme, 
see Figure 8.6. 

Several questions about selection of neighborhood structures are in order: 

• What properties of the neighborhoods are mandatory for the resulting 
scheme to be able to find a globally optimal or near-optimal solution? 

• What properties of the neighborhoods will favor finding a near-optimal 
solution? 

• Should neighborhoods be nested? Otherwise how should they be or
dered? 

• What are desirable properties of the sizes of neighborhoods? 

The first two questions bear upon the ability of the VNS heuristic to find the 
best valleys, and to do so fairly quickly. To avoid being blocked in a valley, 
while there may be deeper ones, the union of the neighborhoods around any 
feasible solution x should contain the whole feasible set: 

X c Af,(x) UMCx) U . . . UATkix) VxeX 
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Initialization, Select the set of neighborhood structures A^, for /: = 1 , . . . , /:max» that will be 

used in the shaking phase, and the set of neighborhood structures N^iox t = \,,.,, ^max that 

will be used in the local search; find an initial solution jc and improve it by using RVNS; choose 

a stopping condition; 

Repeat the following sequence until the stopping condition is met: 

(l)Set)t ^ 1; 

(2) Repeat the following steps until k = /:max.' 

(a) Shaking. Generate a point x^ at random from the kih neighborhood J\fjc{x) of x; 

(b) Local search by VND, 

(hi) Sett ^ 1; 

(b2) Repeat the following steps until i = €max; 

• Exploration of neighborhood. Find the best neighbor x^^ of x̂  in Ni{x')\ 

' Move or not. If f(x^^) < f{x') stix' <~ x" and t ^^ \\ otherwise set € ^^ t + \\ 

(c) Move or not. If this local optimum is better than the incumbent, move there {x ^ x'^), and 

continue the search with A/i {k ^^ \)\ otherwise, set ^ ê- /: + 1; 

Figure 8.6. Steps of the general VNS. 

These sets may cover X without necessarily partitioning it, which is easier to 
implement, e.g. when using nested neighborhoods, i.e. 

mx) c mx) c ... c A4,,,(x) X c A4„.ax(̂ ) v^ G X 

If these properties do not hold, one might still be able to explore X com-
pletely, by traversing small neighborhoods around points on some trajectory, 
but it is no longer guaranteed. To illustrate, as mentioned before, in minimum 
sum-of-squares clustering, the neighborhoods defined by moving an entity (or 
even a few entities) from one cluster to another one are insufficient to get out 
of many local optima. Moving centers of clusters does not pose a similar prob
lem. 

Nested neighborhoods are easily obtained for many combinatorial problems 
by defining a first neighborhood A/i (x) by a type of move (e.g. two-opt in the 
traveling salesman problem) and then iterating it k times to obtain neighbor
hoods Mk{x) for ^ = 2 , . . . , m̂ax- They have the property that their sizes are 
increasing. Therefore if, as is often the case, one goes many times through the 
whole sequence of neighborhoods the first ones will be explored more thor
oughly than the last ones. This is desirable in view of Fact 3: i.e., that local 
optima tend to be close one from another. 

Restricting moves to the feasible set X may be too constraining, particularly 
if this set is disconnected. Introducing some or all constraints in the objective 
function with Lagrangian multipliers, allows moving to infeasible solutions. 
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A variant of this idea is to penalize infeasibilities, such as pairs of adjacent 
vertices to which the same color is assigned in graph coloring: see Zufferey et 
al. (2003). 

EXAMPLE 8.4 (SCHEDULING WORKOVER RIGS) Many oil wells in on
shore fields rely on artificial lift methods. Maintenance services such as clean
ing and others, which are essential to these wells, are performed by workover 
rigs. They are slow mobile units and, due to their high operation costs, there 
are relatively few workover rigs when compared with the number of wells de
manding service. The problem of scheduling workover rigs consists in finding 
the best schedule Si (i = 1 , . . . , mj of the m workover rigs to attend all wells 
demanding maintenance services, so as to minimize the oil production loss 
(production before maintenance being reduced). 

In Aloise et al. (2003) a basic VNS heuristic is developed for solving the 
scheduling of workover rigs problem (WRP). Initial schedule Si (where Si is 
an ordered set of wells serviced by workover rig /) is obtained by a greedy 
constructive heuristic. For the shaking step k^^^ = 9 neighborhoods are con
structed: 

1 Swap routes (SS): the wells and the associated routes assigned to two 
workover rigs are interchanged; 

2 Swap wells from the same workover rig (SWSW): the order in which two 
wells are serviced by the same rig is swapped; 

3 Swap wells from different workover rig (SWDW): two wells assigned to 
two different workover rigs are swapped; 

4 Add/drop (AD): a well assigned to a workover rig is reassigned to any 
position of the schedule of another workover rig; 

5 (SWSW)^: apply twice the SWSW move; 

6 (SWDW)^: apply twice the SWDW move; 

7 (SWDW)^: apply three times the SWDW move; 

8 (AD)^: successively apply two (AD) moves; 

9 (AD)-̂ : successively apply three (AD) moves. 

For local search, the neighborhood consists of all possible exchanges of 
pairs of wells, i.e. the union of (SWSW) and (SWDW) from above is used. 

A basic VNS is compared with the genetic algorithm, the greedy random
ized adaptive procedure (GRASP) and with two ant colony methods (AS and 
MMAS) on synthetical and real-Hfe problems from Brazilian onshore fields. 
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Table 8,2. Average results with eight workover rigs over 20 runs of each synthetic test problem 
and three possible scenarios (from Aloise et al., 2003). 

Problem GA GRASP AS MMAS 

P-111 16791.87 16602.51 15 813.53 15 815.26 
P-211 20016.14 19726.06 19 048.13 19 051.61 
P-311 20251.93 20094.37 19528.93 19546.10 

VNS 

15 449.50 
18 580.64 
19434.97 

Initialization. Select the set of neighborhood structures A/^, for ^ = 1,. 

used in the search; find an initial solution x and its value f(x); set jcopt 
• • > ^max. that will be 

^ X, /opt -^ fix): 
choose a stopping condition and a parameter value a; 

Repeat the following until the stopping condition is met: 

(1) Set it <- 1; 

(2) Repeat the following steps until k = ^max' 

(a) Shaking. Generate a point x^ at random from the kih neighborhood of x; 

(b) Local search. Apply some local search method with x^ as initial solution; denote with x^^ 

the so obtained local optimum; 

(c) Improvement or not. If f(x^^) < /opt set /opt <— f(x) and Xopt <- x^^', 

(d) Move or not. If fix^^)—ap(x,x^^) < f(x)sQix <-x^^ midk <- 1; otherwise set/: <-k + l. 

Figure 8.7. Steps of the skewed VNS. 

Some results on synthetic data are given in Table 8.2. On 27 possible scenarios 
in generating data sets (denoted by P-111, P-112, P-113, P-121, . . . , P-333), 
VNS was better than others in 85% of the cases and MMAS in 15%. On real-
life problems, results were much better than the gains expected. For example, 
a daily reduction of 109 m-̂  (equivalent to 685.6 bbl) in the production losses 
along 15 days was obtained by VNS compared with Petrobras' previous solu
tion. That leads to a total savings estimated at US$6600 000 a year. 

8.6 SKEWED VARIABLE NEIGHBORHOOD SEARCH 
VNS usually gives solutions better, or as good as, multistart, and much bet

ter ones when there are many local optima. This is due to Fact 3 (of Sec
tion 8.1): many problems have clustered local optima; often, their objective 
function is a globally convex one plus some noise. However, it may happen that 
some instances have several separated and possibly far apart valleys contain
ing near-optimal solutions. If one considers larger and larger neighborhoods, 
the information related to the currently best local optimum dissolves and VNS 
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degenerates into multistart. Moreover, if the current best local optimum is not 
in the deepest valley this information is in part irrelevant. It is therefore of in
terest to modify VNS schemes in order to explore more fully valleys which are 
far away from the incumbent solution. This is done by allowing a recentering 
of the search when a solution close to the best one known, but not necessarily 
as good, is found, provided that it is far from this last solution. The modified 
VNS scheme for this variant, called skewed VNS (SVNS) is presented in Fig
ure 8.7. The relaxed rule for recentering uses an evaluation function Hnear in 
the distance from the incumbent: i.e. f(x^^) is replaced by /(x^O — otp(x, x^^) 
where p(x, x̂ O is the distance from x to x^^ and a a parameter. A metric for the 
distance between solutions is usually easy to find, e.g. the Hamming distance 
when solutions are described by Boolean vectors or the Euclidean distance in 
the continuous case. 

Clearly, more compHcated formulae could be used for recentering; possi
bly, one might take into account known values at points already visited in the 
valley being explored. Questions to be answered when applying SVNS are the 
following: 

• Does the problem under consideration have a roughly convex objective 
function, or are there several far apart deep valleys? 

• How should a be chosen? 

These questions can be answered, to some extent, by first using a multistart 
version of VNS, i.e. starting VNS from various random points and running it 
for a short time. Then one can look at the position of the best local optima 
found and see if they are clustered or dispersed. Further, one can plot values 
in function of distance from the corresponding local optima to the best known 
solution and choose (̂  as a fraction of the average slope. 

EXAMPLE 8.5 (WEIGHTED MAXIMUM SATISFIABILITY) The satisfiability 
problem, in clausal form, consists in determining if a given set of m clauses 
(all in disjunctive or all in conjunctive form) built upon n logical variables 
has a solution or not. The maximum satisfiability problem consists in finding 
a solution satisfying the largest possible number of clauses. In the weighted 
maximum satisfiabihty problem (WMAXSAT) positive weights are assigned to 
the clauses and a solution maximizing the sum of weights of satisfied clauses 
is sought. Results of comparative experiments with VNS and TS heuristics on 
instances having 500 variables, 4500 clauses and three variables per clause, 
in direct or complemented form, are given in Table 8.3 from Hansen et al. 
(2001). It appears that using a restricted neighborhood consisting of a few 
directions of steepest descent or mildest ascent in the Shaking step does not 
improve results, but using this idea in conjunction with SVNS improves notably 
upon results of basic VNS and also upon those of a TS heuristic. 
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Table 8.3. Results for GERAD test problems for WMAXSAT (n = 500). 

Number of instances where 
best solution is found 

Average error in 10 trials (%) 
Best error in 10 trials (%) 
Total number of instances 

VNS 

6 
0.2390 
0.0969 

25 

VNS-low 

4 
0.2702 
0.1077 

25 

SVNS-low 

23 
0.0404 
0.0001 

25 

TS 

5 
0.0630 
0.0457 

25 

8.7 VARIABLE NEIGHBORHOOD DECOMPOSITION 
SEARCH 

The VNDS method (Hansen et al, 2001) extends the basic VNS into a two-
level VNS scheme based upon decomposition of the problem. Its steps are 
presented in Figure 8.8. 

Note that the only difference between the basic VNS and VNDS is in Step 
2(b): instead of applying some local search method in the whole solution space 
S (starting from x' € A4(^)), in VNDS we solve at each iteration a subproblem 
in some subspace V^ c A4(^) with x' e Vk. When the local search used in 
this step is also VNS, the two-level VNS-scheme arises. 

VNDS can be viewed as embedding the classical successive approximation 
scheme in the VNS framework. 

8.8 ANALYZING PERFORMANCE 
When a first VNS heuristic has been obtained and tested, the effort should 

not stop there. Indeed, it is often at this point that the most creative part of 
the development process takes place. It exploits systematically Fact 2 (of the 
Introduction), i.e. that global minima are local minima for all possible neigh
borhoods simultaneously. The contrapositive is that if a solution ;c € X is a 
local minimum (for the current set of neighborhoods) and not a global one there 
are one or several neighborhoods (or moves) to be found, which will bring it 
to this global optimum. 

The study then focuses on instances for which an optimal solution is known 
(or, if none or very few are available, on instances with a presumably optimal 
solution, i.e. the best one found by several heuristics) and compares it with the 
heuristic solution obtained. Visualization is helpful and make take the form 
of a distance-to-target diagram (Hansen and Mladenovic, 2003). Then, the 
heuristic solutions, the optimal one and their symmetric difference (e.g. for 
the traveling salesman problem, TSP for short) are represented onscreen. An 
interactive feature allows one to follow how the heuristic works step by step. 
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Initialization. Select the set of neighborhood structures Afj^, fork = 1 , . . . , /:max. that will be 

used in the search; find an initial solution x; choose a stopping condition; 

Repeat the following sequence until the stopping condition is met: 

( l )Set^ ^ 1; 

(2) Repeat the following steps until k = kmsix-

(a) Shaking. Generate a point x^ at random from the kth neighborhood of ;c (x^ e A/i:(x)); in 

other words, let j be a set of k solution attributes present in x^ but not inx (y = x^ \ x). 

(b) Local search. Find a local optimum in the space of y either by inspection or by some 

heuristic; denote the best solution found with y^ and with x^^ the corresponding solution in the 

whole space S (x^^ = (JĈ  \ >;) U y^, 

(c) Move ornot. If the solution thus obtained is better than the incumbent, move there (x <- x'^), 

and continue the search withM\ ( / :<-!) ; otherwise, set /: ^^ k + \\ 

Figure 8.8. Steps of the basic VNDS. 

The information thus gathered is much more detailed than what one would 
get just from objective values and computer times if, as is often the case, the 
heuristic is viewed as a black box. For instance, this clearly shows that two-opt 
is not sufficient to get a good solution for the TSP, that moves involving three 
or four edges are needed and that those edges leading to an improvement may 
be far apart along the tour. For another appHcation of VNS to the TSP see 
Burke etal. (1999). 

Similarly, for location problems, one can focus on those facilities which are 
not at their optimal location and study why, in terms of distributions of nearby 
users. 

Another point is to study how to get out of a large valley if there exists 
another promising one. Valley (or mountain) profiles are then useful (Hansen 
et al, 2001). They are obtained by drawing many points x^ at random within 
nested neighborhoods Afi(x), Af2(x),... (or, which is equivalent, at increasing 
distance of a local minimum x) then performing one VND descent and plotting 
probabilities to get back to x, to get to another local minimum x^^ with a value 
/(•̂ ^O ^ fM or to get to an improved local minimum x^ with f(x^^) < 
fix). Alternatively, one may study the probabilities to go in the direction of 
X, i.e. pix, x̂ O S pi^, -̂ 0 or towards another valley i.e. p{x, x̂ O > P(^^ -̂ O-

8.9 PROMISING AREAS OF RESEARCH 

Research on VNS and its applications is currently very active. We review 
some of the promising areas in this section; these include a few which are 
barely explored yet. 
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A first set of areas concerns enhancements of the VNS basic scheme and 
ways to make various steps more efficient. 

(a) Initialization. Both VND and VNS, as many other heuristics, require an 
initial solution. Two questions then arise: How best to choose it? and 
Does it matter? For instance, many initialization rules have been pro
posed for the /:-Means heuristic for minimum sum-of-squares clustering, 
described above; 25 such rules are compared in Hansen et al. (2003c). 
It appears that while sensitivity of /:-Means to the initial solution is con
siderable (best results being obtained with Ward's hierarchical clustering 
method), VNS results depend very little on the chosen rule. The simplest 
one is thus best. It would be interesting to extend and generalize this re
sult by conducting similar experiments for other problems. 

(b) Inventory of neighborhoods. As mentioned above, a VNS study begins 
by gathering material on neighborhoods used in previous heuristics for 
the problem under study. A systematic study of moves (or neighbor
hoods) used for heuristics for whole classes of problems (e.g. location, 
network design, routing, . . . ) together with the data-structures most ad
equate for their implementation should be of basic interest for VNS as 
well as for other metaheuristics. Several researchers, e.g. Ahuja et al. 
(2000), are working in that direction. 

(c) Distribution of neighborhoods. When applying a general VNS scheme, 
neighborhoods can be used in the local search phase, in the shaking 
phase or in both. A systematic study of their best distribution between 
phases could enhance performance and provide further insight in the so
lution process. In particular, the trade-off between increased work in the 
descent, which provides better local optima, and in shaking which leads 
to better valleys should be focussed upon. 

(d) Ancillary tests. VNS schemes use randomization in their attempts to 
find better solutions. This also avoids possible cycling. However, many 
moves may not lead to any improvement. This suggests the addition 
of an ancillary test (Hansen, 1974, 1975) the role of which is to decide 
if a move should be used or not, in its general or in a restricted form. 
Considering again minimum sum-of-squares clustering, one could try 
to select better the centroid to be removed from the current solution (a 
possible criterion being that its cluster contains a few entities only or is 
close to another centroid) as well as the position where it will be assigned 
(e.g., the location of an entity far from any other centroid and in a fairly 
dense region). 

A second set of areas concems changes to the basic scheme of VNS. 
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(e) Use of memory, VNS in its present form relies only on the best solu
tions currently known to center the search. Knowledge of previous good 
solutions is forgotten, but might be useful to indicate promising regions 
not much explored yet. Also, characteristics common to many or most 
good solutions, such as variables taking the same value in all or most 
such solutions, could be used to better focus the shaking phase. Use of 
memory has been much studied in tabu search and other metaheuristics. 
The challenge for VNS would be to introduce memory while keeping 
simphcity. 

An interesting way to use memory to enhance performance is reactive 
VNS, explored by Braysy (2001) for the vehicle routing problem with 
time windows. If some constraints are hard to satisfy their violation may 
be penalized more frequently than for others in the solution process. 

(f) Parallel VNS. Clearly, there are many natural ways to parallelize VNS 
schemes. A first one, within VND, is to perform local search in parallel. 
A second one, within VNS, is to assign the exploration of each neigh
borhood of the incumbent to a different processor. A third one, within 
VNDS, is to assign a different subproblem to each processor. Lopez et 
al. (2002) explore several options in designing a parallel VNS. 

(g) Hybrids. Several researchers, e.g. Rodriguez et al. (1999), Festa et al. 
(2001), Ribeiro et al. (2001) and Drezner (2003a, 2003b), have com
bined VNS with other metaheuristics for various problems. Again, this 
is not always easy to do without losing VNS's simphcity but may lead to 
excellent results, particulary if the other metaheuristics are very different 
from VNS. 

At a more general, level one might wish to explore combinations of VNS 
with constraint programming, instead of its development within mathe
matical programming as in the applications described above. This could 
be done in two directions: on the one hand, techniques from constraint 
programming could be applied to enhance VND; on the other hand, VNS 
could be applied to constraint programming by minimizing a sum of ar
tificial variables measuring infeasibility and possibly weighted by some 
estimate of the difficulty of satisfying the corresponding constraints. 

A third set of areas concerns new aims for VNS, i.e. non-standard uses. 

(h) Solutions with bounds on the error VNS, as other metaheuristics, most 
often provides near-optimal solutions to combinatorial problems, with
out bounds on their error. So while such solutions may be optimal or 
very close to optimality, this fact cannot be recognized. One approach 
to obtain such bounds is to find with VNS a heuristic solution of the 
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primal problem, deduce from it a solution to the dual (or its continuous 
relaxation) and then improve this dual solution by another application 
of VNS. Moreover, complementary slackness conditions can be used to 
simplify the dual. For problems with a small duality gap this may lead to 
near-optimal solution guaranteed to be very close to optimahty. To illus
trate, recent work of Hansen et al. (2003a) on the simple plant location 
problem gave solutions to instances with up to 15 000 users and 15 000 
possible facilities with an error bounded by 0.05%. 

(i) Using exact algorithms for mixed-integer programming. Sophisticated 
algorithms for mixed-integer programming often contain various phases 
where heuristics are applied. This is illustrated by Desaulniers et al. 
(2001) for the airhne crew scheduHng problem. 

Extending the results described in the previous section in the branch-
and-bound framework led to the solution of exactly SPLP instances with 
up to 7000 users (Hansen et al., 2003a). 

A different approach, called local branching, has been recently proposed 
by Fischetti and Lodi (2003) and Fischetti et al. (2003), both for exact 
and approximate resolution of large mixed-integer programs. At various 
branches in the branch-and-bound tree, cuts (which are not valid in gen
eral) are added; they express that among a given set of 0-1 variables, al
ready at an integer value, only a few may change their value. They thus 
correspond to neighborhoods defined by the Hamming distance. Then 
CPLEX is used to find the optimal solution within the neighborhood and 
in this way feasible solutions are more easily obtained. Improved so
lutions were obtained for a series of large mixed-integer programming 
instances from various sources. 

(j) Artificial intelligence: enhancing graph theory with VNS. VNS, as other 
metaheuristics, has been extensively used to solve a variety of optimiza
tion problems in graph theory. However, it may also be used to enhance 
graph theory per se, following an Artificial Intelligence approach. This 
is done by the AutoGraphiX (AGX) system developed by Caporossi and 
Hansen (2000, 2003). This system considers a graph invariant (i.e. a 
quantity defined for all graphs of the class under study and independent 
of vertex and edge labeling) or a formula involving several invariants 
(which is itself a graph invariant). Then AGX finds extremal or near-
extremal graphs for that invariant parametrizing on a few variables, often 
the order n (or number of vertices) and the size m (of number of edges) 
of the graph. Analyzing automatically or interactively these graphs and 
the corresponding curves of invariant values leads to finding new con
jectures, refuting, corroborating or strengthening existing ones, and ob
taining hints about possible proof from the minimal fist of moves needed 
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to find the extremal graphs. To illustrate, the energy £ of a graph is the 
sum of absolute values of the eigenvalues of its adjacency matrix. The 
following relations were obtained by Caporossi et al. (1999) with AGX: 
E > 2-y/m and E > —, and were easily proved. Over 70 new relations 
have now been obtained, in mathematics and in chemistry. Three ways 
to attain full automation based on the mathematics of principal compo
nent analysis, linear programming and recognition of extremal graphs 
together with formula manipulations are currently being studied. 

8.10 TRICKS OF THE TRADE 
8.10.1 Getting Started 

The purpose of this section is to help students and newcomers in making a 
first very simple version of VNS, not necessarily competitive with later more 
sophisticated versions. Most of the steps are common for implementation of 
other metaheuristics. 

A Step-by-Step Procedure 

1 Familiarization. Think about the problem at hand; in order to under
stand it better, make a simple numerical example and spend some time 
in trying to solve it by hand in your own way. Try to understand why the 
problem is hard and why a heuristic is needed. 

2 Read. Read about the problem and solution methods in the literature. 

3 Test instances. Use your numerical example as a first instance for testing 
your future code, but if it is not large enough, take some data from the 
web, or make a routine for generating random instances. In the second 
case, read how to generate events using uniformly distributed numbers 
from (0,1) interval (each programming language has a statement for 
generating such random numbers). 

4 Data structure. Think about how the solution of the problem will be rep
resented in the memory. Consider two or more presentations of the same 
solution if they can reduce the complexity of some routines, i.e. analyze 
advantages and disadvantages of each possible presentation. 

5 Initial solution. Having a routine for reading or generating the input 
data of the problem, the next step is to obtain an initial solution. For a 
simple version, any random feasible solution may be used, but the usual 
approach is to develop some greedy constructive heuristic, which is not 
hard to do. 
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6 Objective value. Devise a procedure that calculates objective function 
values for a given solution. Notice that at this stage, we already have all 
ingredients for the Monte Carlo method: generation of random solution 
and calculation of objective function value. Obtain the solution of your 
problem by the Monte Carlo heuristic (i.e. repeat steps 5 and 6 many 
times and keep the best one). 

7 Shaking, Create a procedure for shaking. This is a key step of VNS. 
However, it is easy to implement and usually involves only a few lines of 
code. For example, in solving the multi-source Weber problem (see Ex
ample 2), the easiest perturbation of the current solution is to re-allocate 
randomly chosen entity I from the cluster it belongs to another one, also 
chosen at random. In fact, in this case, the shaking step (or jump in the 
kih neighborhood) needs only three lines of code: 

For / = 1 to A: 
a{\ + n ' Rndl) = 1 -f- m • Rndl 

EndFor 

The solution is saved in array a{i) e { 1 , . . . , m} which denotes mem
bership or allocation of entity € (€ = 1 , . . . , n); Rndl and Rndl denote 
random numbers uniformly distributed from the (0,1) interval. Compare 
the results of the obtained reduced VNS (take k^^y^ = 2) with the Monte 
Carlo method. 

8 Local search. Choose an off-the-shelf local search heuristic (or develop 
a new one). In building a new local search, consider several usual moves 
that define the neighborhood of the solution drop, add, swap, inter
change, etc. Also, for the efficiency (speed) of the method, it is im
portant to pay special attention to updating of the incumbent solution. 
In other words, usually it is not necessary to use a procedure for calcu
lating objective function values for each point in the neighborhood, i.e. it 
is possible to get those values by very simple calculation. 

9 Comparison. Include a local search routine into RVNS to get the basic 
VNS, and compare it with other methods from the literature. 

8.10.2 More Tips 

Sometimes basic VNS does not provide very good results. 

1 First vs. best improvement. Compare experimentally first and best im
provement strategies within local search. Previous experience suggest 
the following: if your initial solution is chosen at random, use first im
provement, but if some constructive heuristic is used, use best improve
ment rule. 
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2 Reduce the neighborhood. The cause of bad behavior of any local search 
may be unnecessary visiting to all solutions in the neighborhood. Try to 
identify a ''promising" subset of the neighborhood and visit only them; 
ideally, find a rule that automatically selects solutions from the neigh
borhood whose objective values are not better than the current one. 

3 Intensified shaking. In developing more effective VNS, one must spend 
some time in checking how sensitive is the objective function on small 
change (shake) of the solution. The trade-off between intensification 
and diversification of the search in VNS is balanced in the shaking pro
cedure. For some problem instances completely random jump in the A:th 
neighborhood is too diversified. In such cases, an intensify shaking pro
cedure can be used to increase intensification of the search. For example, 
a ^-interchange neighborhood may be reduced by repeating k times ran
dom add followed by best drop moves. (A special case of intensified 
shaking is the large neighborhood search, where k randomly chosen at
tributes of the solutions are destroyed (dropped), and then the solution is 
re-built in the best way—by some constructive heuristic.) 

4 VND. Analyze several possible neighborhood structures, estimate their 
size, make order of them, i.e. develop VND and replace the local search 
routine with VND to get general VNS. 

5 Experiment with parameter settings. The single parameter of VNS is 
m̂ax5 which should be estimated experimentally. However, usually the 

procedure is not very sensitive on ̂ ^ax and, in order to create a parameter-
free VNS, one can fix its value at the value of some input parameter, 
e.g., for the /7-median (Example 3), ^^ax = p; for the minimum sum-of-
square clustering (Example 2) ^^ax = w. etc. 

8.11 CONCLUSIONS 
The general schemes of VNS have been presented, discussed and illustrated 

by examples. References to many further successful applications are given 
below. In order to evaluate the VNS research program, one needs a list of 
desirable properties of metaheuristics. The following eight are presented in 
Hansen and Mladenovic (2003): 

(i) Simplicity. The metaheuristic should be based on a simple and clear 
principle, which should be largely applicable. 

(ii) Precision. Steps of the metaheuristic should be formulated in precise 
mathematical terms, independent from the possible physical or biologi
cal analogy which was an initial source of inspiration. 
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(iii) Coherence. All steps of heuristics for particular problems should follow 
naturally from the metaheuristic's principle. 

(iv) Efficiency. Heuristics for particular problems should provide optimal or 
near-optimal solutions for all or at least most realistic instances. Prefer
ably, they should find optimal solutions for most problems of bench
marks for which such solutions are known, when available. 

(v) Effectiveness. Heuristics for particular problems should take moderate 
computing time to provide optimal or near-optimal solutions. 

(vi) Robustness. Performance of heuristics should be consistent over a va
riety of instances, i.e. not just fine-tuned to some training set and less 
good elsewhere. 

(vii) User-friendliness. Heuristics should be clearly expressed, easy to under
stand and, most important, easy to use. This implies they should have as 
few parameters as possible and ideally none. 

(viii) Innovation. Preferably, the metaheuristic's principle and/or the effi
ciency and effectiveness of the heuristics derived from it should lead 
to new types of applications. 

As argued there, as well as in the more recent surveys listed below, VNS 
possesses, to a large extent, all of those properties. This has led to heuristics 
among the very best ones for several problems, but more importantly to insight 
into the solution process and some innovative applications. 

SOURCES OF ADDITIONAL INFORMATION 
Some web addresses with sources of information about VNS include 

• http://www.mi.sanu.ac.yuA^NSA^NS.HTM (a working web presentation 
of VNS, developed by Tatjana Davidovic, Ph.D. student at University of 
Belgrade). 

• VNSHeuristic.ull.es (another web page for the VNS designed by Profes
sor's Moreno research group from University of La Laguna). 

• http://www.gerad.ca/en/pubhcations/cahiers.php (choose "search for pa
pers" and in the 'Abstract" box type "Variable Neighborhood Search": 
23 papers for downloading are returned). 

• http://smg.ulb.ac.be (there are several papers on VNS in 
"Preprints" by Hansen, Labbe, Melot, Mladenovic, etc). 

Survey papers. Hansen and Mladenovic (1999, 2001a, 2001c, 2002a, 2002b, 
2003), Hansen et al. (2003c), and Kochetov et al. (2003). 
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9.1 INTRODUCTION 
Constraint satisfaction problems are ubiquitous. A simple example that we 

will use throughout the first half of this chapter is the following scheduling 
problem: Choose employees A or B for each of three tasks, X, Y, Z, subject 
to the work rules that the same employee cannot carry out both tasks X and Y, 
the same employee cannot carry out both tasks Y and Z, and only employee B 
is allowed to carry out task Z. (Many readers will recognize this as a simple 
coloring problem.) 

This is an example of a class of problems known as constraint satisfaction 
problems (CSPs). CSPs consist of a set of variables (e.g. tasks), a domain 
of values (e.g. employees) for each variable, and constraints (e.g. work rules) 
among sets of variables. The constraints specify which combinations of value 
assignments are allowed (e.g. employee A for task X and employee B for task 
Y); these allowed combinations satisfy the constraints. A solution is an as
signment of values to each variable such that all the constraints are satisfied 
(Dechter, 2003; Tsang, 1993). 

We stress that the basic CSP paradigm can be extended in many directions: 
for example, variables can be added dynamically, domains of values can be 
continuous, constraints can have priorities, and solutions can be optimal, not 
merely satisfactory. 

Some examples of constraints are 

• The meeting must start at 6:30. 

• The separation between the soldermasks and nets should be at least 
0.15 mm. 
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• This model only comes in blue and green. 

• This cable will not handle that much traffic. 

• These sequences should align optimally. 

• John prefers not to work on weekends. 

• The demand will probably be for more than five thousand units in Au
gust. 

Some examples of constraint satisfaction or optimization problems are 

• Schedule these employees to cover all the shifts. 

• Optimize the productivity of this manufacturing process. 

• Configure this product to meet my needs. 

• Find any violations of these design criteria. 

• Optimize the use of this sateUite camera. 

• Align these amino acid sequences. 

Many application domains (e.g. design) naturally lend themselves to mod
eling as CSPs. Many forms of reasoning (e.g. temporal reasoning) can be 
viewed as constraint reasoning. Many disciplines (e.g. operations research) 
have been brought to bear on these problems. Many computational "architec
tures" (e.g. neural networks) have been utilized for these problems. Constraint 
programming can solve problems in telecommunications, internet commerce, 
electronics, bioinformatics, transportation, network management, supply chain 
management, and many other fields. 

Here are just a few examples of commercial application of constraint tech
nology: 

• Staff planning: BanqueBuxelles Lambert. 

• Vehicle production optimization: Chrysler Corporation. 

• Planning medical appointments: FREMAP. 

• Task scheduling: Optichrome Computer Systems. 

• Resource allocation: SNCF (French railways). 

• From push to pull manufacturing: Whirlpool. 

• Utility service optimization: Long Island Lighting Company. 
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Figure 9.1. A constraint network representation of a sample constraint satisfaction problem. 

• Intelligent cabling of big buildings: France Telecom. 

• Financial decision support system: Caisse des Depots. 

• Load capacity constraint regulation: Eurocontrol. 

• Planning of satellites missions: Alcatel Espace. 

• Optimization of configuration of telecom equipment: Alcatel CIT. 

• Production scheduling of herbicides: Monsanto. 

• "Just in time" transport and logistics in food industry: Sun Valley. 

• Supply chain management in petroleum industry: ERG Petroli. 

CSPs can be represented as constraint networks, where the variables cor
respond to nodes and the constraints to arcs. The constraint network for our 
sample problem is shown in Figure 9.1. Constraints involving more than two 
variables can be modeled with hypergraphs, but most basic CSP concepts can 
be introduced with binary constraints involving two variables, and that is the 
route we will begin with in this chapter. We will say that a value for one vari
able is consistent with a value for another if the pair of values satisfies the 
binary constraint between them. (This constraint could be the trivial constraint 
that allows all pairs of values; such constraints are not represented by arcs in 
the constraint network.) Note that specifying a domain of values for a variable 
can be viewed as providing a unary constraint on that single variable. 

This chapter will focus on the methods developed in artificial intelligence 
and the approaches embodied in constraint programming languages. Of course, 
this brief chapter can only suggest some of the developments in these fields; 
it is not intended as a survey, only as an introduction. Rather than beginning 
with formal definitions, algorithms, and theorems, we will focus on introduc
ing concepts through examples. 

The constraint programming ideal is this: the programming is declarative; 
we simply state the problem as a CSP and powerful algorithms, provided by 
a constraint library or language, solve the problem. In practice, this ideal has, 
of course, been only partially realized, and expert constraint programmers are 
needed to refine modehng and solving methods for difficult problems. 
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Figure 9.2. Arc consistency propagation. 

9.2 INFERENCE 
Inference methods make implicit constraint information explicit. Inference 

can reduce the effort involved in searching for solutions or even synthesize 
solutions without search. The most common form of inference is known as 
arc consistency. In our sample problem, we can infer that B is not a possible 
value for Y because there is no value for Z that, together with B, satisfies the 
constraint between Y and Z. This can be viewed as making explicit the fact 
that the unary constraint on the variable Y does not allow B. 

This inference process can propagate: after deleting B from the domain of 
Y, there is no value remaining for Y that together with A for X will satisfy the 
constraint between X and Y, therefore we can delete A from the domain of X. 
(See Figure 9.2.) If we repeatedly ehminate inconsistent values in this fash
ion until any value for any variable is consistent with some value for all other 
variables, we have achieved arc consistency. Many algorithms have been de
veloped to achieve arc consistency efficiently (Bessiere et al., 1999; Macworth, 
1977). 

EUminating inconsistent values by achieving arc consistency can greatly re
duce the space we must search through for a solution. Arc consistency methods 
can also be interleaved with search to dynamically reduce the search space, as 
we shall see in the next section. 

Beyond arc consistency fies a broad taxonomy of consistency methods. 
Many of these can be viewed as some form of (/, j)-consistency. A CSP is 
(i, j)-consistent if, given any consistent set of / values for / variables, we can 
find j values for any other j variables, such that the i+j values together satisfy 
all the constraints on the / -j- j variables. Arc consistency is (1, l)-consistency. 
(k — \, l)-consistency, or k-consistency, for successive values of k constitutes 
an important constraint hierarchy (Freuder, 1978). 

More advanced forms of consistency processing often prove impractical ei
ther because of the processing time involved or because of the space require
ments. For example, 3-consistency, otherwise known as path consistency, is 
elegant because it can be shown to ensure that given values for any two vari
ables one can find values that satisfy all the constraints forming any given path 
between these variables in the constraint network. However, achieving path 
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consistency means making implicit binary constraint information explicit, and 
storing this information can become too costly for large problems. 

For this reason, variations on inverse consistency, or (1, j — l)-consistency, 
which can be achieved simply by domain reductions, have attracted some inter
est (Debruyne and Bessiere, 2001). Various forms of learning achieve partial 
^-consistency during search (Dechter, 1990). For example, if we modified our 
sample problem to allow only A for Z, and we tried assigning B to X and A 
to Y during a search for a solution to this problem, we would run into a ''dead 
end": no value would be possible for Z. From that we could leam that the 
constraint between X and Y should be extended to rule out the pair (B, A), 
achieving partial path consistency. 

Interchangeability provides another form of inference, which can also elim
inate values from consideration. Suppose we modify our sample problem to 
add employees C and D who can carry out task X. Values C and D would 
be interchangeable for variable X because in any solution using one we can 
substitute the other. Thus we can eliminate one in our search for solutions 
(and if we want to, just substitute it back into any solutions we find). Just as 
with consistency processing there is a local form of interchangeability that can 
be efficiently computed. In a sense, inconsistency is an extreme form of in-
terchangeabihty; all inconsistent values are interchangeable in the null set of 
solutions that utilize them (Freuder, 1991). 

9.3 MODELING 

Modeling is a critical aspect of constraint satisfaction. Given a user's un
derstanding of a problem, we must determine how to model the problem as a 
constraint satisfaction problem. Some models may be better suited for efficient 
solution than others (Regin, 2001). 

Experienced constraint programmers may add constraints that are redundant 
in the sense that they do not change the set of solutions to the problem, in 
the hope that adding these constraints may still be cost-effective in terms of 
reducing problem solving effort. Added constraints that do eliminate some, but 
not all, of the solutions, may also be useful: for example, to break symmetries 
in the problem. 

Specialized constraints can facilitate the process of modehng problems as 
CSPs, and associated specialized inference methods can again be cost-effective. 
For example, imagine that we have a problem with four tasks, two employees 
who can handle each, but three of these tasks must be undertaken simulta
neously. This temporal constraint can be modeled by three separate binary 
inequality constraints between each pair of these tasks; arc consistency pro
cessing of these constraints will not eliminate any values from their domains. 
On the other hand an ''all-different" constraint, that can apply to more than two 
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variables at a time, not only simplifies the modeling of the problem, but an as
sociated inference method can eliminate all the values from a variable domain, 
proving the problem unsolvable. Specialized constraints may be identified for 
specific problem domains: for example, scheduhng problems. 

It has even proven useful to maintain multiple complete models for a prob
lem ''channeling" the results of constraint processing between the two (Cheng 
et al., 1999). As has been noted, a variety of approaches have been brought 
to bear on constraint satisfaction, and it may prove useful to model part of a 
problem as, for example, an integer programming problem. Insight is emerg
ing into basic modeling issues: for example, binary versus non-binary models 
(Bacchus et al., 2002). 

In practice, modehng can be an iterative process. Users may discover that 
their original specification of the problem was incomplete or incorrect or sim
ply impossible. The problems themselves may change over time. 

9.4 SEARCH 

In order to find solutions we generally need to conduct some form of search. 
One family of search algorithms attempts to build a solution by extending a set 
of consistent values for a subset of the problem variables, repeatedly adding 
a consistent value for one more variable, until a complete solution is reached. 
Another family of algorithms attempts to find a solution by repairing an incon
sistent set of values for all the variables, repeatedly changing an inconsistent 
value for one variable, until a complete solution is reached. (Extension and 
repair techniques can also be combined.) 

Often extension methods are systematic and complete, they will eventually 
try all possibilities, and thus find a solution or determine unsolvabihty, while 
often repair methods are stochastic and incomplete. The hope is that complete
ness can be traded off for efficiency. 

9A.1 Extension 

The classic extension algorithm is backtrack search. Figure 9.3 shows a 
backtrack search tree representing a trace of a backtrack algorithm solving our 
sample problem. 

A depth-first traversal of this tree corresponds to the order in which the 
algorithm tried to fit values into a solution. First the algorithm chose to try 
A for X, then A for Y. At this point it recognized that the choice of A for Y 
was inconsistent with the choice of A for X: it failed to satisfy the constraint 
between X and Y. Thus there was no need to try a choice for Z; instead the 
choice for Y was changed to B. But then B for Z was found to be inconsistent, 
and no other choice was available, so the algorithm ''backed up" to look for 
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Figure 9.3. Backtrack search tree for example problem. 

another choice for Y. None was available so it backed up to try B for X. This 
could be extended to A for Y and finally to B for Z, completing the search. 

Backtrack search can prune away many potential combinations of values 
simply by recognizing when an assignment of values to a subset of the vari
ables is already inconsistent and cannot be extended. However, backtrack 
search is still prone to ''thrashing behavior". A ''wrong decision" early on 
can require an enormous amount of "backing and filhng" before it is corrected. 
Imagine, for example, that there were 100 other variables in our example prob
lem, and, after initially choosing A for X and B for Y, the search algorithm 
tried assigning consistent values to each of those 100 variables before looking 
at Z. When it proved impossible to find a consistent value for Z (assuming the 
search was able to get that far successfully) the algorithm would begin trying 
different combinations of values for all those 100 variables, all in vain. 

A variety of modifications to backtrack search address this problem (Kon-
drak and van Beek, 1997). They all come with their own overhead, but the 
search effort savings can make the overhead worthwhile. 

Heuristics can guide the search order. For example, the "minimal domain 
size" heuristic suggests that as we attempt to extend a partial solution we con
sider the variables in order of increasing domain size; the motivation there is 
that we are more likely to fail with fewer values to choose from, and it is bet
ter to encounter failure higher in the search tree than lower down when it can 
induce more thrashing behavior. Using this heuristic in our example we would 
have first chosen B for Z, then proceeded to a solution without having to back 
up to a prior level in the search tree. While "fail first" makes sense for the order 
in which to consider the variables, "succeed first" makes sense for the order in 
which to try the values for the variables. 
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Various forms of inference can be used prospectively to prune the search 
space. For example, search choices can be interleaved with arc consistency 
maintenance. In our example, if we tried to restore arc consistency after choos
ing A for X, we would eliminate B from the domain of Z, leaving it empty. At 
this point we would know that A for X was doomed to failure and could imme
diately move on to B. Even when failure is not immediate, "look ahead" meth
ods that infer implications of search choices can prune the remaining search 
space. Furthermore, "dynamic" search order heuristics can be informed by 
this pruning: for example, the minimal domain size heuristic can be based on 
the size of the domains after look-ahead pruning. Maintaining arc consistency 
is an extremely effective and widely used technique (Sabin and Freuder, 1997). 

Memory can direct various forms of "intelligent backtracking" (Dechter and 
Frost, 2002). For example, suppose in our example for some reason our search 
heuristics directed us to start the search by choosing B for Y followed by A for 
X. Of course B the only choice for Z would then fail. Basic backtrack search 
would back up "chronologically" to then try B for X. However, if the algorithm 
"remembers" that failure to find a value for Z was based solely on conflict with 
the choice for Y, it can "jump back" to try the alternative value A at the Y 
level in the search tree without unnecessarily trying B for X. The benefits of 
maintaining arc consistency overlap with those of intelligent backtracking, and 
the former may make the latter unnecessary. 

Search can also be reorganized to try alternatives in a top-down as opposed 
to bottom-up manner. This responds to the observation that heuristic choices 
made early in the extension process, when the remaining search space is un
constrained by the implications of many previous choices, may be most prone 
to failure. For example, "limited discrepancy search" iteratively restarts the 
search process increasing the number of "discrepancies", or deviations from 
heuristic advice, that are allowed, until a solution is found (Harvey and Gins
berg, 1995). (The search effort at the final discrepancy level dominates the 
upper bound complexity computation, so the redundant search effort is not as 
significant as it might seem.) 

Extensional methods can be used in an incomplete manner. As a simple 
example, "random restart", starting the search over as soon as a dead end is 
reached, with a stochastic element to the search order, can be surprisingly suc
cessful (Gomes et al., 1997). 

9.4.2 Repair 

Repair methods start with a complete assignment of values to variables, and 
work by changing the value assigned to a variable in order to improve the 
solution. Each such change is called a move, and the new assignment is termed 
a neighbor of the previous assignment. Genetic algorithms (see Chapter 4), 
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which create a new assignment by combining two previous assignments, rather 
than by moving to a neighbor of a single assignment, can be viewed as a form 
of repair. 

Repair methods utilize a variety of metaphors, physical (hill climbing, sim
ulated annealing, see Chapter 7) and biological (neural networks, genetic al
gorithms). For example, we might start a search on our example problem by 
choosing value A for each variable. Then, seeking to "hill cHmb" in the search 
space to an assignment with fewer inconsistencies, we might choose to change 
the value of Y to B; and we would be done. Hill climbing, is a repair-based 
algorithm in which each move is required to yield a neighbor with a better cost 
than before. It cannot, in general, guarantee to produce an optimal solution at 
the point where the algorithm stops because no neighbor has a better cost than 
the current assignment. 

Repair methods can also use heuristics to guide the search. For example, the 
min-conflicts heuristic suggests finding an inconsistent value and then chang
ing it to the alternative value that minimizes the amount of inconsistency re
maining (Minton et al., 1992). 

The classic repair process risks getting "stuck" at a "local maximum", where 
complete consistency has not been achieved, but any single change will only 
increase inconsistency, or "cycling" through the same set of inconsistent as
signments. There are many schemes to cope. A stochastic element can be 
helpful. When an algorithm has to choose between equally desirable alterna
tives it may do so randomly. When no good alternative exists it may start over, 
or "jump" to a new starting point. Simulated annealing allows moves to neigh
bors with a worse cost with a given probabihty. Memory can also be utilized 
to guide the search and avoid cycling (tabu search, see Chapter 6). 

9.5 EXAMPLE 
We illustrate simple modeling, search and inference now with another ex

ample. The Queens Problem involves placing queens on a chessboard such 
that they do not attack one another. A simple version only uses a four-by-four 
comer of the chessboard to place four queens: 
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Queens in chess attack horizontally, vertically, and diagonally. So, for exam
ple, the two queens on the dark squares above attack each other diagonally, the 
two queens on the hght squares attack vertically. One solution is 

^di%^^Z% 

I wr^'ii 

If we model this problem as a CSP where the variables are the four queens 
and the values for each queen are the 16 squares, we have 65 536 possible 
combinations to explore, looking for one where the constraints (the queens do 
not attack each other) are satisfied. If we observe that we can only have one 
queen per row, and model the problem with a variable corresponding to the 
queen in each row, each variable having four possible values corresponding to 
the squares in the row, we have only 256 possibilities to search through. 

The beginning of the backtrack search tree for this example is shown in Fig
ure 9.4. After placing the first row queen in the first column, the first successful 
spot for the second row queen is in the third column. However, that leaves no 
successful placement for the third row queen, and we need to backtrack. 

In fact, there will be quite a lot of backtracking to do here before we find a 
solution. However, arc consistency inference can reduce the amount of search 
we do considerably. Consider what happens if we seek arc consistency after 
placing a queen in the second column of row 1. This placement directly rules 
out any square that can be attacked by this queen, of course, and, in fact, arc 
consistency propagation proceeds to rule out additional possibilities until we 
are left with a solution. The queens in column 3 of row 3 and column 4 of row 
4 are ruled out because they are attacked by the only possibility left for row 2. 
After the queen in column 3 of row 3 is eliminated, the queen in column 1 of 
row 4 is attacked by the only remaining possibility for row 3, so it too can be 
eliminated. 

9.6 TRACTABILITY 

CSPs are in general NP-hard. Analytical and experimental progress has 
been made in characterizing tractable and intractable problems. The results 
have been used to inform algorithmic and heuristic methods. 
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Figure 9.4. The beginning of the example backtrack search tree. 

1 

2 

3 

4 S 

1 

© 
• 

2 

© 
3 

# 

© 

4 

© 

®| 

9.6.1 Theory 

Tractable classes of CSPs have been identified based on the structure of the 
constraint network, e.g. tree structure, and on closure properties of sets of con
straints (Jeavons et al., 1997), e.g. max-closed. Tractability has been associated 
with sets of constraints defining a specific class of problems, e.g. temporal rea
soning problems defined by ''simple temporal networks" (Dechter et al., 1991). 

If a constraint network is tree-structured, there will be a width-one ordering 
for the variables in which each variable is directly constrained by at most one 
variable earher in the ordering. In our sample problem, which has a trivial 
tree structure, the ordering X, Y, Z is width-one: Y is constrained by X and Z 
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by Y; the ordering X, Z, Y is not width-one: Y is constrained by both X and 
Z. If we achieve arc consistency and use a width-one ordering as the order in 
which we consider variables when trying to extend a partial solution, backtrack 
search will in fact be backtrack-free: for each variable we will be able to find 
a consistent value without backing up to reconsider a previously instantiated 
variable (Freuder, 1982), 

Max-closure means that if (a b) and (c d) both satisfy the constraint, then 
((max(fl c)), (max(Z7 d))) will also satisfy the constraint. If all the constraints 
in a problem are max-closed, the problem will be tractable. The "less than" 
constraint is max-closed, e.g. 4 < 6, 2 < 9 and 4 < 9. Thus if we replaced 
the inequality constraints in our sample problem by less-than constraints, we 
would ensure tractability, even if we gave up the tree structure by adding a 
constraint between X and Z. In fact simple temporal networks are max-closed. 

9.6.2 Experiment 
Intuitively it seems natural that many random CSPs would be relatively 

easy: loosely constrained problems would be easy to solve, highly constrained 
problems would be easy to prove unsolvable. What is more surprising is the ex
perimental evidence that as we vary the constrainedness of the problems there 
is a shsiv^ phase transition between solvable and unsolvable regions, which cor
responds to a sharp spike of "really hard" problems (Cheeseman et al., 1991). 
("Phase transition" is a metaphor for physical transitions, such as the one be
tween water and ice.) 

9.7 OPTIMIZATION 
Optimization arises in a variety of contexts. If all the constraints in a prob

lem cannot be satisfied, we can seek the "best" partial solution. If there are 
many solutions to a problem, we may have some criteria for distinguishing the 
"best" one. "Soft constraints" can allow us to express probabilities or prefer
ences that make one solution "better" than another. 

Again we face issues of modeling, inference and search. What does it mean 
to be the "best" solution; how do we find the "best" solution? We can assign 
scores to local elements of our model and combine those to obtain a global 
score for a proposed solution, then compare these to obtain an optimal solution 
for the problem. 

A simple case is the Max-CSP problem, where we seek a solution that sat
isfies as many constraints as possible. Here each satisfied constraint scores 1, 
the score for a proposed solution is the sum of the satisfied constraints, and 
an optimal solution is one with a maximal score. However, there are many al
ternatives, such as fuzzy, probabilistic and possibilistic CSPs, many of which 
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have been captured under the general framework of semiring-based or valued 
CSPs (Bistarelli et al., 1992). 

Backtrack search methods can be generalized to branch and bound meth
ods (see Chapter 2) for seeking optimal solutions, where a partial solution is 
abandoned when it is clear that it cannot be extended to a better solution than 
one already found. Inference methods can be generalized. Repair methods can 
often find close to optimal solutions quickly. 

9.8 ALGORITHMS 
9.8.1 Handling Constraints 

Constraint technology is an approach that solves problems by reasoning on 
the constraints, and when no further inferences can be drawn, making a search 
step. Thus inference and search are interleaved. 

For problems involving hard constraints—ones that must be satisfied in any 
solution to the problem—reasoning on the constraints is a very powerful tech
nique. 

The secret of much of the success of constraint technology comes from 
its facility to capitalize on the structure of the problem constraints. This en
ables "global" reasoning to be supported, which can guide a more "intelligent" 
search procedure than would otherwise be possible. 

In this section we shall introduce some different forms of reasoning and its 
use in solving problems efficiently. 

9.8.2 Domains, and Constraint Propagation 
In general domain constraint propagation algorithms take a set of variables 

and the original domains as input, and either report inconsistency, or output 
smaller domains for the variables. Since propagation algorithms can extract 
more information, each time the input domains become smaller, and since 
the propagation behavior also makes the domains of the variables smaller, 
the propagation algorithms can co-operate through these domains. The out
put from one algorithm is input to another, whose output can in turn be input 
to the first algorithm. Thus many different propagation algorithms can co
operate, together yielding domain reductions which are much stronger than 
simply pooling the information from the separate algorithms. In the following 
code we constrain two variables, X and Y, to take values in the range 1-10. We 
also constrain X to be greater than F, and (inconsistently!) we also constrainF 
to be greater than X: 

?- X : : 1 . . 1 0 , Y : : 1 . . 1 0 , f d : ( X > y ) , fd:(Y>X) 

If the propagation algorithm for each constraint makes the bounds consistent, 
then the first constraint will yield new domains 
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X : : 2 . . 1 0 , Y : : 1 . . 9 

and the second constraint will yield new domains: 

X: : 1 . . 9 , Y: : 2 . .10 

Pooling the deduced information, we get the intersection of the new domains, 
which is 

X : : 2 . . 9 , Y : : 2 . . 9 

By contrast, if the propagation algorithms communicate through the variable 
domains, then they will yield new domains, which are then input to the other 
algorithm until, at the fifth step, the inconsistency between the two constraints 
is detected. 

The interaction of the different algorithms is predictable, even though the 
algorithms are completely independent, so long as they have certain natural 
properties. Specifically, 

• the output domains must be a subset of the input domains 

• if with input domains ID the algorithm produces output domains OD, 
then with any input domains which are a subset of ID, the output do
mains must be a subset of OD. 

These properties guarantee that the information produced by the propagation 
algorithms, assuming they are executed until no new information can be de
duced, is guaranteed to be the same, independent of the order in which the 
different algorithms (or propagation steps) are executed. 

9.8.3 Constraints and Search 
Separating Constraint Handling from Search The constraint program
ming paradigm supports clarity, correctness and maintainability by separating 
the statement of the problem as far as possible from the details of the algorithm 
used to solve it. The problem is stated in terms of its decision variables, the 
constraints on those variables, and an expression to be optimized. 

As a toy example the employee task problem introduced at the beginning of 
this chapter can be expressed as follows: 

?- X::[a,b], Y::[a,b], Z::[b], % set up variables 
X=\=Y, Y=\=Z % set up constraints 

This states that the variable X can take either of the two values a or b; similarly 
Y can take a or b; but Z can only take the value b. Additionally, the value taken 
by X must be different from that taken by Y; and the values taken by Y and Z 
must also be different. 
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To map this problem statement into an algorithm, the developer must 

• choose how to handle each constraint 

• specify the search procedure. 

For example, assuming f d is a solver which the developer chooses to han
dle the constraints, and l a b e l i n g is a search routine, the whole program is 
written as follows: 

?- X: : [ a , b ] , Y: : [ a , b ] , Z: : [b] , 
fd:(X=$\backslash $=Y), fd:(Y=$\backslash $=Z), 
labeling([X,Y,Z]) 

This code sends the constraint X = \ = Y to the finite domain solver called 
f d; and the constraint Y = \ = Z is also sent to f d. The list of variables X, Y 
and Z is then passed to the l a b e l i n g routine. 

Domain propagation algorithms take as input the domains of the variables, 
and yield smaller domains. For example, given that the domain of Z is [b], 
the f d solver for the constraint Y = \ = Z immediately removes b from the 
domain of Y, yielding a new domain [a]. Every time the domain of one of those 
variables is reduced by another propagation algorithm, the algorithm ''wakes" 
and reduces the domains further (possibly waking the other algorithm). In 
the above example, when the domain of Y is reduced to [a], the constraint 
X = \ = Y wakes, and removes b from the domain of X, reducing the domain 
ofXto[b]. 

The domain of a variable may be reduced either by propagation, or instead 
by a search decision. In this case propagation starts as before, and continues 
until no further information can be derived. Thus search and constraint reason
ing are automatically interleaved. 

Search Heuristics Exploiting Constraint Propagation Most real applica
tions cannot be solved to optimality because they are simply too large and 
complex. In such cases it is crucial that the algorithm is directed towards ar
eas of the search space where low-cost feasible solutions are most likely to be 
found. 

Constraint propagation can yield very useful information, which can be used 
to guide the search for a solution. Not only can propagation exclude impossible 
choices a priori, but it can also yield information about which choices would 
be optimal in the absence of certain (awkward) constraints. 

Because constraint propagation occurs after each search step, the resulting 
information is used to support dynamic heuristics, where the next choice is con
tingent upon all the information about the problem gathered during the current 
search. 
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In short, incomplete extension search techniques can produce high quahty 
solutions to large complex industrial applications in areas such as transporta
tion and logistics. The advantage is that the solutions respect all the hard con
straints and are therefore applicable in practice. 

9.8.4 Global Constraints 
In this section we introduce a variety of application-specific "global" con

straints. These constraints achieve more, and more efficient, propagation be
havior than would be possible using combinations of the standard equality and 
disequality constraints introduced above. We first outline two global con
straints, one called a l l d i f f e r e n t for handling sets of disequality con
straints, and one called s c h e d u l e for handling resource usage by a set of 
tasks. 

AUdifferent Consider the disequality constraint "=\=" used in the employee 
task example at the beginning of this chapter. Perhaps surprisingly, global rea
soning on a set of such constraints brings more than local reasoning. Suppose 
we have a fist and want to make local changes until all the elements of the list 
are distinct. If each element has the same domain (i.e. the same set of possi
ble values), then it suffices to choose any element in conflict (i.e. an element 
whose value occurs elsewhere in the fist), and change it to a new value which 
does not occur elsewhere. If, however, the domains of different elements of 
the list are different, then there is no guarantee that local improvement will 
converge to a list whose elements are all different. However, there is a poly
nomial time graph-based algorithm (Regin, 1994) which guarantees to detect 
if there is no solution to this problem, and otherwise it reduces the domains 
of all the elements until they contain only values that participate in a solution. 
The constraint that all the elements of a list must be distinct is usually called 
a l l d i f f e r e n t in constraint programming. For example, consider the case 

? - X : : [ a , b ] , Y : : [ a , b ] , Z : : [ a , b , c ] , 
a l l d i f f e r e n t ( [ X , Y , Z ] ) 

In this case Regin's algorithm (Regin, 1994) for the a l l d i f f e r e n t con
straint will reduce the domain of Z to just [c]. As we saw above, the behavior 
of reducing the variables domains in this manner is called constraint propaga
tion. 

Global constraint propagation algorithms work co-operatively within a con
straint programming framework. In the above example, the propagation algo
rithm for the a l l d i f f e r e n t constraint takes as input the list of variables, 
and their original domains. As a result it outputs new, smaller, domains for 
those variables. 
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Schedule Consider a task scheduling problem comprising a set of tasks with 
release times (i.e. earliest start times) and due dates (i.e. latest end times), each 
of which requires a certain amount of resource, running on a set of machines 
that provide a fixed amount of resource. 

The s c h e d u l e constraint works, in principle, by examining each time pe
riod within the time horizon: 

• First the algorithm calculates how much resource r/ each task / must 
necessarily take up within this period. 

• If the sum ^ n exceeds the available resource, then the constraint re
ports an inconsistency. 

• If the sum ^ r/ takes up so much resource that task j cannot be sched
uled within the period, and the remaining resource within the period is 
r j , then task j is constrained only to use an amount r^ of resource within 
this period. 

For non-preemptive scheduling, this constraint may force such a task j to 
start a certain amount of time before the period begins, or end after it. The 
information propagated narrows the bounds on the start times of certain tasks. 

Whilst this kind of reasoning is expensive to perform, there are many quicker, 
but theoretically less complete forms of reasoning, such as ''edge-finding", 
which can be implemented in a time quadratic in the number of tasks. 

Further Global Constraints The different global constraints outlined above 
have proven themselves in practice. Using global constraints such as sched
ule, constraint programming solves benchmark problems in times competitive 
with the best complete techniques. The main advantages of global constraints 
in constraint programming, in addition to their efficiency in solving standard 
benchmark problems, are that: 

• They can be augmented by any number of application-specific "side" 
constraints. The constraint programming framework allows all kinds of 
constraints to be thrown in, without requiring any change to the algo
rithms handling the different constraints. 

• They return high-quality information about the problem which can be 
used to focus the search. Not only do they work with complete search 
algorithms, but also they guide incomplete algorithms to return good 
solutions quickly. 

Constraint programming systems can include a range of propagation algo
rithms supporting global reasoning for constraints appearing in different kinds 
of applications such as rostering, transportation, network optimization, and 
even bioinformatics. 
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Analysis One of the most important requirements of a programming system 
is support for reusability. Many complex models developed by Operations Re
searchers have made very Httle practical impact, because they are so hard to 
reuse. The concept of a global constraint is inherently quite simple. It is a 
constraint that captures a class of subproblems, with any number of variables. 
Global constraints have built-in algorithms, which are specialized for treat
ing the problem class. Any new algorithm can be easily captured as a global 
constraint and reused. Global constraints have had a major impact, and are 
used widely and often as a tool in solving complex real-world problems. They 
are, arguably, the most important contribution that constraint programming has 
brought to Operations Research. 

9.8.5 Different Constraint Behaviors 
Constraint reasoning may derive other information than domain reductions. 

Indeed, any valid inference step can be made by a propagation algorithm. 
For example, from the constraints X > Y, Y > Z propagation can derive that 
X > Z. To achieve co-operation between propagation algorithms, and termi
nation of propagation sequences, constraint programming systems typically 
require propagation algorithms to behave in certain standard ways. Normally 
they are required to produce information of a certain kind: for example, do
main reductions. 

An altemative to propagating domain reductions is to propagate new linear 
constraints. Just as domain propagation ideally yields the smallest domains 
which include all values that could satisfy the constraint, so linear propagation 
ideally yields the convex hull of the set of solutions. In this ideal case, Hnear 
propagation is stronger than domain propagation, because the convex hull of 
the set of solutions is contained in the smallest set of variable domains (termed 
the box) that contains them. 

9.8.6 Extension and Repair Search 
Extension search is conservative in that, at every node of the search tree, all 

the problem constraints are satisfied. Repair search is optimistic, in the sense 
that a variable assignment at a search node may be, albeit promising, actually 
inconsistent with one or more problem constraints. 

Constraint Reasoning and Extension Search Constraint reasoning, in the 
context of extension search, corresponds to logical deduction. The domain 
reductions, or new linear constraints yielded by propagation, are indeed a con
sequence of the constraint in the input state. 
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Constraint Reasoning and Repair Search Constraint reasoning can also be 
applied in the context of repair search. In this case the constraint behavior is 
typically caused by the constraint being violated in the input state. Like prop
agation, the behavior yields new information, which is of a standard simple 
form that can be dealt with actively by the search procedure. We distinguish 
two forms of behavior: constraint generation and separation. These forms are 
best illustrated by example. 

Constraint generation For an example of constraint generation, consider a 
traveUing salesman problem which is being solved by integer/linear pro
gramming. At each search node an integer/linear problem is solved, 
which only approximates the actual TSP constraint. Consider a search 
node which represents a route with a detached cycle. This violates the 
TSP constraint in a way that can be fixed by adding a linear constraint 
enforcing a unit flow out from the set of "cities" in the detached cycle. 
This is the generated constraint, at the given search node. The search is 
complete at the first node where the TSP constraint is no longer violated. 
Constraint generation can be used in case the awkward constraints can 
be expressed by a conjunction of easy constraints, although the number 
of such easy constraints in the conjunction may be too large for them all 
to be imposed. 

Separation Separation behavior is required to fix any violated constraint which 
cannot be expressed as a conjunction of easy constraints (however large). 
If the awkward constraint can be approximated, arbitrarily closely, by a 
(conjunction of) disjunction(s) of easy constraints, then separation can 
be used. Constraint reasoning yields one of the easy constraints—one 
that is violated by the current search node—and imposes it so that the 
algorithm which produces the next search node is guaranteed to satisfy 
this easy constraint. Completeness is maintained by imposing the other 
easy constraints in the disjunction on other branches of the search tree. 

Languages and Systems One drawback of the logical basis is that repair-
based search methods have not fitted naturally into the CLP paradigm. Re
cently, a language has been introduced called Localizer (Michel and Van Hen-
tenryck, 1999) which is designed specifically to support the encoding of repair-
based search algorithms such as Simulated Annealing and GSAT (Selman et 
al., 1992). The fundamental contribution of LocaHzer is the concept of an ''in
variant", which is a constraint that retains information used during search. For 
GSAT, by way of example, an invariant is used to record, for each problem 
variable, the change in the number of satisfied propositions if the variable's 
value were to be changed. The invariant is specified as a constraint, but main
tained by an efficient incremental algorithm. Other constraint-based languages 
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for specifying search are SALSA (Laburthe and Caseau, 1998) and ToOLS (de 
Givry and Jeannin, 2003). 

9.9 CONSTRAINT LANGUAGES 
9.9.1 Constraint Logic Programming 

The earliest constraint programming languages, such as Ref-Arf and Alice, 
were specialized to a particular class of algorithms. The first general purpose 
constraint programming languages were constraint handling systems embed
ded in logic programming (Jaffar and Lassez, 1987; Van Hentenryck et al., 
1999), called constraint logic programming (CLP). Examples are CLP(fd), 
HAL, SICStus and ECLiPSe. Certainly logic programming is an ideal host 
programming paradigm for constraints, and CLP systems are widely used in 
industry and academia. 

Logic programming is based on relations. In fact every procedure in a logic 
program can be read as a relation. However, the definition of a constraint is 
exactly the same thing—a relation. Consequently, the extension of logic pro
gramming to CLP is entirely natural. Logic programming also has backtrack 
search built in, and this is easily modified to accommodate constraint propaga
tion. CLP has been enhanced with some high-level control primitives, allow
ing active constraint behaviors to be expressed with simplicity and flexibility. 
The direct representation of the application in terms of constraints, together 
with the high-level control, results in short simple programs. Since it is easy to 
change the model and, separately, the behavior of a program, the paradigm sup
ports experimentation with problem solving methods. In the context of a rapid 
application methodology, it even supports experimentation with the problem 
(model) itself. 

9.9.2 Modeling Languages 
On the other hand. Operations Researchers have introduced a wide range of 

highly sophisticated specialized algorithms for different classes of problems. 
For many OR researchers CLP and Localizer are too powerful—they seek a 
modeling language rather than a computer programming language in which to 
encode their problems. Traditional mathematical modehng languages used by 
OR researchers have offered little control over the search and the constraint 
propagation. OPL (Van Hentenryck, 1999) is an extension of such a modeling 
language to give more control to the algorithm developer. It represents a step 
towards a full constraint programming language. 

By contrast, a number of application development environments (e.g. Visual 
CHIP) have appeared recently that allow the developer to define and apply 
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constraints graphically, rather than by writing a program. This represents a 
step in the other direction! 

9.10 APPLICATIONS 
9.10.1 Current Areas of Application 

Constraint programming is based on logic. Consequently any formal speci
fication of an industrial problem can be directly expressed in a constraint pro
gram. The drawbacks of earHer declarative programming paradigms have been 

• that the programmer had to encode the problem in a way that was effi
cient to execute on a computer; 

• that the end user of the appHcation could not understand the formal spec
ification. 

The first breakthrough of constraint programming has been to separate the log
ical representation of the problem from the efficient encoding in the underlying 
constraint solvers. This separation of logic from implementation has opened 
up a range of appHcations in the area of control, verification and validation. 

The second breakthrough of constraint programming has been in the area 
of software engineering. The constraint paradigm has proven to accommo
date a wide variety of problem solving techniques, and has enabled them to be 
combined into hybrid techniques and algorithms, suited to whatever problem 
is being tackled. 

As important as the algorithms to the success of constraint technology, has 
been the facility to link models and solutions to a graphical user interface that 
makes sense to the end user. Having developers display the solutions in a form 
intelligible to the end users, forces the developers to put themselves into the 
shoes of the users. 

Moreover, not only are the final solutions displayed to the user; it is also 
possible to display intermediate solutions found during search, or even partial 
solutions. The abihty to animate the search in a way that is intelUgible to the 
end user means the users can put themselves into the shoes of the developers. 
In this way the crucial relationship and understanding between developers and 
end users is supported and users feel themselves involved in the development 
of the software that will support them in the future. 

As a consequence, constraint technology has been appHed very successfully 
in a range of combinatorial problem solving applications, extending those tra
ditionally tackled using operations research. 

The two main application areas of constraint programming are, therefore, 
(i) control, verification and vaHdation, and (ii) combinatorial problem solving. 
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9.10.2 Applications in Control, Verification and Validation 
Engineering relies increasingly on software, not only at the design stage, 

but also during operation. Consider the humble photocopier. Photocopiers 
are not as humble as they used to be—each system comprises a multitude of 
components, such as feeders, sorters, staplers and so on. The next generation 
of photocopiers will have orders of magnitude more components than now. 
The challenge of maintaining compatibility between the different components, 
and different versions of the components, has become unmanageable. 

Xerox has tumed to constraint technology to specify the behavior of the 
different components in terms of constraints. If a set of components are to be 
combined in a system, constraint technology is applied to determine whether 
the components will function correctly and coherently. The facility to specify 
behavior in terms of constraints has enabled engineers at Xerox not only to 
simulate complex systems in software but also to revise their specifications 
before constructing anything and achieve compatibility first time. 

Control software has traditionally been expressed in terms of finite state 
machines. Proofs of safety and reachability are necessary to ensure that the 
system only moves between safe states (e.g. the lift never moves while the 
door is open) and that required states are reached (the lift eventually answers 
every request). Siemens has appHed constraint technology to validate control 
software, using techniques such as Boolean unification to detect any errors. 
Similar techniques are also used by Siemens to verify integrated circuits. 

Constraint technology is also used to prove properties of software. For ex
ample, abstract interpretation benefits from constraint technology in achieving 
the performance necessary to extract precise information about concrete pro
gram behavior. 

Finally, constraints are being used not only to verify software but to moni
tor and restrict its behavior at runtime. Guardian Agents ensure that complex 
software, in medical applications for example, never behaves in a way that 
contravenes the certain safety and correctness requirements. 

For applications in control, validation and verification, the role of con
straints is to model properties of complex systems in terms of logic, and then 
to prove theorems about the systems. The main constraint reasoning used in 
this area is propositional theorem proving. For many applications, even tem
poral properties are represented in a form such that they can be proved using 
propositional satisfiability. 

Nevertheless, the direct application of abstract interpretation to concurrent 
constraint programs offers another way to prove properties of complex dy
namic systems. 
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9.10.3 Combinatorial Problem Solving 
Commercially, constraint technology has made a huge impact in problem 

solving areas such as transportation, logistics, network optimization, schedul
ing and timetabUng, production control, and design, and it is also showing 
tremendous potential in new application areas such as bio-informatics and vir
tual reality systems. 

Starting with applications to transportation, constraint technology is used 
by airline, bus and railway companies, all over the world. Applications include 
timetabling, fleet scheduling, crew scheduling and rostering, stand, slot and 
platform allocation. 

Constraints have been applied in the logistics area for parcel delivery, food, 
chilled goods, and even nuclear waste. As in other application areas, the major 
IT system suppliers (such as SAP and 12) are increasingly adopting constraint 
technology. 

Constraints have been apphed for Internet service planning and scheduling, 
for minimizing traffic in banking networks, and for optimization and control 
of distribution and maintenance in water and gas pipe networks. Constraints 
are used for network planning (bandwidth, routing, peering points), optimiz
ing network flow and pumping energy (for gas and water), and assessing user 
requirements. 

Constraint technology appears to have estabhshed itself as the technology 
of choice in the areas of short-term scheduling, timetabling and rostering. The 
flexibility and scalabihty of constraints was proven in the European market (for 
example at Dassault and Monsanto), but is now used worldwide. 

It has been used for timetabling activities in schools and universities, for 
rostering staff at hospitals, call centers, banks and even radio stations. An 
interesting and successful application is the scheduling of satellite operations. 

The chemical industry has an enormous range of complex production pro
cesses whose scheduling and control is a major challenge, currently being tack
led with constraints. Oil refineries and steel plants also use constraints in con-
trolhng their production processes. Indeed, many appHcations of constraints to 
production scheduling also include production monitoring and control. 

The majority of commercial appHcations of constraint technology have, to 
date, used finite domain propagation. Finite domains are a very natural way to 
represent the set of machines that can carry out a task, the set of vehicles that 
can perform a delivery, or the set of rooms/stands/platforms where an activity 
can be carried out. Making a choice for one task, precludes the use of the same 
resource for any other task which overlaps with it, and propagation captures 
this easily and efficiently. 

Naturally, most applications involve many groups of tasks and resources 
with possibly complex constraints on their availability (for example personnel 
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regulations may require that staff have two weekends off in three, that they 
must have a day off after each sequence of night-shifts, and that they must not 
work more than 40 hours a week). For complex constraints like this a num
ber of special constraints have been introduced which not only enable these 
constraints to be expressed quite naturally, but also associate highly efficient 
specialized forms of finite domain propagation with each constraint. 

9.10.4 Other Applications 

Constraints and Graphics An early use of constraints was for building 
graphical user interfaces. Now these interfaces are highly efficient and scal
able, allowing a diagram to be specified in terms of constraints so that it still 
carries the same impact and meaning whatever the size or shape of the display 
hardware. The importance of this functionality in the context of the Internet, 
and mobile computing, is very clear, and constraint-based graphics is likely to 
make a major impact in the near future. Constraints are also used in design, 
involving both spatial constraints and, in the case of real-time systems design, 
temporal constraints. 

Constraint Databases Constraint databases have not yet made a commercial 
impact, but it is a good bet that future information systems will store constraints 
as well as data values. The first envisaged appHcation of constraint databases 
is to geographical information systems. Environmental monitoring will follow, 
and subsequently design databases supporting both the design and maintenance 
of complex artifacts such as airplanes. 

9.11 SOME PROMISING AREAS FOR FUTURE 
APPLICATIONS 

There are many topics that could be addressed in additional detail. This 
section briefly samples a few of these. 

9.11.1 Dynamic Constraints, Soft Constraints 

Constraint technology was originally designed to handle "hard" constraints 
that had to be satisfied in every solution. Moreover, each problem had to be 
solved from scratch, finding values for a set of previously unassigned decision 
variables. 

What has emerged over the years, particularly in the light of practical appli
cations of the technology, is a need to handle "soft" constraints which should 
be satisfied if possible, but may be violated if necessary. 

Another practical requirement is the need to handle dynamic problems, 
which may change while their solution is being executed (for example, due 
to machine breakdown, newly placed priority orders or late running). 



CONSTRAINT PROGRAMMING 263 

These requirements have led to the development of new theoretical (Bistarelli 
et aL, 1992) and practical requirements. 

9.11.2 Hybrid Techniques 
As constraint technology has matured, the community has recognized that 

it is not a standalone technology, but a weapon in an armory of mathemati
cal tools for tackling complex problems. Indeed, an emerging role for con
straint programming is as a framework for combining techniques such as con
straint propagation; integer/linear and quadratic programming; interval reason
ing; global optimization and metaheuristics. This role has become a focus of 
research in a new conference series called CPAIOR, in a current European 
project (Coconut) and at recent INFORMS meetings (see respective websites). 

9.11.3 Knowledge Acquisition and Explanation 
As constraint programming becomes increasingly commercialized, increas

ing attention is drawn to "human factors". Issues faced by earlier ''knowledge-
engineering" technologies must be faced by constraint technology. 

Acquiring domain-specific knowledge is obviously a key application is
sue. Provision needs to be made for interactive acquisition, e.g. in electronic 
commerce applications. Many problems, e.g. many configuration problems, 
change over time. While constraint programmers tout the advantages of their 
declarative paradigm for maintaining programs in the face of such change, ac
quiring and implementing new knowledge on a large scale still presents chal
lenges. 

Users may feel more comfortable when an ''explanation" can accompany a 
solution. Explanation is particularly important when a problem is unsolvable. 
The user wants to know why, and can use advice on modifying the problem to 
permit a solution (Amilhastre et al., 2002). 

A related set of problems confronts the need constraint programmers have 
to better understand the solution process. Explanation and visualization of this 
process can assist in debugging constraint programs, computing solutions more 
quickly, and finding solutions closer to optimal (Deransart et al., 2000). 

9.11.4 Synthesizing Models and Algorithms 
Ideally, people with constraints to satisfy or optimize would simply state 

their problems, in a form congenial to the problem domain, and from this 
statement a representation suited to efficient processing and an appropriate al
gorithm to do the processing would be synthesized automatically. In practice, 
considerable human expertise is often needed to perform this synthesis. Less 
ambitiously, tools might be provided to assist the constraint programmer in this 
regard. Initial experiments with simple learning methods have proven surpris-
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ingly effective at producing efficient algorithms for specific problem classes 
(Minton, 1996). 

9.11.5 Distributed Processing 

Distributed constraint processing arises in many contexts. There are par
allel algorithms for constraint satisfaction and concurrent constraint program
ming languages. There are applications where the problem itself is distributed 
in some manner. There are computing architectures that are naturally "dis
tributed": for example, neural networks. 

There is considerable interest in the synergy between constraint processing 
and software agents. Agents have issues that are naturally viewed in constraint-
based terms, e.g. negotiation. Agents can be used to solve constraint satisfac
tion problems (Yokoo et al, 1998). 

9.11.6 Uncertainty 

Real world problems may contain elements of uncertainty. Data may be 
problematic. The future may not be known. For example, decisions about 
fuel purchases may need to be made based on uncertain demand dependent on 
future weather patterns. We want to model and compute with constraints in the 
presence of such uncertainty (Walsh, 2002). 

9.12 TRICKS OF THE TRADE 

The constraints community uses a variety of different tools to solve complex 
problems. There are a number of constraint programming systems available, 
which support constraint propagation, search and a variety of other techniques. 
For pedagogical purposes we will simply show the solution a simple prob
lem, solved using one constraint programming system, ECLiPSe (ECLiPSe, 
2005). This system is free for research use, and can be downloaded from the 
referenced website. If the code developed below is copied into a file, then the 
reader can load ECLiPSe, compile the file and run the program. 

We consider a one-machine scheduling problem. The requirement is to 
schedule a set of tasks on a machine. Each task has a fixed duration, and 
each has an earliest start time (the release date) and a latest end time (the due 
date). How should we schedule the tasks so as to finish soonest? 

In constraint programming a problem is handled in three stages: 

1 Initialize the problem variables. 

2 Constrain the variables. 

3 Search for values for the variables that satisfy the constraints. 
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9J2J Initializing Variables 
For the one-machine scheduling problem, a variable is declared to represent 

the start time and the end time of each task. The end time is constrained to be 
the start time plus the duration. The start time is constrained to be after the re
lease date of the task, and the end time constrained to be before the due date. In 
the code we associate variables S t a r t T i m e , EndTime and D u r a t i o n with 
each task. Although D u r a t i o n is represented by a variable, we shall assume 
it has a fixed value for the purposes of this example. The above constraints are 
expressed as follows: 

EndTime #= StartTime + Duration, 
StartTime #>= ReleaseTime, 
EndTime #=<DueTime 

The code does not fix the final end time. The "minimize" statement should be 
written 

minimize( (label_starts(Tasks), 
fix_to_min(FinalEndTime)), FinalEndTime ) 

Although D u r a t i o n is written with a capital letter, and therefore is a variable, 
the program assumes that it will be suppHed with a specific input value at 
runtime. 

For the first model of the problem we impose no further constraints on the 
start time, until search begins. 

9.12.2 Search and Propagation 
When the search begins one of the tasks, is chosen to be first. This is done 

by the following lines of code: 

choose(Task,Tasks,Rest), 
Task = task with [start:StartTime,end:EndTime] 

Now the following constraints are posted. The start time S t a r t T i m e is con
strained to take its lower bound value (in this case, its release date). This is 
done by the following line of code: 

f i x _ t o _ m i n ( S t a r t T i m e ) 

The start times of each of the remaining tasks are constrained to be greater than 
the task end time, EndTime. This is achieved by the goal 

demoPropaga te (EndTime, Res t ) 

which is defined as follows: 
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demoPropagate(EndTime, Rest) :-
( foreach( task with start:StartTime, Tasks), 
param(EndTime) 
do 
StartTime #>= EndTime 
) 

As a result, the lower bounds of some or all of the remaining task start times 
may be increased. 

After having "propagated" the new constraints, by computing the new lower 
bounds for all the start times, search resumes. Another task is chosen to be the 
first of the remaining tasks, and constraints 1 and 2 are posted as before. This 
search procedure stops when there are no more tasks. It is defined (recursively) 
as follows: 

% If no more tasks are left, then do nothing. 
label_starts( []) . 
% Otherwise, select a task, make it start as early as 
% possible and constrain the remaining tasks to start 
% after it 
label_starts(Tasks) :-
choose(Task,Tasks,Rest), 
Task = task with [start:StartTime,end:EndTime], 
fix___to__min (StartTime) , 
demoPropagate(EndTime,Rest), 
label___starts (Rest) 

9.123 Branch and Bound 
When a solution is found the end time of the last task, F ina lEndTime 

is recorded. The problem solving process is restarted, but now all tasks are 
constrained to end before FinalEndTime. This is captured by a constraint 
on each task that its EndTime is less than FinalEndTime. This behavior is 
implemented inside the built-in predicate minimize, therefore the code required 
is simply 

min imize ( l a b e l _ _ s t a r t s (Tasks) , F inalEndTime) 

If at any time the propagation on a start time makes its lower bound larger 
than its upper bound, then there is no solution which extends the current task 
ordering. The system therefore backtracks and chooses a different task to be 
first at the previous choice point. 
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9.12.4 Code 

The whole ECLiPSe program for solving the one-machine scheduling prob
lem is as follows. To run it load ECLiPSe, compile the following code and 
invoke the goal: 

Tasks = [task with [duration:4, release:1,due:10], 
task with [duration:3, releaserl, due:15], 
{\ldots} % and all the other input tasks! 
], 
task_schedule (Tasks, FinalEndTime) . 

Code for One-Machine Scheduling Solution 

% Define a data structure to hold info, about tasks 
:- local struct(task(start,duration,end,release,due)). 
% Load the finite domain solver 
:- lib(fd). 

% To solve a problem, first state the constraints and 
% then encode the search procedure. 
% Names starting with upper-case letters are variables 
task_schedule(Tasks,FinalEndTime) :-
constrain(Tasks,FinalEndTime), 
minimize(label_starts(Tasks),FinalEndTime). 
% Constrain the start and end time of each task 
constrain(Tasks,FinalEndTime) :-
( foreach(Task,Tasks), 
param(FinalEndTime) 
do 
% Each Task variable holds a data structure 
% with the task details 
Task = task with [release:ReleaseTime, 
due:DueTime, 
duration:Duration, 
start:StartTime, 
end:EndTime 

] , 
% Constrain the start and end times 
EndTime #= StartTime + Duration, 
StartTime #>= ReleaseTime, 
EndTime #=< DueTime, 
% Constrain the final end time to follow the end time 
% of each task 
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FinalEndTime #>= EndTime ). 

% Stop when there are no more tasks to handle 
label__starts ( [] ) . 
% Select a task, make it start as early as possible 
% and constrain the remaining tasks to start after it 
label_starts(Tasks) :-
choose(Task,Tasks,Rest), 
Task = task with [start:StartTime,end:EndTime], 
fix_to_min(StartTime), 
demoPropagate(EndTime,Rest), 
label__starts (Rest) . 
% Select any task from a non-empty list. 
choose(Task,[TaskTasks],Tasks). 
% Alternatively choose a different task 
choose(Task, [NotThisTaskTasks], [NotThisTaskRest]) :-
choose(Task,Tasks,Rest). 

% Constrain the remaining tasks to start after the 
% given previous end time 
demoPropagate(PrevEndTime,Tasks) :-
( foreach( task with start:StartTime, Tasks), 
param(PrevEndTime) 
do 
StartTime {\#}$>$= PrevEndTime ). 

% Make the variable Time take its smallest possible 
% value 
fix_to_min(Time) :-
mindomain(Time,Earliest) , 
Time #= Earliest 

9.12.5 Introducing Redundant Constraints 
The first way to enhance this algorithm is by adding a global constraint, spe

cialized for scheduling problems (see Section 9.4). The new constraint does not 
remove any solutions: it is logically redundant. However, its powerful prop
agation behavior enables parts of the search space, where no solutions lie, to 
be pruned. Consequently, the number of search steps is reduced—dramatically 
for larger problems! The algorithm was devised by operations researchers, but 
it has been encapsulated by constraint programmers as a single constraint. 
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9.12.6 Adding Search Heuristics 
The next enhancement is to choose, at each search step, the task with the 

eariiest due date. Whilst this does tend to yield feasible solutions, it does 
not necessarily produce good solutions, until the end time constraints become 
tight. 

9.12.7 Using an Incomplete Search Technique 
For very large problems, complete search may not be possible. In this case 

the algorithm may be controlled so as to limit the effort wasted in exploring 
unpromising parts of the search space. This can be done simply by limiting the 
number of times a non-preferred ordering of tasks is imposed during search 
and backtracking. 

The above techniques combine very easily, and the combination is very 
powerful indeed. As a result constraint programming is currently the tech
nology of choice for operational scheduling problems where task orderings are 
significant. 

The Constraints Archive (http://www.4c.ucc.ie/archive) has pointers to con
straint code libraries and constraint programming languages, both freely avail
able software and commercial products. 

SOURCES OF ADDITIONAL INFORMATION 
Sources of information about constraint programming include: 

• Proceedings of the International Conferences on Principles and Practice 
of Constraint Programming, available in the Springer LNCS series. 

• The Constraints journal pubhshed by Kluwer. 

• Constraint Processing, by Rina Dechter (published by Morgan Kauf-
mann, 2003). 

• Programming with Constraints: an Introduction, by Kim Marriott and 
Peter Stuckey (MIT Press, 1998). 

• On-fine Guide to Constraint Programming, maintained by Roman Bartak. 
http: //kti. m s. mff. cuni. cz/~bartak/cons traints/ 

• The comp.constraints newsgroup. 

• http://carlit.toulouse.inra.fr/cgi-bin/mailman/listinfo/csp (the CSP mail
ing fist). 

Many other sources of information can be found on the web at 
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• Constraint Programming Online: 
http://slash.math.unipd.it/cp/index.php 

• Constraints Archive: http://www.4c.ucc.ie/web/archive. 
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Chapter 10 

MULTI-OBJECTIVE OPTIMIZATION 

Kalyanmoy Deb 
Kanpur Genetic Algorithms Laboratory (KanGAL) 
Department of Mechanical Engineering 
Indian Institute of Technology, Kanpur, India 

10.1 INTRODUCTION 
Many real-world search and optimization problems are naturally posed as 

non-linear programming problems having multiple objectives. Due to the lack 
of suitable solution techniques, such problems were artificially converted into 
a single-objective problem and solved. The difficulty arose because such prob
lems give rise to a set of trade-off optimal solutions (known as Pareto-optimal 
solutions), instead of a single optimum solution. It then becomes important 
to find not just one Pareto-optimal solution, but as many of them as possible. 
This is because any two such solutions constitutes a trade-off among the ob
jectives and users would be in a better position to make a choice when many 
such trade-off solutions are unveiled. 

Classical methods use a very different philosophy in solving these problems, 
mainly because of a lack of a suitable optimization methodology to find multi
ple optimal solutions efficiently. They usually require repetitive applications of 
an algorithm to find multiple Pareto-optimal solutions and on some occasions 
such applications do not even guarantee finding certain Pareto-optimal solu
tions. In contrast, the population approach of evolutionary algorithms (EAs) 
allows an efficient way to find multiple Pareto-optimal solutions simultane
ously in a single simulation run. This aspect has made the research and appli
cation in evolutionary multi-objective optimization (EMO) popular in the past 
decade. The motivated readers may explore current research issues and other 
important studies from various texts (Deb, 2001; Coello et al., 2002; Bagchi, 
1999), conference proceedings (Fonseca et al., 2003; Zitzler et al., 2001a) and 
numerous research papers (archived and maintained in Coello, 2003). 

In this tutorial, we discuss the fundamental differences between single- and 
multi-objective optimization tasks. The conditions for optimality in a multi-
objective optimization problem are described and a number of state-of-the-art 
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Figure 10. L Hypothetical trade-off solutions for a car-buying decision-making problem. 

multi-objective optimization techniques, including one evolutionary method, 
are presented. To demonstrate that the evolutionary multi-objective methods 
are capable and ready for solving real-world problems, we present a couple of 
interesting case studies. Finally, a number of important research topics in the 
area of evolutionary are discussed. 

A multi-objective optimization problem (MOOP) deals with more than one 
objective function. In most practical decision-making problems, multiple ob
jectives or multiple criteria are evident. Because of a lack of suitable solution 
methodologies, a MOOP has been mostly cast and solved as a single-objective 
optimization problem in the past. However, there exist a number of fundamen
tal differences between the working principles of single- and multi-objective 
optimization algorithms because of which a MOOP must be attempted to solve 
using a multi-objective optimization technique. In a single-objective optimiza
tion problem, the task is to find one solution (except in some specific multi
modal optimization problems, where multiple optimal solutions are sought) 
which optimizes the sole objective function. Extending the idea to multi-
objective optimization, it may be wrongly assumed that the task in a multi-
objective optimization is to find an optimal solution corresponding to each 
objective function. Certainly, multi-objective optimization is much more than 
this simple idea. We describe the concept of multi-objective optimization by 
using an example problem. 

Let us consider the decision-making involved in buying an automobile car. 
Cars are available at prices ranging from a few thousand to few hundred thou
sand dollars. Let us take two extreme hypothetical cars, i.e. one costing about 
ten thousand dollars (solution 1) and another costing about a hundred thousand 
dollars (solution 2), as shown in Figure 10.1. If the cost is the only objective 
of this decision-making process, the optimal choice is solution 1. If this were 
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the only objective to all buyers, we would have seen only one type of car (so
lution 1) on the road and no car manufacturer would have produced any expen
sive cars. Fortunately, this decision-making process is not a single-objective 
one. Barring some exceptions, it is expected that an inexpensive car is likely 
to be less comfortable. The figure indicates that the cheapest car has a hypo
thetical comfort level of 40%. To rich buyers for whom comfort is the only 
objective of this decision-making, the choice is solution 2 (with a hypothetical 
maximum comfort level of 90%, as shown in the figure). This so-called two-
objective optimization problem need not be considered as the two independent 
optimization problems, the results of which are the two extreme solutions dis
cussed above. Between these two extreme solutions, there exist many other 
solutions, where a trade-off between cost and comfort exists. A number of 
such solutions (solutions A, B, and C) with differing costs and comfort levels 
are also shown in the figure. Thus, between any two such solutions, one is bet
ter in terms of one objective, but this betterment comes only from a sacrifice 
on the other objective. In this sense, all such trade-off solutions are optimal 
solutions to a multi-objective optimization problem. Often, such trade-off so
lutions provide a cloax front on an objective space plotted with the objective 
values. This front is called the Pareto-optimal front and all such trade-off so
lutions are called Pareto-optimal solutions. 

10.1.1 How Is It Different From Single-Objective 
Optimization? 

It is clear from the above description that there exist a number of differences 
between a single- and a multi-objective optimization task. The latter has the 
following properties: 

1 cardinality of the optimal set is usually more than one, 

2 there are two distinct goals of optimization, instead of one, and 

3 it possesses two different search spaces. 

We discuss each of the above properties in the following paragraphs. 
First of all, we have seen from the above car-buying example that a multi-

objective optimization problem with conflicting objectives, results in a number 
of Pareto-optimal solutions, unlike the usual notion of only one optimal so
lution associated with a single-objective optimization task. However, there 
exist some single-objective optimization problems which also contain multi
ple optimal solutions (of equal or unequal importance). In a certain sense, 
multi-objective optimization is similar to such multi-modal optimization tasks. 
However, in principle, there is a difference, which we would like to highlight 
here. In most MOOPs, the Pareto-optimal solutions have certain similarities 
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in their decision variables (Deb, 2003). On the other hand, between one local 
or global optimal solution and another in a multi-modal optimization problem, 
there may not exist any such similarity. For a number of engineering case 
studies (Deb, 2003), an analysis of the obtained trade-off solutions revealed 
the following properties: 

1 Among all Pareto-optimal solutions, some decision variables take identi
cal values. Such a property of the decision variables ensures the solution 
to be an optimum solution. 

2 Other decision variables take different values causing the solutions to 
have a trade-off in their objective values. 

Secondly, unlike the sole goal of finding the optimum in a single-objective 
optimization, here there are two distinct goals: 

• convergence to the Pareto-optimal solutions and 

• maintenance of a set of maximally-spread Pareto-optimal solutions. 

In some sense, both the above goals are independent to each other. An op
timization algorithm must have specific properties for achieving each of the 
goals. 

One other difference between single-objective and multi-objective optimiza
tion is that in multi-objective optimization the objective functions constitute a 
multi-dimensional space, in addition to the usual decision variable space com
mon to all optimization problems. This additional space is called the objec
tive space, Z. For each solution x in the decision variable space, there ex
ists a point in the objective space, denoted by f(x) = z = (zi, Z2, • . . , ^M)T. 
The mapping takes place between an n-dimensional solution vector and an M-
dimensional objective vector. Figure 10.2 illustrates these two spaces and a 
mapping between them. Although the search process of an algorithm takes 
place on the decision variables space, many interesting algorithms, particu
larly multi-objective EAs (MOEAs), use.the objective space information in 
their search operators. However, the presence of two different spaces intro
duces a number of interesting flexibilities in designing a search algorithm for 
multi-objective optimization. 

10.2 TWO APPROACHES TO MULTI-OBJECTIVE 
OPTIMIZATION 

Although the fundamental difference between single and multiple objective 
optimization lies in the cardinality in the optimal set, from a practical stand
point a user needs only one solution, no matter whether the associated opti
mization problem is single-objective or multi-objective. In the case of multi-
objective optimization, the user is now in a dilemma. Which of these optimal 
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Figure 10.2. Representation of the decision variable space and the corresponding objective 
space. 

solutions must one choose? Let us try to answer this question for the case of 
the car-buying problem. Knowing the number of solutions that exist in the 
market with different trade-offs between cost and comfort, which car does one 
buy? This is not an easy question to answer. It involves many other consider
ations, such as the total finance available to buy the car, distance to be driven 
each day, number of passengers riding in the car, fuel consumption and cost, 
depreciation value, road conditions where the car is to be mostly driven, phys
ical health of the passengers, social status, and many other factors. Often, such 
higher-level information is non-technical, qualitative and experience-driven. 
However, if a set of trade-off solutions are already worked out or available, 
one can evaluate the pros and cons of each of these solutions based on all such 
non-technical and qualitative, yet still important, considerations and compare 
them to make a choice. Thus, in a multi-objective optimization, ideally the 
effort must be made in finding the set of trade-off optimal solutions by con
sidering all objectives to be important. After a set of such trade-off solutions 
are found, a user can then use higher-level qualitative considerations to make 
a choice. In view of these discussions, we suggest the following principle for 
an ideal multi-objective optimization procedure: 

Step 1 Find multiple trade-off optimal solutions with a wide range of values 
for objectives. 

Step 2 Choose one of the obtained solutions using higher-level information. 

Figure 10.3 shows schematically the principles in an ideal multi-objective 
optimization procedure. In Step 1 (vertically downwards), multiple trade-off 
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Figure 103. Schematic of an ideal multi-objective optimization procedure. 

solutions are found. Thereafter, in Step 2 (horizontally, towards the right), 
higher-level information is used to choose one of the trade-off solutions. With 
this procedure in mind, it is easy to realize that single-objective optimization 
is a degenerate case of multi-objective optimization. In the case of single-
objective optimization with only one global optimal solution. Step 1 will find 
only one solution, thereby not requiring us to proceed to Step 2. In the case 
of single-objective optimization with multiple global optima, both steps are 
necessary to first find all or many of the global optima and then to choose one 
from them by using the higher-level information about the problem. 

If thought of carefully, each trade-off solution corresponds to a specific or
der of importance of the objectives. It is clear from Figure 10.1 that solution A 
assigns more importance to cost than to comfort. On the other hand, solution C 
assigns more importance to comfort than to cost. Thus, if such a relative pref
erence factor among the objectives is known for a specific problem, there is no 
need to follow the above principle for solving a multi-objective optimization 
problem. A simple method would be to form a composite objective function as 
the weighted sum of the objectives, where a weight for an objective is propor
tional to the preference factor assigned to that particular objective. This method 
of scalarizing an objective vector into a single composite objective function 
converts the multi-objective optimization problem into a single-objective op
timization problem. When such a composite objective function is optimized, 
in most cases it is possible to obtain one particular trade-off solution. This 
procedure of handling multi-objective optimization problems is much simpler. 
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Figure 10,4, Schematic of a preference-based multi-objective optimization procedure. 

though still more subjective than the above ideal procedure. We call this pro
cedure a preference-based multi-objective optimization. A schematic of this 
procedure is shown in Figure 10.4. Based on the higher-level information, a 
preference vector w is first chosen. Thereafter, the preference vector is used 
to construct the composite function, which is then optimized to find a single 
trade-off optimal solution by a single-objective optimization algorithm. Al
though not often practiced, the procedure can be used to find multiple trade-off 
solutions by using a different preference vector and repeating the above proce
dure. 

It is important to realize that the trade-off solution obtained by using the 
preference-based strategy is largely sensitive to the relative preference vector 
used in forming the composite function. A change in this preference vector will 
result in a (hopefully) different trade-off solution. Besides this difficulty, it is 
intuitive to realize that finding a relative preference vector itself is highly sub
jective and not straightforward. This requires an analysis of the non-technical, 
qualitative and experience-driven information to find a quantitative relative 
preference vector. Without any knowledge of the likely trade-off solutions, this 
is an even more difficult task. Classical multi-objective optimization methods 
which convert multiple objectives into a single objective by using a relative 
preference vector of objectives work according to this preference-based strat
egy. Unless a reliable and accurate preference vector is available, the optimal 
solution obtained by such methods is highly subjective to the particular user. 

The ideal multi-objective optimization procedure suggested earlier is less 
subjective. In Step 1, a user does not need any relative preference vector in
formation. The task there is to find as many different trade-off solutions as 
possible. Once a well-distributed set of trade-off solutions is found. Step 2 
then requires certain problem information in order to choose one solution. It is 
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important to mention that in Step 2, the problem information is used to evaluate 
and compare each of the obtained trade-off solutions. In the ideal approach, the 
problem information is not used to search for a new solution; instead, it is used 
to choose one solution from a set of already obtained trade-off solutions. Thus, 
there is a fundamental difference in using the problem information in both ap
proaches. In the preference-based approach, a relative preference vector needs 
to be supphed without any knowledge of the possible consequences. However, 
in the proposed ideal approach, the problem information is used to choose one 
solution from the obtained set of trade-off solutions. We argue that the ideal 
approach in this matter is more methodical, more practical, and less subjective. 
At the same time, we highlight the fact that if a reliable relative preference vec
tor is available to a problem, there is no reason to find other trade-off solutions. 
In such a case, a preference-based approach would be adequate. 

In the next section, we make the above qualitative idea of multi-objective 
optimization more quantitative. 

10.3 NON-DOMINATED SOLUTIONS AND 
PARETO-OPTIMAL SOLUTIONS 

Most multi-objective optimization algorithms use the concept of dominance 
in their search. Here, we define the concept of dominance and related terms 
and present a number of techniques for identifying dominated solutions in a 
finite population of solutions. 

10.3.1 Special Solutions 
We first define some special solutions which are often used in multi-objective 

optimization algorithms. 

Ideal Objective Vector For each of the M conflicting objectives, there ex
ists one different optimal solution. An objective vector constructed with these 
individual optimal objective values constitutes the ideal objective vector. 

DEFINITION 1 The mth component of the ideal objective vector z* is the con
strained minimum solution of the following problem: 

Minimize /^(x) 1 
subject to X e S \ 

Thus, if the minimum solution for the mth objective function is the decision 
vector x*̂ '"̂  with function value /^ , the ideal vector is as follows: 

z* = r = (fin,....fl,f 
In general, the ideal objective vector (z*) corresponds to a non-existent solution 
(Figure 10.5). This is because the minimum solution of (10.1) for each objec-
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Figure 10.5. The ideal, Utopian, and nadir objective vectors. 

tive function need not be the same solution. The only way an ideal objective 
vector corresponds to a feasible solution is when the minimal solutions to all 
objective functions are identical. In this case, the objectives are not conflicting 
with each other and the minimum solution to any objective function would be 
the only optimal solution to the MOOR Although the ideal objective vector is 
usually non-existent, it is also clear from Figure 10.5 that solutions closer to 
the ideal objective vector are better. Moreover, many algorithms require the 
knowledge of the lower bound on each objective function to normalize objec
tive values in a common range. 

Utopian Objective Vector The ideal objective vector denotes an array of 
the lower bound of all objective functions. This means that for every objective 
function there exists at least one solution in the feasible search space sharing 
an identical value with the corresponding element in the ideal solution. Some 
algorithms may require a solution which has an objective value strictly bet
ter than (and not equal to) that of any solution in the search space. For this 
purpose, the Utopian objective vector is defined as follows. 

DEFINITION 2 A Utopian objective vector z** has each of its components 
marginally smaller than that of the ideal objective vector, or z** = z* — 6, 
with €i > Ofor all i = 1,2,..., M. 

Figure 10.5 shows a Utopian objective vector. Like the ideal objective vector, 
the Utopian objective vector also represents a non-existent solution. 

Nadir Objective Vector Unlike the ideal objective vector which represents 
the lower bound of each objective in the entire feasible search space, the nadir 
objective vector, z" '̂', represents the upper bound of each objective in the entire 
Pareto-optimal set, and not in the entire search space. A nadir objective vector 
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must not be confused with a vector of objectives (marked as W in Figure 10.5) 
found by using the worst feasible function values, Z,""̂ ", in the entire search 
space. The nadir objective vector may represent an existent or a non-existent 
solution, depending on the convexity and continuity of the Pareto-optimal set. 
In order to normalize each objective in the entire range of the Pareto-optimal 
region, the knowledge of nadir and ideal objective vectors can be used as fol
lows: 

y-norm ^ JLIA. (10.2) 
•̂ ' _nad _* ^ ^ 

10.3.2 Concept of Domination 

Most multi-objective optimization algorithms use the concept of domina
tion. In these algorithms, two solutions are compared on the basis of whether 
one dominates the other or not. We will describe the concept of domination in 
the following paragraph. 

We assume that there are M objective functions. In order to cover both 
minimization and maximization of objective functions, we use the operator < 
between two solutions / and j as / < j to denote that solution / is better than 
solution j on a particular objective. Similarly, / > j for a particular objective 
implies that solution / is worse than solution j on this objective. For example, 
if an objective function is to be minimized, the operator < would mean the "<" 
operator, whereas if the objective function is to be maximized, the operator < 
would mean the ">" operator. The following definition covers mixed problems 
with minimization of some objective functions and maximization of the rest of 
them. 

DEFINITION 3 A solution x̂ ^̂  is said to dominate the other solution x^^\ if 
both conditions 1 and 2 are true: 

1 The solution x̂ ^̂  is no worse than x̂ ^̂  in all objectives: that is, 

fj (x(')) ^ fj (x(2)) forallj = h2,...,M 

2 The solution x̂ ^̂  is strictly better than x̂ ^̂  in at least one objective, or 

fjix^^^) < fjix^^^)for at least one j e {1,2, ..., M) 

If either of the above conditions is violated, the solution x̂ ^̂  does not dom
inate the solution x̂ '̂ ^ If x̂ ^̂  dominates the solution x̂ ^̂  (or mathematically 
x(i) ^ x̂ ^̂ ), it is also customary to write any of the following: 

• x̂ ^̂  is dominated by x^^\ 

• x̂ ^̂  is non-dominated by x^^\ or 
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Figure 10.6. A set of five solutions and the correspon(iing non-(Jominate(i fronts. 

• x̂ ^̂  is non-inferior to x̂ ^̂ . 

Let us consider a two-objective optimization problem with five different so
lutions shown in the objective space, as illustrated in Figure 10.6(a). Let us 
also assume that the objective function 1 needs to be maximized while the 
objective function 2 needs to be minimized. Five solutions with different ob
jective function values are shown in this figure. Since both objective functions 
are of importance to us, it is usually difficult to find one solution which is best 
with respect to both objectives. However, we can use the above definition of 
domination to decide which solution is better among any two given solutions in 
terms of both objectives. For example, if solutions 1 and 2 are to be compared, 
we observe that solution 1 is better than solution 2 in objective function 1 and 
solution 1 is also better than solution 2 in objective function 2. Thus, both 
of the above conditions for domination are satisfied and we may write that 
solution 1 dominates solution 2. We take another instance of comparing solu
tions 1 and 5. Here, solution 5 is better than solution 1 in the first objective and 
solution 5 is no worse (in fact, they are equal) than solution 1 in the second 
objective. Thus, both the above conditions for domination are also satisfied 
and we may write that solution 5 dominates solution L 

It is intuitive that if a solution x̂ ^̂  dominates another solution x̂ ^̂ , the so
lution x̂ ^̂  is better than x̂ ^̂  in the parlance of multi-objective optimization. 
Since the concept of domination allows a way to compare solutions with multi
ple objectives, most multi-objective optimization methods use this domination 
concept to search for non-dominated solutions. 

10.3.3 Properties of Dominance Relation 
Definition 3 defines the dominance relation between any two solutions. 

There are three possibilities that can be the outcome of the dominance check 
between two solutions 1 and 2. i.e. (i) solution 1 dominates solution 2, (ii) so
lution 1 gets dominated by solution 2, or (iii) solutions 1 and 2 do not dominate 
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each other. Let us now discuss the different binary relation properties (Gormen 
et al., 1990) of the dominance operator. 

Reflexive The dominance relation is not reflexive, since any solution p does 
not dominate itself according to Definition 3. The second condition of 
dominance relation in Definition 3 does not allow this property to be 
satisfied. 

Symmetric The dominance relation is also not symmetric, because p < q 
does not imply q < p. In fact, the opposite is true. That is, if p dom
inates q, then q does not dominate p. Thus, the dominance relation is 
asymmetric. 

Antisymmetric Since the dominance relation is not symmetric, it cannot be 
antisymmetric as well. 

Transitive The dominance relation is transitive. This is because if p <q and 
q <r, then p <r. 

There is another interesting property that the dominance relation possesses. 
If solution p does not dominate solution q, this does not imply that q domi
nates p. 

In order for a binary relation to qualify as an ordering relation, it must be at 
least transitive (Chankong and Haimes, 1983). Thus, the dominance relation 
quahfies as an ordering relation. Since the dominance relation is not reflexive, 
it is a strict partial order. In general, if a relation is reflexive, antisymmetric, 
and transitive, it is loosely called a partial order and a set on which a partial 
order is defined is called a partially ordered set. However, it is important 
to note that the dominance relation is not reflexive and is not antisymmetric. 
Thus, the dominance relation is not a partial order relation in its general sense. 
The dominance relation is only a strict partial order relation. 

10.3.4 Pareto-Optimality 
Continuing with the comparisons in the previous section, let us compare 

solutions 3 and 5 in Figure 10.6, because this comparison reveals an interesting 
aspect. We observe that solution 5 is better than solution 3 in the first objective, 
while solution 5 is worse than solution 3 in the second objective. Thus, the first 
condition is not satisfied for both of these solutions. This simply suggests that 
we cannot conclude that solution 5 dominates solution 3, nor can we say that 
solution 3 dominates solution 5. When this happens, it is customary to say that 
solutions 3 and 5 are non-dominated with respect to each other. When both 
objectives are important, it cannot be said which of the two solutions 3 and 5 
is better. 
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Figure 10,7. Pareto-optimal solutions are marked with continuous curves for four combinations 
of two types of objectives. 

For a given finite set of solutions, we can perform all possible pair-wise 
comparisons and find which solution dominates which and which solutions are 
non-dominated with respect to each other. At the end, we expect to have a set 
of solutions, any two of which do not dominate each other. This set also has 
another property. For any solution outside of this set, we can always find a 
solution in this set which will dominate the former. Thus, this particular set 
has a property of dominating all other solutions which do not belong to this 
set. In simple terms, this means that the solutions of this set are better com
pared to the rest of solutions. This set is given a special name. It is called the 
non-dominated set for the given set of solutions. In the example problem, solu
tions 3 and 5 constitute the non-dominated set of the given set of five solutions. 
Thus, we define a set of non-dominated solutions as follows. 

DEFINITION 4 (NON-DOMINATED SET) Among a set of solutions P, the 
non-dominated set of solutions P^ are those that are not dominated by any 
member of the set P, 

When the set P is the entire search space, or F = 5 , the resulting non-
dominated set P' is called the Pareto-optimal set. Figure 10.7 marks the 
Pareto-optimal set with continuous curves for four different scenarios with 
two objectives. Each objective can be minimized or maximized. In the top-
left figure, the task is to minimize both objectives f\ and /2. The sohd curve 



286 DEB 

Globally f 
Pareto-optimal set ^ 

Figure 10.8. Locally and globally Pareto-optimal solutions. 

marks the Pareto-optimal solution set. If f\ is to be minimized and fi is to be 
maximized for a problem having the same search space, the resulting Pareto-
optimal set is different and is shown in the top-right figure. Here, the Pareto-
optimal set is a union of two disconnected Pareto-optimal regions. Similarly, 
the Pareto-optimal sets for two other cases, (maximizing f\, minimizing fi) 
and (maximizing / i , maximizing fi), are also shown in the bottom-left and 
bottom-right figures, respectively. In any case, the Pareto-optimal set always 
consists of solutions from a particular edge of the feasible search region. 

It is important to note that a MOEA can be easily used to handle all of the 
above cases by simply using the domination definition. However, to avoid any 
confusion, most applications use the duahty principle (Deb, 1995) to convert 
a maximization problem into a minimization problem and treat every problem 
as a combination of minimizing all objectives. Like global and local optimal 
solutions in the case of single-objective optimization, there could be global and 
local Pareto-optimal sets in multi-objective optimization. 

DEFINITION 5 (GLOBALLY PARETO-OPTIMAL SET) The non-dominated 
set of the entire feasible search space S is the globally Pareto-optimal set. 

DEFINITION 6 If for every member x in a set P^ there exists no solution y (in 
the neighborhood ofx such that ||y — x||oo < ^, where e is a small positive 
number) dominating any member of the set Pj then solutions belonging to the 
set P_ constitute a locally Pareto-optimal set 

Figure 10.8 shows two locally Pareto-optimal sets (marked with continuous 
curves). When any solution (say, B) in this set is perturbed locally in the de
cision variable space, no solution can be found dominating any member of the 
set. It is interesting to note that for continuous search space problems, the 
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locally Pareto-optimal solutions need not be continuous in the decision vari
able space and the above definition will still hold good. Zitzler (1999) added a 
neighborhood constraint on the objective space in the above definition to make 
it more generic. By the above definition, it is also true that a globally Pareto-
optimal set is also a locally Pareto-optimal set. 

10.3.5 Procedure For Finding Non-dominated Solutions 
Finding the non-dominated set of solutions from a given set of solutions is 

similar in principle to finding the minimum of a set of real numbers. In the 
latter case, when two numbers are compared to identify the smaller number, a 
"<" relation operation is used. In the case of finding the non-dominated set, the 
dominance relation ;:< can be used to identify the better of two given solutions. 
Here, we discuss one simple procedure for finding the non-dominated set (we 
call it here the best non-dominated front). Many MOEAs require to find the 
best non-dominated solutions of a population and some MOEAs require to 
sort a population according to different non-domination levels. We present one 
algorithm for each of the tasks. 

Finding the Best Non-dominated Front In this approach, every solution 
from the population is checked with a partially filled population for domina
tion. To start with, the first solution from the population is kept in an empty set 
P'. Thereafter, each solution / (the second solution onwards) is compared with 
all members of the set P', one by one. If the solution / dominates any mem
ber of P', then that solution is removed from P'. In this way non-members of 
the non-dominated solutions get deleted from P'. Otherwise, if solution / is 
dominated by any member of P', the solution / is ignored. If solution i is not 
dominated by any member of P', it is entered in P'. This is how the set P' 
grows with non-dominated solutions. When all solutions of the population are 
checked, the remaining members of P' constitute the non-dominated set. 

Identifying the Non-dominated Set 

Step 1 Initiahze P' = {1}. Set solution counter / = 2. 

Step2 Set ; = 1. 

Step 3 Compare solution i with j from P' for domination. 

Step 4 If / dominates y, delete the yth member from P' or update P' = 
p/\^|p/0)j Yi j < |p ' | , increment j by one and then go to Step 3. 
Otherwise, go to Step 5. Alternatively, if the yth member of P' 
dominates /, increment / by one and then go to Step 2. 

Step 5 Insert / in P' or update P' = P' U {/}. If / < Â , increment 
/ by one and go to Step 2. Otherwise, stop and declare P' as the 
non-dominated set. 
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Here, we observe that the second element of the population is compared with 
only one solution /", the third solution with at most two solutions of P', and so 
on. This requires a maximum of 1+2H \-{N—\)ov N(N—\)/2 domination 
checks. Although this computation is also 0{MN^) (see Chapter 11 for a 
description of this notation), the actual number of computations is about half 
of that required in Approach 1. It is interesting to note that the size of P' 
may not always increase (dominated solutions will get deleted from P') and 
not every solution in the population may be required to be checked with all 
solutions in the current P ' set (the solution may get dominated by a solution of 
P'). Thus, the actual computational complexity may be smaller than the above 
estimate. 

Another study (Kung et al., 1975) suggested a binary-search like algorithm 
for finding the best non-dominated front with a complexity 0(//(log N)^~^) 
for M > 4 and 0(N log Â ) for M = 2 and 3. 

A Non-dominated Sorting Procedure Using the above procedure, each 
front can be identified with at most O(MN^) computations. In certain sce
narios, this procedure may demand more than 0{MN^) computational effort 
for the overall non-dominated sorting of a population. Here, we suggest a com
pletely different procedure which uses a better bookkeeping strategy requiring 
O(MN^) overall computational complexity. 

First, for each solution we calculate two entities: (i) domination count «,, 
the number of solutions which dominate the solution i, and (ii) Si, a set of 
solutions which the solution / dominates. This requires 0{MN^) comparisons. 
At the end of this procedure, all solutions in the first non-dominated front will 
have their domination count as zero. Now, for each of these solutions (each 
solution i with ni = 0), we visit each member (j) of its set 5, and reduce its 
domination count by one. In doing so, if for any member j the domination 
count becomes zero, we put it in a separate list P'. After such modifications 
on Si are performed for each / with n, = 0, all solutions of P' would belong to 
the second non-dominated front. The above procedure can be continued with 
each member of P' and the third non-dominated front can be identified. This 
process continues until all solutions are classified. 

An O(MN^) Non-Dominated Sorting Algoritlim 

Step 1 For each i e P,ni = 0 and initialize 5, = 0. For all j 7̂  / and 
j e P, perform Step 2 and then proceed to Step 3. 

Step 2 If / :< y, update Sp = Sp'O {j}. Otherwise, if j < i, set«, = 
n/ + l. 

Step 3 If «, = 0, keep / in the first non-dominated front Pi (we called 
this set P ' in the above paragraph). Set a front counter k = I. 

Step 4 While P^ ^̂^ 0, perform the following steps. 
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Step 5 Initialize g = 0 for storing next non-dominated solutions. For 
each i € P^ and for each j e Si, 

Step 5a Update rij = rij — I. 

Step 5b If rij = 0, keep j in Q, or perform Q = QU {j}. 

Step 6 Set k = k-\-\ Sind Pk = Q. Go to Step 4. 

Steps 1 to 3 find the solutions in the first non-dominated front and require 
0{MN^) computational complexity. Steps 4 to 6 repeatedly find higher fronts 
and require at most O(N^) comparisons, as argued below. For each solution 
/ in the second or higher-level of non-domination, the domination count n, 
can be at most N — \. Thus, each solution i will be visited at most N — I 
times before its domination count becomes zero. At this point, the solution 
is assigned a particular non-domination level and will never be visited again. 
Since there are at most N — I such solutions, the complexity of identifying 
second and more fronts is 0{N^). Thus, the overall complexity of the proce
dure is O(MN^). It is important to note that although the time complexity has 
reduced to O(MN^), the storage requirement has increased to OiN'^). 

When the above procedure is applied to the five solutions of Figure 10.6(a), 
we shall obtain three non-dominated fronts as shown in Figure 10.6(b). From 
the dominance relations, the solutions 3 and 5 are the best, followed by solu
tions 1 and 4. Finally, solution 2 belongs to the worst non-dominated front. 
Thus, the ordering of solutions in terms of their non-domination level is as fol
lows: ((3,5), (1,4), (2)). A recent study (Jensen, 2003b) suggested a divided-
and-conquer method to reduce the complexity of sorting to 0(A'^log^~^ A )̂. 

10.4 SOME APPROACHES TO MULTI-OBJECTIVE 
OPTIMIZATION 

In this section, we briefly mention a couple of commonly-used classical 
multi-objective optimization methods and thereafter present a commonly-used 
EMO method. 

10.4.1 Classical Method; Weighted-Sum Approach 
The weighted sum method, as the name suggests, scalarizes a set of ob

jectives into a single objective by pre-multiplying each objective with a user-
supplied weight. This method is the simplest approach and is probably the 
most widely used classical approach. If we are faced with the two objectives 
of minimizing the cost of a product and minimizing the amount of wasted 
material in the process of fabricating the product, one naturally thinks of min
imizing a weighted sum of these two objectives. Although the idea is simple, 
it introduces a not-so-simple question. What values of the weights must one 
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use? Of course, there is no unique answer to this question. The answer de
pends on the importance of each objective in the context of the problem and a 
scaling factor. The scaling effect can be avoided somewhat by normalizing the 
objective functions. After the objectives are normahzed, a composite objective 
function F(x) can be formed by summing the weighted normalized objectives 
and the problem is then converted to a single-objective optimization problem 
as follows: 

(10.3) 

Here, Wm (e [0, 1]) is the weight of the mth objective function. Since the 
minimum of the above problem does not change if all weights are multiplied 
by a constant, it is the usual practice to choose weights such that their sum is 
one, or J^^^i Wm = I. 

Mathematically oriented readers may find a number of interesting theorems 
regarding the relationship between the optimal solution of the above problem 
to the true Pareto-optimal solutions in classical texts (Chankong and Haimes, 
1983; Ehrgott, 2000; Miettinen, 1999). 

Let us now illustrate how the weighted-sum approach can find Pareto-optimal 
solutions of the original problem. For simplicity, we consider the two-objective 
problem shown in Figure 10.9. The feasible objective space and the corre
sponding Pareto-optimal solution set are shown. With two objectives, there are 
two weights wi and 1112, but only one is independent. Knowing any one, the 
other can be calculated by simple subtraction. It is clear from the figure that 
a choice of a weight vector corresponds to a pre-destined optimal solution on 
the Pareto-optimal front, as marked by the point A. By changing the weight 
vector, a different Pareto-optimal point can be obtained. However, there are a 
couple of difficulties with this approach: 

1 A uniform choice of weight vectors do not necessarily find a uniform set 
of Pareto-optimal solutions on the Pareto-optimal front (Deb, 2001). 

2 The procedure cannot be used to find Pareto-optimal solutions which lie 
on the non-convex portion of the Pareto-optimal front. 

The former issue makes it difficult for the weighted-sum approach to be applied 
reliably to any problem in order to find a good representative set of Pareto-
optimal solutions. The latter issue arises due to the fact a solution lying on the 
non-convex Pareto-optimal front can never be the optimal solution of problem 
given in (10.3). 



MULTI-OBJECTIVE OPTIMIZATION 

-Feasible objective space 

291 

•Pareto-optimal front 

Figure 10.9. The weighted-sum approach on a convex Pareto-optimal front. 

10.4.2 Classical Method: 6-Constraint Method 

In order to alleviate the difficulties faced by the weighted-sum approach in 
solving problems having non-convex objective spaces, the 6-constraint method 
is used. Haimes et al. (1971) suggested reformulating the multi-objective op
timization problem by just keeping one of the objectives and restricting the 
rest of the objectives within user-specified values. The modified problem is as 
follows: 

(10.4) 

In the above formulation, the parameter 6^ represents an upper bound of the 
value of fm and need not necessarily mean a small value close to zero. 

Let us say that we retain /2 as an objective and treat / i as a constraint: 
/i(x) < 6i. Figure 10.10 shows four scenarios with different €\ values. Let 
us consider the third scenario with ei = e^ first. The resulting problem with 
this constraint divides the original feasible objective space into two portions, 
f\ < el and f\ > e .̂ The left portion becomes the feasible solution of the 
resulting problem stated in (10.4). Now, the task of the resulting problem is to 
find the solution which minimizes this feasible region. From Figure 10.10, it is 
clear that the minimum solution is C. In this way, intermediate Pareto-optimal 
solutions can be obtained in the case of non-convex objective space problems 
by using the 6-constraint method. 
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Figure 10.10. The e-constraint method. 

One of the difficulties of this method is that the solution to the problem 
stated in (10.4) largely depends on the chosen € vector. Let us refer to Fig
ure 10.10 again. Instead of choosing ef, if e" is chosen, there exists no feasible 
solution to the stated problem. Thus, no solution would be found. On the other 
hand, if ^f is used, the entire search space is feasible. The resulting problem 
has the minimum at D. Moreover, as the number of objectives increases, there 
exist more elements in the e vector, thereby requiring more information from 
the user. 

10.4.3 Evolutionary Multi-objective Optimization Method 
Over the years, researchers have suggested a number of MOEAs empha

sizing non-dominated solutions in a EA population. In this section, we shall 
describe one state-of-the-art algorithm popularly used in EMO studies. 

Elitist Non-dominated Sorting GA (NSGA-II) The non-dominated sorting 
GA or NSGA-II procedure (Deb et al., 2002a) for finding multiple Pareto-
optimal solutions in a multi-objective optimization problem has the following 
three features: 

1 it uses an ehtist principle, 

2 it uses an expUcit diversity preserving mechanism, and 

3 it emphasizes the non-dominated solutions. 

In NSGA-II, the offspring population Qt is first created by using the parent 
population P, and the usual genetic operators (Goldberg, 1989), see also Chap
ter 4. Thereafter, the two populations are combined together to form Rt of 
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Figure 10,11. Schematic of the NSGA-II procedure. 

size 2N. Then, a non-dominated sorting is used to classify the entire popula
tion Rt. Once the non-dominated sorting is over, the new population is filled 
by solutions of different non-dominated fronts, one at a time. The filling starts 
with the best non-dominated front and continues with solutions of the second 
non-dominated front, followed by the third non-dominated front, and so on. 
Since the overall population size of Rt is 2iV, not all fronts may be accommo
dated in N slots available in the new population. All fronts which could not 
be accommodated are simply deleted. When the last allowed front is being 
considered, there may exist more solutions in the last front than the remaining 
slots in the new population. This scenario is illustrated in Figure 10.11. Instead 
of arbitrarily discarding some members from the last acceptable front, the so
lutions which will make the diversity of the selected solutions the highest are 
chosen. The NSGA-II procedure is outlined in the following. 

NSGA-II 

Step 1 Combine parent and offspring populations and create R^ = P^U 
Qt. Perform a non-dominated sorting to Rt and identify different 
fronts: J^i.i = \,2,..., etc. 

Step 2 Set new population P̂ -̂ i = 0. Set a counter / = 1. 
Until |Pr+il + \^i\ < N, perform P,+i = P,+i U Ĵ , and / = / + 1. 

Step 3 Perform the Crowding-sort(JT^, <c) procedure and include 
the most widely spread (N — |P̂ _̂i |) solutions by using the crowd
ing distance values in the sorted Tt to P^+i. 

Step 4 Create offspring population Qt-^\ from Pt^\ by using the crowded 
toumament selection, crossover and mutation operators. 

In Step 3, the crowding-sorting of the solutions of front / (the last front which 
could not be accommodated fully) is performed by using a crowding distance 
metric, which we describe a little later. The population is arranged in a de
scending order of magnitude of the crowding distance values. In Step 4, a 



294 DEB 

crowding tournament selection operator, which also uses the crowding dis
tance, is used. 

The crowded comparison operator (<c) compares two solutions and returns 
the winner of the toumament. It assumes that every solution / has two at
tributes: 

1 a non-domination rank r/ in the population, 

2 a local crowding distance {dt) in the population. 

The crowding distance dt of a solution / is a measure of the search space around 
i which is not occupied by any other solution in the population. Based on 
these two attributes, we can define the crowded toumament selection operator 
as follows. 

DEFINITION 7 (CROWDED TOURNAMENT SELECTION OPERATOR) A so

lution i wins a tournament with another solution j if any of the following con
ditions are true: 

1 if solution i has a better rank, that is, ri < rj; 

2 if they have the same rank but solution i has a better crowding distance 
than solution j , that is, ri = rj and dt > dj. 

The first condition ensures that the chosen solution lies on a better non-domin
ated front. The second condition resolves the tie of both solutions being on 
the same non-dominated front by deciding on their crowded distance. The one 
residing in a less crowded area (with a larger crowding distance di) wins. The 
crowding distance 4 can be computed in various ways. However, in NSGA-II, 
we use a crowding distance metric, which requires O(MNlogN) computa
tions. 

To obtain an estimate of the density of solutions surrounding a particular 
solution i in the population, we take the average distance of two solutions on 
either side of solution / along each of the objectives. This quantity di serves as 
an estimate of the perimeter of the cuboid formed by using the nearest neigh
bors as the vertices (we call this the crowding distance). In Figure 10.12, the 
crowding distance of the ith solution in its front (marked with filled circles) is 
the average side-length of the cuboid (shown by a dashed box). The following 
algorithm is used to calculate the crowding distance of each point in the set J^. 

Crowding Distance Assignment Procedure; crowding-sort(JT, <^) 

Step CI Call the number of solutions in ^ as / = |^ | . For each / in the 
set, first assign di = 0. 

Step C2 For each objective function m = 1, 2 , . . . , M, sort the set in 
worse order of /^ or find the sorted indices vector I^ = sort(/^, >). 
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Figure J O.J 2. The crowding distance calculation. 

Step C3 For m = 1, 2 , . . . , M, assign a large distance to the boundary 
solutions, or drm = dm = oo, and for all other solutions / = 2 to 
(I — 1), assign 

, J , Jm Jm 
dim = dim -| : 

] J fma\ fmm 
J m J m 

The index Ij denotes the solution index of the yth member in the sorted hst. 
Thus, for any objective, /] and // denote the lowest and highest objective func
tion values, respectively. The second term on the right-hand side of the last 
equation is the difference in objective function values between two neighbor
ing solutions on either side of solution Ij. Thus, this metric denotes half of 
the perimeter of the enclosing cuboid with the nearest neighboring solutions 
placed on the vertices of the cuboid (Figure 10.12), It is interesting to note 
that for any solution / the same two solutions («' + 1) and (/ — 1) need not be 
neighbors in all objectives, particularly for M > 3. The parameters f^^^ and 
/^ '" can be set as the population-maximum and population-minimum values 
of the mth objective function. The above metric requires M sorting calcula
tions in Step C2, each requiring 0(N\ogN) computations. Step C3 requires 
A'̂  computations. Thus, the complexity of the above distance metric computa
tion is 0(MN log A'̂ ) and the overall complexity of one generation of NSGA-II 
is 0(MA^^), governed by the non-dominated sorting procedure, 

10.4.4 Sample Simulation Results 
In this section, we show the simulation results of NSGA-II on two test prob

lems. The first problem (SCHl) is a simple two-objective problem with a 
convex Pareto-optimal front: 

Minimize fi(x) = x'^ 
SCHl : •! Minimize f2(x) = (x - 2)^ (10.5) 

-10^ < x < 10̂  
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Figure 10,13, NSGA-II finds better spread of solutions than PAES on SCH. 

The second problem (KUR) has a disjointed set of Pareto-optimal fronts: 

KUR 
Minimize 

Minimize 
/I(X) = E L 

/2(X) = E l l 
- 5 < Xi < 5, 

[ - 1 0 e x p ( - 0 . 2 y ^ f + ^ ) ] 

|x,r^ + 5sin(xf)] 
/ = 1,2,3 

(10.6) 
NSGA-II is run with a population size of 100 and for 250 generations. Fig

ure 10.13 shows that NSGA-II converges on the Pareto-optimal front and main
tains a good spread of solutions. In comparison to NSGA-II, another compet
ing EMO method (the Pareto archived evolution strategy (PAES) (Knowles and 
Come, 2000)) is run for an identical overall number of function evaluations and 
an inferior distribution of solutions on the Pareto-optimal front is observed. 

On the KUR problem, NSGA-II is compared with another elitist EMO meth
odology (the strength Pareto EA or SPEA (Zitzler and Thiele, 1998)) for an 
identical number of function evaluations. Figures 10.14 and 10.15 clearly show 
the superiority of NSGA-II in achieving both tasks of convergence and main
taining diversity of optimal solutions. 

10.4.5 Other State-of-the-Art MOEAs 

Besides the above elitist EMO method, there exist a number of other meth
ods which are also quite commonly used. Of them, the strength Pareto-EA 
or SPEA2 (Zitzler, 2001b), which uses an EA population and an archive in a 
synergistic manner and the Pareto envelope based selection algorithm or PESA 
(Come et al., 2000), which emphasizes non-dominated solutions residing in a 
less-crowded hyper-box in both the selection and the offspring-acceptance op
erators, are common. The recently suggested e-MOEA (Deb et al., 2003) is 
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Figure 10.14, NSGA-II on KUR. Figure 10.15. SPEA on KUR. 

found to be a superior version of PESA, in which only one solution is allowed 
to occupy a hyper-box for obtaining a better distribution of solutions. In ad
dition, the 6-dominance concept (Laumanns et al, 2002) makes the MOEA a 
practical approach for solving complex problems with a large number of ob
jectives. The 6-MOEA is also demonstrated to find a well-converged and well-
distributed set of solutions in a very small computational time (two to three or
ders of magnitude smaller) compared to a number of state-of-the-art MOEAs 
(Deb et al, 2003a), such as SPEA2 and PAES. There also exist other com
petent MOEAs, such as multi-objective messy GA (MOMGA) (Veldhuizen 
and Lamont, 2000), multi-objective micro-GA (Coello and Toscano, 2000), 
neighborhood constraint GA (Loughlin and Ranjithan, 1997), and others. Be
sides, there exist other EA-based methodologies, such as particle swarm EMO 
(Coello Coello and Salazar Lechuga, 2002; Mostaghim and Teich, 2003), ant-
based EMO (McMullen, 2001; Gravel et al., 2002), and differential evolution 
based EMO (Babu and Jehan, 2003). 

10.5 CONSTRAINT HANDLING 
Constraints can be simply handled by modifying the definition of domina

tion in an EMO method. 

DEFINITION 8 A solution x̂ '̂  is said to ''constrain-dominate'' a solution x̂ ^̂  
(or x̂ '̂  <c x̂ ^̂  j , if any of the following conditions are true: 

1 Solution x̂ '̂  is feasible and solution x̂ ^̂  is not. 

2 Solutions x̂ ^̂  and x̂ ^̂  are both infeasible, but solution x̂ ^̂  has a smaller 
constraint violation. 

3 Solutions x̂ ^̂  and x̂ ^̂  are feasible and solution x̂ ^̂  dominates solution 
x̂ ^̂  in the usual sense (see Definition 3), 
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Figure 10.16. Obtained non-dominated solu- Figure 10.17. Obtained non-dominated solu
tions with NSGA-II on the constrained prob- tions with NSGA-II on the constrained prob
lem CONSTR. lem TNK. 

This definition allows a feasible solution to be always dominating an infeasible 
solution and compared two infeasible solutions based on constraint violation 
values and two feasible solutions in terms of their objective values. 

In the following, we show simulation results of NSGA-II apphed with the 
above constraint handhng mechanism to two test problems—the CONSTR 
and TNK problems described below: 

CONSTR 

Minimize 
Minimize 

Minimize 
Minimize 

/ i (x) = ^1 
/2(X) = - ^ 

X2 + 9xx > 6 
-X2 + 9;ci > 1 

TNK 

/i(x) =xx 
/ 2 (X) = X2 

xl + x l - l - -j^cosAetan-^ f^) ^ ^ 
(jci - 0.5)2 ^ (^2 _ 0.5)2 < Q 5 

With identical parameter settings as in Section 10.4.4, NSGA-II finds a good 
distribution of solutions on the Pareto-optimal front in both problems (Fig
ures 10.16 and 10.17, respectively). 

10.6 SOME APPLICATIONS 

Since the early development of MOEAs in 1993, they have been applied 
to many real-world and interesting optimization problems. Descriptions of 
some of these studies can be found in books (Deb, 2001; Coello et al., 2002; 
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Figure 10.18. Obtained non-dominated solutions. 

Osyczka, 2002), conference proceedings (Zitzler et al., 2001), and domain-
specific journals and conference proceedings. In this section, we describe two 
case studies. 

10.6.1 Spacecraft Trajectory Design 
Coverstone-Carroll et al. (2000) proposed a multi-objective optimization 

technique using the original non-dominated sorting (NSGA) (Srinivas and 
Deb, 1994) to find multiple trade-off solutions in a spacecraft trajectory op
timization problem. To evaluate a solution (trajectory), the SEPTOP software 
is called for, and the delivered payload mass and the total time of flight are 
calculated. In order to reduce the computational complexity, the SEPTOP 
program is run for a fixed number of generations. The multi-objective opti
mization problem had eight decision variables controUing the trajectory, three 
objective functions, i.e. (i) maximize the dehvered payload at destination, (ii) 
maximize the negative of the time of flight, and (iii) maximize the total num
ber of heliocentric revolutions in the trajectory, and three constraints, i.e. (i) 
Hmiting the SEPTOP convergence error, (ii) limiting the minimum hehocen-
tric revolutions, and (iii) limiting the maximum hehocentric revolutions in the 
trajectory. 

On the Earth-Mars rendezvous mission, the study found interesting trade
off solutions. Using a population of size 150, the NSGA was run for 30 gen
erations on a Sun Ultra 10 Workstation with a 333 MHz ULTRA Sparc Hi 
processor. The obtained non-dominated solutions are shown in Figure 10.18 
for two of the three objectives. It is clear that there exist short-time flights 
with smaller dehvered payloads (solution marked as 44) and long-time flights 
with larger delivered payloads (solution marked as 36). To the surprise of the 
original investigators, two different types of trajectories emerged. The repre
sentative solutions of the first set of trajectories are shown in Figure 10.19. 
Solution 44 can dehver a mass of 685.28 kg and requires about 1.12 years. 
On other hand, solution 72 can deliver almost 862 kg with a travel time of 
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Figure 10.19. Four trade-off trajectories. 

about 3 years. In these figures, each continuous part of a trajectory represents 
a thrusting arc and each dashed part of a trajectory represents a coasting arc. It 
is interesting to note that only a small improvement in delivered mass occurs in 
the solutions between 73 and 72. To move to a somewhat improved delivered 
mass, a different strategy for the trajectory must be found. Near solution 72, 
an additional bum is added, causing the trajectories to have better delivered 
masses. Solution 36 can deliver a mass of 884.10 kg. 

The scenario as in Figure 10.19 is what we envisaged in discovering in a 
multi-objective optimization problem while suggesting the ideal procedure in 
Figure 10.3. Once such an set of solutions with a good trade-off among objec
tive values are obtained, one can then analyze them for choosing a particular 
solution. For example, in this problem context, whether the wait of an extra 
year to be able to carry an additional 180 kg of payload is worthwhile or not 
would make a decision-maker to choose between solutions 44 and 73. Without 
the knowledge of such a wide variety of optimal solutions, the decision-making 
could be difficult. Although one can set a relative weight to each objective and 
optimize the resulting aggregate objective function, the decision-maker will 
always wonder what solution would have been derived if a slightly different 
weight vector had been used. The ideal multi-objective optimization technique 
allows a flexible and a pragmatic procedure for analyzing a well-diversified set 
of solutions before choosing a particular solution. 
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Figure 10,20. Obtained front with eight clustered solutions are shown for the cantilever plate 
design problem. 

10.6.2 A Cantilever Plate Design 
A rectangular plate (1.2 x 2 m^) is fixed at one end and a 100 kN load is ap

plied to the center element of the opposite end. The following other parameters 
are chosen: 

Plate thickness: 20 mm 
Young's modulus: 200 GPa 

Yield strength: 150 MPa 
Poisson's ratio: 0.25 

The rectangular plate is divided into a number of grids and the presence or 
absence of each grid becomes a Boolean decision variable. NSGA-II is apphed 
for 100 generations with a population size of 54 and crossover probability of 
0.95. In order to increase the quality of the obtained solutions, we use an 
incremental grid-tuning technique. The NSGA-II and the first local search 
procedure are run with a coarse grid structure (6 x 10 or 60 elements). After 
the first local search procedure, each grid is divided into four equal-sized grids, 
thereby having a 12 x 20 or 240 elements. The new smaller elements inherit its 
parent's status of being present or absent. After the second local search is over, 
the elements are divided again, thereby making 24 x 40 or 960 elements. In all 
cases, an automatic mesh-generating finite element method is used to analyze 
the developed structure. 

Figure 10.20 shows the obtained front with eight solutions. The trade-off 
between the weight and deflection is clear from the figure. Figure 10.21 shows 
the shape of these eight solutions. The solutions are arranged according to 
increasing weight from left to right and top to bottom. Thus, the minimum-
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Figure 1021. Eight trade-off solutions of the cantilever plate design problem. 

weight solution is the top-left solution and the minimum-deflection solution is 
the right-bottom solution. An analysis of these solutions provides interesting 
insights about the cantilever plate design problem: 

1 First, all nine solutions seem to be symmetric about the middle row of 
the plate. Since the loading and support are symmetrically placed around 
the middle row, the resulting optimum solution is also likely to be sym
metric. Although this information is not explicitly coded in the hybrid 
techniques NSGA-II procedure, this comes out as one of the features in 
all optimal solutions. Although in this problem it is difficult to know the 
true Pareto-optimal solutions, the symmetry achieved in these solutions 
is an indication of their proximity to the true Pareto-optimal solutions. 

2 The minimum-weight solution simply extends two arms from the ex
treme support nodes to reach to the element carrying the load. Since a 
straight line is the shortest way to join two points, this solution can be 
easily conceived as one close to the minimum-weight feasible solution. 

3 Thereafter, to have a reduction in deflection, the weight has to be in
creased. This is where the hybrid procedure discovers an innovation. 
For a particular sacrifice in the weight, the procedure finds that the max
imum reduction in deflection occurs when the two arms are connected 
by a stijfener. This is an engineering trick often used to design a stiff 
structure. Once again, no such information was explicitly coded in the 
hybrid procedure. By merely making elements on or off, the procedure 
has resulted in a design innovation. 
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4 Interestingly, the third solution is a thickened version of the minimum-
weight solution. By making the arms thicker, the deflection can be in
creased maximally for a fixed change in the weight from the previous 
solution. Although not intuitive, this thick-arm solution is not an im
mediate trade-off solution to the minimum-weight solution. Although 
the deflection of this solution is smaller compared to the second solu
tion, the stiffened solution is a good compromise between the thin- and 
thick-armed solutions. 

5 Thereafter, any increase in the thickness of the two-armed solution tums 
out to be a suboptimal proposition and the stiffened solution is redis
covered instead. From the support until the stiffener, the arms are now 
thicker than before, providing a better stiffness than before. 

6 In the remaining solutions, the stiffener and arms get wider and wider, 
finally leading to the complete plate with rounded comers. This solution 
is, no doubt, close to the true minimum-deflection solution. 

The transition from a simple thin two-armed cantilever plate having a 
minimum-weight solution to a complete plate with edges rounded off having a 
minimum-deflection solution proceeds by discovering a vertical stiffener con
necting the two arms and then by widening the arms and then by gradually 
thickening the stiffener. The symmetric feature of the solutions about the mid
dle row of the plate emerges to be a common property to all obtained solutions. 
Such information about the trade-off solutions is very useful to a designer. Im
portantly, it is not obvious how such vital design information can be obtained 
by any other means and in a single simulation run. 

10.7 TRICKS OF THE TRADE 

Here, we discuss how to develop an ideal multi-objective optimization algo
rithm in a step-by-step manner. Since they can be developed by using classical 
or evolutionary optimization methods, we discuss each of them in tum. 

10.7.1 Classical Multi-objective Optimization 

We assume here that the user knows a classical optimization method to op
timize a single-objective optimization problem P with constraints (x e S) and 
can find a near-optimum solution x*. Let us assume that the user is desired to 
find K different efficient solutions. 

Step 1 Find individual optimum solutions x*' for all objectives, where / = 
1,2, . . . , M . 

Step 2 Choose K points 6̂ ^̂  uniformly in the (M — 1)-dimensional plane hav
ing objectives / = 1 to / = M — 1 as coordinate directions. 
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Step 3 Solve each subproblem (/: = 1, 2 , . . . , AT) as follows: 

Minimize /M(X) 
subject to fi{x)<€f\ / = 1,2, . . . , ( M - 1 ) (10.7) 

Call the optimal solution x*̂ ^̂  and corresponding objective vector r^^\ 

Step 4 Declare the non-dominated set as the set of efficient sets: 

F = Non-dominated {r^^\ . . . , f^^^) 

If desired, the above 6-constraint method can be replaced by other conversion 
methods, such as weighted-sum method, Tchebyshev metric method, or others. 

10.7.2 Evolutionary Multi-objective Optimization (EMO) 
The bottleneck of the above method is Step 3, in which a single-objective 

minimizer needs to be applied K times (where K is the number of desired effi
cient solutions). Here, we discuss an evolutionary search principle to find a set 
of efficient solutions simultaneously in a synergistic manner. It must be kept 
in mind that the main aim in an ideal multi-objective optimization is to (i) con
verge close to the true Pareto-optimal front and (ii) maintain a good diversity 
among them. Thus, an EMO method must use specific operations to achieve 
each of the above goals. Usually, an emphasis to non-dominated solutions is 
performed to achieve the first goal and a niching operation is performed to 
achieve the second goal. In addition, an elite-preserving operation is used to 
speed up convergence. 

Again, we assume that the user is familiar with a particular population-based 
evolutionary algorithm, in which in each generation one or more new offspring 
are created by means of recombination and mutation operators. We describe 
here a generic archive-based EMO strategy. 

Step 1 A population P and an empty archive A are initialized. The non-
dominated solutions of P are copied in A, Steps 2 and 3 are iterated 
until a termination criterion is satisfied. 

Step 2 A set of X new offspring solutions are created using P and A. 

Step 3 Every new offspring solution is checked for its inclusion in A by using 
a archive-acceptance criterion CA and for its inclusion in P by using a 
population-acceptance criterion Cp. If an offspring is not to be included 
to either P or A, it is deleted. 

Step 4 Before termination, the non-dominated set of the archive A is declared 
as the efficient set. 
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In Step 2, random solutions from the combined set P U A can be used to create 
an offspring solution or some solution from P and some other solutions from 
A can be used to create the offspring solution. Different archive-acceptance 
and population-acceptance criteria can be used. Here, we propose one criterion 
each. Readers can find another implementation elsewhere (Deb et al., 2003a). 

Archive-Acceptance Criterion CA{C^ A) The archive A has a maximum 
size K, but at any iteration it may not have all K members. This criterion 
required domination check and a niching operator which computes the niching 
of the archive with respect to a particular solution. For example, the crowding 
distance metric for a solution / in a subpopulation (suggested in Section 10.4.3) 
measures the objective-wise distance between two neighboring solutions of 
solution / in the subpopulation. The larger the crowding distance, less crowded 
is the solution and higher is probability of its existence in the subpopulation. 

The offspring c is accepted in the archive A if any of the following condi
tions is true: 

1 Offspring c dominates any archive member A. In this case, delete those 
archive members and include c in A. 

2 Offspring c is non-dominated with all archive members and the archive 
is not full (that is, \A\ < K). In this case, c is simply added to A. 

3 Offspring c is non-dominated with all archive members, the archive is 
full, and crowding distance of c is larger than that of an archive member. 
In this case, that archive member is deleted and c is included in A. 

Population-Acceptance Criterion Cp(c, P) If the offspring is a good so
lution compared to the current archive, it will be included in A by the above 
criterion. The inclusion of the offspring in the population must be made mainly 
from the point of view of keeping diversity in the population. Any of the fol
lowing criteria can be adopted to accept c in P\ 

1 Offspring c replaces the most old (in terms of its time of inclusion in the 
population) population member. 

2 Offspring c replaces a random population member. 

3 Offspring c replaces the least-used (as a parent) population member. 

4 Offspring c introduces more diversity of the population compared to an 
existing population member. Here the crowding distance or an entropy-
based metric can be used to compute the extent of diversity. 
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5 Offspring c replaces a population member similar (in terms of its phe-
notype or genotype) to itself. 

6 Offspring c replaces a population member dominated by c. 

It is worthwhile investigating which of the above criteria works well on 
standard test problems, but the maintenance of diversity in the population and 
search for wide-spread non-dominated solutions in the archive are two activ
ities which should allow the combined algorithm to reach the true efficient 
frontier quickly and efficiently. 

In the following, we suggest some important post-optimality studies which 
are equally important to the optimality study and are often ignored in EMO 
studies. 

10.7.3 Post-optimality Studies 
It is to be well understood that EMO methods (whether the above one or 

any of the existing ones) do not have guaranteed convergence properties; nor 
do they have any guaranteed proof for finding a diverse set of solutions. Thus, 
it is an onus on the part of the EMO researchers/practitioners to perform a 
number of post-optimality studies to ensure (or build confidence about) con
vergence and achievement of diversity in obtained solutions. Here, we make 
some suggestions. 

1 Use a hybrid techniques EMO-local-search method. For each of the ob
tained EMO solutions, perform a single-objective search by optimizing 
a combined objective function (see Chapter 9.6 in Deb (2001) for more 
details). This will cause the EMO solutions to reach close to the true 
efficient frontier. 

2 Obtain individual optimum solutions and compare the obtained EMO 
solutions with the individual optima on a plot or by means of a table. 
Such a visual comparison will indicate the extent of convergence as well 
as the extent of diversity in the obtained solutions. 

3 Perform a number of 6-constraint studies for different values of the e-
vector, given in (10.7), and obtain efficient solutions. Compare these 
solutions with the obtained EMO solutions to get further visual con
firmation of the extent of convergence and diversity of obtained EMO 
solutions. 

4 Finally, it is advisable to also plot the initial population on the same 
objective space showing the efficient solutions, as this will depict the 
extent of optimization performed by the EMO-local-search approach. 
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For such a post-optimality study, refer to any of the application studies per
formed by the author (Deb and Jain, 2003; Deb and Tiwari, 2004; Deb et al., 
2002b, 2004). 

10.7.4 Evaluating a Multi-objective Optimization 
Algorithm 

When a new algorithm is suggested to find a set of Pareto-optimal solutions 
in a multi-objective optimization problem, the algorithm must have to be eval
uated by applying them on standard test problems and compared with existing 
state-of-the-art EMO algorithms applied to the identical test problems. Here, 
we suggest a few guidelines in this direction. 

1 Test problems with 20 to 50 variables must be included in the test set. 

2 Test problems with three or more objectives must be included in the test 
set. For scalable test problems, readers may refer to ZDT (Deb, 2001) 
and DTLZ (Deb et al., 2002c) test problems. 

3 Test problems must include some no-hnear constraints, making some 
portion of the unconstrained Pareto-optimal front infeasible. For a set 
of constrained test problems, refer to the CTP problems (Deb, 2001) or 
DTLZ test problems. 

4 Standard EMO algorithms, such as NSGA-II, SPEA2, PESA, e-MOEA, 
and others must have to be used for comparison purposes. See Sec
tion 10.9 for some freely downloadable codes of these algorithms. 

5 A proper criterion for the comparison must be chosen. Often, the algo
rithms are compared based on the fixed number of evaluations. They can 
also be compared based on some other criterion listed elsewhere (Deb, 
2001). 

6 Besides static performance metrics which are applied to the final solu
tion set, running metrics (Deb and Jain, 2002) may also be computed, 
plotted with generation number, and compared among two algorithms. 
The running metrics provide a dynamic (generation-wise) evaluation of 
the algorithm, rather than what had happened at the end of a simulation 
run. 

10.8 FUTURE DIRECTIONS 
With the growing interests in the field of multi-objective optimization par

ticularly using evolutionary algorithms, there exist a number of research direc
tions. 
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Interactive EMO EMO methodologies have amply shown that multiple and 
well-spread Pareto-optimal solutions can be obtained in a single simulation 
run. However, this is only a part of the whole story. In practice, one needs to 
choose only solutions which are Pareto-optimal. The choice of a particular so
lution may be done as a second stage process, in which using some higher-level 
problem-specific information only one solution can be picked from the ob
tained EMO solutions. Alternatively, a completely different interactive-EMO 
strategy can be developed in which right from the first iteration an EMO is 
geared towards finding a compromised solution interactively dictated by the 
decision-maker. How to integrate this interactive-EMO approach in a generic 
manner to any problem is a matter of research and must be taken up before too 
long. 

Handling Large Number of Objectives So far, most studies using EMO 
strategies have been restricted to two or three-objective problems. In practice, 
there exist a considerable number of problems in which 10 or 15 objectives 
are commonplace. Although the objective space and corresponding dimension 
of the Pareto-optimal front becomes large, new and innovative principles to 
handle such large-scale problems must be developed. Existing EMO method
ologies must have to be tested and evaluated for the abihties such large-scale 
problems. 

Non-evolutionary Multi-objective Optimization EMO methods now in
clude principles of genetic algorithms, evolution strategy, genetic program
ming, particle swarm optimization, differential evolution and others. Besides, 
other non-traditional optimization techniques such as ant colony optimization, 
tabu search, simulated annealing can also be used for solving multi-objective 
optimization problems. Although there have been some research and applica
tion in this direction (Hansen, 1997; Khor et al., 2001; Bahcki and Kitowski, 
2001; McMullen, 2001; Gravel et al., 2002; Kumral, 2003; Parks and Sup-
papitnarm, 1999; Chattopadhyay and Seeley, 1994), more rigorous studies are 
called for and such techniques can also be suitably used to find multiple Pareto-
optimal solutions. 

Performance Metrics For M objectives, the Pareto-optimal region will cor
respond to at most an M-dimensional surface. To compare two or more al
gorithms, it is then necessary to compare M-dimensional data-sets which are 
partially-ordered. It is not possible to have only one performance metric to 
compare such multi-dimensional data-sets in an unbiased manner. A recent 
study has shown that at least M performance metrics will be necessary to prop
erly compare such data-sets (Zitzler et al., 2003). An alternate engineering 
suggestion was to compare the data-sets from a purely functional point of view 
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of (i) measuring the extent of convergence to the front and (ii) measuring the 
extent of diversity in the obtained solutions (Deb, 2001). It then becomes a 
challenge to develop performance metrics for both functional goal for prob
lems having any number of objectives. 

Test Problem Design When new algorithms are designed, they need to be 
evaluated on test problems for which the desired Pareto-optimal solutions are 
known. Moreover, the test problems must be such that they are controllable 
to test an algorithm's ability to overcome a particular problem difficulty. Al
though there exist a number of such test problems (Deb, 2001; Deb et al., 
2002c), more such problems providing different kinds of difficulties must be 
developed. Care should be taken to make sure that the test problems are scal
able to any number of objectives and decision variables, so that systematic 
evaluation of an algorithm can be performed. 

Parallel EMO Methodologies With the availability of parallel or distributed 
processors, it may be wise to find the complete Pareto-optimal front in a dis
tributed manner. A recent study (Deb et al., 2003b) has suggested such a 
procedure based on a guided-domination concept, in which one processor fo
cuses on finding only a portion of the Pareto-optimal front. With intermediate 
cross-talks among the processors, the procedure has shown that the complete 
Pareto-optimal front can be discovered by concatenating the solutions from a 
number of processors. Since each processor works on a particular region in 
the search space and processors communicate among themselves, a faster and 
parallel search is expected from such an implementation. Similar other such 
parallelization techniques must be attempted and evaluated. 

EMO for Other Problem-Solving Over the past few years and since the de
velopment of EMO methodologies, they have been also tried to help solve a 
number of other optimization problems, such as (i) in reducing bloating prob
lems commonly-found in genetic programming applications (Bleuler et al., 
2001), (ii) in goal programming problems (Deb, 1999), (iii) in maintain
ing diversity in a single-objective EA (Jensen, 2003a), (iv) single-objective 
constraint-handling problems (Coello, 2000; Surry et al., 1995), and others. 
Because of the use of additional objectives signifying a desired effect to be 
achieved, the search procedure becomes more flexible. More such problems, 
which reportedly perform poorly due to some fixed or rigid solution proce
dures, must be tried using a multi-objective approach. 

Theory on EMO One aspect for which the whole EMO can be criticized is 
the lukewarm interests among its researchers to practice much theory related 
to their working principles or convergence behaviors. Besides a few studies 
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(Rudolph, 1998; Rudolph and Agapie, 2000), this area still remains a fertile 
field for theoretically-oriented researchers to dive into and suggest algorithms 
with a good theoretical basis. Algorithms with a time complexity analysis on 
certain problems have just begun (Laumanns et al., 2004) and research in this 
area should get more popular in trying to devise problem-algorithm combina
tions with an estimated computational time for finding the complete Pareto-
optimal set. 

Real-World Applications Although the usefulness of EMO and classical 
multi-objective optimization methods are increasingly being demonstrated by 
solving real-world problems, more complex and innovative applications would 
not only demonstrate the wide-spread applicability of these methods but also 
may open up new directions for research which were not known earlier. 

10.9 CONCLUSIONS 
For the past decade or so, the usual practice of treating multi-objective opti

mization problems by scalarizing them into a single objective and optimizing 
it has been seriously questioned. The presence of multiple objectives results in 
a number of Pareto-optimal solutions, instead of a single optimum solution. In 
this tutorial, we advocate the use of an ideal multi-objective optimization pro
cedure which attempts to find a well-distributed set of Pareto-optimal solutions 
first. It has been argued that choosing a particular solution as a post-optimal 
event is a more convenient and pragmatic approach than finding an optimal so
lution for a particular weighted function of the objectives. Besides introducing 
the multi-objective optimization concepts, this tutorial also has also presented 
a couple of commonly-used multi-objective evolutionary algorithms. 

Besides finding the multiple Pareto-optimal solutions, the suggested ideal 
multi-objective optimization procedure has another unique advantage. Once 
a set of Pareto-optimal solutions are found, they can be analyzed. The tran
sition from the optimum of one objective to that of another optimum can be 
investigated. Since all such solutions are optimum, the transition should show 
interesting trade-off information of sacrificing one objective only to get a gain 
in other objectives. 

The field of multi-objective evolutionary algorithms is fairly new. There 
exists a number of interesting and important research topics which must be 
investigated before their full potential is discovered. This tutorial has suggested 
some research topics in this direction to motivate the readers to pay further 
attention to this growing field of interest. 
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SOURCES OF ADDITIONAL INFORMATION 
Here, we outline some dedicated literature in the area of multi-objective 

optimization. Further details can be found in the reference section. 

Books in Print 

• C. A. C. Coello, D. A. VanVeldhuizen, and G. Lamont, 2002, Evolution-
ary Algorithms for Solving Multi-Objective Problems, Kluwer, Boston, 
MA. (A good reference book with good citations of most EMO studies 
up to 2001.) 

• A. Osyczka, 2002, Evolutionary Algorithms for Single and Multicriteria 
Design Optimisation, Physica, Heidelberg. (A book describing single-
and multi-objective EAs with plenty of engineering applications.) 

• K. Deb, 2001, Multi-objective optimization using evolutionary algo
rithms, 2nd edn (with exercise problems), Wiley, Chichester. (A com
prehensive book introducing the EMO field and describing major EMO 
methodologies and some research directions.) 

• K. Miettinen, 1999, Nonlinear Multiobjective Optimization, Kluwer, 
Boston, MA. (A good book describing classical multi-objective opti
mization methods and a extensive discussion on interactive methods.) 

• M. Ehrgott, 2000, Multicriteria Optimization, Springer, Berlin. (A good 
book on theory of multi-objective optimization.) 

Conference Proceedings 

• C. Fonseca et al., eds, 2003, Evolutionary Multi-Criterion Optimization 
(EMO-03) Conference Proceedings, Springer, Berhn. (The second EMO 
conference proceedings, featuring EMO theory, implementation and ap
plications papers.) 

• E. Zitzler et al., eds, 2001, Evolutionary Multi-Criterion Optimization 
(EMO-OI) Conf Proceedings, Lecture Notes in Computer Science, Vol. 
1993, Springer, Berhn. (The first EMO conference proceedings, featur
ing EMO theory, implementation and apphcations papers.) 

• GECCO (LNCS, Springer) and CEC (IEEE Press) annual conference 
proceedings feature numerous research papers on EMO theory, imple
mentation, and applications. 

• MCDM conference proceedings (Springer) pubUsh theory, implementa
tion and application papers in the area of classical multi-objective opti
mization. 
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Mailing Lists 

• emo-list@ualg.pt (EMO methodologies) 

• MCRIT-L@LISTSERV.UGA.EDU (MCDM methodologies) 

Public-Domain Source Codes 

• NSGA-II in C: http://www.iitk.ac.in/kangal/soft.htm-i-

• SPEA2 in C+-I-: http://www.tik.ee.ethz.ch/ zitzler-i-

• Other codes: http://www.lania.mx/ ccoello/EMOO/+ 

• MCDM softwares: http://www.mit.jyu.fi/MCDM/soft.html+ 

References 
Babu, B. and Jehan, M. M. L., 2003, Differential evolution for multi-

objective optimization, in: Proc. 2003 Congress on Evolutionary Com
putation (CEC'2003), Canberra, Austraha, Vol. 4, IEEE, Piscataway, NJ, 
pp. 2696-2703. 

Bagchi, T., 1999, Multiobjective Scheduling by Genetic Algorithms, Kluwer, 
Boston, MA. 

Balicki, J. and Kitowski, Z., 2001, Multicriteria evolutionary algorithm with 
tabu search for task assignment, in: Proc. 1st Int. Conf. on Evolutionary 
Multi-Criterion Optimization (EMO-01), pp. 373-384. 

Bleuler, S., Brack, M. and Zitzler, E., 2001, Multiobjective genetic program
ming: Reducing bloat using spea2, in: Proc. 2001 Congress on Evolutionary 
Computation, pp. 536-543. 

Chankong, V. and Haimes, Y. Y., 1983, Multiobjective Decision Making The
ory and Methodology, North-Holland, New York. 

Chattopadhyay, A. and Seeley, C , 1994, A simulated annealing technique for 
multi-objective optimization of intelligent structures. Smart Mater. Struct. 
3:98-106. 

Coello, C. A. C , 2000, Treating objectives as constraints for single objective 
optimization, Eng. Optim. 32:275-308. 

Coello, C. A. C , 2003, http://www.lania.mx/ ccoello/EMOO/+ 
Coello, C. A. C. and Toscano, G., 2000, A micro-genetic algorithm for multi-

objective optimization. Technical Report Lania-RI-2000-06, Laboratoria 
Nacional de Informatica Avanzada, Xalapa, Veracruz, Mexico. 

Coello, C. A. C , VanVeldhuizen, D. A. and Lamont, G., 2002, Evolutionary 
Algorithms for Solving Multi-Objective Problems, Kluwer, Boston, MA. 

Coello Coello, C. A. and Salazar Lechuga, M., 2002, MOPSO: A Proposal for 
Multiple Objective Particle Swarm Optimization, in: Congress on Evolu-



MULTI-OBJECTIVE OPTIMIZATION 313 

tionary Computation (CEC'2002), Vol. 2, IEEE, Piscataway, NJ, pp. 1051-
1056. 

Gormen, T. H., Leiserson, C. E. and Rivest, R. L., 1990, Introduction to Algo
rithms, Prentice-Hall, New Delhi. 

Come, D., Knowles, J. and Oates, M., 2000, The Pareto envelope-based selec
tion algorithm for multi-objective optimization, in: Proc. 6th Int. Conf. on 
Parallel Problem Solving from Nature (PPSN-VI), pp. 839-848. 

Coverstone-Carroll, V., Hartmann, J. W. and Mason, W. J., 2000, Optimal 
multi-objective low-thurst spacecraft trajectories, Comput. Methods Appl. 
Mech. Eng. 186:387-402. 

Deb, K., 1995, Optimization for Engineering Design: Algorithms and Exam
ples, Prentice-Hall, New Delhi. 

Deb, K., 1999, Solving goal programming problems using multi-objective ge
netic algorithms, in: Proc. Congress on Evolutionary Computation, pp. 77-
84. 

Deb, K., 2001, Multi-objective Optimization Using Evolutionary Algorithms, 
Wiley, Chichester. 

Deb, K., 2003, Unveiling innovative design principles by means of multiple 
conflicting objectives, Eng. Optim. 35:445-470. 

Deb, K., Agrawal, S., Pratap, A. and Meyarivan, T., 2002a, A fast and eli
tist multi-objective genetic algorithm: NSGA-II, IEEE Trans. Evol Com
put. 6:182-197. 

Deb, K,, Jain, P., Gupta, N. and Maji, H., 2002b, Multi-objective placement 
of VLSI components using evolutionary algorithms, KanGAL Technical Re
port No. 2002006, Kanpur Genetic Algorithms Laboratory, Kanpur, India. 
Also IEEE Trans. Components Packaging Technol, to appear. 

Deb, K. and Jain, S., 2002, Running performance metrics for evolutionary 
multi-objective optimization, in: Proc. 4th Asia-Pacific Conf. on Simulated 
Evolution and Learning (SEAL-02), pp. 13-20. 

Deb, K. and Jain, S., 2003, Multi-speed gearbox design using multi-objective 
evolutionary algorithms, ASMiETran^. Mech. Design 125:609-619. 

Deb, K., Mitra, K., Dewri, R. and Majumdar, S., 2004, Towards a better under
standing of the epoxy polymerization process using multi-objective evolu
tionary computation, Chem. Eng. Sci. 59:4261-4277. 

Deb, K., Mohan, M. and Mishra, S., 2003a, Towards a quick computation 
of well-spread Pareto-optimal solutions, in: Proc. 2nd Evolutionary Multi-
Criterion Optimization (EMO-03) Conf, Lecture Notes in Computer Sci
ence, Vol. 2632, Springer, Berlin, pp. 222-236. 

Deb, K., Thiele, L., Laumanns, M. and Zitzler, E., 2002c, Scalable multi-
objective optimization test problems, in: Proc. Congress on Evolutionary 
Computation (CEC-2002), pp. 825-830. 



314 DEB 

Deb, K. and Tiwari, S., 2004, Multi-objective optimization of a leg mechanism 
using genetic algorithms, KanGAL Technical Report No. 2004005, Kanpur 
Genetic Algorithms Laboratory, Kanpur, India. 

Deb, K., Zope, P. and Jain, A., 2003b, Distributed computing of Pareto-optimal 
solutions using multi-objective evolutionary algorithms, in: Proc. 2nd Evo
lutionary Multi-Criterion Optimization (EMO-03) Conf., Lecture Notes in 
Computer Science, Vol. 2632, Springer, Berlin, pp. 535-549. 

Ehrgott, M., 2000, Multicriteria Optimization, Springer, Berlin. 
Fonseca, C , Fleming, P., Zitzler, E., Deb, K. and Thiele, L., 2003, Proc. 2nd 

Evolutionary Multi-Criterion Optimization (EMO-03) Conf., Lecture Notes 
in Computer Science, Vol. 2632, Springer, Berlin. 

Goldberg, D. E., 1989, Genetic Algorithms for Search, Optimization, and Ma
chine Learning, Addison-Wesley, Reading, MA. 

Gravel, M., Price, W. L. and Gagne, C , 2002, ScheduHng continuous casting of 
aluminum using a multiple objective ant colony optimization metaheuristic, 
Eur J. Oper Res. 143:218-229. 

Haimes, Y. Y, Lasdon, L. S. and Wismer, D. A., 1971, On a bicriterion formu
lation of the problems of integrated system identification and system opti
mization, IEEE Trans. Syst., Man Cybernet. 1:296-297. 

Hansen, M. P., 1997, Tabu search in multi-objective optimization: MOTS, Pa
per presented at The 13th Int. Conf. on Multi-Criterion Decision Making 
(MCDM'97), University of Cape Town. 

Jensen, M. T., 2003a, Guiding single-objective optimization using multi-
objective methods, in: Applications of Evolutionary Computing. Evowork-
shops 2003, Lecture Notes in Computer Science, Vol. 2611, G. R. Raidl 
et al., ed.. Springer, Berlin, pp. 199-210. 

Jensen, M. T., 2003b, Reducing the run-time complexity of multi-objective 
EAs, IEEE Trans. Evol. Comput. 7:503-515. 

Khor, E. F., Tan, K. C, and Lee, T. H., 2001, Tabu-based exploratory evolution
ary algorithm for effective multi-objective optimization, in Proc. Evolution
ary Multi-Objective Optimization (EMO-OI), pp. 344-358. 

Knowles, J. D. and Come, D. W., 2000, Approximating the non-dominated 
front using the Pareto archived evolution strategy, Evol. Comput. J. 8:149-
172. 

Kumral, M., 2003, Apphcation of chance-constrained programming based on 
multi-objective simulated annealing to solve a mineral blending problem, 
Eng. Optim. 35:661-673. 

Kung, H. T., Luccio, F. and Preparata, F. P., 1975, On finding the maxima of a 
set of vectors, /. Assoc. Comput. Machinery 22:469-476. 

Laumanns, M., Thiele, L., Deb, K. and Zitzler, E., 2002, Combining con
vergence and diversity in evolutionary multi-objective optimization, Evol. 
Comput. 10:263-282. 



MULTI- OBJECTIVE OPTIMIZATION 315 

Laumanns, M., Thiele, L. and Zitzler, E., 2004, Running time analysis of 
multi-objective evolutionary algorithms on pseudo-Boolean functions. IEEE 
Trans. Evol. Comput. 8:170-182. 

Loughlin, D. H. and Ranjithan, S., 1997, The neighborhood constraint method: 
A multi-objective optimization technique, in: Proc. 7th Int. Conf. on Genetic 
Algorithms, pp. 666-673. 

McMullen, R R., 2001, An ant colony optimization approach to addessing a 
JIT sequencing problem with multiple objectives, Artif. Intell. Eng. 15:309-
317. 

Miettinen, K., 1999, Nonlinear Multiobjective Optimization, Kluwer, Boston, 
MA. 

Mostaghim, S. and Teich, J., 2003, Strategies for finding good local guides 
in multi-objective particle swarm optimization (MOPSO), in: 2003 IEEE 
Swarm Intelligence Symp. Proc, Indianapolis, IN, IEEE, Piscataway, NJ, 
pp. 26-33. 

Osyczka, A,, 2002, Evolutionary Algorithms for Single and Multicriteria De
sign Optimization, Physica, Heidelberg. 

Parks, G. and Suppapitnarm, A., 1999, Multiobjective optimization of PWR 
reload core designs using simulated anneahng, in: Proc. Int. Conf. on Math
ematics and Computation, Reactor Physics and Environmental Analysis in 
Nuclear Applications, Vol. 2, Madrid, Spain, pp. 1435-1444. 

Rudolph, G., 1998, Evolutionary search for minimal elements in partially or
dered finite sets, in: Proc. 7th Annual Conf on Evolutionary Programming, 
Berlin, Springer, pp. 345-353. 

Rudolph, G. and Agapie, A., 2000, Convergence properties of some multi-
objective evolutionary algorithms, in: Proc. 2000 Congress on Evolutionary 
Computation (CEC2000), pp. 1010-1016. 

Srinivas, N. and Deb, K., 1994, Multi-objective function optimization using 
non-dominated sorting genetic algorithms, Evol. Comput. J. 2:221-248. 

Surry, P. D., Radcliffe, N. J. and Boyd, I. D., 1995, A multi-objective ap
proach to constrained optimisation of gas supply networks : The COMOGA 
method, in: Evolutionary Computing, AISB Workshop, Springer, Berlin, 
pp. 166-180. 

Veldhuizen, D. V. and Lamont, G. B., 2000, Multiobjective evolutionary algo
rithms: analyzing the state-of-the-art, Evol. Comput. J. 8:125-148. 

Zitzler, E., 1999, Evolutionary algorithms for multi-objective optimization: 
methods and applications, Ph.D. Thesis, Swiss Federal Institute of Tech
nology ETH, Zurich, Switzerland. 

Zitzler, E., Deb, K., Thiele, L., Coello, C. A. C. and Come, D., 2001a, Proc. 1st 
Evolutionary Multi-Criterion Optimization (EMO-OI) Conf, Lecture Notes 
in Computer Science, Vol. 1993, Springer, Beriin. 



316 DEB 

Zitzler, E., Laumanns, M. and Thiele, L., 2001b, SPEA2: Improving the 
strength Pareto evolutionary algorithm for multi-objective optimization, in: 
Giannakoglou, K. C , Tsahalis, D. T., Periaux, J., Papaihou, K. D. and Fog-
arty, T., eds, Proc. Evolutionary Methods for Design Optimization and Con
trol with Applications to Industrial Problems, Athens, Greece, International 
Centre for Numerical Methods in Engineering (Cmine), pp. 95-100. 

Zitzler, E. and Thiele, L., 1998, An evolutionary algorithm for multi-objective 
optimization: The strength Pareto approach. Technical Report No. 43, Com
puter Engineering and Networks Laboratory, Switzerland. 

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M. and da Fonseca, V. G., 
2003, Performance assessment of multiobjective optimizers: an analysis and 
review, IEEE Trans. Evol. Comput. 7:117-132. 



Chapter 11 

COMPLEXITY THEORY AND THE NO FREE 
LUNCH THEOREM 

Darrell Whitley 
Department of Computer Science 
Colorado State University, Fort Collins, CO, USA 

Jean Paul Watson 
Sandia National Laboratories, Albuquerque, NM, USA 

11.1 INTRODUCTION 
This tutorial reviews basic concepts in complexity theory, as well as various 

No Free Lunch results and how these results relate to computational complex
ity. The tutorial explains basic concepts in an informal fashion that illuminates 
key concepts. No Free Lunch theorems for search can be summarized by the 
following result: 

For all possible performance measures, no search algorithm is better than another 
when its performance is averaged over all possible discrete functions. 

Note that No Free Lunch is often referred to simply as NFL within the 
heuristic search community (despite copyrights and trademarks held by the 
National Football League). 

No Free Lunch relates to complexity theory in as much as complexity theory 
addresses the time and space costs of algorithms; complexity theory is also 
concerned with key classes of problems, such as the class of NP-complete 
problems that are also of interest to researchers designing search algorithms. 

11.2 COMPLEXITY, P AND NP 
The complexity classes denoted by P and NP are the most famous (or noto

rious) classes of problems in complexity theory. The problem class P is the set 
of problems that can be solved in polynomial time on a deterministic Turing 
machine. For current purposes, we can think of any computer as a surrogate 
for a Turing machine (except that Turing machines are assumed to have infinite 
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memory). The P stands for polynomial. In practice, we generally think of P as 
representing those problems that are tractable, i.e. problems that can be solved 
in reasonable computation time (within one's Ufetime, for example). 

The problem class NP is the set of problems that can be solved in polynomial 
time on a nondeterministic Turing machine. The NP stands for nondetermin-
istic polynomial {not to be confused with Not Polynomial). Nondeterminism 
is a Httle strange. In a nondeterministic machine, choices are allowed in the 
computation, so that some things need not be computed. In effect, the compu
tation itself becomes a search tree. Each path in the tree represents a possible 
solution, but only certain paths yield an actual solution. We say that a prob
lem is in NP if this search tree is polynomial in height, while the number of 
nodes in the search tree might be exponential. Thus, if we could explore all 
computational paths in parallel, we arrive at a solution in polynomial time. Al
ternatively, if we ''magically" make the right choice at each decision node in 
the tree, then we again arrive at the desired solution in polynomial time. If 
we can deterministically find a path to a solution in polynomial time in every 
case, then the problem is in P. All problems in P are also in NP. Another char
acteristic of the class NP is that the correctness of solutions can be verified in 
deterministic polynomial time. Note that this is true, because if we have the 
solution in hand, we then know how to make the right choice at each decision 
node without needing any magical guidance. 

Problems in NP that are not known to be in P are characterized by an algo
rithm gap. An algorithm gap exists when the proven difficulty of a problem 
(or a set of problems) has lower complexity than the best known algorithms 
for solving that problem. The complexity of the problem itself is algorithm 
independent and is a bound from below: the problem can be proven to be at 
least this hard (but might be harder). The complexity of the algorithm is a 
bound from above: the best known algorithms solves the problem this fast (but 
it might be done faster). 

The complexity of sorting has been proven to be 0{N log A )̂, thus no al
gorithm can sort faster than 0{N log N) in the worst case. Of course, there 
exist algorithms that sort in 0{N log N) time, so sorting is said to be a closed 
problem because it does not have an algorithm gap. 

If an algorithm sorts faster than 0{N log N) time, then that algorithm has 
been designed to work on special subclasses of problems: for example, if we 
know that we are sorting integers from ranging from 1 to 1000, and the ex
pected distribution of the integers is uniform, we can use a bucket sort and sort 
in linear, i.e. 0{N), time. 

In contrast, an algorithm gap does exist in the well-known traveling sales
man problem. Here, the only algorithm guaranteed to locate an optimal so
lution is, in effect, enumeration. Thus, the best known method in the worst 
case has complexity 0{N\) for an Â  city problem. Yet, no one has proven 
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that the inherent complexity of the travehng salesman problem is such that it 
cannot be solved in polynomial time. And note that a solution can be verified 
in polynomial time. If someone has a solution that is claimed to have a partic
ular evaluation, then that evaluation can be verified in 0{N) time—which is 
polynomial, of course. 

Can all the problems that are solved by a Turing machine in NP time be 
solved by a deterministic Turing machine using another, more clever algorithm 
in polynomial time? What we are really asking is whether the complexity 
class P = NP. The answer is unknown and is considered to be one of the most 
important theoretical questions in Computer Science. It is an equally important 
question in Operations Research. While the answer is unknown, it is widely 
thought that P 7̂  NP. 

Researchers have identified a very important subset of the class NP known 
as the class NP-complete. A problem, R, is NP-complete if (1) R is NP-hard 
and (2) R e NP. Informally, a problem is NP-hard if it is at least as hard as any 
other problem in NP. More formally, a problem R is NP-hard if there exists an 
NP-complete problem RQ such that every instance of RQ can be "reformulated" 
into an instance of R in deterministic polynomial time. R must be just as hard 
as /?o since R in some sense "includes" RQ. 

In a renowned theorem, Cook (1971) established that Boolean satisfiabil
ity is NP-complete by showing it is in NP and by showing that every problem 
in NP can be expressed as a Boolean satisfiability problem (also just called 
"SAT"). Of course SAT is a member of the set of NP problems: the nonde-
terministic Turing machine just selects the right assignment to the Boolean 
variables to make the expression true, if it is possible to do so. 

Other problems in NP have been shown to be NP-complete by showing 
that every SAT problem can be converted into an instance of that particular 
problem class. Thus, every instance of SAT can be converted into an instance 
of the 3-CNF-S AT problem. A 3-CNF-S AT problem is a satisfiability problem, 
where the Boolean expression is made up of conjunctive normal form clauses. 
Each clause contains three Boolean hterals, where a Hteral is a variable or its 
negation such as ;ci or x\. One of the three literals must be satisfied for the 
clause to be satisfied (e.g. x\ or x\ or .̂ 2)- All of the clauses must be satisfied 
for the Boolean expression to be satisfied. The 3-CNF-SAT formulation allows 
satisfiability problems to be of regular decomposable form that can then be 
converted into problems such as the Hamiltonian circuit problem, which in turn 
can be converted to an instance of the traveling salesman problem (Corman et 
al., 1990). This means that all of these problems are NP-hard. Showing that 
they are all also in the class NP makes them NP-complete. Technically, to 
be NP-complete, a problem must be a decision problem. A decision problem 
is a problem that has a yes or no answer. Therefore, the traveling salesman 
problem is "NP-complete" when expressed as a decision problem (i.e., is there 
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a tour with length < XI), but the travehng salesman problem is still said to be 
''NP-hard" when expressed as an optimization problem. 

Given the interrelated nature of the NP-complete problems, if researchers 
ever discover a polynomial-time algorithm for any NP-complete problem, then 
it would follow that every problem in NP could be solved in polynomial time. 
In an abstract sense, this means that all problems in the NP-complete problems 
are all of comparable difficulty, and that the NP-complete are the most difficult 
problems in the set made up of all problems in NP. 

11,2.1 Complexity^ Search and Optimization 
Since we do not know how to compute the solution to NP-hard problems 

in polynomial time, we have to settle for approximate solutions (which some
times can be computed exactly in polynomial time) or use search methods to 
find the best solutions possible. It can be useful to think of these search meth
ods as exploring the same decision tree that is navigated by a nondeterministic 
Turing machine. The solutions that are found using search methods often are 
not optimal, but finding sufficiently good solutions can be important for many 
applications. 

A basic distinction can be made between search problems that are discrete 
versus problems that are continuous. This distinction can also be related to 
the difference between integers and real-valued numbers. If we ask how many 
integers there are in the (inclusive) interval between 1 and 10, the answer is 
obviously 10 different and discrete values. But if we asked how many real-
valued numbers there are between 1 and 10, the answer is infinitely many. 

The nondeterministic Turing machine is clearly solving a discrete problem, 
because there are a fixed number of decisions that must be made to reach an 
optimal solution. By definition, the number of decisions that must be made 
by the nondeterministic Turing machine must be polynomial if it is solving an 
NP-hard problem. 

Some problems cannot be solved in polynomial time by a nondeterministic 
Turing machines and therefore are not in NP; we can loosely think of such 
problems as requiring exponential time, although in complexity theory one 
must worry about both space (memory) and time and balance trade-offs be
tween space and time costs. 

Consider a parameter optimization problem such that there is a function / 
that takes k parameters as inputs and returns a single value that evaluates the 
usefulness or goodness of those k parameters. The space of possible inputs 
is known as the domain and the space of possible outputs as the range or co-
domain of the function. For example, we might have a parameter optimization 
problem that used temperature and pressure as two input control parameters 
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for a process that produces some material (e.g. paper), where the output of the 
function might be the cost of the material, or some measurement of its quality. 

If a parameter can be assigned any continuous real-valued number, then 
the input space is theoretically infinite. We will Umit our attention to prob
lems that are discrete such that the domain and therefore the co-domain are 
finite. Discrete parameter optimization problems are part of a larger set of 
discrete problems referred to as combinatorial optimization problems. Combi
natorial optimization problems include many different types of problems, such 
as scheduling and resource allocation, as well as problems in graph theory and 
Boolean logic. 

For example, we might have a scheduling problem where we want to opti
mize the order in which tasks are carried out. The goal might be to minimize 
total processing time, or to maximize work done per unit of time. For A'̂  tasks, 
there could be N\ ways to order those tasks. Or, we might want to assign truth 
values (0 or 1) to a Boolean expression, in which case there are 2^ assignments 
if there are k Boolean variables in the expression. In the first case, an input 
could be a permutation of tasks of length N and the evaluation might be how 
long it takes to process all of the N tasks. In the second case, an input might 
be a bit-string of length k representing the assignments made to the k Boolean 
variables, and the output might be a true or false (0 or 1) evaluation of the 
overall Boolean expression. For classic NP-hard problems, the search space is 
typically modeled in a general way so that the search space is exponentially 
large in relationship to the size of an input. 

Parameter optimization problems can also be discretized. For example, a 
single input parameter can be restricted to a value between 0.00 and 99.99 
(inclusive) where we only consider values that are increments of 0.01. In this 
case, there are only 10 000 possible assignments for that particular input. If all 
of the parameters of a parameter optimization problem are discretized in this 
way, then the overall search problem is discrete as well. There are a number 
of reasons that one might want to look at parameter optimization problems 
as discrete search spaces. In some cases, sensors for the inputs and/or outputs 
have limited precision and it does not make sense to represent and reason about 
extremely high precision numbers: we simply cannot measure the world that 
precisely. And, in general, as soon as anything is represented in a computer 
program it is discrete. Infinite precision is a fiction, although it is sometimes a 
useful fiction. But as soon as we decide to represent a parameter using a fixed-
length floating point representation, the optimization problem is discrete. 

This leads to the following observation. If the set of possible inputs is dis
crete, we can enumerate the set of inputs and label each possible input with 
a unique integer. We will also sort the inputs in some principled manner, so 
that the iih possible input is uniquely identified. This is a familiar concept in 
complexity, since it allows us to count all of the inputs. Thus, any particular 
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instance of a discrete search problem using any given discrete representation 
can be abstractly modeled by a function 

/(O = ;• 

where / is an integer that labels the /th input (i.e. element / of the domain) 
and j is a member of the set of values that make up the co-domain. This 
perspective also provides a general foundation for discussing the concept of 
No Free Lunch. 

11.3 NO FREE LUNCH 
In 1995, a paper by David Wolpert and William Macready caused a good 

deal of excitement in the search community. An updated version of the orig
inal report appeared in 1997. The paper No Free Lunch Theorems for Search 
presents proofs that can be summarized by the following No Free Lunch result: 

For all possible performance measures, no search algorithm is better than another 
when its performance is averaged over all possible discrete functions. 

First, note that we only consider discrete functions. A performance measure 
includes any measurement of the quality of the solution (or set of solutions) 
found after sampling some fixed number of points in the search space, or how 
long it takes to find a solution of a particular quality. It is also implied that a 
performance measure is taken over the set of domain and associated co-domain 
values that have been sampled so far. 

A key assumption behind this result is that resampling is ignored: this means 
that if a search algorithm samples point i and evaluates the objective function 
f{i) then that point is never sampled again. In reality, heuristic search algo
rithms *'focus" search toward particular regions of the search space: in other 
words, a focused search is one that spends more time sampling points that are 
near to one another in the search space. Consequently, a focused search is one 
that is more likely to resample previously visited points. Search algorithms 
that are more likely to resample points in the search space than others are in 
some sense "worse" than algorithms that resample less. 

One of the most basic and least intelligent forms of search is random enu
meration. Random enumeration means that we sample the search space ran
domly without replacement; this can be done using clever bookkeeping, or 
simply by keeping a list of visited points so that none are evaluated again. In 
practice, random sampling is typically unfocused, only a Hmited amount of 
the search space can be sampled, and it is reasonable to allow sampHng with 
replacement because resampling is unlikely. When random sampling is used 
as a search algorithm, it provides a minimal baseline against which the per
formance of heuristic search algorithms can be judged. Clearly, we would ex
pect any useful heuristic search algorithm to outperform random enumeration. 
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However, a startling and powerful consequence of No Free Lunch is that no 
heuristic search algorithm is better than random enumeration when compared 
over all possible discrete functions. 

Useful search algorithms do not exhaustively enumerate the entire search 
space. Wolpert and Macready (1995, 1997) model a search algorithm as a 
procedure that searches for m steps. However, this does not restrict any of the 
No Free Lunch results. 

Another issue relating to No Free Lunch involves deterministic versus 
stochastic search algorithms. Some algorithms make deterministic decisions, 
such as a steepest ascent local search algorithm: when started from the same 
point, steepest ascent always yields the same solution. Genetic algorithms are 
often implemented as largely stochastic algorithms—meaning that the search 
involves many random or stochastic decisions and that different runs will often 
produce different solutions. Wolpert and Macready present arguments show
ing that the No Free Lunch theorems hold for both stochastic and determinis
tic search algorithms. Radcliffe and Surry (1995) also point out that in prac
tice stochastic algorithms typically employ pseudo-random number generators. 
Thus, if we include the random number generator and initial seed in the spec
ification of the search algorithm, then these "stochastic" algorithms, in effect, 
are also deterministic. 

Immediately following its introduction, researchers had two general reac
tions to the No Free Lunch results. 

Reaction 1 Many researchers simply dismissed No Free Lunch, arguing that 
results concerning the set of all possible discrete functions are not appli
cable in the real world because this set is not representative of real-world 
problems. Some researchers pointed out that the set of all possible dis
crete functions is infinitely large and most functions are incompressible 
in that there is not a representation whose size is significantly less than 
the size of the function when fully enumerated. For example, if there are 
N values in the co-domain of a function, then writing down all of these 
values requires Â  log2 Â  bits (i.e. Â  values, log2(A )̂ bits per value). In 
effect, this representation of the function is just a look-up table where 
the ith entry is the co-domain value associated with f{i). If there ex
ists no representation of a function that uses less than 0(N log2 Â ) bits, 
then that function is incompressible. Even if an evaluation function only 
returns 0 or 1, it still requires 0(N) bits to construct a look-up table or 
to enumerate the function; in this case, the look-up table is still expo
nentially large when Â  is exponentially large in relationship to the size 
of an input string to the evaluation function. 

Of course, there are more random functions than non-random functions 
(English, 2000a). Furthermore, most standard textbooks on computabil-
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ity discuss the well-known result that the set of all possible functions is 
uncountably infinite (as can be shown using diagonalization arguments), 
while the set of all possible programs (which are just bit-strings at the 
lowest level) is only countably infinite (Sudcamp, 1997). So the set of all 
possible cost functions that can be implemented on a computer is a tiny 
subset of the set of all possible functions. Thus, the space of all possi
ble discrete functions is largely composed of incompressible functions. 
Given these observations, "No Free Lunch is No Big Deal" seemed to 
be the conclusion of this point of view. 

Reaction 2 The other reaction to No Free Lunch was to acknowledge that 
researchers trying to develop the best possible algorithm for a particular 
application typically need to leverage extensive problem-specific knowl
edge. Consequently, the No Free Lunch result seemed to be an intuitive 
affirmation of the idea that there are no general-purpose search methods 
(at least none that are very effective) and that the business of developing 
search algorithms is one of building special-purpose methods to solve 
appUcation-specific problems. This point of view echoes a refrain from 
the Artificial Intelligence community: "Knowledge is Power". 

Of course, there is truth in both of these views. It has taken several years 
for the research community to gain a deeper understanding of No Free Lunch. 
These investigations have led to some surprising and even fruitful results along 
the way. Culberson (1998) published an "algorithmic view" of No Free Lunch 
that added perspective to the debate; Culberson makes two important points. 

First, No Free Lunch looks at search as a Wind process. This means that the 
only information we have is the evaluation of particular points in the space. We 
do not have information about what a solution might look like or information 
about how the evaluation function is constructed that might allow us to search 
more intelligently. Blind search is extremely weak. Using an "adversarial 
argument" we can think of blind search as the process of asking an adversary 
to sample a point of some objective function and then return an answer. In the 
space of all possible discrete functions, however, the adversary is free to return 
any value whatsoever without regard to those values of the search space that 
have already been examined. In the worst case, sampled points from the search 
space tell us nothing about the remaining points in the search space. 

Second, search is often not blind. If we construct an algorithm for the trav
eling salesman problem, for example, we often do exploit application-specific 
operators and representations. But this does not mean that we completely give 
up generality; our algorithms are designed to solve a particular problem, but 
should be general enough to solve different instances of that problem. 

Radcliffe and Surry (1995) first formahzed the idea that we can also include 
representations under No Free Lunch. That is, when we consider all possible 
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representations of a function, No Free Lunch still holds: no search algorithm is 
better than another when applied to all possible representations of a function. 
In effect, a representation just transforms one function into another. 

Not surprisingly. No Free Lunch also holds when comparing the set of pos
sible representations under Gray codes and Binary bit encodings. However, 
Whitley et al. (1997) pointed out that if one selected particular subsets of prob
lems of bounded complexity, then No Free Lunch no longer holds; Rana and 
Whitley (1997) and Whitley (1999) provide proofs of this related to binary 
representations. Droste et al. (1999) also made similar observations, indicat
ing that one can define sets of reasonable and interesting functions where one 
algorithm can consistently outperform another. 

If we go back in time. No Free Lunch observations were made by Greg 
RawHns at the Foundations of Genetic Algorithms (FOGA) workshops in 1990 
and 1992. In the preface to the proceedings of the 1990 FOGA workshop 
RawHns (1991) makes the following observations: 

[I]t is sometimes suggested that GAs [Genetic Algorithms] are universal in that 
they can be used to optimize any function. These statements are true in only a 
very limited sense; any algorithm satisfying [these] claims can expect to do no 
better than random search over the space of all functions. . . . 
. . . It is now apparent that for a fixed universal algorithm, restricted to [bit] strings 
.. . over the set of all possible domain functions ... it does not matter which en
coding we use, since for every domain function which the encoding makes easier 
to solve there is another domain function that makes it more difficult to solve. 
Thus, changing the encoding does not affect the expected difficulty of solving 
randomly chosen domain functions. 

Equivalently, assume that we have ^ fixed domain function / and suppose that 
we choose the encoding, e, at random. ... Then, no search algorithm can expect 
to do better than random search, since no information is carried by e about / , 
except that for each string there is a value. 

(Rawlins, 1991, pp. 7-8.) 

Rawlins anticipated several of the consequences of No Free Lunch. Nev
ertheless, it was Wolpert and Macready who not only provided the first proof 
of No Free Lunch, but also explored many of the ramifications of the No Free 
Lunch Theorem. 

11.3,1 No Free Lunch: Variations on a Theme 
Two other common variants of NFL are as follows: 

• the aggregate behavior of any two search algorithms is equivalent when 
compared over all possible discrete functions; 

• the aggregate behavior of all possible search algorithms is equivalent 
when compared over any two discrete functions. 
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At the root of these observations is another, more concise result. Consider any 
algorithm A, apphed to function / ; . hti Apply {At, fj, m) represent a "meta-
level" algorithm that outputs the order in which A, visits m elements in the 
co-domain of fj after m steps. For every pair of algorithms Ak and A, and for 
any function fj, there exists another function // such that 

Apply (A,-, fj,m) = Apply (Ak, fi, m) 

The equivalence operator = denotes that the ordered sequence of co-domain 
values that is returned by "Apply" will be equivalent. We could interpret this 
result in another way. For every pair of functions fj and // and for any al
gorithm A,, there exists another algorithm Ak such that Apply (A,, fj, m) = 
Apply {Ak, fi,m). In fact, if we consider the algorithms and the functions as 
variables that are supplied to the Apply function, then when any three of the 
variables are known, the fourth is immediately determined. 

This also imphes that we can talk about No Free Lunch in a much smaller 
context: for example, we can talk about any two search algorithms applied to 
exactly two carefully chosen paired functions. 

This perspective on No Free Lunch has some rather counter-intuitive impli
cations, which may be deeper and more profound than the general NFL result. 
Consider a best-first version of steepest ascent local search which restarts when 
a local optimum is encountered. Also consider a worst-first steepest ascent lo
cal search, also with restarts. We incorporate restarts so that these algorithms 
continue searching for an arbitrary number of steps. Then, for every function 
fj there exists a function // such that 

Apply (best-first, fj, m) = Apply (worst-first, //, m) 

Virtually all researchers would accept that best-first local search is a rea
sonable search algorithm and that it is useful on many real-world problems. 
In other words, there is a subset of problems where best-first search is effec
tive, relative to some performance measure. But there is a corresponding set 
of functions where worst-first local search is equally effective. What do these 
functions look like? They probably are "structured" in some sense, and might 
be compressible. Also note that if we are minimizing a function, then a worst-
first local search is one that simply maximizes at each step, instead of minimiz
ing. On the other hand, it seems reasonable that we might want to maximize 
one function and minimize another function. Why is best-first search generally 
viewed as a reasonable algorithm and worst-first as an unreasonable algorithm? 
This is a nagging question for which, at least formally, there are currently no 
good answers. 
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11.3.2 No Free Lunch and Permutation Closure 
As has been noted, the set of all possible discrete functions is infinitely 

large. One easy way to see this is by considering all the functions that take K 
inputs: since K could be any integer from 1 to infinity, there must be infinitely 
many discrete functions. But even if there are exactly two inputs, the number 
of evaluations could be chosen from an infinite set of different possible values, 
resulting in infinitely many discrete functions. 

Whitley et al. (1997) first explored the idea that permutations could be used 
to represent both algorithms and functions—and thus produce an NFL result 
over a finite set. This was further explored by Whitley (2000). Consider the 
following small example. Assume that the co-domain of our objective func
tion consists of the set of values {A, B,C}. Let the permutation {A,B,C) 
represent a canonical ordering of these values. We can start by considering bi-
jective functions, those that are one-to-one and onto: an important imphcation 
of this is that each value in the co-domain is unique. To construct a func
tion, we need to assign values to / ( I ) , / (2) and / (3) . Exactly 3! bijective 
functions can be constructed given three possible co-domain values. Addition
ally, only 3! behaviors are possible for any search algorithm, assuming that 
an algorithm does not resample points. Let an algorithm's behavior be repre
sented by a permutation over the set of numbers {1, 2, 3} which will serve as 
indices into the canonical permutation of co-domain values {A, B,C]. Let si 
be the /th value sampled by a search algorithm. Thus, the permutation (2, 1, 3) 
defined with respect to the canonical ordering (A, B, C) represents a search 
algorithm whose behavior can be described by the following sampling behav
ior: s\ = B, si =^ A, S2, = C. Note that we do not need to specify a particular 
function to talk about behavior, we just need to define the co-domain values. In 
the following table, we enumerate all possible permutations over all possible 
functions over the co-domain {A, B,C] as well as all possible permutations 
over the set of algorithm behaviors over the set of indices denoted by {1, 2, 3}. 

POSSIBLE 
BEHAVIORS 

Bl 
B2 
B3 
B4 
B5 
B6 

• < 1, 
< 1, 
< 2, 
< 2 , 
< 3, 
< 3, 

2, 
3, 
1, 
3, 
1, 
2, 

3 
2 
3 
1 
2 
1 

> 
> 
> 
> 
> 
> 

POSSIBLE 
FUNCTIONS 

Fl 
F2 
F3 
F4 
F5 
F6 

: < A, 
. < A, 

< B, 
< B, 
< c, 
< c, 

B, 
c, 
A, 
c. 
A, 
B, 

C 
B 
C 
A 
B 
A 

> 
> 
> 
> 
> 
> 
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The implications of No Free Luncii start to become clear when one asks 
basic questions about the set of behaviors and the set of functions. 

If we apply any two sets of behaviors to all functions, each behavior gen
erates a set of 3! possible search behaviors which is the same as the set of 
all possible functions. If we apply all possible search behaviors to any two 
functions, for each function we again obtain a set of behaviors which, after 
the indices are translated into co-domain values, is the same as the set of all 
possible functions. 

We need to be careful to distinguish between algorithms and their behaviors. 
There exist many algorithms (perhaps infinitely many) but once the values of 
the co-domain are fixed, there are only a finite number of behaviors. 

Schumacher (2000) and Schumacher et al. (2001) sharpened the No Free 
Lunch theorem by formally relating it to the permutation closure of a set of 
functions. Let X and y denote finite sets and let f: X —> >* be a function 
where f{xi) = yi. Let cr be a permutation such that a : X —> X. We can 
permute functions as follows: 

0f{x) = f{G-\x)) 

Since /(x,) = yi, the permutation of{x) can also be viewed as a permu
tation over the values that make up the co-domain (the output values) of the 
objective function. 

We next define the permutation closure P(F) of a set of functions F\ 

P(F) = [erf : f e F and cr is a permutation} 

Informally, P{F) is constructed by taking each function in F and reorder
ing its co-domain values to produce a new function. This process is repeated 
until no new functions can be generated. This produces closure—( since every 
re-ordering of the co-domain values of any function in P{F) will produce a 
function that is already a member of P{F). Therefore, P{F) is closed under 
permutation. This provides the foundation for the following result. 

THEOREM 11.1 The No Free Lunch theorem holds for a set of functions if 
and only if that set of functions is closed under permutation. 

Proofs are given by Schumacher et al. (2001). Intuitively, that NFL should 
hold over a set closed under permutations can be seen from Culberson's adver
sarial argument: any possible (remaining) value of the co-domain can occur at 
the next time sample. Proving that the connection between algorithm behavior 
and permutation closure is an if and only //"relationship is much stronger than 
the observation that No Free Lunch holds over the permutation closure of a 
function. But if every remaining value is not equally likely at each time step, 
the set of functions we are sampling from is not closed under permutation and 
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No Free Lunch does not hold. Similar observations have also been made by 
Droste et al. (2002). 

It is useful to view the permutation closure of a function as a table, where 
each row of the table is a permutation representing a function. Each row in 
the table also corresponds to the behavior of some optimization algorithm on 
some function. The behavior of an optimization algorithm with respect to 
some objective function describes the order in which the optimization algo
rithm samples the values that make up the co-domain of the objective function. 
Schumacher et al. (2001) refer to this as tht performance vector. 

This tabular representation makes it clear when NFL results hold and makes 
it clear why making a general declaration that one algorithm is better than 
another is in some sense meaningless. 

Consider the following table representing the permutation closure over a 
function defined over a co-domain of three values. 

< 1, 2 , 3 > 
< 1, 3 , 2 > 
< 2 , 1, 3 > 
< 2 , 3 , 1 > 
< 3 , 1, 2 > 
< 3 , 2 , 1 > 

Each column of the table represents the set of possible results at a particular 
time step; the rows represent all possible performance vectors. But each col
umn is identical in its composition. The notion of robustness imphes that some 
algorithm yields relatively good performance over a broad range of problems 
compared to another algorithm. This would suggest that relatively good solu
tions are found within some fixed (e.g. polynomial) number of time steps. Yet, 
if NFL holds over a set of problems, the set of co-domain values retumed over 
all functions in the permutation closure is identical at each time step. Thus, 
not only are all measures of performance the same after m steps; every step of 
the search yields exactly the same set of co-domain samples when behavior is 
aggregated over all possible functions in any permutation closure. 

We can now make a more precise statement about the "zero-sum" nature 
of No Free Lunch. If algorithm K outperforms algorithm Z on any subset of 
functions denoted by /3, then algorithm Z will outperform algorithm K over 
Pifi) — ̂ . Differences in aggregate measures of performance such as the 
total number of steps taken to find a particular evaluation or the sum of the 
evaluations after m steps will be zero. Aggregate versus average measures of 
performance can be different, because the subsets are of different size. This 
means that No Free Lunch theorems for search apply to finite sets. These sets 
can in fact be quite small. 
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English (2000a) first pointed out that NFL can hold over sets of functions 
such as needle-in-a-haystack functions. A needle-in-a-haystack function is one 
that has the same evaluation for every point in the space except one; in effect, 
searching a needle-in-a-haystack function is necessarily random since there is 
no information about how to find the needle until after it has been found. 

In the following example, NFL holds over just three functions: 

/ = (0,0,3) 

P ( / ) = {(0,0, 3), (0,3,0), (3, 0,0)} 

Clearly, NFL does not just hold over sets that are incompressible. 
All needle-in-a-haystack functions have a compact representation of size 
(9(log A )̂, where Â  = | ̂  | is the size of the search space. In effect, the eval
uation function needs to indicate when the needle has been found and return a 
distinct evaluation. 

Generally, we like to construct evaluation functions that are capable of pro
ducing a rich and discriminating set of outputs: that is, we like to have eval
uation functions that tell us point i is better than point j . But it also seems 
reasonable to conjecture that if NFL holds over a set that is compressible, then 
that set has low information measure. 

Schumacher et al, (2001) also note that the permutation closure has the fol
lowing property: 

P(FUF') = P{F)\JP{F') 

Given a function / and a function g, where g ^ F ( / ) , we can then construct 
three permutation closures: P ( / ) , P(g), P{f U g). For example, this implies 
that NFL holds over the following sets which are displayed in table format: 

Se t 1: {< 3 , 0, 0 >, 
< 0, 3 , 0 >, Se t 3 
< 0, 0, 3 >} 

Se t 2 : {< 1, 3 , 2 >, 
< 2 , 1, 3 >, 
< 2 , 3 , 1 >, 
< 3 , 1, 2 >, 

< 3 , 2 , 1 >} 

{< 
< 
< 
< 
< 
< 
< 
< 

3 , 
0 , 
0 , 
1 , 
2 , 
2, 
3 , 
3 , 

0 , 
3 , 
0 , 
3 , 
1 , 
3 , 
1 , 
2 , 

0 
0 
3 
2 
3 
1 
2 
1 

>, 
>, 
>/ 
>/ 
>/ 
>, 

>/ 
>} 

We can also ask about NFL and the probability of sampling a particular func
tion in P{f). For NFL to hold, we must insist that all members of P{f) for 
a specific function / are uniformly sampled. Otherwise, some functions are 
more likely to be sampled than others, and NFL breaks down. For NFL to hold 
over P{g) the probability of sampling a function in P{g) must also be uni
form. But Igel and Toussaint (2004) point out that we can also have a uniform 
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sample over P{g) and a (different) uniform sample over P{f) and NFL still 
holds. Thus, sampling need not be uniform over P(f U g). 

11.3.3 Free Lunch and Compressibility 
Whitley (2000) presents the following observation (the current form is ex

panded to be more precise). 

THEOREM 11.2 Let P{f) represent the permutation closure of the function 
f- If f is a bijection, or if any fixed fraction of the co-domain values of f are 
unique, then \P(f)\ = 0(N\) and the functions in P(f) have a description 
length ofO(N log N) bits on average, where N is the number of points in the 
search space. 

The proof, which is sketched here, follows the well known proof demonstrating 
that the best sorting algorithms have complexity 0{N log A )̂. We first assume 
that the function is a bijection and that | P ( / ) | = Â !. We would like to ''tag" 
each function in P ( / ) with a bit string that uniquely identifies that function. 
We then make each of these tags a leaf in a binary tree. The tag acts as an 
address that tells us to go left or right at each point in the tree in order to 
reach a leaf node corresponding to that function. But the tag also uniquely 
identifies the function. The tree is constructed in a balanced fashion so that 
the height of the tree corresponds to the number of bits needed to tag each 
function. Since there are N! leaves in the tree, the height of the tree must 
be OQog Nl) = 0{N log N). Thus 0{N log Â ) bits are required to uniquely 
label each function. (Standard binary labels can be compressed somewhat, but 
lexicographically ordered bit labels can be used, which cannot be compressed, 
so that the complexity is still 0{N log N).) 

To construct a lookup table or a full enumeration of any permutation of N 
elements requires 0{N log N) bits, since there are N elements and log Â  bits 
are needed to distinguish each element. Thus, most of these functions have 
exponential description. 

This is, of course, one of the major concerns about No Free Lunch theo
rems. Do No Free Lunch theorems really apply to sets of functions which are 
of practical interest? Yet this same concem is often overlooked when theo
retical researchers wish to make mathematical observations about search. For 
example, proofs relating the number of expected optima over all possible func
tions (Rana and Whitley, 1998), or the expected path length to a local optimum 
over all possible functions (Tovey, 1985) under local search are computed with 
respect to the set of Â ! functions. 

Igel and Toussaint (2003) formahze the idea that if one considers all the pos
sible ways that one can construct subsets over the set of all possible functions, 
then those subsets that are closed under permutation are a vanishingly small 
percentage. The problem with this observation is that the a priori probability 
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of any subset of problems is vanishingly small—including any set of appli
cations we might wish to consider. On the other hand, Droste et al. (2002) 
have also shown that for any function for which a given algorithm is effective, 
there exist related functions for which performance of the same algorithm is 
substantially worse. This is expressed in the Almost No Free Lunch (ANFL) 
theorem. 

THEOREM 11.3 ANFL Theorem: Let H be a randomized search strategy and 
f : {0, 1}^ -> {0, 1, . . . , Â  — 1). Then there exists at least N^" "^ functions 
/>K : {0, 1} --> {0, 1, . . . , iV} which agree with f on all but at most 2^^^ inputs 
such that H does find the optimum off^ within 2^^^ steps with a probability 
bounded above by 2"^^^. Exponentially many of these functions have the ad
ditional property that their evaluation time, circuit size representation, and 
Kolmogorov complexity is only by an additive term of 0{n) larger than the 
corresponding complexity off 

For current purposes, we can think of Kolmogorov complexity as the length 
of the shortest program that implements a particular function. Thus, if two 
functions have similar Kolmogorov complexity, then there are programs or 
algorithms of similar size that implement those functions. The significance of 
the ANFL theorem is that even search algorithms designed for specific problem 
classes could be subject to ANFL kinds of effects. 

11.3.4 No Free Lunch and NP-completeness 
No Free Lunch has not been proven to hold over the set of problems in the 

complexity class NR This is rather obvious if one considers the following: if 
No Free Lunch holds for any NP-complete problem, then it immediately fol
lows that no algorithm is better than random enumeration on the entire class of 
NP-complete problems (because of the existence of a polynomial-time trans
formation between any two NP-complete problems). However, this would also 
prove that P ^ NP, since it would prove that no algorithm could solve all in
stances of an NP-complete problem in polynomial time. This means that proofs 
conceming No Free Lunch do not apply to NP-complete problems unless the 
proofs also show (perhaps implicitly) that P ^ NP. 

The description length of all NP-complete problems must also be polyno
mial, since we need to reformulate one problem into another in polynomial 
time. This means that an NP-complete problem class (such as NK-landscapes: 
Kauffman, 1989) cannot be used to generate all Â ! functions of P{f) when / 
is a bijection, since on average the set of all possible bijective functions over a 
set of co-domain values do not have polynomial space descriptions. 

The existence of ratio bounds also shows that NFL theorems to not hold 
for certain NP-complete problems. The EucHdean traveling salesman problem 
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is a traveling salesman problem where the cities are points in real space and 
the distance between cities are Euclidean. For such problems, the triangle 
inequality holds, such that the distance from city A to city B to city C is greater 
than or equal to the distance from city A to city C, A greedy polynomial time 
approximate algorithm exists for the Euclidean traveling salesman problem 
that is guaranteed to yield a solution that is no worse that 2C, when C is the 
cost of an optimal solution (Cormen et al., 1990). (In fact, even tighter bounds 
exist.) Branch and bound algorithms (Horowitz and Sahni, 1978) can use this 
information to compute bounds such that no solution with a cost greater than 
2C is examined. Thus, the existence of a ratio bound means that algorithms 
can select which performance vectors to explore, and this excludes some search 
behaviors (i.e. performance vectors) that are part of the permutation closure of 
the objective function. 

11.3.5 Evaluating Search Algorithms 
From a theoretical point of view, comparative evaluation of search algo

rithms is a dangerous, if not dubious, enterprise. But the alternative to testing 
is to give up and say that all algorithms are equal—which means we have no 
way of recommending one algorithm over another when a search method is 
required to solve a problem of practical interest. The best we can do is build 
test functions that we believe capture some aspects of the problems we actually 
want to solve. But this highlights a critical question. Do benchmarks really test 
what we want to test? If an algorithm does well on a very simple problem— 
such as a linear objective function—is that good or bad? Many people have 
used the ONEMAX test function for testing search algorithms that use a bi
nary representation. The objective function for ONEMAX is to maximize the 
number of bits set to 1 in a bit string. But should we really believe that an algo
rithm that does well on ONEMAX generalizes to other problems of practical 
interest? Theory would suggest extreme caution. 

A set of benchmarks, denoted by fi where S = |;S|, i is really just a subset of 
functions. If algorithm K is better than algorithm Z on fi, then algorithm Z is 
equally and identically better on another set of 5" functions drawn from P{^). 

So what does it mean to evaluate an algorithm on a set of benchmarks and 
compare it to another algorithm? Given the NFL theorems, comparison is 
meaningless unless we prove (which virtually never happens) or assume (an 
assumption which is rarely made explicit) that the benchmarks used in a com
parison are somehow representative of a particular subclass of problems. 

Benchmarks are commonly used for testing both optimization and learn
ing algorithms. Often, the legitimacy of a new algorithm is "estabUshed" by 
demonstrating that it finds better solutions than existing algorithms when eval
uated on a particular benchmark or collection of benchmarks. Alternatively, 
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the new algorithm may find high-quality solutions faster than existing algo
rithms for one or more benchmarks. 

What are some of the dangers associated with the use of benchmarks? Al
gorithms can be tuned so that they perform well on specific benchmarks, but 
fail to exhibit good performance on benchmarks with different characteristics. 
More importantly, there is no guarantee that algorithms developed and evalu
ated using synthetic benchmarks will perform well on more realistic problem 
instances. Furthermore, simple algorithms can often provide excellent perfor
mance on more reahstic benchmarks (Watson et al., 1999). 

While the dangers associated with benchmarks are well-known, most re
searchers continue to use benchmarks to evaluate their algorithms. This is 
because researchers have few alternatives. How can one algorithm be com
pared to another without some form of evaluation? Evaluation requires the use 
of either synthetic or real-world benchmarks, or at least the use of test prob
lems drawn from problem generators so that algorithms can be compared on 
sets of problem instances that have similar characteristics. Researchers who 
develop new algorithms and do not demonstrate their merit through some form 
of comparative testing can expect their work to be ignored. The compulsion 
to develop "a new method" has resulted in the literature being full of new al
gorithms, most of which are never used or analyzed by anyone other than the 
researchers who created them. 

Hooker (1995) discusses the "evils of competitive testing" and points out the 
difficulty of making fair comparisons of algorithm performance. Implementa
tion details can significantly impact algorithm performance, as can the values 
selected for various tuning parameters. Some algorithms have been refined 
for years. Other algorithms have become so speciahzed that they only work 
well on specific benchmarks. Hooker argues that the evaluation of algorithms 
should be performed in a more scientific, hypothesis-driven manner. Barr et al. 
(1995) suggest guidelines for the experimental evaluation of heuristic methods. 
Such guidelines are for the most part useful, although rarely followed. 

While evaluation is difficult, it is also important. Too many experimental 
papers (especially conference papers) include no comparative evaluation; re
searchers may present a hard problem (perhaps newly minted) and then present 
an algorithm to solve the problem. The question as to whether some other al
gorithm could have done just as well (or better!) is ignored. 

11.4 TRICKS OF THE TRADE 
No Free Lunch is a theoretical result about search algorithms. As such there 

are no specific methods or algorithms that directly follow from NFL. However, 
several pieces of advice do follow from No Free Lunch. 
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1 In most practical applications one must trade-off generality and speci
ficity. Using simpler off-the-shelf search methods reduces time effort 
and cost. Simple but reasonably effective search methods, even when 
implemented from scratch, are often easier to work with than complex 
methods. Using custom-designed search methods that only work for one 
application will usually yield better results: but generally, one must ask 
how much time and money one wishes to spend and how good does the 
solution need to be. 

2 Exploit problem-specific information when it is simple to do so. Most 
NP-complete problems, for example, have been studied for years and 
there are many problem specific methods that yield good near-optimal 
solutions. 

3 For discrete parameter optimization problems, one has a choice of using 
standard binary encodings. Gray codes or real-valued representations. 
Gray codes are often better than binary codes when some kind of neigh
borhood search is used either exphcitly (e.g., local search) or implicitly 
(e.g., via a random bit flip operator). The use of Gray codes versus real-
valued is less clear, and depends on other algorithm design choices. 

4 Do not assume that a search method that does well on classic bench
marks will work equally well on real-world problems. Sometimes al
gorithms are overly tuned to do well on benchmarks and in fact do not 
work well on real-world applications. 

11.5 CURRENT AND FUTURE RESEARCH 
DIRECTIONS 

Another area of research is the construction of algorithms that can provably 
beat random enumeration on specific subsets of problems. Christensen and Op-
pacher (2001) prove that No Free Lunch does not hold over sets of functions 
that can be described using polynomials of a single variable of bounded com
plexity. This also includes Fourier series of bounded complexity. (Also see 
the paper by English (2000a) about polynomials and No Free Lunch). They 
define a minimization algorithm called SubMedian-Seeker. The algorithm as
sumes that the target function, / , is one-dimensional and bijective and that the 
median value of / is known and denoted by med(/). The actual performance 
depends on M( / ) , which measures the number of submedian values of / that 
have successors with supermedian values. They also define Merit as the critical 
value of M( / ) such that when M{f) < Merit SubMedian-Seeker is better than 
random search. Christensen and Oppacher then prove: 

If / is a uniformly sampled polynomial of degree at most k and if Merit > ^/2 
then SubMedian-Seeker beats random search. 
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The SubMedian-Seeker is not a practical algorithm. The importance of 
Christensen and Oppacher's work is that it sets the stage for proving there 
are algorithms that are generally (if perhaps weakly) effective over a very 
broad class of interesting, nonrandom functions. More recently Whitley et 
al. (2004) have generalized these concepts to outline conditions which allow 
local neighborhood bit climbers to display "SubTheshold-Seeker Behavior" 
and then show that in practice such algorithms spend most of their time ex
ploring the best points in the search space on common benchmarks and are 
obviously better than random search. 

11.6 CONCLUSIONS 

As in many other areas of life, extreme reactions are Hkely to lead to extreme 
errors. This is also true for No Free Lunch. It is clearly wrong to say ''NFL 
doesn't apply to real world problems, so who cares?" It is also an error to give 
up on building general purpose search algorithms. 

A careful consideration of the No Free Lunch theorems forces us to ask 
what set of problems we want to solve and how to solve them. More than 
this, it encourages researchers to consider more formally whether the methods 
they develop for particular classes of problems actually are better than other 
algorithms. This may involve proofs about performance behavior. In some 
ways, we are just starting to ask the right questions. And yet, researchers 
working in complexity and NP-completeness have long been concerned with 
algorithm performance for particular classes of problems. 

Few researchers have attempted to formalize their assumptions about search 
problems and search algorithm behavior. But if we fail to do this, then we 
become trapped in a kind of empirical and experimental treadmill that leads 
nowhere: algorithms are developed that work on benchmarks, or on particular 
applications, without any evidence that such methods will work on the next 
problem we might wish to solve. 

ADDITIONAL SOURCES OF INFORMATION 

The classic textbook Introduction to Algorithms by Cormen et al. (1990) 
has a very good discussion of NP-completeness and approximate algorithms 
for some well-studied NP-hard problems. 

Joe Culberson's 1998 paper On the Futility of Blind Search: an Algorithmic 
View of No Free Lunch helps to relate complexity theory to No Free Lunch in 
simple and direct terms. 

Tom Enghsh has contributed several good papers to the NFL discussion (En
glish, 2000a, 2000b). C. Igel and M. Toussaint have also contributed notable 
papers. Chris Schumacher's 2000 Ph.D. dissertation. Fundamental Limitations 
on Search Algorithms, deals with various issues related to No Free Lunch. 
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Recent work by Ingo Wegener and colleagues has focused on showing when 
particular methods work on particular general classes of problems, (e.g., Storch 
and Wegener, 2003; Fischer and Wegener, 2004) or showing the inherent com
plexity of particular problems for black-box optimization (Droste et al., 2003). 
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12.1 INTRODUCTION 

Machine learning is a very active sub-field of artificial intelligence con
cerned with the development of computational models of learning. Machine 
learning is inspired by the work in several disciplines: cognitive sciences, com
puter science, statistics, computational complexity, information theory, control 
theory, philosophy, and biology. Simply speaking, machine leaming is learn
ing by machine. From a computational point of view, machine leaming refers 
to the ability of a machine to improve its performance based on previous re
sults. From a biological point of view, machine leaming is the study of how 
to create computers that will leara from experience and modify their activity 
based on that leaming as opposed to traditional computers whose activity will 
not change unless the programmer explicitly changes it. 

12.1.1 Learning Models 

A machine leaming model has two key components: leaming element and 
performance element, as shown in Figure 12.1. The environment supplies 
some information to the leaming element. The leaming element then uses 
the information to modify the performance element so that it can make better 
decisions. The performance element selects actions to perform its task. 

A large variety of leaming elements have been proposed by researchers 
in machine leaming field. Based on the representation, there are symbolic 
and subsymbolic leaming. Based on the algorithms, there are many different 
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Figure 12.1. A machine learning model. 

types of machine learning, such as decision tree, inductive logic programming, 
Bayesian leaming, artificial neural networks, evolutionary learning, and rein
forcement learning. Based on the feedback available, there are three different 
types of machine leaming: supervised, unsupervised, and reinforcement learn
ing. 

The problem of supervised leaming involves leaming a function from a set 
of input-output examples. The general supervised leaming model consists of 
two components: 

1 A probabihty space (8, Pr) in which we associate each elementary 
event with two random variables, the input pattern x and the desired 
output y, where S is called the event set, Pr is called the probability 
distribution, x e i?^, j is a scalar. The assumption that the output j is a 
scalar has been made merely to simphfy exposition of ideas without loss 
of generality. 

2 A leaming machine, which is capable of implementing a set of functions 
F{x, w), w e W, where W is a set of, in general, real-valued parame
ters. 

The purpose of supervised leaming is to find the function F{x,w) so that 
the expected squared error 

R{w) = E[{F{x.w)^yf] (12.1) 

is minimized, where E represents the expectation value over the probability 
space {8, Pr). 

In unsupervised leaming, there is no specific output suppHed. In the context 
of pattern classification, unsupervised leaming learns to discover the statistical 
regularities of the patterns in the input, form internal representations for en
coding features of the input, and thereby to create new classes automatically. 
In reinforcement leaming, rather than being told what to do by a teacher, the 
leaming of an input-output mapping is performed through continued interac
tion with the environment in order to minimize a scalar index of performance. 

The environment can be either fully observable or partially observable. In 
the first case, the machine can observe the effects of its action and hence can 
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use supervised learning methods to learn to predict them. In the second case, 
the immediate effects might be invisible so that reinforcement learning or un
supervised learning should be adopted. 

12.1.2 Learning Tasks and Issues in Machine Learning 
Machine learning can be applied to tasks in many domains. This section 

presents some important leaming tasks and issues in machine learning. 

Classification A classification task in machine leaming is to take each in
stance and assign it to a particular class. For example, in an optical character 
recognition task, the machine is required to scan an image of a character and 
output its classification. In English language recognition, the task involves 
leaming the classification of the digits 0 . . . 9 and the characters A . . . Z. 

Regression, Interpolation, and Density Estimation In regression, it is to 
learn some functional description of data in order to predict values for new 
input. An example of leaming a regression function is predicting the future 
value of a share index in stock market. In interpolation, the function for certain 
ranges of input is known. The task is to decide the function for the intermediate 
ranges of input. In density estimation, the task is to estimate the density or 
probability that a member of a certain category will be found to have particular 
features. 

Learning Sequence of Actions In robot leaming and chess play leaming, 
the task is to find the best strategies that can choose the optimal actions. In 
an example of robot navigation, a robot is assigned a task to track a colored 
object within a limited number of actions while avoiding obstacles and walls 
in an environment. There are obstacles of different shapes in the environment 
enclosed by the walls. To perform its task, the robot must learn the basic 
behavior of obstacle avoidance and moving to the target. It must also leam 
to co-ordinate the behavior of obstacle avoidance and the behavior of moving 
to the target to avoid becoming stuck due to repetition of an identical sensor-
motion sequence. In chess playing, the machine must decide an action based 
on the state of board to move a piece in which the action will maximize its 
chance of winning the game. 

Data Mining The problem of data mining is of searching for interesting pat
terns and important regularities in large databases. Many leaming methods 
have been developed for determining general descriptions of concepts from 
examples in the form of relational data tables. Machine leaming plays an im
portant role in the discovery and presentation of potentially useful information 
from data in a form which is easily comprehensible to humans. 
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Issues in Machine Learning There are many issues that need to be solved 
in machine learning. For example, which learning algorithm performs best for 
a particular learning task and representation? How many training samples are 
sufficient? How fast can the learning algorithms converge? When and how 
can prior knowledge be used in the learning process? Can a machine learn 
in real-time, in addition to offline learning? How do we choose from among 
multiple learning models that are all consistent with the data? For all of these, 
generalization is a key issue for any learning system. There are often two 
phases in the design of a learning system. The first phase is the learning. The 
second phase is the generahzation test. The term generalization is borrowed 
from psychology. In neural network learning, a model is said to generalize 
well when it can produce correct input-output mapping for unseen test data 
that are not used in the learning phase. 

The reminder of this chapter is organized as follows. Section 12.2 intro
duces a number of learning algorithms in order to give a breadth of coverage 
of machine learning. Section 12.3 addresses evolution and learning. Three 
levels of evolution can be introduced in neural network learning: the evolu
tion of weight, the evolution of architectures, and the evolution of learning 
rules. Section 12.4 points out some promising areas in machine learning. Sec
tion 12.5 provides a guideline for implementing machine learning algorithms. 
Section 12.6 concludes with a summary of the chapter and a few remarks. 

12.2 OVERVIEW OF LEARNING ALGORITHMS 
This section will explore the basic ideas and the principles of a number of 

learning algorithms that are used for real-world applications. 

12.2.1 Learning Decision Trees 
The task of inductive learning is to find a function h that approximates / by 

a given collection of examples of / . The function h is called a hypothesis. An 
example is a pair {x, f(x)), where x is the input, and f(x) is the output of the 
function applied to x. In decision tree learning, hypotheses are represented by 
decision trees. 

A decision tree is a diagram representing a classification system or a predic
tive system. The structure of the system is a tree generated based on a sequence 
of simple questions. The answers to these questions trace a path down the tree. 
As a result, a decision tree is a collection of hierarchical rules that segment 
the data into groups, where a decision is made for each group. The hierarchy 
is called a tree, and each segment is called a node. The original segment that 
contains the entire data set is referred to as the root node of the tree. A node 
with all of its successors forms a branch of the node. The terminal nodes are 
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called leaves that return a decision, i.e. the predicted output value for the in
put. The output value can be either discrete or continuous. A classification tree 
learns a discrete-valued function, while a regression tree learns a continuous 
function. Most decision learning algorithms are variations on a core algorithm 
that employs a top-down, greedy search through the space of possible decision 
trees. 

A very effective decision learning algorithm, called the IDS algorithm, was 
developed by Quinlan (1986). In IDS, classification trees are built by starting 
with the set of examples and an empty tree. An attribute test is chosen for the 
root of the tree, and examples are partitioned into disjoint subsets depending 
on the outcome of the test. The learning is then applied recursively to each of 
these disjoint subsets. The learning process stops when all the examples within 
a subset belong to the same class. At this learning stage, a leaf node is created 
and labeled with the class. 

The method to choose the attribute test is designed to minimize the depth 
of the final tree. The idea is to select the attribute that can lead to an exact 
classification of examples as far as possible. In IDS, a statistical property, 
called information gain, was introduced to measure how well a given attribute 
separates the examples according to their target classification. 

For decision tree learning, a learned classification tree has to predict what 
the correct classification is for a given example. Given a training set S, con
taining p positive examples and n negative examples, the entropy of S to this 
Boolean classification is 

p p n n 
E(S) = ^ log2 - ^ — log2 — — (12.2) 

p-\-n p-\-n p + n p-\-n 

In information theory, the entropy of S gives an estimate of the information 
contained in a correct answer before any of the attributes have been tested. 
Information theory measures information content in bits. After a test on a 
single attribute A, attribute A divides the training set S into subsets 5",, / = 
1 , . . . , V, where A can have v distinct values. The information gain G{S, A) 
of an attribute A, relative to a training set S, is defined as 

G(5, A) = E{S) - Y ^^—^E{Si) (12.S) 

where each subset 5/ has pi positive examples and rii negative examples. The 
second term in (12.3) is the expected value of entropy after S is partitioned us
ing attribute A. The expected entropy is the sum of entropies of each subset Si, 
weighted by the fraction of examples in Si, G{S, A) is therefore the expected 
reduction in entropy caused by knowing the value of attribute A, 

ID3 provides a simple and effective approach to decision tree learning. 
However, for the real-world applications, the algorithm needs to cope with 
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problems such as noisy data set, missing attribute values, and attributes with 
continues values. How to deal with those problems was studied in ID3's suc
cessor C4.5 (Quinlan, 1993). 

The first decision tree learning system, called the Elementary Perceiver and 
Memorizer was proposed by Feigenbaum (1961). It was studied as a cognitive-
simulation model of human concept learning. The concept learning system 
developed by Hunt et al. (1966) used a heuristic look-ahead method to grow 
decision trees. ID3 (Quinlan, 1986) introduced the information content as a 
heuristic search. The classification and regression tree system is a widely used 
statistical procedure for producing classification and regression (Breiman et 
al., 1984). Many practical issues of decision tree induction can be found in 
C4.5, a decision tree leaming package by Quinlan (1993). 

The advantages of decision tree leaming are its comprehensibility, fast clas
sification, and mature technology. However, by using only one attribute at each 
internal node, decision tree leaming can construct monothetic trees, which are 
limited to axis-parallel partitions of the instance space, rather than polythetic 
trees. Polythetic trees can use more than two attribute at each internal node, 
but are expensive to induce. The next section will introduce inductive logic 
programming that combines inductive leaming with the power of first-order 
representations. 

12.2.2 Inductive Logic Programming 
Inductive logic programming is a combination of knowledge-based induc

tive leaming and logic programming (Russell and Norvig, 2002). General 
knowledge-based inductive leaming uses the kind of algorithm that satisfies 
the entailment constraint 

Background A Hypothesis A Descriptions |= Classifications (12.4) 

where Classifications denote the conjunction of all the example classifications. 
Given the Background knowledge and examples described by Descriptions and 
Classifications, the induction problem of knowledge-based inductive leaming 
involves solving the entailment constraint (12.4) for the unknown Hypothesis. 

In order to see how the background knowledge can be combined with the 
new hypothesis to explain examples, consider a problem of leaming family 
relationships from examples in an extended family tree given in Figure 12.2 
(Russell and Norvig, 2002). 

The descriptions will be in the terms of Mother, Father, and Mar
ried relations and Male and Female properties, such as Father(Philip, 
Charles), Mother(Mum, Margaret), Married(Diana, Charles), Male(Philip), 
Female(Beatrice). Classifications depend on the target concept being learned. 
For leaming the target concept of Grandfather, the complete set of Classifica-
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Married(George, Mum) 

Married(Spencer, Kydd) Married(Elizabeth, Philip) Margaret 

Married(Diana, Charles) Married(Anne, Mark) Married(Andrew, Sarah) Edward x\ x\ x\ 
William Harry Peter Zara Beatrice Eugenie 

Figure 12.2. A typical family tree. 

tions contains 20 x 20 = 400 conjuncts of the form 

Grandparent(Mum, Charles) Grandparent(Elizabeth, Beatrice) . . . 

--GrandparentCMum, Harry) -iGrandparent(Spencer, Peter) 

Without the background knowledge, inductive learning can find the follow
ing possible Hypothesis: 

Grandparent(x, y) ^ [3 z Mother(A:, z) A Mother(z, _y)] 

V [3z Mother(x, z) A Father(z, y)] 

V [3 z Father(x, z) A Mother(z, y)] 

V [3z Father(x,z) AFather(z, >')] (12.5) 

With the help of the background knowledge represented by the sentence 

Parent(x, y) ^ [Mother^, y) v Father(;c, y)] (12.6) 

Hypothesis could be simply defined by 

Grandparent(x, y) ^ [3z Parent(x, z) A Parent(z, y)] (12.7) 

By using background knowledge, we can reduce the size of hypotheses greatly. 
There are two basic approaches to inductive logic programming: top-down 

learning of refining a very general rule and bottom-up learning of inverting the 
deductive process. A top-down approach will typically begin with a general 
clause and search the clause by adding literals so that only positive examples 
are entailed. First-order inductive learning (Quinlan, 1990) is such a top-down 
induction algorithm. 

Suppose the task is to learn a definition of Grandfather(x, y) predicate in 
the family tree shown in Figure 12.2. Examples can be divided into positive 
and negative ones as in decision-tree learning. Twelve positive examples are 

(George, Charles), (George, Anne), (George, Andrew),... 
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and 388 negative examples are 

(George, Spencer), (George, Kydd), (George, Elizabeth),... 

First-order inductive learning constructs a set of clauses that must classify 
the positive examples while ruling out the negative examples. First-order in
ductive learning starts with the initial clause with Grandfather(x, j ) as the 
head, and an empty body 

=^ Grandfathered, >') (12.8) 

All examples are classified as positive by this clause. To specialize it, first-
order inductive learning adds literals one at a time to the clause body. Look at 
two clauses constructed by such addition: 

Parent(A:,z) =» Grandfathered, j ) (12.9) 

Father(x,z) =^ Grandfather(x, y) (12.10) 

Although both clauses agree with all of the 12 positive examples, the first al
lows both fathers and mothers to be grandfathers and makes larger misclassi-
fication on negative examples. The second clause is chosen to be further spe
cialized. By adding the single literal Parent(z, y), first-order inductive learning 
can find 

Father(x, z) A Parent(z, y) =^ Grandfather(jc, y) (12.11) 

which successfully classifies all the examples. This example gives a simple 
explanation how first-order inductive learning works. In real applications, first-
order inductive learning generally has to search through a large number of 
unsuccessful clauses before finding the correct one. 

Whereas first-order inductive learning (Quinlan, 1990) is a top-down ap
proach, Cigol (logic, spelled backwards; Muggleton and Buntine, 1988), de
veloped for inductive logic programming, worked bottom-up. Cigol incorpo
rated a slightly incomplete version of inverse resolution and was capable of 
generating new predicates. A hybrid techniques (top-down and bottom-up) ap
proach was chosen in Progol (Muggleton, 1995) with inverse entailment that 
has been applied to a number of practical problems. A large collection of pa
pers on inductive logic programming can be found in Lavrac and Dzeroski 
(1994). 

Inductive logic programming provides a practical approach to the general 
knowledge-based inductive learning problem. The strengths of inductive logic 
programming lie in its firm theoretical foundations, richer hypothesis represen
tation language, and explicit use of background knowledge. The limitations of 
inductive logic programming are its weak numeric representations and large 
search spaces. 
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Figure 12.3. The naive Bayes model. 

12.2.3 Bayesian Learning 
In practice, there are cases that more than one hypothesis satisfy a given 

task. Because it is not certain how those hypotheses perform on unseen data, 
it is hard to choose the best hypothesis. Bayesian leaming gives a probabihstic 
framework for justification. By calculating exphcit probabilities for a hypoth
esis, Bayesian leaming provides a useful perspective for understanding many 
leaming algorithms that do not explicitly manipulate probabilities. 

Let D represent all the data, and H the set of all the hypotheses hi. The 
probability of each hypothesis with observed d can be calculated by Bayes' 
rule: 

Pihi \d) = otP{d\hi)P{hi) (12.12) 

where P{hi) is the prior probability, P{d | hi) denotes the probability of ob
served d given hi, and PQii | d) is the posterior probability of hi. 

A practical Bayesian leaming used in machine leaming is the naive Bayes 
model shown in Figure 12.3, where each instance x is described by a conjunc
tion of attribute values {xi,X2,... ^Xn). In this model, the class variable C is 
the root, and the attribute values x are leaves. 

According to (12.12), the probability of each class from a set of S is given 
by 

P(C I Xi,X2, ...,Xn) =aP{Xi,X2, ...,Xn \ C)P(C) (12.13) 

In the naive Bayes model, a simplified assumption is made that the attributes 
are conditionally independent of each other given the class. That is, the prob
ability of the observed conjunction x\,X2,... ,Xn is just the product of proba
bilities for the individual attributes: 

P{XuX2,...,Xn \C) = Y\P(Xi \C) (12.14) 

From (12.13) and (12.14), the naive Bayes model makes the prediction by 
choosing the most likely class: 

Ci,B = argmaxee5^(C) ]"] ^(^ ' I C) (12.15) 
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Table 12.1. An example for the naive Bayes model. 

Diagnosis 

PiC) 
P (sneeze | C) 
F (cough 1 C) 
P (fever | C) 

Well 

0.9 
0.1 
0.1 

0.01 

Cold 

0.05 
0.9 
0.8 
0.7 

Allergy 

0.05 
0.9 
0.7 
0.4 

where C^B denotes output class by the naive Bayes model. 
Consider a medical diagnosis problem with three possible diagnoses (well, 

cold, allergy) based on three symptoms (sneeze, cough, fever). In this ex
ample, there are three attributes in which x\ can be sneeze or not sneeze, X2 
cough or not cough, and XT, fever or not fever, and three classes including well, 
cold and allergy. The probabilities for the three attributes and three prior class 
probabilities are given in Table 12.1. 

Given a new x = (sneeze, cough, not fever), which class of diagnosis is 
most likely? First, posterior probability P(well | sneeze, cough, not fever) 
of well, cold and allergy is calculated by the product of P(sneeze | well), 
P(cough I well), P(not fever | well), and P(well): 

P(well I sneeze, cough, not fever) = 0.1 x 0.1 x (1 — 0.01) x 0.9 

= 0.00891 (12.16) 

Similarly we can obtain the posterior probability of cold: 

P(cold I sneeze, cough, not fever) = 0.216 (12.17) 

and the posterior probability of allergy: 

P(allergy | sneeze, cough, not fever) = 0.378 (12.18) 

Finally, we compare three posterior probabilities and generate out
put class allergy because the probability of allergy for the data x = 
(sneeze, cough, not fever) is the largest one. 

The naive Bayes model has been compared with C4.5 on 28 benchmark 
tasks (Domingos and Pazzini, 1996). The results show that the naive Bayes 
model performs surprisingly well in a wide range of applications. Except for 
a few domains where the naive Bayes model performs poorly, it is comparable 
or better than C4.5. 

This section just uses the naive Bayes model to introduce the idea of 
Bayesian learning. Heckerman (1998) gives an excellent introduction on gen
eral learning with Bayesian networks (Heckerman, 1998). Bayesian learning 
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has been successfully applied in pattern recognition and information retrieval. 
Algorithms based on Bayesian learning won the 1997 and 2001 KDD Cup data 
mining competitions (Elkan, 1997; Cheng et al, 2002). Experimental compar
isons between Bayesian leaming, decision tree leaming, and other algorithms 
have been made for a wide range of apphcations (Michie et al., 1994). 

12.2.4 Reinforcement Learning 
Reinforcement leaming involves leaming how to map situations to actions 

so as to maximize a numerical reward signal (Sutton and Barto, 1998). Unlike 
supervised leaming, the machine is not told which actions to take but has to 
discover which actions yield the most reward by trying them. In the most prac
tical cases, actions may affect both the immediate reward and the next situation 
throughout all subsequent rewards. Trial-and-error search and delayed reward 
are the two most important unique characteristics of reinforcement leaming. 

A central and novel idea of reinforcement leaming is called temporal-
difference leaming (Sutton and Barto, 1998). Temporal-difference leaming is 
a combination of Monte Carlo and dynamic programming ideas. Like Monte 
Carlo methods, temporal-difference leaming methods can learn directly from 
the raw experience without a model of the environment's dynamics. Like dy
namic programming methods, temporal-difference leaming methods update 
estimates based in part on other learned estimates, without waiting for a final 
outcome. Temporal-difference leaming works because it is possible to make 
local improvements. At every point in the state space, the Markov property 
allows actions to be chosen based only on knowledge about the current state 
and the states reachable by taking the actions available at that state. 

Temporal-difference leaming methods fall into two classes: on-policy and 
off-pohcy (Sutton and Barto, 1998). One of the most important breakthroughs 
in reinforcement leaming was the development of an off-poHcy temporal-
difference leaming control algorithm known as ^-learning. The learned 
action-value function, Q{s,a), directly approximates the optimal action-value 
function, independent of the policy being followed. The major steps of Q-
leaming are given as follows (Sutton and Barto, 1998): 

1 Initialize Q{s,a) values arbitrarily. 

2 Initialize the environment. 

3 Choose action a using the pohcy derived from Q{s, a) (e.g. 6-greedy). 

4 Take action a\ Observe reward r and the next state s'. 

5 Update the Q{s,a) as follows: 

Q{s,a) ^ Q{s,a) -f-o? r + y max Q{s\ a') - Q{s, a) (12.19) 
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6 Let s ^(^ s'. Go to the next step if the state 5 is a terminal state. Other
wise, go to Step 3. 

7 Repeat Steps 2-6 for a certain number of episodes. 

The Sarsa learning algorithm is an on-policy temporal-difference learning 
method in which the action-value function Q is updated after every transition 
from a nonterminal state. The major steps of Sarsa learning are as follows 
(Sutton and Barto, 1998): 

1 Initialize Q(s, a) values arbitrarily. 

2 Initialize the environment. 

3 Choose action a using the poUcy derived from Q{s, a) (e.g. 6-greedy). 

4 Take action a; Observe reward r and the next state s''. Choose the next 
action a' using the policy derived from Q (e.g. 6-greedy). 

5 Update the Q(s, a) as follows: 

Q(s, a) ^Qis,a)-\-a[r + y Q(s', a') - Q{s, a)] (12.20) 

6 Let 5 4 - 5 ' and a <r- a'. Go to the next step if the state ^ is a terminal 
state. Otherwise, go to Step 3. 

7 Repeat Steps 2-6 for a certain number of episodes. 

Sutton and Barto (1998) compared Sarsa and g-leaming. The results 
showed that the on-line performance of g-learning was worse than that of 
Sarsa learning. 

The strengths of reinforcement learning come from its firm theoretical foun
dation, its ability to solve broad tasks, and its easy usage of background knowl
edge. Work in reinforcement learning dates back to the earliest days of ma
chine learning when Turing (1950) proposed the reinforcement learning ap
proach, and Samuel (1959) developed his famous checkers learning program 
that contained most of the modem ideas in reinforcement learning, including 
temporal differencing and function approximation. Three threads have con
tributed to the modem field of reinforcement leaming. The first thread is leam-
ing by trial and error, which was rooted in the psychology of animal leam
ing, and led to the popularity of reinforcement leaming in the early 1980s. 
The second thread arose from the problem of optimal control and its solution 
using value functions and dynamic programming. The third thread concems 
temporal-difference methods. The survey by Kaelbling et al. (1996) provides 
a good introduction to the literature. The text Reinforcement Learning: An 
Introduction by Sutton and Barto (1998), two of the field's pioneers, shows ar
chitectures and algorithms of reinforcement leaming in the context of leaming, 
planning, and acting. 
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Figure 12.4. Nonlinear model of a neuron. 

12.2.5 Neural Networks 
Artificial neural networks, commonly referred to as neural networks, try to 

simulate biological brains. However, neural networks are greatly simplified 
in comparison with biological brains. A neural network is a parallel compu
tational system consisting of many processing elements connected with each 
other in a certain way in order to perform a task. Neural networks have gained 
popularity because they are adaptive, robust, fault tolerant, noise tolerant, and 
massively parallel. 

Of the many tasks that neural networks perform, the most important one 
is learning. A neural network can improve its performance through learn
ing. Perceptron learning is one of the earliest learning processes developed 
for neural networks (Rosenblatt, 1962). Perceptrons are often used to refer 
to feed-forward neural networks consisting of McCulloch-Pitts (MP) neurons 
(McCulloch and Pitts, 1943): 

yi = sgn ^ WijXj - (12.21) 

where wij are called weights (synapses) and 6 the threshold. The Xj and yi are 
inputs and the output. The signum function sgn(x) is defined as follows: 

, . _ . ! , ifx > 0 
sgni^; - Q̂  otherwise (12.22) 

This is also known as the threshold function or Heaviside function, described 
in Figure 12.4. 

Given each example to a perceptron that has one layer of neurons, per
ceptron learning adjusts the weights as follows until the weights converge 
(i.e. I^Wjit) = 0 ) : 

Wj{t + \) = Wjit) + l^Wjit) (12.23) 



354 YAOANDLIU 

where 
/^Wjit) = r](yP - OP)x^ (12.24) 

with r] the learning rate, Xj the jth input of the ;7th example, y'^ the target (de
sired) output of the pth example, and O^ the actual output of the pth example 

0P = sgnlj2wjx^-e\ (12.25) 

The convergence theorem of perceptron learning states that if there exist a 
set of weights for a perceptron which solves a problem correctly, the percep
tron learning rule will find them in a finite number of iterations (Rosenblatt, 
1962). If a problem is linearly separable, then the perceptron learning rule 
will find a set of weights in a finite number of iterations that solves the prob
lem correctly. A pair of linearly separable patterns means that the patterns to 
be classified must be sufficiently separated from each other to ensure that the 
decision surface consists of a hyperplane. 

The perceptron learning rule, Awj{t) = rjiy'^ — 0'^)x^, is related to the 
Hebbian learning rule (Hebb, 1949). Hebb's postulate of learning states 

When an axon of cell A is near enough to excite a cell B and repeatedly or 
persistently takes part in firing it, some growth process or metabolic changes 
take place in one or both cells such that A's efficiency as one of the cells firing 
B,is increased. 

In other words, if two neurons on either side of a synapse (connection) are 
activated simultaneously (i.e. synchronously), then the strength of that synapse 
is selectively increased. If two neurons on either side of a synapse are activated 
asynchronously, then that synapse is selectively weakened or ehminated. 

It is clear from perceptron learning that the algorithm tries to minimize the 
difference between the actual and desired output. We can define an error func
tion to represent such a difference: 

E(w)=^-J2{yP-0Pf (12.26) 
P 

E^^^ = ̂ 12iy'-0'f (12.27) 
p 

where N is the number of patterns. The second error function above is called 
the mean square error. What learning does is to minimize this error by adjust
ing weights w. 

One advantage of introducing the error function is that it can be used for 
any type of transfer functions, discrete or continuous. The aim of leaming is 

or 
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to adjust w such that the error E is minimized, i.e. the network output is as 
close to the desired output as possible. There exist mathematical tools and 
algorithms which can tell us how to minimize the error function E, such as the 
gradient descent algorithm which is based on partial derivatives. Given a set of 
training examples, {{x^,... ,Xm\y\-, • • •, yn)}p, the gradient descent learning 
algorithm can be summarized as follows: 

1 Construct a neural network with m inputs and n outputs. 

2 Select learning rate r) and the gain parameter a. 

3 Generate initial weights at random in a small range, e.g. [—0.5, 0.5]. 
Note that thresholds are regarded as weights here. 

4 While the neural network has not converged do: For each training exam
ple p, 

(a) Compute Of. (Of = /(«,)) 

(b) Compute 5f = (yj" - Of) / ' («,) , where / ' («,) = «/(w,)(l -
f(ui)) if the transfer function is 

f(ui) = -r—-^7 r (12.28) 

where A is a parameter determined by the user. 

(c) Compute Au;^ = r)8fxf. 

(d) Update wij for all i, j . (All weights will be updated.) 

There are two modes of the gradient descent learning algorithm. One is the 
sequential mode of training that is also known as on-line, pattern, or stochastic 
mode. In this mode, weights are updated after the presentation of each exam
ple. The other is the batch mode of training in which weights are updated only 
after the complete presentation of all examples in the training set, i.e. only after 
each epoch. 

The idea of the gradient descent learning algorithm for a single layer neu
ral network can be generalized to find weights for multilayer neural networks. 
Multilayer feedforward neural networks can solve nonlinear problems. In fact, 
there are mathematical theorems which show that multilayer feedforward neu
ral networks can approximate any input-output mapping. The backpropagation 
algorithm can be used to train multilayer feedforward neural networks (Rumel-
hart et al., 1986). Its forward pass propagates the activation values from input 
to output. Its backward pass propagates the errors from output to input. Back-
propagation is still a gradient descent algorithm. It uses gradient information 
to determine how the weights should be adjusted so that the output error can 
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be reduced. Mathematically, backpropagation uses the chain rule to figure out 
how to change weights in order to minimize the error. 

Consider a network with M layers m = 1, 2 , . . . , M and use Vl^ to rep
resent the output of the /th unit in the mth layer. V^ = xi is the /th input. 
Backpropagation can be described as follows: 

1 Initialize the weights to small random values. 

2 Choose a pattern and apply it to the input layer so that V^ = x^. 

3 Propagate the signal forwards through the network using 

vr = / « ) = / ( E < K~' I 1̂2.29) 

for each / and m until the final outputs V-̂  have all been calculated. 

4 Compute the deltas for the output layer 

8^ = f\uf)(y[ - V^) (12.30) 

5 Compute the deltas for the preceding layers by propagating errors back
wards 

br'= n<-')Y.<j^i (12.31) 
j 

form = M, M — 1 , . . . , 2. 

6 Update the weights according to 

tuj"^ = wff + ^Wij (12.32) 

where 
^Wij =:^5fV7~^ (12.33) 

7 Goto step 2 and repeat for the next pattem. The algorithm stops when 
no weight changes were made for a complete epoch or the maximum 
number of iterations has been reached. 

The study of neural networks began with the MP neuron models proposed 
by McCulloch and Pitts (1943). The Hebbian leaming rule was introduced 
by Hebb (1949). Rosenblatt (1962) proposed perceptrons and proved the per-
ceptron convergence theory. The book of Minsky and Papert (1969) showed 
the limitation of single-layer perceptrons, but then the field of neural networks 
was almost deserted in the 1970s. Hopfield pubHshed a series of papers on 
Hopfield networks that used the idea of an energy function to formulate a new 
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way of understanding the computation performed by recurrent networks with 
symmetric synaptic connections (Hopfield, 1982; Hopfield and Tank, 1985). 
The two-volume "bible", Parallel Distributed Processing: Explorations in the 
Microstructures of Cognition, edited by Rumelhart and McClelland (1986) at
tracted a great deal of attention, after which the field of neural networks really 
took off. 

Neural networks have been applied to solve a wide range of problems such 
as pattem recognition and classification, time-series prediction, function ap
proximation, system identification, and control. Neural network applications 
often include two phases. The first phase is leaming. The task performed by a 
neural network is often represented as a set of examples. The neural network 
is expected to learn more general concepts from these examples. The steps 
involved include: 

1 Select a neural network architecture, where the number of input and out
put nodes are determined by the task. Hidden nodes and network con
nectivity need to be designed mostly by trial and error. 

2 Train the network using a suitable training algorithm. 

The second phase is the generalization test. After the neural network is trained, 
it is tested with new examples never encountered before to see how well it 
generalizes. 

12.2.6 Evolutionary Learning 
Evolutionary leaming includes many topics, such as leaming classifier sys

tems, evolutionary neural networks, evolutionary fuzzy logic systems, co-
evolutionary leaming, self-adaptive systems, etc. The primary goal of evo
lutionary leaming is the same as that of machine leaming in general. Evolu
tionary leaming can be regarded as the evolutionary computation approach to 
machine learning. It has been used in the framework of supervised leaming, 
reinforcement leaming and unsupervised leaming, although it appears to be 
most promising as a reinforcement leaming method. 

Evolutionary computation encompasses major branches, i.e. evolution 
strategies, evolutionary programming, genetic algorithms (see Chapter 4) and 
genetic programming (see Chapter 5), due largely to historical reasons. At 
the philosophical level, they differ mainly in the level at which they simulate 
evolution. At the algorithmic level, they differ mainly in their representations 
of potential solutions and the operators used to modify the solutions. From a 
computational point of view, representation and search are two key issues. 

Evolution strategies were first proposed by Rechenberg and Schwefel in 
the mid-1960s for numerical optimization. Real-valued vectors are used to 
represent individuals. Evolution strategies use both recombination and self-
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adaptive mutations. The original evolution strategy did not use populations. 
A population was introduced into evolution strategies later (Schwefel, 1981, 
1995). 

Evolutionary programming was first proposed by Fogel et al. (1966) for sim
ulating intelligence. Finite-state machines were used to represent individuals, 
although real-valued vectors have always been used in numerical optimization. 
Search operators (mutations only) are applied to the phenotypic representation 
of individuals. There is no recombination in evolutionary programming. Tour
nament selection is often used in evolutionary programming. 

Genetic algorithms and genetic programming are introduced in Chapters 
3 and 4 of this book, respectively. Although genetic algorithms, evolution
ary programming, evolution strategies, and genetic programming are different, 
they are all different variants of population-based generate-and-test algorithms: 

Generate: Mutate and/or recombine individuals in a population. 

Test: Select the next generation from the parents and offspring. 

They share more similarities than differences. A better and more general term 
to use is evolutionary algorithms. Evolutionary algorithms have two promi
nent features which distinguish them from other search algorithms. First, they 
are all population-based. Secondly, there is communication and information 
exchange between individuals in a population. Such communication and in
formation exchange is the result of selection and/or recombination in evolu
tionary algorithms. A general framework of evolutionary algorithms can be 
summarized as follows: 

1 Generate the initial population P(0) at random, and set / <- 0 

2 Repeat 

(a) Evaluate the fitness of each individual in P(i) 

(b) Select parents from P(/) based on their fitness in P(i) 

(c) Generate offspring from the parents using crossover and mutation 
to form Pii -f-1) 

(d) i ^ i + l 

3 Until halting criteria are satisfied 

where the search operators are also called genetic operators for genetic algo
rithms. They are used to generate offspring (new individuals) from parents 
(existing individuals). 

Learning classifier systems, also known as classifier systems, are probably 
the oldest and best known evolutionary leaming systems, although they did 
not work very well in their classical form. Some of the recent systems have 
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improved this situation. Due to their historical importance, a brief introduction 
to the classical learning classifier systems will be introduced here. 

Learning classifier systems are a particular class of message-passing, rule-
based systems. They can also be regarded as a type of adaptive expert system 
that uses a knowledge base of production rules in a low-level syntax that can 
be manipulated by a genetic algorithm. In a classifier system, each low-level 
rule is called a classifier. A general operational cycle for the classifier system 
is as follows: 

1 Allow the detectors (input interface) to code the current environment 
status and place the resulting messages on the message fist. 

2 Determine the set of classifiers that are matched by the current messages. 

3 Resolve conflicts caused by limited message fist size or contradictory 
actions. 

4 Remove those messages which match the conditions of firing classifier 
from the message list. 

5 Add the messages suggested by the firing messages to the list. 

6 Allow the effectors (output interface) that are matched by the current 
message list to take actions in the environment. 

7 If a payoff signal is received from the environment, assign credit to the 
classifiers. 

8 Goto Step 1. 

A genetic algorithm is used in classifier systems to discover new classi
fiers by crossover and mutation. The strength of a classifier updated by the 
credit assignment scheme is used as its fitness. A classifier's strength is based 
on its average usefulness in the context in which it has been tried previously. 
Credit assignment is a very difficult task because credit must be assigned to 
early-acting classifiers that set the stage for a sequence of actions leading to 
a favorable situation. The most well known credit assignment is the bucket 
brigade algorithm which uses metaphors from economics. 

For a classifier called middleman, its suppHers are those classifiers that have 
sent messages satisfying its conditions, and its consumers are those classifiers 
that have conditions satisfied by its message and have won their competition 
in turn. When a classifier wins in competition, its bid is actually apportioned 
to its suppliers, increasing their strengths by the amounts apportioned to them. 
At the same time, because the bid is treated as a payment for the right to post 
a message, the strength of the winning classifier is reduced by the amount of 
its bid. Should the classifier bid but not win, its strength remains unchanged 
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and its suppliers receive no payment. Winning classifiers can recoup their 
payments from either winning consumers or the environment payoff. 

The genetic algorithm is only applied to the classifiers after a certain number 
of operational cycles in order to approximate strengths better. There are two 
approaches to classifier systems; the Michigan approach and the Pitt approach. 
For the Michigan approach, each individual in a population is a rule. The whole 
population represents a complete classifier system. For the Pitt approach, each 
individual in a population represents a complete classifier system. The whole 
population includes a number of competing classifier systems. 

12.3 LEARNING AND EVOLUTION 
Learning and evolution are two fundamental forms of adaptation. There has 

been a great interest in combining learning and evolution with neural networks 
in recent years. 

12.3.1 Evolutionary Neural Networks 
Evolutionary neural networks refer to a special class of neural networks 

in which evolution is another fundamental form of adaptation in addition to 
learning (Yao, 1991, 1993a, 1994, 1995). Evolutionary algorithms are used 
to perform various tasks, such as connection weight training, architecture de
sign, learning rule adaptation, input feature selection, connection weight ini
tialization, rule extraction from neural networks, etc. One distinct feature of 
evolutionary neural networks is their adaptability to a dynamic environment. 
In other words, evolutionary neural networks can adapt to an environment as 
well as changes in the environment. The two forms of adaptation, i.e. evolu
tion and learning in evolutionary neural networks, make their adaptation to a 
dynamic environment much more effective and efficient. In a broader sense, 
evolutionary neural networks can be regarded as a general framework for adap
tive systems, i.e. systems that can change their architectures and learning rules 
appropriately without human intervention. 

Evolution has been introduced into neural networks at roughly three differ
ent levels: connection weights; architectures; and learning rules. 

The Evolution of Connection Weights The evolution of connection weights 
introduces an adaptive and global approach to training, especially in the rein
forcement learning and recurrent network learning paradigm where gradient-
based training algorithms often experience great difficulties. 

One way to overcome the shortcomings of gradient-descent-based training 
algorithms is to adopt evolutionary neural networks, i.e. to formulate the train
ing process as the evolution of connection weights in the environment deter
mined by the architecture and the learning task. Evolutionary algorithms can 
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then be used effectively in the evolution to find a near-optimal set of connec
tion weights globally without computing gradient information. The fitness of a 
neural network can be defined according to different needs. Two important fac
tors which often appear in the fitness (or error) function are the error between 
target and actual outputs and the complexity of the neural network. Unlike 
the gradient-descent-based case, the fitness (or error) function does not have to 
be differentiable or even continuous since evolutionary algorithms do not de
pend on gradient information. Because evolutionary algorithms can treat large, 
complex, nondifferentiable, and multimodal spaces, which are the typical case 
in the real world, considerable research and application has been conducted on 
the evolution of connection weights. 

The evolutionary approach to weight training in neural networks consists of 
two major phases. The first phase is to decide the representation of connection 
weights, i.e. whether in the form of binary strings or not. The second one is the 
evolutionary process simulated by an evolutionary algorithm, in which search 
operators such as crossover and mutation have to be decided in conjunction 
with the representation scheme. Different representations and search opera
tors can lead to quite different training performance. A typical cycle of the 
evolution of connection weights is shown as follows (Yao, 1999): 

1 Decode each individual (genotype) in the current generation into a set of 
connection weights and construct a corresponding neural network with 
weights. 

2 Evaluate each neural network by computing its total mean square error 
between actual and target outputs. Other error functions can also be 
used. The fitness of an individual is determined by the error. The higher 
the error, the lower the fitness. The optimal mapping from the error to 
the fitness is problem dependent. A regularization term may be included 
in the fitness function to penalize large weights. 

3 Select parents for reproduction based on their fitness. 

4 Apply genetic operators, such as crossover and/or mutation, to parents 
to generate offspring, which form the next generation. 

The evolution stops when the fitness is greater than a predefined value (i.e. the 
training error is smaller than a certain value) or the population has converged. 

The Evolution of Architectures The evolution of architectures enables neu
ral networks to adapt their topologies to different tasks without human inter
vention and thus provides an approach to automatic neural network design as 
both neural network connection weights and structures can be evolved. 

Architecture design is crucial in the successful application of neural net
works because the architecture has significant impact on a network's informa-
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tion processing capabilities. Given a learning task, a neural network with only 
a few connections and linear nodes may not be able to perform the task at all 
due to its limited capability, while a neural network with a large number of 
connections and nonlinear nodes may overfit noise in the training data and fail 
to have good generalization ability. 

Up to now, architecture design has been very much a human expert's job. It 
depends heavily on the expert experience and a tedious trial-and-error process. 
There is no systematic way to design a near-optimal architecture for a given 
task automatically. Design of the optimal architecture for a neural network can 
be formulated as a search problem in the architecture space where each point 
represents an architecture. Given some performance (optimality) criteria, e.g. 
lowest training error, lowest network complexity, etc., about architectures, the 
performance level of all architectures forms a discrete surface in the space. 
The optimal architecture design is equivalent to finding the highest point on 
this surface. 

Similar to the evolution of connection weights, two major phases involved 
in the evolution of architectures are the genotype representation scheme of 
architectures and the evolutionary algorithm used to evolve neural network ar
chitectures. One of the key issues in encoding neural network architectures 
is to decide how much information about an architecture should be encoded 
in the chromosome. At one extreme, all the details, i.e. every connection and 
node of an architecture, can be specified by the chromosome. This kind of 
representation scheme is called direct encoding. At the other extreme, only the 
most important parameters of an architecture, such as the number of hidden 
layers and hidden nodes in each layer, are encoded. Other details about the 
architecture are left to the training process to decide. This kind of represen
tation scheme is called indirect encoding. After a representation scheme has 
been chosen, the evolution of architectures can progress according to the cycle 
as follows (Yao, 1999): 

1 Decode each individual in the current generation into an architecture. If 
the indirect encoding scheme is used, further detail of the architecture is 
specified by some developmental rules or a training process. 

2 Train each neural network with the decoded architecture by a pre-defined 
leaming rule (some parameters of the leaming rule could be leamed dur
ing training) starting from different sets of random initial weights and, if 
any, leaming parameters. 

3 Compute the fitness of each individual (encoded architecture) according 
to the above training result and other performance criteria such as the 
complexity of the architecture. 

4 Select parents from population based on their fitness. 
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Figure 12.5. The main structure of EPNet. 

5 Apply genetic operators to the parents and generate offspring which 
form the next generation. 

The cycle stops when a satisfactory neural network is found. 
An automatic system, EPNet (Yao and Liu, 1997, 1998), based on evolu

tionary programming was developed for the simultaneous evolution of neural 
network architectures and connection weights. EPNet relies on a number of 
mutation operators to modify architectures and weights. Behavioral (i.e. func
tional) evolution, rather than genetic evolution, is emphasized in EPNet. A 
number of techniques were adopted to maintain the behavioral link between 
a parent and its offspring (Yao and Liu, 1997). Figure 12.5 shows the main 
structure of EPNet. 

EPNet uses rank-based selection (Yao, 1993) and five mutations: hybrid 
techniques training; node deletion; connection deletion; connection addition; 
and node addition (Yao and Liu, 1997). EPNet uses a hybrid algorithm to 
train the neural network for a fixed number of epochs. Such training does not 
guarantee the convergence of neural network learning. Hence the training is 
partial. The other four mutations are used to grow and prune hidden nodes and 
connections. 
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The five mutations are attempted sequentially. If one mutation leads to a bet
ter offspring, it is regarded as successful. No further mutation will be applied. 
Otherwise the next mutation is attempted. The motivation behind ordering 
mutations is to encourage the evolution of compact neural networks without 
sacrificing generalization. A validation set is used in EPNet to measure the 
fitness of an individual, and another vaHdation set to stop training in the final 
step. EPNet has been tested extensively on a number of benchmark problems, 
and very compact neural networks with good generalization ability have been 
evolved (Yao and Liu, 1997). 

12.3.2 The Evolution of Learning Rules 
The evolution of learning rules can be regarded as a process of 'learning to 

learn" in neural networks where the adaptation of learning rules is achieved 
through evolution. It can also be regarded as an adaptive process of automatic 
discovery of novel learning rules. 

The relationship between evolution and learning is extremely complex. Var
ious models have been proposed, but most of them deal with the issue of how 
leaming can guide evolution and the relationship between the evolution of ar
chitectures and that of connection weights connection weights (Yao, 1999). 
Research into the evolution of leaming rules is still in its early stages. This 
research is important not only in providing an automatic way of optimizing 
leaming mles and in modeling the relationship between leaming and evolu
tion, but also in modeling the creative process since newly evolved leaming 
mles can deal with a complex and dynamic environment. This research will 
help us to understand better how creativity can emerge in artificial systems, like 
neural networks, and how to model the creative process in biological systems. 
A typical cycle of the evolution of leaming mles can be described as follows 
(Yao, 1999): 

1 Decode each individual in the current generation into a leaming rule. 

2 Constmct a set of neural networks with randomly generated architec
tures and initial weights, and train them using the decoded leaming rules. 

3 Calculate the fitness of each individual (encoded leaming mle) accord
ing to the average training results. 

4 Select parents from the current generation according to their fitness. 

5 Apply search operators to parents to generate offspring which form the 
next generation. 

The iteration stops when the population converges or a predefined maximum 
number of iterations has been reached. 



MACHINE LEARNING 365 

THE EVOLUTION OF LEARNING RULES 

evaluation of learning rules 

THE EVOLUTION OF ARCHITECTURES 

evaluation of architectures 

\ 
I 

1 THE EVOLUTION OF WEIGHTS 

r 3^ evaluation of weights 

A...A.. 
1 TASKS ; 

reproduction of weights 

reproduction of architectures 

reproduction of learning rules 

Figure 12.6, A general framework for evolutionary neural networks. 

123.3 A General Framework for Evolutionary Neural 
Networks 

A general framework for evolutionary neural networks can be described by 
Figure 12.6 (Yao, 1999). The evolution of connection weights proceeds at 
the lowest level on the fastest time scale in an environment determined by 
an architecture, a leaming rule, and leaming tasks. There are, however, two 
altematives to decide the level of the evolution of architectures and that of 
leaming rules: either the evolution of architectures is at the highest level and 
that of leaming rules at the lower level or vice versa. The lower the level of 
evolution, the faster the time scale. 
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12A SOME PROMISING AREAS FOR FUTURE 
APPLICATION 

Some recent trends and directions in machine learning have been summa
rized in Dietterich (1997) and Langley (1996). The first trend is in experimen
tal studies of learning algorithms. Experimental studies of learning algorithms 
have shifted from early study of idealized, hand-crafted examples to realistic 
learning tasks that involve hundreds and thousands of cases. As well as ro
bustness and generality testing of learning algorithms on a number of different 
data sets, comparisons between different learning algorithms on the same task 
domains need to be performed. It has been realized that some explicit methods 
for evaluating different learning algorithms should be estabUshed, and the con
ditions in which a learning algorithm will perform well should be identified in 
order to make progress in machine learning. 

The second trend is in theoretical analyses of learning processes. The main 
goal of theoretical analysis is to find the inductive principle with the best gener
alization, and develop learning algorithms with such inductive principle. Early 
work on the study of the convergence of learning algorithms was important but 
gave little insight into real learning problems. A major advance was due to 
the introduction of the probably approximately correct model (Vapnik, 1995). 
This model provided, for the first time, theoretical accuracy guarantees that 
were based on a finite number of training samples. The resulting probably ap
proximately correct model also served the rigorous framework that addressed 
the concerns arising from the real-world problems. 

The third trend is in applications of machine learning. Most recent suc
cessful applications are on classification or prediction tasks. Machine learning 
has also been applied in the areas of configuration and layout, planning and 
scheduling, and execution and control. In order for machine learning to play 
a major role in solving problems of interest to industry and commerce, many 
more applications need to be pursued. 

The fourth trend is in new learning algorithms. Many new learning algo
rithms have been studied in the past decade. For example, a support vector 
machine can construct a hyperplane as the decision surface in such a way 
that the margin of separation between positive and negative examples is maxi
mized. A boosting algorithm trains a set of classifiers on data sets with entirely 
different distributions, and combines them in an elementary way to achieve 
near-optimal performance. The boosting algorithm was originally proposed by 
Schapire (1990). Schapire proved that it is theoretically possible to convert a 
weak learning algorithm that performs only slightly better than random guess
ing into one that achieves arbitrary accuracy. Boosting is a general method 
that can be used to improve the performance of any learning algorithm. An-
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other ensemble learning called bagging combines models built on resamplings 
of data to yield a superior model (Breiman, 1996). 

The fifth trend is in unified frameworks for machine learning. Machine 
learning has been widely studied from a variety of backgrounds. The simi
larities between the various approaches were often overlooked while the dif
ferences between them were emphasized. It is important to draw distinctions 
among different learning algorithms. However, an ultimate goal of machine 
learning is to study a unified framework that can explain different learning 
processes in terms of common underlying mechanisms. One direction towards 
this goal is to study hybrid techniques learning systems that incorporate aspects 
of different learning algorithms. 

The sixth trend is in integrated cognitive architectures. This is related to the 
development of integrated architectures for cognition. A common implemen
tation in early work was to design a separate system for each new task. These 
systems had little of the nature of intelligent behavior, and posed limitations on 
work in other domains. Research has now moved to the design of integrated ar
chitectures that make strong assumptions about the control structures that can 
support intelligence. It is clear that learning will continue to play an important 
role in the development of such cognitive architectures when it is necessary to 
acquire knowledge from the environment for long-term adaptive behavior. 

These new areas will confront researchers with many more challenge prob
lems, and novel directions will no doubt emerge when the limitations of exist
ing learning algorithms are revealed. 

12.5 TRICKS OF THE TRADE 
Newcomers to the field of machine learning, applying a learning algorithm 

to a given problem, are often not very clear about where to start from in or
der to come up with a successful implementation. The following step-by-step 
procedure provides a guideline for implementing machine learning algorithms 
(Langley and Simon, 1995). 

Formulating the Problem The first step is to formulate a given problem 
in terms of what can be dealt with by a particular learning algorithm. Often, 
real-world problems can be transformed into simple classification tasks. For 
example, the breast cancer diagnosis problem can be formulated as a classifica
tion task that classifies a tumor as either benign or mahgnant based on cell de
scriptions gathered by microscopic examination. Strategies such as divide-and-
conquer can be used to decompose a complex task into a set of subproblems 
more amenable to the chosen learning algorithm. The strengths and limita
tions discussed in Section 12.2 provide a guideline for selecting an appropriate 
learning algorithm. Besides, based on the feedback available in the problem, 
supervised learning can be chosen when specific output is supplied; unsuper-
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vised learning should be adopted when there is no specific output; reinforce
ment learning can be applied when the environment is either fully observable 
or partially observable. 

Choosing the Representation The second step is to choose an appropriate 
representation for both the data and knowledge to be learned. The represen
tation refers to the attributes or features describing examples rather than the 
representational formalism, such as decision trees or neural networks. In some 
real-world problems, there might be thousands of potential features describing 
each input. Most leaming algorithms do not scale well when there are many 
features. Also, examples with many irrelevant and noisy input features give 
little information from a statistical point of view. It is essential to choose use
ful and important features to feed to the leaming algorithms. There are three 
main approaches for feature selection (Dietterich, 1997). The first approach is 
to select a subset of the features based on some initial analysis. The second 
approach is to test different subsets of the features on the chosen leaming al
gorithm and select the subsets that generate the best performance. The third 
approach is to automate the selection and weighting of features in the leaming 
algorithm. 

Collecting the Data The third step is to collect data needed for the leaming 
algorithm. In some applications, this process may be straightforward, but in 
others it can be very difficult. Generally speaking, the quantity of the data is 
decided by the chosen leaming algorithm. Data preprocessing is often neces
sary in the leaming process. 

Conducting the Learning Process Once the data are ready, the leaming pro
cess can be started for finding the best leaming model within a set of candidate 
model stmctures according to a certain criterion. A standard tool in statistics 
known as cross-validation provides a good guiding criterion. First the collected 
data is randomly partitioned into a training set and a test set. The training set 
is further divided into two disjoint subsets called estimation subset and vali
dation subset in which the estimation subset is used for inducing the leaming 
model, and the validation subset for vaUdating the model. It is possible that 
the learned model may end up overfitting on the validation subset. Therefore, 
the generaUzation performance of the learned model is measured on the test 
set which is different from the validation subset. Some leaming algorithms, 
such as inductive logic programming, rely on background knowledge avail
able. How to obtain such helpful background knowledge is an important issue 
that will affect the outcome of those leaming algorithms. 
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Analyzing and Evaluating the Learned Knowledge Empirical compar
isons have often been used to evaluate the predictive performance of the var
ious learning methods. The experiments can be conducted on simulated data 
sets or a real-life data set, or both. The known best predictions on some sim
ulated data sets make it possible to compare the learned knowledge with the 
known knowledge. Real-life data are helpful for evaluation of the robustness 
and generahty of different leaming algorithms. Cross-vahdation is a method 
of estimating prediction error in its original form (Stone, 1974). The procedure 
of m-fold cross-validation is as follows: 

1 Spht the data into m roughly equal-sized parts. 

2 For the iih part, fit the model to the other (m — 1) parts of the data, and 
calculate the prediction error of fitted model when predicting the /th part 
of the data. 

3 Do the above for / = 1 , . . . , m, and combine the m estimates of predic
tion error. 

As well as empirical comparisons, statistical leaming theory can be used to an
alyze the generalization abihty of leaming algorithms. Vapnik (1995) argued 
that the Vapnik-Chervonenkis dimension of the set of functions (rather than 
number of parameters) is responsible for the generalization ability of leam
ing machines. This opens remarkable opportunities to overcome the "curse of 
dimensionality": to generalize well on the basis of a set of functions contain
ing a huge number of parameters but possessing a small Vapnik-Chervonenkis 
dimension. 

12.6 CONCLUSIONS 

This chapter has been primarily concerned with the core leaming algorithms 
including decision tree, inductive logic programming, Bayesian leaming, neu
ral networks, evolutionary leaming, and reinforcement leaming. Inevitably, 
some other important leaming algorithms have not been covered. One impor
tant leaming algorithm dealing with imprecise and uncertain knowledge and 
data is fuzzy logic. Imprecision is treated based on probability in statistical 
leaming. In contrast, fuzzy logic is concerned with the use of fuzzy values that 
capture the meaning of words, human reasoning, and decision making. At the 
heart of fuzzy logic lies the concept of a linguistic variable. The values of the 
linguistic variable are words rather than numbers. 

Generalization is one of key issues in machine leaming. In neural net
work leaming, generalization had been studied from the bias-variance trade
off point of view (Geman et al., 1992). There is usually a trade-off between 
bias and variance in the case of a training set with finite size: attempts to de
crease bias by introducing more parameters often tend to increase variance; 
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attempts to reduce variance by reducing parameters often tend to increase bias. 
As well as the generalization issue, how to scale up learning algorithms is an
other important issue. Dietterich (1997) reviewed learning with a large training 
set and learning with many features. Even though some learning techniques 
could solve very large problems with millions of training examples in a rea
sonable amount of computer time, it is unclear whether they can successfully 
be applied to those problems with billions of training examples. 

This chapter has also been concerned with exploring the possible benefits 
arising from combining learning with evolution in neural networks. Differ
ent learning algorithms have their own strengths and weaknesses. Among all 
the learning algorithms, there is no clear winner in terms of the best learning 
algorithm. The best one is always problem dependent. This is certainly true 
according to the no-free-lunch theorem (Wolpert and Macready, 1997). In gen
eral, hybrid techniques algorithms tend to perform better than others for a large 
number of problems. 

SOURCES OF ADDITIONAL INFORMATION 
The literature on machine learning is extensive, and has been growing 

rapidly. 

• Mitchell's Machine Learning (Mitchell, 1997) and Russell and Norvig's 
Artificial Intelligence: A Modern Approach (Russell and Norvig, 2002) 
give good overviews of different types of learning algorithms. 

• Machine Learning, volumes 1-3, provide the early history of machine 
learning development (Michalski et al., 1983, 1986; Kodratoff and 
Michalski, 1990). 

• Some important papers in machine learning had been collected in Read
ings in Machine Learning (Shavlik and Dietterich, 1990). 

• Current research in machine learning can be found in a number of jour
nals. Major machine learning journals include Machine Learning, the 
Journal of Machine Learning Research, IEEE Transactions on Neural 
Networks, IEEE Transactions on Evolutionary Computation, and main
stream artificial intelligence journals. 

• Machine learning is also covered by a number of conferences, such as the 
International Conference on Machine Learning, the International Joint 
Conference on Neural Networks, Congress on Evolutionary Computa
tion, the IEEE International Conference on Fuzzy Systems, and the con
ference on Neural Information Processing Systems. 

• Mlnet Online Information Service (http://www.mlnet.org/) funded by 
the European Commission is dedicated to the field of machine learning, 
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knowledge discovery, case-based reasoning, knowledge acquisition, and 
data mining, 

• Machine learning topics can also be found online at the website 
http://www.aaai.org/Pathfinder/html/machine.html of the American As
sociation for Artificial Intelligence. 
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13.1 INTRODUCTION 

The biological immune system is a robust, complex, adaptive system that 
defends the body from foreign pathogens. It is able to categorize all cells (or 
molecules) within the body as self-cells or nonself cells. It does this with the 
help of a distributed task force that has the intelHgence to take action from a 
local and also a global perspective using its network of chemical messengers 
for communication. There are two major branches of the immune system. The 
innate immune system is an unchanging mechanism that detects and destroys 
certain invading organisms, whilst the adaptive immune system responds to 
previously unknown foreign cells and builds a response to them that can remain 
in the body over a long period of time. This remarkable information processing 
biological system has caught the attention of computer science in recent years. 

A novel computational intelHgence technique, inspired by immunology, has 
emerged, known as Artificial Immune Systems. Several concepts from im
munology have been extracted and applied for the solution of real-world sci
ence and engineering problems. In this tutorial, we briefly describe the immune 
system metaphors that are relevant to existing Artificial Immune System meth
ods. We then introduce illustrative real-world problems and give a step-by-step 
algorithm walkthrough for one such problem. A comparison of Artificial Im
mune Systems to other well-known algorithms, areas for future work, tips and 
tricks and a fist of resources round the tutorial off. It should be noted that 
as Artificial Immune Systems is still a young and evolving field, there is not 
yet a fixed algorithm template and hence actual implementations may differ 
somewhat from time to time and from those examples given here. 
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13.2 OVERVIEW OF THE BIOLOGICAL IMMUNE 
SYSTEM 

The biological immune system is an elaborate defense system which has 
evolved over millions of years. While many details of the immune mecha
nisms (innate and adaptive) and processes (humoral and cellular) are yet un
known (even to immunologists), it is, however, well known that the immune 
system uses multilevel (and overlapping) defense both in parallel and sequen
tial fashion. Depending on the type of the pathogen, and the way it gets into 
the body, the immune system uses different response mechanisms (differential 
pathways) either to neutralize the pathogenic effect or to destroy the infected 
cells. A detailed overview of the immune system can be found in many text
books, such as Kubi (2002). The immune features that are particularly relevant 
to our tutorial are matching, diversity and distributed control. Matching refers 
to the binding between antibodies and antigens. Diversity refers to the fact 
that, in order to achieve optimal antigen space coverage, antibody diversity 
must be encouraged (see Hightower et al., 1995). Distributed control means 
that there is no central controller; rather, the immune system is governed by 
local interactions between immune cells and antigens. 

Two of the most important cells in this process are white blood cells, called 
T-cells and B-cells. Both of these originate in the bone marrow, but T-cells 
pass on to the thymus to mature, before circulating in the blood and lymphatic 
vessels. 

The T-cells are of three types: helper T-cells which are essential to the acti
vation of B-cells, killer T-cells which bind to foreign invaders and inject poi
sonous chemicals into them causing their destruction, and suppressor T-cells 
which inhibit the action of other immune cells thus preventing allergic reac
tions and autoimmune diseases. 

B-cells are responsible for the production and secretion of antibodies, which 
are specific proteins that bind to the antigen. Each B-cell can only produce 
one particular antibody. The antigen is found on the surface of the invading 
organism and the binding of an antibody to the antigen is a signal to destroy 
the invading cell as shown in Figure 13.1. 

As mentioned above, the human body is protected against foreign invaders 
by a multi-layered system. The immune system is composed of physical bar
riers such as the skin and respiratory system; physiological barriers such as 
destructive enzymes and stomach acids; and the immune system, which can be 
broadly viewed as of two types: innate (non-specific) immunity and adaptive 
(specific) immunity, which are inter-linked and influence each other. Adap
tive immunity can again be subdivided into two types: humoral immunity and 
cell-mediated immunity. 
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Figure 13.1. Pictorial representation of the essence of the acquired immune system mechanism 
(taken from de Castro and van Zuben (1999): the invader enters the body and activates T-cells, 
which then (in IV) activate the B-cells; V is the antigen matching, VI is the antibody production 
and VII is the antigen's destruction. 

Innate immunity is present at birth. Physiological conditions such as 
pH, temperature and chemical mediators provide inappropriate living con
ditions for foreign organisms. Also, micro-organisms are coated with anti
bodies and/or complementary products (opsonization) so that they are eas
ily recognized. Extracellular material is then ingested by macrophages by a 
process called phagocytosis. Also, To//-cells influence the phagocytosis of 
macrophages by secreting certain chemical messengers called lymphokines. 
The low levels of sialic acid on foreign antigenic surfaces make Csb bind to 
these surfaces for a long time and thus activate alternative pathways. Thus 
MAC is formed, which punctures the cell surfaces and kills the foreign invader. 

Adaptive immunity is the main focus of interest here as learning, adapt
ability, and memory are important characteristics of adaptive immunity. It is 
subdivided under two heads: humoral immunity and cell-mediated immunity: 
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1 Humoral immunity is mediated by antibodies contained in body fluids 
(known as humors). The humoral branch of the immune system involves 
interaction of B-cells with antigen and their subsequent proliferation and 
differentiation into antibody-secreting plasma cells. Antibody functions 
as the effectors of the humoral response by binding to antigen and facil
itating its elimination. When an antigen is coated with antibody, it can 
be ehminated in several ways. For example, antibody can cross-Hnk the 
antigen, forming clusters that are more readily ingested by phagocytic 
cells. Binding of antibody to antigen on a micro-organism also can acti
vate the complement system, resulting in lysis of the foreign organism. 

2 Cellular immunity is cell-mediated; effector T-cells generated in re
sponse to antigen are responsible for cell-mediated immunity. Cytotoxic 
T-lymphocytes (CTLs) participate in cell-mediated immune reactions by 
killing altered self-cells; they play an important role in the killing of 
virus-infected and tumor cells. Cytokines secreted by TQH can mediate 
the cellular immunity, and activate various phagocytic cells, enabling 
them to phagocytose and kill micro-organisms more effectively. This 
type of cell-mediated immune response is especially important in host 
defense against intracellular bacteria and protozoa. 

Whilst there is more than one mechanism at work (for more details see 
Farmer et al., 1986; Kubi, 2002; Jeme, 1973), the essential process is the 
matching of antigen and antibody, which leads to increased concentrations 
(proliferation) of more closely matched antibodies. In particular, idiotypic net
work theory, negative selection mechanism, and the "clonal selection" and ''so
matic hypermutation" theories are primarily used in Artificial Immune System 
models. 

13.2.1 Immune Network Theory 
The immune network theory was proposed by Jeme (1973). The hypothesis 

was that the immune system maintains an idiotypic network of interconnected 
B-cells for antigen recognition. These cells both stimulate and suppress each 
other in certain ways that lead to the stabilization of the network. Two B-cells 
are connected if the affinities they share exceed a certain threshold, and the 
strength of the connection is directly proportional to the affinity they share. 

13.2.2 Negative Selection Mechanism 
The purpose of negative selection is to provide tolerance for self-cells. It 

deals with the immune system's abihty to detect unknown antigens while not 
reacting to the self-cells. During the generation of T-cells, receptors are made 
through a pseudo-random genetic rearrangement process. Then, they undergo 
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a censoring process in the thymus, called the negative selection. There, T-cells 
that react against self-proteins are destroyed; thus, only those that do not bind 
to self-proteins are allowed to leave the thymus. These matured T-cells then 
circulate throughout the body to perform immunological functions and protect 
the body against foreign antigens. 

13.2.3 Clonal Selection Principle 

The clonal selection principle describes the basic features of an immune 
response to an antigenic stimulus. It estabhshes the idea that only those cells 
that recognize the antigen proliferate, thus being selected against those that do 
not. The main features of the clonal selection theory are that 

1 the new cells are copies of their parents (clone) subjected to a mutation 
mechanism with high rates (somatic hypermutation); 

2 elimination of newly differentiated lymphocytes carrying self-reactive 
receptors; 

3 proliferation and differentiation on contact of mature cells with antigens. 

When an antibody strongly matches an antigen the corresponding B-cell 
is stimulated to produce clones of itself that then produce more antibodies. 
This (hyper) mutation, is quite rapid, often as much as "one mutation per cell 
division'' (de Castro and Von Zuben, 1999). This allows a very quick response 
to the antigens. It should be noted here that in the Artificial Immune System 
literature, often no distinction is made between B-cells and the antibodies they 
produce. Both are subsumed under the word "antibody" and statements such 
as mutation of antibodies (rather than mutation of B-cells) are common. 

There are many more features of the immune system, including adaptation, 
immunological memory and protection against auto-immune attacks, not dis
cussed here. In the following sections, we will revisit some important aspects 
of these concepts and show how they can be modeled in "artificial" immune 
systems and then used to solve real-world problems. First, let us give an 
overview of typical problems that we believe are amenable to being solved 
by artificial immune systems. 

13.3 ILLUSTRATIVE PROBLEMS 

13.3.1 Intrusion Detection Systems 

Anyone keeping up-to-date with current affairs in computing can confirm 
numerous cases of attacks made on computer servers of well-known compa
nies. These attacks range from denial-of-service attacks to extracting credit-
card details and sometimes we find ourselves thinking ''haven't they installed a 
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firewall?" The fact is they often have a firewall. A firewall is useful, indeed of
ten essential, but current firewall technology is insufficient to detect and block 
all kinds of attacks. 

On ports that need to be open to the internet, a firewall can do little to pre
vent attacks. Moreover, even if a port is blocked from internet access, this 
does not stop an attack from inside the organization. This is where intrusion 
detection systems come in. As the name suggests, intrusion detection systems 
are installed to identify (potential) attacks and to react by usually generating 
an alert or blocking the unscrupulous data. 

The main goal of intrusion detection systems is to detect unauthorized use, 
misuse and abuse of computer systems by both system insiders and extemal 
intruders. Most current intmsion detection systems define suspicious signa
tures based on known intrusions and probes. The obvious limit of this type 
of intrusion detection systems is its failure in detecting previously unknown 
intrusions. In contrast, the human immune system adaptively generates new 
immune cells so that it is able to detect previously unknown and rapidly evolv
ing harmful antigens (Forrest et al., 1994). Thus the challenge is to emulate 
the success of the natural systems. 

13.3.2 Data Mining—Collaborative Filtering and 
Clustering 

Collaborative filtering is the term for a broad range of algorithms that use 
similarity measures to obtain recommendations. The best-known example is 
probably the ''people who bought this also bought" feature of the intemet com
pany Amazon (2004). However, any problem domain where users are required 
to rate items is amenable to collaborative filtering techniques. Commercial ap-
pHcations are usually called recommender systems (Resnick and Varian, 1997). 
A canonical example is movie recommendation. 

In traditional collaborative filtering, the items to be recommended are 
treated as ''black boxes". That is, your recommendations are based purely 
on the votes of other users, and not on the content of the item. The preferences 
of a user, usually a set of votes on an item, comprise a user profile, and these 
profiles are compared in order to build a neighborhood. The key decision is 
what similarity measure is used. The most common method to compare two 
users is a correlation-based measure like Pearson or Spearman, which gives 
two neighbors a matching score between —1 and 1. The canonical example 
is the /:-nearest-neighbor algorithm, which uses a matching method to select 
k reviewers with high similarity measures. The votes from these reviewers, 
suitably weighted, are used to make predictions and recommendations. 

The evaluation of a collaborative filtering algorithm usually centers on its 
accuracy. There is a difference between prediction (given a movie, predict a 
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given user's rating of that movie) and recommendation (given a user, suggest 
movies that are Hkely to attract a high rating). Prediction is easier to assess 
quantitatively but recommendation is a more natural fit to the movie domain. 
A related problem to collaborative filtering is that of clustering data or users 
in a database. This is particularly useful in very large databases, which have 
become too large to handle. Clustering works by dividing the entries of the 
database into groups, which contain people with similar preferences or in gen
eral data of similar type. 

13.4 ARTIFICIAL IMMUNE SYSTEMS BASIC 
CONCEPTS 

13.4.1 Initialization/Encoding 
To implement a basic artificial immune system, four decisions have to be 

made: encoding, similarity measure, selection and mutation. Once an encoding 
has been fixed and a suitable similarity measure is chosen, the algorithm will 
then perform selection and mutation, both based on the similarity measure, 
until stopping criteria are met. In this section, we will describe each of these 
components in turn. 

Along with other heuristics, choosing a suitable encoding is very important 
for the algorithm's success. Similar to genetic algorithms, there is close inter
play between the encoding and the fitness function (the latter is in artificial 
immune systems referred to as the "matching" or "affinity" function). Hence 
both ought to be thought about at the same time. For the current discussion, let 
us start with the encoding. 

First, let us define what we mean by antigen and antibody in the context of 
an application domain. Typically, an antigen is the target or solution, e.g. the 
data item we need to check to see if it is an intrusion, or the user that we need to 
cluster or make a recommendation for. The antibodies are the remainder of the 
data, e.g. other users in the data base, a set of network traffic that has already 
been identified, etc. Sometimes there can be more than one antigen at a time 
and there are usually a large number of antibodies present simultaneously. 

Antigens and antibodies are represented or encoded in the same way. For 
most problems the most obvious representation is a string of numbers or fea
tures, where the length is the number of variables, the position is the variable 
identifier and the value is the value (could be binary or real) of the variable. 
For instance, in a five-variable binary problem, an encoding could look like 
this: (10010). 

We have previously mentioned data mining and intrusion detection applica
tions. What would an encoding look like in these cases? For data mining, let 
us consider the problem of recommending movies. Here the encoding has to 
represent a user's profile with regards to the movies he has seen and how much 
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he has (dis)liked them. A possible encoding for this could be a list of numbers, 
where each number represents the "vote" for an item. Votes could be binary, 
e.g. Did you visit this web page? (Morrison and AickeHn, 2002), but can also 
be integers in a range (say [0, 5]: i.e. 0, did not like the movie at all; 5, Hked it 
very much). 

Hence, for the movie recommendation, a possible encoding is 

User = [{id\, score\}, {id2, score2]... {idn, scoren]] 

Where id corresponds to the unique identifier of the movie being rated and 
score to this user's score for that movie. This captures the essential features of 
the data available (Cayzer and Aickelin, 2002a). 

For intrusion detection, the encoding may be to encapsulate the essence 
of each data packet transferred, e.g. [<protocol><source ipxsource 
portxdestination ipxdestination port>] 

example: [<tcp> <113.112.255.254><any><108.200.111.12><25>] 

which represents an incoming data packet sent to port 25. In these scenarios, 
wildcards like ''any port" are also often used. 

13.4.2 Similarity or Affinity Measure 
As mentioned above, the similarity measure or matching rule is one of the 

most important design choices in developing an artificial immune system algo
rithm, and is closely coupled to the encoding scheme. 

Two of the simplest matching algorithms are best explained using binary 
encoding. Consider the strings (00000) and (00011). If one does a bit-by-bit 
comparison, the first three bits are identical and hence we could give this pair a 
matching score of 3. In other words, we compute the opposite of the Hamming 
distance (which is defined as the number of bits that have to be changed in 
order to make the two strings identical). 

Now consider the pair (00000) and (01010). Again, simple bit matching 
gives us a similarity score of 3. However, the matching is quite different as the 
three matching bits are not connected. Depending on the problem and encod
ing, this might be better or worse. Thus, another simple matching algorithm is 
to count the number of continuous bits that match and retum the length of the 
longest matching as the similarity measure. For the first example above this 
would still be 3; for the second example it would be 1. 

If the encoding is non-binary, e.g. real variables, there are even more pos
sibilities to compute the ''distance" between the two strings, for instance we 
could compute the geometrical (EucHdian) distance. 

For data mining problems, similarity often means ''correlation". Take the 
movie recommendation problem as an example and assume that we are trying 



ARTIFICIAL IMMUNE SYSTEMS 383 

to find users in a database that are similar to the key user who's profile were are 
trying to match in order to make recommendations. In this case, what we are 
trying to measure is how similar are the two users' tastes. One of the easiest 
ways of doing this is to compute the Pearson correlation coefficient between 
the two users, i.e. if the Pearson measure is used to compare two user's u and 
v: 

n 

J2(j^i -u)(Vi -v) 
/=1 

r = 

'Ei^i-u)^El=M-y)^ 

where u and v are users, n is the number of overlapping votes (i.e. movies for 
which both u and v have voted), ut is the vote of user u for movie i and w is 
the average vote of user u over all films (not just the overlapping votes). The 
measure is amended to default to a value of 0 if the two users have no films in 
common. During our research reported in Cayzer and Aickelin (2002a, 2002b) 
we also found it useful to introduce a penalty parameter (as in penalties in 
genetic algorithms) for users who only have very few films in common, which 
in essence reduces their correlation. 

The outcome of this measure is a value between — 1 and 1, where values 
close to 1 mean strong agreement, values near to — 1 mean strong disagreement 
and values around 0 mean no correlation. From a data mining point of view, 
those users who score either 1 or —1 are the most useful and hence will be 
selected for further treatment by the algorithm. 

For other applications, ''matching" might not actually be beneficial and 
hence those items that match might be eliminated. This approach is known as 
''negative selection" and mirrors what is believed to happen during the matura
tion of B-cells who have to learn not to "match" our own tissues as otherwise 
we would be subject to auto-immune diseases. 

Under what circumstance would a negative selection algorithm be suitable 
for an artificial immune system implementation? Consider the case of intrusion 
detection as solved by Hofmeyr and Forrest (2000). One way of solving this 
problem is by defining a set of "self", i.e. a trusted network, our company's 
computers, known partners, etc. During the initiaHzation of the algorithm, 
we would then randomly create a large number of "detectors", i.e. strings that 
look similar to the sample intrusion detection system encoding given above. 
We would then subject these detectors to a matching algorithm that compares 
them to our "self". Any matching detector would be eliminated and hence we 
select those that do not match (negative selection). All non-matching detectors 
will then form our final detector set. This detector set is then used in the second 
phase of the algorithm to continuously monitor all network traffic. Should 
a match be found now the algorithm would report this as a possible alert or 
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"nonself". There are a number of problems with this approach, which we 
discuss further in Section 13.7. 

13.4.3 Negative, Clonal or Neighborhood Selection 

The meaning of this step differs depending on the exact problem the Arti
ficial Immune Systems is applied to. We have already described the concept 
of negative selection. For the film recommender, choosing a suitable neigh
borhood means choosing good correlation scores and hence we will perform 
"positive" selection. How would the algorithm use this? 

Consider the artificial immune system to be empty at the beginning. The 
target user is encoded as the antigen, and all other users in the database are 
possible antibodies. We add the antigen to the artificial immune system and 
then we add one candidate antibody at a time. Antibodies will start with a cer
tain concentration value. This value decreases over time (death rate), similar 
to the evaporation in ant systems. Antibodies with a sufficiently low concen
tration are removed from the system, whereas antibodies with a high concen
tration may saturate. However, an antibody can increase its concentration by 
matching the antigen: the better the match the higher the increase (a process 
called stimulation). The process of stimulation or increasing concentration can 
also be regarded as "cloning" if one thinks in a discrete setting. Once enough 
antibodies have been added to the system, it starts to iterate a loop of reducing 
concentration and stimulation until at least one antibody drops out. A new an
tibody is added and the process is repeated until the artificial immune system 
is stabilized, i.e. there are no more drop-outs for a certain period of time. 

Mathematically, at each step (iteration) an antibody's concentration is in
creased by an amount dependent on its matching to each antigen. In the ab
sence of matching, an antibody's concentration will slowly decrease overtime. 
Hence an artificial immune system iteration is governed by the following equa
tion, based on Farmer et al. (1986): 

antigens 
recognized 

death 
rate 

2̂ Yl^J'^'^J I ~^3-̂ ' 

where N is the number of antigens, Xi is the concentration of antibody i, yj is 
the concentration of antigen j , k2 is the stimulation effect and k^ is the death 
rate, and my, is the matching function between antibody / and antibody (or 
antigen) ; . 
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The following pseudo-code summarizes the artificial immune system of the 
movie recommender: 

Initialize Artificial Immune Systems 
Encode user for whom to make predictions as antigen Ag 
WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO 

Add next user as an antibody Ab 
Calculate matching scores between Ab and Ag 
WHILE (Artificial Immune Systems at full size) & (Artificial Immune 
Systems not Stabihzed) DO 

Reduce Concentration of all Abs by a fixed amount 
Match each Ab against Ag and stimulate as necessary 

OD 
OD 
Use final set of Antibodies to produce recommendation. 

For example, the artificial immune system is considered stable after iterat
ing for ten iterations without changing in size. Stabilization thus means that 
a sufficient number of "good" neighbors have been identified and therefore a 
prediction can be made. 'Toor" neighbors would be expected to drop out of 
the artificial immune system after a few iterations. Once the artificial immune 
system has stabilized using the above algorithm, we use the antibody con
centration to weigh the neighbors and then perform a weighted average type 
recommendation. 

13 A A Somatic Hypermutation 
The mutation most commonly used in artificial immune systems is very sim

ilar to that found in genetic algorithms, e.g. for binary strings bits are flipped, 
for real value strings one value is changed at random, or for others the order 
of elements is swapped. In addition, the mechanism is often enhanced by the 
somatic idea, i.e. the closer the match (or the less close the match, depending 
on what we are trying to achieve), the more (or less) disruptive the mutation. 

However, mutating the data might not make sense for all problems con
sidered. For instance, it would not be suitable for the movie recommender. 
Certainly, mutation could be used to make users more similar to the target; 
however, the validity of recommendations based on these artificial users is 
questionable and if over-done, we would end up with the target user itself. 
Hence for some problems, somatic hypermutation is not used, since it is not 
immediately obvious how to mutate the data sensibly such that these artificial 
entities still represent plausible data. 

Nevertheless, for other problem domains, mutation might be very useful. 
For instance, taking the negative selection approach to intrusion detection. 
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rather than throwing away matching detectors in the first phase of the algo
rithm, these could be mutated to save time and effort. Also, depending on the 
degree of matching, the mutation could be more or less strong. This was in 
fact one extension implemented by Hofmeyr and Forrest (2000). 

For data mining problems, mutation might also be useful, if for instance the 
aim is to cluster users. Then the center of each cluster (the antibodies) could 
be an artificial pseudo-user that can be mutated at will until the desired degree 
of matching between the center and antigens in its cluster is reached. This is 
an approach implemented by de Castro and von Zuben (2002). 

13.5 COMPARISON WITH GENETIC ALGORITHMS 
AND NEURAL NETWORKS 

So far in this tutorial, both genetic algorithms and neural networks have 
been mentioned a number of times. In fact, they both have a number of ideas 
in common with artificial immune systems and Table 13.1 highlights their sim
ilarities and differences (Dasgupta, 1999). Evolutionary computation shares 
many elements, concepts like population, genotype phenotype mapping, and 
prohferation of the most fitted are present in different artificial immune system 
methods. 

Artificial immune system models based on immune networks resemble the 
structures and interactions of connectionist models. Some works have pointed 
to the similarities and the differences between artificial immune systems and 
artificial neural networks (Dasgupta, 1999; de Castro and Von Zuben, 2002); de 
Castro has also used artificial immune systems to initialize the centers of radial 
basis function neural networks and to produce a good initial set of weights for 
feed-forward neural networks. 

Some of the items in Table 13.1 are gross simplifications, both to benefit 
the design of the table and so as not to overwhelm the reader, and some of 
the points are debatable; however, we believe that the comparison is never
theless valuable, to show exactly where artificial immune systems fit into the 
wider picture. The comparisons are based on a genetic algorithm (GA) used 
for optimization and a neural network (NN) used for classification. 

13.6 EXTENSIONS OF ARTIFICIAL IMMUNE 
SYSTEMS 

13.6.1 Idiotypic Networks—Network Interactions 
(Suppression) 

The idiotypic effect builds on the premise that antibodies can match other 
antibodies as well as antigens. It was first proposed by Jeme (1973) and for
malized into a model by Farmer et al. (1986). The theory is currently debated 
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by immunologists, with no clear consensus yet on its effects in the humoral 
immune system (Kuby, 2002). The idiotypic network hypothesis builds on 
the recognition that antibodies can match other antibodies as well as antigens. 
Hence, an antibody may be matched by other antibodies, which in turn may 
be matched by yet other antibodies. This activation can continue to spread 
through the population and potentially has much explanatory power. It could, 
for example, help explain how the memory of past infections is maintained. 
Furthermore, it could result in the suppression of similar antibodies, thus en
couraging diversity in the antibody pool. The idiotypic network has been for
malized by a number of theoretical immunologists (Perelson and Weisbuch, 
1997): 

"dT = c 
antibodies 
recognized 

death 
rate 

I am 
recognized + 

antigens 
recognized 

= c ^MjiXiXj - ki ^m^X/X; + J2 m iXiyj 

7 = 1 7-1 7 = 1 

- k2Xi 

where Â  is the number of antibodies and n is the number of antigens, xi (or 
Xj) is the concentration of antibody / (or j), yj is the concentration of antigen 
y, c is a rate constant, ki is a suppressive effect and 2̂ is the death rate, and 
ntji is the matching function between antibody / and antibody (or antigen) j . 

As can be seen from the above equation, the nature of an idiotypic interac
tion can be either positive or negative. Moreover, if the matching function is 
symmetric, then the balance between "I am recognized" and "antibodies rec
ognized" (parameters c and ki in the equation) wholly determines whether the 
idiotypic effect is positive or negative, and we can simplify the equation. We 
can further simplify (1) if we only allow one antigen in the artificial immune 
system. In (2), the first term is simplified as we only have one antigen, and the 
suppression term is normahzed to allow a "like for like" comparison between 
the different rate constants: 

6xi kix-y , 
-— = k\miXiy 2_^mijXiXj - k^xi 

7=1 

(13.1) 

where k] is stimulation, k2 suppression, k^ death rate, m, is the correlation 
between antibody / and the (sole) antigen, A:, (orxj) is the concentration of an
tibody / (or j), y is the concentration of the (sole) antigen, m/y is the correlation 
between antibodies / and j , and n is the number of antibodies. 

Why would we want to use the idotypic effect? Because it might provide us 
with a way of achieving "diversity", similar to "crowding" or "fitness sharing" 
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Figure 13.2. Illustration of the idiotypic effect. 

in a genetic algorithm. For instance, in the movie recommender, we want 
to ensure that the final neighborhood population is diverse, so that we get 
more interesting recommendations. Hence, to use the idiotypic effect in the 
movie recommender system mentioned previously, the pseudo-code would be 
amended by adding the italicized lines as follows: 

Initialize Artificial Immune Systems 
Encode user for whom to make predictions as antigen Ag 
WHILE (Artificial Immune Systems not Full) & (More Antibodies) DO 

Add next user as an antibody Ab 
Calculate matching scores between Ab and Ag and Ab and other Abs 
WHILE (Artificial Immune Systems at full size) & (Artificial Immune 
Systems not Stabilized) DO 

Reduce Concentration of all Abs by a fixed amount 
Match each Ab against Ag and stimulate as necessary 
Match each Ab against each other Ab and execute idiotypic effect 

OD 
OD 
Use final set of Antibodies to produce recommendation. 

Figure 13.2 shows the idiotypic effect using dotted arrows and the standard 
stimulation using solid arrows. In the diagram antibodies Abl and Ab3 are 
very similar and they would have their concentrations reduced in the "iterate 
artificial immune systems" stage of the algorithm above. 
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At each iteration of the film recommendation artificial immune system the 
concentration of the antibodies is changed according to the formula outlined 
below. This will increase the concentration of antibodies that are similar to the 
antigen and can allow either the stimulation, suppression, or both, of antibody-
antibody interactions to have an effect on the antibody concentration. More 
detailed discussion of these effects on recommendation problems are contained 
within Cayzer and Aickelin (2002a, b). 

13.6.2 Danger Theory 
Over the last decade, a new theory, called the Danger Theory, has become 

popular amongst immunologists. Its chief advocate is Matzinger (1994, 2001, 
2003). A number of advantages are claimed for this theory; not least that it 
provides a method of "grounding" the immune response. The theory is not 
complete, and there are some doubts about how much it actually changes be
haviour and/or structure. Nevertheless, the theory contains enough potentially 
interesting ideas to make it worth assessing its relevance to artificial immune 
systems. 

To function properly, it is not simply a question of matching in the humoral 
immune system. It is fundamental that only the "correct" cells are matched 
as otherwise this could lead to a self-destructive autoimmune reaction. Classi
cal immunology (Kuby, 2002) stipulates that an immune response is triggered 
when the body encounters something nonself or foreign. It is not yet fully 
understood how this self-nonself discrimination is achieved, but many immu
nologists believe that the difference between them is learnt early in life. In 
particular, it is thought that the maturation process plays an important role to 
achieve self-tolerance by eliminating those T- and B-cells that react to self. In 
addition, a "confirmation" signal is required: that is, for either B-cell or T-
(killer) cell activation, a T- (helper) lymphocyte must also be activated. This 
dual activation is further protection against the chance of accidentally reacting 
to self. 

Danger Theory debates this point of view (for a good introduction, see 
Matzinger, 2003). Technical overviews can be found in Matzinger (1994, 
2001). She points out that there must be discrimination happening that goes 
beyond the self-nonself distinction described above. For instance: 

1 There is no immune reaction to foreign bacteria in the gut or to the food 
we eat although both are foreign entities. 

2 Conversely, some auto-reactive processes are useful, for example against 
self molecules expressed by stressed cells. 

3 The definition of self is problematic—realistically, self is confined to the 
subset actually seen by the lymphocytes during maturation. 
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4 The human body changes over its lifetime and thus self changes as well. 
Therefore, the question arises whether defences against nonself learned 
early in life might be autoreactive later. 

Other aspects that seem to be at odds with the traditional viewpoint are au
toimmune diseases and certain types of tumors that are fought by the immune 
system (both attacks against self) and successful transplants (no attack against 
nonself). 

Matzinger concludes that the immune system actually discriminates "some 
self from some nonself. She asserts that the Danger Theory introduces not 
just new labels, but a way of escaping the semantic difficulties with self and 
nonself, and thus provides grounding for the immune response. If we accept 
the Danger Theory as valid we can take care of "nonself but harmless" and of 
"self but harmful" invaders into our system. To see how this is possible, we 
will have to examine the theory in more detail. 

The central idea in the Danger Theory is that the immune system does not 
respond to nonself but to danger. Thus, just like the self-nonself theories, it 
fundamentally supports the need for discrimination. However, it differs in the 
answer to what should be responded to. Instead of responding to foreignness, 
the immune system reacts to danger. This theory is home out of the observa
tion that there is no need to attack everything that is foreign, something that 
seems to be supported by the counter-examples above. In this theory, danger 
is measured by damage to cells indicated by distress signals that are sent out 
when cells die an unnatural death (cell stress or lytic cell death, as opposed to 
programmed cell death, or apoptosis). 

Figure 13.3 depicts how we might picture an immune response according 
to the Danger Theory (Aickelin and Cayzer, 2002c). A cell that is in distress 
sends out an alarm signal, whereupon antigens in the neighborhood are cap
tured by antigen-presenting cells such as macrophages, which then travel to 
the local lymph node and present the antigens to lymphocytes. Essentially, the 
danger signal estabHshes a danger zone around itself. Thus B-cells produc
ing antibodies that match antigens within the danger zone get stimulated and 
undergo the clonal expansion process. Those that do not match or are too far 
away do not get stimulated. 

Matzinger admits that the exact nature of the danger signal is unclear. It may 
be a "positive" signal (for example heat shock protein release) or a "negative" 
signal (for example lack of synaptic contact with a dendritic antigen-presenting 
cell). This is where the Danger Theory shares some of the problems associated 
with traditional self-nonself discrimination (i.e. how to discriminate danger 
from non-danger). However, in this case, the signal is grounded rather than 
being some abstract representation of danger. 

How could we use the Danger Theory in artificial immune systems? The 
Danger Theory is not about the way artificial immune systems represent data 
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Figure 13.3. Danger theory illustration. 

(Aickehn and Cayzer, 2002c). Instead, it provides ideas about which data the 
artificial immune systems should represent and deal with. They should focus 
on dangerous, i.e. interesting, data. It could be argued that the shift from non-
self to danger is merely a symbohc label change that achieves nothing. We do 
not believe this to be the case, since danger is a grounded signal, and nonself 
is (typically) a set of feature vectors with no further information about whether 
all or some of these features are required over time. The danger signal helps 
us to identify which subset of feature vectors is of interest. A suitably defined 
danger signal thus overcomes many of the limitations of self-nonself selec
tion. It restricts the domain of nonself to a manageable size, removes the need 
to screen against all self, and deals adaptively with scenarios where self (or 
nonself) changes over time. 

The challenge is clearly to define a suitable danger signal, a choice that 
might prove as critical as the choice of fitness function for an evolutionary 
algorithm. In addition, the physical distance in the biological system should be 
translated into a suitable proxy measure for similarity or causality in artificial 
immune systems. This process is not likely to be trivial. Nevertheless, if these 
challenges are met, then future artificial immune system appHcations might 
derive considerable benefit, and new insights, from the Danger Theory: in 
particular, intrusion detection systems (Aickelin et al., 2003). 
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13.7 SOME PROMISING AREAS FOR FUTURE 
APPLICATION 

It seems intuitively obvious that artificial immune systems should be most 
suitable for computer security problems. If the human immune system keeps 
our body alive and well, why can we not do the same for computers using 
artificial immune systems? (Aickelin et al., 2004) 

We have outlined the traditional approach to do this. However, in order 
to provide viable intrusion detection systems, artificial immune systems must 
build a set of detectors that accurately match antigens. In current artificial-
immune-system-based intrusion detection systems (Dasgupta and Gonzalez, 
2002; Esponda et al., 2004; Hofmeyr and Forrest, 2000), both network connec
tions and detectors are modeled as strings. Detectors are randomly created and 
then undergo a maturation phase where they are presented with good, i.e. self, 
connections. If the detectors match any of these they are eliminated, otherwise 
they become mature. These mature detectors start to monitor new connections 
during their lifetime. If these mature detectors match anything else, exceeding 
a certain threshold value, they become activated. This is then reported to a hu
man operator who decides whether there is a true anomaly. If so, the detectors 
are promoted to memory detectors with an indefinite life span and minimum 
activation threshold (immunization) (Kim and Bentley, 2002). 

An approach such as the above is known as negative selection as only those 
detectors (antibodies) that do not match live on (Forrest et al., 1994). Earlier 
versions of negative selection algorithm used a binary representation scheme; 
however, this scheme shows scaling problems when it is applied to real net
work traffic (Kim and Bentley, 2001). As the systems to be protected grow 
larger and larger so does self and nonself. Hence, it becomes more and more 
problematic to find a set of detectors that provides adequate coverage, whilst 
being computationally efficient. It is inefficient to map the entire self or nonself 
universe, particularly as they will be changing over time and only a minority of 
nonself is harmful, whilst some self might cause damage (e.g. internal attack). 
This situation is further aggravated by the fact that the labels self and non-
self are often ambiguous and even with expert knowledge they are not always 
applied correctly (Kim and Bentley, 2002). 

How can this problem be overcome? One approach might be to borrow 
ideas from the Danger Theory to provide a way of grounding the response 
and hence removing the necessity to map self or nonself. In our system, the 
correlation of low-level alerts (danger signals) will trigger a reaction (Aickelin 
et al, 2003). An important and recent research issue for intrusion detection 
systems is how to find true intrusion alerts from many thousands of false alerts 
generated (Hofmeyr and Forrest, 2000). Existing intrusion detection systems 
employ various types of sensors that monitor low-level system events. Those 
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sensors report anomalies of network traffic patterns, unusual terminations of 
UNIX processes, memory usages, the attempts to access unauthorized files, 
etc. (Kim and Bentley, 2001). Although these reports are useful signals of 
real intrusions, they are often mixed with false alerts and their unmanageable 
volume forces a security officer to ignore most alerts (Hoagland and Staniford, 
2002). Moreover, the low level of alerts makes it very hard for a security officer 
to identify advancing intrusions that usually consist of different stages of attack 
sequences. For instance, it is well known that computer hackers use a number 
of preparatory stages before actual hacking. Hence, the correlations between 
intrusion alerts from different attack stages provide more convincing attack 
scenarios than detecting an intrusion scenario based on low-level alerts from 
individual stages. Furthermore, such scenarios allow the intrusion detection 
system to detect intrusions early before damage becomes serious. 

To correlate intrusion detection system alerts for detection of an intrusion 
scenario, recent studies have employed two different approaches: a probabilis
tic approach (Valdes and Skinner, 2001) and an expert system approach (Ning 
et al., 2002). The probabilistic approach represents known intrusion scenarios 
as Bayesian networks. The nodes of Bayesian networks are intrusion detection 
system alerts and the posterior likelihood between nodes is updated as new 
alerts are collected. The updated likelihood can lead to conclusions about a 
specific intrusion scenario occurring or not. The expert system approach ini
tially builds possible intrusion scenarios by identifying low-level alerts. These 
alerts consist of prerequisites and consequences, and they are represented as 
hypergraphs. Known intrusion scenarios are detected by observing the low-
level alerts at each stage, but these approaches have the following problems 
(Cuppensetal.,2002): 

1 handUng unobserved low-level alerts that comprise an intrusion sce
nario, 

2 handling optional prerequisite actions, 

3 handling intrusion scenario variations. 

The common trait of these problems is that the intrusion detection system 
can fail to detect an intrusion when an incomplete set of alerts comprising 
an intrusion scenario is reported. In handling this problem, the probabilistic 
approach is more advantageous than the expert system approach because in 
theory it allows the intrusion detection system to correlate missing or mutated 
alerts. The current probabilistic approach builds Bayesian networks based on 
the similarities between selected alert features. However, these similarities 
alone can fail to identify a causal relationship between prerequisite actions 
and actual attacks if pairs of prerequisite actions and actual attacks do not ap
pear frequently enough to be reported. Attackers often do not repeat the same 
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actions in order to disguise their attempts. Thus, the current probabiHstic ap
proach fails to detect intrusions that do not show strong similarities between 
alert features but have causal relationships leading to final attacks. This limit 
means that such intrusion detection systems fail to detect sophisticated intru
sion scenarios. 

We propose artificial immune systems based on Danger Theory ideas that 
can handle the above intrusion detection system alert correlation problems 
(Aickelin et al., 2003). The Danger Theory explains the immune response 
of the human body by the interaction between antigen-presenting cells and 
various signals. The immune response of each antigen-presenting cell is de
termined by the generation of danger signals through cellular stress or cell 
death. In particular, the balance and correlation between different danger sig
nals depending on different cell death causes would appear to be critical to the 
immunological outcome. In the human immune system, antigen-presenting 
cells activate according to the balance of apoptotic and necrotic cells and this 
activation leads to protective immune responses. Similarly, the sensors in in
trusion detection systems report various low-level alerts and the correlation of 
these alerts will lead to the construction of an intrusion scenario. 

13.8 TRICKS OF THE TRADE 
Are artificial immune systems suitable for pure optimization? Depending 

on what is meant by optimization, the answer is probably no, in the same sense 
as "pure" genetic algorithms are not "function optimizers". One has to keep 
in mind that although the immune system is about matching and survival, it is 
really a team effort where multiple solutions are produced all the time that to
gether provide the answer. Hence, in our opinion artificial immune systems are 
probably more suited as an optimizer where multiple solutions are of benefit, 
either directly, e.g. because the problem has multiple objectives or indirectly, 
e.g. when a neighborhood of solutions is produced that is then used to gener
ate the desired outcome. However, artificial immune systems can be made into 
more focused optimizers by adding hill climbing or other functions that exploit 
local or problem-specific knowledge, similar to the idea of augmenting genetic 
algorithm to memetic algorithms. 

What problems are artificial immune systems most suitable for? As men
tioned above, we believe that although using artificial immune systems for pure 
optimization, e.g. the traveling salesman problem or job shop scheduling, can 
be made to work, this is probably missing the point. Artificial immune sys
tems are powerful when a population of solution is essential either during the 
search or as an outcome. Furthermore, the problem has to have some concept 
of "matching". Finally, because at their heart artificial immune systems are 
evolutionary algorithms, they are more suitable for problems that change over 
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time and need to be solved again and again, rather than one-off optimizations. 
Hence, the evidence seems to point to data mining in its wider meaning as the 
best area for artificial immune systems. 

How do I set the parameters? Unfortunately, there is no short answer to this 
question. As with the majority of other heuristics that require parameters to 
operate, their setting is individual to the problem solved and universal values 
are not available. However, it is fair to say that along with other evolution
ary algorithms artificial immune systems are robust with respect to parameter 
values as long as they are chosen from a sensible range. 

Why not use a genetic algorithm instead? Because you may miss out on the 
benefits of the idiotypic network effects. 

Why not use a neural network instead? Because you may miss out on the 
benefits of a population of solutions and the evolutionary selection pressure 
and mutation. 

Are artificial immune systems Leaming Classifier Systems under a different 
name? No, not quite. However, to our knowledge leaming classifier systems 
are probably the most similar of the better known metaheuristics, as they also 
combine some features of evolutionary algorithms and neural networks. How
ever, these features are different. Someone who is interested in implementing 
artificial immune systems or leaming classifier systems is likely to be well ad
vised to read about both approaches to see which one is most suited for the 
problem at hand. 

13.9 CONCLUSIONS 
The immune system is highly distributed, highly adaptive, self-organizing 

in nature, maintains a memory of past encounters, and has the ability to contin
ually leam about new encounters. The artificial immune system is an example 
of a system developed around the current understanding of the immune system. 
It illustrates how an artificial immune system can capture the basic elements of 
the immune system and exhibit some of its chief characteristics. 

Artificial immune systems can incorporate many properties of natural im
mune systems, including diversity, distributed computation, error tolerance, 
dynamic leaming and adaptation and self-monitoring. The human immune 
system has motivated scientists and engineers for finding powerful information 
processing algorithms that has solved complex engineering tasks. The artifi
cial immune system is a general framework for a distributed adaptive system 
and could, in principle, be apphed to many domains. The artificial immune 
system can be applied to classification problems, optimization tasks and other 
domains. Like many biologically inspired systems it is adaptive, distributed 
and autonomous. The primary advantages of the artificial immune system are 
that it only requires positive examples, and the patterns it has learnt can be ex-
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plicitly examined. In addition, because it is self-organizing, it does not require 
effort to optimize any system parameters. 

To us, the attraction of the immune system is that if an adaptive pool of 
antibodies can produce "intelligent" behavior, can we harness the power of this 
computation to tackle the problem of preference matching, recommendation 
and intrusion detection? Our conjecture is that if the concentrations of those 
antibodies that provide a better match are allowed to increase over time, we 
should end up with a subset of good matches. However, we are not interested 
in optimizing, i.e. in finding the one best match. Instead, we require a set 
of antibodies that are a close match but which are at the same time distinct 
from each other for successful recommendation. This is where we propose 
to harness the idiotypic effects of binding antibodies to similar antibodies to 
encourage diversity. 

SOURCES OF ADDITIONAL INFORMATION 
The following websites, books and proceedings should be an excellent start

ing point for those readers wishing to learn more about artificial immune sys
tems. 

1 Artificial Immune Systems and Their Applications by D. Dasgupta (ed.). 
Springer, Beriin, 1999. 

2 Artificial Immune Systems: A New Computational Intelligence Approach 
by L. de Castro and J. Timmis, Springer, Beriin, 2002. 

3 Immunocomputing: Principles and Applications by A. Tarakanov et al., 
Springer, Beriin, 2003, 

4 Proceedings of the International Conference on Artificial Immune Sys
tems (ICARIS), Springer, BerHn, 2003. 

5 Artificial Immune Systems Forum Webpage: http://www.artificial-
immune-systems.org/artist.htm 

6 Artificial Immune Systems Bibhography: 
http.V/issrl.cs.memphis.edu/ Artificial Immune Systems/Artificial Im
mune Systems_bibliography.pdf 
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SWARM INTELLIGENCE 
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14.1 INTRODUCTION 
The complex and often coordinated behavior of swarms fascinates not only 

biologists but also computer scientists. Bird flocking and fish schooHng are im
pressive examples of coordinated behavior that emerges without central con
trol. Social insect colonies show complex problem-solving skills arising from 
the actions and interactions of nonsophisticated individuals. 

Swarm Intelligence is a field of computer science that designs and studies 
efficient computational methods for solving problems in a way that is inspired 
by the behavior of real swarms or insect colonies (see e.g. Bonabeau et al., 
1999; Kennedy et al, 2001). Principles of self-organization and local or in
direct communication are important for understanding the complex collective 
behavior (Camazine et al., 2001). Examples where insights into the behavior 
of natural swarms has influenced the design of algorithms and systems in com
puter science include the following (see Bonabeau et al., 1999; Middendorf, 
2002 for more information): 

• Collective transport of ants has inspired the design of controllers of 
robots for doing coordinated work (Kube and Bonabeau, 2000). 

• Brood sorting behavior of ants motivated several clustering and sorting 
algorithms (e.g., Handl and Meyer, 2002; Lumer and Faieta, 1994). 

• The path-finding and orientation skills of the desert ant Cataglyphis were 
used as an archetype for building a robot orientation unit (Lambrinos 
etal., 2000). 

• Models for the division of labor between members of an ant colony were 
used to regulate the joint work of robots (e.g. Agassounoun et al., 2001; 
Goldberg and Mataric, 2000). 
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In this chapter we focus on swarm intelligence methods for solving opti
mization and search problems. The two main areas of swarm intelligence that 
are relevant for such problems are ant colony optimization (ACO) and particle 
swarm optimization (PSO). 

ACO is a metaheuristic for solving combinatorial optimization problems. 
It is inspired by the way real ants find shortest paths from their nest to food 
sources. An essential aspect thereby is the indirect communication of the 
ants via pheromone, i.e., a chemical substance which is released into the envi
ronment and that influences the behavior or development of other individuals 
of the same species. Ants mark their paths to the food sources by laying a 
pheromone trail along their way. The pheromone traces can be smelled by 
other ants and lead them to the food source. 

PSO is a metaheuristic that is mainly used for finding maximum or min
imum values of a function (Kennedy et al, 2001). PSO is inspired by the 
behavior of swarms of fishes or flocks of birds to find a good food place. The 
coordination of movements of the individuals in the swarm is the central aspect 
that inspires PSO. 

14.2 ANT COLONY OPTIMIZATION 
A renowned biological experiment called the double bridge experiment was 

the inspiring source for the first ACO algorithm (Dorigo et al., 1991; Dorigo, 
1992). The double bridge experiment (Deneubourg et al., 1990; Goss et al., 
1989) was designed to investigate the pheromone trail laying and following 
behavior of the Argentine ant Iridomyrmex humilis. In the experiment a double 
bridge with two branches of different lengths connected the nest of this species 
with a food source (see Figure 14.2). The long branch of the bridge was twice 
as long as the shorter branch. In most runs of this experiment it was found that 
after a few minutes nearly all ants use the shorter branch. This is interesting 
because Argentine ants cannot see very well. The explanation of this behavior 
has to do with the fact that the ants lay pheromone along their path. It is likely 
that ants which randomly choose the shorter branch arrive earlier at the food 
source. When they go back to the nest they smell some pheromone on the 
shorter branch and therefore prefer this branch. The pheromone on the shorter 
branch will accumulate faster than on the longer branch so that after some 
time the concentration of pheromone on the former is much higher and nearly 
all ants take the shorter branch. Similar to the experiment with branches of 
different lengths, when both branches have the same length, after some minutes 
nearly all ants use the same branch. But in several repetitions it is a random 
process which of the two branches will be chosen. The explanation is that when 
one branch has got a slightly higher pheromone concentration due to random 
fluctuations this branch will be preferred by the ants so that the difference in 
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Figure 14. L Double bridge experiment. 

pheromone concentration will increase and after some time all ants take this 
branch. 

Inspired by this experiment, Dorigo and colleagues designed an algorithm 
for solving the traveUng salesperson problem (TSP) (see Dorigo, 1992; Dorigo 
et al., 1991), and initiated the field of ACO. In recent years this field of re
search has become quite rich and ACO algorithms have now been designed for 
various application problems and different types of combinatorial optimiza
tion problems including dynamic and multi-objective optimization problems 
(see Cordon et al, 2002; Maniezzo et al, 2001; Stutzle and Dorigo, 2002b for 
other overviews). Some papers treat the theory of ACO and modeling of ACO 
algorithms (Gutjahr, 2000, 2002; Merkle and Middendorf, 2002a; Stutzle and 
Dorigo, 2002a). An ACO metaheuristic has been formulated as a generic frame 
that contains most of the different ACO algorithms that have been proposed so 
far (see Dorigo and Di Caro, 1999). 

The idea of ACO is to let artificial ants construct solutions for a given 
combinatorial optimization problem. A prerequisite for designing an ACO 
algorithm is to have a constructive method which can be used by an ant to 
create different solutions through a sequence of decisions. Typically an ant 
constructs a solution by a sequence of probabilistic decisions where every 
decision extends a partial solution by adding a new solution component until 
a complete solution is derived. The sequence of decisions for constructing 
a solution can be viewed as a path through a corresponding decision graph 
(also called construction graph). Hence, an artificial ant that constructs a 
solution can be viewed as walking through the decision graph. The aim is to 
let the artificial ants find paths through the decision graph that correspond to 
good solutions. This is done in an iterative process where the good solutions 
found by the ants of an iteration should guide the ants of following iterations. 
Therefore, ants that have found good solutions are allowed to mark the edges 
of the corresponding path in the decision graph with artificial pheromone. 
This pheromone guides following ants of the next iteration so that they search 
near the paths to good solutions. In order that pheromone from older iterations 
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does not influence the following iterations for too long, during an update of 
the pheromone values some percentage of the pheromone evaporates. Thus, 
an ACO algorithm is an iterative process where pheromone information is 
transferred from one iteration to the next one. The process continues until 
some stopping criterion is met: e.g., a certain number of iterations has been 
done or a solution of a given quality has been found. A scheme of an ACO 
algorithm is given in the following. 

ACO scheme: 
Initialize pheromone values 
repeat 

for ant A: e ( 1 , . . . ,m} 
construct a solution 

endfor 
forall pheromone values do 

decrease the value by a certain percentage {evaporation} 
endfor 
forall pheromone values corresponding to good solutions 
do 

increase the value (intensification) 
endfor 

until stopping criterion is met 

In what follows we illustrate how the general ACO scheme can be applied to 
a broad class of optimization problems by means of three examples. In the first 
example a more detailed ACO scheme is described and applied to the TSP. An 
alternative approach is contained in the second example. The third example is 
an application of ACO to a scheduling problem which is used in comparison to 
the first example to discuss some additional aspects that have to be considered 
for designing ACO algorithms. 

14.2.1 Example 1: Basic ACO and the TSP 
The objective of ACO is to find good solutions for a given combinatorial 

optimization problem (Dorigo, 1992; Dorigo and Di Caro, 1999; Dorigo et al, 
1991). For an easier description we restrict the following description to the 
broad class of optimization problems which have solutions that can be ex
pressed as permutations of a set of given items. Such problems are called per
mutation problems, the TSP being a well known example. After definition of 
the TSP we describe the elements of the ACO scheme that constitute an ACO 
algorithm: namely, pheromone information, solution construction, pheromone 
update: evaporation + intensification, and stochastic. 
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The TSP Problem This problem is to find for a given set of n cities with 
distances dij between each pair of cities i, j € [1 : «] a shortest closed tour 
that contains every city exactly once. Every such tour together with a start 
city can be characterized by the permutation of all cities as they are visited 
along the tour. Vice versa, each permutation of all cities corresponds to a valid 
solution, i.e. a closed tour. 

Pheromone Information An important part in the design of an ACO 
algorithm is to find a definition of the pheromone information so that it 
reflects the most relevant information for the solution construction. The 
pheromone information for permutation problems can usually be encoded in 
an /I X « pheromone matrix [r^ ], /, 7 € [1 : n\. For the TSP problem the 
pheromone value Xij expresses the desirability to assign city j after city / in 
the permutation. The pheromone matrix for the TSP problem is initiahzed so 
that all values Xij with / 7̂  j are the same. Note that the values r,/ are not 
needed because each city is selected only once. 

TSP-ACO. 
Initialize pheromone values 
repeat 

for ant /: e ( 1 , . . . , w}{solution construction} 
5 := { 1 , . . . , n} {set of selectable cities} 
choose city / with probability po/ 
repeat 

choose city j e S with probability pij 
S:=S-{j] 
i •= j 

until S = 0 
endfor 
forall /, j do 

Tjj := (1 — yo) • Tij {evaporation} 
endfor 
forall /, j in iteration best solution do 

Tij := Tij + A {intensification} 
endfor 

until stopping criterion is met 

Solution Construction An iterative solution construction method that can 
be used by the ants is to start with a random item and then always choose the 
next item from the set S of selectable items that have not been selected so far 
until no item is left. Initially, the set of selectable items S contains all items; 
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after each decision, the selected item is removed from S. Recall that in the 
case of the TSP the items are the cities. Every decision is made randomly 
where the probability equals the amount of pheromone relative to the sum of 
all pheromone values of items in the selection set S: 

For most optimization problems additional problem-dependent heuristic in
formation can be used to give the ants additional hints about which item to 
choose next. To each pheromone value Xij there is defined a corresponding 
heuristic value r]ij. For the TSP a suitable heuristic is to prefer a next city j 
that is near to the current city /, for example by setting r}ij := l/dij. The 
probabiHty distribution when using a heuristic is 

Z^zeS ^iz ' 'hz 

where parameters a and yi3 are used to determine the relative influence of 
pheromone values and heuristic values. 

In order to better exploit the pheromone information it has been proposed 
that the ant follows with some probability q^ € (0, 1) the strongest trail, i.e. the 
edge in the decision graph with the maximal product of pheromone value and 
corresponding heuristic information (Dorigo and Gambardella, 1997). For this 
case QQ is a parameter of the algorithm and with probability q^ an ant chooses 
next city j from the selectable cities in S which maximizes r," • T?̂  . With prob
ability 1 — qo the next item is chosen according to the probability distribution 
determined by (14.1). 

Pheromone Update All m solutions that are constructed by the ants in one 
iteration are evaluated according to the respective objective function and the 
best solution TT* of the current iteration is determined. Then the pheromone 
matrix is updated in two steps: 

1 Evaporation: All pheromone values are reduced by a fixed proportion 
P e (0,1): 

Tij := (1 - p) -Xij ViJ e[l :n] 

2 Intensification: All pheromone values corresponding to the best solution 
TT* are increased by an absolute amount A > 0: 

r,-7r*o) — T^inHi) + A Vi e[l :n] 
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Table 14. L ACO variables and parameters. 

Xij Pheromone value 
r]ij Heuristic value 
m Number of ants per iteration 
m Number of ants per iteration allowed to increase pheromone 
a Influence of pheromone 
j6 Influence of heuristic 
p Evaporation rate 
A Amount of pheromone added during pheromone intensification 

qQ Probability to follow the strongest trail 
n"^ Best solution in the actual iteration 
7X^ Best solution found so far (elitist solution) 

Stopping Criterion The ACO algorithm executes a number of iterations 
until a specified stopping criterion has been met. Most commonly used stop
ping criteria are (possibly used in combination) that a predefined maximum 
number of iterations has been executed, a specific level of solution quality has 
been reached, or the best solution has not changed over a certain number of 
iterations. 

A good comparison of the optimization behavior of different ACO imple
mentations for the TSP problem can be found in Stiitzle and Hoos (2000). 
The parameters and variables of ACO algorithms introduced in this section are 
summarized in Table 14.1. 

14.2.2 Example 2: Population-Based ACO and TSP 
In standard ACO algorithms the information that is transferred from one 

iteration to the next is the pheromone information—in the case of permutation 
problems this is the pheromone matrix. An alternative approach that was 
proposed recently is population-based ACO (P-ACO) (see Guntsch and 
Middendorf, 2002b). One idea of P-ACO is to transfer less and only the 
most important information from one iteration to the next. This is done in 
the form of a small population of good solutions. In this section we describe 
the differences between P-ACO and standard ACO for permutation problems. 
It was shown that both approaches show a similar performance on the TSP 
(Guntsch and Middendorf, 2002b). A scheme of a P-ACO algorithm for the 
TSP is given in the following (compare with the scheme of ACO-TSP). 

P'ACO'TSP: 

Initialize pheromone values 
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repeat 
for ant A: € ( 1 , . . . , m}{solution construction} 

S := {I,... ,n} {set of selectable cities} 
choose city / with probability poi 
for i = \ tondo 

choose city j with probability pij 
S:=S-{j} 
i : = ;• 

endfor 
endfor 

If IPI = k remove the oldest solution jr from 
the population: P := P — n 

Determine the best solution of the iteration and add it 
to the population: P := P -\-7T* 

Compute the new pheromone matrix from P 
until stopping criterion is met 

Information Transfer and Population Matrix Instead of a complete 
pheromone matrix as in ACO, P-ACO transfers a small population P of the 
k best solutions that have been found in past iterations. Since each solution 
for a permutation problem is a permutation of n items, the population can be 
stored inann x k matrix P = [pij], where each column of P contains one so
lution. This matrix is called the population matrix. It contains the best solution 
of each of the preceding k iterations. When employing an eUtism strategy, the 
best solution found so far in all iterations is—as in standard ACO—also always 
transferred to the next iteration. In that case the population matrix contains an 
additional column for the elitist solution. 

Population Matrix Update When the ants in an iteration have constructed 
their solutions the population (matrix) is updated. The best solution of the 
current iteration is added to P. If, afterwards, P contains k + 1 solutions, 
the oldest solution is removed from P. The initial population is empty and 
after the first k iterations the population size remains k. Hence, for an update 
only one column in the population matrix has to be changed. Additionally, 
if elitist update is used and the best solution of the iteration is better than the 
elitist solution, the corresponding column is overwritten by the new solution. 
Note that each solution in the population has an influence on the decisions 
of the ants over exactly k subsequent iterations. Other schemes for deciding 
which solutions should enter/leave the population are discussed in Guntsch and 
Middendorf (2002a). 
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Construction of Pheromone Matrix In P-ACO a pheromone matrix (r,y) is 
used by the ants for solution construction in the same way as in standard ACO. 
But differently, in P-ACO the pheromone matrix is derived in every iteration 
anew from the population matrix as follows. Each pheromone value is set to 
an initial value tinit > 0 and is increased, if there are corresponding solutions 
in the population: 

Tij := Tinit + ^ij • A (14.2) 

with ^ij denoting the number of solutions TT e P with 7r(i) = j , i.e. ,̂y = 
\{h : pih = j}\. Hence, in P-ACO a pheromone value is equal to one of the 
following possible values tinit, înit + A , . . . , Tinit + ^ • A (when using an elitist 
solution Tinit + (^ + 1) • A is also possible). An update of the pheromone values 
is done implicitly by a population update: 

• A solution 7T entering the population, corresponds to a positive update: 

T^iTtiO '•= •^/7r(0 + A 

• A solution a leaving the population, corresponds to a negative update: 

îCT(0 : = T^iad) — A 

Note that a difference to the standard ACO algorithm is that no evaporation 
is used to reduce the pheromone values at the end of an iteration. 

14.2.3 Example 3: ACO for a Scheduling Problem 
In this section the ACO approach is applied to a scheduling permutation 

problem which is called the Single Machine Total Weighted Tardiness Problem 
(SMTWTP). The differences between the ACO algorithm for the SMTWTP 
and the TSP-ACO illuminate two important aspects for the design of ACO 
algorithms, namely the pheromone encoding and the pheromone evaluation. 
Moreover, the proper adaptation of heuristics to be used for ACO is discussed. 
These aspects can be arranged as follows into the list of elements that constitute 
an ACO algorithm: 

A Pheromone information 

- Pheromone encoding 

B Solution construction 

- Pheromone evaluation 

- Adaptation of heuristics 
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The SMTWTP Problem For the SMTWTP n jobs are given that have to be 
scheduled onto a single machine. Every job j E [1 : n] has a due date dj, a 
processing time pj, and a weight Wj. If Cj denotes the completion time of job 
j in a schedule, then Lj = Cj —dj defines its lateness and Tj = max(0, Lj) its 
tardiness. The objective is to find a schedule that minimizes the total weighted 
tardiness of all jobs J2%\ ^j^j-

Pheromone Encoding When designing an AGO algorithm for an optimiza
tion problem it is important to encode the pheromone information in a way 
that is suitable for the problem. For the TSP it is relevant which cities are 
next to each other in the permutation because the distance between the cities 
determines the quahty of the solution. Therefore pheromone values Zij are 
used to express the desirability that city j comes after /. For the SMTWTP 
the relative position of a job in the schedule is much more important than its 
direct predecessor or its direct successor in the schedule (see also (Blum and 
Sampels, 2002a) for other scheduling problems). Therefore pheromone values 
for the SMTWTP are used differently than for the TSP. Pheromone value Zij 
expresses the desirability to assign item j at place / of the permutation. This 
pheromone matrix is of type place x item whereas the pheromone matrix used 
for the TSP is of type item x item. For SMTWTP an ant starts to decide which 
job is the first in the schedule and then always decides which job is on the next 
place. The pheromone matrix for the SMTWTP problem is initialized so that 
all values Xtj, /, j e [I : n] are the same. 

Pheromone Evaluation Another important aspect of ACO algorithms is 
how the pheromone information is used by the ants for their decisions. Real 
ants use trail pheromone only locally because they cannot smell it over long 
distances. The artificial ants in TSP-ACO also use the pheromone values lo
cally which means that an ant at city i considers only the pheromone values 
Tij that lead to a possible next city j e S. In principle a local evaluation of 
the pheromone values is also possible for the SMTWTP (and has been used 
so, see Bauer et al., 1999). An ant that has to decide which job is on the next 
place i in the permutation considers all values Zij, j e S which indicate how 
good the selectable jobs have performed on this place. But assume that for 
some selectable job j e S its highest pheromone value is r/y for an / < /. 
This indicates that for job j place / in the schedule is very good. But this also 
means that job j should not be placed much later than place / in order not to 
risk a due date violation. Therefore, even when the value Xij is small the ant 
should choose job / with high probability. Therefore, for SMTWTP a global 
pheromone evaluation rule has been proposed which is called summation eval
uation because an ant that has to decide about place / of the permutation makes 
the selection probability for every selectable job dependent on the sum of all 
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pheromone values for this job up to place / (Merkle and Middendorf, 2003b): 

•4 
p.j = - ^ - ^ 'i— Vj 6 S (14.3) 

E...(EU t/.)« • f̂. 
So far the potential of global evaluation has not been fully recognized be

cause nearly all ACO algorithms use only local evaluation: see Bautista and 
Pereira (2002), Merkle et al. (2002), Merkle and Middendorf (2002b, 2003a) 
for other applications or other global evaluation methods. 

To demonstrate the influence of the pheromone evaluation method and 
the change of pheromone values in ACO we show results of a very simple 
SMTWTP test instance (for more results see Merkle and Middendorf (2003a); 
another investigation of ACO on simple problems is Stiitzle and Dorigo 
(2001)). It consists of 50 jobs where job /, / e [1 : 50] has processing 
time Pi = 1, due date 4 = h and weight u;̂  = 1. Clearly, to place job i, 
i = 1 , . . . , n on place i is the only optimal solution with costs 0. Figure 14.2 
shows the average change of pheromone values for ACO-SMTWTP with lo
cal and with global evaluation (no heuristic was used) for several runs with 
w = 10 ants per iteration. The figure shows clearly that for this problem sum
mation evaluation performs much better than local evaluation. Compared to 
local evaluation the results of summation evaluation depicted in Figure 14.2 
show a very symmetric behavior and do not have the undesired property that 
some of the jobs with small number are scheduled very late. 

Adaptation of Heuristics For many (scheduling) problems there exist pri
ority heuristics which can be used to decide which job is next when building a 
schedule. An example for the unweighted form of the SMTWTP is the modi
fied due date (MDD) rule, i.e. 

where T is the total processing time of all jobs already scheduled. Observe 
that the heuristic prefers jobs with a small due date from all jobs that would 
finish before their due date when scheduled next. Furthermore, of all those jobs 
that will finish after their due date the jobs with short processing times are pre
ferred. Some care has to be taken when using standard priority heuristics for 
scheduling problems in an ACO algorithm because the heuristic values might 
not properly reflect the relative influence they should have on the decisions of 
the ants. In the case of the MDD heuristic the problem occurs that the values of 
max{T + Pj, dj) become much larger—due to T—when deciding about jobs 
to place further at the end of the schedule. As a consequence, the heuristic dif
ferences between the jobs are, in general, small at the end of the schedule. This 
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Local evaluation 

Global evaluation (Summation evaluation) 

Figure 14.2. Comparison between SMTWTP-ACO with local evaluation and summation eval
uation: Pheromone matrices averaged over 25 runs in iterations 800, 1500, 2200, and 2900: 
brighter gray colors indicate higher pheromone values. 

means that the ants cannot really differentiate between the various alternatives. 
To avoid this effect an accordingly adapted heuristics should be used (Merkle 
and Middendorf, 2003b): for example, 

riij = 
1 

max{T + pj ,dj} — T 
(14.5) 

To illustrate the effect of an adapted heuristic together with global 
pheromone evaluation, some test results for benchmark problems with n = 100 
jobs from the OR-Library, 2004 are given. The ACO parameters used are 
m = 20 ants per generation a = 1,15 = 1, p = OA, qo = 0.9, and local 
optimization was applied to solutions found by the ants (see Merkle and Mid-
dendorf, 2003b for more details). Table 14.2 compares the behavior of the 
algorithm using non-adapted heuristic (14.4) and local pheromone evaluation 
with the algorithms that use one or both of adapted heuristic (14.5) and global 
pheromone evaluation. The results clearly show that using an adapted heuris
tic (14.5) or the global pheromone evaluation improves the results significantly 
and using both is best. 
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Table 14.2. Influence of global pheromone evaluation and adapted heuristic on solution quality 
for SMTWTP. Difference of total tardiness to total tardiness of best results from the literature 
average over 125 instances (for details see Merkle and Middendorf, 2003b). S with summation 
evaluation; H with adapted heuristic. 

ACO-SH ACO-E ACO-H AGO 

79.5 200.0 204.5 1198.6 

14.2.4 Advanced Features of AGO 
In this section several variations and extension of the ACO algorithms are 

described that often lead to an increased search efficiency and better optimiza
tion results. 

Variants of Pheromone Update Several variations of pheromone update 
have been proposed in the Hterature: 

• Quality-dependent pheromone update. In some ACO algorithms not 
only the best solution, but the m < m best solutions of each iteration 
are allowed to increase the pheromone values. In addition the amount 
of pheromone that is added can be made dependent on the quality of the 
solution so that the more pheromone is added the better the solution is 
Dorigo et al. (1996). For the TSP this means that for shorter tours more 
pheromone is added. 

• Rank-based pheromone update. Here the m < m best ants of an iteration 
are allowed to increase the pheromone. The amount of pheromone an ant 
is allowed to add depends on its rank within the m best solutions and the 
quahty of the solution (Bullnheimer et al., 1998). 

• Elitist solution pheromone update. It can be advantageous to enforce 
the influence of the best solution n^ that has been found so far over all 
iterations, called the elitist solution (Dorigo et al., 1996). This is done 
by adding pheromone during pheromone intensification also according 
to this solution. Several variations have been studied: e.g. to let ran
domly update either the iteration best or the ehtist solution with increas
ing probability for an elitist update (Stiitzle and Hoos, 2000) or to apply 
elitist pheromone update but to forget the elitist solution after several 
iterations by replacing it with the iteration best solution (Merkle et al., 
2002). 

• Best-worst pheromone update. This pheromone update method in ad
dition to the standard pheromone update reduces the pheromone values 
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according to the worst solution of an iteration provided that a pheromone 
value does not also correspond to the elitist solution (Cordon et al., 
2000). A problem of this method is that often a decision which can 
lead to bad solutions can also lead to a very good solution. In that case 
there is a danger that the corresponding pheromone value decreases too 
fast so that the very good solution is not found by the ants. 

• Online step-by-step pheromone update (Dorigo and Gambardella, 1997; 
Dorigo et al, 1991). This means that an ants adds or removes 
pheromone from an edge in the decision graph it has chosen immediately 
after the decision was done (see Dorigo and Di Caro (1999) for more de
tails). One motivation to use onhne step-by-step pheromone update in 
addition to the standard update is to remove pheromone to increase the 
variability in the choices of the ants during an iteration. 

• Moving average pheromone update. A pheromone update scheme 
where each constructed solution is allowed to update the pheromone 
(Maniezzo, 1999). When the actual solution is better than the average 
quality of the last ^ > 0 solutions then it increases its corresponding 
pheromone values and otherwise it decreases them. 

• Minimum pheromone values. The use of minimum pheromone values 
was proposed in order to guarantee that each possible choice always has 
a minimum probability to be chosen (Stiitzle and Hoos, 2000). 

Other AGO Variants Several variants of ACO algorithms which do not re
gard the pheromone update have also been proposed (see Dorigo and Di Caro 
(1999) for an overview): 

• Candidate lists. A candidate list defines for each decision a set of prefer
able choices (Dorigo and Gambardella, 1997). For the TSP a candidate 
list can be defined for each city to determine the set of preferred succes
sor cities. An ant then chooses, if possible, the next city only from cities 
that are in the selection set S and also in the candidate list. Only if no 
city in the candidate list is selectable is one of the other cities from the 
selection set S chosen. 

• Lower bounds. The use of lower bounds on the cost of completing a 
partial solution was proposed in Maniezzo (1999). The lower bounds 
give additional heuristic information about the possible choices. 

• Lookahead. A lookahead strategy was proposed in Michels and Mid-
dendorf (1999) where for each possible choice of an ant the maximum 
r," • ri-j value that would result from this choice is evaluated and taken 
into account when actually making a decision. 
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• Stagnation recovery. For longer runs of an ACO algorithm there is the 
danger that after some time the search concentrates too much on a small 
search region. Several authors have proposed methods for modification 
of the pheromone information to counteract such stagnation behavior of 
ACO algorithms. When stagnation is detected the approach of Gam-
bardella et al. (1999) is to reset all elements of the pheromone matrix 
to their initial values. In Stutzle and Hoos (1997a) it was suggested to 
increase the pheromone values proportionately to their difference to the 
maximum pheromone value. A temporary reduction of a. to negative 
values was proposed in Randall and Tonkes (2002). 

• Changing a, fi values. In Merkle et al. (2002) it was proposed to reduce 
the value of fi during a run to increase the influence of the pheromone at 
later stages of the algorithm. See "Stagnation recovery" for changing a 
values. 

• Repelling pheromone. Some experiments with pheromone that let the 
ants avoid choosing an edge have been conducted in Kawamura et 
al. (2000) and Montgomery and Randall (2002) in order to enforce ants 
(or different colonies of ants) to search in different regions of the search 
space. A similar idea has also been applied for an ant-based network 
routing algorithm (Amin et al., to appear; Schoonderwoerd et al., 1996). 

• Moving direction. The use of ants that "move in different directions" can 
improve the optimization behavior (Michels and Middendorf, 1999). For 
an example for a permutation problem this could mean that some ants 
decide first which item is on place one of the permutation and other ants 
decide first which item is on the last place. One aspect is that the ants 
should make important decisions early (Merkle and Middendorf, 2001a). 
For some permutation problems where an unwanted bias in the decision 
of the ants can occur it can be advantageous to let the ants decide ran
domly about the sequence in which the places of the permutation are 
fixed (for details see Merkle and Middendorf, 2001a). 

• Local improvement of solutions. The use of local optimization strategies 
to improve the solutions that have been found by the ants has been 
apphed quite successfully for many ACO algorithms (e.g., Dorigo and 
Gambardella, 1997; Stutzle et al, 2000; Stutzle and Dorigo, 1999). 
Most state-of-the-art ACO algorithms use local improvement strategies. 
Two variants of the use of local improvement strategies exist: (i) to 
determine how much pheromone is updated for a solution, the quality 
or rank of the solution is computed after the local improvement has 
been applied but the actual pheromone update is done according to 
the original solution before the local improvement; (ii) as (i), but 
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the pheromone update is done according to the solution after local 
improvement. 

14.2.5 Some Promising Areas for Future Application of 
AGO 

An important area of research for ACO that is often underestimated in its 
practical importance is to gain a deeper understanding how the use of differ
ent pheromone models influences the optimization behavior. Other promising 
fields, hke multi-objective optimization, dynamic and probabilistic optimiza
tion, hybrid techniques algorithms, and theoretical aspects, cannot be covered 
in this introductory tutorial. 

Pheromones and Optimization Behavior of ACO A few works which con
sider this aspect have already been mentioned. Some recent papers have fo
cused on the investigation of pheromone models. In Dorigo et al. (2002b) 
pheromone update rules for ACO are systematically derived based on the 
stochastic gradient ascent algorithm and cross-entropy method. A determinis
tic model for ACO is proposed in Merkle and Middendorf (2002a) and used to 
explain the dynamic change of pheromone values based on fixed-point analy
sis. In Blum and Sampels (2002b) and Merkle and Middendorf (2001a, 2001b) 
it is investigated how the pheromone model can introduce a strong bias to some 
regions of the search space. 

14.3 PARTICLE SWARM OPTIMIZATION 

The roots of the metaheuristic that is described in this section lie in com
puting models that have been created by scientists in the last two decades to 
simulate bird flocking and fish schooling. The coordinated search for food 
which lets a swarm of birds land at a certain place where food can be found 
was modeled with simple rules for information sharing between the individu
als of the swarm. These studies inspired Kennedy and Eberhart to develop a 
method for function optimization that they called particle swarm optimization 
(PSO) (Kennedy and Eberhart, 1995). A PSO algorithm maintains a popu
lation of particles (the swarm), where each particle represents a location in a 
multidimensional search space (also called problem space). The particles start 
at random locations and search for the minimum (or maximum) of a given ob
jective function by moving through the search space. The analogy to reahty (in 
the case of search for a maximum) is that the function measures the quality or 
amount of the food at each place and the particle swarm searches for the place 
with the best or most food. The movements of a particle depend only on its 
velocity and the locations where good solutions have already been found by 
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the particle itself or other (neighboring) particles in the swarm. This is again 
in analogy to bird flocking where each individual makes its decisions based 
on cognitive aspects (modeled by the influence of good solutions found by the 
particle itself) and social aspects (modeled by the influence of good solutions 
found by other particles). Note that, unlike many deterministic methods for 
continuous function optimization, PSO uses no gradient information. 

In a typical PSO algorithm each particle keeps track of the coordinates in 
the search space which are associated with the best solution it has found so far. 
The corresponding value of the objective function (fitness value) is also stored. 
Another "best" value that is tracked by each particle is the best value obtained 
so far by any particle in its topological neighborhood. When a particle takes 
the whole population as its neighbors, the best value is a global best. At each 
iteration of the PSO algorithm the velocity of each particle is changed towards 
the personal and global best (or neighborhood best) locations. But also some 
random component is incorporated into the velocity update. A scheme for a 
PSO algorithm is given below. 

PSO scheme: 
Initialize location and velocity of each particle 
repeat 

for each particle 
evaluate objective function / at the particles location 

endfor 
for each particle 

update the personal best position 
endfor 
update the global best position 
for each particle 

update the velocity 
compute the new location of the particle 

endfor 
until stopping criterion is met 

An active field of research on PSO has developed, with the main use of PSO 
being for continuous function optimization. An increasing number of works 
have begun to investigate the use of PSO algorithms as function optimizers 
embedded into more complex apphcation contexts. Examples are the use of 
PSO for neural network training (van den Bergh and Engelbrecht, 2000; Con-
radie et al., 2002), gene clustering (Xiao et al., 2003), power systems (Yoshida 
et al., 2000), and multimodal biometric systems (Veeramachaneni and Osad-
ciw, 2003). Some works apply PSO also to discrete problems, such as subset 
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problems (Kennedy and Eberhart, 1997; Ko and Lin, 2004) and permutation 
problems (see Hu et al., 2003). 

In the following we describe in more detail how the PSO scheme can be 
applied to optimization problems. The first example considers the typical use 
of PSO for continuous function optimization. A subset problem is addressed 
in the second example to illustrate how PSO can be applied to other types of 
optimization problems. 

14.3.1 Example 1: Basic PSO and Continuous Function 
Optimization 

In order to describe the PSO algorithm for function optimization we need 
some notation. Let / be a given objective function over a D-dimensional 
problem space. The location of a particle i e { 1 , . . . , m} is represented by 
a vector Xi = (xn,... ,Xio) and the velocity of the particle by the vector 
vi = (vfi,..., Vio)' Let Id and Ud be lower and upper bounds for the particles 
coordinates in the dth dimension, d e [1 : D], The best previous position of a 
particle is recorded as pi = (pn,... pu^) and is called/7J5^5f. The index of the 
particle with the so far best found position in the swarm is denoted by g and 
Pg is called gBest. 

At each iteration of a PSO algorithm after the evaluation of function / the 
personal best position of each particle i is updated, i.e. if f(Xi) < f(pi) then 
set Pi = Xi. If fipi) < fiPg) then i becomes the new global best solution, 
i.e. set g = i. Then the new velocity of each particle i is determined during 
the update of velocity in every dimension (i € [1 : D] as follows: 

Vid = w • Vid + ci • ri . (pid ~ Xid) + C2 • r2 • (pgd - ^id) (14.6) 

where 

• parameter w is called the inertia weight, it determines the influence of 
the old velocity; the higher the value of w the more the individuals tend 
to search in new areas; typical values for W are near LO; 

• c\ and C2 are the acceleration coefficients, which are also called the cog
nitive and the social parameter respectively, because they are used to 
determine the influence of the local best position and the global best 
position respectively; typical values are ci = C2 = 2; 

• r\ and 2̂ are random values uniformly drawn from [0, 1]. 

After velocity update the new position of the particle / is then determined 
by 

^id = ^id + '^id 



SWARM INTELLIGENCE 419 

Sphere / I W = E £ : 1 ^ ? 

Rastrigin fiix) = T,f= i (xf - 10cos(Inxi) + 10) 

Rosenbrock Mx) = j:^S{\lOO(xi+i - xf)^ + (xi - 1)2) 

Schaffer'sf6 f ^ = 0.5 - ^J^^^^,^^,^^, 

Griewank fs(x) = ^ ^fL^ xj - n £ , cos(^) + 1 

Table 14.3. Test functions. 

If there is a maximum range for the location in dimension d, i.e. Xg e [Id, Ud\, 
then the particle is reflected. 

The behavior of PSO algorithms is usually studied and compared on a set 
of standard test functions. Examples of the most prominent test functions are 
given in Table 14.3. These functions represent different types of functions, e.g. 
the variables in Sphere and Rastrigin are uncorrelated which is not the case for 
the other functions in the table. Most of these functions are typically used for 
dimensions D of 10-100. 

As an example we consider a test run of the standard PSO with a swarm 
of size m = 10 on the two-dimensional Sphere function (the PSO parameters 
used are w = 0.729, c\ = c2 = 1.494). It can be seen from Figure 14.3 
(left) that the swarm proceeds from initial random positions at iteration t = 0 
towards the single minimum value of the Sphere function. The velocity vectors 
of the particles at iteration t = 10 are shown in Figure 14.3 (right). 

14.3.2 Example 2: Discrete Binary PSO for Subset 
Problems 

Subset problems are a broad class of optimization problems where the aim 
is to find a good subset of a given set of items. For many practical problems 
additional restrictions will be given so that not all subsets of the given set are 
valid. Unlike many permutation problems like the TSP, subset problems allow 
solutions of different sizes. As an example subset problem, we consider a 
problem from the financial sector where the earnings of a company have to be 
forecast. The forecast is based on financial ratios that are generated from the 
company's results and other economic indicators from the last quarters. We 
assume that a forecast method is given that computes for each financial ratio 
a forecast and the final forecast is the average of the forecasts for all given 
values. Since many different financial ratios are in use, for example the book 
value per share or the total growth rate of a company, the problem is to select 
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Figure 143. Swarm on the two-dimensional Sphere function; particles positions at iterations 
t e {0, 10, 30} (left); particles positions and velocity vectors at iteration r = 10 (right). 

a not too large subset of these so that the forecast method gives good forecasts 
when applied to the selected financial ratios. 

To solve a subset problem with PSO an individual of the swarm can be en
coded by a £)-dimensional vector where D = |M| equals the size of the given 
set M (in the example M is the set of all considered financial ratios). Each di
mension represents one binary bit that determines whether the corresponding 
item respectively the corresponding financial ratio is selected to be member of 
the subset. The crucial part in the design of the PSO algorithm is to connect 
the continuous movement of the particles to the discrete solution space. 

In the so-called discrete binary PSO algorithm this is done as follows 
(Kennedy and Eberhart, 1997). As for the continuous PSO, the position of 
a particle corresponds to a solution and the velocity has an influence on the 
new position. But how the position is computed is different. Since the solu
tion space is discrete and a particle should not stay at the same place a random 
component is used in the computation of the new position. The idea is to let a 
high velocity in one dimension give a high probability that the corresponding 
bit of the position vector is one. 

Formally, the velocity of a particle is determined exactly as in (14.6). In 
order to determine the probabihties for the computation of the position vector 
a function is used that maps a velocity value onto the interval [0, 1]. A function 
often used is 

^^giVici) = 
1 

1 -fexp(-i;/^) 
(14.7) 
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To determine then the /th bit of the position vector of particle d a random 
number rid is drawn from the interval [0, 1] and the /th bit is set to one if 
Vid < ^\g{Vid) and otherwise it is set to zero. 

The results of a comparative study between the discrete binary PSO and a 
genetic algorithm for the financial ratio selection problem are presented in Ko 
and Lin (2004). It was shown for a problem of dimension D = 64 that PSO is 
faster and gives better results than the genetic algorithm. Another application 
of discrete binary PSO to data mining can be found in Souza et al. (2003). The 
problem was to select a good subset of a given set of classification rules so that 
certain data can be classified accordingly. 

14.3.3 Advanced Features of PSO 

Several variations of the velocity update in PSO and extensions of the stan
dard PSO for a better control of the behavior of the swarm have been proposed 
in the literature. Some of them are reviewed in this section. 

• Adaptive PSO. In Clerc (2002) a version of PSO has been proposed 
where most values of the algorithms parameters are adapted automat
ically at run time. One example is the swarm size that varied during 
execution. A particle is removed when it is the worst (with respect to 
the best solution found so far) of a neighborhood of particles and the 
best particle in its neighborhood has improved significantly since its cre
ation. Other rules have been implemented for creating new particles. 
Experimental results reported in Parsopoulos and Vrahatis (2002) have 
shown that an approach to use a second PSO during run time for deter
mining the best parameter values for the first PSO were not successful. 
A certain evolutionary algorithm (Differential Evolution algorithm) per
formed better for this purpose. 

• Neighborhood best velocity update. Several PSO algorithms establish a 
neighborhood relation between particles. In that case instead of using 
the global best position gBest for velocity update for each particle the 
best position of the particles in its neighborhood is used. This position is 
called neighborhood best and is denoted by IBest. A PSO variant where 
all particles in the neighborhood of a particle have an influence on its 
velocity is proposed in Kennedy and Mendes (2003). The following 
formula describes such an all-neighborhood-velocity-update of particle 
/ with neighborhood Nt in dimension d e[\ \ D] (note that a particle is 
included in its own neighborhood): 

Vid = yO'Vid+ y . ' , (14.8) 
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• Maximum velocity. A parameter i;niax is introduced for some PSO algo
rithms to restrict the size of the elements Vjj of the velocity vector so 
that Vij € [—î max. m̂axJ- Hencc, when the velocity of a particle becomes 
larger than Umax during velocity update it is set to Umax- A typical range 
for values of Umax is [0.1 • Xmax, 1-0 * -̂ max]- Obscrvc that such values for 
îmax do not restrict the possible locations of a particle to [—Xmax, -̂ maxl-

• Queen particle. The addition of a queen particle, which is always lo
cated at the swarm's actual gravity center was proposed in Clerc (1999). 
Since the gravity center of the swarm might often be near a possible op
timum it is reasonable to evaluate the objective function at this location. 
Experimental results have shown that it depends on the type of function 
whether the introduction of a queen particle is advantageous. 

• Convergence enforcement. Several authors have considered the problem 
of how to improve the rate of convergence of PSO. 

- A constriction coefficient K was introduced in Clerc and Kennedy 
(2002) to reduce undesirable explosive feedback effects where the 
average distance between the particles grows during an execu
tion. With the constriction coefficient as computed in Kennedy and 
Eberhart (1999) and Kennedy et al. (2001) the formula for velocity 
update becomes 

Vid = K • {Vid + ci • ri • {pid - Xid) + C2 • r2 • {pgd - ^id)) (14.9) 

Note that the constriction factor is just another way of choosing 
parameters u),c\, and ci. It can be shown that the swarm converges 
when parameter K is determined as (see Kennedy and Eberhart, 
1999) 

K = , (14.10) 
| 2 - c - V c 2 - 4 c | 

with c = C] -\- C2, c > 4. 

- Parameter w can be decreased over time during execution to dimin
ish the diversity of the swarm and to more quickly reach a state of 
equilibrium. A linear decrease of w from a maximum value ifmax 
to a minimum value Wmin is used by several authors (e.g. Kennedy 
et al., 2001). Typical values are Wmax = 0.9 and iCmin = 0.4. 

- In Vesterstr0m et al. (2002) the concept of division of labor and 
speciahzation was applied to PSO. Speciahzation to a task in this 
approach means for a particle to search near the global best posi
tion. A particle that has not found a better solution for a longer 
time span is replaced to the global best solution in order to start 



SWARM INTELLIGENCE 423 

searching around the global best solution gBest. To prevent too 
many particles searching around gBest it was suggested to use a 
maximum number of particles that can switch to gBest or to make 
it more difficult to switch to gBest for those particles that are far 
away from gBest. Note that a similar approach to let particles that 
have not found good solutions jump to the place of good particles 
is realized in the hybrid techniques PSO, described below, 

• Controlling diversity. To prevent the swarm from too early convergence 
to a small area so that the particles become too similar some methods 
have been proposed to keep the diversity of the swarm high enough. 
A common measure for the diversity of the swarm S in PSO is the 
"distance-to-average-point" 

J \s\ 
diversity (5) := TTT • X I J2(Pij-Pj) (14.11) 

7 = 1 

where p is the average vector of all vectors pi. In order to make the 
diversity measure independent of the range of the search space some 
authors use the measure diversity(5')/|L| where |L| is the length of the 
longest diagonal in the search space. Some methods to keep the diversity 
of the swarm high enough are described in the following. 

- Xie et al, (2002) proposed adding an additional random element 
to the movement of the particles. In the new algorithm called 
dissipative PSO (DPSO) immediately after velocity update and 
determination of the new position of the particles the following 
computations are performed to introduce additional "chaos" to the 
system: 

if rand0 < Cy then 
Vi^ = randO • v^axj {chaos for velocity} 

if rand0 < ci then 
Xid = rand{ld, Ud) (chaos for location} 

where Cy,ci e [0,1] are parameters which control the probability 
to add chaos, rand (a, b) is random number that is uniformly dis
tributed in (a, b) {randQ is a shortcut for rand(0, 1)) and / j , u^ 
are lower and upper bounds for the location in dimension d. Ob
serve, that if randO < c/ the ^th dimension of the new position is 
a random location within the search area. 
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- The idea of using particles that have a spatial extension in the 
search space was introduced in Krink et al. (2002) to hinder par
ticles from coming too close to each other and forming too dense 
clusters. In this variation of PSO, particles that come too close 
to each other bounce away. A problem is to choose the direc
tion in which the bouncing particles move away. Three strate
gies for defining the bouncing direction have been studied: (i) ran
dom bouncing, where the particles move in a random direction, 
(ii) physical bouncing, in which the particles bounce like physical 
objects, and (iii) velocity line-bouncing, in which the particles do 
not change their direction but move with increased speed. PreHmi-
nary experimental results show that bouncing can be advantageous 
for complex objective functions. For objective functions with a 
single optimum clustering is not a problem and bouncing is not ad
vantageous. A similar approach to hinder the swarm to collapse 
uses an analogy to electrostatic energy. In this approach so-called 
charged particles experience a repulsive force when they come too 
close to each other (Blackwell and Bentley, 2002). Swarms with 
different ratios of charged particles have been studied. 

- A strategy to expHcitly control the diversity is to have two differ
ent phases of the PSO algorithm that can increase (repulsion phase) 
or reduce (attraction phase) the diversity of the swarm (Riget and 
Vesterstr0m, 2002). Two threshold values have been introduced 
that are used two determine when an exchange between the two 
phases should take place. When the diversity becomes lower than 
the threshold diow the algorithm switches to the repulsion phase and 
when the diversity becomes larger than threshold dhigh > diow the 
algorithm changes to the attraction phase. The only thing that hap
pens when the phase of the algorithm changes is that every velocity 
vector is changed so that it points in the opposite direction. The au
thors have shown by experiments that nearly all improvements of 
the global best solutions were found during the attraction phases. 
Therefore, they propose to do no function evaluations during the 
repulsion phase to reduce the run time of the algorithm. 

• Stagnation recovery. For multi-modal functions there is the danger of 
premature convergence of standard PSO which results in suboptimal so
lutions. Stagnation recovery means to detect such a situation and then to 
react accordingly. 

- Re-initiaHzation of the swarm is proposed in Clerc (1999) when the 
diameter of the area that is actively searched by the swarm has be-
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come too small. The new swarm is initialized around the previous 
best position. 

14.3.4 Some Promising Areas for Future Application of 
PSO 

Complex multimodal functions that possess multiple, possibly similarly 
good, local optimal solutions occur in many applications. Often in such ap
plications it is not enough to know just a single of these local optimal solutions 
but several or all of them are needed. Two areas of future PSO research that 
are relevant for optimizing complex multimodal functions are: (i) to find good 
neighborhood relations between the particles that might lead to an increased 
optimization efficiency and (ii) to investigate how several swarms can work 
co-operatively. We briefly review some works in both areas. Other interesting 
application and research areas, such as multi-objective and dynamic optimiza
tion, hybrid techniques algorithms, and theoretical aspects of PSO, cannot be 
covered by this introductory tutorial. 

Neighborhood Relations One possible advantage of neighborhood relations 
between the particles is an increased efficiency of PSO because the particles 
have to react only with respect to their neighbors. Another advantage is that the 
introduction of neighborhood relations can support the specialization of sub
sets of particles to different parts of the search space. A neighborhood scheme 
is explored in Suganthan (1999) that is defined by a particle's actual position so 
that a certain number of the closest other particles are considered to be neigh
bors. A different approach is to define the neighborhood independently from 
the particles' positions. In Kennedy and Mendes (2003) several such fixed 
neighborhoods are examined. For example, the particles are mapped onto a 
grid that defines the neighborhood. A hierarchical PSO where the particles of 
the swarm are arranged in a dynamic hierarchy that depends on the quality of 
the actual positions of the particles and defines the neighborhood structure was 
proposed in Janson and Middendorf (2003). 

Co-operative Swarms Co-operative swarms have been introduced to divide 
the work between several swarms. One motivation is that it can be very diffi
cult for a single swarm to solve problems with large dimension D. An example 
is the co-operative swarm optimizer (CPSO) or split swarm that uses a set of 
swarms and splits the work equally between them in the following way (van 
den Bergh and Engelbrecht, 2000). The vector to be optimized is spht across 
the swarms so that each swarm optimizes a different part of the vector, i.e. the 
swarms optimize with respect to different dimensions of the search space. Co
operation between the swarms is established in that for every evaluation of a 
new position of some particle its partial vector is combined with one partial 
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vector from each of the others swarms so that the quahty of the resulting po
sition is best. Experiments with CPSO for function minimization and neural 
network learning have shown that it is good for problems where the depen
dences between the component vectors are not too strong. Another motivation 
to use co-operative swarms is for solving multi-objective problems where sev
eral functions have to be optimized so that the swarms optimize with respect 
to different functions. A problem is then to find good methods for exchanging 
information about the best positions between the swarms (see e.g. Parsopoulos 
et al., 2004). 

A PSO method that intends to form subswarms of particles searching for 
the same local minimum is proposed in Kennedy (2000). A standard A:-means 
cluster method was used to divide the swarm into several clusters of individu
als. For velocity update then each particle / uses the center of its cluster instead 
of its personal best position pi^, see (14.6). Test results have shown that this 
velocity update modification can be advantageous, especially for multimodal 
functions like the Rastrigin function (see Table 14.3). 

Niching techniques can also be used to promote the formation of subswarms 
around different local optima. Niching is a concept that is inspired by the well 
known observation from ecology that coexisting species can survive because 
they occupy different niches, which roughly means that they have different 
tasks. Various niching techniques have been developed for genetic algorithms 
but meanwhile some authors have used niching also for PSO. A niching tech
nique for PSO that aims to find all good local minima was proposed in Par
sopoulos and Vrahatis (2001). It uses a function "stretching" method that 
changes the objective function during execution as follows. Assume that a 
position X has been found where the objective function / to be minimized has 
a small value. Then / is transformed with the aim to remove local minima 
that are larger than f{x) and a subswarm is created that searches for a local 
minimum near x on the transformed function. In addition, a second transfor
mation is apphed to / which increases the function values in the neighborhood 
oix. This function is then used by the main swarm which will be repelled from 
the area around x and searches for a different local minimum. Another nich
ing approach for PSO was proposed in Brits et al. (2002). The niching PSO 
starts with particles that move according to the so-called cognition-only model 
where velocity update is done only according to the personal best position of 
an individual, i.e. C2 = 0 in (14.6). The particles then basically perform lo
cal search. When the quahty of a particle has not changed significantly for 
several iterations it is assumed that is has reached the region of a local min
imum. To search for this minimum a subswarm is formed. At creation time 
the subswarm consists only of two particles, the founding particle and its clos
est neighbor in the search space. Each subswarm is assigned a search region 
(initially all positions that are not further away from the founding particle as 
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its closest neighbor). Several rules are used to define how other particles can 
enter a subswarm or how subswarms with intersecting regions are merged. 

14.4 TRICKS OF THE TRADE 

For newcomers to the field of Swarm IntelHgence it is an advantage that 
ACO and PSO algorithms are relatively easy to implement so that one can de
velop practical experience without too much effort. Often even the standard 
form of ACO and PSO algorithms that do not use many problem-specific fea
tures work reasonably well for different types of optimization problems. This 
is especially true for certain types of problems: for example, scheduling prob
lems in the case of ACO, and continuous indexcontinuous!function function 
indexcontinuousloptimization optimization in the case of PSO. Clearly, such 
early success should not lead to the illusion that Swarm Intelligence is a field 
where good algorithms can be obtained more or less for free because principles 
are used that have been inspired by successful strategies which occur in nature. 
The following hints may help the newcomer arrive at a deeper understanding 
of Swarm IntelHgence. 

• Read papers which apply Swarm Intelligence methods to problems that 
are similar to the problem you want to solve. No less important is to also 
study other good papers to learn about specific aspects of Swarm Intel
Hgence methods or where carefully designed state of the art algorithms 
are described. 

• Preferably do not start with too complicated an algorithm that you do 
not understand. Critically evaluate every step of your algorithm. 

• Investigate how your algorithm behaves on different types of problem 
instances and try to verify your explanations. Test your algorithm on 
benchmark instances if available to make comparisons with the works 
of other researchers easier. Ideally, use random instances and real-world 
instances for the tests. Random instances have the advantage that their 
properties can be characterized by their generation method. A disadvan
tage is that they are often too artificial to reflect important characteristics 
of real-world problem. In addition, carefully designed artificial problem 
instances can sometimes help to study special aspects of the behavior of 
algorithms. 

• Investigate how robust your algorithm is with respect to changes of the 
parameters (e.g. the or, yS, and p parameters for ACO and the w.ci, and 
C2 parameters for PSO). 
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• Consider the optimization behavior of your algorithm at different num
bers of iterations. Then you can discover, for example, whether the al
gorithm converges too early. 

For ACO, the following hints should be considered: 

• It is important to use pheromone information so that the ants are guided 
to good solutions. Two connected aspects are important here: (i) the 
pheromone should be used to encode properties of a solution that are 
most relevant in the sense that they can be used to characterize the good 
solutions, and (ii) the pheromone information should be interpreted by 
the ants in the best possible way. 

• Find a solution construction process so that the ants can use a good (de
terministic) heuristic. Such heuristics can be found in the literature for 
many problems. 

For PSO, the following hint should be considered: 

• For function optimization it is important to understand the characteris
tics of the search landscape (see Chapter 19) of the application func
tions. When there is basically a single valley in the search space a single 
swarm where convergence is enforced might work. But for search land
scapes with many valleys a more sophisticated approach might be neces
sary where the diversity of the swarm is controlled, stagnation recovery 
mechanisms are introduced, or several co-operative swarm are used. 

14.5 CONCLUSIONS 
The field of Swarm IntelHgence with the vision to learn from the behavior 

of natural swarms for the development of new methods in optimization has 
produced with ACO and PSO two successful metaheuristics that have found an 
increasing number of applications in the last few years. The basic principles 
of swarm intelligence methods and a selection of example apphcations have 
been explained in this tutorial. A number of new application areas is emerging 
in which Swarm Intelligence will play its part. One promising concept are 
hybrid techniques methods where swarm intelligence algorithms work in line 
with other metaheuristics. Might this tutorial also be a starting point for the 
reader to further explore the field of Swarm Intelligence. 

SOURCES OF ADDITIONAL INFORMATION 
• Good introductory books that cover various aspects of Swarm Intelli

gence are 
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- E. Bonabeau, M. Dorigo and G. Theraulaz, Swarm Intelligence: 
From Natural to Artificial Systems, 1999, Oxford University Press, 
New York. 

- Kennedy, J., R. C. Eberhart and Y. Shi, Swarm Intelligence, 2001, 
Morgan Kaufmann, San Mateo, CA. 

Recent overview papers are Cordon et al. (2002), Maniezzo et at. (2001) 
and Stiitzle and Dorigo (2002b) on AGO and van den Bergh (2002) on 
PSO. 

• The following book will become the ultimate reference book for AGO: 
M. Dorigo and T. Stiitzle, Ant Colony Optimization, 2004, MIT Press, 
Boston, MA. 

• A valid source of information for optimization techniques in general that 
contains four chapters on AGO and one chapter on PSO is New Ideas in 
Optimisation, D. Gome, M. Dorigo, and F. Glover (eds), 1999, McGraw-
Hill, New York. 

• Special issues of journals that are devoted to Swarm Intelligence are 

- Special section on Ant Algorithms and Swarm Intelligence in IEEE 
Transactions on Evolutionary Computation 6(4), M. Dorigo, L. 
Gambardella, M. Middendorf and T. Stiitzle, guest editors, 2002. 

- Special issue on Ant Golony Optimization, Mathware & Soft Com
puting 9, O. Gordon, F. Herrera and T. Stiitzle, guest editors, 2002. 

- Special issue on Ant Algorithms, Future Generation Computer 
Systems Journal 16(8), M. Dorigo, G. Di Garo, and T. Stiitzle, 
guest editors, 2000. 

• A valuable source of recent research papers are the proceedings of the 
following workshop series that focus on Swarm Intelligence: Interna
tional Workshop on Ant Golony Optimization and Swarm Intelligence 
(ANTS); IEEE Swarm Intelligence Symposium (the latest proceedings 
are Dorigo et al. (2002a) and Eberhart et al. (2003), respectively). 
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15.1 INTRODUCTION 
The derivation of mathematical models that can efficiently describe real-

worid problems is most of the time an overwhelming or even impossible task 
due to the complexity and the inherent ambiguity of characteristics that these 
problems may possess. As Zadeh (1973), the founder of the theory of fuzzy 
sets, puts it, 

. . . as the complexity of a system increases, our ability to make precise and yet 
significant statements about its behavior diminishes until a threshold is reached 
beyond which precision and significance (or relevance) become almost mutually 
exclusive characteristics. 

Fuzzy Reasoning is based on the theory of fuzzy sets and it encompasses 
Artificial IntelHgence, information processing and theories from logic to pure 
and applied mathematics, like graph theory, topology and optimization. The 
theory of fuzzy sets v̂ as introduced in 1965. In his introductory paper, Zadeh, 
v^hile stating his intention (''to explore in a preliminary way some of the basic 
properties and implications" of fuzzy sets) he noted that 

. . . the notion of a fuzzy set provides a convenient point of departure for the con
struction of a conceptual framework which parallels in many respects the frame
work used in the case of ordinary sets, but is more general than the latter and, 
potentially, may prove to have a much wider scope of applicability, particularly 
in the fields of pattern classification and information processing. 
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Table 15,1. A chronology of critical points in the development of fuzzy reasoning. 

First paper on fuzzy systems Zadeh, 1965 
Linguistic approach Zadeh, 1973 
Fuzzy logic controller Assilian and Mamdani, 1974 
Heat exchanger control based on fuzzy logic Ostergaard, 1977 
First industrial application of fuzzy logic: 

cement kiln control Homblad and Ostergaard, 1982 
Self-organizing fuzzy controller Procyk and Mamdani, 1979; 
Fuzzy pattern recognition Bezdek, 1981 
Fuzzy controllers on Tokyo subway shuttles Hitachi, 1984 
Fuzzy chip Togai and Watanabe, 1986 
Takagi-Sugeno fuzzy modeling Takagi and Sugeno, 1985 
Hybrid neural-fuzzy systems Kosko, 1992 

Indeed, in subsequent years, the theory of fuzzy sets was more decisively 
estabhshed as a new approach to complex systems theory and decision pro
cesses. The appHcation of fuzzy logic has dramatically increased since 1990, 
ranging from production, finance, marketing and other decision-making prob
lems to micro-controller-based systems in home apphances and large-scale 
process control systems (Sugeno and Yasukawa, 1993; Karr and Gentry, 1993; 
Lee, 1990). For systems involving nonlinearities and lack of a rehable ana
lytical model, fuzzy logic control has emerged as one of the most promising 
approaches. Without doubt, fuzzy inference is a step towards the simulation of 
human thinking. 

The main advantage of fuzzy logic techniques, i.e. techniques based on the 
theory of fuzzy sets, over more conventional approaches in solving complex, 
nonlinear and/or ill-defined problems lies in their capability of incorporating 
a priori qualitative knowledge and expertise about system behavior and dy
namics. This renders fuzzy logic systems almost indispensable for obtain
ing a more transparent and tactile qualitative insight for systems whose rep
resentation with exact mathematical models is poor and inadequate. Besides, 
fuzzy schemes can be used either as enabling to other approaches or as self-
reliant methodologies providing thereby a plethora of altemative structures and 
schemes. 

In fact, fuzzy control theory generates nonUnear functions according to a 
representation theorem by Wang (1992), who stated that any continuous non
linear function can be approximated as exactly as needed with a finite set of 
fuzzy variables, values and rules. Therefore, by applying appropriate design 
procedures, it is always possible to design a fuzzy controller that is suitable for 
the nonlinear system under control. Table 15.1 depicts some benchmarks in 
the history of fuzzy logic, particularly in the domain of fuzzy control. 
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This chapter is intended to present an overview of the basic notions of the 
theory of fuzzy sets and fuzzy logic. The chapter is organized as follows: in 
the next section, an introduction to the theory of fuzzy sets is presented, cover
ing topics of the most commonly used types of membership functions, logical 
and transformation operators, fuzzy relations, implication and inference rules, 
and fuzzy similarity measures. Section 15.3 introduces the basic structure of a 
fuzzy inference system and its elements are described. Section 15.4 presents 
the topic of fuzzy control system and an example is demonstrated. In par
ticular a fuzzy controller is proposed for the control of a plug flow tubular 
reactor, which is a typical nonlinear distributed parameter system. The pro
posed fuzzy controller is compared with a conventional proportional-integral 
(PI) controller. In the same section an introduction to the field of fuzzy adap
tive control systems is given and the self-organizing scheme is presented. In 
Section 15.5 reviews are given on the topics of model identification and sta
bility of fuzzy systems, respectively. Conclusions and perspectives of fuzzy 
reasoning are given in Section 15.6. 

15.2 BASIC DEFINITIONS OF FUZZY SET THEORY 
15.2.1 Fuzzy Sets and the Notion of Membership 

A classical set A is defined as a collection of elements or objects. Any 
element or object x either belongs or does not belong to A. The membership 
/ZA(A:) of X in A is a mapping: 

IJiA-.X^ { 0 , 1) 

that is, it may take the value 1 or 0, which represent the truth value of x in A. 
It follows that, if is the complement set of A and Pi represents intersection of 
sets, then 

Ar\A = & 

Fuzzy logic is a logic based on fuzzy sets, i.e. sets of elements or objects char
acterized by truth-values in the [0,1] interval rather than crisp 0 and 1, as in the 
conventional set theory. The function that assigns a number in [0,1] to each 
element of the universe of discourse of a fuzzy set is called the membership 
function. 

15.2.2 IVIembership Functions 
Let X denote the universe of discourse of a fuzzy set A. A is completely 

characterized by its membership function JJLA '• 

(lA-.X-^ [0, 1] 
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P a p y 

Figure 15. J. (a) Triangular, (b) trapezoid membership function. 

and is defined as a set of pairs: 

A = {(x,tiA(x))} 

The most commonly used membership functions are the following (Dubois and 
Prade, 1980; Zimmermann, 1996): 

• triangular membership function 

• trapezoid membership function 

• linear membership function 

• sigmoidal membership function 

• ri-type membership function 

• Gaussian membership function. 

The triangular membership function, see Figure 15.1(a), is defined as 

X < a 

a <x < fi 
Tn{x;a,^,y) = I 

0 
X — a 

X — y 
fi < X < Y 

y-fi 
0 X >y 

The trapezoid membership function (Figure 15.1(b)) is defined as 

X < a 

Tra(A:; a, yS, y, 8) = 

0 
X — a 

a < X < 6 
fi-a 
1 ^ <x < y 

X — 8 
y < X < 8 

8 — y 
0 ;c > .5 
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Figure 15.2, (a) Monotonically increasing linear, (b) monotonically decreasing linear member
ship function. 

The monotonically increasing linear membership function (Figure 15.2(a)) 
is given by 

L ( ^ ; Q f , ^ ) = { 

0 X < a 
X — a 

a <x < ^ 

1 X > ^ 

The monotonically decreasing linear membership function (Figure 15.2(b)) is 
given by 

L(x; Of, ^ ) = 

f 1 X < a 
X — a 

a <x < fi 
0 X > ^ 

The monotonically increasing sigmoidal membership function (Fî  
ure 15.3(a)) is given by 

S(x; a, p, y) 

0 
X — a 

y — a 

1 - 2 X — a 

y — a 

X < a 

a <x < ^ 

^ <x <y 

X > y 



442 PAP PIS AND SIETTOS 

Figure 15J. (a) Monotonically increasing sigmoidal, (b) monotonically decreasing sigmoidal 
membership function. 

The monotonically decreasing sigmoidal membership function (Fig
ure 15.3(b)) reads as 

Six;a, ^,y) = 

1 

1 - 2 X — a 

y — a 
\ 2 

X — a 

0 
y — a 

X < a 

a <x < fi 

^ <x <y 

X > y 

The n-membership function (Figure 15.4(a)) is defined as 

s(x\y - / 3 , - — — , } / ) X <y 

1-S\x;y,—-—,K + p x>y 

The Gaussian membership function (Figure 15.4(b)) is given by 

2a2 G(x; k, a) = exp ( — 

where a is the standard deviation. 

Examples on Fuzzy Sets Maintaining a "comfortable" room temperature is 
of great importance for the work productivity. Fuzzy logic climate control is 
one of the many successive commercial applications of the theory. For exam
ple, the room temperature for low-level activities could be described by the 
following five fuzzy sets, where a temperature around 18° C is a comfortable 
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Figure 15.4. (a) n, (b) Gaussian membership functions. 

one, around 26° C a warm one (though not during summer!), while above 40° C 
is definitely too warm, and around 12° C can be characterized as cold and be
low that too cold. 

too cold cold comfortable warm too warm 

"Fast" cars can be described by the horsepower (HP) using the following 
membership function: 

^l{x) = 

0 
X- 120 

25 

0 < ;c < 75 

15<x < 120 

120 < jc < 150 
;c > 150 

Notice that in the above characterization, for a horsepower above 150 HP "fast" 
cars have a zero membership. A nonzero membership could have been as
signed in another fuzzy set (e.g. the fuzzy set of "very fast" cars). 

15.2.3 Fuzzy Set Operations 
Knowledge and understanding of the operations of the theory of fuzzy sets is 

important for the design of fuzzy systems. The fuzzy set operations are defined 
with respect to the sets' membership functions. 
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Two fuzzy sets A and B on the universe of discourse X are equal if their 
membership functions are equal for each x € X: 

Vx e X : At^(x) = IXB(X) 

A fuzzy set A is a subset of B (A c B) if 

>/x e X : fjiA(x) S I^B{X) 

For the operation of intersection fl of two fuzzy sets A and B, there is a 
plethora of definitions in the bibliography. The choice is application depen
dent: 

"ix eX : fZADB = { 

mmifiA(x),liB(x)) 1 

2 
i^A{x)ii^B{y) 

The union U of two fuzzy sets A and B is also defined in several ways: 

Vx e X : /XAufi = \ 

max(/x^(x),/Xfi(};)) 
2min JIIAJX), ixgiy)) + 4max (/x^Cx), ixsiy)) 

6 
/x^(x) + /XfiCy) - fiAix)fj.Biy) 

The complement A' of a fuzzy set A is defined as 

Vx € X : IIA' (x) = I — (JiA {x) 

Examples on Fuzzy Set Operations Let us consider the fuzzy sets A and 
B\ 

A = (0/1+0.2/2 + 0.8/3 + 1/4 + 1/5) 

B = {0.1/1 + 0.4/2 + 0.5/3 + 0.7/4 + 0.3/5) 
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Table 15.2. Examples of transformation operators. 

Very ^x^{x) = (/X^(A:))" n > 1 

More/less l^^(x) = (iJiA(x))" 0 < n < I 
More than (It) 
= \ — I^A (x) for X < XQ Mit(A) (x) = 0 for jc > XQ, XQ : ix^ (XQ) — max /x^ {x) 
More/less (mt) 
= 1 — II/^{x) ioxX > XQ l^mt(A)M = Oforx < XQ,XQ : fXy\{xQ) = maxfXA(x) 

Then 

AnB = (0/1 + 0.2/2 + 0.5/3 + 0.7/4 + 0.3/5) 

using the min operator 

= {0/1 + 0.08/2 + 0.4/3 + 0.7/4 + 0.3/5) 

using the product operator 

AUB = {0.1/1 + 0.4/2 + 0.8/3 + 1/4 + 1/5) 

using the max operator 

A' (complement of A) = {1/1+ 0.8/2 + 0.2/3 + 0/4 + 0/5} 

B' = {0.9/1 + 0.6/2 + 0.5/3 + 0.3/4 + 0.7/5) 

(A n BY = A' U 5 ' = {1/1 + 0.8/2 + 0.5/3 + 0.3/4 + 0.7/5) 

using the max operator 

15.2.4 Transformation Operators 
The transformation operator (or hedge or modifier) acts on a membership 

function to modify the concept of the linguistic term that describes the fuzzy 
set. For example, in the clause "number very close to 10", the transformation 
operator very acts on the linguistic term "close to 10" which corresponds to 
a fuzzy set. Examples of such operators are given in Table 15.2 (Ross, 1995; 
Zimmermann, 1996; Pappis and Mamdani, 1977). 

Example on Transformation Operators Let us consider the fuzzy set 
"young" on the discrete set U = {0, 20, 40, 60, 80}: 

young = {(0, 1), (20, 0.75), (40,0.52), (60,0.23), (80, 0)} 

Then we can derive the fuzzy set F' = "very young" by using the relevant 
transformation operator. Choosing v = 1.5 we obtain 

F' = {(0, 1), (20, 0.6495), (40, 0.0.375), (60, 0.1103), (80, 0)} 



446 PAPPIS AND SIETTOS 

15.2.5 Cartesian Inner Product of Fuzzy Sets 

If A\, A2,..., Ay are fuzzy sets defined in Ui, U2,..., U^, their Cartesian 
inner product is a fuzzy set F = Ai x A2 x • • • x A^ in t/i x {72 x • • • x ^v 
with membership function /x/r(wi, U2,..., Uy) = f^i=i,vl^Ai(^i)-> ^-g-

/IpiUu M2, . . . , Wv) = min{/XAl(Mi), yU,A2(W2), . . . , /XAVCWV)) 

or 
MF(W1, U2,..., UV) = I^AxiUi), flA2iU2), • • • , /X^VCMV) 

Example The objective in chmate control is to find the optimum conditions 
in terms of both temperature T and humidity H. Suppose that the discrete 
sets of temperature and humidity are given by T — {Ti, 72, Ts, 74} and H — 
{H], H2, H2} respectively, and that of the desired temperature by the discrete 
fuzzy set 

0.12 0.65 1 0.25 
A = ] \ 1 

r, 72 h T4 
while that for the desired level of humidity by 

0.5 0.9 0.1 
B = — + — + — 

Hi H2 H2 
Then the Cartesian product A x B reads as 

0.12 0.12 0.1 0.5 0.65 0.1 
AxB = —-— + —-—- + —-— + - - - - + —-— + T\, H\ Ti, H2 T\, H^ T2, H\ T2, H2 72,7/3 

0.5 0.9 0.1 0.25 0.25 0.1 

73, Hi 73, H2 73, 7/3 T4, Hi T4, H2 T4, 7/3 

Then the optimum conditions are those for 7 = 73 and H = H2. 

15.2.6 Fuzzy Relations 

Let Ui and U2 be two universes of discourse and the membership function 
fiR : Ui X U2 -> [0,\]. Then a fuzzy relation R on Ui x U2 is defined as 
(Zimmermann, 1996) 

/ 
R = I iij^ if lJ\, U2 are continuous 

UxB 

or 

E \U\, U2) 
IIR if Ui, U2 are discrete 
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Example Consider the coordinates of three atoms, denoted by /, y, ̂  in a cu
bic crystal with a lattice constant of 3 A and their corresponding x, y, z coor
dinates U = {(0, 0, 0), (0.5, 0.5, 0.5), (1.2, 1.2, 1.2)} (in A). Then the fuzzy 
relation "near neighbors" can be described by the following fuzzy relation: 

1.0 1 1 0.9 0.1 0.9 0.6 0.1 0.6 
1.1 J, J k,k I, J i,k J, I j,k k,i k,j 

(note that for the particular problem we should have excluded the pairs (i, i), 
(j, j) and (k, k), but we have kept them for the completeness of the example). 

15.2.7 Fuzzy Set Composition 
Let R\ and 7?2 be two fuzzy relations on U\ x U2 and U2 x t/3 respectively, 

then the composition C of R\ and R2 is a fuzzy relation defined as follows: 

C = R\- R2 = {{U\,U2,)^{^lR^{Ul,U2)^^lR^{u\,U2))} 

U\ ^ U\,U2 ^ U2, W3 € t/3 

Example Consider the following fuzzy relations (in matrix form): 

R = 
0.2 0.6 
0.9 0.4 

and S = 
1 0.4 0.3 
0.8 0.5 0.1 

Then using a min operator for n and a max operator for U their composition 
gives 

T = RS = 
0.2 0.6 
0.9 0.4 

1 0.4 0.3 
0.8 0.5 0.1 

0.6 0.5 0.2 
0.9 0.4 0.3 

15.2.8 Fuzzy Implication 
Let A and B be two fuzzy sets in Ui, U2 respectively. The imphcation 

I : A ^ B e U\ X U2 is defined as (Ross, 1994; Zimmermann, 1996): 

I = AXB= / /Xyi(Wl)n/^B(M2)/(Wl,W2) 

UixUj 

The rule "/f the error is negative big then control output is positive big" is an 
implication: error x implies control action y. 

Let there be two discrete fuzzy sets A = {(ui, iXAiui)), i = 1,... ,«} de
fined on U and B = {(vj, ̂ 5(1;;)), j = 1 , . . . , m} defined on V. Then the 
implication A -> B is a fuzzy relation R: 

R = { ( ( « / , Vj),(XR(Ui,Vj)),i = l , . . . , n , j = l,...,m] 
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defined onU x V, whose membership function iiRiui, Vj) is given by 

MA(WI) ~| 

IXAiUn) J 

/X^(MI) A / X B ( I ; I ) IIA{U\) /\ l^BiVl) • • • I^A(UI) A flsiVm) 

IXA{U2) AIXB{V\) flAiUl) ^ fJ^BiVl) ••• /^/l ("z) A/^fiCu^n) 

IXAiUn) A fJ^BiVl) l^AiUn) A ^.BiVl) ••• M/1 ("«) A/Afi(u^) 

15.2.9 Inference Rules 
Let 7? be a fuzzy relation on U\ x Ui and A be a fuzzy set in U\. The 

composition A • /? = 5 is a fuzzy set in U2, which represents the conclusion 
made from the fuzzy set A (fact) based on the implication R (rule). Let there 
be a multiple-input-single-output (MISO) rule base with Â  rules. The j'th rule 
is given by 

If Ai\ and A12 and . . . and A,v, then Bt 

where n is the number of input variables x ,̂ A,y is the fuzzy set of input variable 
Xj in the /th rule, and 5, is the fuzzy set of output variable yy in the /th rule. 
The /th rule is the implication 

/,• = Ai -^ Bi, Ai = An n A,-2 n . . . n Ain = nl^^Aij 

Then the impUcation Ijot of Â  rules is given by 

ltot = Ri^R2^...^RN = ̂ ti^i = ̂ ti^i -> Bi 

15.2.10 The Inverse Problem 
The inverse problem is defined as follows: given two fuzzy relations S and 

T find R such that R • S = T. In application terms, the problem may be 
defined as follows: let S be the input-output relation describing a system and 
T a desired output of the system. Find input R, which produces T. 

Sanchez (1976) showed an existence condition of the solutions associated 
with their least upper bound and presented a method for obtaining it analyt
ically. Pappis (1976) and Pappis and Sugeno (1985) presented a method to 
obtain the whole set of solutions. 

15.2.11 Fuzzy Similarity Measures 
The fuzzy similarity measures introduce the notion of approximate equality 

(or similarity) between fuzzy sets. The most commonly used fuzzy similar-
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ity measures are the following (Pappis, 1991; Pappis and Karacapilidis, 1993, 
1995; Wang, 1997; Wang et al, 1995; Cross and Sudkamp, 2002): 

L-fuzzy Similarity Measure The L{A, B) similarity measure of two fuzzy 
sets A, B IS defined as 

L(A, B) = \ - max \A{x) - B{x)\ 
xeX 

M-fuzzy Similarity Measure The M{A, B) similarity measure of two fuzzy 
sets A, B € X is defined as 

M(A,B) 

1 if A = 5 = 0 
J2 min {A (x), B (x)) 

^ in every other case 
Y^ max (A (x), B (x)) ^ 

I xeX 

Two fuzzy sets are £:-"almost" equal (A ~ B) if and only if M(A, B) < 
s , where s € [0, 1]. 

S'-fuzzy Similarity Measure The S(A, B) similarity measure of two fuzzy 
sets A, B € X is defined as 

SiA, B) = \ 

1 if A = B = & 
E \A{x) - B{x)\ 

1 — ^ in every other case 
X€X 

W-fuzzy Similarity Measure The W(A, B) similarity measure of two fuzzy 
sets A, B € X is defined as 

W(A,5) = l - ^ | A ( x ) - B ( x ) | 
xeX 

P-fuzzy Similarity Measure The P{A, B) similarity measure of two fuzzy 
sets A, B e X is defined as 

Y.A{x)B ix) 

P(A,B)= ""^^ 
max ( X] A (x) Aix), Y, B (x) B (x)) 

\x€X xeX / 

15.3 BASIC STRUCTURE OF A FUZZY INFERENCE 
SYSTEM 

The basic structure of a fuzzy inference system consists of a fuzzification 
unit, a fuzzy logic reasoning unit (process logic), a knowledge base, and a 



450 PAP PIS AND SIETTOS 

FUZZY KNOWLEDGE DATABASE 

RULE BASE DATABASE 

>| Fuzzification 
Unit 

Inference •I Defuzzification 
Unit 

Figure 15.5. Basic structure of a fuzzy inference system. 

defuzzification unit (Figure 15.5). The key element of the system is the fuzzy 
logic-reasoning unit that contains two main types of information: 

1 A data base defining the number, labels and types of the membership 
functions the fuzzy sets used as values for each system variable. These 
are of two types: the input and the output variables. For each one of 
them the designer has to define the corresponding fuzzy sets. The proper 
selection of these is one of the most critical steps in the design process 
and can dramatically affect the performance of the system. The fuzzy 
sets of each variable form the universe of discourse of the variable. 

2 A rule base, which essentially maps fuzzy values of the inputs to fuzzy 
values of the outputs. This actually reflects the decision-making policy. 
The control strategy is stored in the rule base, which in fact is a collection 
of fuzzy control rules and typically involves weighting and combining 
a number of fuzzy sets resulting from the fuzzy inference process in a 
calculation, which gives a single crisp value for each output. The fuzzy 
rules incorporated in the rule base express the control relationships usu
ally in an IF-THEN format. For instance, for a two-input-one-output 
fuzzy logic controller, that is the case in this work, a control rule has the 
general form 

Rule i: IF x is At and y is Bf THEN z is Q 

where x and y are input variables, z is the output variable; A/, Bf and C/ 
are Hnguistic terms (fuzzy sets) such as ''negative", "positive" or "zero". 
The if-part of the rule is called condition or premise or antecedent, and 
the then-part is called the consequence or action. 

Usually the actual values acquired from or sent to the system of concern are 
crisp, and therefore fuzzification and defuzzification operations are needed to 
map them to and from the fuzzy values used internally by the fuzzy inference 
system. 
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The fuzzy reasoning unit performs various fuzzy logic operations to infer 
the output (decision) from the given fuzzy inputs. During fuzzy inference, the 
following operations are involved for each fuzzy rule: 

1 Determination of the degree of match between the fuzzy input data and 
the defined fuzzy sets for each system input variable. 

2 Calculation of the fire strength (degree of relevance or applicability) for 
each rule based on the degree of match and the connectives (e.g. AND, 
OR) used with input variables in the antecedent part of the rule. 

3 Derivation of the control outputs based on the calculated fire 
strength and the defined fuzzy sets for each output variable in the conse
quent part of each rule. 

Several techniques have been proposed for the inference of the fuzzy output 
based on the rule base. The most common used are the following: 

• the Max-Min fuzzy inference method 

• the Max-product fuzzy inference method. 

Assume that there are two input variables, e (error) and ce (change of error), 
one output variable, cu (change of output), and two rules: 

Rule 1 Ife is A] AND ce is Bi THEN cu is C\ 

Rule 2 If e IS A2 AND ce is B2 THEN cu is C2 

In the Max-Min inference method, the fuzzy operator AND (intersection) 
means that the minimum value of the antecedents is taken: 

IIA AND iiB — min{/ZA, I^B) 

while for the Max-product one the product of the antecedents is taken: 

H,A AND IX B = IJ^Al^B 

for any two membership values 11 A and IXB oi the fuzzy subsets A, B, re
spectively. All the contributions of the rules are aggregated using the union 
operator, thus generating the output fuzzy space C. 

15.3.1 Defuzzification Unit 
Defuzzification typically involves weighting and combining a number of 

fuzzy sets resulting from the fuzzy inference process in a calculation, which 
gives a single crisp value for each output. 

The most commonly used defuzzification methods are those of mean of 
maximum, centroid, and center of sum of areas (Lee, 1990; Ross, 1995; Dri-
ankov et al., 1993). 
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Mean of Maximum Defuzzification Technique The technique of the mean 
value of maximum is given by the following equation (Yan et al., 1994): 

n 

X = 

at Hi 

where x is the control (output) value to be applied, n is the number of rules in 
a MISO system, Hi is the maximum value of the membership function of the 
output fuzzy set, which corresponds to rule I/, Xi is the corresponding control 
(output) value, and of/ is the degree that the rule / is fired. 

Centroid Defuzzification Technique This is the most prevalent and intu
itively appealing among the defuzzification methods (Lee, 1990; Ross, 1995). 
This method takes the center of gravity of the final fuzzy space in order to 
produce a result (the value u of the control variable) sensitive to all rules; it is 
described by the following equation (Ross, 1995): 

n 

U = 

where M, is the value of the membership function of the output fuzzy set of 
rule /, Ai is the corresponding area and oti is the degree that the rule / is fired. 
Note that the overlapping areas are merged (Figure 15.6(a)). 

In the case of a continuous space (universe of discourse), the output value is 
given by (Ross, 1994; Taprantzis et al., 1997) 

u = —^ 

Center of Sums Defuzzification Technique A similar technique to the cen
troid technique, but computationally more efficient, in terms of speed, is that of 
the center of sums. The difference is that the overlapping (between the output 
fuzzy sets) areas are not merged (Figure 15.6(b)). The discrete value of the 
output is given by (Lee, 1990; Driankov et al., 1993) 

/ n 

E «(• • E i^k («/) 
1=1 k=\ 

U = ; 

J2Il^^k (Hi) 
i=\ k=\ 
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|ii(U) 

(a) (b) 

Figure 15.6. Defuzziflcation techniques: (a) centroid, (b) center of sums. 

15.3.2 Design of the Rule Base 

Two are the main approaches in the design of rule bases (Yan et al., 1994): 

• the heuristic approach, 

• the systematic approach. 

Heuristic approaches (Yan et al, 1994; King and Mamdani, 1977; Pappis 
and Mamdani, 1977) provide a convenient way to build fuzzy control rules 
in order to achieve the desired output response, requiring only qualitative 
knowledge for the behavior of the system under study. For a two-input {e and 
ce) one-output {cu) system these rules are of the form 

IF ^ is P (positive) AND ce is N (negative) THEN cu is P (positive) 
IF e is N (negative) AND ce is P (positive) THEN cu is N (negative). 

The reasoning for the construction of the fuzzy control rules can be summa
rized as follows: 

• If the system output has the desired value and the change of the error 
{ce) is zero then keep the control action constant. 

• If the system output diverges from the desired value then the control 
action changes with respect to the sign and the magnitude of the error 
e and the change of error ce. Table 15.3 compresses the design of a 
rule base for the hnguistic term sets NB (negative big), NM (negative 
medium), NS (negative small), ZE (zero), PS (positive small), PM (pos
itive medium) and PB (positive big) of the fuzzy variables e, ce, cu. 
The input variables are laid out along the axes, and each matrix element 
represents the output variable. 
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Table 15.3. A fuzzy rule base with two inputs and one output. 

e PB 
PM 
PS 
Z 
NS 
NM 
NB 

NB 

ZE 
PS 
PM 
PB 
PB 
PB 
PB 

NM 

PS 
ZE 
PS 
PM 
PM 
PB 
PB 

NS 

NM 
NS 
ZE 
PS 
PS 
PM 
PB 

ce 

Z 

NB 
NM 
NS 
ZE 
PS 
PM 
PB 

PS 

NB 
NM 
NS 
NS 
ZE 
PS 
PM 

PM 

NB 
NB 
NM 
NM 
NS 
ZE 
ZE 

PB 

NB 
NB 
NB 
NB 
NM 
ZE 
ZE 

Systematic approaches provide the decision-making strategy (rule base) 
with the aid of system identification and pattern recognition techniques from 
input-output data. 

15.4 A CASE STUDY: A FUZZY CONTROL SYSTEM 
15.4.1 The Fuzzy Logic Control Closed Loop 

Over the last 20 years, a large number of conventional modeling and control 
methods have been proposed to cope with nonlinear and/or time-varying sys
tems including input-state linearization (Isidori, 1995), input-output lineariza
tion (Cravaris and Chung, 1987; Henson and Seborg, 1990), model predictive 
schemes (Patwardhan et al., 1992) and various direct and indirect adaptive con
trol schemes (Isermann, 1989; Batur and Kasparian, 1991). 

However, the poor modeling of system uncertainties and the inherent diffi
culty of incorporating a priori qualitative information about the system dynam
ics limit the efficiency and the apphcability of the classical approaches. The 
fuzzy logic approach to process control provides a convenient way to build 
the control strategy, by requiring only qualitative knowledge for the behaviour 
of the control system. The heuristics employed offer a very attractive way of 
handling imprecision in the data and/or complex systems, where the deriva
tion of an accurate model is difficult or even impossible. On the other hand, 
modeling and control techniques based on fuzzy logic comprise very powerful 
approaches of handling imprecision and nonlinearity in complex systems. The 
basic structure of a fuzzy logic controller is given in Figure 15.7. Usually the 
input and output variables are normahzed through scaling factors Gjn and Gout 
in the interval [—1, 1]. 
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r + P 

FUZZY KNOWLEDGE DATABASE 

RULE BASE DATABASE 

FUZZIFIER INFERENCE H DEFUZZIFIER WG. 

FUZZY LOGIC CONTROLLER 

PROCESS 

Figure 15.7. The fuzzy logic control closed loop. 

15.4.2 Fuzzy Logic Controllers in Proportional-Integral 
(PI) and Proportional-Differential (PD) Forms 

In what follows, in order to enable a comparison basis, the fuzzy logic con
troller (FLC) with two input variables, the error and the change of error, is 
represented in PI- and PD-like forms. 

Pl-like Fuzzy Controller The PI controller in the z-domain has the follow
ing form (Stephanopoulos, 1984): 

C(Z) = ' ^ = KJI+K. ' 
eiz) - V " " " l - z - ' 

In the time domain the above equation can be rewritten as 

cu = KcCe + {KcK)e 

where e is the error between a predefined set point and the process output, ce 
is the change in error, and u is the control output signal. In order to generate 
an equivalent fuzzy controller, the same inputs e, ce and the same output, cu, 
will be used in its design. 

Based on the above, a two-input-single-output FLC is derived with the fol
lowing variables: 

• input variables: e{t) = r{t) — y{t) 
ce{t) = e{t) - e{t - 1) 

• output variable: cu{t) = u(t) — u(t -- I) 

where r(t) is the set point at time t (set point moisture), y(t) is the process 
output at time t (output moisture), e(t), ce{t) are the error and the change of 
error at time r, respectively, and cu{t) is the change in the control variable at 
time t. 
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In a general form the control action cu can be represented as a nonlinear 
function of the input variables e{t), ce(t)\ 

cu = fie', ce', t) = fiGEe, GCEce, t) 

For small perturbations 5e, 5ce around equiUbrium, the above equation is ap
proximated by the linearized equation 

cu = 
9 / 
de 

8e-\-
df_ 
dee 

8ce 

By substitution one finally obtains the simplified discretized equation (Mizu-
moto, 1995) 

cu(t) = GEeit) + GCEce(t) 

which gives the incremental control output at time t. GE and GCE are the 
scaling factors for the error and change of error, respectively. 

PD-like Fuzzy Controller In an analogous manner the PD-like fuzzy con
troller is of the form 

u(t) = GEeit) + GCEceit) 

Note that the above expressions are derived using the max-product inference 
technique. 

15.4.3 An Illustrative Example 
The design procedure of a fuzzy controller (FLC) is demonstrated through 

an illustrative example: the system under study is a plug flow tubular reactor, 
which is a nonlinear distributed parameter with time lag system. The design of 
the FLC is based on a heuristic approach. The proposed controller is compared 
with a conventional PI controller, which is tuned with two methods: the process 
reaction curve tuning method and by using time integral performance criteria 
such as integral of absolute error (lAE). Based on dynamic performance cri
teria, such as lAE, ISE, ITAE, it is shown that the proposed fuzzy controller 
exhibits a better performance compared to the PI controller tuned by the pro
cess reaction curve tuning method and an equivalent, if not better, dynamic 
behavior, compared to the optimal tuned via the time performance criteria PI 
controller, for a wide range of disturbances. 

Case Study: Fuzzy Control of a Plug Flow lYibular Reactor The process 
of concern is shown in Figure 15.8. It is the problem of the control of a jacketed 
tubular reactor in which a simple exothermic reaction A -> B with first-order 
kinetics takes place. Assuming plug flow conditions, constant temperature for 
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Cooling jacket 

F,T2, 
CA2 , CB2 

Coolant, Tc 

Figure 15.8. The process under study: control of a plug flow tubular reactor. 

the coolant, which flows around the tube of the reactor, the governing equa
tions consists of a set of nonhnear time-dependent partial differential equations 
listed below. The system is a nonlinear distributed parameter with time delay 
system: 

dCA , QCA , „ 

dt 
-\- u-

dz 

CppA— -f CppuA— = hAt {Tc -T) + {-DHR)kACA 
at at 

k = kn exp I 
^\ RT 

The nominal values of the tubular reactor parameters are as follows: 

CA\ — 1.6kmol m ^ 
Ti = 440 K 
ko = 3.34 X 10^ min-^ 
DHR = -44000 kcal kmol"^ 
cp = 25kcalkmor^ K'^ 
Tco = 293 K 
A = 0.002 m^ 

CA2 =0.11 kmolm"^ 
72 = 423 K 
E/R = 8600 K 
U = 25 kcal m^ min~' grad' 
p =41 kmol m 
At = 0.01 m^ 
U = 2m min~' 

- 3 

The solution of nonlinear, time-dependent, partial differential equations is 
possible only by means of modem computer-aided methods. The choice here is 
the combination of Galerkin's method of weighted residuals and finite-element 
basis functions (Zienkiewicz and Morgan, 1983). 

The control objective is to maintain the control variable, which is the com
position of the reacting mixture at the output of the reactor, within the de
sired operational settings and, particularly, to keep the A reactant concentra
tion at the output below its nominal steady-state value, eliminating mostly in
put concentration disturbances. The manipulated variable is taken to be the 
coolant temperature. The incremental fuzzy controller, a two-input-single-
output FLC, is derived with the following variables: e(t) = r(t) — y{t). 
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ce{t) = e(t) — e(t — 1), cu(t) = u{t) — u{t — 1), where r{t) is the set point 
at time t (set point moisture), y{t) is the process output at time t (output mois
ture), and e{t),ce{t) are the error and the change of error at time t. 

For the fuzzification of the input-output variables, seven fuzzy sets are de
fined for each variable, e{t), ce{t) and cu{t) with fixed triangular shaped mem
bership functions normalized in the same universe of discourse, as it is shown 
in Figure 15.9. For the development of the rule base a heuristic approach was 
employed. 

Given the fact that a reduction in the coolant temperature decreases the out
put concentration, and inversely, the reasoning for the construction of the fuzzy 
control rules is outhned as follows: 

• Keep the output of the FLC constant if the output has the desired value 
and the change of error is zero. 

• Change the control action of the FLC according to the values and signs 
of the error, e, and the change of error, ce\ 

1 i^the error is negative (the process output is above the set point) 
and the change of error is negative (at the previous step the con
troller was driving the system output upwards), then the con
troller should tum its output downwards. Hence, considering neg
ative feedback, the change in control action should be positive, 
i.e. cu > 0, since u{t) = u{t — 1) + cu. 

2 If the error is positive (the process output is below the set point) 
and the change of error is positive (at the previous step the con
troller was driving the system output downwards), then the con
troller should tum its output upwards. Hence, considering neg
ative feedback, the change in control action should be negative, 
i.e. cu < 0, since w(r) = u(t — 1) + cu. 

3 If the error is positive (the process output is below the set point) 
and the change of error is negative, implying that at the previous 
step the controller was driving the system output upwards, trying 
to correct the control deviation, then the controller need not take 
any further action. 

4 If the error is negative (the process output is above the set point) 
and the change of error is positive, implying that at the previous 
step the controller was driving the system output downwards, then 
the controller need not take any further action. 

Table 15.4 compresses the design of the control rules for the term sets (nb: 
negative big, nm: negative medium, ns: negative small, ze: zero, ps: positive 
small, pm: positive medium, pb: positive big) of the fuzzy variables e, ce, cu. 
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Figure 15.9. Input-output fuzzy sets. 

Table 15.4. Fuzzy control rules. 

e 

pb 
pm 
ps 
ze 
ns 
nm 
nb 

ce 
nb 
ze 
ps 
pm 
pb 
pb 
pb 
pb 

nm 
ze 
ze 
ps 
pm 
pm 
pb 
pb 

ns 
nm 
ns 
ze 
ps 
ps 
pm 
pb 

ze 
nb 
nm 
ns 
ze 
ps 
pm 
pb 

ps 
nb 
nm 
ns 
ns 
ze 
ps 
pm 

pm 
nb 
nb 
nm 
nm 
ns 
ze 
ze 

pb 
nb 
nb 
nb 
nb 
nm 
ze 
ze 

The input variables are laid out along the axes, and each matrix element 
represents the output variable. This structure of the rule base provides negative 
feedback control in order to maintain stability under any condition. For the 
evaluation of the rules, the fuzzy reasoning unit of the FLC has been devel
oped using the Max-Min fuzzy inference method (Lee, 1990; Driankov et al., 
1993). In the particular FLC, the centroid defuzzification method (Zimmer-
mann, 1996; Driankov et al., 1993) is used. Finally, for the projection of the 
input and output variable values to the normalized universe of discourse, the 
following values of scahng factors have been chosen: Gen) = 5, GceU) — 45, 
Gcu{t) = 2.5. 

Performance Analysis: Results and Discussion To study the performance 
of the FLC controller, a comparison with a conventional PI controller is made. 
The parameters of the PI controller are adjusted using two methods of tun
ing. First it is assumed that the dynamics of the process are poorly known 
and the tuning of the PI controller is based on the process reaction curve, an 
empirical tuning method, which provides an experimental model of the pro
cess near the operating point. The results of this analysis are: Gain\ = 350, 
Integral time constant^ = 1.5 min. 
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In the second approach, the optimal values of the PI controller are deter
mined by minimizing the integral of absolute value of error (lAE) of the con
trol variable for a predetermined disturbance in input concentration. Here the 
optimal parameters of the PI controller are adjusted by minimizing the lAE 
at the +20% step disturbance in input reactant concentration. The resulting 
tuning parameters are Gairiu = 155, integral time constant^ = 1.0 min. The 
relatively large deviation between the parameters obtained by minimizing the 
lAE and those obtained by the process reaction curve method is results from 
the fact that the process reaction curve method is based on the approximation 
of the open loop process response by a first-order system plus dead time. 

In the case under study, this approximation seems to be rather poor. In order 
to objectively compare the PLC controller with the conventional PI controller, 
in addition to the lAE criterion, the integral of time multiplied by the absolute 
value of error (ITAE) and the integral of the square of the error (ISE) perfor
mance criteria are used for both control and manipulated variables. 

Simulation results are presented for step change disturbances ranging from 
—5% up to —20% in input reactant concentration. Figure 15.11 depicts in 
histograms the calculated three dynamic performance criteria lAE, ISE, ITAE 
for the fuzzy and the PI controller tuned with the two different methods. 

The performance criteria are determined for both control and manipulated 
variables. Based on Figure 15.10, it is apparent that the overall performance of 
the FLC seems better than the conventional PI controller tuned by the empirical 
process reaction curve method (controller PI-1) and equivalent, if not better, 
than the optimal PI controller tuned by minimizing the lAE (controller PI-2). 
The PI-1 controller has the highest values of lAE (Figure 15.10(a, b)), ISE 
(Figure 15.10(c, d)) and ITAE (Figure 15.10(e, f)) criteria. As is shown, the 
fuzzy controller exhibits up to 60% lower lAE (Figure 15.10(b)), up to 30% 
lower ISE (Figure 15.10(c)) and up to 200% lower ITAE (Figure 15.10(f)) 
compared to the PI controller tuned by the process reaction curve method. In 
comparison to the PI controller, whose parameters are optimally adjusted by 
minimizing the lAE criterion, the fuzzy controller shows an equivalent, if not 
better, performance, based on lAE, ISE and ITAE criteria for all the range of 
step disturbances (from 5% up to 20%). 

However, the approach of optimally adjusting the parameters of the PI con
troller to some dynamic performance criterion, such as lAE, requires an exact 
mathematical model of the process, which in real-world processes is very dif
ficult, if not impossible, to derive. In contrast, the design of the fuzzy logic 
controller is based on a heuristic approach and a mathematical model of the 
process is not vital. 
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Figure 15.10. Performance comparison of the fuzzy and the PI controller tuned by the process 
reaction method (PM), by minimizing the lAE criterion (PI-2): (a) lAE of the control variable, 
(b) lAE of the manipulated variable, (c) ISE of the control variable, (d) ISE of the manipulated 
variable, (e) ITAE of the control variable, (f) ITAE of the manipulated variable. 

15AA Fuzzy Adaptive Control Schemes 
A major problem encountered in nonlinear and/or time-dependent systems 

is the degradation of the closed-loop performance as the system shifts away 
from the initial operational settings. This drawback imposes the need of using 
adaptive controllers, i.e. controllers, which adjust their parameters optimally, 
according to some objective criteria (Astrom, 1983). 
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Figure 15.11, The self-organizing fuzzy logic controller. 

To date, many schemes have been proposed for fuzzy adaptive control, in
cluding self-organizing control (Procyk and Mamdani, 1979; Siettos et al., 
1999), membership functions adjustment (Batur and Kasparian, 1991; Zheng, 
1992) and scahng factors adjustment (Maeda and Murakami, 1992; Daugher-
ity et al, 1992; Palm, 1993; Jung et al, 1995; Chou and Lu, 1994; Chou, 
1998; Sagias et al, 2001). Maeda and Murakami and Daugherity et al. pro
posed adjustment mechanisms for the tuning of scaling factors by evaluating 
the control result based on system performance indices such as overshoot, ris
ing time, ampHtude and setthng time. Palm (1993) addressed the method of 
adjusting optimally the scaling factors by measuring on-line the linear depen
dence between each input and output signal of the fuzzy controller. According 
to the above method the scaling factors are expressed in terms of input-output 
cross-correlation functions. Jung et al. proposed a real-time tuning of the scal
ing factors, based on a variable reference tuning index and an instantaneous 
system fuzzy performance according to system response characteristics. Chou 
and Lu presented an algorithm for the adjustment of the scaling factors using 
tuning rules, which are based on heuristics. Sagias et al. (2001) presented a 
model-identification fuzzy adaptive controller for real-time scaling factor ad
justment. 

Among the first attempts to apply a fuzzy adaptive system for the control of 
dynamic systems was that of Procyk and Mamdani (1979), who introduced the 
self-organizing controller (SOC). The configuration of the proposed controller 
is shown in Figure 15.11. 

It has a two-level structure, in which the lower level consists of a table-
based controller with two inputs and one output. The upper level consists of a 
performance index table, which relates the state of the process to the deviation 
from the desired overall response, and defines the corrections required in the 
table-based controller to bring the system to the desired state. From this point 
of view, the SOC performs two tasks simultaneously: namely, (a) performance 
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evaluation of the system and (b) system performance improvement by creation 
and/or modification of the control actions based on experience gained from 
past system states. Hence, the controller accompHshes its learning through 
repetition over a sequence of operations. The elements of the table are the 
control actions as they are calculated from a conventional or a fuzzy controller 
for a fixed operational range of input variables. Here, the (/, j) element of the 
table contains the changes in control action inferred for the /th value of error 
and y th value of change of error. 

15.5 MODEL IDENTIFICATION AND STABILITY OF 
FUZZY SYSTEMS 

15.5.1 Fuzzy Systems Modeling 
Mathematical models, which can describe efficiently the dynamics of the 

system under study, play an essential role in process analysis and control. 
However, most of the real-world processes are complicated and nonlinear in 
nature, making the derivation of mathematical models and/or subsequent anal
ysis rather formidable tasks. In practice, such models are not available. For 
these cases, models need to be developed based solely on input-output data. 
Many approaches based on nonlinear time series (Hemadez and Arkun, 1993; 
Ljung, 1987), several nonlinear approaches (Henon, 1982; Wolf et al., 1985) 
and normal form theory (Read and Ray, 1998a,b,c) have been applied in non
linear system modeling and analysis. During the last decade, a considerable 
amount of work has been published on the dynamic modeUng of nonlinear 
systems using neural networks (Narendra and Parthasarathy, 1990; Chen and 
Billings, 1992; Shaw et al., 1997; Haykin, 1999) and/or fuzzy logic method
ologies (Sugeno and Yasukawa, 1993; Laukoven and Pasino, 1995; Babuska 
and Verbruggen, 1996). Most of them, excluding normal forms and fuzzy-
based approaches, are numerical in nature providing therefore only black-box 
representations. On the other hand, fuzzy logic methodologies (Laukoven and 
Pasino, 1995; Park et al., 1999; Sugeno and Kang, 1988; Sugeno and Ya
sukawa, 1993; Takagi and Sugeno, 1985) can incorporate a priori qualitative 
knowledge of the system dynamics. In Siettos et al. (2001) and Alexandridis 
et al. (2002) fuzzy logic and Kohonen's neural networks are combined for the 
derivation of truncated time series models. 

Fuzzy logic can incorporate expertise and a priori qualitative knowledge of 
the system. In the last 20 years, strikingly results have been obtained by using 
various fuzzy design methods. In many cases the fuzzy control systems outper
form other more traditional approaches. However, the extensive applicability 
of the former is Umited due to the deficiency of formal and systematic design 
techniques, which can fulfill the two essential requirements of a control system: 
the requirement for robust stability and that of satisfactory performance. As a 
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consequence, due to the complexity of nonlinear processes, it is rather difficult 
to construct a proper fuzzy rule base based only on observation. Moreover, the 
lack of a mathematical model, which characterizes fuzzy systems, often lim
its their applicability, since various vital tasks, such as stability analysis, are 
difficult to accomphsh. 

15.5.2 Stability of Fuzzy Systems 
The problem of designing reliable fuzzy control systems in terms of stabil

ity and performance has found a remarkable resonance among engineers and 
scientists. So far, various approaches to this problem have been presented. 
One of the first contributions to this topic was that of Braae and Ratherford 
(1979), where they utilized the phase plane method for analyzing the stability 
of a fuzzy system. Kickert and Mamdani (1978) proposed the use of describ
ing functions for the stability analysis of unforced fuzzy control systems. In 
Kiszka et al. (1985) the notion of the energy of fuzzy relations to investigate 
the local stability of a free fuzzy dynamic system is introduced. Motivated by 
the work of Tanaka and Sugeno (1992), many schemes have been proposed for 
analyzing the stabiUty of fuzzy systems (Feng, et al., 1997; Kiriakidis et al., 
1998; Leung et al., 1998; Kim et al., 1995; Thathachar and Viswanath, 1997; 
Wang et al., 1996). The main idea behind this approach lies in the decompo
sition of a global fuzzy model into simpler hnear fuzzy models, which locally 
represent the dynamics of the whole system. In Kiendl and Ruger (1995) and 
Michels (1997) the authors proposed numerical methods for the stability anal
ysis for fuzzy controllers in the sense of Lyapunov's direct method. In Fuh 
and Tung (1997) and Kandel et al. (1999) the stabiHty analysis of fuzzy sys
tems using Popov-Lyapunov techniques is proposed. In recent years, the prob
lem of designing stable robust and adaptive fuzzy controllers with satisfactory 
performance based on the sliding mode approach has attracted much attention 
(Chen and Chang, 1998; Chen and Chen, 1998; Chen and Fukuda, 1998; Palm, 
1992; Tang, et al, 1999; Wang, 1994; Yi and Chung, 1995; Yu et al., 1998). 
The design of such schemes is based on the Lyapunov direct method. The 
proposed schemes take advantage of both sliding and fuzzy features. A sys
tematic practical way of deriving analytical expressions for fuzzy systems for 
use in control, system identification and stability using well-established classi
cal theory methods is presented in Siettos et al. (2001). Finally, in Siettos and 
Bafas (2001) singular perturbation methods (Kokotovic et al., 1976) based on 
a Lyapunov approach are implemented for the derivation of sufficient condi
tions for the semiglobal stabilization with output tracking of nonlinear systems 
having internal dynamics, incorporating fuzzy controllers. 
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15.6 TRICKS OF THE TRADE 
Newcomers to the field of fuzzy reasoning often ask themselves (and/or 

other more experienced fuzzy researchers) questions such as "What is the best 
way to get started with fuzzy reasoning?", or "Which papers should I read?" 

A very helpful tutorial, a step by step introduction to the basic 
ideas and definitions of fuzzy set theory, with simple and well de
signed illustrative examples, is available at http://www.mathworks.com/access/ 
helpdesk/help/toolbox/fuzzy/fuzzytu2.html 

A variety of other sources of information are available, including the first 
publication on fuzzy reasoning by L. A. Zadeh, the founder of fuzzy logic, 
which appeared in 1965, as well as his subsequent publications (notably "Out
line of a new approach to the analysis of complex systems and decision pro
cesses" IEEE Trans. Syst., Man. Cybernet. 3:28-44, 1973), which inspired so 
many researchers in this new and fascinating field of research. 

Another question often asked is "How should I be acquainted with the 
world of fuzzy systems and fuzzy reasoning?". This question is best an
swered by consulting information available on the Web. For example, in 
http://www.cse.dmu.ac.uk/~rij/tools.html, information useful to practitioners 
is given about fuzzy logic tools and companies. Information may also be 
found about books and journals as well as research groups and national and 
international associations and networks, whose members are researchers and 
practitioners working on fuzzy sets and systems. For this and other relevant 
information see the next section. 

15.7 CONCLUSIONS AND PERSPECTIVES 
In this chapter an overview of the basics of fuzzy reasoning has been pre

sented. The theory of fuzzy sets has been introduced and definitions concern
ing the membership function, logical and transformation operators, fuzzy rela
tions, implication and inference rules, and fuzzy similarity measures have been 
stated. The basic structure of a fuzzy inference system and its elements have 
been described. Fuzzy control is introduced and an example of a fuzzy logic 
controller has been demonstrated, which applies to the control of a plug flow 
tubular reactor. The issue of fuzzy adaptive control systems has been discussed 
and the self-organizing scheme has been presented. Subsequently, the topics 
of stability and model identification of fuzzy systems have been outlined and 
the presentation has concluded with an introduction of fuzzy classification and 
clustering systems in pattern recognition. 

The above are only an elementary attempt to outline only a small part of the 
introductory concepts and areas of interest of fuzzy reasoning, whose theory 
and applications are fast developing. Indeed, during recent years, the literature 
on fuzzy logic theory and applications has exploded. Areas of current research 
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include an enormous set of topics, from basic fuzzy set-theoretic concepts and 
fuzzy mathematics to fuzzy methodology and fuzzy logic in practice. The 
statement by H.-J. Zimmermann that "theoretical publications are already so 
specialized and assume such a background in fuzzy set theory that they are hard 
to understand" (Zimmermann, 1985) holds much more today than 20 years 
ago, when it was first stated. 

In particular, research is continuing on the various basic fuzzy set-theoretic 
concepts, including possibility theory (Ben Amor et al., 2002), fuzzy operators 
(Pradera et al., 2002; Yager, 2002; Ying, 2002; Wang et al, 2003), fuzzy rela
tions (Wang et al., 1995; Naessens et al., 2002; Pedrycz and Vasilakos, 2002), 
measures of information and comparison (Hung, 2002; Yager, 2002), etc. 

In the area of fuzzy mathematics, research focuses on various issues of non-
classical logics (Biacino and Gerla, 2002; Novak, 2002), algebra (Di Nola et 
al., 2002), topology (Albrecht, 2003), etc. 

The research on fuzzy methodology is very extensive. It encompasses is
sues related to inference systems (del Amo et al, 2002; Marin-Blazquez and 
Shen; 2002), computational linguistics and knowledge representation (Intan 
and Mukaidono, 2002), production scheduling (Adamopoulos et al., 2000, 
Karacapilidis et al., 2000), neural networks (Alpaydin et al., 2002; Oh et al., 
2002), genetic algorithms (Spiegel and Sudkamp, 2002), information process
ing (Liu et al., 2002; Hong et al., 2002; Nikravesh et al., 2002), pattern anal
ysis and classification (Gabrys and Bargiela, 2002; de Moraes et al., 2002; 
Pedrycz and Gacek, 2002), fuzzy systems modeling and control (Mastrocostas 
and Theocharis, 2002; Pomares et al., 2002; Tong et al, 2002; Yi and Heng, 
2002), decision making (Yager, 2002c; Wang, 2000; Zimmermann et al, 2000; 
Wang, 2003), etc. 

Finally, extensive research is also reported on various applications of fuzzy 
logic, including process control (Tamhane et al, 2002), robotics (Lin and 
Wang, 1998; Ruan et al, 2003), scheduHng (Muthusamy et al, 2003), trans
portation (Chou and Teng, 2002), nuclear engineering (Kunsch and Fortemps, 
2002), medicine (Blanco et al, 2002; Kilic et al, 2002), economics (Kahraman 
et al, 2002), etc. 

It is this last area and the reported apphcations of fuzzy reasoning, which 
proves the relevance and vigor of this new approach to understanding, model
ing and solving many problems of modem society. 

SOURCES OF ADDITIONAL INFORMATION 
A most valuable source of additional information about fuzzy reasoning is 

the site http://www.abo.fi/~rfuller/fuzs.html. It includes information on al
most everything one might hke to know about the world of fuzzy systems and 
fuzzy reasoning, from L. A. Zadeh, the founder of fuzzy logic, fuzzy national 
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and international associations and networks, personal home pages of fuzzy 
researchers, and fuzzy-mail archives, to fuzzy logic tools and companies, Con
ferences and Workshops on fuzzy systems, fuzzy logic journals and books and 
research groups. An excellent Internet course on fuzzy logic control and fuzzy 
clustering can be found in the site http://fuzzy.iau.dtu.dk/ from Jan Jantzen, 
Professor at the Technical University of Denmark, Oersted-DTU. 
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16.1 INTRODUCTION 
In this chapter, we are concerned with discovering knowledge from data. 

The aim is to find concise classification pattems that agree with situations that 
are described by the data. Such pattems are useful for explanation of the data 
and for the prediction of future situations. They are particularly useful in such 
decision problems as technical diagnostics, performance evaluation and risk 
assessment. The situations are described by a set of attributes, which we might 
also call properties, features, characteristics, etc. Such attributes may be con
cerned with either the input or output of a situation. These situations may 
refer to states, examples, etc. Within this chapter, we will refer to them as 
objects. The goal of the chapter is to present a knowledge discovery paradigm 
for multi-attribute and multicriteria decision making, which is based upon the 
concept of rough sets. Rough set theory was introduced by Pawlak (1982, 
1991). Since then, it has often proved to be an excellent mathematical tool for 
the analysis of di vague description of objects. The adjective vague (referring to 
the quality of information) is concerned with inconsistency or ambiguity. The 
rough set philosophy is based on the assumption that with every object of the 
universe U there is associated a certain amount of information (data, knowl
edge). This information can be expressed by means of a number of attributes. 
The attributes describe the object. Objects which have the same description 
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are said to be indiscernible (similar) with respect to the available information. 
The indiscernibility relation thus generated constitutes the mathematical basis 
of rough set theory. It induces a partition of the universe into blocks of indis
cernible objects, called elementary sets, which can be used to build knowledge 
about a real or abstract world. The use of the indiscemibihty relation results in 
information granulation. 

Any subset X of the universe may be expressed in terms of these blocks 
either precisely (as a union of elementary sets) or approximately. In the lat
ter case, the subset X may be characterized by two ordinary sets, called the 
lower and upper approximations. A rough set is defined by means of these two 
approximations, which coincide in the case of an ordinary set. The lower ap
proximation of X is composed of all the elementary sets included in X (whose 
elements, therefore, certainly belong to X), while the upper approximation of 
X consists of all the elementary sets which have a non-empty intersection with 
X (whose elements, therefore, may belong to X). The difference between the 
upper and lower approximation constitutes the boundary region of the rough 
set, whose elements cannot be characterized with certainty as belonging or not 
to X (by using the available information). The information about objects from 
the boundary region is, therefore, inconsistent or ambiguous. The cardinality 
of the boundary region states, moreover, the extent to which it is possible to 
express X in exact terms, on the basis of the available information. For this rea
son, this cardinality may be used as a measure of vagueness of the information 
about X. 

Some important characteristics of the rough set approach makes it a partic
ularly interesting tool in a variety of problems and concrete applications. For 
example, it is possible to deal with both quantitative and qualitative input data 
and inconsistencies need not to be removed prior to the analysis. In terms of 
the output information, it is possible to acquire a posteriori information re
garding the relevance of particular attributes and their subsets to the quality of 
approximation considered within the problem at hand. Moreover, the lower 
and upper approximations of a partition of U into decision classes, prepare the 
ground for handhng certain and possible classification patterns in the form of 
'Hf..., then..." decision rules. 

Several attempts have been made to employ rough set theory for decision 
support (Pawlak and Slowinski, 1994; Slowinski 1993). The Classical Rough 
Set Approach is not able, however, to deal with preference-ordered attribute 
domains and preference-ordered decision classes. In decision analysis, an at
tribute with a preference-ordered domain (scale) is called a criterion. 

In the late 1990s, adapting the classical rough set approach to knowl
edge discovery from preference-ordered data became a particularly challeng
ing problem within the field of multicriteria decision analysis. Why might it be 
so important? The answer is connected with the nature of the input preferen-



ROUGH SET BASED DECISION SUPPORT All 

tial information available in multicriteria decision analysis and of the output of 
that analysis. As to the input, the rough set approach requires a set of decision 
examples which is also convenient for the acquisition of preferential informa
tion from decision makers. Very often in multicriteria decision analysis, this 
information has to be given in terms of preference model parameters, such 
as importance weights, substitution ratios and various thresholds. Presenting 
such information requires significant effort on the part of the decision maker. 
It is generally acknowledged that people often prefer to make exemplary de
cisions and cannot always explain them in terms of specific parameters. For 
this reason, the idea of inferring preference models from exemplary decisions 
provided by the decision maker is very attractive. Furthermore, the exemplary 
decisions may be inconsistent because of some additional aspects which are 
not included in the considered family of criteria and because of hesitation on 
the part of the decision maker (see e.g. Roy 1996). These inconsistencies can
not be considered as a simple error or as noise. They can convey important 
information that should be taken into account in the construction of the deci
sion maker's preference model. The rough set approach is intended to deal with 
inconsistency and this is a major argument to support its application to mul
ticriteria decision analysis. Note also that the output of the analysis, i.e. the 
model of preferences in terms of decision rules is very convenient for decision 
support because it is intelligible and speaks the same language as the decision 
maker. 

An extension of the classical rough set approach which enables the analy
sis of preference-ordered data was proposed by Greco et al. (1998a, 1999a,b). 
This extension, called the Dominance-Based Rough Set Approach is mainly 
based on the substitution of the indiscemibility relation by a dominance rela
tion in the rough approximation of decision classes. An important consequence 
of this fact is the possibility of inferring (from exemplary decisions) the prefer
ence model in terms of decision rules which are logical statements of the type 
"//"..., then...". The separation of certain and uncertain knowledge about 
the decision maker's preferences is carried out by the distinction of different 
kinds of decision rules, depending upon whether they are induced from lower 
approximations of decision classes or from the difference between upper and 
lower approximations (composed of inconsistent examples). Such a preference 
model is more general than the classical functional models considered within 
multi-attribute utility theory or the relational models considered, for example, 
in outranking methods. 

In the next section, we begin this tutorial by presenting the basic version of 
the classical rough set approach by way of an example. 
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Table 16.1. Examples of traffic signs described by S and PC. 

Traffic sign Shape (S) Primary color (PC) Class 

@ 

(a) / ^ \ triangle yellow W 

(b) circle white / 

(c) ^ ^ ^ ^ H circle blue 

o (d) ^ H Hf circle blue 

16.2 ROUGH SET FUNDAMENTALS 
16.2.1 Explanation by an Example 

Let us assume that we want to describe the classification of basic traffic 
signs to a novice. We start by saying that there are three main classes of traffic 
signs corresponding to 

• Warning (W), 

• Interdiction (/), 

• Order (O). 

Then, we say that these classes may be distinguished by such attributes as the 
shape (S) and the principal color (PC) of the sign. Finally, we give a few 
examples of traffic signs, like those shown in Table 16.1. 

These are 

(a) sharp right turn, 

(b) speed Hmit of 50 km h~\ 

(c) no parking, 

(d) go ahead. 

One can remark that the sets of signs indiscernible by "Class" are 

W = {ajciass / = {b, C}cuss O = {<i}ciass 
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Table 16.2. Examples of traffic signs described by S, PC and SC. 

Traffic sign Shape (S) Primary color (PC) Secondary color (SC) Class 

(a) A 
triangle yellow red W A 

@ 
(t>) 1 *JIJ J circle white red 

(c) ^ ^ ^ ^ H circle blue red 

(d) (ĵ H | f l circle blue white O 

and the sets of signs indiscernible by S and PC are as follows: 

{<̂ }s,pc {̂ }s,pc [c. <̂ }s.pc 

The above sets are granules of knowledge generated by, on the one hand, the 
classification of traffic signs by "Class" and, on the other hand, their descrip
tion by S and PC. The sets of signs indiscernible by "Class" are denoted by 
{•}ciass and those by S and PC are denoted by {•}s,pc- We can see that granule 
^ = {«}ciass is characterized precisely by granule {a}s,pc. In order to char
acterize granules / = {b, CIQ^SS and O = {<i}ciass' one needs granules {&}s,pc 
and {c, d}^pQ\ however, only granule {&}s,pc is included in / = {Z?, CIQ^SS 

while {c, ̂ }s,pc has a non-empty intersection with both / = {b, CJQ^SS and 
O = {̂ Iciass- It follows, from this characterization, that by using attributes 
S and PC, one can characterize class W precisely, while classes / and O can 
only be characterized approximately: 

• class W includes sign (a) certainly and possibly no other sign, 

• class / includes sign (b) certainly and possibly signs (b), (c) and (d), 

• class O includes no sign certainly and possibly signs (c) and (d). 

The terms certainly and possibly refer to the absence or presence of ambi
guity between the description of signs by S and PC from the one side, and by 
"Class", from the other side. In other words, using knowledge about the de
scription of signs by S and PC, one can say that all signs from granules {• }§ p^ 
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included in granules {• JQ^SS belong certainly to the corresponding class, while 
all signs from { • }s pc having a non-empty intersection with granules { • IQ^SS 

belong to the corresponding class only possibly. The two sets of certain and 
possible signs are, respectively, the lower and upper approximations of the 
corresponding class by attributes S and PC: 

lower_approx.3 pc(W) = [a] upper.approx.g pc(W) = [a] 
lower^approx.g p(3(/) = [b] upper^approx.^ pc(/) = [b, c, d] 
lower_approx.s pc(0) = {0} upper^approx.g pc(0) = {c, d] 

The quality of approximation of the classification by attributes S and PC is 
equal to the number of all the signs in the lower approximations divided by the 
number of all the signs in the table, i.e. 1/2. 

One way to increase the quality of the approximation is to add a new at
tribute so as to decrease the ambiguity. Let us introduce the secondary color 
(SC) as a new attribute. The new situation is shown in Table 16.2. 

As one can see, the sets of signs indiscernible by S, PC and SC, i.e. the 
granules {• }s,pc,sc' ^r^ ^^^ 

{ah ,PC,SC ,PC,SC ,PC,SC wis ,PC,SC-

It is worth noting that the granularity is finer than before and it enables the 
ambiguity to be eUminated. Consequently, the quality of approximation of the 
classification by attributes S, PC and SC is now equal to 1. 

A natural question occurring here is to ask if, indeed, all three attributes are 
necessary to characterize precisely the classes W, I and O. When we eliminate 
attribute S or attribute PC from the description of the signs, we obtain the 
granules { • }pc,sc c>r {• }s,sC' respectively, as follows: 

(< }̂pc,sc {^}pc,sc {<̂ )pc,sc ,sc 

{«}s,sc {̂ ' ^}s,sc (^}s,sc 

Using any one of the above sets of granules, it is possible to characterize 
(approximate) classes W, I and O with the same quality (equal to 1) as it is 
when using the granules { • }s,pc,sc (i-^- those generated by the complete set 
of three attributes). Thus, the answer to the above question is that the three 
attributes are not necessary to characterize precisely the classes W, I and O. 
It is, in fact, sufficient to use either PC and SC or S and SC. The subsets of 
attributes {PC, SC} and {S, SC]) are called reducts of (S, PC, SC} because they 
have this property. Note that the identification of reducts enables us to reduce 
knowledge about the signs from the table to that which is relevant. 

Other useful information can be generated from the identification of reducts 
by taking their intersection. This is called the core. In our example, the core 
contains attribute SC. This tells us that it is clearly an indispensable attribute 
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i.e. it cannot be eliminated from the description of the signs without decreasing 
the quahty of the approximation. Note that other attributes from the reducts 
(i.e. S and PC) are exchangeable. If there happened to be some other attributes 
which were not included in any reduct, then they would be superfluous i.e. they 
would not be useful at all in the characterization of the classes W, I and O. 

If, however, we eliminate column S or PC from Table 16.2 then we do not 
yet have a minimal representation of knowledge about the classification of the 
four traffic signs. Note that, in order to characterize class W in Table 16.2, it 
is sufficient to use the descriptor "S = triangle". Moreover, class / is charac
terized by two descriptors ("S = circle" and "SC = red") and class O is char
acterized by the descriptor "SC = white". Thus, the minimal representation of 
this knowledge requires only four descriptors (rather than the eight descriptors 
that are presented in Table 16.2 with either column S or PC eliminated). This 
representation corresponds to the following set of decision rules which may be 
seen as classification patterns discovered in the dataset contained in Table 16.2 
(in braces are the symbols of signs covered by the corresponding rule): 

rule #l:ifS = triangle, then Class = W {a} 

rule #2:ifS = circle and SC = red, then Class = / {b, c) 

rule #3 :ifSC = white, then Class = O {d} 

This is not the only representation, because an alternative set of rules is 

rule #1' :ifPC = yellow, then Class = W {a} 

rule #2' :ifPC = white, then Class = / {b} 

rule #3' : if PC = blue and SC = red, then Class = / {c} 

rule #4' •.ifSC = white, then Class = O {d} 

It is interesting to return to Table 16.1 and ask what decision rules represent 
the knowledge contained in this dataset. As the description of the four signs 
by S and PC is not sufficient to characterize precisely all the classes, it is not 
surprising that not all the rules will have a non-ambiguous decision. Indeed, 
we have 

rule #l":ifS = triangle, then Class = W {a} 

rule #2" :ifPC = white, then Class = / {b} 

rule #3" :ifPC = blue, then Class = I or O {c, d] 

Note that these rules can be induced from the lower and upper approxima
tions of classes W, I and O defined above. Indeed, for rule #1", the sup
porting example is in lower_approx.s,pc(^) = {«}; for rule #2" it is in 
lower_approx.s,pc(/) = {b}; and the supporting examples for rule #3" are in 
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the set called the boundary of both / and O: 

boundarysp(^(/) = upper.approx.g p^C/) 

—lower_approx.spc(/) = {c,d] 

boundary^ p(-((9) = upper-approx.s pc(<^) 
—lower_approx.spc((9) = {c,d} 

As a result of the approximate characterization of classes W, I and O by S 
and PC, we can thus obtain an approximate representation in terms of decision 
rules. Since the quality of the approximation is 1/2, certain rules (#r^ and #2^0 
cover one half of the examples and the other half is covered by the approximate 
rule (#3^0- Now, the quality of approximation by S and SC or by PC and SC 
was equal to 1, so all examples were covered by certain rules (#1-3 or #V-A\ 
respectively). 

We can see, from this simple example, that the rough set analysis of a dataset 
provides some useful information. In particular, we can determine 

• a characterization of decision classes in terms of chosen attributes 
through lower and upper approximation; 

• a measure of the quality of approximation which indicates how good the 
chosen set of attributes is for approximation of the classification; 

• a reduction of the knowledge contained in the table to a description by 
relevant attributes, i.e. those belonging to reducts; at the same time, su
perfluous attributes are also identified; 

• the core which indicates indispensable attributes; 

• a set of decision rules which is induced from the lower and upper ap
proximations of the decision classes; this shows classification pattems 
which exist in the dataset. 

Other important information can also be induced but it cannot be illustrated 
by such a simple example. In the next section, we will present a more formal 
treatment. For more details, the reader is referred to Pawlak (1991), Polkowski 
(2002), Slowinski (1992b) and many others (see Sources of Additional Infor
mation at the end of the chapter). 

16.2.2 A Formal Description of the Classical Rough Set 
Approach 

For algorithmic reasons, we supply the information regarding the objects 
in the form of a data table, whose separate rows refer to distinct objects and 
whose columns refer to the different attributes considered. Each cell of this 
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table indicates an evaluation (quantitative or qualitative) of the object placed 
in that row by means of the attribute in the corresponding column. 

Formally, a data table is the 4-tuple S = {U, Q,V, f), where (/ is a finite 
set of objects (universe), Q = {qi,q2,... ,qm] i^ ^ finite set of attributes, Vq 
is the domain of the attribute q, V — [JqeQ ^^ ^"^ f : U x Q -^ V isa total 
function such that f(x,q) e Vq for each q e Q, x e U, called the information 
function. 

Each object x of U is described by a vector (string) Desg(;c) = 
{f{x, q\), f(x, q2),..., f(x, qm)], called the description of x in terms of the 
evaluations of the attributes from Q. It represents the available information 
about jc. 

To every (non-empty) subset of attributes P we associate an indiscernibility 
relation on U, denoted by Ip and defined as follows: 

Ip = {{x, y) eU xU : f(x, q) = f(y, q), for each q e P]. 

If {x,y) € Ip, we say that the objects JC and y are P-indiscemible. Clearly, 
the indiscernibility relation thus defined is an equivalence relation (reflexive, 
symmetric and transitive). The family of all the equivalence classes of the 
relation Ip is denoted hyU\Ip and the equivalence class containing an element 
X ^ U \s denoted by Ip(x). The equivalence classes of the relation Ip are 
called the P-elementary sets or granules of knowledge encoded by P. 

Let 5 be a data table, X be a non-empty subset of U and & ^^ P c. Q. The 
set X may be characterized by two ordinary sets, called the P-lower approxi
mation of X (denoted by P,iX)) and the P-upper approximation of X (denoted 
by P (X)) in 5. They can be defined, respectively, as 

P(Z) = {x eU : Ipix) c X} 

7(X) = [jhix) 
jceX 

The family of all the sets X C. U having the same P-lower and P-upper 
approximations is called a P-rough set. The elements of _P(X) are all and only 
those objects x e U which belong to the equivalence classes generated by the 
indiscernibility relation Ip contained in X, The elements of P(X) are all and 
only those objects x € U which belong to the equivalence classes generated by 
the indiscernibility relation Ip containing at least one object x belonging to X. 
In other words, P_{X) is the largest union of the P-elementary sets included in 
X, while P{X) is the smallest union of the P-elementary sets containing X. 

The P-boundary of X in S, denoted by Bnp(X), is defined as 

Bnp(X)=J(X)-P_(X) 
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The term rough approximation is a general term used to express the opera
tion of the P-lower and F-upper approximation of a set or of a union of sets. 
The rough approximations obey the following basic laws (see Pawlak, 1991): 

• the inclusion property: P^ {X) Q X C. P (X) 

• the complementarity property: P_ {X) = U — P (U — X) 

Therefore, if an object x belongs to P_(X), it is also certainly contained in X, 
while if A: belongs to P(X), it is only possibly contained in X. Bnp(X) con
stitutes the doubtful region of X: using the knowledge encoded by P nothing 
can be said with certainty about the inclusion of its elements in set X. 

If the P-boundary of X is empty (i.e. Bnp{X) = 0) then the set X is an 
ordinary set, called the P-exact set. By this, we mean that it may be ex
pressed as the union of a certain number of P-elementary sets. Otherwise, 
if Bnp(X) 7̂  0, then the set X is a P-rough set and may be characterized by 
means of P(X) and P(X). 

The following ratio defines an accuracy measure of the approximation of 

X (X y^ id) by means of the attributes from P: ap(X) = | | | ^ , where | Y\ 

denotes the cardinality of a (finite) set Y. 
Obviously, 0 < ap(X) < I. If ap(X) = 1, then X is a P-exact set. If 

o(p(X) < 1, then X is a P-rough set. 
Another ratio defines a quality measure of the approximation of X by means 

I P(X)\ 

of the attributes from P: ypiX) = '~ . '. The quahty yp{X) represents the 
relative frequency of the objects correctly assigned by means of the attributes 
from P. Moreover, 0 < ap{X) <yp(X) <\, and }/p(X) = 0 iff ap(X) = 0, 
while yp(X) = 1 iff ap(X) = 1. 

The definition of approximations of a subset X Q U can be extended 
to a classification, i.e. a partition Y = {Y\,... ,Yn} of U. The subsets F,, 
/ = 1,. . . ,«, are disjunctive classes of Y. By the P-lower and P-upper 
approximations of F in 5 we mean the sets PY = [PYi,..., PYn) and 
PF = {PFi , . . . , PF„), respectively. The coefficient 

V IPFI 

ic/| 

is called the quality of approximation of classification Y by the set of at
tributes P, or in short, the quality of classification. It expresses the ratio of 
all P-correctly classified objects to all objects in the data table. 

The main issue in rough set theory is the approximation of subsets or parti
tions of U, representing knowledge about U, with other sets or partitions that 
have been built up using available information about U. From the perspective 
of a particular object x e U,it may be interesting, however, to use the available 
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information to assess the degree of its membership to a subset X of U. The 
subset X can be identified with the knowledge to be approximated. Using the 
rough set approach one can calculate the membership function fx^(x) (rough 
membership function) as 

p \xnip(x)\ 
Lly(X) = 

"̂  \Ipix)\ 

The value of /xj(x) may be interpreted analogously as conditional probability 
and may be understood as the degree of certainty (credibility) to which x be
longs to X. Observe that the value of the membership function is calculated 
from the available data, and not subjectively assumed, as it is in the case of 
membership functions of fuzzy sets. 

Between the rough membership function and the rough approximations of 
X the following relationships hold: 

P(X) = {x e U : fi^^ix) = 1} 

T(X) = {x eU : fi^ix) > O) 

P_{U-X) = {x eU :ii^x{x) = 0] 

T(U-X) = {x e U : fx^ix) < 1} 

BnpiX) = Bnp{U-X) = {x eU-.0 < fM^ix) <1] 

In rough set theory there is, therefore, a close Hnk between the granularity 
connected with the rough approximation of sets and the uncertainty connected 
with the rough membership of objects to sets. 

A very important concept for concrete applications is that of the dependence 
of attributes. Intuitively, a set of attributes T C. Q totally depends upon a set 
of attributes P C. Q if all the values of the attributes from T are uniquely 
determined by the values of the attributes from P. In other words, this is 
the case if a functional dependence exists between evaluations by the attributes 
from P and by the attributes from T. This means that the partition (granularity) 
generated by the attributes from P is at least as "fine" as that generated by the 
attributes from T, so that it is sufficient to use the attributes from P to build 
the partition U\IT- Formally, T totally depends on P iff Ip c I-p. 

Therefore, T is totally (partially) dependent on P if all (some) objects of 
the universe U may be univocally assigned to granules of the partition U\IT, 
using only the attributes from P. 

Another issue of great practical importance is that of knowledge reduction. 
This concerns the elimination of superfluous data from the data table, without 
deteriorating the information contained in the original table. 

Let P Q Q and p e P. It is said that attribute p is superfluous in P if 
Ip = Ip-.[p}\ otherwise, p is indispensable in P. 
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The set P is independent if all its attributes are indispensable. The subset P' 
of P is a redact of P (denoted by RED(P)) if P^ is independent and Ip^ = I p. 

A reduct of P may also be defined with respect to an approximation of the 
classification Y of objects from t/. It is then called a Y-reduct of P (denoted by 
REDy(F)) and it specifies a minimal subset P' of P which keeps the quaUty 
of the classification unchanged, i.e. YP' (^) = YP (X)- ^^ other words, the 
attributes that do not belong to a F-reduct of P are superfluous with respect to 
the classification Y of objects from U, 

More than one F-reduct (or reduct) of P may exist in a data table. The set 
containing all the indispensable attributes of P is known as the Y-core (denoted 
byCOREK(P)). In formal terms, C O R E K ( P ) = nREDy(P) . Obviously, 
since the F-core is the intersection of all the F-reducts of P, it is included in 
every F-reduct of P. It is the most important subset of attributes of Q, because 
none of its elements can be removed without deteriorating the quality of the 
classification. 

16.2.3 Decision Rules Induced From Rough 
Approximations 

If in a data table the attributes of the set Q are divided into condition at
tributes (set C ^ 0) and decision attributes (set D 7̂  0), then such a table is 
called a decision table. Note that C U D = Q and C Pi Z) = 0. The decision 
attributes induce a partition of U deduced from the indiscemibility relation lo 
in a way that is independent of the condition attributes. D-elementary sets are 
called decision classes. There is a tendency to reduce the set C while keep
ing all important relationships between C and D, in order to make decisions 
on the basis of a smaller amount of information. When the set of condition 
attributes is replaced by one of its reducts, the quality of approximation of the 
classification induced by the decision attributes does not deteriorate. 

Since the tendency is to underline the functional dependencies between 
condition and decision attributes, a decision table may also be seen as a set 
of decision rules. These are logical statements (consequence relations) of the 
type 'Hf..., then... ", where the antecedent (condition part) specifies values 
assumed by one or more condition attributes (describing C-elementary sets) 
and the consequence (decision part) specifies an assignment to one or more 
decision classes (describing D-elementary sets). Therefore, the syntax of a 
rule can be outlined as follows: 

( / /(^,^i)isequaltor^i 
and fix.qi) is equal to r̂ 2 
and ... and f{x,qp) is equal to r^^. 
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thenX belongs to Yj\ or Yji or ... Yjk 

where {qi ,q2,---,qp} Q C, (r^i, r^2, • • •, r^p) e V̂ i x V̂ 2 x • • • x V̂ p and 
Yj], Yj2,..., Yjk are some decision classes of the considered classification (D-
elementary sets). If there is only one possible consequence, i.e. ^ = 1, then the 
rule is said to be certain, otherwise it is said to be approximate or ambiguous. 

An object x e U supports decision rule r if its description is matching both 
the condition part and the decision part of the rule. We also say that decision 
rule r covers object x if it matches at least the condition part of the rule. Each 
decision rule is characterized by its strength defined as the number of objects 
supporting the rule. In the case of approximate rules, the strength is calculated 
for each possible decision class separately. 

Let us observe that certain rules are supported only by objects from the 
lower approximation of the corresponding decision class. Approximate rules 
are supported, in turn, only by objects from the boundaries of the correspond
ing decision classes. 

Procedures for the generation of decision rules from a decision table use an 
inductive learning principle. The objects are considered as examples of deci
sions. In order to induce decision rules with a unique consequent assignment 
to a Z)-elementary set, the examples belonging to the £>-elementary set are 
called positive and all the others negative. A decision rule is discriminant if it 
is consistent (i.e. if it distinguishes positive examples from negative ones) and 
minimal (i.e. if removing any attribute from a condition part gives a rule cover
ing negative objects). It may be also interesting to look for partly discriminant 
rules. These are rules that, besides positive examples, could cover a limited 
number of negative ones. They are characterized by a coefficient, called the 
level of confidence, which is the ratio of the number of positive examples (sup
porting the rule) to the number of all examples covered by the rule. 

The generation of decision rules from decision tables is a complex task and a 
number of procedures have been proposed to solve it (see e.g. Grzymala-Busse, 
1992, 1997; Skowron, 1993; Skowron and Polkowski, 1997; Slowinski et al., 
2000; Stefanowski, 1998; Ziarko and Shan, 1994). The existing induction 
algorithms use one of the following strategies: 

• The generation of a minimal set of rules covering all objects from a 
decision table. 

• The generation of an exhaustive set of rules consisting of all possible 
rules for a decision table. 

• The generation of a set of "strong" decision rules, even partly discrim
inant, covering relatively many objects from the decision table (but not 
necessarily all of them). 
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16.2.4 From Indiscernibility to Similarity 
As mentioned above, the classical definitions of lower and upper approx

imations are based on the use of the binary indiscernibility relation which is 
an equivalence relation. The indiscernibility implies the impossibility of dis
tinguishing between two objects of U having the same description in terms of 
the attributes from Q. This relation induces equivalence classes on U, which 
constitute the basic granules of knowledge. In reality, due to the imprecision of 
data describing the objects, small differences are often not considered signifi
cant for the purpose of discrimination. This situation may be formally modeled 
by considering similarity or tolerance relations (see e.g. Nieminen, 1988; Mar
cus, 1994; Slowinski, 1992a; Polkowski et al., 1995; Skowron and Stepaniuk, 
1995; Slowinski and Vanderpooten, 1997, 2000; Stepaniuk, 2000; Yao and 
Wong, 1995). 

Replacing the indiscernibility relation by a weaker binary similarity relation 
has considerably extended the capacity of the rough set approach. This is be
cause, in the least demanding case, the similarity relation requires reflexivity 
only, relaxing the assumptions of symmetry and transitivity. 

In general, the similarity relations R do not generate partitions on U, The 
information regarding similarity may be represented using similarity classes 
for each object x e U. More precisely, the similarity class of x, denoted by 
Rix), consists of the set of objects which are similar to x: 

R(x) = {yeU: yRx} 

It is obvious that an object y may be similar to both x and z, while z is not sim
ilar to x, i.e. j e Rix) Mid y e R(z), but z ^ R(x),x,y, z e t/. The similarity 
relation is of course reflexive (each object is similar to itself). Slowinski and 
Vanderpooten (1995, 2000) have proposed a similarity relation which is only 
reflexive. The abandonment of the transitivity requirement is easily justifiable. 
For example, see Luce's (1956) paradox of the cups of tea: 

• one cannot distinguish a cup of tea without sugar from a cup of tea with 
one grain of sugar, and 

• one cannot distinguish a cup of tea with n grains of sugar from a cup of 
tea with n + \ grains of sugar, however 

• one can distinguish a cup of tea without sugar from a cup of tea with two 
spoons of sugar. 

As for the symmetry, one should notice that yRx, which means "y is similar to 
x'\ is directional. There is a subject y and a referent x, and in general this is not 
equivalent to the proposition "x is similar to y'\ as maintained by Tversky 
(1977). This is immediate when the similarity relation is defined in terms 
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of a percentage difference between evaluations of the objects compared on 
the attribute in hand, calculated with respect to a numerical evaluation of the 
referent object. Therefore, the symmetry of the similarity relation should not 
be imposed. It then makes sense to consider the inverse relation of /?, denoted 
by /?~\ where xR'^y means again "y is similar to x'\ Thus R~^(x), x e U, 
is the class of referent objects to which x is similar: 

R-\x) = {y e U :xRy} 

Given a subset X c, U and a similarity relation R on U, an object x e U is 
said to be non-ambiguous in each of the two following cases: 

• X belongs to X without ambiguity, that is ;c e Z and R~^(x) c X; such 
objects are also called positive; 

• X does not belong to X without ambiguity (x clearly does not belong to 
X),thatis;c e U - X md R^Hx) c U - X (or R-'^{x)nX = idy.such 
objects are also called negative. 

The objects which are neither positive nor negative are said to be ambiguous, A 
more general definition of lower and upper approximation may thus be offered 
(see Slowinski and Vanderpooten, 2000). Let X c. U and let /? be a reflexive 
binary relation defined on U, The lower approximation of X, denoted by R_(X), 
and the upper approximation of X, denoted by /?(X), are defined, respectively, 
as 

£(X) = [x eU : R-\x)^X] 

R(X) = IJRix) 
xeX 

It may be demonstrated that the key properties, inclusion and comple
mentarity, still hold and that 

JiX) = [x eU : R'-H^) nX ^0} 

Moreover, the above definition of rough approximation is the only one that 
correctly characterizes the set of positive objects (lower approximation) and the 
set of positive or ambiguous objects (upper approximation) when a similarity 
relation is reflexive, but not necessarily symmetric nor transitive. 

Using a similarity relation, we are able to induce decision rules from a 
decision table. The syntax of a rule is represented as follows: 

if f(x, q\) is similar to r^i and f(x, qi) is similar to r̂ 2 (^^d . . . 
/(jc, qp) is similar to Vqp, then x belongs to Yj\ or Yji or ,.. Yj^ 
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where {^1,^2,...,^/.) ^ C, (r^i, r^2, • • •, ^̂ /7) e K71 x y^2 x • • • x V̂ ^ 
and Fyi, Yj2,..., Fŷ  are some classes of the considered classification (D-
elementary sets). As mentioned above, if /: = 1 then the rule is certain, oth
erwise it is approximate or ambiguous. Procedures for generation of decision 
rules follow the induction principle described in Section 16.2.3. One such pro
cedure has been proposed by Krawiec et al. (1998)—it involves a similarity 
relation that is leamed from data. We would also like to point out that Greco et 
al. (1998b, 2000a) proposed a fuzzy extension of the similarity, that is, rough 
approximation of fuzzy sets (decision classes) by means of fuzzy similarity 
relations (reflexive only). 

16.3 THE KNOWLEDGE DISCOVERY PARADIGM 
AND PRIOR KNOWLEDGE 

The data set in which classification pattems are searched for is called the 
learning sample. The learning of pattems from this sample should take into 
account available prior knowledge that may include the following items (see 
Slowinski et al, 2002a): 

(i) Domains of attributes, i.e. sets of values that an attribute may take while 
being meaningful to the user. 

(ii) A division of attributes into condition and decision attributes, which re
stricts the range of pattems to functional relations between condition and 
decision attributes. 

(iii) A preference order in the domains of some attributes and a semantic 
correlation between pairs of these attributes, requiring the pattems to 
observe the dominance principle. 

In fact, item (i) is usually taken into account in knowledge discovery. With 
this prior knowledge only, one can discover patterns called association rules 
(Agrawal et al., 1996) which show strong relationships between values of some 
attributes, without fixing which attributes will be on the condition and which 
ones on the decision side in all mles. 

If item (i) is combined with item (ii) in the prior knowledge, then one can 
consider a partition of the learning sample into decision classes defined by de
cision attributes. The pattems to be discovered have then the form of decision 
trees or decision rules representing functional relations between condition and 
decision attributes. These pattems are typically discovered by machine learn
ing (see Chapter 12) and data mining methods (Michalski et al., 1998). As 
there is a direct correspondence between a decision tree and mles, we will 
concentrate our attention on decision mles only. 

As item (iii) is cmcial for decision support, let us explain it in more de
tail. Consider an example of a data set concerning pupils' achievements in 
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a high school. Suppose that among the attributes describing the pupils there 
are results in Mathematics {Math) and Physics (Ph). There is also a General 
Achievement (GA) result. The domains of these attributes are composed of 
three values: bad, medium and good. This information constitutes item (i) 
of prior knowledge. Item (ii) is also available because, clearly, Math and Ph 
are condition attributes while GA is a decision attribute. The preference or
der of the attribute values is obvious: good is better than medium and bad, 
and medium is better than bad. It is known, moreover, that both Math and Ph 
are semantically correlated with GA. This is, precisely, item (iii) of the prior 
knowledge. 

Attributes with preference-ordered domains are called criteria because they 
involve an evaluation. We will use the name of regular attributes for those 
attributes whose domains are not preference-ordered. Semantic correlation 
between two criteria (condition and decision) means that an improvement on 
one criterion should not worsen the evaluation on the second criterion, while 
other attributes and criteria are unchanged. In our example, an improvement of 
a pupil's score in Math or Ph, with other attribute values unchanged, should not 
worsen the pupil's general achievement {GA), but rather improve it. In general, 
semantic correlation between condition criteria and decision criteria requires 
that an object x dominating object y on all condition criteria (i.e. x having 
evaluations at least as good as y on all condition criteria) should also dominate 
y on all decision criteria (i.e. x should have evaluations at least as good as y 
on all decision criteria). This principle is called the dominance principle (or 
Pareto principle) and it is the only objective principle that is widely agreed 
upon in the multicriteria comparisons of objects. 

Let us consider two questions: 

• What classification patterns can be drawn from the pupils' data set? 

• How does item (iii) influence the classification pattems? 

The answer to the first question is "if..., then..." decision rules. Each deci
sion rule is characterized by a condition profile and a decision profile, corre
sponding to vectors of threshold values of regular attributes and criteria in the 
condition and decision parts of the rule, respectively. The answer to the second 
question is that condition and decision profiles of a decision rule should ob
serve the dominance principle if the rule has at least one pair of semantically 
correlated criteria spanned over the condition and decision part. We say that 
one profile dominates another if they both involve the same values of regular 
attributes and the values of criteria of the first profile are not worse than the 
values of criteria of the second profile. 

Let us explain the dominance principle with respect to decision rules on 
the pupils' example. Suppose that two rules induced from the pupils' data set 
relate Math and Ph on the condition side, with GA on the decision side: 
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rule #1: if Math = medium and Ph = medium, then GA = good 

rule #2: if Math = good and Ph = medium, then GA = medium 

The two rules do not observe the dominance principle because the condition 
profile of rule #2 dominates the condition profile of rule #1, while the decision 
profile of rule #2 is dominated by the decision profile of rule #L Thus, in the 
sense of the dominance principle, the two rules are inconsistent, i.e. they are 
wrong. 

One could say that the above rules are true because they are supported by 
examples of pupils from the learning sample, but this would mean that the ex
amples are also inconsistent. The inconsistency may come from many sources. 
Examples include: 

• Missing attributes (regular ones or criteria) in the description of objects. 
Maybe the data set does not include such attributes as the opinion of the 
pupil's tutor expressed only verbally during an assessment of the pupil's 
GA by a school assessment committee. 

• Unstable preferences of decision makers. Maybe the members of the 
school assessment committee changed their view on the influence of 
Math on GA during the assessment. 

Handling these inconsistencies is of crucial importance for knowledge discov
ery. They cannot be simply considered as noise or error to be eliminated from 
data, or amalgamated with consistent data by some averaging operators. They 
should be identified and presented as uncertain patterns. 

If item (iii) were ignored in prior knowledge, then the handling of the above 
mentioned inconsistencies would be impossible. Indeed, there would be noth
ing wrong with rules #1 and #2. They would be supported by different exam
ples discemed by considered attributes. 

It has been acknowledged by many authors that rough set theory provides 
an excellent framework for dealing with inconsistency in knowledge discovery 
(Grzymala-Busse, 1992; Pawlak, 1991; Pawlak et al, 1995; Polkowski, 2002; 
Polkowski and Skowron, 1999; Slowinski, 1992b; Slowinski and Zopounidis, 
1995; Ziarko, 1998). As we have shown in Section 16.2, the paradigm of 
rough set theory is that of granular computing, because the main concept of 
the theory (rough approximation of a set) is built up of blocks of objects which 
are indiscernible by a given set of attributes, called granules of knowledge. In 
the space of regular attributes, the granules are bounded sets. Decision rules 
induced from rough approximation of a classification are also built up of such 
granules. While taking into account prior knowledge of type (i) and (ii), the 
rough approximation and the inherent rule induction ignore, however, prior 
knowledge of type (iii). In consequence, the resulting decision rules may be 
inconsistent with the dominance principle. 
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The authors have proposed an extension of the granular computing paradigm 
that enables us to take into account prior knowledge of type (iii), in addition 
to either (i) only (Greco et al., 2002d), or (i) and (ii) together (Greco et al., 
1998a, 1999b, 2000d, 2001a, 2002a, 2002b; Slowinski et al, 2000, 2002a). 
The combination of the new granules with the idea of rough approximation is 
called the Dominance-Based Rough Set Approach. 

In the following, we present the concept of granules which permit us to 
handle prior knowledge of type (iii) when inducing decision rules. 

Let t/ be a finite set of objects (universe) and let g be a finite set of attributes 
divided into a set C of condition attributes and a set D of decision attributes 
where C fi D = 0. Also, let 

|C| \D\ 

Xc = Y\Xq and Xo = Y\x, 
q=\ q=\ 

be attribute spaces corresponding to sets of condition and decision attributes, 
respectively. The elements of Xc and XQ can be interpreted as possible 
evaluation of objects on attributes from set C = {1 , . . . , |C|} and from set 
D = {1, . . . , |D|}, respectively. Therefore, Xg is the set of possible evalua
tions of considered objects with respect to attribute q. The value of object x 
on attribute q e Q is denoted by Xg. Objects x and y are indiscernible by 
P Q C if Xg = yg for all q € P and, analogously, objects x and y are indis
cernible by R C. D if Xg = yg for all ^ € R. The sets of indiscernible objects 
are equivalence classes of the corresponding indiscernibility relation Ip or JR. 
Moreover, Ip{x) and IR{X) denote equivalence classes including object x. ID 
generates a partition of U into a finite number of decision classes CI = {C/,, 
r = 1 , . . . , n}. Each x e U belongs to one and only one class Clj e CI. 

The above definitions take into account prior knowledge of type (i) and (ii) 
only. In this case, the granules of knowledge are bounded sets in Xp and XR 
(P '^ C and R Q D), defined by partitions of U induced by the indiscernibility 
relations Ip and Ip, respectively. Then, classification patterns to be discovered 
are functions representing granules IR(X) by granules Ip{x) in the condition 
attribute space Xp, for any P c. C and for any x e U. 

If prior knowledge includes item (iii) in addition to (i) and (ii), then the 
indiscernibility relation is unable to produce granules in Xc and XD that would 
take into account the preference order. To do so, the indiscernibility relation 
has to be substituted by a dominance relation in Xp and XR{P c. C and R c 
D). Suppose, for simplicity, that all condition attributes in C and all decision 
attributes in D are criteria, and that C and D are semantically correlated. 

Let >zg be a weak preference relation on U (often called outranking) repre
senting a preference on the set of objects with respect to criterion q €{C U D}. 
Now, Xg >zg yq means "x^ is at least as good as yg with respect to criterion q". 
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On the one hand, we say that x dominates y with respect to P Q C (shortly, 
X P-dominates y) in the condition attribute space Xp (denoted by xDpy) if 
Xq hq yq for all ^ € P. Assuming, without loss of generahty, that the do
mains of the criteria are numerical (i.e. Xq c. R for any q e C) and that they 
are ordered so that the preference increases with the value, we can say that 
xDpy is equivalent to Xq > yq for all q e P, P Q C. Observe that for each 
X e Xp, xDpx, i.e. P-dominance is reflexive. On the other hand, the analo
gous definition holds in the decision attribute space XR (denoted by xD^y), 
where R c. D. 

The dominance relations xDpy and xD^y (P c. C and R c. D) are direc
tional statements where x is a subject and ^̂  is a referent. 

If X € Xp is the referent, then one can define a set of objects y e Xp 
dominating x, called the P-dominating set (denoted by D^{x)) and defined as 
D^pix) = {yeU: yDpx]. 

If X G Xp is the subject, then one can define a set of objects y e Xp 
dominated by x, called the P-dominated set (denoted by D^{x)) and defined 
as D~p{x) = [y eU \ xDpy]. 

P-dominating sets D'^(x) and P-dominated sets Dp{x) correspond to pos
itive and negative dominance cones in Xp, with the origin x. 

With respect to the decision attribute space Xp (where R c D), the R-
dominance relation enables us to define the following sets: 

Clf = {y€U: yDi,x} Clf = {yeU : xDpy] 

Clt^ = {x e XD- Xq = f̂ } is a decision class with respect to q e D; Cl\^ is 
called the upward union of classes, and C/f"̂  is the downward union of classes. 
If ;c G Cl\^, then x belongs to class Clt^, Xq = tq, or better, on each decision 
attribute q e R. On the other hand, if ;c e Clf^, then x belongs to class 
Clt^, Xq = tq, or worse, on each decision attribute q e R. The downward and 
upward unions of classes correspond to the positive and negative dominance 
cones in Xp, respectively. 

In this case, the granules of knowledge are open sets in Xp and Xp de
fined by dominance cones Dp(^), Dp(x) (P c C) and Cl^"", Clj" (R c D), 
respectively. Then, classification patterns to be discovered are functions rep
resenting granules Cl^^, Cl^^ by granules D J ( X ) , Dpix), respectively, in the 
condition attribute space Xp, for any P c. C and R c. D and for any x e Xp. 

In both cases above, the functions are sets of decision rules. 
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16.4 THE DOMINANCE-BASED ROUGH SET 
APPROACH 

16.4.1 Granular Computing with Dominance Cones 
When discovering classification patterns, a set D of decision attributes is, 

usually, a singleton, D = {d}. Let us take this assumption for further pre
sentation, although it is not necessary for the Dominance-Based Rough Set 
Approach, The decision attribute d makes a partition of U into a finite number 
of classes, CI = {Clt, t — 1 , . . . , n}. Each x e U belongs to one and only 
one class, Clt € CI. The upward and downward unions of classes boil down, 
respectively, to 

S>t 

cif = U ck 

where r = 1 , . . . , n. Notice that for r = 2 , . . . , n we have C/J = U — Clf_^, 
i.e. all the objects not belonging to class Clt or better, belong to class C/^-i or 
worse. 

Let us explain how the rough set concept has been generalized to the 
Dominance-Based Rough Set Approach in order to enable granular comput
ing with dominance cones (for more details, see Greco et al. (1998a, 1999b, 
2000d, 2001a, 2002a) and Slowinski et al. (2000)). 

Given a set of criteria, P c C, the inclusion of an object x e U to the 
upward union of classes Clf, t = 2,.. .,n, is inconsistent with the dominance 
principle if one of the following conditions holds: 

• X belongs to class C/, or better but it is P-dominated by an object y 
belonging to a class worse than Clt, i.e. 

X e Clf but D^ix) n C/,-_i 7̂  0 

• X belongs to a worse class than Clt but it P-dominates an object y be
longing to class Clt or better, i.e. 

X i Clf but Dp(x) n Clf 7̂  0 

If, given a set of criteria P c C, the inclusion of x G U io Clf, where t = 
2 , . . . , « , is inconsistent with the dominance principle, we say that x belongs 
to Clf with some ambiguity. Thus, x belongs to Clf without any ambiguity 
with respect to P C C, if x € Clf and there is no inconsistency with the 
dominance principle. This means that all objects P-dominating x belong to 
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Clf, i.e. D^(x) C C/f. Geometrically, this corresponds to the inclusion of the 
complete set of objects contained in the positive dominance cone originating 
in X, in the positive dominance cone Clf originating in C/^. 

Furthermore, x possibly belongs to Clf with respect to P C C if one of the 
following conditions holds: 

• According to decision attribute d, x belongs to Clf. 

• According to decision attribute d, x does not belong to C/~, but it is 
inconsistent in the sense of the dominance principle with an object y 
belonging to Clf. 

In terms of ambiguity, x possibly belongs to Clf with respect to P C C, if 
X belongs to Clf with or without any ambiguity. Due to the reflexivity of the 
dominance relation Dp, the above conditions can be summarized as follows: 
X possibly belongs to class Clt or better, with respect to P c C, if among 
the objects P-dominated by x there is an object y belonging to class Clt or 
better, i.e. D'^ix) Pi Clf ^ 0. Geometrically, this corresponds to the non
empty intersection of the set of objects contained in the negative dominance 
cone originating in x, with the positive dominance cone Clf originating in 
Clt. 

For P c C, the set of all objects belonging to Clf without any ambiguity 
constitutes the P-lower approximation of C/f, denoted by PJiClf), and the set 
of all objects that possibly belong to Clf constitutes the P-upper approxima
tion of C/f, denoted by P( Clf ) . More formally, we can say 

P( C/f ) = [xeU \ Dt(x) c C/f } 

P(C/f) = {x eU : Dp(x)nClf :^0} 

where t = I,... ,n. Analogously, one can define the P-lower approximation 
and the P-upper approximation of Clf as follows: 

P( Clf ) = [x eU \ Dp(x) c Clf } 

~P{Clf) = [xeU \ Dt{x)r\Clf ^&] 

where t = 1 , . . . , n. The P-lower and P-upper approximations so defined 
satisfy the following inclusion properties for each t e {1 , . . . , n} and for all 
P OC: 

P(C/f ) c C/f c P(C/f) 
P.(cif)ocif ^T(cif) 

All the objects belonging to Clf and Clf with some ambiguity constitute the 
P-boundary of Clf and Clf, denoted by Bnp{Clf) and Bnp{Clf), respec
tively. They can be represented, in terms of upper and lower approximations. 
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as follows: 

BnpiClf) = T{ Clf ) - P( Clf ) 

Bnp{Clf) = T{ Clf ) - P( Clf) 

where t = 1 , . , . , n. The P-lower and P-upper approximations of the unions 
of classes Clf and Clf have an important complementarity property. It says 
that if object x belongs without any ambiguity to class CU or better, then it is 
impossible that it could belong to class Clt-\ or worse, i.e. P_{Clf) = U — 
'PiClf_,),t = 2,...,n. 

Due to the complementarity property, Bnp(Clf) = Bnp{Clf_^), for / = 
2 , . . . , n, which means that if jc belongs with ambiguity to class Clt or better, 
then it also belongs with ambiguity to class Clt-\ or worse. 

From the knowledge discovery point of view, P-lower approximations of 
unions of classes represent certain knowledge given by criteria from P c 
C, while P-upper approximations represent possible knowledge and the P-
boundaries contain doubtful knowledge given by the criteria from P c. C. 

The above definitions of rough approximations are based on a strict appli
cation of the dominance principle. However, when defining non-ambiguous 
objects, it is reasonable to accept a limited proportion of negative examples, 
particularly for large data tables. This extended version of the Dominance-
Based Rough Set Approach is called the Variable-Consistency Dominance-
Based Rough Set Approach model (Greco et al., 200If)-

For any P C C, we say that x e U belongs to Clf with no ambiguity at 
consistency level I €(0, 1], if JC € Clf and at least / x 100% of all objects 
y e U dominating x with respect to P also belong to Clf, i.e. 

|D+(;c)nC/r | 

\D^p{x)\ 
>l 

p 

The level / is called the consistency level because it controls the degree of con
sistency between objects qualified as belonging to Clf without any ambiguity. 
In other words, if / <1, then at most (1 — /) x 100% of all objects y e U 
dominating x with respect to P do not belong to Clf and thus contradict the 
inclusion of A: in Clf. 

Analogously, for any P c C we say that x e U belongs to Clf with no 
ambiguity at consistency level I e (0, 1], if .\: € Clf and at least / x 100% of 
all the objects y e U dominated by x with respect to P also belong to Clf, i.e. 

\D-(x)ncif\ ^^ 
\Dp(x)\ -

Thus, for any P c. C, each object x e U is either ambiguous or non-
ambiguous at consistency level / with respect to the upward union Clf (t = 
2,..., n) or with respect to the downward union Clf (t — I,... ,n — I). 
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The concept of non-ambiguous objects at some consistency level / leads 
naturally to the definition of P-lower approximations of the unions of classes 
Clf and Clf which can be formally presented as follows: 

- ^ '^ I ' \DUX)\ " I 

Given P c. C and consistency level /, we can define the P-upper approxi
mations of Clf and Clf, denoted by P (Clf) and P (Clf), respectively, by 
complementation of ^ ' {Clf_i) and P_^ (Clf+i) with respect to U as follows: 

P'(C/f) = C/-£'(ce,) 
p'(ci^) = u - P! (cif^,) 

P (Clf) can be interpreted as the set of all the objects belonging to Clf, which 

M^ possibly ambiguous at consistency level /. Analogously, P (Clf) can be 
interpreted as the set of all the objects belonging to Clf, which are possibly 
ambiguous at consistency level /. The P-boundaries (P-doubtful regions) of 
Clf and Clf are defined as 

BnpiClf) = T\cif) - EliClf) 

BnpiClf) = T^Clf) - tiClf) 

where f = 1 , . . . , n. The variable consistency model of the Dominance-Based 
Rough Set Approach provides some degree of flexibihty in assigning objects 
to lower and upper approximations of the unions of decision classes. It can 
easily be demonstrated that for 0 < /̂  < / < 1 and t = 2,.,. ,n, 

E! {Clf) ^ E!^ {Clf) and ^ {Clf) c P^ (Clf) 

The variable consistency model is inspired by Ziarko's model of the variable 
precision rough set approach (Ziarko 1993, 1998). However, there is a sig
nificant difference in the definition of rough approximations because £^ {Clf) 

and P {Clf) are composed of non-ambiguous and ambiguous objects at the 

consistency level /, respectively, while Ziarko's P̂ ' (Clt) and P (Clt) are com
posed of P-indiscemibility sets such that at least / x 100% of these sets 
are included in Clt or have an non-empty intersection with Clt, respectively. 
If one would like to use Ziarko's definition of variable precision rough ap
proximations in the context of multiple-criteria classification, then the P-
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indiscemibility sets should be substituted by P-dominating sets Z)J (x). How
ever, then the notion of ambiguity that naturally leads to the general defini
tion of rough approximations (see Slowinski and Vanderpooten, 2000) loses 
its meaning. Moreover, a bad side effect of the direct use of Ziarko's definition 
is that a lower approximation F' (Clf) may include objects y assigned to Clh, 
where h is much less than t, if y belongs to Z)p (x), which was included in 
P_^ (Cl^). When the decision classes are preference ordered, it is reasonable to 
expect that objects assigned to far worse classes than the considered union are 
not counted to the lower approximation of this union. 

For every P c C, the objects being consistent in the sense of the dominance 
principle with all upward and downward unions of classes are P-correctly clas
sified. For every P Q C, the quality of approximation of classification CI by 
the set of criteria P is defined as the ratio between the number of P-correctly 
classified objects and the number of all the objects in the data sample set. Since 
the objects which are P-correctly classified are those that do not belong to any 
P-boundary of unions Clf and Clf, t = 1 , . . . , n, the quality of approxima
tion of classification CI by set of criteria P, can be written as 

yp(Ci) = 

U-( U Bnp{Clf)]ul U Bnp{Clf) 
\te{\ n] / \ fG{l, . . . ,«} 

u 

\u\ 
YP (CI) can be seen as a measure of the quality of knowledge that can be 
extracted from the data table, where P is the set of criteria and CI is the con
sidered classification. 

Each minimal subset P c. C such that yp{Cl) = ydCl) is called a reduct 
of CI and is denoted by REDc/. Note that a decision table can have more than 
one reduct. The intersection of all reducts is called the core and is denoted by 
COREc/. Criteria from COREc/ cannot be removed from the data sample set 
without deteriorating the knowledge to be discovered. This means that in set 
C there are three categories of criteria: 

• indispensable criteria included in the core 

• exchangeable criteria included in some reducts but not in the core 

• redundant criteria being neither indispensable nor exchangeable, thus 
not included in any reduct. 
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Note that reducts are minimal subsets of attributes and criteria conveying the 
relevant knowledge contained in the learning sample. This knowledge is rele
vant for the explanation of patterns in a given decision table but not necessarily 
for prediction. 

It has been shown in Greco et al. (200Id) that the quality of classification 
satisfies properties of set functions which are called fuzzy measures. For this 
reason, we can use the quality of classification for the calculation of indices 
which measure the relevance of particular attributes and/or criteria, in addition 
to the strength of interactions between them. The useful indices are: the value 
index and interaction indices of Shapley and Banzhaf; the interaction indices 
of Murofushi-Soneda and Roubens; and the Mobius representation. All these 
indices can help to assess the interdependence of the considered attributes and 
criteria, and can help to choose the best reduct. 

16.4.2 Induction of Decision Rules 
The dominance-based rough approximations of upward and downward 

unions of classes can serve to induce a generalized description of the objects 
contained in the decision table, in terms of "if..., then... " decision rules. For 
a given upward or downward union of classes, Clf or Clf, the decision rules 
induced under a hypothesis that objects belonging to _F( Clf ) or EiClf) are 
positive and all the others are negative, suggests an assignment to ''class CU or 
better", or to ''class Cls or worse", respectively. On the other hand, the deci
sion rules induced under a hypothesis that objects belonging to the intersection 
P{Clf) n P{Clf) are positive and all the others are negative, are suggesting 
an assignment to some classes between Cls and Clf (s < t). 

In the case of preference-ordered data it is meaningful to consider the fol
lowing five types of decision rules: 

1 Certain D>-decision rules. These provide lower profile descriptions for 
objects belonging to Clf without ambiguity: if Xq\ >:g\ r^i andxqi hqi 
Vqi ^^d ...Xgp >zgp Tqp, then X G Clf, where for each Wq.Zq e Xq, 
"y^q hq Zq' mcaus "vjq is at least as good as Zq\ 

2 Possible D>-decision rules. Such rules provide lower profile descrip
tions for objects belonging to Clf with or without any ambiguity: if 
^q\ ^q\ ^q\ ^ ^ ^ ^ql ^ql ^ql ^^d . . . Xqp >qp Tqp, then X pOSSibly bc-
longs to Clf. 

3 Certain D<-decision rules. These give upper profile descriptions for ob
jects belonging to Clf without ambiguity: if Xq\ <q\ rq\ and Xqi <q2 
rq2 and ...Xqp <qp Vqp, then x G Clf, where for each Wq,Zq e Xq, 
"yoq ^q Zq' mcaus "Wq is at most as good as Zq\ 
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4 Possible D<-decision rules. These provide upper profile descriptions for 
objects belonging to Clf with or without any ambiguity: if Xq\ <q\ rq\ 
andxq2 <q2 ^qi ^^d... Xqp <qp Vqp, then X possibly belongs to Clf. 

5 Approximate D><-decision rules. These represent simultaneously lower 
and upper profile descriptions for objects belonging to Cls U Cls^\ U 
,. .\J Clt without the possibility of discerning the actual class: if Xq\ >:q\ 
Vqi and ...Xqk >qk rqk and Xqk+\ <qk^\ Vqk-^-i and ...Xqp <qp Vqp, then 
X e C/, UC/ ,+ iU . . .UC/ , . 

In the left-hand side of a D><-decision rule we can have Xq >:q Tq and 
^q :<q ^q, whcrc Vq :S ^q^ for the same q e C. Moreover, if r̂  = r^, the two 
conditions boil down to Xq^qVq, where for each Wq.Zq e Xq, "Wq^qZq'' means 
"Wq is indifferent to Zq'\ 

A minimal rule is a consequence relation where we understand that there is 
no other consequence relation with a left-hand side which has at least the same 
weakness (which means that it uses a subset of elementary conditions and/or 
weaker elementary conditions) and which has a right-hand side that has at least 
the same strength (which means a D>- or a D<-decision rule assigning objects 
to the same union or sub-union of classes, or a D><-decision rule assigning 
objects to the same or larger set of classes). 

Rules of type 1 and 3 represent certain knowledge extracted from the data 
table, while rules of type 2 and 4 represent possible knowledge. Rules of type 5 
represent doubtful knowledge. 

The rules of type 1 and 3 are exact if they do not cover negative examples; 
they are probabilistic, otherwise. In the latter case, each rule is characterized 
by a confidence ratio, representing the probability that an object matching the 
left-hand side of the rule matches also its right-hand side. ProbabiHstic rules 
concord to the Variable-Consistency Dominance-Based Rough Set Approach 
model mentioned above. 

We will now comment upon the apphcation of decision rules to some objects 
described by criteria from C. When applying D>-decision rules to an object x, 
it is possible that x either matches the left-hand side of at least one decision rule 
or it does not. In the case of at least one such match, it is reasonable to conclude 
that X belongs to class C/^, that is the lowest class of the upward union Clf 
which results from intersection of all the right-hand sides of the rules covering 
X. More precisely, if x matches the left-hand side of rules p\, Pi-, - - - ^ Pm^ 
having right-hand sides x G C/f|, x G C/^^,... ,x G C/^^, then x is assigned 
to class Clt, where t = max {f 1, r 2 , . . . , rm}. In the case of no matching, we 
can conclude that x belongs to C/i, i.e. to the worst class, since no rule with a 
right-hand side suggesting a better classification of x is covering this object. 

Analogously, when applying D<-decision rules to the object x, we can con
clude that X belongs either to class C/^, (that is the highest class of the down-
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ward union Clf resulting from the intersection of all the right-hand sides of 
the rules covering x) or to class C/„, i.e. to the best class, when x is not cov
ered by any rule. More precisely, if jc matches the left-hand side of rules 
P\, P2,..., pm, having right-hand sides x e Clf^, x e C/,^,... ,x e Clf^, 
then X is assigned to class Clt, where t = min {tl,t2,... ,tm}. In the case of 
no matching, it is concluded that x belongs to the best class C/„ because no 
rule with a right-hand side suggesting a worse classification of x is covering 
this object. 

Finally, when applying D><-decision rules to x, it is possible to conclude 
that JC belongs to the union of all the classes suggested in the right hand side of 
the rules covering x. 

A set of decision rules is complete if it is able to cover all objects from the 
decision table in such a way that consistent objects are re-classified to their 
original classes and inconsistent objects are classified to clusters of classes 
which refer to this inconsistency. Each set of decision rules that is complete 
and non-redundant is called minimal. Note that an exclusion of any rule from 
this set makes it non-complete. 

In the case of the Variable-Consistency Dominance-Based Rough Set Ap
proach, the decision rules are induced from the P-lower approximations whose 
composition is controlled by the user-specified consistency level /. Conse
quently, the value of confidence a for the rule should be constrained from the 
bottom. It is reasonable to require that the smallest accepted confidence level 
of the rule should not be lower than the currently used consistency level /. In
deed, in the worst case, some objects from the P-lower approximation may 
create a rule using all the criteria from P thus giving a confidence a > I. 

Observe that the syntax of decision rules induced from dominance-based 
rough approximations uses the concept of dominance cones: each condition 
profile is a dominance cone in Xc, and each decision profile is a dominance 
cone in XD- In both cases the cone is positive for D>-rules and negative for 
D<-rules. 

Also note that dominance cones which correspond to condition profiles can 
originate in any point of Xc, without the risk of being too specific. Thus, in 
contrast to traditional granular computing, the condition attribute space Xc 
need not be discretized. 

Some procedures for rule induction from rough approximations have been 
proposed in Greco et al. (200 Ig). In Giove et al. (2002), a new methodology 
for the induction of monotonic decision trees from dominance-based rough 
approximations of preference-ordered decision classes has been proposed. 
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16.4.3 An Illustrative Example 
To illustrate the application of the Dominance-Based Rough Set Approach 

to multicriteria classification, we will use a part of some data provided by 
a Greek industrial bank ETEVA which finances industrial and commercial 
firms in Greece (Slowinski and Zopounidis, 1995). A sample composed of 
39 firms has been chosen for the study in co-operation with the ETEVA finan
cial manager. The manager has classified the selected firms into three classes 
of bankruptcy risk. The sorting decision is represented by decision attribute d 
making a trichotomic partition of the 39 firms: 

d = A means "acceptable" 

d = U means "uncertain" 

d = NA means "non-acceptable". 

The partition is denoted by CI = (C/A, C/U, C/NA} and, obviously, class 
CI A is better than C/u which is better than C/NA-

The firms were evaluated using the following 12 criteria (f means prefer
ence increasing with value and \, means preference decreasing with value): 

A\ = earnings before interests and taxes/total assets, f 

A2 = net income/net worth, ^ 

A3 = total liabilities/total assets, -I 

A4 = total liabilities/cash flow, I 

A5 = interest expenses/sales, ^ 

Ae = general and administrative expenses/sales, | 

A-j = managers' work experience, t (very low = 1, low = 2, 
medium = 3, high = 4, very high = 5) 

As = firm's market niche/position, t (bad = 1, rather bad = 2, 
medium = 3, good = 4, very good = 5) 

Ag = technical structure-facihties, f (bad = 1, rather bad = 2, 
medium = 3, good = 4, very good = 5) 

Aio = organization-personnel, f (bad = 1, rather bad = 2, 
medium = 3, good = 4, very good = 5) 

All = special competitive advantage of firms, f (low = 1, 
medium = 2, high = 3, very high = 4) 
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• A]2 = market flexibility, t (very low = 1, low = 2, medium = 3, 
high = 4, very high = 5). 

The first six criteria are cardinal (financial ratios) and the last six are ordinal. 
The data table is presented in Table 16.3. 

The main questions to be answered by the knowledge discovery process 
were the following: 

• Is the information contained in Table 16.3 consistent? 

• What are the reducts of criteria ensuring the same quality of approxima
tion of the multicriteria classification as the whole set of criteria? 

• What decision rules can be extracted from Table 16.3? 

• What are the minimal sets of decision rules? 

We will answer these questions using the Dominance-Based Rough Set Ap
proach. The first result from this approach is a discovery that the financial data 
matrix is consistent for the complete set of criteria C. Therefore, the C-lower 
and C-upper approximations of C/^^, Cl^ and C/^, C/^ are the same. In 
other words, the quality of approximation of all upward and downward unions 
of classes, as well as the quafity of classification, is equal to 1. 

The second discovery is a set of 18 reducts of criteria ensuring the same 
quality of classification as the whole set of 12 criteria: 

REDJ , ; = {Ai, A4, As, Aj) RED^/ = {^2- M, ^ 5 . ^^v) 

RED3,; = {A3, A4, Ae, A7} RED^/ = {A4, A5, Ae, A7} 

RED ,̂̂  = {A4, A5, A7, Ag} R E D 6 ^ = {A2, A3, A7, A9} 

R E D J ; = {Ai, A3, A4, A7, Ag} RED^/ = M l ' ^ 5 . ^7 . ^9) 

R E D ^ , = {A2, As, A-j, Ag] REDJP/ = {A4, A5, A7, Ag} 

R E D ^ = {As, Ae, AT, Ag} REDJ^ = {A4, As, A-j, Ajo} 

REDg = {A], A3, A4, A7, An) R E D J 4 = {A2, A3, A4, A7, An) 

RED^5 ^ {̂ _̂ ^^^ ^^^ ^j2} R E D J 6 = {Aj, A3. A5, Ae, Ag, An) 

REDg = {A2, A4, Ae, Au, Au} 

RED^S ^ {A^,A2, A3, Ae, Ag, Ajj , A,2} 

All the 18 subsets of criteria are equally good and sufficient for the perfect 
approximation of the classification performed by ETEVA's financial manager 
on the 39 firms. The core of CI is empty (COREc/ = 0) which means that no 
criterion is indispensable for the approximation. Moreover, all the criteria are 
exchangeable and no criterion is redundant. 

The third discovery is the set of all decision rules. We obtained 74 rules 
describing C/^^, 51 rules describing C/0,75 rules describing C/J and 79 rules 
describing C/^. 
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Table 16.3. Financial data matrix. 

Firm 

Fl 
F2 
F3 
F4 
F5 
F6 
F7 
F8 
F9 
FIO 
Fl l 
F12 
F13 
F14 
F15 
F16 
F17 
F18 
F19 
F20 
F21 
F22 
F23 
F24 
F25 
F26 
F27 
F28 
F29 
F30 
F31 
F32 
F33 
F34 
F35 
F36 
F37 
F38 
F39 

^1 

16.4 
35.8 
20.6 
11.5 
22.4 
23.9 
29.9 

8.7 
25.7 
21.2 

18.32 
20.7 

9.9 
10.4 
17.7 
14.8 
16.0 
11.7 
11.0 
15.5 
13.2 
9.1 

12.9 
5.9 

16.9 
16.7 
14.6 
5.1 

24.4 
29.7 
7.3 

23.7 
18.9 
13.9 

-13.3 
6.2 
4.8 
0.1 

13.6 

A2 

14.5 
67.0 

61.75 
17.1 
25.1 
34.5 
44.0 

5.4 
29.7 
24.6 
31.6 
19.3 
3.5 
9.3 

19.8 
15.9 
14.7 

10.01 
4.2 
8.5 
9.1 
4.1 
1.9 

-27.7 
12.4 
13.1 
9.7 
4.9 

22.3 
8.6 

-64.5 
31.9 
13.5 
3.3 

-31.1 
-3 .2 
-3 .3 
-9 .6 

9.1 

A3 

59.82 
64.92 
75.71 
57.1 
49.8 
48.9 
57.8 
27.4 
46.8 
64.8 
69.3 
19.7 
53.1 
80.9 
52.8 

27.94 
53.5 
42.1 
60.8 
56.2 
74.1 
44.8 

65.02 
77.4 
60.1 
73.5 
59.5 
28.9 
32.8 
41.8 
67.5 
63.6 
74.5 
78.7 
63.0 
46.1 
71.9 
42.5 
76.0 

A4 

2.5 
1.7 
3.6 
3.8 
2.1 
1.7 
1.8 
3.3 
1.7 
3.7 
4.4 
0.7 
4.5 
9.4 
3.2 
1.3 
3.9 
3.9 
5.8 
6.5 

11.21 
4.2 
6.9 

-32.2 
5.2 
7.1 
5.8 
4.3 
1.4 
1.6 

-2 .2 
3.5 

10.0 
25.5 

-10.0 
5.1 

34.6 
-20.0 

11.4 

As 

7.5 
2.1 
3.6 
4.2 
5.0 
2.5 
1.7 
4.5 
4.6 
3.6 
2.8 
2.2 
8.5 
1.4 
7.9 
5.4 
6.8 

12.2 
6.2 
5.5 
6.4 
3.3 

14.01 
16.6 
5.6 

11.9 
6.7 
2.5 
3.3 
5.2 

30.1 
12.1 
12.0 
14.7 
21.2 
4.8 
8.6 

12.9 
17.1 

Ae 

5.2 
4.5 
8.0 
3.7 
7.9 
8.0 
2.5 
4.5 
3.7 
8.0 
3.0 
4.0 
5.3 
4.1 
6.1 
1.8 
3.8 
4.3 
4.8 
1.8 
5.0 

10.4 
7.5 

12.7 
5.6 
4.1 
5.6 

46.0 
5.0 
6.4 
8.7 

10.2 
8.4 

10.1 
23.1 
10.5 
11.6 
12.4 
10.3 

Ai 

5 
5 
5 
5 
5 
5 
5 
5 
4 
4 
4 
4 
4 
4 
4 
4 
4 
5 
4 
4 
2 
3 
4 
3 
3 
2 
2 
2 
2 
2 
3 
3 
3 
2 
2 
2 
2 
1 
1 

As 

3 
4 
3 
2 
3 
3 
4 
2 
2 
2 
3 
2 
2 
2 
4 
2 
4 
2 
2 
2 
2 
4 
3 
2 
2 
2 
2 
2 
3 
3 
3 
2 
3 
2 
1 
1 
2 
1 
1 

A9 

5 
5 
5 
5 
5 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
4 
3 
4 
4 
4 
4 
3 
4 
4 
4 
3 
3 
3 
4 
3 
4 
4 
2 

^10 

4 
5 
5 
4 
5 
4 
5 
4 
3 
4 
4 
4 
4 
4 
4 
3 
4 
2 
4 
4 
4 
4 
2 
4 
4 
4 
4 
3 
4 
4 
4 
4 
4 
4 
3 
3 
4 
3 
1 

^11 

2 
4 
3 
3 
3 
3 
3 
1 
1 
1 
3 
1 
1 
3 
2 
2 
2 
1 
2 
2 
2 
3 
1 
2 
2 
2 
2 
1 
2 
2 
2 
1 
3 
3 
1 
2 
2 
1 
1 

An 

4 
5 
5 
4 
5 
4 
5 
4 
3 
4 
4 
3 
4 
3 
5 
3 
4 
3 
4 
4 
3 
4 
2 
3 
3 
3 
4 
2 
3 
3 
3 
3 
4 
4 
2 
3 
3 
3 
2 

J 

A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
A 
U 
U 

u 
u 
u 
u 
u 
u 
u 
u 

NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 
NA 

The fourth discovery is the finding of minimal sets of decision rules. Sev
eral minimal sets were found. One of them is shown below. The number in 
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parentheses indicates the number of objects which support the corresponding 
rule, i.e. the rule strength: 

1 / / fix, A3) > 67.5 and fix, A4) > -2 .2 and fix, Ae) > 8.7, 
then X € C/^^, (4); 

2 / / fix, A2) < 3.3 and fix, Aj) < 2, then x e C/g^' (5); 

3 If fix, ^3) > 63.6 and fix, A7) < 3 and fix, Ag) < 3, 
then X e C/^^, (4); 

4 / / fix, A2) < 12.4 and fix, Ae) > 5.6, then x e Cl^, (14); 

5 / / fix, A7) < 3, then x € C/g, (18); 

6 / / fix, Ai) > 3.5 and fix, A5) < 8.5, then x € C/g, (26); 

7 / / fix, Ay) > 4, ?/zen x € C/g, (21); 

8 / / fix, Ax) > 8.7 and fix, A9) > 4, then x e Cl^, ill); 

9 If fix, A2) > 3.5 and fix, A7) > 4, then x e €1% (20). 

As the minimal set of rules is complete and composed of D>-decision rules and 
D<-decision rules only, application of these rules to the 39 firms will result in 
their exact re-classification to classes of risk. 

Minimal sets of decision rules represent the most concise and non-redundant 
knowledge representations. The above minimal set of nine decision rules uses 
eight criteria and 18 elementary conditions, i.e. 3.85% of descriptors from the 
data matrix. 

The well-known machine discovery methods cannot deal with multicriteria 
classification because they do not consider preference orders in the domains 
of attributes and among the classes. There are multicriteria decision analysis 
methods for such classification. However, they are not discovering classifica
tion patterns from data. They simply apply a preference model, like the utility 
function in scoring methods (see e.g. Thomas et al. 1992), to a set of objects to 
be classified. In this sense, they are not knowledge discovery methods at all. 

Comparing the Dominance-Based Rough Set Approach to the Classical 
Rough Set Approach, we can notice the following differences between the two 
approaches. The Classical Rough Set Approach extracts knowledge about a 
partition of U into classes which are not preference-ordered. The granules 
used for knowledge representation are sets of objects which are indiscernible 
by a set of condition attributes. 

In the case of the Dominance-Based Rough Set Approach and multicri
teria classification, the condition attributes are criteria and the classes are 
preference-ordered. The extracted knowledge concerns a collection of upward 
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and downward unions of classes and the granules used for knowledge represen
tation are sets of objects defined using the dominance relation. This is the main 
difference between the Classical Rough Set Approach and the Dominance-
Based Rough Set Approach. 

There are three notable advantages of the Dominance-Based Rough Set Ap
proach over the Classical Rough Set Approach. The first one is the ability to 
handle criteria, preference-ordered classes and inconsistencies in the set of de
cision examples that the Classical Rough Set Approach is simply not able to 
discover. Consequently, the rough approximations separate the certain infor
mation from the doubtful, which is taken into account in rule induction. The 
second advantage is the ability to analyze a data table without any preprocess
ing of data. The third advantage lies in the richer syntax of decision rules that 
are induced from rough approximations. The elementary conditions of deci
sion rules resulting from Dominance-Based Rough Set Approach use relations 
from {< ,= ,>} , while those resulting from the Classical Rough Set Approach 
only use =. The Dominance-Based Rough Set Approach syntax is more under
standable to practitioners. The minimal sets of decision rules are smaller than 
the minimal sets which result from the Classical Rough Set Approach. 

16.5 THE DOMINANCE-BASED ROUGH SET 
APPROACH FOR MULTICRITERIA CHOICE 
AND RANKING 

One of the very first extensions of the Dominance-Based Rough Set Ap
proach concerned preference-ordered data representing pairwise comparisons 
(i.e. binary relations) between objects on both, condition and decision at
tributes (Greco et al., 1999a, 1999b, 2000d, 2001c). Note that while classifica
tion is based on the absolute evaluation of objects, choice and ranking refer to 
pairwise comparisons of objects. In this case, the pattems (i.e. decision rules) 
to be discovered from the data characterize a comprehensive binary relation on 
the set of objects. If this relation is a preference relation and if, from among the 
condition attributes, there are some criteria which are semantically correlated 
with the comprehensive preference relation, then the data set (serving as the 
leaming sample) can be considered to be preferential information given by a 
decision maker in a multicriteria choice or ranking problem. In consequence, 
the comprehensive preference relation characterized by the decision rules dis
covered from this data set can be considered as a preference model for the 
decision maker. It may be used to explain the decision policy of the decision 
maker and to recommend a good choice or preference ranking with respect to 
new objects. 

Let us consider a finite set A of objects evaluated by a finite set of criteria C. 
The best choice (or the preference ranking) in set A is semantically correlated 
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with the criteria from set C. The preferential information concerning the mul-
ticriteria choice or ranking problem is a data set in the form of a pairwise 
comparison table which includes pairs of some reference objects from a subset 
5 c A X A. This is described by preference relations on particular criteria 
from C and a comprehensive preference relation. One such example is a weak 
preference relation called the outranking relation. By using the Dominance-
Based Rough Set Approach for the analysis of the pairwise comparison table, 
we can obtain a rough approximation of the outranking relation by a domi
nance relation. The decision rules induced from the rough approximation are 
then applied to the complete set A of the objects associated with the choice or 
ranking. As a result, one obtains a four-valued outranking relation on this set. 
In order to obtain a recommendation, it is advisable to use an exploitation pro
cedure based on the net flow score of the objects. We present this methodology 
in more detail below. 

16.5.1 The Pairwise Comparison Table as Preferential 
Information and as a Learning Sample 

A set of reference objects represent a decision problem and a decision maker 
can express the preferences by pairwise comparisons. In the following, xSy de
notes the presence, while xS^y denotes the absence of the outranking relation 
for a pair of objects {x,y) e A x A, 

For each pair of reference objects (x, j ) e 5 c A x A, the decision maker 
can select one of the three following possibihties: 

1 object X is as good as y, i.e. xSy, 

2 object X is worse then y, i.e. xS^y, 

3 the two objects are incomparable at the present stage. 

An m X (n + 1) pairwise comparison table, denoted by S^ci, is then created 
on the basis of this information. The first n columns correspond to the criteria 
from set C. The last, i.e. the {n -f l)th, column represents the comprehensive 
binary preference relation S or S^. The m rows are pairs from B. For each 
pair in Spcx^ ^ difference between criterion values is put in the corresponding 
column. If the decision maker judges that two objects are incomparable, then 
the corresponding pair does not appear in SPCT-

We will define 5PCT more formally. For any criterion gt e C, let Ti be a 
finite set of binary relations defined on A on the basis of the evaluations of 
objects from A with respect to the considered criterion gt, such that for every 
{x,y) e A y^ A exactly one binary relation f e 7) is verified. More precisely, 
given the domain Vi of gi e C, if v^, v'l e Vt are the respective evaluations of 
x,y e Ahy means of gt and (x, y) e r, with t € 7/, then for each w,z e A 
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having the same evaluations v[, v'l by means of gi, (w,z) e t. Furthermore, 
let Td be a set of binary relations defined on set A (comprehensive pairwise 
comparisons) such that at most one binary relation t e Td is verified for every 
(x, y) e A X A. 

The pairwise comparison table is defined as data table Spcr = (5, C U 
[d], Tc U Td, f), where 5 C A x A is a non-empty set of exemplary pair-
wise comparisons of reference objects, TQ — U 7̂ -, J is a decision corre-

gi^C 

sponding to the comprehensive pairwise comparison (comprehensive prefer
ence relation), and f : B x {C U {d}) •-> Tc U 7^ is a total function such 
that f[(x, y), q] e Tt for every {x,y) e A x A and for each gt e C, and 
/[(•^^ y)^Q] ^ Td for every {x,y) e BAi follows that for any pair of reference 
objects {x,y) e B there is verified one and only one binary relation t e Td. 
Thus, Td induces a partition of B. In fact, the data table 5PCT can be seen as 
a decision table, since the set of considered criteria C and the decision d are 
distinguished. 

We assume that the exemplary pairwise comparisons made by the decision 
maker can be represented in terms of graded preference relations (for example 
"very large preference", "large preference", "strict preference", "strong pref
erence" and "very strong preference"), denoted by P^\ for each q e C and for 
every (x, y) e A x A, 

Ti=^lPt,heHi} 

where /// is a particular subset of the relative integers and 

• xPl^y, h > 0, means that object x is preferred to object y by degree h 
with respect to criterion gt, 

• xPJ^y, h < 0, means that object x is not preferred to object y by degree 
h with respect to criterion gi, 

• xP^^y means that object x is similar (asymmetrically indifferent) to ob
ject y with respect to criterion gi. 

Within the preference context, the similarity relation /^ ,̂ even if not sym
metric, resembles the indifference relation. Thus, in this case, we call this 
similarity relation "asymmetric indifference". Of course, for each gi e C and 
for every {x, y) e A x A, 

[xPl'y, h>0]=> [yPl'x, k<0], [xPl'y, h < O] =^ [yP^x, k>0] 

The set of binary relations Td may be defined in a similar way, but xPJ^y means 
that object x is comprehensively preferred to object y by degree h. We are 
considering a pairwise comparison table where the set Td is composed of two 
binary relations defined on A: 
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• X outranks y (denoted by xSy or (x,y) e S), where (x,y) € B, 

• X does not outrank y (denoted by xS^y or (x, y) e S^), where (x, y) e 
B,SindSUS' = B. 

Observe that the binary relation S is reflexive, but not necessarily transitive or 
complete. 

16.5.2 Rough Approximation of the Outranking and 
Non-outranking Relations Specified in the Pairwise 
Comparison Table 

In the following we will distinguish between two types of evaluation scales 
of criteria: cardinal and ordinal. Let C^ be the set of criteria expressing pref
erences on a cardinal scale, and let C^, be the set of criteria expressing pref
erences on an ordinal scale, such that C^ U C^ = C and C^ n C^ = 0. 
Moreover, for each P c C, we denote by P^ the subset of P composed of 
criteria expressing preferences on an ordinal scale, i.e. P^ = P HC^, and by 
P^ we denote the subset of P composed of criteria expressing preferences on 
a cardinal scale, i.e. P^ = P n C^. Of course, for each P c C, we have 
P = PN y pO and pN PI pO ^ 0 

The meaning of the two scales is such that in the case of the cardinal scale 
we can specify the intensity of preference for a given difference of evaluations, 
while in the case of the ordinal scale, this is not possible and we can only 
establish an order of evaluations. 

Multigraded Dominance Let P = P^ and P ° = 0. Given P c, C {P ^ 
&),(x,y),{w, z) e A x A, the pair of objects (jc, y) is said to dominate (w, z) 
with respect to criteria from P (denoted by (x, y)Dp(w, z)), if x is preferred 
to y at least as strongly as w is preferred to z with respect to each gt e P. 
More precisely, "at least as strongly as" means "by at least the same degree", 
i.e. hi > ki, where hi, ki € Hi, xPJ^^y and wP^^z, for each g, € P. 

Let D{i] be the dominance relation confined to the single criterion g, € P. 
The binary relation D{,} is reflexive {{x, y)D{i]{x, y), for every {x, y) e A x 
A), transitive {{x, y)D[i}{w, z) and {w, z)D{i}{u, v) imply {x, y)D{i}{u, v), for 
every {x, y),{w, z),{u, v) e A y. A), and complete {{x, y)D[i]{w, z) and/or 
{w, z)D[i}{x, y), for all {x, y),{w, z) € A x A), Therefore, D{,} is a complete 
preorder on A x A. Since the intersection of complete preorders is a partial 
preorder and Dp = p\ £){,}, P ^ C, then the dominance relation Dp is a 

partial preorder on A x A. 
Let R c. P c. C and (x,y),(u,v) e A x A; then the foflowing imphcation 

holds: 
(x, y)Dp{u, v) =^ (x, y)Dii(u, v) 
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Given P c. C and (x,y)eAxA,'we define the following: 

• A set of pairs of objects dominating (x, y), called the P-dominating set, 
denoted by D^{x, y) and defined to be 

{{w, z) € A X A : (w, z)Dp(x, y)} 

• A set of pairs of objects dominated by (x,y), called the P-dominated set, 
denoted by Dp(x, y) and defined as 

{(w, z) e A X A : (x, y)Dp(w, z)} 

The P-dominating sets and the P-dominated sets defined on B for all pairs 
of reference objects from B are "granules of knowledge" that can be used to 
express F-lower and P-upper approximations of the comprehensive outrank
ing relations S and S'^, respectively: 

P_(S) = lix,y)eB:D+ix,y)QS} 

J(S) = U D-^(x,y) 
{x,y)&S 

P,{S') = {(x,y)eB:D-(x,y)QS'} 

P(50 = U D-ix,y) 
(x,y)eS' 

It has been proved in Greco et al. (1999a) that 

LiS) c 5 c T(S) P {S') QS' QJ {S') 

Furthermore, the following complementarity properties hold: 

P(5) = B-T {S') T{S) = B-P_ {S') 

P {S') = B- T{S) T {S') = B- P_{S) 

The P-boundaries (P-doubtful regions) of 5" and S^ are defined as 

Bnp{S)=T{S)-P_{S) Bnp(S') = J{S')-P_{S') 

From the above it follows that Bnp{S) = Bnp{S^). 
The concepts of the quality of approximation, reducts and core can be ex

tended also to the approximation of the outranking relation by multigraded 
dominance relations. 

In particular, the coefficient 

\P_{S)UP_{S')\ 

^̂  = m 
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defines the quality of approximation of S and 5̂^ by P c C. It expresses the 
ratio of all pairs of reference objects ix,y) e B correctly assigned to 5" and 
S^ by the set P of criteria to all the pairs of objects contained in B. Each 
minimal subset P Q C, such that yp = yc, is called a redact of C (denoted by 
REDsp,.^). Note that 5pcT can have more than one reduct. The intersection of 
all 5-reducts is called the core (denoted by CORESPCT)-

It is also possible to use the Variable Consistency Model on 5pcT (Slowinski 
et al, 2002b) but being aware that some of the pairs in the positive or negative 
dominance sets belong to the opposite relation although at least / x 100% of 
pairs belong to the correct one. Then the definition of the lower approximations 
of S and S^ boils down to 

f \DUx,y)nS\ ] 
[ \Dpix,y)\ J 

/ X f \D-;(x,y)nS'\ ] 
P{S^) = Ux,y)eB: ' '' '' ' > / 

[ \Dp(x,y)\ J 

Dominance Without Degrees of Preference The degree of graded prefer
ence considered above is defined on a cardinal scale of the strength of prefer
ence. However, in many real world problems, the existence of such a quantita
tive scale is rather questionable. This is the case with ordinal scales of criteria. 
In this case, the dominance relation is defined directly on evaluations gi{x) for 
all objects x e A. Let us explain this latter case in more detail. 

Let P = P^ and P^ = 0, then, given (x, y), (w, z) e Ax A, the pair (x, y) 
is said to dominate the pair (if, z) with respect to criteria from P (denoted by 
(x, y)Dp{w, z)), if for each gi e P, gtix) > gi{w) and gtiz) > gtiy). 

Let D{i} be the dominance relation confined to the single criterion g, e P° . 
The binary relation D{,} is reflexive, transitive, but non-complete (it is possi
ble that not (x, y)D[i]{w, z) and not (w, z)D{i](x, y) for some (x, y),(io, z) e 
A X A). Therefore, Z){/) is a partial preorder. Since the intersection of par
tial preorders is also a partial preorder and Dp = f] D{/}, P = P^, then the 
dominance relation Dp is a partial preorder. ^'^^ 

If some criteria from P c. C express preferences on a quantitative or a nu
merical non-quantitative scale and others on an ordinal scale, i.e. if P^ 7̂  0 
and P ° 7̂  0, then, given (x, y),('w,z) € A x A, the pair (x, y) is said to dom
inate the pair {w, z) with respect to criteria from P,if(x,y) dominates (w, z) 
with respect to both P^ and P^. Since the dominance relation with respect 
to P^ is a partial preorder on A x A (because it is a multigraded dominance) 
and the dominance with respect to P^ is also a partial preorder on A x A (as 
explained above), then the dominance Dp, being the intersection of these two 
dominance relations, is a partial preorder. In consequence, all the concepts in-
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troduced in the previous section can be restored using this specific definition 
of dominance. 

16.5.3 Induction of Decision Rules From Rough 
Approximations of Outranking and 
Non-outranking Relations 

Using the rough approximations of S and S^ defined in Section 16.5.2, it 
is possible to induce a generalized description of the preferential information 
contained in a given S^ci in terms of suitable decision rules. The syntax of 
these rules is based on the concept of upward cumulated preferences (denoted 
by Pj~ ) and downward 
following interpretation: 
by Pj~ ) and downward cumulated preferences (denoted by Pr ), having the 

• X Pf y means "x is preferred to y with respect to g, by at least degree 

• xP^y means "JC is preferred to y with respect to gi by at most degree 
h". 

Exact definition of the cumulated preferences, for each {x,y) e A x A, 
gi E C and h e Hi, can be represented as follows: 

• xPf-'^y if xP^y, where k e Hi and k > h 

• xPr^'^y if xPJ^y, where k e Hi and k < h. 

Let also G, = {gi(x),x e A}, gi e C*-*. The decision rules have then the 
following syntax. 

1 Certain D>-decision rules. If xP^ y and...xP^ y and 
gie+\(x) > rie+\ andgie+iiy) < Sie+i and ...gip{x) > ^p andgip{y) < 
Sip, then xSy, where P = {gn,..., gip} o C, P^ = {gn,..., gie), 
P ° = {gie+i,..-,gip}, {h{i\),...,h{ie)) € //n x • • • x Hie and 
(r/e+i,..., rip),{Sie^\,..., Sip) e Gie+\ X • • • X Gip. These rules are 
supported by pairs of objects from the P-lower approximation of S only. 

2 Certain D<-decision rules. If xP^ y and...xP^ y and 
gie+\ix) < He+i andgie+\{y) > Sie+i and ...gip(x) < rip andgip(y) > 
Sip, then xS'y, where P = {gn,..., gip} ^ C, P^ = {gn,..., gie), 
P° = {gie+i,...,gip}, (h(il),...,h(ie)) € //n x • • • x Hie and 
(rie+i,..., rip), (sie+i,..., Sip) € Gie+i x---xGip. These rules are sup
ported by pairs of objects from the P-lower approximation of S^ only. 

3 Approximate D><-decision rules. If xP^ y and...xP~ y and 
xP^lf'^^^y .. .xP^j^^'^^y and gif+i{x) > r,/+i and gif+^iy) < Sif+i 
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and...gigix) > ng and gtgiy) < % and gig+\(x) < r,g+] and 
gig+iiy) > Sig+i and...gip{x) < np and gip(y) > Sip, then xSy or 
xS'y,whtTt O' = {giU.-.,gie} C C, 0"=:{gie+U . . . , gif]} £ C, 
P^ = O' U O", O' and O" are not necessarily disjoint, P ° = 
{gif+\,..., gip], (h(i\),..., h(if)) e Hn X '•• X Hif, ( r , /+i , . . . , rip), 
{sif+\,..., Sip) € Gifj^i X • • • X Gip. These rules are supported by pairs 
of objects from the P-boundary of S and S^ only. 

16.5.4 Use of Decision Rules for Decision Support 
The decision rules induced from a given SPCT describe the comprehensive 

preference relations S and S^ either exactly (D>- and D<-decision rules) or 
approximately (D><-decision rules). A set of these rules covering all pairs 
of 5pcT represents a preference model of the decision maker who gave the 
pairwise comparison of reference objects. The application of these decision 
rules on a new subset M C A of objects induces a specific preference structure 
on M. 

In fact, any pair of objects (u,v)eMxM can match the decision rules in 
one of four ways: 

• at least one D>-decision rule and neither D<- nor D><-decision rules, 

• at least one D<-decision rule and neither D>- nor D><-decision rules, 

• at least one D>-decision rule and at least one D<-decision rule, or at least 
one D><-decision rule, or at least one D><-decision rule and at least one 
D>- and/or at least one D<-decision rule, 

• no decision rule. 

These four ways correspond to the following four situations of indexoutranking 
outranking, respectively: 

• uSv and not uS^v, i.e. true outranking (denoted by uS^v), 

• uS^v and not uSv, i.e. false outranking (denoted by uS^v), 

• uSv and uS^v, i.e. contradictory outranking (denoted by uS^v), 

• not uSv and not uS^v, i.e. unknown outranking (denoted by uS^v). 

The four above situations, which together constitute the so-called four-valued 
outranking (Greco et al., 1998c), have been introduced to underline the pres
ence and absence of positive and negative reasons for the outranking. More
over, they make it possible to distinguish contradictory situations from un
known ones. 
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A final recommendation (choice or ranking) can be obtained upon a suitable 
exploitation of this structure, i.e. of the presence and the absence of outranking 
S and S^ on M. A possible exploitation procedure consists of calculating a 
specific score, called the Net Flow Score, for each object x e M: 

Snf(x) = S++(x) - S+-(x) + S'+ix) - S—{x) 

where 

5'"̂ '̂ (x) = \{y e M: at least one decision rule affirms xSy}\ 

5'+~(x) = \{y € M: at least one decision rule affirms ySx}\ 

S~'^ix) = \{y e M: at least one decision rule affirms >'5"̂ ;c}| 

S (x) = \{y e M: at least one decision rule affirms A:5'^}'}| 

The recommendation in ranking problems consists of the total preorder de
termined by Snf(x) on M. In choice problems, it consists of the object(s) 
X* e M such that 5nf(jc*) = max {5nf(Ji:)}. 

xeM 

The above procedure has been characterized with reference to a number of 
desirable properties in Greco et al. (1998c). 

16.5.5 An Illustrative Example 
Let us suppose that a company managing a chain of warehouses wants to 

buy some new warehouses. To choose the best proposals or to rank them all, 
the managers of the company decide to analyze first the characteristics of eight 
warehouses already owned by the company (reference objects). This analy
sis should give some indications for the choice and ranking of the new pro
posals. Eight warehouses belonging to the company have been evaluated by 
the following three criteria: capacity of the sales staff (A]), perceived qual
ity of goods (A2) and high traffic location (A3). The domains (scales) of 
these attributes are presently composed of three preference-ordered echelons: 
Vi = V2 = V3 = {sufficient, medium, good}. The decision attribute (d) indi
cates the profitability of warehouses, expressed by the return on equity (ROE) 
ratio (in %). Table 16.4 presents a decision table which represents this situa
tion. 

With respect to the set of criteria C = C^ = [A], A2, A3}, the following 
multigraded preference relations Pf^,i = 1, 2, 3, are defined: 

• xPJ^y (and yP^^x), meaning that x is indifferent to y with respect to A,, 
if fix, Ai) = f(y,Ai), 

• xP^^y (and yP'^x), meaning that x is preferred to y with respect to A,, 
if fix, Ai) = good and fiy,Ai) = medium, or if fix, A,) = medium 
and fiy,Ai) = sufficient. 
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Table 16.4. Decision table with reference objects. 

Warehouse 

1 
2 
3 
4 
5 
6 
7 
8 

Ai 

good 
good 

medium 
sufficient 
sufficient 
sufficient 

good 
good 

Ai 

medium 
sufficient 
medium 
medium 
medium 

sufficient 
medium 

sufficient 

A3 

good 
good 
good 

medium 
medium 

good 
good 
good 

d (ROE %) 

10.35 
4.58 
5.15 

- 5 
2.42 
2.98 

15 
-1.55 

• xP^y (and yP^ ^x), meaning that x is strongly preferred to y with re
spect to Ai, if f{x, Ai) = good and f(y, At) = sufficient. 

Using the decision attribute, the comprehensive outranking relation was built 
as follows: warehouse x is at least as good as warehouse y with respect to 
profitability (xSy) if 

ROE(jc) > ROE(y) - 2% 

Otherwise, i.e. if ROE(A:) < ROE(y) — 2%, warehouse x is not at least as 
good as warehouse y with respect to profitability (xS'^y). 

The pairwise comparisons of the reference objects result in 5PCT- The rough 
set analysis of the 5PCT leads to the conclusion that the set of decision examples 
on the reference objects is inconsistent. The quality of approximation of S 
and S^ by all criteria from set C is equal to 0.44. Moreover, REDsĵ ĵ. = 
COREspCT = (Ai, A2, A3}. This means that no criterion is superfluous. 

The C-lower approximations of S and S^, obtained by means of multigraded 
dominance relations, are 

C(S) = {(1,2), (1,4), (1,5), (1,6), (1,8), (3, 2), (3, 4), (3, 5), (3, 6), 

(3, 8), (7, 2), (7,4), (7, 5), (7, 6), (7, 8)} 

C(S') = {(2,1), (2, 7), (4,1), (4, 3), (4, 7), (5,1), (5, 3), (5, 7), (6,1), 

(6, 3), (6, 7), (8,1), (8, 7)} 

All the remaining 36 pairs of reference objects belong to the C-boundaries of 
S and S', i.e. BndS) = BndS'). 

The following minimal D>-decision rules and D<-decision rules can be 
induced from lower approximations of S and S'^, respectively (the figures 
within parentheses represent the pairs of objects supporting the corresponding 
rules): 
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IfxPf yandxPf y.then xSy\ 
((1,6), (3, 6X a 6)) 

If xP^ yandxPf y, then xSy; 
((1, 2), (1, 6) Ah 8), (3, 2), (3, 6), (3, 8), (7, 2), (7, 6), (7, 8)) 

IfxP^ yandxPf y.then xSy\ 
(a_, 4), (1, 5), (3,4), (3, 5), (7, 4), (7, 5)) 

IfxPf yandxP^ y, then xS^y\ 
({6, 1), (6, 3)^^6, 7)) 

If xPf y and xP^ y, then xS^y; 
((4,1), (4, 3)^^4,7), (5, 1)^(5, 3), (5, 7)) 

If xPf y and xP^ y and xP^ y, then xS^y; 
((2, 1), (2, 7), (6, 1), (6, 3), (6, 7), (8, 1), (8, 7)) 

Moreover, it is possible to induce five minimal D><-decision rules from the 
boundary of approximation of S and S^: 

If xPf yandxP^ yandxPf yandxP^ y.then xSy or xS^y\ 
((1, 1), (1, 3), (1, 7), (2, 2), (2, 6), (2, 8), (3, 1), (3, 3), (3, 7), (4, 4), (4, 5), 
(5,4),^(_5, 5), (6, 2)^(6, 6), (6, 8), (7, 1), (7, 3), (7, 7), (8, 2), (8, 6), (8, 8)) 
If xPf y and xP^ y, then xSy or xS^y\ 

((2,4), (2, 5M6, 4), (6, 5), (8,4), (8, 5)) 
If xP^ y and xPf y, then xSy or xS^y\ 

{{A 2), (4, 6) (4, 8), (5, 2), (5, 6), (5, 8)) 
If xPf y and xPf y and xPf y, then xSy or xS^y\ 

( 0 , 3), (2, 3)^^2, 6), (7, 3), (8, 3), (8, 6)), 
If xPf y and xP^ y, then xSy or xS^y\ 

((2,3), (2, 4), (2, 5), (8, 3), (8, 4), (8,5)). 

Using all the above decision rules and the Net Flow Score exploitation pro
cedure on ten other warehouses proposed for purchase, the managers can ob
tain the result presented in Table 16.5. The dominance-based rough set ap
proach gives a clear recommendation: 

• For the choice problem it suggests the selection of warehouse 2' and 6', 
having maximum score (11); 

• For the ranking problem it suggests the ranking presented in the last 
column of Table 16.5, as follows: 

(2', 6') ^ (8') -> (9') -> (1') -> (4') -> (5') -> (3') ^ {!', 10') 
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Table 16.5. 
dure. 

Ranking of warehouses for sale by decision rules and the Net Flow Score proce-

Warehouse 
for sale 

F 
2' 
3' 
4' 
5' 
6' 

r 8' 
9' 

10' 

Ai 

good 
sufficient 
sufficient 
sufficient 
sufficient 
sufficient 
medium 
medium 
medium 
medium 

A2 

sufficient 
good 

medium 
good 

sufficient 
good 

sufficient 
medium 

good 
sufficient 

A3 

medium 
good 

sufficient 
sufficient 
medium 

good 
sufficient 
medium 

sufficient 
sufficient 

Net flow 
score 

1 
11 

- 8 
0 

- 4 
11 

-11 
7 
4 

-11 

Ranking 

5 
1 
8 
6 
7 
1 
9 
3 
4 
9 

16.5.6 Summary 

We have briefly presented the contribution of the Dominance-Based Rough 
Set Approach to multicriteria choice and ranking problems. Let us point out 
the main features of the described methodology: 

• The decision maker is asked for the preference information necessary to 
deal with a multicriteria decision problem in terms of exemplary deci
sions. 

• The rough set analysis of preferential information supphes some use
ful elements of knowledge about the decision situation. These are: the 
relevance of particular attributes and/or criteria, information about their 
interaction, minimal subsets of attributes or criteria (reducts) conveying 
important knowledge contained in the exemplary decisions and the set 
of the non-reducible attributes or criteria (core). 

• The preference model induced from the preferential information is ex
pressed in a natural and comprehensible language of "if..., then..." de
cision rules. The decision rules concern pairs of objects and from them 
we can determine either the presence or the absence of a comprehen
sive preference relation. The conditions for the presence are expressed 
in "at least" terms, and for the absence in ''at most" terms, on particular 
criteria. 

• The decision rules do not convert ordinal information into numeric but 
keep the ordinal character of input data due to the syntax proposed. 



ROUGH SET BASED DECISION SUPPORT 519 

• Heterogeneous information (qualitative and quantitative, ordered and 
non-ordered) and scales of preference (ordinal, cardinal) can be pro
cessed within the Dominance-Based Rough Set Approach, while clas
sical methods consider only quantitative ordered evaluations (with rare 
exceptions). 

• No prior discretization of the quantitative domains of criteria is neces
sary. 

16.6 TRICKS OF THE TRADE 
Below we give some hints about how to start a typical session of rough set 

analysis of a multi-attribute or multicriteria classification problem. 

1 First, prepare the data set so it is composed of objects (examples) de
scribed by a set of attributes. In the set of attributes, distinguish the 
decision attribute from other (condition) attributes. For example, in Sec
tion 16.4.3, we considered a set of firms evaluated by financial and man
agerial criteria, assigned to three classes of bankruptcy risk. In terms of 
the size of the data set: in the case of, say, five condition attributes and 
three decision classes, the number of objects should not be less than a 
dozen per class. 

2 Check if the decision classes labeled by the decision attribute are 
preference-ordered. Check also whether or not, among the condition 
attributes, there is at least one whose domain is also preference ordered 
such that there is a semantic correlation between this condition attribute 
and the decision attribute (e.g. the bankruptcy risk of a firm and its ''net 
income/net worth" ratio). If the check is positive, then the Dominance-
Based Rough Set Approach should be used, otherwise, the Classical 
Rough Set Approach is sufficient. In the latter case, in order to avoid 
getting decision rules which are too specific, you may need to group 
some values of particular attributes (say, to at most seven values per 
attribute)—this step is called discretization. 

3 Choose the appropriate software (web addresses for free download are 
given in the next section) and proceed with your calculations. 

4 Calculate the quality of approximation of the classification for the com
plete set of condition attributes/criteria. A quality value above 0.75 is 
usually satisfactory. In the case of a lower quahty value, there are too 
many inconsistencies in the data. So try to get data about the evalu
ation of the objects on additional attributes/criteria, or eliminate some 
extremely inconsistent objects from the doubtful region of the classifi
cation, or add some new and consistent objects. For example, in Sec-
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tion 16,2.1 (the traffic signs example), we have added one additional 
attribute—secondary color (SC). Of course, you may continue the anal
ysis even if the quality is low but then you will get weaker decision rules. 

Calculate the minimal subsets of attributes/criteria conveying the rel
evant knowledge contained in the data (reducts) and the set of non
reducible attributes/criteria (core). You may continue the analysis with 
a data set confined to a chosen reduct—then, the decision rules induced 
from the reduced data set will represent knowledge contained in the data 
in terms of attributes/criteria from the reduct only. For example, with 
the traffic signs, one could eliminate from the data table the column of 
either shape (S) or primary color (PC), without decreasing the quality of 
knowledge representation. 

6 Using the lower and upper approximations of either decision classes 
(Classical Rough Set Approach) or unions of preference-ordered deci
sion classes (Dominance-Based Rough Set Approach), induce decision 
rules from the reduced or original decision table. You may either induce 
a minimal set of rules covering all the objects from the decision table 
or choose from all induced decision rules a subset of the most interest
ing rules. For example, this might be the rules with a minimal support 
of 50% of objects per class or per union of classes, or rules with no 
more than three elementary conditions in the premise (see the example 
of traffic signs in Section 16.2.1 and the example of bankruptcy risk in 
Section 16.4.3). Usually, the "minimal cover" set of rules is chosen in 
the perspective of prediction and the "most interesting" set of rules is 
chosen in the perspective of explanation. At this stage, an expert may 
disagree with some rules but they say nothing apart from the truth hid
den in the decision table, so you can show what objects from the decision 
table support the rules in question and the expert may want to eliminate 
at least some of them from the data. It is also possible that decision rules 
seem strange for the expert because there are not enough examples in 
the decision table. 

7 If the expert finds your decision rules too specific and/or too numer
ous, you may use the variable-precision (Classical Rough Set Approach) 
model or the variable-consistency (Dominance-Based Rough Set Ap
proach) model. Then, you have to specify the required precision or con
sistency level, say 80%, and you will finally get fewer decision rules. 
However, their confidence will vary between 80% and 100%. 
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16.7 CONCLUSIONS AND PROMISING AREAS OF 
FUTURE WORK 

We introduced a knowledge discovery paradigm for multi-attribute and mul-
ticriteria decision support, based on the concept of rough sets. Rough set the
ory provides mathematical tools for dealing with granularity of information 
and possible inconsistencies in the description of objects. Considering this de
scription as an input data about a decision problem, the knowledge discovery 
paradigm consists of searching for patterns in the data that facilitate an under
standing of the decision maker's preferences and that enable us to recommend 
a decision which is in line with these preferences. An original component of 
this paradigm is that it takes into account prior knowledge about preference 
semantics in the patterns to be discovered. 

Knowledge discovery from preference-ordered data differs from usual 
knowledge discovery, since the former involves preference orders in domains 
of attributes and in the set of decision classes. This requires that a knowledge 
discovery method applied to preference-ordered data respects the dominance 
principle. As this is not the case for the well-known methods of data mining 
and knowledge discovery, they are not able to discover all relevant knowl
edge contained in the analyzed data sample and, even worse, they may yield 
unreasonable discoveries, because of inconsistency with the dominance prin
ciple. These deficiencies are addressed in the Dominance-Based Rough Set 
Approach. Moreover, this approach enables us to apply a rough set approach 
to multicriteria decision making. We showed how the approach could be used 
for multicriteria classification, choice and ranking. In more advanced papers, 
we have presented many extensions of the approach that make it a useful tool 
for other practical applications. These are: 

• The Dominance-Based Rough Set Approach for decision under risk and 
uncertainty (Greco et al., 200le). 

• The Dominance-Based Rough Set Approach for incomplete decision ta
bles (Greco et al., 1999c, 2000a). 

• Fuzzy set extensions of the approach (Greco et al., 1999b, 2000b, 2000c, 
2002e, 2003). 

• The Dominance-Based Rough Set Approach for hierarchical decision 
making (Dembczynski et al., 2002). 

• A dominance-based approach to induction of association rules (Greco et 
al, 2002d). 

The Dominance-Based Rough Set Approach leads to a preference model of a 
decision maker in terms of decision rules. The decision rules have a special 
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syntax which involves partial evaluation profiles and dominance relations on 
these profiles. The clarity of the rule representation of preferences enables us 
to see the limits of other traditional aggregation functions: the utihty function 
and the outranking relation. In several studies (Greco et al., 2001b, 2002c, 
2004; Slowinski et al., 2002c), we proposed an axiomatic characterization of 
these aggregation functions in terms of conjoint measurement theory and in 
terms of a set of decision rules. In comparison to other studies on the charac
terization of aggregation functions, our axioms do not require any preliminary 
assumptions about the scales of criteria. A side-result of these investigations 
is that the decision rule aggregation (preference model) is the most general 
among the known aggregation functions. The decision rule preference model 
fulfils, moreover, the postulate of transparency and interpretability of prefer
ence models in decision support. 

SOURCES OF ADDITIONAL INFORMATION 
A list of rough set references can be found at the web site of the Interna

tional Rough Set Society: http://www.roughsets.org. This page includes infor
mation about rough set conferences and about Transactions on Rough Sets that 
Springer has started to pubHsh as a sub-series of the Lecture Notes in Com
puter Science. This page also includes tutorial presentations on rough sets and 
links to the following available software: 

• ROSE2 (http://idss.cs.put.poznan.pl/site/software.html; Rough Set Data 
Explorer), 

• 4eMka, JAMM (http://idss.cs.put.poznan.pl/site/software.html; 
Dominance-Based Rough Set Approach to Multicriteria Classifi
cation), 

• RSES (http://logic.mimuw.edu.pl; Rough Set Exploration System), 

• ROSETTA (http://www.idi.ntnu.no/ aleks/rosetta; Rough Set Toolkit for 
Analysis of Data). 
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Chapter 17 

HYPER-HEURISTICS 
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Napier University, Edinburgh, UK 

17.1 THE CONCEPT OF HYPER-HEURISTICS 
The term "hyper-heuristics" is fairly new, although the notion has been 

hinted at in papers from time to time since the 1960s (e.g. Crowston et al., 
1963). The key idea is to devise new algorithms for solving problems by com
bining known heuristics in ways that allow each to compensate, to some extent, 
for the weaknesses of others. They might be thought of as heuristics to choose 
heuristics. They are methods which work with a search space of heuristics. 
In this sense, they differ from most applications of metaheuristics (see Glover 
and Kochenberger, 2003) which usually work with search spaces of solutions. 
One of the main goals of research in this area is to devise algorithms that are 
fast and exhibit good performance across a whole family of problems, presum
ably because the algorithms address some shared features of the whole set of 
problems. 

Many practical problems cannot be tackled by exhaustive search, either to 
find an optimal solution or even to find a very good quality solution. For such 
problems people often resort to heuristic methods: incomplete search methods 
that offer no guarantees of success and perhaps also involving some random 
elements. There are many varieties of heuristic search methods in regular use. 
Examples include: 

Local Search Methods come in many flavors. They start from some chosen 
place and seek improvements by searching in some kind of neighbor
hood of that place. When an improvement is found, the process restarts 
from that improved position. Often, the order in which candidate im
provements are considered is determined by some heuristic selection 
process. The many categories of local search methods include meta-
heuristic ideas such as variable neighborhood search (see Chapter 8) 
which adjusts the size of the neighborhood, and guided local search 
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(Voudouris, 1997) which adjusts the notion of the value, or fitness, of 
a solution as the search progresses. 

Simulated Annealing resembles local search but allows the search to accept 
even a worse solution than the current one, particularly when early on 
in the search process. A probabihstic decision is made about whether to 
accept a worsening step; the probability depends not only on how much 
worse it is but also on how long the search has been running. Simu
lated annealing thus permits a local search to get off a local hilltop. See 
Chapter 7 for an introduction. 

Evolutionary Algorithms typically manage a population of candidate solu
tions and apply some ideas from the theory of evolution. The simplest is 
that of selection. Imagine a search that starts from 100 different places 
and does local search in each. Rather than keeping 100 local searches 
running (as it were) in parallel, selection chooses the hundred best points 
found and the search restarts from those points, but those hundred best 
points may not be one from the neighborhood of each of the previous 
hundred points. Thus, under the influence of selection alone, the num
ber of regions of the search space that are being considered may de
crease. The idea of crossover, or recombination, can counteract this; it 
forms new candidate points by recombining fragments of existing solu
tions, thus potentially generating points that are nowhere near the ex
isting regions being sampled. There are many varieties of evolutionary 
algorithm. For an introduction to Genetic Algorithms and Genetic Pro
gramming see Chapters 4 and 5, respectively. 

Ant-Colony Algorithms borrow ideas from studies of the collective behavior 
of ants, who communicate by individually laying down chemical infor
mation and react to chemical signals already laid by others. This has 
much in common with many other reinforcement leaming schemes that 
seek to discover what are the good decisions to make at each step in 
a search, by some balance between exploration of possibilities and ex
ploitation of what seems good in terms of past experience. See Chapter 
14 for an introduction. 

The term metaheuristics often appears in the literature as a general term for 
such varieties. Some authors reserve the term heuristic for the decision pro
cedure applied at a single step in the search and apply the term metaheuristics 
to overall control strategies; but there is no great consensus about these terms. 
See Glover and Kochenberger (2003) for a comprehensive treatment of meta
heuristics. 

Despite the fact that all these search techniques are often very effective, 
there can often be some reluctance to use them for money-critical problems. In 
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practice, experience suggests that people often prefer to use very simple and 
readily understandable search methods even if those methods deliver relatively 
inferior results. Reasons might include: 

1 the above kinds of search techniques involve making a significant range 
of parameter or algorithm choices and it is not clear to inexperienced 
users what is best and whether certain choices are actively bad; 

2 the state of the art in the above methods for real world problems tends 
to represent bespoke problem-specific methods which are particularly 
resource intensive to develop and implement; 

3 such algorithms often involve making some probabihstic choices, so 
that two seemingly identical runs may produce significantly different 
answers to the very same problem; 

4 there is little knowledge or understanding of the average- or worst-case 
behavior of some of these techniques; where such results do exist (see 
Ausiello et al. (1999) for a compendium), it is usually for very straight
forward algorithms that can be analysed mathematically; 

5 some of these techniques can be relatively slow; 

6 even if the technique generates a good-looking solution, it can be hard 
to understand how the solution was arrived at; this matters because it is 
often important to a group of people to feel that a proposed solution is 
intuitively acceptable; people are often unwilling to trust a computer's 
results implicitly, and often that is for good reasons. 

Research on hyper-heuristics is an attempt to respond to such legitimate criti
cisms. The broad aim is to discover some algorithm for solving a whole range 
of problems that is fast, reasonably comprehensible, trustable in terms of qual
ity and repeatability and with good worst-case behavior across that range of 
problems. The goal is to develop algorithms that are more generally appHcable 
than many of the implementations of the approaches outlined above. The space 
of possible algorithms for any given sort of problem is of course vast and there 
are many ways to search certain parts of such a space. For example, genetic 
programming (described in Chapter 5) uses evolutionary techniques to explore 
a chosen space composed of problem-specific functions and variables and also 
algorithmic control structures such as for-loops and if-statements. One of the 
difficulties facing research in genetic programming is that it can be hard to 
offer the search process much guidance about how to fit the available control 
structures together. For example, suppose you wish to sort a two-dimensional 
array of numbers so that each row is in decreasing order and each column is 
in decreasing order. Even if a sorting function is provided as a primitive, it is 
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true but not obvious that it is sufficient to sort each row exactly once and each 
column exactly once; you do not need to continually sort the rows and then the 
columns and then check for violations, repeating until none remain. 

Although hyper-heuristics might be regarded as a special form of genetic 
programming, the key intuition underlying research in this area is that, for a 
given type of problem, there are often a number of straightforward heuristics 
already in existence that can work well (but perhaps not optimally) for certain 
sorts of instances of that type of problem. Perhaps it is possible to combine 
those existing heuristics into some more elaborate algorithm that will work 
well across a range of problems. 

17.2 A STRAIGHTFORWARD EXAMPLE: BIN 
PACKING 

Bin packing is an easily understandable problem that appears as a factor in 
many other practical problems. The basic scenario is as follows. You have 
an unlimited supply of identical bins, each capable of containing one or more 
items totalling at most W in weight. You have n items to pack, of weights 
wi,W2,... ,Wn\ tht weights may not all be different but they are all individu
ally packable: 0 < li;, < W. The task is to put items into bins in such a way 
as to minimize the total number of bins used. 

At first glance this may seem easy, but it is not. For example, if you are 
considering distributing 50 items among 10 bins then there are 9.484 x 10"̂ ^ 
ways of doing it without leaving any bin empty, but ignoring that maximum-
weight constraint. It can be tempting to adopt a strategy that (besides anything 
else it does) tries to fill each bin as close to capacity as possible. Before giving 
in to any such temptation it is a sensible research strategy to devote a little 
energy to trying to construct a counter-example. For example, suppose bins 
have capacity 20 and there are six items of weights 12, 11, 11, 7, 7 and 6. One 
bin can be completely filled (7 -f 7 H- 6) but then the remaining items need a 
bin each, for a grand total of four bins, whereas if large and small items were 
paired (12 + 7, l l - f 7 , 11+6) then only three bins would be needed. With a 
little thought it is not hard to see how to construct such a counter-example; in 
bin packing, small (or smallish) items are useful as a filling material to fill up 
those odd bits of wasted space, so why not adjust the numbers so that all the 
smallish stuff gets used up to completely fill one bin leaving no items to fill up 
wasted space in others? 

There is a simple lower bound on the number M of bins that are necessary: 

M> (X]^0/^ 
. / = i 
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(note: this notation rounds M up to the nearest integer) and if the packing 
algorithm never starts a new bin unnecessarily (that is, when the item it is 
considering could be placed in a partially-filled bin), then M <bins used<2M 
because if 2M or more bins were used then there would be at least two bins 
whose combined contents weighed at most W (because the average load per 
bin would be WI2 or less) and why did the first item placed into the second-
started of these two bins not get placed in the first-started one instead? 

A good introduction to bin packing can be found in Martello and Toth (1990) 
and a survey of results about the performance of various algorithms can be 
found in Coffman et al. (1996). One very popular heuristic is the so-called 
first-fit-decreasing algorithm: pack items in order of weight, largest first; never 
start a new bin unnecessarily; given an item to pack, look at the bins in the 
order in which they were started and put that item in the first bin that is capable 
of holding it. This is popular because, although it often fails to get the optimal 
answer, it has good worst-case behavior; it has been proved (Johnson, 1973) 
that it will never use more than 11M/9+4 bins, that is, more than about 22% 
too many. Because of this, it is an ingredient in many commercial container-
packing algorithms. But as a heuristic it still has some behavioral quirks, as the 
example below due to R. L. Graham shows. Suppose the bins have capacity 
524 and the following items (given in order of size, reading down the columns) 
are to be packed: 

442 
252 
252 
252 
252 

252 
252 
252 
127 
127 

127 
127 
127 
106 
106 

106 
106 
85 
84 
46 

37 
37 
12 
12 
12 

10 
10 
10 
10 
10 

10 
9 
9 

Then the algorithm uses seven bins. But if you delete the item of weight 46, 
the same algorithm now requires eight bins—there is an apparent discontinuity 
of performance. It is not hard to figure out how to construct such an example 
once you observe that the numbers in the table add up to exactly 7 x 524 so 
that in a seven-bin packing every bin is completely full. The numbers merely 
have to be chosen so that each item gets put in its "right" place by the first-fit-
decreasing algorithm. Then if you delete an item that is not equal in weight 
to the sum of two or three smaller items, the algorithm will quite probably 
fail to get the packing just right. People have suggested many other heuristic 
ideas for bin packing. For example, Djang and Finch (1998) suggested this: 
given a newly-started bin, pack items in it (taking them largest-first) until the 
bin is at least one-third full; it could be much fuller than one-third full after 
this, of course. Then look for one single item that exactly fills the bin; or else 



534 ROSS 

Given: a small set S of heuristics, 
and initial problem state P 

Repeat until no items remain: 
- choose a heuristic H from S, 
in a way that depends on P; 

- apply H to pack the next bin; 
- update P accordingly. 

Figure 17,1. The general form of algorithm sought. 

look for two items that exactly fill the bin; or else look for three items that 
exactly fill the bin. If none of those are possible, then look for one item that 
fills the bin to W — 1; or else two items; or else three items. If that still is 
not possible, let W — 2 be the target load; and so on. This heuristic works 
excellently well on many benchmark bin-packing problems that are known to 
be hard. However, on easy problems it can work abysmally badly. Consider 
a problem in which the bins have capacity 1000 and there are 10 000 items 
each of weight 1. This needs only 10 bins. However, the above algorithm 
will first fill a bin until it contains 334 (just over one-third) and then put just 
three more items into the bin, so the bin contains 337. Thus 30 bins will be 
needed (337 x 29 = 9773). This illustrates one of the difficulties of designing 
good heuristics: problems known to be hard have certain characteristics. In 
bin packing, the hard benchmark problems involve items whose weights are 
typically a significant fraction of the bin capacity, for example at least 20% 
of bin capacity, so that there will be no more than five items per bin but there 
will be a very large number of items so that the difficulty arises when trying to 
find the subsets of items that are to reside in each bin. If there were many very 
small items, those items could be used essentially as "sand" to fill up space 
wasted when large items were packed. 

Because there is a range of available heuristics with different strengths and 
weaknesses, it makes sense to try to combine them in some way that permits 
one heuristic to compensate for the weakness of another. See Ross et al. (2002, 
2003) for two hyper-heuristic ways of doing this, appHed to large sets of bench
mark problems and with very good worst-case performance. Both happen to 
use forms of evolutionary algorithm to conduct a search for a good combination 
of heuristics. The aim in both is to discover an algorithm that builds a solution 
to any given bin-packing problem incrementally, as shown in Figure 17.1. 

In Ross et al. (2002), Wilson's XCS classifier system (Wilson, 1995) is used 
to try to discover a set of rules, each of which associate a short description of 
the current state of the problem with a heuristic to apply. The description uses 
just 11 bits. Two bits are used to describe the proportion of items still to pack 
in each of the four size ranges shown in Table 17.1, thus accounting for eight 
bits. 
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Table 17.7. Size ranges. 

Huge: items of weight w > WI2 
Large: items with W/3< w < Wll 
Medium: items with WIA< w < W/3 
Small: items with w < W/4 

Table 17.2, Encoding proportions. 

Bits Proportion of items 

0 0 0-10% 
01 10-20% 
1 0 20-50% 
1 1 50-100% 

These are rationally chosen: at most one huge item will fit in a bin; at most 
two large items will fit, and so on. For each range the two-bit encoding of 
proportion is shown in Table 17.2. 

The final three bits encode the proportion of items that remain to be packed, 
dividing the range from 0% to 100% into eight equal-sized intervals so that if 
(say) 27% of items remain to be packed this is encoded as 010. The rationale is 
that this information is useful, one heuristic might be best if few items remain 
but another might be best if there are many still to pack, even if the relative 
proportions of huge, large etc items are the same. Although this encoding was 
chosen on the basis of intuition and experience, it is ultimately justified by the 
results. XCS was able to discover a collection of rules that was very good at 
bin packing, finding the optimal result in nearly 80% of a collection of 890 
publicly-available benchmark problems. See the cited paper for further details, 
including details of the heuristics used. 

In Ross et al. (2003), a messy genetic algorithm (Goldberg et al., 1989) is 
used instead and rather than using bits, real numbers are used to encode the 
proportions that describe the state. The task of the messy genetic algorithm is 
to place a number of control points, each labeled with a given heuristic; the 
labels do not need to be all different. Figure 17.2 shows a simplified, three-
dimensional rather than five-dimensional representation of the idea. Given a 
set of labeled control points, any bin-packing problem is tackled by finding 
the point that represents the problem's current state, identifying the control 
point that is closest and applying the heuristic that labels that point to pack the 
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Figure 17.2, A messy genetic algorithm approach: the basic idea. 

next bin. This changes the problem's state. The process is repeated until the 
problem is solved. 

Note that it can be beneficial to allow control points to be located just out
side the cube, even though the actual problem state cannot be outside the cube. 
Overall the results are a little better than those obtained with XCS, and on a 
larger set of benchmark problems. The enlarged problem set included a modest 
number of easy problems; as noted above, the hard bin-packing problems avail
able in benchmark collections tend to have a certain character, but in practice 
real-life problems are sometimes relatively easy and it is therefore interesting 
to see if a discovered algorithm can do a good job of solving more than just the 
hard problems! 

This discussion of bin-packing problems has illustrated the concept of 
hyper-heuristics, and some general points should be apparent: 

• The algorithm being sought, which selects and applies heuristics, ought 
to have a clear and simple general form. Algorithms with an over-
elaborate general form can be open to the same kinds of criticism listed 
at the start of this chapter. 

It is important to have a substantial set of problems to work with. What is 
being sought is an algorithm that is fast, reliable and with good overall 
and worst-case performance, and you cannot judge worst-case perfor
mance on the basis of a small set of problems. For real-world use best-
case performance statistics, although highly valued in many academic 
papers, is often not so important. 
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• Much may depend on the particular set of heuristics used and on the 
choice of representation and other factors that affect the nature of the 
space to be searched. 

• Although evolutionary algorithms were used in the examples above, it is 
not clear that they are necessary. Some simpler search process may suit 
the particular search space better. 

Below, various research issues will be discussed but first it will be useful to 
survey past work briefly. 

17.3 A BRIEF SURVEY 
An early example of what might be called a hyper-heuristic approach was 

the scheduler used within the COMPOSER system (Gratch et al, 1993). COM
POSER'S task was to plan communication schedules between earth-orbiting 
satellites and ground stations, with a maximum interval between communi
cations with a given satellite. The ground stations that could be used were 
constrained by satelHte orbits. The scheduler used heuristic methods to try to 
build a schedule, deciding which unsatisfied constraints to focus on next and 
how to try to satisfy them. Because there were several possible heuristics to 
use in each case, the system used a simple hill-climbing approach to investigate 
combinations of them, testing each on 50 different problems, and was able to 
discover an effective combination. 

Hyper-heuristic ideas have been applied to various other scheduling prob
lems. In job-shop and open-shop problems, there are m machines and j jobs. 
Each job consists of a number of tasks, which in job-shop problems occur in a 
job-specific order and in open-shop problems can occur in any order, and each 
task involves visiting a given machine for a given length of time. A task may 
also have a ready time, before which it cannot start, and a due date, by which it 
ought to have been completed. Various criteria have been studied, such as min
imizing the makespan (total time to complete all jobs) or minimizing the worst 
delay beyond due date of any task, perhaps weighted by some measure of task 
importance. Fang et al. (1994) used a genetic algorithm to solve open-shop 
problems. In their work a chromosome consisted of a sequence of pairs of in
tegers (7/, hi), each pair being interpreted in turn to build a complete schedule 
and meaning ''consider the y'/th uncompleted job (modulo the total number of 
uncompleted jobs) and use heuristic hi to select a task from that job to insert 
next into the schedule". At the time, this produced good results but the genetic 
algorithm was used to produce a separate solution for each problem rather 
than to find a single algorithm that could be apphed to many problems. Hart 
and Ross (1998) apphed a variant of this idea to dynamic job-shop problems 
(in which not all jobs can start immediately): chromosomes again contained 
a sequence of pairs of integers (a/, hi) but now was 0 or 1 to indicate which 
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of two heuristically-guided task selection algorithms to employ, and indicated 
which heuristic was to be plugged into the chosen algorithm. As in the work 
of Fang et al., they used a separate genetic algorithm run for each scheduling 
problem rather than seeking one generally-powerful algorithm. It is also worth 
noting that in later work, Vazquez and Whitley (2000) were able to obtain 
even better results with a genetic algorithm that used a direct encoding and 
a special-purpose crossover operator. Terashima-Marin et al. (1999) applied 
hyper-heuristic to solve a range of large university exam timetabling problems, 
but once again the approach was used to find a different solution procedure for 
each problem. 

A recent general introduction to hyper-heuristic ideas can be found in Burke 
et al. (2003a). More recently, hyper-heuristic ideas have been applied in var
ious ways to a range of other problems. For example, Kendall et al. (2002) 
use a performance-rating function to rank heuristics, in trying to solve three 
personnel scheduhng problems. Burke et al. (2003b) combine hyper-heuristic 
ideas with those of tabu search on some variants of a nurse scheduling prob
lem and eleven university course timetabling problems. Burke et al. (2003c, 
2005) and Petrovic and Qu (2002) have also demonstrated that case based rea
soning can be employed as an effective heuristic selection methodology for 
timetabling problems. The interested reader can find further information on 
the ASAP (2004) website. 

17.4 SOME RESEARCH ISSUES 

17.4.1 No Free Lunch 

The No Free Lunch theorem of Wolpert and Macready (1995) showed that, 
when considering the set of all finite search problems on a given finite domain, 
all search algorithms have exactly the same average performance. See Chap
ter 10 for more details. Although it caused a stir at the time of its first publica
tion, this result should be unsurprising to you. The vast majority of problems 
have no exploitable structure to them; the only way they can be described is 
by a full-sized lookup table, rather than by (say) a closed-form mathematical 
function. Imagine, for example, a search problem / ( ) defined on the inte
gers 1 , . . . , 100 in which each f(i) was a randomly chosen positive integer. 
No search algorithm can do better than to look at every f(i) if it aims to find 
the maximum or minimum of the function. However, in practice we are not 
interested in random or random-seeming functions; the problems we humans 
are interested in have some internal structure and some degree of predictabil
ity about them. We therefore want to find algorithms that can perform well 
on the subset of problems that arise naturally in some context; the difficulty 
lies in characterizing that subset properly in such a way that we can design 
a really effective algorithm for the members of that subset. Hyper-heuristics 
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superAlg(Problem P) { 
switch(P) { 
case PI : solution = si; break; 
case P2 : solution = s2; break; 

} 
return(solution); 

Figure 17.3, A possible super-algorithm? 

sidesteps these issues of characterization and design to some degree by instead 
conducting a search for an adequately effective algorithm. 

Before leaving the theoretically interesting but practically rather limited 
topic of the No Free Lunch theorem, it is worth considering why some super-
algorithm of the form shown in Figure 17.3 does not violate the theorem. After 
all, for a given finite range and domain there is a finite but normally huge num
ber of possible problems. 

The difficulty lies in determining which problem P is. As discussed, most 
problems can only be described by a full-sized lookup table and so the question 
of whether P = PI (say) might only be resolved by examining every entry 
in such a table. This observation also has certain consequences for hyper-
heuristic algorithms. For example, it is tempting to wonder whether the control 
points in the kind of algorithm illustrated in Figure 17.2 could be moved about 
a bit, say by some amount 5 > 0, without affecting performance. If this were so 
then it might be possible to construct an algorithm akin to the super-algorithm 
but in terms of control points rather than problems; and if the control points 
only had to be specified to a given minimal accuracy then there would only 
be a modest number of branches to consider and each branch test would be 
of modest complexity, thus contradicting the theorem. This highly informal 
argument suggests that even for hyper-heuristically-generated algorithms there 
must be certain problems for which the sequence of heuristic choices made 
will be absolutely critical. 

17.4.2 What is a Problem Family? 
It is therefore natural to wonder, for what particular families of problems 

might hyper-heuristic methods be acceptably effective? One way to address 
this question is to generate whole families of problems that have particular 
characteristics and investigate how performance varies across members of that 
family. In recent years work on binary constraint satisfaction in particular has 
thrown up a number of interesting phenomena in relation to performance of 
algorithms across a spectrum of problems. The kind of problems studied have 
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a standard form: there are n variables jci,..., x^, each can potentially take val
ues from a finite domain u i , . . . , i;̂ . However, there are constraints between 
pairs of variables of this form: the pair (^3, ^7) cannot take any of the values 
(^6. 2̂)5 (V2, VG)^ (̂ 9» ^s). (̂ 1̂1. ̂ 4)- In early work, problems were generated 
probabilistically by picking a probability pi that there were any constraints at 
all between a pair of variables and a probabiUty p2 that if there was a constraint 
between a given pair of variables, then a particular pair of values was included 
in that constraint. It was possible to derive an exact mathematical formula for 
the expected number of solutions of a random problem generated with given 
pi and /72, and experiments suggested that problems for which this expected 
number was very close to 1 were particularly hard to solve by any of the known 
(and exhaustive) methods. There is nothing intrinsically significant about the 
number 1 here; rather, if the expected number is much less than 1 then most 
problems are unsolvable and it is easy to locate an unsatisfiable sub-problem, 
and if the expected number is much larger than 1 then most problems are solv
able with many solutions and it is fairly easy to find one. More recently people 
have looked at generating constraint problems in a less uniformly-random way, 
imposing more internal structure on them. Further details can be found at web 
pages such as Hewlett-Packard (2004) and APES (2004). However, outside 
the constraint satisfaction community, this kind of study of performance across 
large famihes of problems is still regrettably rare. 

17.43 What Heuristics Should Be Chosen? 

It is also natural to wonder how sensitive the results might be to the par
ticular choice of heuristics involved, and the best way forward is probably 
to conduct systematic experiments. Clearly, in the interests of generating an 
algorithm that terminates, every heuristic used should make some discernible 
progress toward a solution; if not, the algorithm might repeatedly choose it and 
therefore loop forever. Also, although some authors have employed a random 
heuristic that simply makes a random choice, it would be sensible to exclude 
the use of such random heuristics from the final algorithm because they lay the 
algorithm open to the same criticisms, of non-repeatability and incomprehensi-
biUty, that originally motivated the idea of hyper-heuristics. However, there is 
a place for using random heuristics during the development stage: if the inclu
sion of a random heuristic improves the results then it suggests that the other 
heuristics between them are not so capable of generating good performance 
and therefore that set of heuristics perhaps needs to be extended or changed. 
But beware of including too large a set of heuristics and thereby conducting 
a kind of ''buckshot attack" on your chosen problem set. Bear in mind also 
that sometimes an individual heuristic is excellent and no hyper-heuristically 
generated combination might be able to beat it. For example, Kruskal's greedy 
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algorithm (Kruskal, 1956) for generating minimum spanning trees in weighted 
graphs always finds optimal solutions (and such, perhaps does not count as a 
heuristic; the point is, it can sometimes be hard to tell!). 

Heuristics often take the form of optimally-determine-then-act rules (such 
as ''find the most constrained item and insert it next") but they need not always 
do so. For example, a heuristic might prescribe or control the amount of back
tracking that a search can do, or otherwise influence search parameters, rather 
than dictating the search step directly. See Terashima-Marin et al. (1999) for 
an example. 

17.44 What Search Algorithm Should Be Used? 
It is still unclear what kind of search method should be employed to try 

to generate an algorithm. Much depends on the nature of the search space, 
and not simply on its size. Many authors, not specifically concerned with 
hyper-heuristics, advocate evolutionary algorithms as a good way to search 
huge spaces, but no sensible search is unbiased; they focus on certain regions 
of the space and quickly exclude vast parts of the space from the search, so raw 
size is no guide. Remember also that in any given situation, when considering 
which heuristic to apply, it may well be the case that several heuristics would 
generate the same choice. Thus there may be many solutions to be found even 
in a large-seeming space, and local search methods such as hill climbing may 
sometimes be the best choice in terms of cost to find an acceptable algorithm. 
Further comparative studies are needed. 

17.4.5 During the Search, How Should Performance Be 
Evaluated? 

As noted earlier, some authors have used hyper-heuristic methods to solve 
single problems and for them, the question of how to evaluate a generated 
hyper-heuristic algorithm is easy: simply apply it to the problem. On the other 
hand, if you are trying to find an algorithm that exhibits good performance 
across a large set of problems, then it can be very costly to evaluate a generated 
algorithm's performance on every member of the set. Therefore, don't do it. 
A simple alternative was first proposed in Gathercole and Ross (1997): choose 
a few problems initially for evaluation purposes, but also keep track of when 
each problem was last used for evaluation and how well it was solved when 
it was used. At each subsequent cycle, choose a small subset for evaluation 
purposes in a way that takes account of both apparent problem difficulty and 
problem recency. The size of the chosen subset might also be made to grow 
with time so that as the search narrows toward a good algorithm, candidates 
are tested on a growing subset. 
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17.4.6 What Kind of Algorithm Should Be Sought? 

In the section on bin packing, two examples of hyper-heuristic algorithm 
were described but both were essentially constructive, building the solution of 
a given problem incrementally and without backtracking. This might not be 
the best option even for bin packing; it might be better to find a reasonable 
initial packing by some straightforward means and then use heuristics to shift 
and swap items between bins with the aim of reducing the number of bins used. 

For many operations-research-type problems, the best existing methods 
for solving individual problems start by constructing a complete initial solu
tion, or perhaps a collection of them, and then search for improvements by 
heuristically-guided local search methods. To date, hyper-heuristic research 
has perhaps tended to focus on finding incremental solution-constructing al
gorithms but those which modify full candidate solutions might tum out to be 
better. 

The next sections discuss some possible places to start research in hyper-
heuristics. 

17.5 SOME PROMISING AREAS FOR FUTURE 
APPLICATIONS 

17.5.1 Timetabling 

Timetabling problems have been intensively studied for many years; see, 
for example, Burke and Ross (1996), Burke and Carter (1998), Burke and Er-
ben (2001) and Burke and De Causemacker (2003) for collections of relevant 
papers that apply a variety of methods to solve a wide variety of timetabling 
problems. However, many authors confine themselves to solving only the prob
lems that arise at their own home institution without considering whether those 
problems are intrinsically difficult or simply are so packed with detail that a 
computer is needed to keep track of them. Timetabling problems remain in
teresting to study because there is such a wide variety of them; every school 
and university seems to have its own peculiarly idiosyncratic constraints. But 
consider, say, one reasonably generic kind of problem, that of university exam 
timetabling. This arises because many universities wish to fit all their exams 
into a predetermined period; shortly after that period all the exams must have 
been marked and the results entered into university databases so that degree-
class decisions can be announced in good time for degree-award ceremonies. 
In scheduling exams a university must obey some hard constraints: no student 
should have to be in two places at once, or should find it impossible to get from 
one exam to the next in time; exam halls have finite capacity, even though dif
ferent exams of identical duration may perhaps be scheduled to take place in 
the same exam hall if there is enough space; and so on. There are also soft 



HYPER-HEURISTICS 543 

constraints, such as trying to ensure that no student has to take too many ex
ams in a day and to ensure that as many students as possible get some rest and 
revision time between exams, or to ensure that very large exams happen early 
on in order to ease the marking burden. 

Exam timetabling therefore provides an ideal context for studying different 
families of problems. Some universities are short of space for exams, and the 
nature of their problem is largely a matter of bin packing first and then shuf
fling exams about to try to improve the satisfaction of soft constraints. Other 
universities may have plenty of exam hall space but may allow students a rela
tively unfettered choice of what subjects they can study, so that there are many 
constraints between different exams. Yet other universities may have problems 
that are almost decomposable into separate sub-problems, for example because 
science students almost always take courses only from the science faculty and 
arts students nearly always stick within the arts faculty for their education, and 
so on. Some universities have a few huge courses and many small courses, so 
that the essence of the problems is to deal somehow with those huge courses 
first and then pack the rest in around them. Some benchmark problems can be 
obtained from OR (2004a, 2004b) and Carter (2004) but this area is ripe for 
generating many more kinds of problem in a systematic way. 

17.5.2 Vehicle Routing with Time Windows 
This topic has also attracted much attention over the years. The typical 

problem is as follows. There is a single depot; think of it as a warehouse. 
There are customers at specified locations, to whom dehveries are to be made, 
and you know all distances involved; in benchmark problems the distance is 
simply the Euclidean distance, although in real life this is unrealistic. Each 
customer C needs to take delivery of a quantity gc of goods from the depot and 
can only take delivery within a specific time-window [sc, ec], and the actual 
delivery consumes a time tc- This does correspond to real fife; for example 
many large supermarkets plan to hire temporary staff for just two hours in 
order to unload an expected delivery, and impose contractual penalties on the 
transport company for failing to arrive in time, because the temporary staff will 
have to be paid even for waiting. 

The transport company uses vehicles of capacity V, so it may be possible to 
put the wanted goods for two or more customers onto the one vehicle and get it 
to deliver to those customers before returning to the depot. The task is a multi-
objective one: minimize both the number of vehicles required and the total 
distance traveled by all the vehicles. Vehicles start from the depot and all must 
return to the depot. There is also a global time-window [0, T] (think of it as the 
working day): all vehicles must start from the depot and finally return to the 
depot within this window. Strictly speaking, it is not the number of vehicles but 
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the number of depot-to-depot vehicle trips that is to be minimized; if a vehicle 
can return to the depot, pick up another load and complete another delivery run 
in the time available, that counts as though an extra vehicle were being used. 

It might not be possible to minimize both the number of vehicles and the 
distance simultaneously, because of the time windows or vehicle capacity con
straints. If one solution beats another in terms of both objectives it is said 
to dominate that other solution, and solutions which cannot be dominated are 
said to be Pareto-optimal (after the Itahan economist Vilfredo Pareto, 1848-
1923, who extensively discussed the issue of how to deal with incompatible 
objectives in his 1906 Manual of Political Economy). 

Many authors work with some standard sets of benchmark problems and 
strive to minimize the average distance and average number of vehicles re
quired for the problems in a whole set, as well as to find new Pareto-optimal 
solutions for individual problems. The most widely used benchmark problems 
are Solomon's six problem sets (Soloman, 1987) named Rl, CI, RCl, R2, C2, 
and RC2. Each problem involves 100 customers. In the two R* sets customers 
were located randomly (and within any one set, always at the same place). In 
the two C* sets the customers were located in distinct clusters. In the two RC* 
sets a combination of randomly-placed and clustered customers were used. 
The three *1 sets have fairly short time windows and low vehicle capacity; 
the three *2 sets have longer time windows and much larger vehicle capacity. 
Within any one set it is the time-window information for each customer that 
varies. The data can be obtained from Gambardella (2004). Problems gener
ated in a similar way but involving up to 1000 customers can be obtained from 
Gehring and Homberger (2004). 

The aim of getting good performance across a set of problems is very much 
in keeping with the motivations of hyper-heuristics but, as yet, hyper-heuristic 
ideas have not been applied to these problems. However, in vehicle routing it 
seems essential to start by generating some candidate routes and then to search 
for improved solutions by shifting customers, or sequences of customers, be
tween routes so as to reduce distance and to try to empty some routes and thus 
reduce the number of vehicles. This is where it would make sense to try to 
apply heuristics. For example, if there is a current route that is short and with 
few customers it might make sense to focus on eliminating that route. Or, if 
route X is incapable of being extended because it almost fills the global time-
window or its vehicle is close to capacity, but there is a customer on route X 
whose time-window is compatible with nearby route Y that can be extended, 
then consider shifting that customer onto route Y; and so on. A purely con
structive approach that tries to "grow" routes by choosing the next customer 
to add to a route by some heuristic means seems very unlikely to work; the 
decision to allocate a customer to one route can have a very significant effect 
on what happens to all the other routes. 
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A large number of papers have been published over the years on vehicle 
routing with time-windows, using a wide variety of techniques including sim
ulated annealing, genetic algorithms and ant colony methods. In many such 
papers the focus has been mainly on describing the use of a biologically-
motivated technique but it appears that much of the productive work of obtain
ing good solutions has actually been due to the inclusion of some local search 
that tries to improve a set of routes generated by the biologically-motivated 
technique. For example, some authors pre-compute a short list of customers 
that are close in space and time-window to a given customer and use such lists 
to guide a limited local search that seeks to shift customers between routes. 
Despite the plethora of biologically-inspired approaches, perhaps the best re
sults so far obtained have been generated by a deterministic approach based 
on variable-neighborhood search due to Braysy (2003), although Berger et al. 
(2001) obtain almost as good results using a parallel hybrid techniques genetic 
algorithm. These papers provide a good entry point into the extensive litera
ture. 

17.53 Other Promising Areas 
The Operations Research library (OR, 2004a) maintained by John Beasley 

contains problem data for many different sorts of combinatorial optimization 
problem, although it is usually necessary to do your own literature search to 
discover the best currently available results. Examples of areas include: 

• Job scheduling: in which there is a set of jobs to be processed, and each 
job consists of a number of separate tasks, and each task requires the full 
use of certain resources for a period of time. There are many variants: 
the order of tasks for any given job may or may not be fixed; there may 
be limits or uncertainties about when some tasks can be done; certain 
resources may be replicated so that only one of a set has to be committed 
to a task; the set of jobs may or may not be fully known at the start; the 
stream of jobs may be endless; and so on. The aim may be to minimize 
total time taken, or each job may have a "due date" by which it should be 
completed and the aim is to ensure that no job is particularly late; there 
are many variants. 

• Stajf scheduling: this resembles job scheduling in many ways. Staff 
with differing sets of skills are to be allocated to tasks, ensuring that all 
work gets done but no staff member is overloaded and all contractual 
commitments are met. 

• Cutting and packing: in which boxes of different shapes and sizes are to 
be efficiently packed into containers, or some given set of shapes is to be 
cut from given supplies of raw material so as to minimize waste. There 
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are many variants; for example, the two sides of a length of cloth may 
differ, so that shapes to be cut from the cloth to make up suits cannot be 
turned over to achieve a better packing, but can be rotated. 

Sometimes there are web sites that specialize in one particular kind of 
problem. For example, there is a website (KZZI, 2004) at the Konrad-Zuse-
Zentrum fiir Informationstechnik, Berlin, devoted to so-called frequency as
signment problems that arise in telecommunications. Typically each hnk in 
a wireless network has to have two frequencies assigned to it (one for each 
direction of communication), but the choices are limited by the potential for 
interference between similar frequencies used on geographically close links, 
and by legal and other factors. The website describes the various flavors of 
frequency assignment problems and has links to sets of test problems. 

17.6 TRICKS OF THE TRADE 

17.6.1 A Ski-Lodge Problem 

If you wish to start doing research in the area of hyper-heuristics, it can be 
daunting to have to learn about a well-studied application area, its past work 
and its successes, failures and current best techniques. This section describes a 
modest problem that seems suitable for an initial exploration of hyper-heuristic 
ideas, and gives some target results and details of resources. The problem is of 
a scale suitable for a short-term exploratory project. It was suggested by Mark 
Bucci (2001), who used simulated annealing to tackle it—see the reference for 
access to his C++ source code. 

The problem concerns a time-shared ski-lodge containing four identical 
apartments, each capable of sleeping up to eight people. However, fire reg
ulations require that there be at most 22 people resident in the building during 
any week. There is a 16-week ski-ing season and the first five weeks (num
bered 0-4) are somewhat more popular than the other 11. Owners do not buy 
the right to use a particular apartment during a particular week; instead, what 
they get for their money is the right to give a first, second and third choice of 
week when they would like to use one of the apartments. They also have to 
state the total size of the party including themselves (up to the maximum of 
eight) that they propose to bring. The management of the ski-lodge must try 
to meet everyone's requests as far as possible, but are contractually committed 
to paying compensation to those who do not get their first choice of week. In 
particular, if an owner is offered his second choice then he is entitled to com
pensation of two free one-day ski-hft passes per member of his party. If he can 
only be offered his third choice, the compensation is four passes per member. 
If he can only be offered a week he did not fist at all, the compensation is free 
ski-ing (seven passes per member) plus a cash sum equivalent to 50 passes. If 
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an owner cannot be offered any week at all, the compensation is a cash sum 
equivalent to 1000 passes. 

Because there are four apartments and a 16-week season, there are 64 own
ers. Given the preference lists and party sizes of all the owners, the manage
ment's problem is to allocate owners to weeks in a way that obeys the con
straints and also minimizes the total compensation to be paid out. An example 
problem (problem-10.txt) is shown in Table 17.3. There are various kinds of 
observation about this data that might guide the development of some suitable 
heuristics. For example, in this particular problem there are a total of 351 peo
ple, very close to the maximum possible of 22 x 16 = 352, so a major aspect 
of the allocation task for this particular problems is going to be a form of bin 
packing, because every week except one must have maximum occupancy if 
that 1000-pass payout is to be avoided. Just one owner has each listed three 
of the popular weeks, ten owners have listed two of them and one of the less 
popular weeks, 42 owners have chosen one popular week and two unpopular 
weeks and just 11 owners have avoided the popular weeks entirely. Only five 
owners have listed week 12. Only seven owners have listed week 11, only 
seven have listed week 13; and so on. 

Eleven such problems are available for immediate download as plain-text 
files from http: /www.dcs.napier.ac.uk/~peter/ski-lodge/. The web page also 
includes the following: 

• The source code, in C, of a problem generator so that you can gen
erate many more problems. Use s k i — p r o b — gen — s l 3 to seed 
the random number generator with 13, use s k i — p r o b — gen — c if 
you want the output files to use Windows CRLF end-of-line termination 
rather than Unix/Linux LP. Note that the generator does not guarantee 
that the number of people involved will be 352 or less, but many gen
erated problems will satisfy this and therefore potentially be solvable 
without any 1000-pass payout. All of the eleven problems can be solved 
without a single 1000-pass payout. 

Source code in C-i~i- (almost C) of an interactive program that enables 
you to load a given problem and try to solve it yourself. The program 
merely enforces the constraints and displays the compensation payout; 
enter —1 to de-assign an owner. Linux and Windows executables are 
also provided. The program uses the Fast Light Toolkit, available free 
from www.fltk.org, for the GUI aspects. The code will compile under 
either Linux or Windows, and executables for both are provided. 

Source code in Java of a genetic algorithm to solve such problems. The 
Java program has no graphical user interface, it needs to be run from a 
command prompt: Java EA problem-10.txt 13 50000 runs the program 
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Table 17.3. A ski-lodge problem. 

Owner 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Size 

4 
5 
4 
3 
7 
3 
3 
4 
5 
7 
4 
8 
8 
5 
3 
3 
8 
3 
6 
4 
7 
8 
4 
5 
5 
5 
7 
7 
7 
6 
4 
6 

Choices 

2011 
0 4 6 

4 15 5 
3 7 9 

0511 
6 15 10 
3 5 10 
4 7 1 3 
4 5 14 
2 6 13 
0 14 5 
0 15 6 

14 10 13 
3 15 14 
11 144 
10 7 9 
6 8 4 
2 0 8 

13 9 6 
1411 7 
3 15 5 

4 14 15 
14 5 3 

1 14 13 
2 10 9 

3 9 8 
3 9 5 
0 1 9 

10 114 
1508 

3 15 12 
1 9 6 

1 Owner 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Size 

6 
4 
4 
5 
6 
3 
7 
8 
4 
7 
6 
4 
5 
6 
7 
6 
8 
3 
5 
3 
8 
6 
5 
8 
7 
7 
8 
5 
6 
5 
5 
6 

Choices 

3 0 8 
1 3 14 
9115 
3 15 6 
3 10 5 
2 10 9 

0 10 14 
16 12 
3 9 6 

2415 
12 10 
2 15 8 
0911 
4 6 1 5 

3 1 2 
14 10 7 
14 10 6 
0615 

1 10 14 
1 8 14 
0 1 9 
1 6 7 

6109 
2 0 7 

3 14 8 
4 1 3 9 
3 12 6 

0 15 10 
13 146 
8 6 12 
2 9 7 

0 12 8 

on the problem in file problem-10.txt, using seed 13, for up to 50000 
iterations of the main loop. On any recent PC this should be very fast. 
Output is to standard output, redirect it to a file as you wish. 

• Source code in C++ for a simulated annealing program to solve such 
programs. It too has no graphical user interface. 

• A summary of the results of 25 runs of the Java genetic algorithm and 
the C++ simulated annealing program on each of the problems. 
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The genetic algorithm uses a simple representation. A chromosome consists 
of 64 integers, and c[i] is simply the week offered to owner /. Initialization is 
done by first setting c[i] to a random one of owner Vs three choices, and then 
(because this may produce constraint violations) repairing it by the following 
process. First, for each owner in turn, check if the suggested week is possible. 
If not, mark that owner as unassigned using the special flag value of — 1. This 
generates a number of unassigned owners, call them "losers". Second, for each 
week from 0 to 15 in turn, check if there are available apartments. If there is 
just one free apartment, find the loser who would best fit (in terms of party 
size) and assign him to that week; break ties by choosing the first such suitable 
loser. If there are two free apartments, find the pair of losers who would best fit 
(in terms of combined party sizes) and assign them to that week. What if there 
are three or four free apartments in a week? We simply hope that the genetic 
algorithm's crossover and mutation will deal with them! Finally, we do some 
local search: for 1000 tries, pick two owners at random and see if swapping 
their assignments would improve the payout figure; if so, do that swap. 

The genetic algorithm uses a population size of 100 and tournament selec
tion of size 2. In each iteration, two parents are chosen, one child is pro
duced by single-point crossover and the child is then mutated by altering two 
randomly-chosen genes to be a randomly-chosen one of the relevant owner's 
choices. This mutated child is then repaired as above. Finally, the child dis
places the worse parent, but only if the child has an equal or better payout level 
than that parent. 

Table 17.4 summarizes the results of 25 runs for each problem, using ran
dom number seed values 1.25. Note that in the best solutions (and in nearly 
all others) the genetic algorithm manages to find a week for every owner, no 
owner remains unassigned. 

Note that on the two problems which involve 351 people (numbers 04 and 
10) the range of values found is wide, because these are difficult problems. 
In problems with relatively few people the genetic algorithm produces consis
tently good results, with only small variation in final payouts. As the number 
of people approaches 352, the consistency gets worse. 

Is the genetic algorithm properly configured? Here are some experimental 
observations, with details omitted: 

• crossover matters: turning it off produces worse results; 

• two-point crossover is worse than one-point crossover; 

• larger tournament sizes produce worse results; 

• producing two children, and overwriting both parents (assuming the 
child has a cost that is < parent's cost) produces somewhat worse re
sults; 
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Table 17.4. Genetic algorithm results. 

Problem 

01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 

Size 

344 
337 
338 
351 
315 
328 
347 
326 
316 
351 
320 

Min 

641 
404 
450 
732 
304 
360 
730 
481 
404 
684 
386 

Max 

707 
457 
502 
1616 
308 
392 
842 
493 
412 
1604 
408 

Average 
over 25 runs 

667.48 
415.88 
479.92 
1362.68 
305.76 
373.84 
787.76 
484.12 
406.00 
1164.20 
393.04 

• getting the child to overwrite the parent only if the child has strictly 
lower cost (that is, not < but <) also produces worse results; 

• mutating just one gene, or no genes, or three genes, produces somewhat 
worse results; 

• population sizes of 50 or 150 produce somewhat worse results; 

• biasing either (or both) the initialization and mutation steps so that the 
owner's first choice is more likely than the second and the second is 
more likely than the third, makes very little difference. 

However, with these variants, the worse results are not dramatically worse. 
In general, this genetic algorithm seems pretty good; for most problems, the 
range of values produced is not particularly wide, and the cost of doing 25 
runs in order to get a good low score is very reasonable. And in practice, the 
management company might want to use a genetic algorithm such as this to 
help them determine suitable levels of compensation in the first place. 

But, although this genetic algorithm seems reasonable its results are not 
always as good as they might be. For example, its best score on problem-
10 is 684. This is considerably better than a human can typically do; some 
informal experiments using the interactive program mentioned above suggest 
that humans often have great difficulty in pushing the payout below 2000 for 
this problem. But a solution of 653 is possible, obtained by a different genetic 
algorithm (due to Henry Liang) that performs better on the largest of these 
problems but not quite as well as the above results on others. 
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The simulated annealing code available from the website has also been 
tuned to suit these sorts of problems, but the results it obtains are a little worse 
than the results shown in Table 16-4. The web page gives more details. 

Your challenge is to develop some decent heuristics for such ski-lodge prob
lems, perhaps using the interactive program, and then investigate whether a 
hyper-heuristic approach can do better than the results listed here. For each 
heuristic that you consider, work out what characterizes those problems that it 
works reasonably well on and see if you can pick a set that in some way covers 
the spectrum of problems. You will need many more than the 11 problems 
provided. 

The problem suits either a constructive approach, in which heuristics are 
used to build a solution incrementally by repeatedly picking an owner and 
picking a week to which to allocate that owner, or a search-based approach 
in which an initial solution is built (perhaps by one of the downloadable pro
grams) and then heuristics are used to search for improving alterations. 

17.6.2 A Simple Framework for a Constructive Approach 
In line with the ideas outHned earlier, here are some suggestions for a pro

gram that implements a ''messy evolutionary search" for a set of labeled points, 
as suggested in Figure 17.2. 

First, choose a problem-state representation—Section 17.2 above should 
give you some ideas. Devise a small set of heuristics (perhaps 5-10) that 
choose an owner and another small set that choose a week for the owner (or 
leave the owner unassigned, in the worst case). This gives you a set H of, 
say, 10-20 heuristics, half of which are owner-choosers and half of which are 
week-choosers. 

The next step is to create an initial population, each of which represents 
a complete set of labeled points as in Figure 17.2. A member of the initial 
population might perhaps contain anywhere from three to six labeled points. 
The label of each point is randomly chosen from the set / / , and the implicit 
algorithm is repeatedly to find the nearest owner-choosing point and also the 
nearest week-choosing point, and use them to place one more owner into the 
growing solution. Clearly, there needs to be some provision to handle the case 
in which there are no owner-choosing points at all, or no week-choosing points. 

Generate a set of problems (say, 100 of them) each involving at most 352 
people. Any member of the population can be evaluated by testing it on all 
the problems and noting the total compensation required, but this method has 
the disadvantage that it can conceal a few very bad performances if it performs 
generally well on most of them. It would be better to devise a performance 
measure that penalizes poor worst-case performance, say by picking a subset 
S of the problems, evaluating all members of the population on that subset and 
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keeping track, over time, of the best and worst result that any member of any 
population has ever achieved on that problem. The subset S can be altered as 
the search proceeds. 

The messy evolutionary search is based on a steady-state genetic algorithm. 
In any one step of the search: 

• two parents are chosen from the current population, using tournament 
selection with a tournament of size 2 (or if not 2, it should be a small 
number to avoid having a heavy bias in favor of the better-scoring mem
bers of the population); 

• they are recombined, by choosing at random between two recombination 
operators: 

• the first applies a form of uniform crossover, copying labeled points from 
the first parent into the first child with 90% probability and into the sec
ond child with 10% probability; labeled points are similarly copied from 
the second parent into the children, with reversed probabilities; there
fore, the children may contain different numbers of points than the par
ents do; 

• the second applies a form of two-point crossover; two points are chosen 
in the first parent; two points are also chosen in the second parent, with 
the aim of swapping the segments between parents to form the children; 
so the points in the second parent must occur at the same type of location 
as in the first parent: for example, if the first point in the first parent 
occurs just before a point's label (that is, a number identifying a heuristic 
in the set H) then the first point in the second parent is constrained to be 
just before some point's label too; 

• mutation is applied to the children; mutation may add a new labeled 
point, delete an existing labeled point or modify an existing labeled point 
by moving it a bit and/or altering its choice of heuristic; 

• the children are evaluated, and overwrite the parents if they are fitter; 
essentially, the places occupied by the parents are reserved for the best 
two of the set of four members consisting of the two parents and the two 
children. 

Some results obtained by applying this kind of algorithm to class and exam 
timetabling problems can be found in Ross et al. (2004). 

SOURCES OF ADDITIONAL INFORMATION 
As yet there are still relatively few resources available about hyper-

heuristics. This section lists some places to look: 
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• the Handbook of Metaheuristics is a recent book (Glover and Kochen-
berg, 2003) that contains a great deal of information about different 
kinds of heuristics, and includes a chapter about hyper-heuristics (Burke 
et al., 2003a); 

• the ASAP group at Nottingham University has a good website (ASAP, 
2004) that includes research publications about hyper-heuristics and 
links to timetabling problems and other resources; 

• 

• 

the Journal of Heuristics, published by Kluwer, contains many papers 
about heuristic methods generally; the tables of contents and the ab
stracts of papers are available online; full papers are available to sub
scribers to Kluwer Online; 

the European Journal of Operational Research also contains many pa
pers relating to heuristics and to problems that might be tackled by 
hyper-heuristic methods; again, abstracts are freely available online; 

the Metaheuristics Network site at www.metaheuristics.org provides in
formation about various metaheuristic techniques, references to papers 
and links to sets of problems in several areas: quadratic assignment, 
maximum-satisfiabihty, timetabling, scheduling, vehicle routing and an 
industrial hose-optimization problem; the aim of the Metaheuristics Net
work is to conduct scientific comparisons of performance between vari
ous metaheuristic techniques in different problem areas; although hyper-
heuristic methods are not expHcitly considered, the site is valuable be
cause the problems have been generated or contributed by the members 
and performance results are being made available. 
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18.1 INTRODUCTION 
Most interesting real-world optimization problems are very challenging 

from a computational point of view. In fact, quite often, finding an optimal 
or even a near-optimal solution to a large-scale optimization problem may re
quire computational resources far beyond what is practically available. There 
is a substantial body of literature exploring the computational properties of op
timization problems by considering how the computational demands of a solu
tion method grow with the size of the problem instance to be solved (see e.g. 
Chapter 11 or Aho et al., 1979). A key distinction is made between problems 
that require computational resources that grow polynomially with problem size 
versus those for which the required resources grow exponentially. The former 
category of problems are called efficiently solvable, whereas problems in the 
latter category are deemed intractable because the exponential growth in re
quired computational resources renders all but the smallest instances of such 
problems unsolvable. 

It has been determined that a large class of common optimization prob
lems are classified as NP-hard. See Chapter 11 for more details. It is widely 
believed—though not yet proven (Clay Mathematics Institute, 2003)—that 
NP-hard problems are intractable, which means that there does not exist an 
efficient algorithm (i.e. one that scales polynomially) that is guaranteed to find 
an optimal solution for such problems. Examples of NP-hard optimization 
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tasks are the minimum traveling salesman problem, the minimum graph col
oring problem, and the minimum bin-packing problem. As a result of the 
nature of NP-hard problems, progress that leads to a better understanding of 
the structure, computational properties, and ways of solving one of them, ex
actly or approximately, also leads to better algorithms for solving hundreds 
of other different but related NP-hard problems. Several thousand computa
tional problems, in areas as diverse as economics, biology, operations research, 
computer-aided design and finance, have been shown to be NP-hard. (See Aho 
et al., 1979, for further description and discussion of these problems.) 

A natural question to ask is whether approximate (i.e. near-optimal) solu
tions can possibly be found efficiently for such hard optimization problems. 
Heuristic local search methods, such as tabu search and simulated annealing 
(see Chapters 6 and 7), are often quite effective at finding near-optimal solu
tions. However, these methods do not come with rigorous guarantees concern
ing the quality of the final solution or the required maximum runtime. In this 
chapter, we will discuss a more theoretical approach to this issue consisting of 
so-called "approximation algorithms", which are efficient algorithms that can 
be proven to produce solutions of a certain quality. We will also discuss classes 
of problems for which no such efficient approximation algorithms exist, thus 
leaving an important role for the quite general, heuristic local search methods. 

The design of good approximation algorithms is a very active area of re
search where one continues to find new methods and techniques. It is quite 
likely that these techniques will become of increasing importance in tackling 
large real-world optimization problems. 

In the late 1960s and early 1970s a precise notion of approximation was pro
posed in the context of multiprocessor scheduhng and bin packing (Graham, 
1966; Garey et al., 1972; Johnson, 1974). Approximation algorithms gener
ally have two properties. First, they provide a feasible solution to a problem 
instance in polynomial time. In most cases, it is not difficult to devise a pro
cedure that finds some feasible solution. However, we are interested in having 
some assured quality of the solution, which is the second aspect characterizing 
approximation algorithms. The quality of an approximation algorithm is the 
maximum "distance" between its solutions and the optimal solutions, evaluated 
over all the possible instances of the problem. Informally, an algorithm approx
imately solves an optimization problem if it always returns a feasible solution 
whose measure is close to optimal, for example within a factor bounded by a 
constant or by a slowly growing function of the input size. Given a constant 
a, an algorithm A is an a-approximation algorithm for a given minimization 
problem U if its solution is at most a times the optimum, considering all the 
possible instances of problem O. 

The focus of this chapter is on the design of approximation algorithms for 
NP-hard optimization problems. We will show how standard algorithm de-
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sign techniques such as greedy and local search methods have been used to 
devise good approximation algorithms. We will also show how randomiza
tion is a powerful tool for designing approximation algorithms. Randomized 
algorithms are interesting because, in general, such approaches are easier to an
alyze and implement, and faster than deterministic algorithms (Motwani and 
Raghavan, 1995). A randomized algorithm is simply an algorithm that per
forms some of its choices randomly; it "flips a coin" to decide what to do at 
some stages. As a consequence of its random component, different executions 
of a randomized algorithm may result in different solutions and runtime, even 
when considering the same instance of a problem. We will show how one can 
combine randomization with approximation techniques in order to efficiently 
approximate NP-hard optimization problems. In this case, the approximation 
solution, the approximation ratio, and the runtime of the approximation algo
rithm may be random variables. Confronted with an optimization problem, the 
goal is to produce a randomized approximation algorithm with runtime prov-
ably bounded by a polynomial and whose feasible solution is close to the opti
mal solution, in expectation. Note that these guarantees hold for every instance 
of the problem being solved. The only randomness in the performance guar
antee of the randomized approximation algorithm comes from the algorithm 
itself, and not from the instances. 

Since we do not know of efficient algorithms to find optimal solutions for 
NP-hard problems, a central question is whether we can efficiently compute 
good approximations that are close to optimal. It would be very interesting 
(and practical) if one could go from exponential to polynomial time complexity 
by relaxing the constraint on optimality, especially if we guarantee at most a 
relatively small error. 

Good approximation algorithms have been proposed for some key problems 
in combinatorial optimization. The so-called APX complexity class includes 
the problems that allow a polynomial-time approximation algorithm with a per
formance ratio bounded by a constant. For some problems, we can design even 
better approximation algorithms. More precisely we can consider a family of 
approximation algorithms that allows us to get as close to the optimum as we 
like, as long as we are willing to trade quahty with time. This special family 
of algorithms is called an approximation scheme (AS) and the so-called PTAS 
class is the class of optimization problems that allow for di polynomial time ap
proximation scheme that scales polynomially in the size of the input. In some 
cases we can devise approximation schemes that scale polynomially, both in 
the size of the input and in the magnitude of the approximation error. We refer 
to the class of problems that allow such fully polynomial time approximation 
schemes as FPTAS. 

Nevertheless, for some NP-hard problems, the approximations that have 
been obtained so far are quite poor, and in some cases no one has ever been able 
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to devise approximation algorithms within a constant factor of the optimum. 
Initially it was not clear if these weak results were due to our lack of ability in 
devising good approximation algorithms for such problems or to some inher
ent structural property of the problems that excludes them from having good 
approximations. We will see that indeed there are Hmitations to approxima
tion which are intrinsic to some classes of problems. For example, in some 
cases there is a lower bound on the constant factor of the approximation, and 
in other cases, we can provably show that there are no approximations within 
any constant factor from the optimum. Essentially, there is a wide range of 
scenarios going from NP-hard optimization problems that allow approxima
tions to any required degree, to problems not allowing approximations at all. 
We will provide a brief introduction to proof techniques used to derive non-
approximability results. 

We believe that the best way to understand the ideas behind approximation 
and randomization is to study instances of algorithms with these properties, 
through examples. Thus in each section, we will first introduce the intuitive 
concept, then reinforce its salient points through well-chosen examples of pro
totypical problems. Our goal is far from trying to provide a comprehensive 
survey of approximation algorithms or even the best approximation algorithms 
for the problems introduced. Instead, we describe different design and eval
uation techniques for approximation and randomized algorithms, using clear 
examples that allow for relatively simple and intuitive explanations. For some 
problems discussed in the chapter there are approximations with better perfor
mance guarantees but requiring more sophisticated proof techniques that are 
beyond the scope of this introductory tutorial. In such cases we will point the 
reader to the relevant literature results. In summary, our goals for this chapter 
are as follows: 

1 Present the fundamental ideas and concepts underlying the notion of ap
proximation algorithms. 

2 Provide clear examples that illustrate different techniques for the design 
and evaluation of efficient approximation algorithms. The examples in
clude accessible proofs of the approximation bounds. 

3 Introduce the reader to the classification of optimization problems ac
cording to their polynomial-time approximability, including basic ideas 
on polynomial-time inapproximability. 

4 Show the power of randomization for the design of approximation al
gorithms that are in general faster and easier to analyze and implement 
than the deterministic counterparts. 
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5 Show how we can use a randomized approximation algorithm as a 
heuristic to guide a complete search method (empirical results). 

6 Present promising application areas for approximation and randomized 
algorithms. 

7 Provide additional sources of information on approximation and ran
domization methods. 

In Section 18.2 we introduce precise notions and concepts used in approx
imation algorithms. In this section we describe key design techniques for ap
proximation algorithms. We use clear prototypical examples to illustrate the 
main techniques and concepts, such as the minimum vertex cover, the knapsack 
problem, the maximum satisfiability problem, the traveling salesman problem, 
and the maximum cut problem. As mentioned earlier, we are not interested in 
providing the best approximation algorithms for these problems, but rather in 
illustrating how standard algorithm techniques can be used effectively to de
sign and evaluate approximation algorithms. In Section 18.3 we provide a tour 
of the main approximation classes, including a brief introduction to techniques 
to proof lower bounds on approximability. In Section 18.4 we describe some 
promising areas of appUcation of approximation algorithms. Section 18.6 sum
marizes the chapter and provides additional sources of information on approx
imation and randomization methods. 

18.2 APPROXIMATION STRATEGIES 
18.2.1 Preliminaries 
Optimization Problems We will define optimization problems in a tradi
tional way (Aho et al., 1979; Ausiello et al, 1999). Each optimization problem 
has three defining features: the structure of the input instance, the criterion of 
a feasible solution to the problem, and the measure function used to determine 
which feasible solutions are considered to be optimal. It will be evident from 
the problem name whether we desire a feasible solution with a minimum or 
maximum measure. To illustrate, the minimum vertex cover problem may be 
defined in the following way. 

Minimum Vertex Cover 

Instance: An undirected graph G = {V, E). 
Solution: A subset S C.V such that for every {u,v] e E, either u e S or 
V e S. 
Measure: \S\. 

We use the following notation for items related to an instance / . 
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• Sol(I) is the set of feasible solutions to / , 

• mi : Sol (I) -> R is the measure function associated with / , and 

• Opt (I) c Sol (I) is the feasible solutions with optimal measure (be it 
minimum or maximum). 

Hence, we may completely specify an optimization problem 11 by giving 
a set of tuples {(/, Sol {I), mj, Opt {I))} over all possible instances / . It is 
important to keep in mind that Sol (I) and / may be over completely different 
domains. In the above example, the set / is all undirected graphs, while Sol (I) 
is all possible subsets of vertices in a graph. 

Approximation and Performance Roughly speaking, an algorithm approx
imately solves an optimization problem if it always returns a feasible solution 
whose measure is close to optimal. This intuition is made precise below. 

Let n be an optimization problem. We say that an algorithm A feasibly 
solves n if given an instance / € n , A(/) € Sol(I)\ that is, A returns a 
feasible solution to / . 

Let A feasibly solve 11. Then we define the approximation ratio a (A) of A 
to be the minimum possible ratio between the measure of A(I) and the measure 
of an optimal solution. Formally, 

. mjiA(I)) 
a (A) = mm 

/€n mjiOpt(I)) 

For minimization problems, this ratio is always at least 1. Respectively, for 
maximization problems, it is always at most 1. 

Complexity Background We define a decision problem as an optimization 
problem in which the measure is 0-1 valued. That is, solving an instance / of 
a decision problem corresponds to answering a yes/no question about / (where 
yes corresponds to a measure of 1, and no corresponds to a measure of 0). 
We may therefore represent a decision problem as a subset S of the set of all 
possible instances: members of S represent instances with measure 1. 

Informally, P (polynomial time) is defined as the class of decision problems 
n for which there exists a corresponding algorithm An such that every instance 
/ G n is solved by An within a polynomial (|/|^ for some constant k) num
ber of steps on any ''reasonable" model of computation. Reasonable models 
include single-tape and multi-tape Turing machines, random access machines, 
pointer machines, etc. 

While P is meant to represent a class of problems that can be efficiently 
solved, NP (nondeterministic polynomial time) is a class of decision problems 
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n that can be efficiently checked. More formally, NP is the class of decision 
problems 11 for which there exists a corresponding decision problem n ' in P 
and constant k satisfying 

I eU if and only //"there exists C € {0, 1}'^' such that (/, C) G W 

In other words, one can determine if an instance / is in an NP problem effi
ciently if one is also provided with a certain short string C, which is of length 
polynomial in / . For example, consider the NP problem of determining if a 
graph G has a path that travels through all nodes exactly once (this is known 
as the Hamiltonian path problem). Here, the instances / are graphs, and the 
proofs C are Hamiltonian paths. If one is given G along with a full description 
C of a path, it is easy to verify that C describes a Hamiltonian path by checking 
that 

1 the path contains all nodes in G, 

2 no node appears more than once in the path, and 

3 any two adjacent nodes in the path have an edge between them in G. 

However, no polynomial time algorithm is known for finding a Hamiltonian 
path when one is only given the graph G, and this is the fundamental difference 
between P and NP. In fact, the Hamiltonian path problem is not only in NP but 
is also NP-hard, see Section 18.1 and Chapter 11. 

For n 6 A^P, notice that while a short proof always exists if / e H, it need 
not be the case that short proofs exist for instances not in U. Thus, while P 
problems are considered to be those which are efficiently decidable, NP prob
lems are those considered to be efficiently verifiable via a short proof. 

We will also consider the optimization counterparts to P and NP, which are 
PO and NPO, respectively. Informally, PO is the class of optimization prob
lems where there exists a polynomial time algorithm that always returns an 
optimal solution to every instance of the problem, whereas NPO is the class 
of optimization problems where the measure function is polynomial time com
putable, and an algorithm can determine whether or not a possible solution is 
feasible in polynomial time. Our focus here will be on approximating solutions 
to the "hardest" of NPO problems, those problems where the corresponding de
cision problem is NP-hard. Interestingly, some NPO problems of this type can 
be approximated very well, whereas others can hardly be approximated at all. 

18.2.2 The Greedy Method 

Greedy approximation algorithms are designed with a simple philosophy in 
mind: repeatedly make choices that get one closer and closer to a feasible solu
tion for the problem. These choices will be optimal according to an imperfect 
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but easily computable heuristic. In particular, this heuristic tries to be as op
portunistic as possible in the short run. (This is why such algorithms are called 
greedy—a better name might be "short-sighted"). For example, suppose my 
goal is to find the shortest walking path from my house to the theater. If I be
lieved that the walk via Forbes Avenue is about the same length as the walk via 
Fifth Avenue, then if I am closer to Forbes than Fifth, it would be reasonable 
to walk towards Forbes and take that route. 

Clearly, the success of this strategy depends on the correctness of my belief 
that the Forbes path is indeed just as good as the Fifth path. We will show 
that for some problems, choosing a solution according to an opportunistic, 
imperfect heuristic achieves a non-trivial approximation algorithm. 

Greedy Vertex Cover The minimum vertex cover problem was defined in 
the preHminaries (Section 18.2.1). Variants on the problem come up in many 
areas of optimization research. We will describe a simple greedy algorithm that 
is a 2-approximation to the problem; that is, the cardinahty of the vertex cover 
returned by our algorithm is no more than twice the cardinality of a minimum 
cover. The algorithm is as follows. 

Greedy-VC: Initially, let S be an empty set. Choose an arbitrary edge 
{M, V). Add u and v to 5, and remove u and v from the graph. Repeat 
until no edges remain in the graph. Return 5" as the vertex cover. 

THEOREM 18.1 Greedy-VC is a 2-approximation algorithm for Minimum 
Vertex Cover. 

Proof. First, we claim S as returned by Greedy-VC is indeed a vertex cover. 
Suppose not; then there exists an edge e which was not covered by any vertex in 
S. Since we only remove vertices from the graph that are in S, an edge e would 
remain in the graph after Greedy-VC had completed, which is a contradiction. 

Let S* be a minimum vertex cover. We will now show that S* contains at 
least 15" 1/2 vertices. It will follow that \S*\ > \S\/2, hence our algorithm has a 
liS'l/IS'*! < 2 approximation ratio. 

Since the edges we chose in Greedy-VC do not share any endpoints, it fol
lows that 

• 151/2 is the number of edges we chose and 

• S* must have chosen at least one vertex from each edge we chose. 

It follows that 15*I >\S\/2. O 

Sometimes when one proves that an algorithm has a certain approximation 
ratio, the analysis is somewhat "loose", and may not reflect the best possible 
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Figure 18.1. A bipartite graph is one for which its vertices can be assigned one of two colors 
(say, red or blue), in such a way that all edges have endpoints with different colors. Above is a 
sketch of a complete bipartite graph with n nodes colored red and n nodes colored blue. When 
running Greedy-VC on these instances (for any natural number n), the algorithm will select all 
2n vertices. This shows the approximation ratio of 2 is tight for Greedy-VC. 

ratio that can be derived. It turns out that Greedy-VC is no better than a 2-
approximation. In particular, there is an infinite set of Vertex Cover instances 
where Greedy-VC provably chooses exactly twice the number of vertices nec
essary to cover the graph, namely in the case of complete bipartite graphs; see 
Figure 18.1. When such a situation occurs, where the approximation ratio de
rived for an algorithm is indeed the best possible in the worst case, we say that 
the bound derived is tight. 

One final remark should be noted on Vertex Cover. While the above algo
rithm is indeed quite simple, no better approximation algorithms are known! In 
fact, it is widely believed that one cannot approximate minimum vertex cover 
better than 2 — 6 for any 6 > 0, unless P = NP, see Khot and Regev (2003). 

Greedy MAX-SAT The MAX-SAT problem has been very well-studied; 
variants of it arise in many areas of discrete optimization. To introduce it re
quires a bit of terminology. 

We will deal solely with Boolean variables (that is, those which are either 
true or false), which we will denote by X], X2, etc. A literal is defined as either 
a variable or the negation of a variable (e.g. xy, -^xu are Hterals). A clause is 
defined as the OR of some literals {e.g. (-^xi v ^7 v "^x\\) is a clause). We say 
that a Boolean formula is in conjunctive normal form (CNF) if it is presented 
as an AND of clauses {e.g. {-^xx v xjV --^xw) A {xs v •-^X2 v --•JC3) is in CNF). 

Finally, the MAX-SAT problem is to find an assignment to the variables of 
a Boolean formula in CNF such that the maximum number of clauses are set 
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to true, or are satisfied. Formally: 

MAX'SAT 

Instance: A Boolean formula F in CNF. 
Solution: An assignment a, which is a function from each of the variables 
in F to {true, false). 
Measure: The number of clauses in F that are set to true (are satisfied) 
when the variables in F are assigned according to a. 

What might be a natural greedy strategy for approximately solving MAX-
SAT? One approach is to pick a variable that satisfies many clauses if it is set 
to a certain value. Intuitively, if a variable occurs negated in several clauses, 
setting the variable to false will satisfy several clauses; hence this strategy 
should approximately solve the problem well. Let /t(//, F) denote the number 
of clauses in F where the literal It appears. 

Greedy-MAXSAT: Pick a literal // with maximum n(//, F) value. Set 
the corresponding variable of It such that all clauses containing // are 
satisfied, yielding a reduced F. Repeat until no variables remain in F. 

It is easy to see that Greedy-MAXSAT runs in polynomial time (roughly quad
ratic time, depending on the computational model chosen for analysis). It is 
also a ''good" approximation for the MAX-SAT problem. 

THEOREM 18.2 Greedy-MAXSAT is a yapproximation algorithm for MAX-
SAT 

Proof Proof by induction on the number of variables n in the formula F. 
Let m be the total number of clauses in F. If n = I, the result is obvious. 
For n > 1, let // have maximum nQt, F) value, and Vt be its corresponding 
variable. Let mpos and m^EG be the number of clauses in F that contain li and 
-»//, respectively. After vi is set so that // is true (so both // and -̂ // disappear 
from F), there are at least m — mpos — ^NEG clauses left, onn — I variables. 

By induction hypothesis, Greedy-MAXSAT satisfies at least (m — mpos ~" 
^NEG) /2 of these clauses, therefore the total number of clauses satisfied is at 
least (m - mpos - ^NEG) /2 + mpos = m/2 + (mpos ~ WNEG)/2 > m/2, by 
our greedy choice of picking the // that occurred most often. D 

Greedy MAX-CUT Our next example shows how local search (in particu
lar, hill climbing) may be employed in designing approximation algorithms. 
Hill climbing is inherently a greedy strategy: when one has a feasible solution 
X, one tries to improve it by choosing some feasible y that is ''close" to x, 
but has a better measure (lower or higher, depending on minimization or 
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maximization). Repeated attempts at improvement often result in "locally" 
optimal solutions that have a good measure relative to a globally optimal 
solution (i.e. a member of Opt {I)). We illustrate local search by giving an 
approximation algorithm for the NP-complete MAX-CUT problem which 
finds a locally optimal satisfying assignment. It is important to note that 
not all local search strategies try to find a local optimum—for example, 
simulated annealing attempts to escape from local optima in the hopes of find
ing a global optimum (Kirkpatrick et al, 1983). See Chapter 7 for more details. 

MAX-CUT 

Instance: An undirected graph G = {V, E). 
Solution: A cut of the graph, i.e. a pair {S, T) such that S c. V and 
T = V -S. 
Measure: The cut size, which is the number of edges crossing the cut, i.e. 
\{{u,v] ^ E\ue S,v ^ T}\. 

Our local search algorithm repeatedly improves the current feasible solution 
by changing one vertex's place in the cut, until no more improvement can be 
made. We will prove that at such a local maximum, the cut size is at least m/2. 

Local-Cut: Start with an arbitrary cut of V. For each vertex, determine 
if moving it to the other side of the partition increases the size of the cut. 
If so, move it. Repeat until no such movements are possible. 

First, observe that this algorithm repeats at most m times, as each movement 
of a vertex increases the size of the cut by at least 1, and a cut can be at most 
m in size. 

THEOREM 18.3 Local-Cut is a Y^PP^oximation algorithm for MAX-CUT. 

Proof. Let {S, T) be the cut returned by the algorithm, and consider a vertex 
V. After the algorithm finishes, observe that the number of edges adjacent to v 
that cross {S, T) is more than the number of adjacent edges that do not cross, 
otherwise v would have been moved. Let dtg{v) be the degree of v. Then our 
observation implies that at least deg(i;)/2 edges out of v cross the cut returned 
by the algorithm. 

Let m* be the total number of edges crossing the cut returned. Each edge 
has two endpoints, so the sum XIVGV^^^S^^)/^) counts each crossing edge at 
most twice, i.e. 

^(deg(t ;) /2) < 2m* 
veV 

However, observe Ylv&v ^^%(v) — 2^- when summing up all degrees of ver
tices, every edge gets counted exactly twice, once for each endpoint. We con-
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elude that 
m = ^(deg(i ;) /2) < 2m' 

veV 

It follows that the approximation ratio of the algorithm is ^^ > ^. • 

It turns out that MAX-CUT admits much better approximation ratios than ^; 
a so-called relaxation of the problem to a semi-definite Hnear program yields a 
0.8786 approximation (Goemans and Williamson, 1995). However, like many 
optimization problems, MAX-CUT cannot be approximated arbitrarily well 
(1 — 6, for all 6 > 0) unless P = NP. That is to say, it is unlikely that MAX-
CUT is in the PTAS complexity class. 

Greedy Knapsack The knapsack problem and its special cases have been 
extensively studied in operations research. The premise behind it is classic: 
you have a knapsack of capacity C, and a set of items 1 , . . . , /i. Each item has 
a particular cost Q of carrying it, along with a profit pt that you will gain by 
carrying it. The problem is then to find a subset of items with cost at most C, 
having maximum profit. 

Maximum Integer Knapsack 

Instance: A capacity C € N, and a number of items n e N, with corre
sponding costs and profits Q , /?/ e N for all / = 1 , . . . , /t. 
Solution: A subset S C { 1 , . . . , w} such that Yljes ^j ^ C-
Measure: The total profit XI/G^ Pj-

Maximum Integer Knapsack, as formulated above, is NP-hard. There is also 
a ''fractional" version of this problem (we call it Maximum Fraction Knap
sack), which can be solved in polynomial time. In this version, rather than 
having to pick the entire item, one is allowed to choost fractions of items, like 
1/8 of the first item, 1/2 of the second item, and so on. The corresponding 
profit and cost incurred from the items will be similarly fractional (1/8 of the 
profit and cost of the first, 1/2 of the profit and cost of the second, and so on). 

One greedy strategy for solving these two problems is to pack items with the 
largest profit-to-cost ratio first, with the hopes of getting many small-cost high-
profit items in the knapsack. It turns out that this algorithm will not give any 
constant approximation guarantee, but a tiny variant on this approach will give 
a 2-approximation for Integer Knapsack, and an exact algorithm for Fraction 
Knapsack. The algorithms for Integer Knapsack and Fraction Knapsack are, 
respectively: 

• Greedy-IKS: Choose items with the largest profit-to-cost ratio first, until 
the total cost of items chosen is greater than C. Let j be the last item 
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chosen, and S be the set of items chosen before j . Return either [j] or 
5, depending on which one is more profitable. 

• Greedy-FKS: Choose items as in Greedy-IKS. When the item j makes 
the cost of the current solution greater than C, add iht fraction of j such 
that the resulting cost of the solution is exactly C. 

We omit a proof of the following. A full treatment can be found in Ausiello 
etal. (1999). 

LEMMA 18.4 Greedy-FKS solves Maximum Fraction Knapsack in polyno
mial time. That is, Greedy-FKS is a 1-approximation to Maximum Fraction 
Knapsack. 

We entitled the above as a lemma, because we will use it to analyze the 
approximation algorithm for Integer Knapsack. 

THEOREM 18,5 Greedy-KS is a ^-approximation for Maximum Integer 
Knapsack. 

Proof Fix an instance of the problem. Let P = X]/G5 PM the total profit of 
items in S, and j be the last item chosen (as specified in the algorithm). We 
will show that P + pj is greater than or equal to the profit of an optimal Integer 
Knapsack solution. It follows that one of S or {j} has at least half the profit of 
the optimal solution. 

Let Sj be an optimal Integer Knapsack solution to the given instance, with 
total profit P/ , Similarly, let 5^ and Pp correspond to an optimal Fraction 
Knapsack solution. Observe that Pp < Pf. 

By the analysis of the algorithm for Fraction Knapsack, Pp = P -\- epj, 
where £ € (0, 1] is the fraction chosen for item j in the algorithm. Therefore 

p + Pj>p + epj = pp> p ; 

and we are done. • 

In fact, this algorithm can be extended to get a polynomial time approxi
mation scheme (PTAS) for Maximum Integer Knapsack, (see (Ausiello et al., 
1999)). A PTAS has the property that, for any fixed e > 0 provided, it returns 
a (1 + 6)-approximate solution. Furthermore, the runtime is polynomial in the 
input size, provided that e is constant. This allows us to specify a runtime that 
has 1/6 in the exponent. It is typical to view a PTAS as di family of succes
sively better (but also slower) approximation algorithms, each running with a 
successively smaller € > 0. This is intuitively why they are called an approx
imation scheme, as it is meant to suggest that a variety of algorithms are used. 
A PTAS is quite powerful; such a scheme can approximately solve a problem 
with ratios arbitrarily close to 1. However, we will observe that many problems 
provably do not have a PTAS, unless P = NP. 



570 GOMES AND WILLIAMS 

18.2.3 Sequential Algorithms 
Sequential algorithms are used for approximations on problems where a 

feasible solution is a partitioning of the instance into subsets. A sequential al
gorithm "sorts" the items of the instance in some manner, and selects partitions 
for the instance based on this ordering. 

Sequential Bin Packing We first consider the problem of Minimum Bin 
Packing, which is similar in nature to the knapsack problems. 

Minimum Bin Packing 

Instance: A set of items S = {r i , . . . , r„}, where r, € (0, 1] for all / = 
1 n. 
Solution: Partition of S into bins B\,..., EM such that X!r es O — ^ ^̂ ^ 
a l l / = 1, . . . ,M. 
Measure: M. 

An obvious algorithm for Minimum Bin Packing is an on-line strategy. Ini
tially, let 7 = 1 and have a bin B\ available. As one runs through the input 
{r\, r2, etc), try to pack the new item r, into the last bin used, Bj. If r, does not 
fit in Bj, create another bin Bj+\ and put a, in it. This algorithm is "on-fine" 
as it processes the input in a fixed order, and thus adding new items to the in
stance while the algorithm is running does not change the outcome. Call this 
heuristic Last-Bin. 

THEOREM 18.6 Last-Bin is a 2-approximation to Minimum Bin Packing. 

Proof. Let R be the sum of all items, so R = Ylres ^i- ^^^ '^ ^^ ^^^ ^^^^^ 
number of bins used by the algorithm, and let m* be the minimum number of 
bins possible for the given instance. Note that m* > R, as the total number of 
bins needed is at least the total size of all items (each bin holds 1 unit). Now, 
given any pair of bins 5, and Bi+i returned by the algorithm, the sum of items 
from S in 5, and Bi+i is at least 1; otherwise, we would have stored the items 
of Bi+\ in Bi instead. This shows that m < 2R. Hence m < 2R < 2m*, and 
the algorithm is a 2-approximation. • 

An interesting exercise for the reader is to construct a series of examples 
demonstrating that this approximation bound, like the one for Greedy-VC, is 
tight. 

As one might expect, there exist algorithms that give better approxima
tions than the above. For example, we do not even consider the previous bins 
Bi,..., Bj-\ when trying to pack an ai, only the last one is considered. 

Motivated by this observation, consider the following modification to Last-
Bin. Select each item a, in decreasing order of size, placing a, in the first 
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available bin out of B\,.,., Bj, (So a new bin is only created if at cannot fit 
in any of the previous j bins.) Call this new algorithm First-Bin. An improved 
approximation bound may be derived, via an intricate analysis of cases. 

THEOREM 18.7 (Johnson, 1974) First-Bin is a ^--approximation to Mini
mum Bin Packing, 

Sequential Job Scheduling One of the major problems in scheduHng 
theory is how to assign jobs to multiple machines so that all of the jobs 
are completed efficiently. Here, we will consider job completion in the 
shortest amount of time possible. For the purposes of abstraction and simpfic-
ity, we will assume the machines are identical in processing power for each job. 

Minimum Job Scheduling 

Instance: An integer k and a multi-set T = {t\,..., r„} of times, ti e Q 
for all i = 1 , . . . , n {i.e. the tt are fractions). 
Solution: An assignment of jobs to machines, i.e. a function a from 
{ l , . . . , ^ } t o { l , . . . , ^ } . 
Measure: The completion time for all machines, assuming they run in 

parallel: max {Ena(o=; ^/l 7 e { 1 , . . . , ^} j . 

The algorithm we propose for Job ScheduHng is also on-line: when reading 
a new job with time ti, assign it to the machine j that currently has the least 
amount of work; that is, the j with minimum X]ra(0=j ^^' ̂ ^^^ ^̂ ^̂  algorithm 
Sequential-Jobs. 

THEOREM 18.8 Sequential Jobs is a 2-approximation for Minimum Job 
Scheduling. 

Proof. Let j be a machine with maximum completion time, and let / be the 
index of the last job assigned to j by the algorithm. Let stj be the sum of all 
times for jobs prior to i that are assigned to j . (This may be thought of as the 
time that job / begins on machine j.) The algorithm assigned / to the machine 
with the least amount of work, hence all other machines / at this point have 
larger 5^/:fl(o=/ ^̂ - Therefore sij < | X^Li ^̂ ' •̂̂ - ^Uj ^^ l̂ ^s \/k of the total 
time of all jobs (recall k is the number of machines). 

Notice B = j^ l]?=i U S ^*, the completion time for an optimal solution, as 
the sum corresponds to the case where every machine takes exactly the same 
fraction of time to complete. Thus the completion time for machine j is 

Sij + ti <m^-\-m^= 2m* 

So the maximum completion time is at most twice that of an optimal solution. 
D 
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This is not the best one can do: Minimum Job Scheduling also has a PTAS 
(see Vazirani, 1983). 

18.2.4 Randomization 
Randomness is a powerful resource for algorithmic design. Upon the as

sumption that one has access to unbiased coins that may be flipped and their 
values (heads or tails) extracted, a wide array of new mathematics may be em
ployed to aid the analysis of an algorithm. It is often the case that a simple 
randomized algorithm will have the same performance guarantees as a compli
cated deterministic (i.e. non-randomized) procedure. 

One of the most intriguing discoveries in the area of algorithm design is 
that the addition of randomness into a computational process can sometimes 
lead to a significant speedup over purely deterministic methods. This may be 
intuitively explained by the following set of observations. A randomized al
gorithm can be viewed as a probability distribution on a set of deterministic 
algorithms. The behavior of a randomized algorithm can vary on a given in
put, depending on the random choices made by the algorithm; hence when we 
consider a randomized algorithm, we are impHcitly considering a randomly 
chosen algorithm from a family of algorithms. If a substantial fraction of these 
deterministic algorithms perform well on the given input, then a strategy of 
restarting the randomized algorithm after a certain point in runtime will lead 
to a speed-up (Gomes et al., 1998). 

Some randomized algorithms are able to efficiently solve problems for which 
no efficient deterministic algorithm is known, such as polynomial identity test
ing (see Motwani and Raghavan, 1995). Randomization is also a key com
ponent in the popular simulated annealing method for solving optimization 
problems (Kirkpatrick et al, 1983). For a long time, the problem of deter
mining if a given number is prime (a fundamental problem in modem cryp
tography) was only efficiently solvable using randomization (Goldwasser and 
Kihan, 1986; Rabin, 1980; Solovay and Strassen, 1977). Very recently, a de
terministic algorithm for primahty was discovered (Agrawal et al., 2002). 

Random MAX-CUT Solution We saw earher a greedy strategy for MAX-
CUT that yields a 2-approximation. Using randomization, we can give an 
extremely short approximation algorithm that has the same performance in 
approximation, and runs in expected polynomial time. 

Random-Cut: Choose a random cut (i.e. a random partition of the ver
tices into two sets). If there are less than m/2 edges crossing this cut, 
repeat. 

THEOREM 18.9 Random-Cut is a Y^PP^^^^^^tion algorithm for MAX-CUT 
that runs in expected polynomial time. 
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Proof. Let X be a random variable denoting the number of edges crossing 
a cut. For / = 1 , . . . , m, Xj will be an indicator variable that is 1 if the i\h 
edge crosses the cut, and 0 otherwise. Then X = Yl?=i ^n so by linearity of 
expectation, E[X] = X̂ f̂ ^ £[X,]. 

Now for any edge {M, i;}, the probability it crosses a randomly chosen cut is 
1/2. (Why? We randomly placed u and i; in one of two possible partitions, so 
u is in the same partition as v with probability 1/2.) Thus, E[Xi] = 1/2 for 
all /, so E[X] = m/2. 

This only shows that by choosing a random cut, we expect to get at least m/2 
edges crossing. We want a randomized algorithm that always returns a good 
cut, and its running time is a random variable whose expectation is polynomial. 
Let us compute the probability that X > m/2 when a random cut is chosen. 
In the worst case, when X > m/2 all of the probability is weighted on m, and 
when X < m/2 all of the probabiUty is weighted on m/2 — 1. This makes the 
expectation of X as high as possible, while making the likelihood of obtaining 
an at-least-m/2 cut small. Formally, 

m/2 = E[X] < (1 - Pr[X > m/2])(m/2 - 1) + Pr[X > m/2]m 

Solving for Pr[X > m/2], it is at least 2/(m + 2). It follows that the expected 
number of iterations in the above algorithm is at most (m + 2)/2; therefore the 
algorithm runs in expected polynomial time, and always returns a cut of size at 
least m/2. D 

We remark that, had we simply specified our approximation as "pick a ran
dom cut and stop", we would say that the algorithm runs in linear time, and 
has an expected approximation ratio of 1/2. 

Random MAX-SAT Solution Previously, we studied a greedy approach for 
MAX-SAT that was guaranteed to satisfy half of the clauses. Here we will 
consider MAX-Ak-SAT, the restriction of MAX-SAT to CNF formulae with 
at least k literals per clause. Our algorithm is analogous to the one for MAX-
CUT: Pick a random assignment to the variables. It is easy to show, using 
a similar analysis to the above, that the expected approximation ratio of this 
procedure is at least 1 — ^ . More precisely, if m is the total number of clauses 
in a formula, the expected number of clauses satisfied by a random assignment 
is m — m/2^. 

Let c be an arbitrary clause of at least k literals. The probability that each 
of its literals were set to a value that makes them false is at most 1/2^, since 
there is a probability of 1/2 for each literal and there are at least k of them. 
Therefore the probability that c is satisfied is at least 1 —1/2^. Using a linearity 
of expectation argument (as in the MAX-CUT analysis) we infer that at least 
m — mjl^ clauses are expected to be satisfied. 
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18.3 A TOUR OF APPROXIMATION CLASSES 
We will now take a step back from our algorithmic discussions, and briefly 

describe a few of the common complexity classes associated with NP opti
mization problems. 

18.3.1 PTAS and FPTAS 

Definition PTAS and FPTAS are classes of optimization problems that some 
believe are closer to the proper definition of what is efficiently solvable, rather 
than merely P. This is because problems in these two classes may be approxi
mated with constant ratios arbitrarily close to 1. However, with PTAS, as the 
approximation ratio gets closer to 1, the runtime of the corresponding approx
imation algorithm may grow exponentially with the ratio. 

More formally, PTAS is the class of NPO problems n that have an approxi
mation scheme. That is, given e > 0, there exists a polynomial time algorithm 
A. such that 

• If n is a maximization problem, A^ is a (1 -f e) approximation, i.e. the 
ratio approaches 1 from the right. 

• If n is a minimization problem, it is a (1 — e) approximation (the ratio 
approaches 1 from the left). 

As we mentioned, one drawback of a PTAS is that the (1 -}- e) algorithm 
could be exponential in \/e. The class FPTAS is essentially PTAS but with 
the additional requirement that the runtime of the approximation algorithm is 
polynomial in n and l/e. 

A Few Known Results It is known that some NP-hard optimization problems 
cannot be approximated arbitrarily well unless P = NP. One example is 
a problem we looked at earher. Minimum Bin Packing. This is a rare case 
in which there is a simple proof that the problem is not approximable unless 
P = NP. 

THEOREM 18.10 (Aho et al, 1979) Minimum Bin Packing is not in PTAS, 
unless P = NP. In fact, there is no 3/2 — e approximation for any e > 0, 
unless P = NP. 

To prove the result, we use a reduction from the Set Partition decision prob
lem. Set Partitioning asks if a given set of natural numbers can be split into 
two sets that have equal sum. 

Set Partition 

Instance: A multi-set 5" = { r j , . . . , r„}, where r, e N for all / = 1 , . . . , «. 
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Solution: A partition of S into sets S\ and 52', i.e. S\ D S2 = S and 
5i n 2̂ = 0 . 
Measure: m{S) = \ if Xl/-,e5i''' ~ 2Zr €52 ''^' ^^^ '^(5) = 0 otherwise. 

Prao/ Let S = {r i , . . . , r„} be a Set Partition instance. Reduce it to Min
imum Bin Packing by setting C = \ Yl)=\ Sj (half the total sum of elements 
in S), and considering a bin packing instance of items 5" = { r i /C , . . . , Vn/C}. 

If S can be partitioned into two sets of equal sum, then the minimum number 
of bins necessary for the corresponding S' is 2. On the other hand, if S cannot 
be partitioned in this way, the minimum number of bins needed for S' is at 
least 3, as every possible partitioning results in a set with sum greater than C. 
Therefore, if there were a polytime (3/2 — 6)-approximation algorithm A, it 
could be used to solve Set Partition: 

• If A (given S and C) returns a solution using at most (3/2—e)2 = 3 — 2^ 
bins, then there exists a Set Partition for S. 

• HA returns a solution using at least (3/2 — 6)3 = 9/2 — 36 = 4.5 — 3e 
bins, then there is no Set Partition for S. 

But for any e e (0, 3/2), 

3 - 26 < 4.5 - 36 

Therefore this polynomial time algorithm distinguishes between those S that 
can be partitioned and those that cannot, so P = NP. • 

A similar result holds for problems such as MAX-CUT, MAX-SAT, and 
Minimum Vertex Cover. However, unlike the result for Bin Packing, the proofs 
for these appear to require the introduction of probabilistically checkable proofs, 
which will be discussed later. 

18.3.2 APX 

APX is a (presumably) larger class than PTAS; the approximation guaran
tees for problems in it are strictly weaker. An NP optimization problem n is 
in APX simply if there is a polynomial time algorithm A and constant c such 
that A is a c-approximation to 11. 

A Few Known Results It is easy to see that P r A 5 c APX c NPO. 
When one sees new complexity classes and their inclusions, one of the first 
questions to be asked is: how likely is it that these inclusions could be made 
into equalities? Unfortunately, it is highly unlikely. The following relationship 
can be shown between the three approximation classes we have seen. 
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THEOREM 18.11 (Ausiello et al, 1999) PTAS = APX <=^ APX = 
NPO ^;=^ P = NP. 

Therefore, if all NP optimization problems could be approximated within 
a constant factor, then P = NP. Further, if all problems that have constant 
approximations can be arbitrarily approximated, still P = NP. Another way 
of saying this is: if NP problems are hard to solve, then some of them are hard 
to approximate as well. Moreover, there exists a "hierarchy" of successively 
harder-to-approximate problems. 

One of the directions stated follows from a theorem of the previous sec
tion: earlier, we saw a constant factor approximation to Minimum Bin Packing. 
However, it does not have a PTAS unless P = NP. This shows the direction 
PTAS = APX =>• P = NP. One example of a problem that cannot be in 
APX unless P = NP istht well-known Minimum TraveUng Salesman prob
lem. 

Minimum Traveling Salesman 

Instance: A set C = {ci , . . . , c„} of cities, and a distance function d : 
C X C ^ N. 
Solution: A path through the cities, i.e. a permutation n : {I,... ,n} —> 
{1, . . . ,«} . 
Measure: The cost of visiting cities with respect to the path, i.e. 

n - l 

CTTCO' ^ ; rO-+l)) 

/=1 

It is important to note that when the distances in the problem instances al
ways obey a Euclidean metric, Minimum Travehng Salesperson has a PTAS 
(Arora, 1998). Thus, we may say that it is the generality of possible distances 
in the above problem that makes it difficult to approximate. This is often the 
case with approximability: a small restriction on an inapproximable problem 
can suddenly turn it into a highly approximable one. 

18.3.3 Brief Introduction to PCPs 
In the 1990s, the work in probabilistically checkable proofs (PCPs) was the 

major breakthrough in proving hardness results, and arguably in theoretical 
computer science as a whole. In essence, PCPs only look at a few bits of a 
proposed proof, using randomness, but manage to capture all of NP. Because 
the number of bits they check is so small (a constant), when an efficient PCP 
exists for a given problem, it impHes the hardness of approximately solving the 
same problem as well, within some constant factor. 
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The notion of a PCP arose from a series of meditations on proof-checking 
using randomness. We know NP represents the class of problems that have 
"short proofs" we can verify efficiently. As far as NP is concemed, all of 
the verification done is deterministic. When a proof is correct or incorrect, a 
polynomial time verifier answers "yes" or "no" with 100% confidence. 

However, what happens when we relax the notion of total correctness to in
clude probability? Suppose we permit the proof verifier to toss unbiased coins, 
and have one-sided error. That is, now a randomized verifier only accepts a 
correct proof with probabihty at least 1/2, but still rejects any incorrect proof 
it reads. (We call such a verifier a probabilistically checkable proof system, 
i.e. a PCP.) This slight tweaking of what it means to verify a proof leads to 
an amazing characterization of NP: all NP decision problems can be verified 
by a PCP of the above type, which only flips 0(\ogn) coins and only checks 
a constant (0(1)) number of bits of any given proof! The result involves the 
construction of highly intricate error-correcting codes. We shall not discuss it 
on a formal level here, but will cite the above in the notation of a theorem. 

THEOREM 18.12 (Aroraetal, 1998) 

PCP[0(logn),0( l)] = iVP 

One corollary of this theorem is that a large class of approximation problems 
do not admit a PTAS. In particular, we have the following theorem. 

THEOREM 18.13 ForUe [MAX-Ek-SAZ MAX-CUT, Minimum Vertex Cover] 
there exists a c such that FI cannot be c-approximated in polynomial time, un
less P = NP. 

ISA PROMISING APPLICATION AREAS FOR 
APPROXIMATION AND RANDOMIZED 
ALGORITHMS 

18.4.1 Randomized Backtracking and Backdoors 

Backtracking is one of the oldest and most natural methods used for solving 
combinatorial problems. In general, backtracking deterministically can take 
exponential time. Recent work has demonstrated that many real-world prob
lems can be solved quite rapidly, when the choices made in backtracking are 
randomized. In particular, problems in practice tend to have small substruc
tures within them. These substructures have the property that once they are 
solved properly, the entire problem may be solved. The existence of these so-
called "backdoors" (WilHams et al., 2003) to problems make them very tenable 
to solution using randomization. Roughly speaking, search heuristics will set 
the backdoor substructure early in the search, with a significant probability. 
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Therefore, by repeatedly restarting the backtracking mechanism after a certain 
(polynomial) length of time, the overall runtime that backtracking requires to 
find a solution is decreased tremendously. 

18.4.2 Approximations to Guide Complete Backtrack 
Search 

A promising approach for solving combinatorial problems using complete 
(exact) methods draws on recent results on some of the best approximation 
algorithms based on linear programming (LP) relaxations (see Chvatal, 1983; 
Dantzig, 1998) and so-called randomized rounding techniques, as well as on 
results that uncovered the extreme variance or ''unpredictability" in the run
time of complete search procedures, often explained by so-called heavy-tailed 
cost distributions (Gomes et al., 2000). Gomes and Shmoys (2002) propose a 
complete randomized backtrack search method that tightly couples constraint 
satisfaction problem (CSP) propagation techniques with randomized LP-based 
approximations. They use as a benchmark domain a purely combinatorial 
problem, the quasigroup (or Latin square) completion problem (QCP). Each 
instance consists of mi nhy n matrix with n^ cells. A complete quasigroup 
consists of a coloring of each cell with one of n colors in such a way that there 
is no repeated color in any row or column. Given a partial coloring of the n 
by n cells, determining whether there is a valid completion into a full quasi
group is an NP-complete problem (Colboum, 1984). The underlying structure 
of this benchmark is similar to that found in a series of real-world appUcations, 
such as timetabhng, experimental design, and fiber optics routing problems 
(Laywine and Mullen, 1998; Kumar et al., 1999). 

Gomes and Shmoys compare their results for the hybrid techniques CSP/LP 
strategy guided by the LP randomized rounding approximation with a CSP 
strategy and with a LP strategy. The results show that the hybrid techniques ap
proach significantly improves over the pure strategies on hard instances. This 
suggest that the LP randomized rounding approximation provides powerful 
heuristic guidance to the CSP search. 

18.4.3 Average Case Complexity and Approximation 
While "worst case" complexity has a very rich theory, it often feels too re

strictive to be relevant to practice. Perhaps NP-hard problems are hard only 
for some esoteric sets of instances that will hardly ever arise. To this end, re
searchers have proposed theories of ''average case" complexity, which attempt 
to probabiHstically analyze problems based on randomly chosen instances over 
distributions; for an introduction to this Hne of work, see Gurevich (1991). 
Recently, an intriguing thread of theoretical research has explored the connec
tions between the average-case complexity of problems and their approxima-
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tion hardness (Feige, 2002). For example, it is shown that if random 3-SAT is 
hard to solve in polynomial time (under reasonable definitions of "random" and 
"hard"), then NP-hard optimization problems such as Minimum Bisection are 
hard to approximate in the worst case. Conversely, this implies that improved 
approximation algorithms for some problems could lead to the average-case 
tractability of others. A natural research question to ask is: does an PTAS im
ply average-case tractability, or vice versa? We suspect that some statement of 
this form might be the case. In our defense, a recent paper (Beier and Vocking, 
2003) shows that Random Maximum Integer Knapsack is exactly solvable in 
expected polynomial time! (Recall that there exists an PTAS for Maximum 
Integer Knapsack.) 

18.5 TRICKS OF THE TRADE 
One major initial motivation for the study of approximation algorithms was 

to provide a new theoretical avenue for analyzing and coping with hard prob
lems. Faced with a brand-new interesting optimization problem, how might 
one apply the techniques discussed here? One possible scheme proceeds as 
follows: 

1 First, try to prove your problem is NP-hard, or find evidence that it is 
not! Perhaps the problem admits an interesting exact algorithm, without 
the need for approximation. 

2 Often, a very natural and intuitive idea is the basis for an approximation 
algorithm. How good is a randomly chosen feasible solution for the 
problem? (What is the expected value of a random solution?) How 
about a greedy strategy? Can you define a neighborhood such that local 
search does well? 

3 Look for a problem (call it fl) that is akin to yours in some sense, and use 
an existing approximation algorithm for U to obtain an approximation 
for your problem. 

4 Try to prove it cannot be approximated well, by reducing some hard-to-
approximate problem to your problem. 

The first, third, and fourth points essentially hinge on one's resourcefulness: 
one's tenacity to scour the literature (and colleagues) for problems similar to 
the one at hand, as well as one's ability to see the relationships and reductions 
which show that a problem is indeed similar. 

This chapter has been mainly concerned with the second point. To answer 
the questions of that point, it is crucial to prove bounds on optimal solutions, 
with respect to the feasible solutions that one's approaches obtain. For mini
mization (maximization) problems, one will need to prove lower bounds (re-
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spectively, upper bounds) on some optimal solution for the problem. Devising 
lower (or upper) bounds can simplify the proof tremendously: one only needs 
to show that an algorithm returns a solution with value at most c times the 
lower bound to show that the algorithm is a c-approximation. 

We have proven upper and lower bounds repeatedly (implicitly or explicitly) 
in our proofs for approximation algorithms throughout this chapter—it may be 
instructive for the reader to review each approximation proof and find where 
we have done it. For example, the greedy vertex cover algorithm (of choosing a 
maximal matching) works because even an optimal vertex cover covers at least 
one of the vertices in each edge of the matching. The number of edges in the 
matching is a lower bound on the number of nodes in a optimal vertex cover, 
and thus the number of nodes in the matching (which is twice the number of 
edges) is at most twice the number of nodes of an optimal cover. 

18.6 CONCLUSIONS 
We have seen the power of randomization in finding approximate solutions 

to hard problems. There are many available approaches for designing such al
gorithms, from solving a related problem and tweaking its solution (in linear 
programming relaxations) to constructing feasible solutions in a myopic way 
(via greedy algorithms). We saw that for some problems, determining an ap
proximate solution is vastly easier than finding an exact solution, while other 
problems are just as hard to approximate as they are to solve. 

In closing, we remark that the study of approximation and randomized al
gorithms is still a very young (but rapidly developing) field. It is our sincerest 
hope that the reader is inspired to contribute to the prodigious growth of the 
subject, and its far-reaching implications for problem solving in general. 
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Chapter 19 

FITNESS LANDSCAPES 

Colin R. Reeves 
School of Mathematical and Information Sciences 
Coventry University, UK 

19.1 HISTORICAL INTRODUCTION 
One of the most commonly-used metaphors to describe the process of 

heuristic methods such as local search in solving a combinatorial optimization 
problem is that of a ''fitness landscape". However, describing exactly what we 
mean by such a term is not as easy as might be assumed. Indeed, many cases 
of its usage in both the biological and optimization literature reveal a rather 
serious lack of understanding. 

The landscape metaphor appears most commonly in work related to evo
lutionary algorithms, where it is customary to trace the usage of the term 
back to a paper by the population geneticist Sewall Wright (Wright, 1932), 
although Haldane had already introduced a similar notion (Haldane, 1931). 
The metaphor has become pervasive, being cited in many biological texts that 
discuss evolution. 

Wright's original idea of a fitness landscape was somewhat ambiguous. It 
appears that what he initially had in mind concerned within-species variation 
where the ''axes" of a search space represented unspecified gene combinations, 
but Dobzhansky's subsequent enthusiastic use of the metaphor (Dobzhansky, 
1951) seems to have estabHshed the consensus view of the axes of the search 
landscape as the frequency of a particular allele of a particular gene in a par
ticular population. This can be seen in many textbooks on the subject of evo
lution, such as Ridley (1993). In the hands of Simpson, who seems to have 
thought primarily in terms of phenotypic characters (Simpson, 1953), the story 
became even more highly developed, although even more divorced from em
pirical reality. Despite Wright's later attempts to clarify the situation (Wright, 
1967; Wright, 1988), the ambiguity remains. There is thus an interesting para
dox in evolutionary biology: according to Futuyma (1998, p. 403), 

[The] adaptive landscape is probably the most common metaphor in evolutionary 
genetic[s] 



588 REEVES 

yet nobody seems sure what exactly is the reahty to which the metaphor is sup
posed to relate! However, it remains extremely popular: the book of Dawkins 
(1996), for example, makes considerable use of the notion, as its title Climbing 
Mount Improbable suggests. 

Although we may have a vague idea of what the search space is, it is rather 
harder to define any axes for such a search space, as we have seen. Fitness in 
evolutionary biology is also a rather slippery concept. It is discussed as if there 
is some objective a priori measure, yet as usually defined, ''fitness" concerns 
an organism's reproductive success, which can only be measured a posteri
ori.̂  Add to this the confusion over what the search space axes represent, and 
it becomes almost impossible to relate them to some quantifiable measure of 
fitness. It is thus generally dealt with by prestidigitation, and so, for all its 
popularity, the popular idea of a fitness landscape in biology is a mirage, dis
playing what is to a mathematician a distressing lack of rigor. (Happily some 
biologists agree, as in the cogent arguments against the hand-waving approach 
in Eldredge and Cracraft, 1980.) 

A more serious approach was foreshadowed by Eigen (Eigen et al., 1989; 
Eigen, 1983). In his work on viruses, he introduced the concept of a quasi-
species: a group of similar sequences. Each sequence Sk is a string of symbols 
drawn from some alphabet, the natural one to consider for viruses being the 
RNA bases adenine, cytosine, guanine and uracil: {A,C,G,U]. Differences 
in members of the quasi-species correspond to point mutations—replacement 
of one symbol by another one. 

This interpretation falls somewhat short of the grand ideas in the popular 
biology textbooks, but it does make a formal mathematical development of the 
concept of a fitness landscape much more feasible, and following pioneering 
work by Weinberger (1990) in particular, a fairly complete formal statement 
of landscape theory was proposed by Stadler (1995). Recent work has devel
oped this idea further (Reidys and Stadler, 2002), but some quite extensive 
mathematical knowledge is needed in order to appreciate it fully. In the ex
pectation that the mathematical background of the readers of this volume will 
be somewhat variable, this tutorial will try to survey some of the themes most 
relevant to combinatorial optimization, without using advanced mathematical 
ideas. Some basic ideas of set theory, matrix algebra and functional analy
sis will be required, but the more complex ideas found in Reidys and Stadler 
(2002) will not be covered. Illustrative numerical examples will also be used 
at key points in an attempt to aid understanding. 

The Oxford Dictionary of Biology, for example, defines fitness as "The condition of an organism that is 
well adapted to its environment, as measured by its ability to reproduce itself." 
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19.2 COMBINATORIAL OPTIMIZATION 
We can define combinatorial optimization problems as follows: we have a 

discrete search space X, and a function 

f :A: \-> m 

The general problem is to find 

X* = arg max f 
XeX 

where ac is a vector of decision variables and / is the objective function. (Of 
course, minimization can also be the aim, but the modifications are always 
obvious). In the field of evolutionary algorithms, the function / is often called 
the fitness; hence the associated landscape is a. fitness landscape. The vector x* 
is a global optimum: that vector which is the "fittest" of all. (In some problems, 
there may be several global optima—different vectors of equal fitness.) 

With the idea of a fitness landscape comes the idea that there are also many 
local optima or false peaks, in which a search algorithm may become trapped 
without finding the global optimum. In continuous optimization, notions of 
continuity and concepts associated with the differential calculus enable us to 
characterize quite precisely what we mean by a landscape, and to define the 
idea of an optimum. It is also convenient that our own experiences of hill 
climbing in a three-dimensional world gives us analogies to ridges, valleys, 
basins, watersheds, etc, which help us to build an intuitive picture of what 
is needed for a successful search, even though the search spaces that are of 
interest often have dimensions many orders of magnitude higher than 3. 

However, in the continuous case, the landscape is determined only by the 
fitness function, and the ingenuity needed to find a global optimum consists in 
trying to match a technique to this single landscape. There is a major difference 
when we come to discrete optimization. Indeed, we really should not even 
use the term "landscape" unless we can define the topological relationships of 
the points in the search space A'. Unfike the continuous case, we have some 
freedom to specify these relationships, and in fact, that is precisely what we do 
when we decide to use a particular technique. 

19.2.1 An Example 
In practice, one of the most commonly used search methods for a combina

torial optimization problem is neighborhood search. This idea is at the root of 
modem "metaheuristics" such as simulated annealing (see Chapter 7) and tabu 
search (see Chapter 6)—as well as being much more involved in the method
ology of genetic algorithms than is sometimes realized. 

A neighborhood structure is generated by using an operator that transforms 
a given vector jc into a new vector x'. For example, if the solution is represented 
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by a binary vector (as is often the case for genetic algorithms (see Chapter 4), 
for instance), a simple neighborhood might consist of all vectors obtainable by 
"flipping" one of the bits. The "bit flip" neighbors of (00000), for example, 
would be 

{(10000), (01000), (00100), (00010), (00001)} 

Consider the problem of maximizing a simple function 

f{z) = z^ - 60z^ + 900z + 100 

where the solution z is required to be an integer in the range [0, 31]. Regarding 
z for a moment as a continuous variable, we have a smooth unimodal function 
with a single maximum at z = 10—as is easily found by calculus. Since this 
solution is already an integer, this is undoubtedly the most efficient way of 
solving the problem. 

However, suppose we chose instead to represent z by a binary vector x of 
length 5. By decoding this binary vector as an integer it is possible to evaluate 
/ , and we could then use neighborhood search, for example, to search over 
the binary hypercube for the global optimum using some form of hill-climbing 
strategy. 

This discrete optimization problem turns out to have four optima (three of 
them local) when the bit flip operator is used. If a "steepest ascent" strategy 
is used (i.e. the best neighbor of a given vector is identified before a move 
is made) the local optima are as shown in Table 19.1. Also shown are the 
"basins of attraction"—the set of initial points from which the search leads to 
a specified optimum. For example, if we start the search at any of the points in 
the first column, and follow a strict best improvement strategy, the search will 
finish up at the global optimum. However, if a "first improvement" strategy is 
used (where the first change that leads uphill is accepted without ascertaining 
if a still better one exists), the basins of attraction are rather different, as shown 
in Table 19.2. 

In fact, there are even more complications: in Table 19.2, the order of 
searching the components of the vector is "forward" (left to right). If the 
search is made in the reverse direction (right to left) the basins of attraction 
are different, as shown in Table 19.3. 

Thus, by using flipping with this binary representation, we have created 
local optima that did not exist in the integer version of the problem. Further, 
although the optima are still the same, the chances of reaching a particular 
optimum can be seriously affected by a change in hill-climbing strategy. 

However, the bit flip operator is not the only mechanism for generating 
neighbors. An alternative neighborhood could be defined as follows: for k = 
1 , . . . , 5, flip bits {k,..., 5}. Thus, the neighbors of (00000), for example, 
would now be 

{(11111), (01111), (00111), (00011), (00001)} 
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Table 19.1. Local optima and basins of attraction for steepest ascent with the bit flip operator 
in the case of a simple cubic function. The bracketed figures are the fitnesses of each local 
optimum. 

Local optimum 

Basin 

0 1 0 1 0 
(4100) 

0 0 0 0 0 
00001 
0 0 0 1 0 
0001 1 
00101 
0 1 0 0 0 
01001 
0 1 0 1 0 
01011 
01101 
0 1 1 1 0 
01111 
10101 
1 1000 
11001 
11010 
11011 
11101 
11110 
11111 

01100 
(3988) 

0 0 1 0 0 
0 1 1 0 0 
11100 

00111 
(3803) 

0 0 1 1 0 
00111 
10110 
10111 

1 0000 
(3236) 

10000 
1 0001 
10010 
10011 
10100 

We shall call this the "CX operator", and it creates a very different landscape. 
In fact, there is now only a single global optimum (01010); every vector is in 
its basin of attraction. This illustrates the point that it is not merely the choice 
of a binary representation that generates the landscape—the search operator 
needs to be specified as well. 

Incidentally, there are two interesting facts about the CX operator. Firstly, it 
is closely related to the one-point crossover operator frequently used in genetic 
algorithms. (For that reason, it has been termed the complementary crossover 
or CX operator). Secondly, if the 32 vectors in the search space are re-coded 
using a Gray code, it is easy to show that the bit-flip neighbors of a point 
in Gray-coded space are identical to those in the original binary-coded space 
under CX. This is an example of an isomorphism of landscapes. (An isomor
phism in mathematics refers to mappings between mathematical objects that 
preserve structure. It comes from the Greek iso (equal) and morphe (shape). 
For example, two graphs are isomorphic if there is a one-to-one mapping a 
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Table 19.2. Local optima and basins of attraction for first improvement (forward search) using 
the bit flip operator. 

Local optimum 01010 01100 00111 10000 
(4100) (3988) (3803) (3236) 

Basin 00101 00100 00111 00000 
00110 01000 01111 00001 
01001 01100 10111 00010 
01010 10100 11111 0001 1 
01011 1 1000 10000 
01101 11100 10001 
01110 10010 
10101 10011 
10110 
11001 
11010 
11011 
11101 
11110 

Table 19.3. Local optima and basins of attraction for first improvement (reverse search) using 
the bit flip operator. 

Local optimum 0 1 0 1 0 0 1 1 0 0 0 0 1 1 1 1 0 0 0 0 
(4100) (3988) (3803) (3236) 

Basin 0 1 0 0 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 0 
0 1 0 0 1 0 1 1 0 1 0 0 0 0 1 1 0 0 0 1 
01010 01110 00010 10010 
01011 01111 00011 10011 

00100 10100 
00101 10101 
00110 10110 
00111 10111 

1 1000 
11001 
11010 
11011 
11100 
11101 
11110 
11111 
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between their respective sets of vertices such that for every edge (x, y) of one 
graph, {G{X), G{y)) is an edge of the other.) 

19.3 MATHEMATICAL CHARACTERIZATION 
Now that some of the typical features of a landscape have been illustrated, 

we can provide a mathematical characterization. We define a landscape C for 
the function / as a triple C = (JY, f,d) where d denotes a distance measure 
d : X X P^ -^ IR'^ U {00} for which it is required that, V5, t,u e X, 

d(s,t)>0; d(s,t) = 0 <^ s = t; d(s,u) < d(s,t)-\-d(t,u) 

Note that we do not need to specify the representation explicitly, since this is 
assumed to be implied in the description of X. We have also decided, for the 
sake of simplicity, to ignore questions of search strategy and other matters in 
the definition of a landscape, unfike the more comprehensive definition of, for 
example, Jones (1995). 

This definition says nothing about how the distance measure arises. In fact, 
for many cases a "canonical" distance measure can be defined. Often, this is 
symmetric, i.e. d(s, t) = d(t, s)'^s,teX, so that d also defines a metric on 
A!. This is clearly a nice property, although it is not essential. 

19.3.1 Neighborhood Structure 
The distance measure is typically related to the neighborhood structure. Ev

ery solution X e X has an associated set of neighbors, N^oix) C A', called the 
neighborhood of x. This neighborhood is generated by applying an operator 
CO to a vector s in order to transform it into a vector t. What we may call a 
canonical distance measure d(^ is that induced by co whereby 

t e Na,(s) ^d^{s,t) = 1 

The distance between non-neighbors is defined as the length of the shortest 
path between them (if one exists). The operator co generally takes a parameter, 
which means that it is technically a one-to-many function, able to generate 
many neighbors from one initial vector. The size of the neighborhood will be 
denoted by n. 

For example, if X is the binary hypercube (0, 1}^, the bit flip operator can 
be defined as 

0(,-):(O,l)'xZ^(O,l)^ J 4 = L " " ifi^k 

where z is a binary vector of length €, and / is the parameter specifying the bit 
to be flipped. It is clear that the distance metric induced by 0 is the well-known 
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Hamming distance 
i 

dnix, y) = Yy^i ^ yt^ 

where the square brackets [expr] denote an indicator function, which takes 
the value 1 if the logical expression expr is true and 0 otherwise. Thus we 
could describe this landscape as a Hamming landscape (with reference to its 
distance measure), or as the bit-flip landscape (with reference to the operator). 
Similarly, we can define the CX operator as 

K(o:(o,.,'xz-.,o,„' j ^ i : ; ; - ^^<^^ 
The distance measure induced here is clearly more compUcated than the Hamm
ing landscape, and cannot be described by a simple function. In both of these 
cases the size of the neighborhood is n = t. 

As an example of an asymmetric distance measure, consider the case where 
X is n ^ , the space of permutations of length m, which is often relevant for 
scheduling problems. A familiar neighborhood is defined by the "forward 
shift" operator, taking two parameters in this case, 

J^SHii, j):nmX^x^-^n, 
7TI_-^ = Ttic for j < k < i 

Tt'j^ = TTji Otherwise 

The neighbors of (1234), for example, would be 

{(2134), (2314), (2341), (1324), (1342), (1243)} 

(note that the size of this neighborhood is n = (^)). It is easily seen that 
(1234), however, is not a neighbor of (2314), (2341) or (1342), so J^SH is not 
symmetric. Other neighborhood operators (for example, "exchange", where 
two items in the sequence are swapped) induce different distance measures, so 
there may be advantages in choosing operator-independent distance measures 
(Reeves, 1999) for practical comparisons. 

Distance measures may become even more compHcated: for instance, in 
the problem of biological sequence comparison (RNA, DNA and protein se
quences: see Waterman, 1995), it is common to compare sequences in terms 
of the minimal number of genetic operations necessary to convert one string 
into another (the "string edit" distance). Thus, even finding the distance mea
sure becomes an optimization problem. 

19.3.2 Local Optima 
We can now give a formal statement of a fundamental property of fitness 

landscapes: for a landscape C = (X, / , d), a vector j«:° € A' is locally optimal 
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if 
/ M > / ( 0 V^e7V(jc°) 

We shall denote the set of such optima as X°, and the set of global optima 
(recall that we allow the possibility of more than one) as X* where the vector 
jc* € A'̂  is a global optimum if 

f{x*) > f(x°) VJC°G A'° 

Landscapes that have only one local (and thus also global) optimum are com
monly called unimodal, while landscapes with more than one local optimum 
are said to be multimodal. 

The number of local optima in a landscape clearly has some bearing on 
the difficulty of finding the global optimum. In our previous example, it is 
clearly more difficult to find the global optimum using bit-flipping than if we 
used e x . However, it is not the only indicator: in our example the steepest 
ascent strategy increased the chance of finding the global optimum, since there 
were more initial solutions that led to the global optimum than under first-
improvement. 

19.3.3 Basins of Attraction 
We can also now define more precisely the idea of a basin of attraction. 

Neighborhood search can be interpreted as a function 

At : <^ h ^ A f" 

where if jc is the initial point, ii(x) is the optimum that it reaches. With this in 
mind, we can define the basin of attraction of jc" as the set 

B(jc°) = (jc : fiix) = jc°} 

The problem is that B(x°) is not independent of the search strategy, as the 
example of Section 19.2.1 demonstrated. In fact, it is only well defined for the 
case of steepest ascent. For other search strategies, such as first improvement, 
the order of searching may be highly influential. Our example showed that 
the basin of attraction of the global optimum was much larger for steepest 
ascent than for the other strategies, but it is possible to find examples where 
the opposite is the case. 

19.3.4 Graph Representation 
Neighborhood structures are clearly just another way of defining a graph r , 

which can be described by its (n x n) adjacency matrix A. The elements of A 
are given by aij = 1 if the indices / and j represent neighboring vectors, and 
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aij = 0 otherwise. For example, the graph induced by the bit flip 0 on binary 
vectors of length 3 has adjacency matrix 

0 1 1 0 1 0 0 0 
1 0 0 1 0 1 0 0 
1 0 0 1 0 0 1 0 

1 1 0 0 0 0 1 
0 0 0 0 1 1 

Arf, = 
0 

0 
1 
0 1 0 0 1 0 0 1 
0 0 1 0 1 0 0 1 
0 0 0 1 0 1 1 0 

where the vectors are indexed from 0 to 7 in the usual binary-coded integer 
order (i.e. (000), (001), etc). By way of contrast, the adjacency matrix for the 
CX operator is 

0 1 0 1 0 0 0 1" 
1 0 1 0 0 0 1 0 
0 1 0 1 0 1 0 0 
1 0 1 0 1 0 0 0 
0 0 0 1 0 1 0 1 
0 0 1 0 1 0 1 0 
0 1 0 0 0 1 0 1 
1 0 0 0 1 0 1 0 

It is simply demonstrated that permuting the rows and columns so that they are 
in the order 0, 1,3, 2, 7, 6, 4, 5 reproduces the adjacency matrix A^—another 
way of demonstrating the isomorphism mentioned earlier. In other words, 

where P is the associated permutation matrix of the binary-to-Gray transfor
mation. It is also clear that the eigenvalues and eigenvectors are the same (up 
to a permutation). 

As a final example, we may consider the adjacency matrix for TSH in the 
space 113: 

0 
1 
1 
0 
1 
0 

1 
0 
1 
0 
1 
0 

1 
0 
0 
1 
0 
1 

1 
0 
1 
0 
0 
1 

0 
1 
0 
1 
0 
1 

0 
1 
0 
1 
1 
0 

^Tsn = 

where the permutations are indexed in lexicographic order (123), . . . , (321). 
The lack of symmetry in the distance measure is of course reflected in an asym
metric matrix. 
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19.3.5 Laplacian Matrix 

The graph Laplacian A is defined as 

A = A-D 

where Z> is a diagonal matrix such that da is the degree of vertex /. Usually, 
these matrices are vertex-regular and da = kWi, so that 

A = A-kI 

This notion recalls that of a Laplacian operator in the continuous domain; the 
effect of this matrix, applied as an operator at the point s to the fitness function 
/ i s 

t£N{S) 

SO it functions as a kind of differencing operator. In particular, Af(s)/nistht 
average difference in fitness between the vector s and its neighbors. Grover 
has shown (Grover, 1992) that the landscapes of several combinatorial opti
mization problems satisfy an equation of the form 

Cf 
n 

where C is a problem-specific constant and n (in Grover's notation) is the size 
of the problem instance. From this it can be deduced that all local optima 
are better than the mean ( / ) over all points on the landscape. Furthermore, 
it can also be shown that under mild conditions on the nature of the fitness 
function, the time taken by neighborhood search to find a local optimum in 
a maximization problem is 0(nlog2[/max//]) where /max is the fitness of a 
global maximum. (A similar result can be obtained, mutatis mutandis, for 
minimization problems.) 

19.3.6 Graph Eigensystem 

In the usual way, we can define eigenvalues and eigenvectors of the matrices 
associated with the graph P. The set of eigenvalues is called the spectrum of 
the graph. Forann x n matrix A the spectrum is 

( Ao A] • • • Xn-l ) 

where A/ is the iih eigenvalue, ranked in (weakly) descending order. Similarly, 
the spectrum of the Laplacian is 

( /Xo /^l • • • f^n-\ ) 
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where, again, /u-, is the /th eigenvalue, ranked this time in (weakly) ascending 
order. For a regular connected graph it can be shown that 

fii = k - ki Vi 

Further, from the corresponding eigenvectors { ,̂}, / can be expanded as 

f(s) = J2^i^i(^^ 
i 

Stadler and Wagner (1998) call this a "Fourier expansion". 
Unfortunately, the size of these graphs rapidly becomes very large. How

ever, graphs can often be partitioned in a way that makes it possible to reduce 
the scale of the problem. This enables the formation of a collapsed matrix A 
whose eigenvalues are the distinct eigenvalues of A, with multiplicities given 
by the cardinalities of the partitions. (Relevant mathematical details may be 
found in the books of Biggs, 1993, and Godsil, 1993.) If the diameter of such 
a graph is 5, the number of distinct eigenvalues is only 5 + 1, so a considerable 
reduction in size is possible—at least in principle. 

Similarly, the Fourier expansion can be partitioned into a sum 

f{s) = Y,^p^pi^) 
p 

over the distinct eigenvalues of A. The corresponding values 

(where the sum is over the coefficients that correspond to the pih distinct eigen
value) form the amplitude spectrum, which expresses the relative importance 
of different components of the landscape. 

Ideally, such mathematical characterizations could be used to aid our un
derstanding of the important features of a landscape, and so help us to exploit 
them in designing search strategies. But beyond Grover's rather general re
sults above, it is possible to carry out further analytical studies only for small 
graphs or graphs with a special structure, as illustrated for example, by Stadler 
(Stadler, 1995). In the important case of the Hamming landscape of a binary 
search space analytical results for the graph spectrum show that the eigenvec
tors are thinly disguised versions of the familiar Walsh functions.^ For the case 
of recombinative operators the problem is considerably more complicated, and 

^For readers who are unfamiliar with Walsh functions, they are digital analogs of trigonometrical functions, 
forming an orthonormal set of rectangular waveforms. An introduction to their uses in the analysis of 
optimization methods can be found in Reeves and Rowe (2002). 
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necessitates the use of 'T-structures" (Stadler and Wagner, 1998). The latter 
are essentially generalizations of graphs in which the mapping is from pairs 
of ''parents" (jc, y) to the set of possible strings that can be generated by their 
recombination. However, it can be shown that for some "recombination land
scapes" (such as that arising from the use of uniform crossover) the eigenvec
tors are once more the Walsh functions. Whether this is also true in the case of 
one- or two-point crossover, for example, is not known, but Stadler and Wag
ner conjecture that it is. In view of the close relationship between the bit-flip 
and CX landscapes as demonstrated above, it would not be surprising if this 
is a general phenomenon. However, to obtain these results, some assumptions 
have to be made—such as a uniform distribution of parents—that are unlikely 
to be true in a specific finite realization of a genetic search. 

In the case of the bit-flip landscape, the distinct eigenvalues correspond 
to sets of Walsh coefficients of different orders, and the amplitude spectrum 
is exactly the set of components of the "epistasis variance" associated with 
other attempts to measure problem difficulty (for a review, see Reeves and 
Rowe, 2002). For the cubic function of Section 19.2.1 above, the compo
nents of variance for the different orders of Walsh coefficients can be shown 
to be (0.387, 0.512, 0.101, 0, 0) respectively; i.e. 61.3% of the variation in the 
landscape is due to interactions of order 2 and 3. This is consistent with the 
relatively poor performance of the bit flip hill-cHmber. 

Of course, the eigenvalues and eigenvectors are exactly the same (up to a 
permutation) for the CX landscape of this function, and the set of values for 
the Walsh coefficients in the Fourier decomposition is also the same. However, 
the effect of the permutation inherent in the mapping from the bit flip land
scape to the CX landscape is to re-label some of the vertices of the graph, and 
hence some of the Walsh coefficients. Thus some coefficients that previously 
referred to linear effects now refer to interactions, and vice versa. Taking the 
cubic function as an example again, the components of variance or amplitude 
spectrum becomes (0.771, 0.174, 0.044, 0.011, 0.000). We see that the linear 
effects now predominate (77.1%), and this is consistent with the fact that the 
hill-climber in the CX landscape always finds the optimum. 

19.3.7 Recombination Landscapes 

If we look at the ''recombination landscapes" derived from the P-structures 
of Stadler and Wagner (1998), we find that once again the Walsh coefficients 
are obtained, but labeled in yet another way. The coefficients in the bit flip and 
CX landscapes are grouped according to the number of Is in their binary- and 
Gray-coded index representations respectively. However, in a recombination 
landscape—such as that generated by one-point crossover—it is the separation 
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Table 19.4. Illustration of the different groupings of the Walsh coefficients associated with the 
bit flip, CX and recombination landscapes. 

Index 

0 
1 
2 
3 
4 
5 
6 
7 

Binary 
coding 

0000 
0001 
0010 
0011 
0100 
0101 
0110 
0111 

Bit flip 

0 
1 
1 
2 
1 
2 
2 
3 

CX 

0 
1 
2 
1 
2 
3 
2 
1 

Recom 

0 
1 
1 
2 
1 
3 
2 
3 

Index 

8 
9 
10 
11 
12 
13 
14 
15 

Binary 
coding 

1000 
1001 
1010 
1011 
1100 
1101 
1110 
n i l 

Bit flip 

1 
2 
2 
3 
2 
3 
3 
4 

CX 

2 
3 
4 
3 
2 
3 
2 
1 

Recom 

1 
4 
3 
4 
2 
4 
3 
4 

between the outermost 1-bits that defines the groupings. Table 19.4 shows the 
groupings for a 4-bit problem. 

Several things can be seen from this table: firstly, the linear Walsh coef
ficients (and hence the linear component of epistasis variance) are the same 
in both the bit flip and the recombination landscapes. Secondly (as already 
explained), the coefficients in the CX landscape are simply a re-labeling of 
those in the bit flip landscape. Thirdly, the coefficients in the recombination 
landscape do not form a natural grouping in terms of interactions, and conse
quently the different components of variance for the recombination landscape 
do not have a simple interpretation as due to interactions of a particular order, 

19.3.8 Summary 
This section has set out some of the basic mathematics necessary for the 

analysis of landscapes. As has probably become obvious, the details can re
quire an extensive mathematical knowledge. Furthermore, the full analysis of 
a particular landscape (i,e, its eigensystem) may need the gathering of a large 
amount of empirical information, perhaps equivalent to a complete knowledge 
of the fitness function at all points of the search space! Landscape analysis in 
such cases can be no more than an a posteriori justification (or lack of it!) for 
the choice of a particular neighborhood. Further discussion on some of these 
points may be found in Reeves and Rowe (2002). 

While it is undeniably useful that we can construct mathematical techniques 
to help us neatly summarize certain facts about a landscape, we must also 
recognize that there are other features—possibly very important ones—that 
are not captured by these methods. In the simple example of the cubic function 
we have seen that the search strategy adopted can make a big difference to the 
likelihood of a hill-climber finding the global optimum. 
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Mathematical analysis holds out some tantalizing prospects of future prog
ress, but for the moment we turn to a consideration of the results of experimen
tal work on landscapes. 

19.4 STATISTICAL MEASURES 

If mathematical analysis of a landscape is a difficult task, then it is natural to 
ask if there is something we can learn about the nature of a landscape, simply 
from the process of searching it. Several ideas have been suggested. 

19.4.1 Autocorrelation 

One of the earliest attempts to obtain some statistical measure of a landscape 
was by Weinberger, who showed that certain quantities obtained in the course 
of a random walk can be useful indicators (Weinberger, 1990). If the fitness of 
the point visited at time t is denoted by /,, we can estimate the autocorrelation 
function (usually abbreviated to acf) of the landscape during a random walk of 
length T as 

E ' (ft - f)iUj - f) 
t=l 

ri = — 

Zift-f)^ 
t=i 

Here / is of course the mean fitness of the T points visited, and j is known as 
the lag. The concept of autocorrelation is of course an important one in time 
series analysis, but its interpretation in the context of landscapes is interesting. 

For "smooth" landscapes, and at small lags (i.e. for points that are close 
together), the acf is likely to be close to 1 since neighbors are likely to have 
similar fitness values. However, as the lag increases the correlations will di
minish. "Rugged" landscapes are informally those where close points can nev
ertheless have completely unrelated fitnesses, and so the acf will be close to 
zero at all lags. Landscapes for which the acf has significant negative values 
are conceptually possible, but they would have to be rather odd. 

A related quantity is the correlation length of the landscape, usually denoted 
by r. Classical time series analysis (Box and Jenkins, 1970) can be used to 
show that the standard error of the estimate ry is approximately 1/VT, SO that 
there is only approximately 5% probability that \rj\ could exceed 2/^/T by 
chance. Values of rj less than this value can be assumed to be zero. The 
correlation length r is then the last j for which rj is non-zero: 

7 = y lo+ii <2/VrA{|r,i>2/Vr yk<j\ 
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The acf and the correlation length are useful indicative measures of the rugged-
ness of a landscape, but they are rather crude statistics, and it is difficult to 
attach a great deal of meaning to their values for particular instances. 

19.4.2 Number of Optima 
Although it is not the full story, the number of local optima is widely ac

knowledged as a very important factor in how easy or difficult it is to find a 
global optimum of a landscape, and is clearly much more directly relevant for 
a particular instance than the correlation measures. Recently, some attempts 
have been made (Reeves, 2001; Eremeev and Reeves, 2002, 2003; Reeves and 
Eremeev, 2004) to obtain direct estimates of the number of optima using sta
tistical principles. 

It is assumed that a heuristic search method can be restarted many times 
using different initial solutions. Given the landscape framework we have dis
cussed above, by randomly generating initial solutions, we will sample many 
basins of attraction. Of course, this will be evident by the number of different 
final solutions {x°} that are found. Suppose this number is k, and the number 
of restarts is r (>k). Various statistical models may be used in order to estimate 
the number of optima v. 

Waiting-Time Model We can ask for the distribution of the waiting-time to 
find all optima. If r exceeds k substantially, we can use this fact to estimate the 
probabiUty that all optima have been found. This would also imply, a fortiori, 
that the global optimum had been found, and thus provides us with an objective 
confidence level concerning the quality of the best solution obtained. 

Counting Model In the event—unfortunately, a common one—that k is not 
much smaller than r, it is unlikely that we have seen many of the optima. 
However, a counting model can be used to estimate the value of y, in a similar 
way to those used by ecologists to estimate the size of an unknown animal 
population. This can be quite illuminating in showing the differences between 
landscapes generated by different neighborhood operators. 

Non-parametric Estimates Fairly restrictive assumptions are needed in or
der to obtain tractable statistical models of landscapes. Where these estimates 
can be checked against actuality (by enumerating all points on a landscape), 
it appears that the effect of these assumptions is to produce negatively biased 
estimates—i.e. the estimate of v is consistently smaller than the true value. 
Removing the assumptions by creating more powerful models would probably 
be impossible, so some non-parametric approaches have been explored, and 
found to provide useful estimates of y, although the problem of negative bias 
remains. All these models are summarized in Reeves and Eremeev (2004). 
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19.5 EMPIRICAL STUDIES 
Besides explicit statistical models of landscape features, several empirical 

studies have been aimed at providing some idea of the "big picture". Although 
multi-dimensional fitness landscapes have few similarities with "real" 3D land
scapes, certain empirical findings can be interpreted sensibly in terms of char
acteristics of real landscapes, which provides us with some insights into ways 
we can approach hard optimization problems. 

One of the most interesting observed properties of fitness landscapes has 
been seen in many different studies: it is a feature of Kauffman's well-known 
"A^/T-landscapes" (Kauffman, 1993),^ and it also appears in many examples of 
combinatorial optimization problems, such as the traveling salesman problem 
(Lin, 1965; Boese et al., 1994), graph partitioning (Merz and Freisleben, 1998), 
and flowshop scheduhng (Reeves, 1999). 

In the first place, such studies have repeatedly found that, on average, local 
optima are very much closer to the global optimum than are randomly chosen 
points, and closer to each other than random points would be. That is, the 
distribution of local optima is not "isotropic"; rather, they tend to be clustered 
in a "central massif" (or—if we are minimizing—a "big valley"). This can be 
demonstrated graphically by plotting a scatter graph of fitness against distance 
to the global optimum. Secondly, if the basins of attraction of each local op
timum are explored, size is quite highly correlated with quality: the better the 
local optimum, the larger is its basin of attraction. (If true, this also impinges 
on the estimation problem we discussed in the previous section: although there 
is a negative bias in the estimate of y, the "big valley" phenomenon implies that 
it is only the small basins and low-quality optima that we are missing.) 

Of course, there is no guarantee that this property holds in any particular 
case, but it provides an explanation for the success of "perturbation" methods 
(Johnson, 1990; Martin et al., 1992; Zweig, 1995) which currently appear to be 
the best available for the traveling salesman problem. It is also tacitly assumed 
by such methods as simulated annealing and tabu search, which would lose a 
great deal of their potency if local optima were isotropically distributed. 

19.5.1 Practical Applications 
These studies also suggest a starting point for the development of new 

heuristic search algorithms, such as the "adaptive multi-start" algorithm of 
Boese et al. (1994). As a more recent example, we shall consider the "path 

^In Kauffman's notation, N is the length of a binary string, and K is the maximum number of genes that 
are allowed to interact with any other; e.g., if AT = 1, each gene can interact with just one other. There are 
several different ways in which the sets of interacting genes can be chosen, but essentially they turn out to 
make little difference. 
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10000 ^ ^ 11000 

Figure 19.1. The diagram shows the set of paths that could be traced between the parents 
00000 and 11001. Only those intermediate vectors indicated by underlines can be generated by 
one-point crossover, but all can be generated by uniform crossover. 

tracing" algorithms introduced in Reeves and Yamada (1998) and Yamada and 
Reeves (1998), which can be motivated either as a use of the idea of a land
scape, or in terms of extending the boundaries of evolutionary algorithms. 

If we consider the case of crossover of vectors in {0, 1}^, it is easily seen 
that any "child" produced from two "parents" will lie on a path that leads from 
one parent to another. Figure 19.1 demonstrates this fact. 

In an earlier paper (Reeves, 1994), such points were described as "intermed
iate vectors". In other search spaces, the distance measure may be more com
plicated, but the principle is still relevant. Crossover is re-interpreted as finding 
a point lying "between" two parents in some landscape in which we hope the 
big valley conjecture is true. This "path-tracing crossover" was implemented 
for both the makespan and the flowsum versions of the flowshop sequencing 
problem; Figure 19.2 shows in a two-dimensional diagram the idea behind it, 
while full details can be found in Reeves and Yamada (1998, 1999). 

In this way, the concept of recombination can be fully integrated with tra
ditional neighborhood search methods, and the results obtained for flowshop 
instances (see Reeves and Yamada (1998) and Yamada and Reeves (1998) for 
details) were gratifyingly good. For the makespan problem, embedded path 
tracing helped the GA to achieve results of outstandingly high quality: sev
eral new best solutions were discovered for well-known benchmarks. For the 
flowsum version, optimal solutions are not known, but the path-tracing GA 
consistently produced better solutions than other proposed techniques. 

This idea has also recently been applied to multi-constrained knapsack prob
lems (Levenhagen et al., 2001), where the need was confirmed for a "big val
ley" structure in order to benefit from this approach. 
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Offspring 

Parenti MJ \ Parent2 

Figure 19.2. Path tracing crossover combined with local search: a path is traced from one 
parent in the direction of the other. In the "middle" of the path, solutions may be found that 
are not in the basins of attractions of the parents. A local search can then exploit this new 
starting point by climbing to the top of a hill (or the bottom of a valley, if it is a minimization 
problem)—a new local optimum. The acronym PTX signifies "path-tracing crossover". 

19.6 SOME PROMISING AREAS FOR FUTURE 
APPLICATION 

Finally, we should remark that several interesting future research questions 
are suggested. On the theoretical side, a deeper knowledge of the connections 
between algebra and graph theory may provide further useful analytical results. 
For example, it would be useful to have analytical results for all the common 
operators in permutation spaces analogous to those derived for the simpler 
case of binary strings. Real fitness landscapes for a number of combinatorial 
optimization problems also have to cope with extensive areas where there is no 
change in the fitness for many steps. Measuring the extent and effects of such 
"plateaux" formations also needs further study, as does the characterization of 
basins if attraction. (Some promising ideas based on the notion of a "barrier 
tree" have already been put forward by Stadler and colleagues in Flamm et al, 
2002.) 

Building on such notions, it would be helpful if we could provide a formal 
definition of what it means for a "big valley" structure to exist, and how it could 
be related to mathematical constructs associated with neighborhood structures. 
Does the big valley exist almost everywhere? If not, can we define classes of 
problems and neighborhood structures for which it does not occur? Further 
empirical analysis, such as that described by Levenhagen et al. (2001) and 
Watson et al. (2002), should be of considerable assistance in suggesting fruitful 
avenues to explore. 

More generally, it is clear that crude correlation measures can only be a gen
eral guide to the nature of a landscape instance, and we need to find better ways 
of characterizing landscapes from empirical measurements. Some suggestions 
have been made in Reeves (2004) for further work in this direction. 
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In the area of implementation, it is important to see if we can further refine 
the path tracing methodology and its integration into heuristic search methods 
such as evolutionary algorithms. Also, the methodological developments pio
neered in Reeves (2001), Eremeev and Reeves (2002, 2003) and Reeves and 
Eremeev (2004) for deducing properties of an instance of a landscape from the 
results of heuristic search offer the possibihty of making principled probability 
statements about the quality of solutions obtained. 

19.7 TRICKS OF THE TRADE 
Mathematical analysis of landscapes is generally possible only for small 

problems, and then can only really be useful as an a posteriori vahdation (or 
questioning) of the decisions already made. However, empirical analysis is 
relatively easy and may provide some useful insights. 

Correlation analysis can be a helpful indicator of the type of landscape with 
which we are dealing. Typically this proceeds by making a random walk on 
the landscape for several thousand steps and collecting data on fitness. The re
sultant ''time series" can be analyzed with standard statistical tools. The draw
back of this approach is that even when it is complete, knowing how smooth or 
rugged the landscape is from the perspective of a random walk does not help 
very much in deciding which heuristic search method to adopt. Further, much 
computation has been carried out yet the search for an optimum has not even 
started! 

For those wishing to make use of empirical landscape analysis as part of 
a general research program, it should be realized that much of the necessary 
information is inherently generated in the course of applying a heuristic search 
method to a combinatorial optimization problem. Of course, if a single run is 
all that is used, nothing much can be gleaned, but if independent restarts or a 
Metropolis-type search are used, it becomes possible to collect statistics and 
make use of them. 

The existence of a ''big valley" is usually an encouraging feature, and re
quires little checking. Assuming the global optimum is unknown it will not 
be possible to do a complete analysis, but useful information can be gained 
by computing the distance of each local optimum from the best local opti
mum, and plotting this against their corresponding differences in fitness. A 
strong correlation is indicative of a "big valley", and motivates the application 
of metaheuristics that perform intensive searches in the region of "good" local 
optima. 

If every local optimum ever found is distinct, not much more can be done, 
but if it is noticed that specific local optima are being detected multiple times, 
it becomes possible to provide indications of solution quaHty, using statisti
cal estimation tools based on the waiting-time or counting models mentioned 
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above. For low values of the ratio k/r (see above), it may even be possible 
to provide a (probabilistic) guarantee that the global optimum has indeed been 
found. 

19.8 CONCLUSIONS 
This chapter has reviewed and discussed in some detail the basic mathe

matical theory and methods associated with the concept of a fitness landscape. 
While these methods can be very useful in enhancing our understanding of evo
lutionary algorithms, it has been emphasized that they cannot provide a com
plete explanation for the performance of a specific algorithm on their own— 
even in the case of very simple functions. Secondly, and more briefly, some 
empirically determined properties of many search landscapes have been de
scribed, and one approach whereby such properties can be exploited has been 
outlined. 

As our understanding of the nature of fitness landscapes and how to exploit 
them develops, this promises to become an important area of research into the 
theory and application of heuristic search. 

SOURCES OF ADDITIONAL INFORMATION 
• For technical and theoretical analysis, there are many papers associated 

with Peter Stadler and his co-workers. The paper of Reidys and Stadler 
(2002) is perhaps the most readily accessible and recent treatment of 
theoretical properties of landscapes, although the seminal work is still 
Stadler (1995). Many of these papers can be found on the University of 
Vienna website: 
http://www.tbi.univie.ac.at/~studla/pubUcations.html 
and also at the Santa Fe Institute: 
http://www.santafe.edu/sfi/publications/working-papers.html. 

• Several papers give a general low-tech introduction to landscapes, (for 
example. Reeves, 1999, 2000), as does the chapter in the book by Reeves 
and Rowe (2002). 

• For correlation analysis, Weinberger (1990) is still a major source of 
information, supplemented by more recent work in papers by Stadler and 
co-workers (see the Vienna website); another useful reference is Hordijk 
(1996). 

• For work relating to the "big valley" and its exploitation, there are sev
eral important papers: Boese et al. (1994), Reeves and Yamada (1998), 
Merz and Freiselben (1998), and Reeves (1999); a chapter by Reeves 
and Yamada in Come et al. (1999) is also an accessible introduction. 
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• The statistical approach to estimation of landscape properties is described 
in a series of papers (Eremeev and Reeves, 2002, 2003; Reeves and Ere-
meev, 2003). Its extension to the use of the Metropolis algorithm is 
considered in Reeves and Aupetit-Belaidouni (2004). 
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563, 574, 577 
profile, 491 
rules, 406-522 

approximate D><-decision rules, 501 
certain D>-decision rules, 500 
certain D<-decision rules, 500 
induction of, 486, 500 
possible D>-decision rules, 500 
possible D<-decision rules, 501 

tree, 30, 34, 318, 320, 342, 344, 345, 351, 
368, 369, 490 

variable, 20-22, 69, 70, 97, 252, 262, 276, 
287,299,301,309,589 

decomposition, 99, 106, 148, 227, 464, 599 
principles, 99 

defuzzification unit, 450, 451 
center of sums defuzzification technique, 

452 
centroid defuzzification technique, 452, 

459 
mean of maximum defuzzification tech

nique, 452 
degree of certainty, 485 
delete-all, 105 
denial-of-service attacks, 379 
density estimation, 343 
depth-first, 25, 62, 91, 140, 244 
deterministic, 9-10 

polynomial, 318 
developmental genetic programming, 147 
differential calculus, 589 
direct encoding of neural networks, 362 
direction of branching, 91 
discrete 

binary PSO algorithm, 420 
functions, 317, 322-325, 327, 354 

distance-to-target diagrams, 214 
distinct eigenvalues, 598, 599 
distributed processing, 264 
distribution of neighborhoods, 229 
diversification, 175, 178, 180, 182, 234 
dominance, 280, 282, 288, 490, 492, 494, 497, 

499,500,502,517,521 
cones, 495, 496, 502 
relation, 283, 287, 289, 477, 493, 507, 

510-512 
without degrees of preference, 512 

doubtful region, 484, 498, 511,519 
DSATUR, 32 
duality, 20,23,231 

dual problem, 23, 64 
dual simplex, 90 
dual value, 88, 89 
dual variables, 49 
principle, 286 

dummy variables, 144,145 
dynamic 

cooling schedules, 203 
heuristics, 253 
programming, 19, 20, 37-44, 54, 60, 62, 

63,351,352 

ECLiPSe, 258, 264, 267 
elementary sets, 476-490 
elite solutions, 178 
elitism strategy, 408 
elitist, 98, 292, 296, 408, 409 

non-dominated sorting GA, 292 
ellipsoid, 24 
entropy, 305, 345, 416 
enumeration, 24, 26, 59, 63, 215, 318, 321, 323, 

327,331 
6-MOEA,296, 307 
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6-constraint method, 291 
evaluation 

difficulty of a problem, 214 
function, 9 
multi-objective optimization algorithm, 

307 
performance of previous algorithms, 214 
performance of previous heuristics, 214 
relaxation, 113 
search algorithms, 333 

evolution, 97, 98, 115, 157, 190, 201, 296, 297, 
308 

connection weights, 360 
of architectures, 361 
of learning rules, 364 
strategies, 105, 357 

evolutionary 
algorithm, 14 

multi-objective, 276, 286, 287, 292, 
296, 298 

computation, 150, 386 
fuzzy logic systems, 357 
learning, 342-370 
multi-objective optimization, 292-295 

interactive, 308 
neural networks, 357 
optimization, 303 
programming, 357 
search, 156, 304 
selection, 146 

exact algorithm, 215 
exam timetabling, see timetabling 
exchangeable 

attributes, 481 
criteria, 499, 504 

exhaustive search, 10-11 
expanded formulation, 80 

facility location, 70, 78, 80, 83, 91 
fail first, 245 
Fast Light Toolkit, 547 
feasible solution, 8 
financial decision support system, 241 
finite-state machines, 358 
firewall, 380 
first descent heuristic, 215 
first improvement strategy, 590 
first-fit-decreasing algorithm, 533 
fish schooling, 401, 416 
fitness, 9 

endogenous function, 113 
exogenous function, 113 
inheritance, 113 
landscapes, 587-610 

an example, 589 
empirical studies, 603 
mathematical characterization, 593 

practical applications, 603 
measure, 98, 129, 131, 134, 139 
of a neural network, 361 
proportionate selection, 99, 142 

fixed charge, 77, 170 
flow augmenting chains, 46, 47, 50, 57 
Floyd's shortest path algorithm, 55 
Ford-Fulkerson algorithm, 46, 47, 53 
forward recursion, 38 
FPTAS, see fully polynomial time approxima

tion scheme 
frequency assignment problem, 546 
full initiahzation method, 133 
fully polynomial time approximation scheme, 

559, 574 
fuzzy 

adaptive control schemes, 461-463 
CSP, 250 
implication, 447 
inference system, 449^54 

defuzzification unit, 450 
fuzzification unit, 449 
fuzzy logic reasoning unit, 449 
knowledge base, 449 
max-min fuzzy inference method, 451 
max-product fuzzy inference method, 

451 
logic, 369, 439, 442 
measures, 500 
reasoning, 437-474 
relation, 446 
set composition, 447 
set operations, 443 
sets, 437-467 
similarity measures, 448 

L-fuzzy similarity, 449 
M-fuzzy similarity, 449 
P-fuzzy similarity, 449 
5-fuzzy similarity, 449 
W-fuzzy similarity, 449 

systems 
modeling, 463 
stability, 464 

GA, see genetic algorithm 
gene 

deletion, 127 
duplication, 127 

generalization test, 344, 357 
generation probability, 193, 195 
genes, 97, 102, 103, 156, 549, 550, 603 
genetic algorithm, 97-125, 127, 168, 178, 247, 

308, 357, 358, 381, 383, 385, 386, 
389, 395, 421, 426, 535, 537, 545, 
547, 549, 550, 552, 589, 590 

genetic programming, 127-164 
genotype, 306, 361, 362, 386 
global constraints, 254-258 
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global optimum, 10 
Gomory-Chvatal procedure, 81 
GP, see genetic programming 
gradient descent algorithm, 355 
granulation, 476 
granules of knowledge, 479 
graph 

algorithm, 56 
bipartite, 58 
coloring, 30-35, 84-89, 204, 224, 239, 

558 
complete, 33-35 
complete bipartite, 565 
eigensystem, 597-599 
partitioning, 188, 205, 603 
problem, 45 
representation, 595-596 
theory, 19, 30, 62, 178, 231, 321, 437, 605 

Gray code, 591 
greedy 

approximation algorithms, 563 
heuristic, 218,224 
knapsack, 568 
MAX-CUT, 566 
MAX-SAT, 565 
vertex cover, 564 

grow initialization method, 134 

H-means, 218 
HAL, 258 
Hamiltonian path problem, 563 
Hamming 

distance, 217, 226, 231, 382, 594 
landscape, 594, 598 

hard constraints, see constraint, hard 
headless chicken crossover, 137 
Heaviside function, 353 
Hebbian learning rule, 354 
hedge, see transformation operator 
heuristics, 11-12 
heuristics to choose heuristics, see hyper-

heuristics 
hillcHmbing, 12-13 
homogeneous, 45, 54, 194, 202, 206 
Hopfield networks, 356 
human-competitive, 147-149, 156 
hyper-heuristics, 14, 529-556 
hyper-planes, 20 

idiotypic networks, 386-390 
inclusion property, 484, 496 
incomplete search technique, 269 
independent variables, 129 
indicator function, 594 
indirect encoding of neural networks, 362 
indiscemibility, 476, 477, 488 
indiscemibility relation, 483, 493 
indispensable, 438 

attribute, 480, 482, 485 
criteria, 499, 504 

inductive learning, 344-348, 487 
inductive logic programming, 342, 346-348 
inertia weight, 418 
infeasible solutions, 8 
inference methods, 242, 243 
inference rules, 439, 448 
infix-notation, 128 
information 

gain, 345 
theory, 341,345 
transfer, 408 

inhomogeneous algorithm, 195, 206 
initial random population, 136, 138, 142, 144 
initial solution, 12 
initialization, 98, 133, 134, 156, 229, 360, 383, 

425, 550 
innovation, 99, 106, 302 
integer programming, 69-95 
integer quantities, 76 
intensification, 175, 179, 180, 234, 404, 413 
interchangeability, 243 
interior point, 24, 90 
intermediate vectors, 604 
intermediate-term memory, 175 
interpolation, 343 
intersection 0, 252, 439, 444, 476, 479, 480, 

486,496,498,510,512 
intractable, 110,248,557 
intrusion detection systems, see artificial im

mune systems 
invariant, 109,231,257 
inverse consistency, 243 
inverse problem, 448 
irreducible, 194 
iterative improvement, 188, 189, 192, 205 

job shop scheduling, 165, 169-171, 175, 188, 
207,395,410,537,545,571 

K-means, 219 
kilter 

diagram, 49 
Hne, 49, 57 

knapsack 
binary knapsack problem, 58 
bounded knapsack problem, 58 
maximum fraction, 568 
maximum integer, 568 
problem, 30, 42-44, 63, 86, 561, 568, 

570, 604 
unbounded knapsack problem, 38, 58 

Kruskal's greedy algorithm, 540 
KUR problem, 296 

Lagrangian relaxation, 36 
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Laplacian matrix, 597 
learning, 344-346 

algorithms, 333 
Bayesian, 351 
bottom-up, 246, 347 
chess play learning, 343 
classifier systems, 357, 358, 396 
decision-tree, 347 
element, 341 
inductive, 348 
reinforcement, 351 
robot learning, 343 
sample, 490 
sequence of actions, 343 
top-down, 347 

level of confidence, 487 
limited discrepancy search, 246 
linear programming, 20-24 
linear propagation, 256 
linear relaxation, 72, 79-93 
linearly separable, 354 
Lisp S-expressions, 128 
local optimum, 10 
local search, 12-13, 112, 115 
logic programming, 258 
logical constraints, 78 
long-term memory, 175 
look ahead, 246 
lower approximations, 476, 477, 480, 512, 516 
lower bound, 27, 28, 30, 32, 35, 36, 44, 48-50, 

53, 57, 58 

machine learning, 341-373 
makespan, 166, 537, 604 
management science, 8 
Markov chains, 193, 195, 202, 203, 206 
matching function, 381, 384, 388 
matching problems, 58 
mating pool, 99, 100 
MAX-Ak-SAT, 573 
max-closure, 250 
max-CSP problem, 250 
MAX-CUT problem, 567 
MAX-SAT, 565, 573, 575 
maximum flow problem, 45-48 
maximum weighted independent set, 89 
McCulloch-Pitts neurons, 353 
mean square error, 354, 361 
membership function, 439, 440, 446, 450, 452, 

458, 462, 465, 485 
Gaussian, 442 
monotonically decreasing linear, 441 
monotonically decreasing sigmoidal, 442 
monotonically increasing linear, 441 
monotonically increasing sigmoidal, 441 
n-membership function, 442 
trapezoid, 440 

triangular, 440 
memetic algorithm, 112, 115, 116, 395 
messy evolutionary search, 551, 552 
metaheuristics, 13-14 
Metropolis algorithm, 190, 191, 608 
min-conflicts heuristic, 247 
minimal domain size, 245 
minimum 

cost flow problem, 48-53 
job scheduHng, 571 
spanning trees, 541 
vertex cover, 561, 564, 565 

mixed integer programming, 178 
modem heuristics, see metaheuristics 
modifier, see transformation operator 
MOEA, see evolutionary, algorithm, multi-

objective 
Monte Carlo, 190,233,351 
MOOP, see multi-objective optimization prob

lem 
multi-attribute, 475, 519, 521 
multi-modal optimization, 274, 275 
multi-objective optimization, 273-316 
multicriteria, 475, 476, 491, 503-507, 518, 519, 

521 
multigraded dominance, 510-512, 516 
multilayer feedforward neural networks, 355 
multimodal landscapes, 595 
multiple function sets, 144 
multiple terminal sets, 144 
multistage programming, 37 
mutation, 61, 98, 99, 104, 113, 127, 132, 133, 

137-139, 144, 151, 157, 304, 358, 
359,361,363,379,381,385 

probability, 105, 115 

nadir objective vector, 281 
negative dominance cones, 494 
negative selection, 378, 383-385, 393 
neighbor, 188,589 
neighborhood, 188,589 

graph, 189 
relations, 425 
search, 211 

variable, 238 
structure, 169-171, 589, 593-594 

network 
flow, 20, 24, 53, 57, 60, 261 
flow programming, 19, 45-54, 62, 64 
management, 240 
simplex algorithm, 53 

network flow programming, 20 
neural networks, 353-357, 360-365 
niching operator, 305 
no free lunch, 317-339 
node potentials, 49 
non-dominated 

set, 285, 304 
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solutions, 280-289, 292, 296, 304, 306 
sorting algorithm, 288, 293, 295, 299 

non-evolutionary multi-objective optimization, 
308 

non-linear programming problems, 273 
non-parametric estimates, 602 
nondeterministic polynomial, 318, 562 
nonself cells, 375 
NP-complete, 54, 319 
NP-hard, 167, 187, 248, 319, 557 
NPO, 563 
nurse rostering, 9 

objective 
function, 9 
space, 275, 276, 306, 308 

off-policy, 351 
on-line, 134,352,462,570 
on-policy, 351,352 
open-shop, 537 
operations research, 7-8 
Operations Research library, 545 
OPL, 92, 258 
optimal solutions, 10 
optimality, 10, 273 
optimization, see combinatorial optimization, 

54,87,90,97, 115,201,261,273, 
306, 308, 357, 386, 395, 415, 416, 
425, 428, 565, 598 

algorithm, 110, 187, 279, 282, 303, 329, 
333 

order, see O notation 
ordinal selection, 100 
outofkilter, 49-53, 56, 60 
outranking, 477, 493, 508, 511,516 

P,317 
P-dominated set, 494 
P, polynomial time, 562 
P-boundary, 483 
P-lower approximation, 483, 496 
/7-median, 218, 220, 234 
P-rough set, 483, 484 
P-upper approximation, 483, 496 
PAES, see Pareto archived evolution strategy 
parallel, 318, 353, 376, 530, 545, 571 

algorithm, 264 
EMO methodologies, 309 
search strategy, 157, 178 
VNS, 230 

parallehzation, 65, 111, 206, 309 
parameter 

caHbration, 181 
control parameter, 131, 191, 194, 195, 

198-201,203,207,320 
optimization, 320, 321 

parental solutions, 98 
Pareto, 491 

Pareto archived evolution strategy, 296 
Pareto envelope based selection, 296 
Pareto-optimal set, 281, 285, 286, 310 
Pareto-optimal solution, 273, 275, 276, 

284, 290, 291, 302, 307, 308, 310, 
544 

partial order, 284 
partial solutions, 24-27, 30, 33, 61, 259 
particle swarm optimization, 308, 402, 416-427 

adaptive PSO, 421 
advanced features, 421 
controlling diversity, 423 
convergence enforcement, 422 
evolutionary algorithm, 421 
maximum velocity, 422 
neighborhood best velocity update, 421 
PSO algorithm, 417 
PSO for neural network training, 417 
queen particle, 422 

partitioning, 24, 30, 37, 188, 205, 218, 223, 570, 
575 

path consistency, 242 
pathogen, 375, 376 
pattern classification, 342 
PCPs, see probabilistically checkable proofs 
Pearson correlation coefficient, 383 
penalty function, 9 
perceptron learning, 353, 354 
perfect graph, 35 
permutation, 32, 36, 85, 166, 189, 321, 410, 

576, 594, 599 
closure, 327-333 
code, 102 
matrix, 596 
problem, 415 
problems, 404, 407-409, 418, 419 
spaces, 605 

personnel scheduling, 239, 538, 545 
PESA, see Pareto envelope based selection 
phase transition, 250 
phenotype, 306, 386 
pheromone, 402-4^35 

matrix, 405-408, 410, 415 
update, 404, 406, 413 

best-worst, 413 
elitist solution, 413 
moving average, 414 
online step-by-step, 414 
quality-dependent, 413 
rank-based, 413 

values, 406 
plant location problem, 165-167, 169, 170, 172, 

175-177,216 
plug flow tubular reactor, 456 

case study, 456 
polynomial time, 318 

algorithm, 563, 574, 575 
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approximation scheme, 333, 559 
approximation scheme (PTAS), 569 
guarantee, 24 
verifier, 577 

population, 14, 97-100, 127-129 
acceptance criterion, 305 
matrix, 408 
matrix update, 408 
population-based ACO, 407 
size, 139 

positive dominance cone, 494, 496 
possibly, 479-484, 496, 498-501 
post-optimality studies, 306 
predictive system, 344 
preference-based multi-objective optimization, 

279 
prefix notation, 128 
primal, 23,231,572 
primal simplex, 90 
principle of optimality, see Bellman's principle 
principled efficiency enhancement technique, 99 
prior knowledge, 344, 490-493, 521 
probabilistic safety factor, 108 
probabilistic tabu search, see tabu search, prob

abilistic 
probabilistically checkable proofs, 575, 576 
probabilistically selected, 131, 137 
probability distribution, 194, 342, 406, 572 
probability space, 342 
problem-specific repair mechanism, 102 
production planning problem, 40, 43, 44 
production scheduling, 241, 261, 466 
propagation, 242, 248, 251-257, 261, 266, 268, 

578 
proportional-differential-like fuzzy controller, 

456 
proportional-integral-like fuzzy controller, 455 
protected division, 139, 142 
pruning, 26, 30, 36, 246 
PSO, see particle swarm optimization 
PTAS, see polynomial time approximation 

scheme 

e-leaming, 351,352 
quality measure, 484 
quality of approximation, 476, 480, 482, 484, 

486,499,504,511,512,516,519 
queens problem, 247 

random 
3-SAT, 579 
binary template, 102 
bouncing, 424 
constants, 129 
cut, 572 
enumeration, 322, 332, 335 
heuristic, 540 
initial weights, 362 

jump, 234 
MAX-SAT solution, 573 
number, 99, 192, 232, 233, 323, 421, 423, 

547, 549 
problem, 540 
restart, 246 
sampling, 113, 174,322 
search, 141,325,336 
selection, 102-104, 137, 219, 221 
sequence, 201 
solution, 232, 305, 559, 579 
value, 418 
variable, 191,342,559,573 
walk, 98, 105, 168,601,606 

ranking selection, 98 
real-time decision problem, 178 
recombination, 98, 99, 113, 358, 530, 599, 604 

landscapes, 599-600 
mutation, 357 
operators, 100, 109, 112, 304, 552 
sexual, 127, 137, 157 

recursion, 146 
recursive relationship, 37, 39, 43, 54, 55, 63 
reduct, 480, 482, 486, 499, 500, 504, 518, 520 
redundant criteria, 499 
reflexive, 284, 483, 488, 489, 494, 510, 512 
regression, 138, 343 
regression tree, 345 
reinforcement learning, 342, 351-352, 357, 360, 

368, 369, 530 
relaxation, 35, 70, 72, 73, 79, 113, 176, 178, 

231,568,578 
repair, 53, 244, 246, 257, 549 
replacement, 98, 100, 105, 115, 322 
reproduction, 99, 127, 132, 137-139, 142, 153, 

361 
resource allocation, 240, 321 
restart diversification, 176 
robot learning, 343 
robustness, 181, 329, 366, 369 
rough approximation, 477, 484, 485, 489, 492, 

497,498,500,502,507,513 
rough sets, 475-527 

certain, 487 
certain knowledge, 477, 497, 501 
certain rules, 476, 482, 490 
classical rough set approach, 476, 477, 

482,507,519,520 
dominance-based rough set approach, 477 
formal description, 482 
fundamentals, 478-490 
illustrative example, 515-517 
possibly, 479 
uncertain knowledge, 477 

roulette wheel, 98, 99 
routing, 38, 44, 63, 178, 229, 230, 261, 415, 

543, 544, 553, 578 
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rule base design 
heuristic, systematic, 453 

running metrics, 307 

SALSA, 258 
Sarsa learning algorithm, 352 
satisfiability 

Boolean, 319 
schema theorem, 100, 152, 155 
search space, 10-11, 175-177 
selection, 99-100, 131 
selection-intensity models, 107 
self-adaptive systems, 357 
separation, 86, 187, 239, 257, 259, 366, 477 
sequencing problems, 64, 79 
sequential 

algorithms, 570 
job scheduling, 571 
mode of training, 355 

shaking, 223, 224, 229, 230, 233, 234 
short-term memory, 168, 171 
shortest path, 27, 30, 32, 38, 45, 54, 60, 402, 

405, 564, 593 
SICStus, 258 
similarity, 276, 380, 392, 439, 488, 490 

classes, 488 
measure, 381, 382, 449, 465 

simplex, 90 
algorithm, 45, 46 
method, 49 
type, 24 

simulated annealing, 187-210 
single machine total weighted tardiness prob

lem, 409 
skewed VNS, 225 
ski-lodge problem, 546-551 
slack variable, 23 
SMTWTP, see single machine total weighted 

tardiness problem 
social insect colonies, 401 
soft constraint, see constraint, soft 
Solomon's six problem sets, 544 
SPEA2, see strength Pareto-EA 
staff planning, 240 
staff scheduling, 545, see personnel scheduling 
stagnation recovery, 424 
standard form, 23 
states, 38 
steady state, 98, 105, 457, 552 
steepest descent, 215, 226 
stochastic, 38, 213, 216, 244, 355, 404 

element, 246, 247 
gradient ascent algorithm, 416 
noise, 109 
programming, 178 
search, 151 
search algorithm, 323 

universal selection, 98, 99 
variable, 152, 193, 194 

stopping criterion, 404, 407 
strategic oscillation, 176 
strict partial order, 284 
strong typing, 144 
subcomponent complexity, 108 
subjective function, 97 
subroutines, 146 
sum-of-squares clustering, 218-229 
superfluous attribute, 481, 485 
supervised learning, 342-357, 367 
supply chain management, 240, 241 
surrogate objectives, 177 
survival of the fittest, 98 
swapping probability, 101 
swarm inteUigence, 401-435 
symbolic regression, 138 
synapse, 353, 354 
syntax, 359, 486, 489, 502, 507, 513, 518 

tree, see tree, syntax 

tabu 
list, 61 

fixed length, 172 
random length, 172 
variable length, 172 

search, 165-186 
multiple tabu fists, 172 
probabilistic, 174 
reactive, 178 
recency memory, 175 

tenure, 171, 172 
takeover time models, 107 
task scheduling, 240 
Tchebycheff catastrophe, 212 
temperature, 190, 320, 377, 442, 446, 456 
temporal difference learning, 351 
terminal 

node, 25, 34, 36, 344 
set, 129, 138, 144, 146 

termination criterion, 129, 131, 137, 140, 143, 
151,173,174,304 

test function 
Griewank, 419 
Rastrigin, 419 
Rosenbrock, 419 
Schaffer'sf6,419 
sphere, 419 

test problem design, 309 
thrashing behavior, 245 
threshold function, 353 
threshold methods, 168 
time continuation, 113 
time-independent, 194 
timetabling, 30, 59,112, 261, 538, 542, 543, 552 
TOOLS, 258 

top-down learning, 347 
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tournament selection, 98, 100, 107, 142, 153, 
293, 358, 552 

tractability, 248,318,579 
transfer functions, 354 
transformation operator, 439, 445, 465 
transitive, 284, 483, 489, 510, 512 
transportation, 240, 241, 254, 255, 261, 466 

assignment, 56 
cost, 70, 166 
problem, 56, 57, 167, 169,177 

traveling salesman problem, 11-12, 30, 60, 97, 
101, 104, 187, 188, 205, 223, 227, 
318, 324, 333, 395, 404, 561, 576, 
603 

Euclidean, 333 
minimum traveling salesman, 558, 576 

tree, 25-27 
rooted point-labeled program, 133 
syntax, 128, 135 

truncation selection, 100 
TSP, see traveling salesman problem 
Turing, 127, 156, 352 

machine, 317-320, 562 
deterministic, 317 
nondeterministic, 318 

two-dimensional cutting problems, 43-44 

uncertain knowledge, 369, 477 
uniform probability, 137, 154 
unimodal landscapes, 595 
unimodular, 45 
union U, 444 
university exam timetabling, see timetabling 
unsupervised learning, 342, 357, 368 
upper approximations, 476-504, 511, 520 

upper bound, 27, 29, 30, 35-37, 45, 47, 49, 51, 
56, 58, 77, 246, 266, 281, 291, 418, 
423, 448, 580 

utility service optimization, 240 
Utopian objective vector, 281 

variable 
consistency model, 498 
generation, 87-89 
neighborhood search, 211-238 

reduced, 211, 219, 220, 222, 233 
skewed, 211-226 
variable neighborhood decomposition 

search, 211 
variable neighborhood descent, 211 
VNS within exact algorithm, 231 

precision rough set approach, 498 
vehicle routing, 178, 544, 553 
verifiable, 563 
Visual CHIP, 258 
VNDS,211,213, 227,228, 230 
VNS, see variable neighborhood search 
Vogel's approximation method, 57 

waiting-time model, 602 
weak preference relation, 493, 508 
weighted maximum satisfiability, 226 
weighted-sum approach, 289-291 

XCS, 534-536 

Y-reduct, 486 

zero-argument functions, 129 
Zykov's algorithm, 33 




