
9

Evolution Equations with Boundary Layers

Evolution equations form a rich problem field; the purpose of this chapter is
to introduce the reader to some prototype problems illustrating the analysis
of expansions for parabolic and hyperbolic equations.

The analysis in Sections 9.5 and 9.2 for wave equations is well-known; see
Kevorkian and Cole (1996) or De Jager and Jiang Furu (1996). We include
these problems because they display fundamental aspects.

9.1 Slow Diffusion with Heat Production

In this section, we consider a case where the ideas we have met thus far can
be extended directly to a spatial problem with time evolution. Slow spatial
diffusion takes place in various models, for instance in material where heat
conduction is not very good; see the model in this section. Other examples
are the slow spreading of pollution in estuaries or seas and, in mathematical
biology, the slow spreading of a population in a domain.

First, we consider a one-dimensional bar described by the spatial variable
x and length of the bar L; the temperature of the bar is T (x, t), and we assume
slow heat diffusion. The endpoints of the bar are kept at a constant tempera-
ture. Heat is produced in the bar and is also exchanged with its surroundings,
so we have that T = T (x, t) is governed by the equation and conditions

∂T

∂t
= ε

∂2T

∂x2 − γ(x)[T − s(x)] + g(x)

with boundary conditions T (0, t) = t0, T (L, t) = t1, and initial temperature
distribution T (x, 0) = ψ(x). The temperature of the neighbourhood of the bar
is s(x); γ(x) is the exchange coefficient of heat and γ(x) ≥ d with d a positive
constant so the bar is nowhere isolated.

In the analysis we shall follow Van Harten (1979). From Chapter 5, we
know how to determine an asymptotic expansion for the stationary (time-
independent) problem. Starting with the approximation of the stationary



122 9 Evolution Equations with Boundary Layers

problem, we will analyse the time-dependent problem. One of the questions
is: does the time-dependent expansion converge to the stationary one?

Inspired by our experience in Chapter 5, we expect boundary layers near
x = 0 and x = L with local variables

ξ =
x√
ε
, η =

L − x√
ε

.

The approximation of the stationary solution will be of the form

T (x) = V0(x)+ εV1(x)+ ε2 · · · +Y0(ξ)+ ε1/2Y1(ξ)+ Ȳ0(η)+ ε1/2Ȳ1(η)+ ε · · · ,

where V0 + εV1 is the first part of the regular expansion and the boundary
layer approximations satisfy

d2Y0

dξ2 − γ(0)Y0 = 0, Y0(0) = t0 − V0(0), lim
ξ→∞

Y0(ξ) = 0.

Ȳ0(η) will satisfy

d2Ȳ0

dη2 − γ(L)Ȳ0 = 0, Ȳ0(L) = tL − V0(L), lim
η→∞ Ȳ0(η) = 0.

We find

Yo(ξ) = (t0 − V0(0))e−
√

γ(0)ξ, Ȳ0(η) = (tL − V0(L))e−
√

γ(L)η.

9.1.1 The Time-Dependent Problem

Substituting a regular expansion of the form T (x, t) = U0(x, t)+εU1(x, t) · · · ,
we find in lowest order

∂U0

∂t
= −γ(x)U0 + γ(x)s(x) + g(x), U0(x, 0) = ψ(x),

with solution
U0(x, t) = V0(x) + (ψ(x) − V0(x))e−γ(x)t.

This first-order regular expansion satisfies the initial condition and, as γ(x) >
0, the regular part of the time-dependent expansion tends to the regular part
of the stationary solution as t tends to infinity.

This suggests proposing for the full expansion

T (x, t) = U0(x, t) + ε · · · + X0(ξ, t) + X̄0(η, t) +
√

ε · · · .

Substituting this expansion in the equation produces

∂X0

∂t
=

∂2X0

∂ξ2 − γ(0)X0
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with boundary condition, matching condition, and initial condition

X(0, t) = t0 − U0(0, t), lim
ξ→∞

X0(ξ, t) = 0, X0(ξ, 0) = 0.

This problem is solved by putting X0 = Z0 exp(−γ(0)t), which yields

∂Z0

∂t
=

∂2Z0

∂ξ2 .

Applying Duhamel’s principle (see, for instance, Strauss, 1992), we find

X0(ξ, t) =
2√
π

e−γ(0)t
∫ ∞

ξ

2
√

t

φ

(
t − ξ2

4τ2

)
e−τ2

dτ

with φ(z) = (t0 − U(0, z)) exp(γ(0)z).
In the same way, we find for X̄0(η, t) the problem

∂X̄0

∂t
=

∂2X0

∂η2 − γ(L)X̄0

with boundary condition, matching condition, and initial condition

X̄(0, t) = tL − U0(L, t), lim
η→∞ X̄0(η, t) = 0, X̄0(η, 0) = 0.

The solution is obtained as before and becomes

X̄0(η, t) =
2√
π

e−γ(L)t
∫ ∞

η

2
√

t

φ̄

(
t − η2

4τ2

)
e−τ2

dτ

with φ̄(z) = (tL − U0(L, z)) exp(γ(L)z).

9.2 Slow Diffusion on a Semi-infinite Domain

A different problem arises on considering for t ≥ 0 the semi-infinite domain
x ≥ 0 for the equation

∂φ

∂t
= ε

∂2φ

∂x2 − p(t)
∂φ

∂x

with initial condition φ(x, 0) = f(x) and boundary condition φ(0, t) = g(t)
(boundary input). The functions p(t), f(x), g(t) are assumed to be sufficiently
smooth, and p(t) does not change sign. Moreover, we assume continuity at
(0, 0) and, for physical reasons, decay of the boundary input to zero:

f(0) = g(0), lim
t→∞ = 0.

We start again with a regular expansion of the form
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φ(x, t) = u0(x, t) + εu1(x, t) + ε2 · · ·

to find for the first two terms after substitution

∂u0

∂t
+ p(t)

∂u0

∂x
= 0,

∂u1

∂t
+ p(t)

∂u1

∂x
=

∂2u0

∂x2 .

Introducing P (t) =
∫ t

0 p(s)ds, the equation for u0 has the characteristic x −
P (t), which implies that any differentiable function of x − P (t) solves the
equation for u0. (The reader who is not familiar with the characteristics of
first-order partial differential equations can verify this by substitution.) At
this stage, the easiest way is to satisfy the initial condition by choosing

u0(x, t) = f(x − P (t)).

A consequence is that for u1 we have to add the initial condition u1(x, 0) = 0.
Solving the equation

∂u1

∂t
+ p(t)

∂u1

∂x
=

∂2

∂x2 f(x − P (t))

with the initial condition, we find

u1(x, t) =
∫ t

0

∂2

∂x2 (x + P (s) − 2P (t))ds.

This regular expansion does not satisfy the boundary condition at x = 0,
so we expect the presence of a spatial boundary layer there. Introducing the
boundary layer variable

ξ =
x

εν
,

we expect for the solution φ(x, t) an expansion of the form

φ(x, t) = u0(x, t) + εu1(x, t) + ε2 · · · + ψ(ξ, t)

with initial and boundary conditions

ψ(ξ, 0) = 0, ψ(0, t) = g(t) − u0(0, t) − εu1(0, t) − ε2 · · ·

and matching condition
lim

ξ→∞
ψ(ξ, t) = 0.

Introducing the boundary layer variable into the equation for φ yields

∂ψ

∂t
= ε1−2ν ∂2φ

∂ξ2 − ε−νp(t)
∂φ

∂ξ
= 0.
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A significant degeneration arises if 1 − 2ν = −ν or ν = 1. Assuming that we
can expand ψ = ψ0 + εψ1 + ε2 · · · , we have

−∂2ψ0

∂ξ2 + p(t)
∂ψ0

∂ξ
= 0, ψ0(0, t) = g(t) − f(−P (t)),

−∂2ψ1

∂ξ2 + p(t)
∂ψ1

∂ξ
=

∂ψ0

∂t
, ψ1(0, t) = −

∫ t

0

∂2

∂x2 (P (s) − 2P (t))ds.

For ψ0, we find the expression

ψ0(ξ, t) = A(t)ep(t)ξ + B(t)ξ + C(t)

with A, B, C suitably chosen functions.
From the matching condition, we find B(t) = C(t) = 0 and the condition

p(t) < 0.

With this condition, we have

ψ0(ξ, t) = (g(t) − f(−P (t))ep(t)ξ,

which satisfies the initial and boundary conditions. It is easy to calculate ψ1
and higher-order approximations.

9.2.1 What Happens if p(t) > 0?

This problem was analysed by Shih (2001); see also this paper for related
references. We recall that the regular expansion starts with u0(x, t) = f(x −
P (t)). If p(t) < 0, the characteristic x − P (t) = constant is not located in
the quarter-plane x ≥ 0, t ≥ 0, but if p(t) > 0, the characteristics x − P (t) =
constant extend into this domain. We have f(0) = g(0), but the derivatives of
these functions are generally not compatible. This causes jump discontinuities
along the characteristic curve x − P (t) = 0, which can be compensated by a
boundary layer along this curve. It turns out that the appropriate boundary
layer variable in this case is

η =
x − P (t)√

ε
.

For more details of the analysis, see Shih (2001).

9.3 A Chemical Reaction with Diffusion

A number of chemical reaction problems can be formulated as singularly per-
turbed equations. Following Vasil’eva, Butuzov, and Kalachev (1995), we con-
sider the problem
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ε

(
∂u

∂t
− a(x, t)

∂2u

∂x2

)
= f(u, x, t) + ε · · · ,

where 0 ≤ x ≤ 1, 0 ≤ t ≤ T , and a(x, t) > 0. We shall consider this as a
prototype problem for the more complicated cases where u and x are vectors
and we consider a system of equations.

The initial condition is
u(x, 0) = φ(x).

Natural boundary conditions in this case are the Neumann conditions

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0.

Putting ε = 0, we have f(u, x, t) = 0, and we note a similarity with the initial
value problems of Chapter 8. We will indeed impose a similar condition as in
the Tikhonov theorem (Section 8.2): assume that f(u, x, t) = 0 has a unique
solution u0(x, t) and that

∂f

∂u
(u0(x, t), x, t) < 0

uniformly for 0 ≤ x ≤ 1, 0 ≤ t ≤ T .
We shall determine the lowest-order terms of the appropriate expansion.

A regular expansion of the form u(x, t) = u0(x, t) + εu1 · · · will in general
not satisfy the initial and boundary conditions. This suggests the presence of
an initial layer near t = 0 and boundary layers near x = 0 and x = 1. We
subtract the regular expansion by putting

u(x, t) = u0(x, t) + εu1 · · · + v(x, t, τ, ξ, η),

in which we assume that v is of the form

v = Pε(x, τ) + Qε(ξ, t) + Rε(η, t),

where τ = t/ε and ξ and η are the boundary layer variables near x = 0 and
x = 1, respectively. Substitution produces for v

ε

(
∂u0

∂t
+ ε

∂u1

∂t
+

∂v

∂t
− a(x, t)

∂2u0

∂x2 − εa(x, t)
∂2u1

∂x2 − a(x, t)
∂2v

∂x2

)
=

= fu(u0(x, t), x, t)(εu1 + v + · · · )
We assume expansions for P, Q, R such as Pε(x, τ) = P0(x, τ)+εP1 · · · . After
putting t = ετ , we find for P0

∂P0

∂τ
= f(u0(x, 0) + P0(x, τ) + Q0(ξ, 0) + R0(η, 0), x, 0)

with an initial condition for P0(x, 0). It is natural to assume that Q0(ξ, 0) =
R0(η, 0) = 0 so that
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P0(x, 0) = φ(x) − u0(x, 0).

We solve the equation for P0 with x as a parameter, noting that P0(x, τ) = 0
is an equilibrium solution; we have to assume that the initial condition is
located in the domain of attraction of this equilibrium solution, as we did in
the Tikhonov theorem. In that case, we have immediately that the matching
condition

lim
τ→∞ P0(x, τ) = 0

is satisfied. As x is a parameter, we still have the freedom to put P0(0, τ) = 0.
To determine the boundary layer variables, we have to rescale the equation.
We abbreviate again P + Q + R = v and put ξ = x/εν to find near x = 0

ε
∂u0

∂t
+ε

∂v

∂t
−ε1−2νa(ενξ, t)

∂2u0

∂ξ2 −ε1−2νa(ενξ, t)
∂2v

∂ξ2 = f(u0+v, ενξ, t)+ε · · · .

A significant degeneration arises if ν = 1
2 . We will require the boundary layer

solution Rε(η, t) to vanish outside the boundary layer near x = 1, so the
equation for Q0(ξ, t) becomes

−a(0, t)
∂2Q0

∂ξ2 = f(u0(0, t) + Q0, 0, t).

From the Neumann condition at x = 0, we have at lowest-order

∂u0

∂x
(0, t) +

∂P0

∂x
(0, τ) + ε− 1

2
∂Q0

∂ξ
(0, t) = 0,

which yields
∂Q0

∂ξ
(0, t) = 0

with the matching condition

lim
ξ→∞

Q0(ξ, t) = 0.

We conclude that Q0(ξ, t) = 0 and that nontrivial solutions Q1(ξ, t), Q2(ξ, t),
etc., arise at higher order.

In the same way, we conclude that R0(ξ, t) = 0 and finally that the lowest-
order expansion of the solution is of the form

u0(x, t) + P0

(
x,

t

ε

)
.

Remark
The computation of higher-order approximations leads to linear equations for
Q1, R1, etc. An additional difficulty is that there will be corner boundary
layers at (x, t) = (0, 0) and (1, 0) involving boundary layer functions of the
forms Q∗(ξ, τ) and R∗(η, τ) at higher order. For more details, see Vasil’eva,
Butuzov, and Kalachev (1995), where a proof of asymptotic validity is also
presented.
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9.4 Periodic Solutions of Parabolic Equations

Following Vasil’eva, Butuzov, and Kalachev (1995), we will look for 2π-
periodic solutions of the equation

ε
∂2u

∂x2 =
∂u

∂t
+ s(x, t)u + f(x, t) + εg(x, t, u) + ε · · ·

with Dirichlet boundary conditions

u(0, t) = u(1, t) = 0

and periodicity condition

u(x, t) = u(x, t + 2π)

for 0 ≤ x ≤ 1 and t ≥ 0. All time-dependent terms in the differential equation
are supposed to be 2π-periodic. To illustrate the technique, we shall analyse
an example first and discuss the more general case later.

9.4.1 An Example

Consider the equation

ε
∂2u

∂x2 =
∂u

∂t
+ a(x)u + b(x) sin t

with a(x) and b(x) smooth functions; a(x) > 0 for 0 ≤ x ≤ 1.
Based on our experience with problems in the preceding sections, we expect

that the boundary layer variables

ξ =
x√
ε
, η =

1 − x√
ε

,

will play a part, so we will look for a solution of the form

u(x, t) = u0(x, t) + Q0(ξ, t) +
√

εQ1(ξ, t) + R0(η, t) +
√

εR1(η, t) + ε · · · ,

where u0(x, t) is the first term of a regular expansion of the form u0(x, t) +
εu1(x, t) + ε2 · · · . The equation for u0(x, t) is

∂u0

∂t
+ a(x)u0 + b(x) sin t = 0,

which has the general solution

c(x)e−a(x)t − b(x)e−a(x)t
∫ t

0
ea(x)s sin sds.
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After integration and applying the periodicity condition to determine the
function c(x), we find

c(x) =
b(x)

a2(x) + 1

and

u0(x, t) = − a(x)b(x)
a2(x) + 1

sin t +
b(x)

a2(x) + 1
cos t.

Note that u0(x, t) is 2π-periodic but u0 will in general not satisfy the boundary
conditions. Introducing the boundary layer variable ξ, we find for Q0(ξ, t) the
equation

∂2Q0

∂ξ2 =
∂Q0

∂t
+ a(0)Q0,

where we have used that u0(x, t) satisfies the inhomogeneous equation and
that R0(η, t) vanishes outside a boundary layer near x = 1. For Q0(ξ, t), we
have the boundary, matching, and periodicity conditions

Q0(0, t) = −u0(0, t), lim
ξ→∞

Q0(ξ, t) = 0, Q0(ξ, t) = Q0(ξ, t + 2π).

As Q0(ξ, t) is 2π-periodic in t, we propose a Fourier series for Q0 and, the
boundary condition only having two Fourier terms, we postulate

Q0(ξ, t) = f1(ξ) sin t + f2(ξ) cos t.

Substitution in the equation for Q0 yields

f ′′
1 = −f2 + a(0)f1,

f ′′
2 = −f1 + a(0)f2.

This is a linear system with characteristic equation (λ2 − a(0))2 + 1 = 0 and
with eigenvalues

λ = ±
√

a(0) + i,±
√

a(0) − i.

We assumed a(0) > 0; the matching condition requires us to discard the so-
lutions corresponding with +

√
a(0), and we retain the independent solutions

e−
√

a(0)ξ cos ξ, e−
√

a(0)ξ sin ξ.

We find

f1(ξ) = e−
√

a(0)ξ
(

a(0)b(0)
a(0)2 + 1

cos ξ + α sin ξ

)
,

f2(ξ) = e−
√

a(0)ξ
(

− b(0)
a(0)2 + 1

cos ξ + β sin ξ

)
,

where α and β can be determined by substitution in the equations for f1 and
f2.
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Introducing the boundary layer variable η, we find for R0(η, t) the equation

∂2R0

∂η2 =
∂R0

∂t
+ a(1)R0,

where we have again used that u(x, t) satisfies the inhomogeneous equation
and that Q0(ξ, t) vanishes outside a boundary layer near x = 0. For R0(η, t),
we have the boundary, matching, and periodicity conditions

R0(1, t) = −u0(1, t), lim
η→∞ R0(η, t) = 0, R0(η, t) = R0(η, t + 2π).

Again we retain a finite Fourier series, and the calculation runs in the same
way.

9.4.2 The General Case with Dirichlet Conditions

We return to the general case

ε
∂2u

∂x2 =
∂u

∂t
+ s(x, t)u + f(x, t) + εg(x, t, u) + ε · · ·

with Dirichlet boundary conditions u(0, t) = u(1, t) = 0 and all time-
dependent terms 2π-periodic in t. Again we expect the same boundary layer
variables ξ and η and an expansion of the form

u(x, t) = u0(x, t) + Q0(ξ, t) +
√

εQ1(ξ, t) + R0(η, t) +
√

εR1(η, t) + ε · · · ,

where u0(x, t) is the first term of the regular expansion. The equation for
u0(x, t) is

∂u0

∂t
+ s(x, t)u0 + f(x, t) = 0,

which has to be solved with x as a parameter. After integration by variation of
constants, we have a free constant - dependent on x - to apply the periodicity
condition to u0.

As before, we can derive the equation for the boundary layer solution near
x = 0,

∂2Q0

∂ξ2 =
∂Q0

∂t
+ s(0, t)Q0,

with boundary, matching, and periodicity conditions

Q0(0, t) = −u0(0, t), lim
ξ→∞

Q0(ξ, t) = 0, Q0(ξ, t) = Q0(ξ, t + 2π).

A Fourier expansion for Q0 is again appropriate, and we expand

s(0, t) = a0 +
∞∑

k=1

(ak cos kt + bk sin kt)
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and in the same way u0(0, t). We assume

a0 > 0.

For Q0, we substitute

Q0(ξ, t) = α0(ξ) +
∞∑

k=1

(αk(ξ) cos kt + βk(ξ) sin kt).

The coefficients are obtained by substitution of the Fourier series for Q0 and
s(0, t) into the differential equation for Q0, which produces an infinite set of
equations; they can be solved as they are ODE’s with constant coefficients.
In the same way we determine the boundary layer function R0(η, t). Note
that higher-order approximations can be obtained by extending the regular
expansion and subsequently deriving higher-order equations for Qk, Rk, k =
1, 2, · · · . These equations are linear.

9.4.3 Neumann Conditions

The problem

ε
∂2u

∂x2 =
∂u

∂t
+ s(x, t)u + f(x, t) + εg(x, t, u) + ε2 · · ·

with Neumann boundary conditions

∂u

∂x
(0, t) =

∂u

∂x
(1, t) = 0

and all terms in the equation 2π-periodic in t is slightly easier to handle.
Determine again a regular expansion of the form u0(x, t)+ε · · · and assume

again a full expansion of the solution of the form

u(x, t) = u0(x, t) + Q0(ξ, t) +
√

εQ1(ξ, t) + R0(η, t) +
√

εR1(η, t) + ε · · · .

The regular expansion will in general not satisfy the Neumann conditions, and
we require for instance at x = 0

∂u0

∂x
(0, t) + ε

∂u1

∂x
(0, t) + ε2 + · · · +

1
ε

∂Q0

∂ξ
(0, t) +

∂Q1

∂ξ
(0, t) + ε · · · = 0.

Multiplying with ε and comparing coefficients, we have

∂Q0

∂ξ
(0, t) = 0,

∂Q1

∂ξ
(0, t) = −∂u0

∂x
(0, t), · · · .

The equation for Q0 will again be

∂2Q0

∂ξ2 =
∂Q0

∂t
+ s(0, t)Q0,

which is satisfied by the trivial solution. A similar result holds for R0(η, t).
Nontrivial boundary layer solutions will generally arise at higher order.
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9.4.4 Strongly Nonlinear Equations

Thus far, we have considered weakly nonlinear equations. It is of interest to
consider more difficult equations of the form

ε
∂2u

∂x2 =
∂u

∂t
+ f(x, t, u) + ε · · ·

with Dirichlet or Neumann boundary conditions.
The main obstruction for the construction of an expansion is the solvability

of the lowest-order equations. For the regular expansion, we have

∂u0

∂t
+ f(x, t, u0) = 0,

where, after solving the equation, we have to apply the periodicity condition.
For the boundary layer contribution, this is even nastier. Assuming again an
expansion for the periodic solution u(x, t) of the form u(x, t) = u0(x, t) +
Q0(ξ, t) + R0(η, t) +

√
ε · · · , we have

∂2Q0

∂ξ2 =
∂Q0

∂t
+ f(0, t, u0(0, t) + Q0) − f(0, t, u0(0, t)),

which looks nearly as bad as the original problem in the case of Dirichlet
conditions. At higher order, the equations are linear.

In the case of Neumann conditions, we have again that the trivial solution
Q0(ξ, t) = 0 satisfies the equation and the boundary condition.

9.5 A Wave Equation

As a prototype of a hyperbolic equation with initial values, we consider the
equation

ε

(
∂2φ

∂x2 − ∂2φ

∂t2

)
−
(

a
∂φ

∂x
+ b

∂φ

∂t

)
= 0,

where t ≥ 0,−∞ < x < +∞. The initial values are

φ(x, 0) = f(x), φt(x, 0) = g(x),−∞ < x < +∞.

The functions f(x), g(x) are sufficiently smooth; a and b are constants, and
in a dissipative system b > 0. As we shall see, the constants have to satisfy
the conditions 0 < |a| < b.

The wave operator ∂2/∂x2 − ∂2/∂t2 has real characteristics

r = t − x, s = t + x.

The reduced (ε = 0) equation
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a
∂φ

∂x
+ b

∂φ

∂t
= 0

has characteristics of the form bx − at = constant; we call them subcharac-
teristics of the original equation. Any differentiable function of (bx − at) or
(x − a

b t) satisfies the reduced equation.
We start by calculating a formal approximation. This will give us the

practical experience that will lead to more general insight into hyperbolic
problems. Again we start by assuming that in some part of the half-plane
t ≥ 0,−∞ < x < +∞; a regular expansion exists of the form

φε(x, t) =
m∑

n=0

εnφn(x, t) + 0(εm+1).

The coefficients φn satisfy

a
∂φ0

∂x
+ b

∂φ0

∂t
= 0,

a
∂φn

∂x
+ b

∂φn

∂t
=

∂2φn−1

∂x2 − ∂2φn−1

∂t2
, n = 1, 2, · · · .

We find φ0 = h(z), z = x − a
b t, and h(z) a differentiable function of its

argument. The equation for φ1 becomes

a
∂φ1

∂x
+ b

∂φ1

∂t
=

∂2h

∂x2 − ∂2h

∂t2
=
(

1 − a2

b2

)
h′′
(
x − a

b
t
)

.

Transforming t, x → t, z, we find

b
∂φ1

∂t
=
(

1 − a2

b2

)
h′′(z),

so that

φ1(z, t) =
b2 − a2

b3 h′′(z)t + k(z),

where h(z) and k(z) still have to be determined. It would be natural to choose
h(z) = f(z), but we leave this decision until later.

We cannot satisfy both initial values, so we expect boundary layer be-
haviour near t = 0. Subtracting the regular expansion

ψ(x, t) = φ(x, t) −
m∑

n=0

εnφn(x, t)

and substitution in the original wave equation yields

ε

(
∂2ψ

∂x2 − ∂2ψ

∂t2

)
−
(

a
∂ψ

∂x
+ b

∂ψ

∂t

)
= 0(εm+1).
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The initial values are

ψ(x, 0) = f(x) −
m∑
0

εnφn(x, 0),

ψt(x, 0) = g(x) −
m∑
0

εnφnt(x, 0).

We introduce the boundary layer variable

τ =
t

εν
.

Transforming x, t → x, τ , the equation for ψ becomes(
ε

∂2

∂x2 − ε1−2ν ∂2

∂τ2 − a
∂

∂x
− ε−νb

∂

∂τ

)
ψ∗ = 0(εm+1).

A significant degeneration arises when 1 − 2ν = −ν or ν = 1. Near t = 0, we
clearly have an ordinary boundary layer. Assuming the existence of a regular
expansion

ψ∗
ε =

m∑
n=0

εnψn(x, τ) + 0(εm+1),

we find

L∗
0ψ0 = 0,

L∗
0ψ1 = a

∂ψ0

∂x
, etc.,

with

L∗
0 =

∂2

∂τ2 + b
∂

∂τ
.

The initial conditions have to be expanded and yield

ψ0(x, 0) = f(x) − h(x), ψ1(x, 0) = −k(x),
∂ψ0

∂τ
(x, 0) = 0,

∂ψ1

∂τ
(x, 0) = g(x) +

a

b
h′(x).

The matching conditions take the form

lim
τ→∞ ψn(x, τ) = 0, n = 0, 1, 2, · · · .

For ψ0, we find
ψ0(x, τ) = A(x) + B(x)e−bτ .

The restriction b > 0 is necessary to satisfy the matching conditions and, to
satisfy ∂ψ0/∂τ = 0, we are then left with the trivial solution, ψ0(x, τ) = 0.
So this determines h, as we have to take ψ0(x, 0) = 0:
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h(x) = f(x).

For ψ1, we find the same expression as for ψ0. Matching produces again A(x) =
0, leaving

ψ1(x, τ) = C(x)e−bτ .

The initial values yield

C(x) = −k(x),
−bC(x) = g(x) + a

b f ′(x),

which determines k:

k(x) =
g(x)

b
+

a

b2 f ′(x).

At this stage, we propose the formal expansion

φε(x, t) = f(x − a
b t) + ε[ b2−a2

b3 tf ′′(x − a
b t) + 1

b g(x − a
b t) + a

b2 f ′(x − a
b t)]

−ε[ a
b2 f ′(x) + 1

b g(x)]e−bt/ε + ε2 · · · .

It is clear that, outside the boundary layer, the solution is dominated by the
initial values of φ that propagate along the subcharacteristic through a given
point.

This, however, opens the possibility of the following situation. The solution
at a point P (x, t) is determined by the propagation of initial values along
the characteristics (i.e., no information can reach P from the initial values
in x < A or x > B). If |a| > b, the formal expansion consists mainly of
terms carrying information from these forbidden regions. This means that in
this case the formal expansion cannot be correct, resulting in the condition
0 < |a| < b; see Fig. 9.1.

We demonstrate this somewhat more explicitly by considering the problem
where φ(x, 0) = f(x) = 0,−∞ < x < +∞, φt(x, 0) = g(x). The solution can
be written as an integral using the Riemann function R:

φ(x, t) =
∫ x+t

x−t

Rε(x − τ, t)g(τ)dτ.

Riemann functions are discussed in many textbooks on partial differential
equations, such as Strauss (1992). For some special values of a, b, the Riemann
function can be expressed in terms of elementary functions. Suppose now that
we prescribe

g(x) > 0, x < A, x > B,
g(x) = 0, A ≤ x ≤ B.

It is clear that in this case φ(x, t)|P = 0. On the other hand, the formal
expansion yields

φε(x, t) =
ε

b
g
(
x − a

b
t
)

− ε

b
g(x)e−bt/ε + ε2 · · · .
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x 
- t

 =
 c

on
sta

nt

P

a
b

x - 

t

t = constant

xA B

x + t = constant

φ(x, t) = 0

g(x) = 0

Fig. 9.1. Characteristics and subcharacteristics in the hyperbolic problem of Section
9.1.

If |a| > b, it is clear that φε(x, t)|P 
= 0, which means that in this case the
formal expansion does not produce correct results.

Remark
The condition |a| < b means that the direction of the subcharacteristic is
“contained” between the directions of the characteristics. In this case, one
calls the subcharacteristic time-like.

9.6 Signalling

As an example of the part played by boundaries, we consider a so-called
signalling or radiation problem. We have x ≥ 0, t ≥ 0. At t = 0, the medium
is in a state of rest: φ(x, 0) = φt(x, 0) = 0. At the boundary, we have a source
of signals or radiation:

φ(0, t) = f(t), t > 0.

Wave propagation is described again by the equation

ε

(
∂2φ

∂x2 − ∂2φ

∂t2

)
−
(

a
∂φ

∂x
+ b

∂φ

∂t

)
= 0,

where 0 < a < b. As φ is initially identically zero, the solution for t > 0 will be
identically zero for x > t. (Information propagates along the characteristics.)

As before we start with a regular expansion.



9.6 Signalling 137

t = x

x

t

x 
=

 t
a

b

Fig. 9.2. Signalling: a source at the boundary x = 0.

φε(x, t) =
m∑

n=0

εnφn(x, t) + 0(εm+1).

We find again φ0 = h(z), z = x − a
b t.

φ1 =
b2 − a2

b3 h′′(z)t + k(z)

with h, k sufficiently differentiable functions. We can satisfy the boundary
condition by putting

φ0 = 0, t < b
ax

= f(t − b
ax), t > b

ax.

(f is defined only for positive values of its argument.)
Note that a consequence of this choice of φ0 is that, unless f(0) = 0,

the regular expansion is discontinuous along the subcharacteristic t = b
ax, so

we expect a discontinuity propagating from the origin as in general f(0) 
=
0, f ′(0) 
= 0, etc. However, the theory of hyperbolic equations tells us that
such a discontinuity propagates along the characteristics, in this case x = t,
so we expect a boundary layer along the subcharacteristic to make up for this
discrepancy; see Fig. 9.2.

We transform x, t → ξ, t with

ξ =
x − a

b t

εν
,

whereas φε(x, t) → ψε(ξ, t). We have
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∂

∂x
→ ε−ν ∂

∂ξ
,

∂

∂t
→ −ε−ν a

b

∂

∂ξ
+

∂

∂t
.

The equation becomes L∗
εψ = 0 with

L∗
ε = ε1−2νc

∂2

∂ξ2 + 2ε1−ν a

b

∂2

∂ξ∂t
− ε

∂2

∂t2
− b

∂

∂t
,

where c = 1 − a2/b2. A significant degeneration arises if ν = 1
2 , so that the

operator becomes

L∗
0 = c

∂2

∂ξ2 − b
∂

∂t
.

Note that c > 0; near the subcharacteristic t = b
ax, we have a parabolic

boundary layer. For the boundary layer solution, an expansion of the form

ψε(ξ, t) =
2m∑
n=0

εn/2ψn(ξ, t) + 0(εm+ 1
2 )

is taken, where ψ0 is a solution of the diffusion equation

L∗
0ψ0 = 0,

which has to be matched with the regular expansion. We have, moving to
the right-hand side of the subcharacteristic, (t < b

ax) that ψ0 → 0. On the
left-hand side, the regular expansion becomes

lim
z↑0

f(z) = f(0+)

on approaching the subcharacteristic, which should match with ψ0 moving to
the left. We find, omitting the technical details of matching, that

ψ0(ξ, t) =
1
2
f(0+)erfc

(
ξ

2
√

kt/b

)
.

where
erfc(z) =

2√
π

∫ ∞

z

e−t2dt; erfc(0) = 1.

The boundary layer approximation ψ0 satisfies the equation while ψ0(0, t) =
1
2f(0+); moreover, moving to the right-hand side of the characteristic ξ → ∞
or z → ∞, we have agreement with the expression above for erfc(z).

Note that we did not perform the subtraction trick before carrying out
the matching, but, as we have seen, ψ0 satisfies the required conditions. Note
also that, according to this analysis, the formal approximation becomes zero
in the region between the characteristics t = b

ax and t = x.
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9.7 Guide to the Literature.

A survey of results obtained in the former Soviet Union for parabolic equations
has been given by Butuzov and Vasil’eva (1983), and Vasil’eva, Butuzov, and
Kalachev (1995). For expansions and proofs, see also Shih and Kellogg (1987)
and Shih (2001) and further references therein. The first section on a problem
with slow diffusion and heat production is actually a simplified version of a
more extensive problem (Van Harten, 1979). In all of these papers, proofs of
asymptotic validity are given.

We shall not consider here the case of equilibrium solutions of parabolic
equations, which reduces to the study of elliptic equations; for an introduction
to singular perturbations of equilibrium solutions of systems with reaction and
diffusion, see Aris (1975, Vol. 1, Chapter 3.7).

A classical example of a nonlinear diffusion equation is Burgers’ equation

ut + uux = εuxx

on an infinite domain, which is also a typical problem for studying shock
waves. An introductory treatment can be found in Holmes (1998, Chapter 2).

Applications of slow manifolds (Fenichel theory) and extensions are de-
scribed by Jones (1994), Kaper (1999) and Kaper and Jones (2001). These
papers contain many references and applications. One possibility is to project
the solutions of the evolution equation to a finite space, which reduces the
problem to the analysis given in the preceding chapter (ODE’s). Another pos-
sibility is to compute travelling or solitary waves; an example is the paper by
Szmolyan (1992). It is typical to start with an evolution equation such as

ut + uux + uxxx + ε(uxx + uxxxx) = 0,

(see for instance Jones, 1994) and then look for solitary waves (i.e., solutions
that depend on x − ct alone). This results in a system of ordinary differential
equations that contains one or more slow manifolds. The reason for omitting
these examples in this chapter is that in what follows one needs an extensive
dynamical systems analysis with subtle reasoning also to connect the results
to the original evolution equation. The results, however, are very interesting.

Another important subject that we did not discuss is combustion, which
leads to interesting boundary layer problems. A basic paper is Matkowsky
and Sivashinsky (1979); introductory texts are Van Harten (1982), Buckmas-
ter and Ludford (1983), and Fife (1988). More recent results can be found
in Vasil’eva, Butuzov, and Kalachev (1995), and Class, Matkowsky, and Kli-
menko (2003).

For hyperbolic problems, the formal construction of expansions has been
discussed in Kevorkian and Cole (1996). Constructions and proofs of asymp-
totic validity on a timescale O(1) have been given in an extensive study by
Geel (1981); see also De Jager and Jiang Furu (1996). The proofs are founded
on energy integral estimates and fixed-point theorems in a Banach space. An
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extension to larger timescales for hyperbolic problems has been given by Eck-
haus and Garbey (1990), who develop a formal approximation that is shown
to be valid on timescales of the order 1/ε.

9.8 Exercises

Exercise 9.1 Consider the hyperbolic initial value problem

ε(utt − uxx) + aut + ux = 0,

u(x, 0) = 0,

ut(x, 0) = g(x) (x ∈ R),

based on Kevorkian and Cole (1996), with a ≥ 1. We will introduce φ by
u(x, t) = φ(x, t) exp(αx−βt

2ε ).

a. Compute α and β such that

ε(φtt − φxx) −
(

a2 − 1
4ε

)
φ = 0.

Consider the case a = 1. In this special case the function φ(x, t) has to
satisfy the wave equation, so write: φ(x, t) = ψl(x − t) + ψr(x + t).

b. Compute the functions ψl and ψr; use the initial conditions of u(x, t).
c. Give the exact solution u(x, t, ε) of the given problem for a ≥ 1.
d. Construct an approximation Ũ(x, t, ε) of the form

Ũ(x, t, ε) = U0(x, t) + εU1(x, t) + εW1(x, τ) + 0(ε2)

with τ = t/ε.
e. Compare the approximation Ũ(x, t, ε) with the exact solution u(x, t, ε).

Exercise 9.2 Consider the equation

εuxx = ut − ux, x ≥ 0, t ≥ 0,

with initial condition u(x, 0) = 1 and boundary condition u(0, t) = exp(−t).

a. Produce the first two terms of a regular expansion and locate the boundary
layer(s).

b. Repeat the analysis when we change the boundary condition to u(0, t) =
sin t.

Exercise 9.3 As an example of a parabolic problem on an unbounded do-
main, consider Fisher’s equation (KPP)

ut = εuxx + u(1 − u), −∞ < x < ∞, t > 0,

with u(x, 0) = g(x), 0 ≤ u ≤ 1.
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a. Determine the stationary solutions in the case ε = 0. Which one is clearly
unstable?

b. Introduce the regular expansion u = u0(x, t)+ εu1(x, t)+ · · · and give the
equations and conditions for u0, u1.

c. Solve the problem for u0(x, t).

Exercise 9.4 Consider the parabolic initial boundary value problem

ε(ut − auxx) + bu = f(x),
u(x, 0) = 0, a > 0, b > 0,

u(0, t) = 0, (x, t) ∈ R
2,

u(1, t) = 0, 0 < x < 1, 0 < t ≤ T.

We construct an approximation in four steps.

a. Compute the regular expansion U(x, t):

U(x, t, ε) = U0(x, t) + εU1(x, t) + 0(ε2).

b. Compute the initial layer correction Π0(x, τ), τ = t/ε, and give the equa-
tion (with initial value) for Π1(x, τ) such that V (x, t, ε) satisfies the initial
condition at t = 0:

V (x, t, ε) = U(x, t, ε) + Π0(x, τ) + Π1(x, τ) + 0(ε2).

c. Compute the boundary layer correction

Q0(ξ, t), ξ =
x√
ε
,

and give the equations for Q1(ξ, t) and Q2(ξ, t) such that

W (x, t, ε) = V (x, t, ε) + Q0(ξ, t) +
√

εQ1(ξ, t) + εQ2(ξ, t) + 0(ε3/2)

satisfies the boundary condition at x = 0. In the same way, boundary layer
corrections can be constructed at the boundary x = 1 with (ξ∗ = (1−x)√

ε
);

we omit this.

Also, at the corner boundary points (0, 0) and (1, 0), corrections are
needed.

d. Give the equations for the corner boundary layer corrections P0(ξ, τ),
P1(ξ, τ), and P2(ξ, τ) at (0, 0) (ξ∗ = x√

ε
, τ = t/ε). Give the initial bound-

ary values.

Combining (a), (b), (c) and (d) produces an approximation ũ(x, t, ε) of the
solution u(x, t, ε) of the given problem of the form
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ũ(x, t, ε) = U0(x, t) + Π0(x, τ) + Q0(ξ, t)
+P0(ξ, τ) +

√
ε[Q1(ξ, t) + P1(ξ, τ)]

+ε[U1(x, t) + Π1(x, τ) + Q2(ξ, t) + P2(ξ, τ)] + 0(ε2),

where τ = t/ε, ξ = x/
√

ε. Note that corner boundary layer corrections at
(1, 0) can be constructed in the same way with ξ∗ = (1−x)/

√
ε. No correction

terms are added for the boundary x = 1 and the corner point (1, 0), so the
approximation only holds on

{(x, t) ∈ R
2|0 < x < 1 − d, (0 < d < 1) and 0 < t ≤ T}.




