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Two-Point Boundary Value Problems

In linear problems, much more qualitative information is available than for
nonlinear systems. Still, in general we cannot solve linear equations with vari-
able coefficients explicitly. Therefore it is very surprising that in the case of
singularly perturbed linear systems, we can often obtain asymptotic expan-
sions to any accuracy required.

In most of this chapter, we shall look at rather general, linear two-point
boundary value problems. To start, consider a second-order equation of the
form

εL1φ + L0φ = f(x), x ∈ (0, 1)

with boundary values φε(0) = α, φε(1) = β. For the operator L1, we write

L1 = a2(x)
d2

dx2 + a1(x)
d

dx
+ a0(x)

with a0(x), a1(x), a2(x) continuous functions in [0, 1]; moreover,

a2(x) > 0, x ∈ [0, 1].

We exclude that a2(x) vanishes in [0, 1], as this introduces singularities re-
quiring a special approach.Taking the formal limit for ε → 0, we retain
L0φ = f(x); for the operator L0, we have

L0 = b1(x)
d

dx
+ b0(x).

We assume b0(x) and b1(x) to be continuous in [0, 1]. It turns out that the
analysis of the problem depends very much on the properties of b0 and b1.

5.1 Boundary Layers at the Two Endpoints

We first treat the case where b1(x) vanishes everywhere in [0, 1], so we are
considering the equation
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εL1φ + b0(x)φ = f(x).

Assume that b0(x) does not change sign; for instance,

b0(x) < 0, x ∈ [0, 1].

If b0(x) changes sign, the analysis is more complicated; we shall deal with
such a case later on. As before, we suppose that in a subdomain of [0, 1] there
exists a regular expansion of the solution of the form

φε(x) =
m∑

n=0

εnφn(x) + O(εm+1).

On substituting this into the preceding equation, we find

φ0(x) = f(x)/b0(x)

φn = −L1φn−1(x)/b0(x), n = 1, 2, · · · .

It is clear that to perform this construction b0(x) and f(x) have to be suf-
ficiently differentiable. By these recurrency relations, the terms φn of the
expansion are completely determined and, of course, in general they will not
satisfy the boundary conditions. Therefore we make the assumption that this
regular expansion will exist in the subdomain [d, 1 − d] with d a constant,
0 < d < 1

2 . Near the boundary points x = 0 and x = 1, we expect the
presence of boundary layers to make the transitions to the boundary values
possible.

First we use the “subtraction trick” by putting

φε(x) =
m∑

n=0

εnφn(x) + ψε(x)

to obtain, using the relations for φn,

εL1ψ + b0(x)ψ = −εm+1L1φm(x).

The subtraction trick is not essential, to use it is a matter of taste. Its ad-
vantage is that in the transformed problem the regular (outer) expansion has
coefficients zero, which facilitates matching. The boundary conditions become

ψε(0) = α −
∑m

n=0 εnφn(0),

ψε(1) = β −
∑m

n=0 εnφn(1).

We start with the analysis of the boundary layer near x = 0. In a neighbour-
hood of x = 0, we introduce the local variable

ξ =
x

δ(ε)
, δ(ε) = o(1),
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and write ψε(δξ) = ψ∗
ε (ξ). The orderfunction δ(ε) and correspondingly the

size of the boundary layer still have to be determined. The equation in the
local variable ξ becomes

L∗ψ∗ =
ε

δ2 a2(δξ)
d2ψ∗

dξ2 +
ε

δ
a1(δξ)

dψ∗

dξ
+ εa0(δξ)ψ∗ + b0(δξ)ψ∗ = O(εm+1).

A significant degeneration L∗
0 arises if δ(ε) =

√
ε, which yields

L∗
0 = a2(0)

d2

dξ2 + b0(0).

The equation with this local variable has terms with coefficients containing ε
and

√
ε. This suggests that we look for a regular expansion in ξ of the form

ψ∗
ε (ξ) =

2m∑
n=0

εn/2ψn(ξ) + O(εm+ 1
2 ).

We find at the lowest order

L∗
0ψ0 = a2(0)

d2ψ0

dξ2 + b0(0)ψ0 = 0.

Assuming that the coefficients have Taylor expansions to sufficiently high
order near x = 0, we can expand a2, a1, a0, and b0, rewritten in the local
variable ξ, in the equation for ψ∗. So we have for instance

a2(
√

εξ) = a2(0) +
√

εξa′
2(0) + ε · · · .

Collecting terms of equal order of ε, we deduce equations for ψ1, ψ2, · · · . Keep-
ing terms to order

√
ε, this looks like

(a2(0)+
√

ε ξa′
2(0) + · · · )

(
d2ψ0

dξ2 +
√

ε
d2ψ1

dξ2 + · · ·
)

+
√

ε (a1(0) + · · · )
(

dψ0

dξ
+ · · ·

)
+(b0(0)+

√
ε ξb′

0(0) + · · · )(ψ0 +
√

εψ1 + · · · ) = O(εm+1),

where the dots stand for O(ε) terms. For ψ1, we find the equation

L∗
0ψ1 = a2(0)

d2ψ1

dξ2 + b0(0)ψ1 = −ξa′
2(0)

d2ψ0

dξ2 − a1(0)
dψ0

dξ
− ξb′

0(0)ψ0.

In fact, it is easy to see that the coefficients ψn all satisfy the same type of
differential equation (with different right-hand sides) of the form

L∗
0ψn = Fn(ψ0(ξ), ..., ψn−1(ξ), ξ).
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The boundary values at x = 0 are

ψ0 = α − φ0(0),

ψ1(0) = 0,

ψ2(0) = −φ1(0), etc.

So we have for ψn, n = 0, 1, ... a second-order equation and one boundary
condition at ξ = 0, which is not enough to determine ψn completely. As in
Chapter 3, we determine the functions ψn by requiring the boundary layer
functions ψn(ξ) to vanish outside the boundary layer. This means that we
will add the matching relation

lim
ξ→∞

ψn(ξ) = 0.

That we have to match towards zero is a result of the subtraction trick. Of
course, for ξ → ∞ the variable ξ leaves the domain we are considering. How-
ever, if we let x tend to 1, ξ tends to 1/

√
ε, which is very large, and we use

+∞ instead.
The solution of the equation for ψ0 is

ψ0(ξ) = Ae−ω0ξ + Beω0ξ,

where we have abbreviated ω0 = (−b0(0)/a2(0))
1
2 ; note that we assumed

b0(0) < 0. From the boundary condition, we find

A + B = α − φ0(0).

The matching condition yields B = 0, so ψ0 is now determined completely.
The determination of ψ1 runs along the same lines. We find

ψ1(ξ) = A1(ξ)e−ω0ξ + B1(ξ)eω0ξ,

where A1 and B1 are polynomial functions of ξ that are determined completely
by the boundary condition and the matching relation.

To satisfy the boundary conditions of the original problem, we have to
repeat this analysis near the boundary at x = 1; the calculations mirror the
preceding analysis. We give the results; the details are left as an exercise for
the reader.

A suitable local variable is

η =
1 − x√

ε
.

The operator degenerates into

a2(1)
d2

dη2 + b0(1).
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We propose a regular expansion of the form

2m∑
n=0

εn/2ψ̄n(η),

which yields for the first term

ψ̄0(η) = Āe−ω1η + B̄eω1η

with ω1 = (−b0(1)/a2(1))
1
2 . The boundary condition at x = 1 produces

Ā + B̄ = β − φ0(1).

The matching relation becomes

lim
η→∞ ψ̄0(η) = 0,

so B̄ = 0. Collecting the first terms of the expansion with respect to x, ξ, and
η in the three domains, we find

φε(x) =
f(x)
b0(x)

+
(

α − f(0)
b0(0)

)
e−ω0x/

√
ε +
(

β − f(1)
b0(1)

)
e−ω1(1−x)/

√
ε +O(

√
ε).

For an illustration see Fig. 5.1.
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Fig. 5.1. Matching at two endpoints for the equation εd2φ/dx2+φ = 1+2x2, φ(0) =
5, φ(1) = 2, ε = 0.001.

Remark
Omitting the O(

√
ε) term in the preceding expression and substituting the

result in the differential equation, after checking the boundary conditions,
we find that we have obtained a formal approximation of the solution of the
boundary value problem. Because of the construction, this seems like a natural
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result; in the next section, we shall see, however, that this is due to the absence
of the term b1(x).

Once we knew how to proceed, the calculation itself was as simple as in
Section 4.2 even though the problem is much more general. We shall now
consider other boundary value problems and shall encounter some new phe-
nomena.

5.2 A Boundary Layer at One Endpoint

We consider again the boundary value problem formulated at the beginning
of this chapter,

εL1φ + L0φ = f(x), φε(0) = α, φε(1) = β,

but now with
L0 = b1(x)

d

dx
+ b0(x).

As before, we have

L1 = a2(x)
d2

dx2 + a1(x)
d

dx
+ a0(x)

with a2(x) > 0, x ∈ [0, 1]; all coefficients are assumed to be sufficiently
differentiable. Suppose, moreover, that b1(x) does not change sign, say

b1(x) < 0, x ∈ [0, 1].

The case in which b1(x) vanishes in the interior of the interval is called a
turning-point problem. For such problems, see Sections 5.4 and 5.5 and some
of the exercises.

Here we assume again the existence of a regular expansion in a subdomain
of [0, 1] of the form

φε(x) =
m∑

n=0

εnφn(x) + O(εm+1).

After substitution of this expansion into the equation, we find

L0φ0 = f(x),
L0φn = −L1φn−1(x), n = 1, 2, · · · .

For φ0(x), we find the first-order equation

b1(x)
dφ0

dx
+ b0(x)φ0 = f(x),

which can be solved by variation of constants. We find, abbreviating,
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g(x) =
∫ x

0
b0(t)
b1(t)

dt,

φ0(x) = Ae−g(x) + e−g(x)
∫ x

0 eg(t)f(t) dt.

In contrast with the preceding boundary value problem, we have one free
constant in the expression for φ0(x); we can verify that the same holds for
φ1, φ2, · · · . This means that the regular expansion in the variable x can be
made to satisfy the boundary condition at x = 0 or at x = 1. Which one do
we choose?

Suppose that we choose to satisfy the boundary condition at x = 1 and
that we expect the existence of a boundary layer near x = 0. Does this lead
to a consistent construction of a formal expansion? First we perform the sub-
traction trick

φε(x) =
m∑

n=0

εnφn(x) + ψε(x).

The equation for ψε(x) becomes

εL1ψ + L0ψ = O(εm+1)

with the boundary conditions

ψε(0) = α −
∑m

n=0 εnφn(0),
ψε(1) = β −

∑m
n=0 εnφn(1).

With our assumption that the regular expansion satisfies the boundary con-
dition at x = 1, we have φ0(1) = β so ψε(1) = 0. Introduce the local variable

ξ =
x

δ(ε)
.

The differential operator written in the variable ξ takes the form

L∗ =
ε

δ2 a2(δξ)
d2

dξ2 +
ε

δ
a1(δξ)

d

dξ
+ εa0(δξ) +

1
δ
b1(δξ)

d

dξ
+ b0(δξ).

Looking for a significant degeneration, we find δ(ε) = ε and the degeneration

L∗
0 = a2(0)

d2

dξ2 + b1(0)
d

dξ
.

Expanding

ψε(εξ) =
m∑

n=0

εnψn(ξ) + O(εm+1),

we find

L∗
0ψ0 = a2(0)

d2ψ0

dξ2 + b1(0)
dψ0

dξ
= 0.
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The solution is
ψ0(ξ) = B + Ce

− b1(0)
a2(0) ξ

.

Because of the subtraction trick, the matching relation will again be

lim
ξ→∞

ψ0(ξ) = 0.

As we assumed b1(0)/a2(0) to be negative, this implies

B = C = 0.

A similar result holds for ψ1, ψ2, · · · , namely all boundary layer terms (func-
tions of ξ) vanish from the expansion. We conclude that the assumption of
the existence of a boundary layer near x = 0 is not correct.

We consider now the other possibility, which is assuming that the regular
expansion in the variable x satisfies the boundary condition at x = 0 that
produces ψε(0) = 0; we then expect the existence of a boundary layer near
x = 1. Introduce the local variable

η =
1 − x

δ(ε)
.

Looking for a significant degeneration of the operator written in the variable
η, we find δ(ε) = ε. Expanding

ψε(1 − εη) =
m∑

n=0

εnψ̄n(η) + O(εm+1),

we find
L̄∗

0ψ̄0 = a2(1)d2ψ̄0
dη2 − b1(1)dψ̄0

dη = 0,

L̄∗
0ψ̄n = Fn(ψ̄0, ..., ψ̄n−1, η), n = 1, 2, · · · .

Putting ω = −b1(1)/a2(1), we have

ψ̄0(η) = B + Ce−ωη.

The matching relation is
lim

η→∞ ψ̄0(η) = 0

so that B = 0. (Note that ω > 0.) The boundary condition yields

C = β − φ0(1).

We compose an expansion from regular expansions in two subdomains, in the
variables x and η, respectively, to obtain

φε(x) = φ0(x) + (β − φ0(1))e−ω(1−x)/ε + O(ε),
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Fig. 5.2. Matching at one endpoint for the equation εd2φ/dx2 − dφ/dx − 2φ =
0, φ(0) = 5, φ(1) = 4, ε = 0.02.

where
φ0(x) = αe−g(x) + e−g(x)

∫ x

0 eg(t)f(t) dt,

g(x) =
∫ x

0
b0(t)
b1(t)

dt.

For an illustration, see Fig. 5.2.
Remark
When omitting the O(ε) terms, do we have a formal approximation of the
solution? The boundary condition at x = 0 is satisfied with an exponentially
small error. However, on calculating (εL1 + L0)ψ̄0, we find a result that is
Os(1), so we have not obtained a formal approximation. It is easy to see that
to obtain a formal approximation we have to include the O(ε) terms of the
expansion. This is in contrast with the calculation in the preceding section.

On the other hand, it can be proved (see Section 5.6 for references) that
on omitting the O(ε) terms we have an asymptotic approximation of the so-
lution! This looks like a paradox, but one should realise that a second-order
linear ODE is characterised by a two-dimensional solution space. In the case
of a scalar equation this is a space spanned by the solution and its derivative.
In the problem at hand, omitting the O(ε) terms produces an asymptotic ap-
proximation of the solution but not of the derivative.

Remark
Note that the location of the boundary layer is determined by the sign of
b1(x)/a2(x). If we were to choose b1(x) > 0, x ∈ [0, 1], the boundary layer
would be located near x = 0, while the regular expansion in the variable x
would extend to the boundary x = 1. Note, however, that it is not necessary
to know this a priori, as the location of the boundary layer is determined while
constructing the formal approximation.
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5.3 The WKBJ Method

The method ascribed to Wentzel, Kramers, Brillouin, and Jeffreys plays a
part in theoretical physics, in particular in quantum mechanics. One of the
simplest examples is the analysis of the one-dimensional Schrödinger equation

d2ψ

dx2 + (k2 − U(x))ψ = 0.

U(x) is the potential associated with the problem and k the wave number
(k/2π = 1/λ with λ the wavelength). We are looking for solutions of the
Schrödinger equation with short wavelength (i.e., k is large). Over a few
(short) wavelengths, U(x) will not vary considerably, so it seems reasonable
to introduce an effective wave number q(x) by

q(x) =
√

k2 − U(x)

and propose as a first approximation of the Schrödinger equation

ψ̃ = e±i
∫

q(x) dx.

One expects that this type of formal approximation may break down if, after
all, U(x) changes very quickly (dU/dx � 1) or if k2 − U(x) has zeros. Both
situations occur in practice; in the case of zeros of k2 − U(x), one usually
refers to turning points. For a discussion of a number of applications of the
WKBJ method in physics, the reader may consult Morse and Feshbach (1953,
Vol. II, Chapter 9.3). Here we shall explore the method from the point of view
of asymptotic analysis for one-dimensional problems. Consider the two-point
boundary value problem

ε
d2φ

dx2 − w(x)φ = 0, 0 < x < 1.

w(x) is sufficiently smooth and positive in [0, 1] with boundary values φ(0) =
α, φ(1) = β. We analysed this problem in this chapter to find boundary
layers near x = 0 and x = 1. We propose to interpret the WKBJ method as
a regularising transformation in the following sense. We try to find solutions
in the form

exp .(Q(x)/δ(ε)).

The regularisation assumption implies that we expect Q to have a regular
expansion that is valid in the whole domain. In the case of the two-point
boundary value problem, we substitute

φ = exp .(Q/
√

ε)

to find √
εQ′′ + (Q′)2 − w(x) = 0.



5.3 The WKBJ Method 53

This does not look like an equation with a regular expansion. However, if it has
one, and because of

√
ε in the equation, we expect such a regular expansion

to take the form

Qε(x) =
2m∑
n=0

εn/2qn(x) + O(εm+ 1
2 ).

We find after substitution

(q′
0)

2 = w(x),
2q′

0q
′
1 = −q′′

0 , etc.

with solutions
q0(x) = ±

∫ x

0

√
w(t) dt + C0,

q1(x) = − ln w
1
4 (x) + C1.

The original differential equation is linear and has two independent solutions.
Using the first two terms q0, q1 to determine Q, we find from the calculation
up to now two expressions that we propose to use as approximations for the
independent solutions:

ψ1(x) = 1
w

1
4 (x)

e
− 1√

ε

∫ x
0

√
w(t) dt

,

ψ2(x) = 1
w

1
4 (x)

e
− 1√

ε

∫ 1
x

√
w(t) dt

.

Note that ψ1(1) and ψ2(0) are exponentially small. A linear combination of
ψ1 and ψ2 should represent a formal approximation of the boundary value
problem; we put

φ̃ε(x) = Aψ1(x) + Bψ2(x).

Imposing the boundary values, we have

A = αw
1
4 (0) + O(e−Ω/

√
ε),

B = βw
1
4 (1) + O(e−Ω/

√
ε),

with Ω =
∫ 1
0 w(t) dt. In Section 5.1, we found a formal approximation φ̃ε(x) of

the boundary value problem with two boundary layers and a regular expansion
identically zero. To compare the results, we expand φ̃ε(x) with respect to x
and 1 − x:

φ̃ε(x) = αe−
√

w(0)x/
√

ε + βe−
√

w(1)(1−x)/
√

ε + o(1), x ∈ [0, 1].

So, to a first approximation, the results of the boundary layer method in
Section 5.1 (which can be proved to be asymptotically valid) agree with the
results of the WKBJ method. The quantitative difference between the meth-
ods can be understood in terms of relative and absolute errors. One can show
that in this case one can write for the independent solutions φ1 and φ2 of the
original differential equation solutions φ1 and φ2 of the original differential
equation
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φ1 = ψ1(1 + O(
√

ε)),
φ2 = ψ2(1 + O(

√
ε)), x ∈ [0, 1].

The error outside the boundary layers is in the case of our boundary layer
expansion an absolute one of order

√
ε; in the case of the WKBJ expansion, we

have a relative error O(
√

ε), and as ψ1, ψ2 are exponentially decreasing, this is
a much better result. However, this advantage of the WKBJ method is lost in
slightly more general perturbation problems, as it rests on the regular expan-
sion being identically zero. As soon as we find nontrivial regular expansions,
the corresponding errors destroy the nice exponential estimates. Finally, we
note that proofs of asymptotic validity involving WKBJ expansions are still
restricted to relatively simple cases.

5.4 A Curious Indeterminacy

If we omit some of the assumptions of the preceding sections, the expansion
and matching techniques that we have introduced may fail to determine the
approximation. We shall demonstrate this for an example where we have an
exact solution. The phenomenon itself is interesting but, even more impor-
tantly, it induced Grasman and Matkowsky (1977) to develop a new method
to resolve the indeterminacy. We shall discuss this at the end of this section.

Consider the boundary value problem (see also Kevorkian and Cole, 1996,
Section 2.3.4)

ε
d2φ

dx2 − x
dφ

dx
+ φ = 0,−1 < x < +1,

φ(−1) = α, φ(+1) = β.

Assuming the existence of a regular expansion of the form

ψε(x) =
m∑

n=0

εnφn(x) + O(εm+1),

we find
−x

dφ0

dx
+ φ0 = 0

so that φ0(x) = c0x and actually to any order φn(x) = cnx with cn, n =
0, · · · , m arbitrary constants. We can satisfy one of the boundary conditions
by setting either −c0 = α or +c0 = β.

In fact, if α = −β, φ0(x) solves the boundary value problem exactly. In
the following we assume that α 
= −β with the presence of a boundary layer
near x = −1 or x = +1. We expect that one of the choices will lead to an
obstruction when trying to match the boundary layer solution to the regular
expansion. Subtraction of the regular expansion by

φε(x) =
m∑

n=0

εncnx + ψε(x)
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leads to

ε
d2ψ

dx2 − x
dψ

dx
+ ψ = O(εm+1), ψ(−1) = α + c0 − ε · · · , ψ(+1) = β − c0 + ε · · · .

Suppose we have a boundary layer near x = −1 with local variable

ξ =
x + 1
εν

.

We find

ε1−2ν d2ψ

dξ2 − ενξ − 1
εν

dψ

dξ
+ ψ = O(εm+1),

with a significant degeneration for ν = 1; expanding ψε produces to first order

d2ψ0

dξ2 +
dψ0

dξ
= 0

with solution
ψ0(ξ) = A1 + A2e

−ξ

with A1, A2 constants. The matching relation will be

lim
ξ→∞

ψ0(ξ) = 0

so that A1 = 0; the boundary condition yields A2 = α + c0.
We expect no boundary layer near x = +1; let’s check this. Introduce the

local variable
η =

1 − x

εν

so that we have locally

ε1−2ν d2ψ̄

dη2 +
1 − ενη

εν

dψ̄

dη
+ ψ̄ = O(εm+1)

with a significant degeneration for ν = 1. To first order, we find

d2ψ̄0

dη2 +
dψ̄0

dη
= 0

with solution
ψ̄0(η) = B1 + B2e

−η

with B1, B2 constants. The matching relation

lim
η→∞ ψ̄0(η) = 0

produces B1 = 0, and the boundary condition yields B2 = β − c0.
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It turns out there is no obstruction to the presence of boundary layers
near x = −1 and near x = +1. The approximation obtained until now takes
the form

φε(x) = c0x + (α + c0)e− x+1
ε + (β − c0)e− 1−x

ε + O(ε)

with undetermined constant c0. It can easily be checked that introducing
higher-order approximations does not resolve the indeterminacy.

This is an unsatisfactory situation. In what follows we analyse the exact
solution, which luckily we have in this case. In general, this is not a possible
option and we shall discuss a general method that enables us to resolve the
indeterminacy.

As φε(x) = x solves the equation, we can construct a second independent
solution to obtain the general solution

φε(x) = C1x + C2

(
e

x2
2ε − x

ε

∫ x

−1
e

t2
2ε dt

)
.

We assume again α 
= −β to avoid this simple case. C1 and C2 are determined
by the boundary conditions. Analysing the exact solution is quite an effort;
see Exercise 5.6 or Kevorkian and Cole (1996). The conclusion is that indeed
near x = −1 and x = +1 a boundary layer of size O(ε) exists. In the interior
of the interval, there exists a regular expansion with first-order term c0x, c0 =
(β − α)/2.

The method developed by Grasman and Matkowsky (1977) to resolve the
indeterminacy is based on variational principles. The solution to our boundary
value problem can be viewed as the element of the set

V = {C2(−1, +1)|y(−1) = α, y(+1) = β}

that extremalises the functional

Iε =
∫ +1

−1
L(x, φ, φ′; ε)dx,

where L is a suitable Lagrangian function. Extremalisation of the functional
leads to the Euler-Lagrange equation

d

dx

(
∂L

∂φ′

)
− ∂L

∂φ
= 0.

For a general reference to variational principles, see Stakgold (2000). In the
case of the equation

εφ′′ − xφ′ + φ = 0,

a suitable Lagrangian function is

L =
1
2
(εφ′2 − φ2)e− x2

2ε .
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The approximation that we derived can be seen as a one-parameter family of
functions, a subset of V , parameterised by c0. We can look for a member of
this family that extremalises the functional Iε by substituting the expression
and looking for an extremal value by satisfying the condition

dIε

dc0
= 0.

Keeping the terms of L to leading order in ε, we find again c0 = (β − α)/2.
This result has been obtained without any explicit knowledge of the exact
solution.

We can apply this elegant method to many other boundary value problems
where a combination of boundary layer and variational methods is fruitful.

5.5 Higher Order: The Suspension Bridge Problem

Following Von Kármán and Biot (1940), we consider a model for a suspen-
sion bridge consisting of a beam supported at the endpoints and by hangers
attached to a cable. Without a so-called live load on the bridge, the cable
assumes a certain shape while bearing the beam that forms the bridge (the
dead weight position). Adding a live load, and upon linearising, we obtain an
equation describing the deflection w(x) from the dead weight position of the
cable,

ε
d4w

dx4 − d2w

dx2 = p(x).

On deriving the equation, we have assumed that the beam and cable axes are
lined up with the x-axis and that the total tension in the cable is large relative
to the flexural rigidity (Young’s elasticity modulus times the inertial moment).
Also, we have rescaled such that 0 ≤ x ≤ 1; p(x) represents the result of a
dead weight and live load. Natural boundary conditions are clamped supports
at the endpoints which means

w(0) = w(1) = 0; w′(0) = w′(1) = 0.

We assume that in a subdomain of [0, 1] a regular expansion exists of the form

w(x) =
m∑

n=0

εnwn(x) + O(εm+1).

We find after substitution

−d2w0

dx2 = p(x),
d2wn

dx2 =
d4wn−1

dx4 , n = 1, 2, · · · .

The second derivative d2w/dx2 is inversely proportional to the curvature and
so proportional to the bending moment of the cable. In the domain of the
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regular expansion, tension induced by the load p(x) dominates the elasticity
effects. Solving the lowest-order equation, we have

w0(x) = −
∫ x

0

∫ s

0
p(t)dtds + ax + b

with a and b constants. On assuming p(x) to be sufficiently differentiable, we
obtain higher-order terms of the same form.

We cannot apply the four boundary conditions, but a good choice turns
out to be

w0(0) = w0(1) = 0.

We could also leave this decision until matching conditions have to be applied,
but we shall run ahead of this. We find

a =
∫ 1

0

∫ s

0
p(t)dtds, b = 0.

Subtracting the regular expansion

ψ(x) = w(x) −
m∑

n=0

εnwn(x)

produces

ε
d4ψ

dx4 − d2ψ

dx2 = O(εm+1)

with boundary conditions

ψ(0) = ψ(1) = 0, ψ′(0) = −a, ψ′(1) =
∫ 1

0
p(s)ds − a.

Expecting boundary layers at x = 0 and x = 1, we analyse what happens
near x = 0; near x = 1 the analysis is similar. Introduce the local variable

ξ =
x

εν
,

and the equation becomes

ε1−4ν d4ψ∗

dξ4 − ε−2ν d2ψ∗

dξ2 = O(εm+1).

A significant degeneration arises if 1 − 4ν = −2ν or ν = 1
2 . Expanding ψ∗ =

ψ0(ξ) + ε1/2ψ1(ξ) + · · · , we have

d4ψ0

dξ4 − d2ψ0

dξ2 = 0

with boundary conditions
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ψ0(0) =
ψ0(0)

dξ
= 0

and general solution

ψ0(ξ) = c0 + c1ξ + c2e
−ξ + c3e

+ξ.

Applying the matching condition

lim
ξ→+∞

ψ0(ξ) = 0,

we have c0 = c1 = c3 = 0; the boundary conditions yield c2 = 0 so we have
to go to the next order to find a nontrivial boundary layer contribution. Note
that this is not unnatural because of the clamping conditions of the cable
(w(0) = w′(0) = 0). For ψ1 (and to any order) we have the same equation;
the boundary conditions are

ψ1(0) = 0,
dψ1(0)

dξ
= −a.

However, applying the matching condition, we find again c0 = c1 = c3 = 0,
and we cannot apply both boundary conditions.

What is wrong with our assumptions and construction? At this point, we
have to realise that the matching rule

lim
ξ→+∞

ψ(ξ) = 0

is matching in its elementary form. What we expect of matching is what
this terminology expresses: the boundary layer expansion should be smoothly
fitted to the regular (outer) expansion. If the boundary layer expansion is
growing exponentially as exp(+ξ), there is no way to fit this behaviour with a
regular expansion. Polynomial growth, however, is a different matter; a term
such as ε1/2ξ behaves as x outside the boundary layer and poses no problem
for incorporation in the regular expansion.

To allow for polynomial growth, we have to devise slightly more general
matching rules. This will not be a subject of this chapter, but it is important
to realise that one may encounter these problems. See for more details Section
6.2 and Section 15.4.

To illustrate this here and to conclude the discussion, one can compute
the exact solution of the problem by variation of constants and by applying
the boundary conditions. It is easier to look at the equation for ψ(x) obtained
by the subtraction trick. Its general solution is

ψ(x) = c0 + c1x + c2e
−x/

√
ε + c3e

(x−1)/
√

ε.

Applying the boundary conditions, one finds that in general c1 = Os(
√

ε).
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5.6 Guide to the Literature

Linear two-point boundary value problems have been studied by a number of
authors. An elegant technique to prove asymptotic validity is the use of max-
imum principles. It was introduced by Eckhaus and De Jager (1966) to study
elliptic problems. Such problems will be considered in Chapter 7; we give an
example of a proof in Section 15.6. The technique of using maximum prin-
ciples was applied extensively by Dorr, Parter, and Shampine (1973). Other
general references for two-point boundary value problems, including turning-
point problems, are Wasow (1965), Eckhaus (1979), Smith (1985), O’Malley
(1991), and De Jager and Jiang Furu (1996). A number of basic aspects were
analysed by Ward (1992, 1999).

An interesting phenomenon involving turning points is called Ackerberg-
O’Malley resonance and has inspired a large number of authors. De Groen
(1977, 1980) clarified the relation of this resonance with spectral properties
of the related differential operator; for other references, see his papers.

Higher-dimensional linear boundary value problems can present them-
selves in various shapes. One type of problem is the linear scalar equation

εφ(n)
ε + Ln−1φε = f(x)

with Ln−1 a linear operator of order (n−1) and appropriate boundary values.
Another formulation is for systems of first-order equations of the form

ẋ = a(t)x + b(t)y,

εẏ = c(t)x + d(t)y,

with x an n-dimensional vector, y an m-dimensional vector, a, b, c and d matri-
ces, and appropriate boundary values added. The vector form is also relevant
for control problems. For a more systematic treatment, see O’Malley (1991).

More details about the WKBJ method can be found in Eckhaus (1979),
Vainberg (1989), O’Malley (1991) and Holmes (1998). For turning points, see
Wasow (1984), Smith (1985), and De Jager and Jiang Furu (1996).

5.7 Exercises

Exercise 5.1 We consider the following boundary problem on [0, 1]:

ε

(
d2φ

dx2 + arctan(x)
dφ

dx
− ex2

cos(x)φ
)

− cos(x)φ = x2,

φ(0) = α, φ(1) = β.

Compute a first-order approximation. Is this a formal approximation?
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Exercise 5.2 Consider the following boundary value problem on [0, 1]:

ε
d2φ

dx2 +
dφ

dx
+ cos xφ = cos x,

φ(0) = α, φ(1) = β.

Compute a first-order approximation. Is the approximation formal?

Exercise 5.3 Consider the boundary value problem

ε d2y
dx2 + (1 + 2x) dy

dx − 2y = 0, x ∈ (0, 1),
y(0) = α, y(1) = β.

a. Compute a first-order approximation of y(x) using Section 5.2.
b. Compute a first-order approximation of y(x) by the WKBJ method and

compare the results of (a) and (b).

Note that for a one-parameter set of boundary values no boundary layer is
present.

Exercise 5.4 Consider the so-called “turning-point problem”:

Lεy = (εL1 + L0)(y) = 0, x ∈ [0, 1],
L1 = a2(x) d2

dx2 + a1(x) d
dx + a0(x), a2(x) 
= 0,

L0 = b1(x) d
dx + b0(x).

Suppose b1(x) has a simple zero x0 ∈ (0, 1) and b0(x) 
= 0 in [0, 1]. This is
usually called a turning-point problem.

a. Compute the significant degenerations of Lε in a neighbourhood of x = x0.
Take for instance b1(x) = β0(x−x0)+ · · · , where β0 is a nonzero constant
and the dots indicate the higher-order terms in (x − x0) so that b1(x) has
a simple zero.

b. Does a significant degeneration arise if b1 ≡ 0 in [0, 1] and b0 has a simple
zero?

Exercise 5.5 To recognise some of the difficulties arising with singular dif-
ferential equations mentioned in the introduction to this chapter, we consider
the Euler equation

ε(x2y′′ + 3xy′) − y = 0, x ∈ (0, 1),

y(0) = α, y(1) = β, α2 + β2 
= 0, p ∈ R.

a. Try to find a suitable local variable near x = 0.
b. Show that the boundary value problem has no solution.
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Exercise 5.6 In Section 5.4 we obtained an exact solution,

φε(x) = C1x + C2

(
e

x2
2ε − x

ε

∫ x

−1
e

t2
2ε dt

)
,

which has to satisfy the boundary conditions φε(−1) = α, φε(−1) = β. We
wish to determine the first-order term of the regular expansion in the interior
of [−1, +1]. We also want to show that there exist boundary layers near x =
−1 and x = +1. The calculation closely follows Kevorkian and Cole (1996),
Section 2.3.4.

a. Apply the boundary conditions to find

C1 =
(β − α)e1/2ε + αA(ε)

2e1/2ε − A(ε)
, C2 =

β + α

2e1/2ε − A(ε)
,

with

A(ε) =
1
ε

∫ +1

−1
et2/2εdt.

In the following, we assume β + α 
= 0. Putting β + α = 0 eliminates the
boundary layers and produces the exact solution φε(x) = βx.

b. Use Laplace’s method (Chapter 3) to evaluate

e−1/2εA(ε) = 2(1 + ε + 3ε2) + O(ε3),

C1 = −β + α

2ε
+

3β + α

2
+ O(ε), C2 = (β + α)e−1/2ε

(
− 1

2ε
+

3
2

+ O(ε)
)

.

c. To expand φε(x) in the interior of [−1, +1], note that, away from the
boundary layers, C2e

x2/2ε is exponentially small.

d. Again with Laplace’s method show that in the interior of [−1, +1] with
x 
= 0∫ x

−1
e

t2
2ε dt = εe1/2ε(1 + ε + O(ε2)) +

2ε

x

(
1 +

ε

x2 + O(ε2)
)

ex2/2ε.

e. Conclude that in the interior of [−1, +1]

φε(x) =
β − α

2
x + O(ε).

f. Introduce local variables to analyse the exact solution near the endpoints.




