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Boundary Layer Behaviour

In this chapter, we take a closer look at boundary layer phenomena. The
tools we shall develop for our analysis are local boundary layer variables and
degenerations of operators.

4.1 Regular Expansions and Boundary Layers

In Chapter 1, we considered two examples of first-order differential equations.
For the solutions, we substituted a formal expansion of the form

φε(x) =
∞∑

n=0

εnφn(x).

In the case of the problem

φ′ + εφ = cos x, φ(0) = 0,

this led to a consistent formal expansion. In the problem

εφ′ + φ = cos x, φ(0) = 0,

by comparing this with the exact solution, we have shown that the formal
expansion is far too simple to represent the solution. The difficulty with the
formal expansion arises when applying the boundary condition; a problem of
this type is often called a singular perturbation or boundary layer problem.
The asymptotic expansion in the second case looks like

φε(x) =
∞∑

n=0

δn(ε)ψn(x, ε).

The simpler expansion that we used in the first case will be called regular.
Note that in the literature the term “regular” is used in many ways.
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Definition
Consider the function φε(x) defined on D ⊂ R

n; an asymptotic expansion for
φε(x) will be called regular if it takes the form

φε(x) =
m∑

n=0

δn(ε)ψn(x) + 0(δm+1)

with δn(ε), n = 0, 1, · · · an asymptotic sequence and ψn(x), n = 0, 1, · · · func-
tions on D.

It turns out that in studying a function φε(x) on a domain D we have
to take into account that regular expansions of φε(x) often only exist on
subdomains of D.

Example 4.1
Consider the function

φε(x) = e−x/ε + eεx, x ∈ [0, 1].

On any subdomain [d, 1] with 0 < d < 1 a constant independent of ε, we have
the regular expansion

φε(x) =
m∑

n=0

εn xn

n!
+ 0(εm+1).

However, there exists no regular expansion in functions of x on [0, d] or [0, 1].

Example 4.2
The function φε(x) is for x ∈ [0, 1] defined as the solution of the two-point
boundary value problem

εφ′′ + φ′ = 0, φ(0) = 1, φ(1) = 0.

The solution is

φε(x) =
e−x/ε

1 − e−1/ε
− e−1/ε

1 − e−1/ε
.

Ignoring this exact solution and looking for a regular expansion by substituting
into the differential equation

φε(x) =
m∑

n=0

εnφn(x),

we find
φ′

0 = 0,

φ′′
0 + φ′

1 = 0, etc.
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This leads to φ0(x) = constant, φ1(x) = constant, etc. There is no way to
satisfy the boundary conditions with the regular expansion.

The exact solution can be written as

φε(x) = e−x/ε + 0(e−1/ε),

which shows that the behaviour of the solutions is different in two subdomains
of [0, 1]: in a small region of size 0(ε) near x = 0, the solution decreases very
rapidly from 1 towards 0; in the remaining part of [0, 1], the solution is very
near 0. The regular expansion is valid here with, rather trivially, φn(x) =
0, n = 0, 1, · · · . Note that even in the domain where the regular expansion is
valid, the choice to expand with respect to order functions of the form εn is
not a fortunate one as e−1/ε = o(εn), n = 1, 2, · · · .

S

D

Fig. 4.1. Domain D with boundary layer near S.

The small region near x = 0 where no regular expansion exists in Example
4.2, is called a boundary layer. We now characterise such regions.

4.1.1 The Concept of a Boundary Layer

Consider the function φε(x) defined on D ⊆ R
n. Suppose there exists a con-

nected subset S ⊂ D of dimension ≤ n, with the property that φε(x) has no
regular expansion in each subset of D containing points of S (see Fig. 4.1).
Then a neighbourhood of S in D with a size to be determined, will be called
a boundary layer of the function φε(x).

In Examples 4.1 and 4.2 the domain is one-dimensional. A boundary layer,
corresponding with the subset S, has been found near the boundary point
x = 0 of the domain. Note that in applications we also may find a boundary
layer in the interior of the domain and, if we have an evolution equation, the
boundary layer may even be moving in time.

To study the behaviour of a function φε(x) in a boundary layer, a fun-
damental technique is to use a local analysis. This is a technique that we
shall meet again and again. In this chapter, we consider local analysis in a
one-dimensional context. Later we shall meet higher-dimensional problems.
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Suppose that near a point x0 ∈ S the boundary layer is characterised in
size by an order function δ(ε). We “rescale” or “stretch” the variable x by
introducing the local variable

ξ =
x − x0

δ(ε)
.

If δ(ε) = o(1), we call ξ a local (stretched or boundary layer) variable. The
function φε(x) transforms to

φε(x) = φε(x0 + δ(ε)ξ)
= φ∗

ε(ξ).

It is then natural to continue the local analysis by expanding the function φ∗
ε

with respect to the local variable ξ; we hope to find again a regular expansion.
To be more precise, assume that

φ∗
ε(ξ) = 0s(1) near ξ = 0.

We wish to find local approximations of φ∗
ε by a regular expansion of the form

φ∗
ε(ξ) =

∑
n

δ∗
n(ε)ψn(ξ)

with δ∗
n(ε), n = 0, 1, 2, · · · an asymptotic sequence.

When solving the problem of approximating a function φε(x) in a domain
D, our program will then be as follows.

1. Try to construct a regular expansion in the original variable x. This is
possible outside the boundary layers (by definition), and this expansion
is usually called the outer expansion.

2. Construct in the boundary layer(s) a local expansion in an appropriate lo-
cal variable. Such a regular expansion is usually called the inner expansion
or boundary layer expansion.

3. The inner and outer expansions should be matched to obtain a formal
expansion for the whole domain D. As we shall see later, in a number of
problems, techniques have been developed to combine the three stages,
which makes the process more efficient. This formal expansion, which is
valid in the whole domain, is sometimes called a uniform expansion. Note,
however, that in the literature and also in this book, expressions that
are called “uniformly valid expansion” are more often than not formal
expansions. So we come to the next point.

4. Prove that formal expansions, obtained in the stages 1–3, represent valid
asymptotic approximations of the function φε(x) that we set out to study.

In many problems, the function φε(x) has been implicitly defined as the
solution of a system of differential equations with initial and/or boundary
conditions. To study such a problem by perturbation theory, we have to be
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more precise in the use of the expressions “formal expansion” and “formal
approximation”. Suppose that we have to study the perturbation problem

Lεφ = f(x), x ∈ D + other conditions.

Lε is an operator containing a small parameter ε. For instance, in Example
4.2 we have

Lε = ε
d2

dx2 +
d

dx

D = [0, 1], f(x) = 0 and boundary conditions φ(0) = 1, φ(1) = 0.
The function φ̃ε(x) will be called a formal approximation or formal expan-

sion of φε(x) if φ̃ satisfies the boundary conditions to a certain approximation
and if

Lεφ̃ = f(x) + o(1).

We shall see that to require φ̃ to satisfy the boundary conditions in full is
asking too much and in practice it suffices for φ̃ to satisfy the boundary
conditions to a certain approximation.

To prove that if φ̃ is a formal approximation it also is an asymptotic
approximation of φ is in general a difficult problem. Moreover, one can give
simple and realistic examples in which this is not true. Remarkably enough,
we shall later also meet cases where we have an asymptotic approximation
that is not a formal approximation.

Example 4.3
(a formal approximation that is not asymptotic)
Consider the harmonic oscillator

φ̈ + (1 + ε)2φ = 0, t ≥ 0

with initial conditions φ(0) = 1, φ̇(0) = 0. The solutions of the equation are
bounded, and with these initial conditions we have

φ(t) = cos((1 + ε)t).

On the other hand, φ̃(t) = cos t satisfies the initial conditions and moreover

∼̈
φ +(1 + ε)2φ̃ = 2ε cos t + ε2 cos t = O(ε).

However, using the sup norm, it is easy to see that φ(t) − φ̃(t) = 0s(1), t ≥ 0.

4.2 A Two-Point Boundary Value Problem

We shall now illustrate the process of constructing a formal expansion for a
simple boundary value problem.
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Example 4.4
Consider the equation

ε
d2φ

dx2 − φ = f(x), x ∈ [0, 1]

with boundary values φε(0) = φε(1) = 0. The function f(x) is sufficiently
smooth on [0, 1] to allow for the construction that follows. We note that the
choice of boundary values equal to zero (homogeneous boundary values) is
not a restriction: aif φε(0) = α, φε(1) = β, we introduce ψε(x) = φε(x) − α −
(β − α)x, which produces zero boundary values for the problem in ψε (while
of course changing the right-hand side).

In the spirit of Section 3.1, we assume that in some subset D0 of [0, 1] the
solution has a regular expansion of the form

φε(x) =
m∑

n=0

εnφn(x).

Substitution in the preceding equation produces successively

φ0(x) = −f(x),

φn(x) = d2φn−1
dx2 , n = 1, 2, · · · .

The expansion coefficients φn are determined completely by the recurrency
relation so that we cannot impose the boundary conditions to the regular
expansion. (Even if accidentally f(0) = f(1) = 0, the next order will change
the boundary conditions again.) We conclude that for the regular expansion
to make sense in D0, this subset should not contain the boundary points x = 0
and x = 1 (see Fig. 4.2). Before analysing what is going on near the boundary

Do

0 1

Fig. 4.2. Boundary layers near the end points.

points, we carry out the subtraction trick; this trick is of no fundamental
importance but is computationally convenient, as it shifts the equation to a
homogeneous one. For nonlinear equations, the subtraction trick can be less
convenient. Introduce

ψε(x) = φε(x) −
m∑

n=0

εnφn(x).

The two-point boundary value problem for ψε becomes
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ε
d2ψ

dx2 − ψ = 0(εm+1)

and

ψε(0) = −
m∑

n=0

εnφn(0), ψε(1) = −
m∑

n=0

εnφn(1).

Near x = 0, we introduce the local variable

ξ =
x

δ(ε)

with δ(ε) = o(1); at this point, we have no a priori knowledge of a suitable
choice of δ(ε).

The equation with respect to this local variable becomes

ε

δ2

d2ψ∗

dξ2 − ψ∗ = 0(εm+1),

where ψ∗ = ψε(δ(ε)ξ). How to choose δ(ε) will be the subject of discussion
later on; here we just remark that

δ2(ε) = ε or δ(ε) =
√

ε

seems to be a well-balanced choice. We now assume that there exists a regular
expansion of ψ∗

ε , so
lim
ε↓0

ψ∗
ε (ξ) = ψ0(ξ) exists

and satisfies the formal limit equation

d2ψ0

dξ2 − ψ0 = 0.

ψ0 would be the first term in a formal regular expansion in ξ near the point
x = 0. Solving this limit equation, we find

ψ0(ξ) = ae−ξ + be+ξ.

Imposing the boundary condition at ξ = 0, we have

a + b = −φ0(0) = f(0).

We have to find a second relation to determine a and b; for this we observe
that the solution in the boundary layer near x = 0 should be matched with
the regular expansion in D0. Rewriting ψ0(ξ) in x, we note that the term
exp(x/

√
ε) becomes exponentially large with x in D0 unless its coefficient b

vanishes, so we propose the matching relation limξ→∞ ψ0(ξ) = 0 or b = 0 and
we have

ψ0(ξ) = f(0)e−ξ.
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We can proceed to calculate higher-order terms by assuming a regular expan-
sion of the form

ψ∗
ε (ξ) =

m∑
n=0

εn/2ψn(ξ),

where for each term in the expansion we have again one boundary condition
and one matching relation. The equations for ψ1, ψ2, · · · will become increas-
ingly complicated. We can repeat this local analysis near x = 1 by introducing
the local variable

η =
1 − x√

ε
.

The calculation runs along exactly the same lines and is left to the reader.
Adding the terms from the outer expansion and the two local (boundary layer)
expansions, we find to first order the formal uniform expansion

φ̃ε(x) = −f(x) + f(0)e−x/
√

ε + f(1)e−(1−x)/
√

ε + · · · .

The dots are standing for terms such as εφ1(x),
√

εψ1(ξ), etc. It follows from
the construction that φ̃ε(x) satisfies the equation to a certain approximation
and it is a formal approximation of the solution, as we allow for exponentially
small deviations of the boundary conditions. Later we shall return to the
question of whether φ̃ is an asymptotic approximation of φ. At this stage, it
is interesting to note that one easily finds an affirmative answer by analysing
the exact solution, which can be found by variation of constants.

4.3 Limits of Equations and Operators

We consider differential operators Lε parametrised by ε. We are interested in
discussing the limit as ε → 0 of Lε while keeping in mind our experience of
the preceding sections where in various subdomains different variables have
played a part. Consider again Example 4.4 of Section 4.2,

Lεφ = f(x), φε(0) = φε(1) = 0,

with

Lε = ε
d2

dx2 − 1.

Taking the formal limit of Lε as ε → 0, we obtain

L0 = −1.

Introducing local variables of course changes the limiting behaviour of the
operator. Consider for instance the boundary layer near x = 0 and introduce

ξ =
x

δ(ε)
with δ(ε) = o(1).
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We find

L∗
ε =

ε

δ2

d2

dξ2 − 1.

Our choice of δ(ε) determines which operator L∗
ε degenerates into as ε → 0.

For instance, if δ2(ε) = ε, then

L∗
0 =

d2

dξ2 − 1.

If ε = o(δ2(ε)), and for instance δ = ε1/4, we have

L∗
0 = −1.

If δ2(ε) = o(ε), the limit does not exist and it makes sense to rescale,

δ2

ε
L∗

ε = L∗∗
ε .

We find the degeneration

L∗∗
0 =

d2

dξ2 .

Making these calculations, we observe that, taking the formal limits, the de-
generations of the operator in the cases ε = o(δ2) and δ2 = o(ε) are contained
in the degeneration obtained on choosing δ2 = ε. We call L∗

0 in this case,

L∗
0 =

d2

dξ2 − 1,

a significant degeneration of the operator Lε near x = 0. Put in a different way,
a significant degeneration implies a well-balanced choice of the local variable ξ
such that the corresponding operator as ε → 0 contains as much information
as possible.
Note that a number of authors are using the term distinguished limit instead
of significant degeneration.

Definition
Consider the operator Lε, written in the variable x, near the boundary layer
point x = x0 and the operator Lε rewritten in all possible local variables of
the form (x − x0)/δ(ε) near x0. L∗

0 is called a significant degeneration of Lε if
L∗

0 is obtained by writing L in the local variable ξ and taking the formal limit
as ε → 0 (possibly after rescaling), whereas the corresponding degenerations
in the other local variables are contained in L∗

0.

Remark
In practice, many operators can be analysed for significant degenerations by
considering the set of order functions δ(ε) = εν , ν > 0. For instance, in our
example
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Lε = ε
d2

dx2 − 1,

we have, introducing the local variable ξν = x/εν ,

Lε = ε1−2ν d2

dξ2
ν

− 1,

ν =
1
2
, L∗

0 =
d2

dξ2
1
2

− 1,

ν >
1
2
, L∗

0 =
d2

dξ2
ν

,

ν <
1
2
, L∗

0 = −1.

Remark
This definition is too simple in some cases. For instance, it is possible that near
a point x = x0, more than one significant degeneration exists corresponding
with a more complicated boundary layer structure. For these cases, we have
to adjust the definition somewhat, but we omit this here.

By introducing the concept of significant degeneration, we have a formal
justification of our choice of boundary layer variables in the problem of Ex-
ample 3.3 in Section 3.2. The underlying assumption here and in the following
is that on analysing the significant degenerations of an operator, we find the
correct boundary layer variables and the corresponding expansions in these
variables. It turns out that this asumption works very well in most problems.

Still we have to keep in mind the possibility of hidden pitfalls. One of
the assumptions in the construction is that the problem obtained by taking
the formal limit of the operator does have something to do with the original
problem. That is, if we study the function φε(x) in a domain D given by the
equation

Lεφ = fε(x),

by taking the limit we have

L0ψ = f0(x).

Does this mean that we have limε↓0 φε(x) = ψ(x) in some nontrivial subdo-
main D0 ⊂ D?

In applications, the answer seems to be affirmative. The reason is that
equations in practice have been obtained by modelling reality. In these equa-
tions, various distinct effects or forces (in mechanics) play a part. For a de-
generation to make sense, we have that locally in space or time one or a few of
these effects or forces is dominant. This is quite natural in applications. Math-
ematically, this is not a simple question, and we give an example, admittedly
artificial, to show that we may have a serious problem here.
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Example 4.5
(Eckhaus, 1979)
Consider the following initial value problem in a neighbourhood of x = 0:

Lεφ = fε(x), φε(0) = 1, φ′
ε(0) = 0,

Lε = ε3 cos(
x

ε2 )
d2

dx2 + ε sin(
x

ε2 )
d

dx
− 1,

fε(x) = −ε(1 − cos(
x

ε2 )).

Taking the formal limit L0ψ = f0(x), we find ψ(x) = 0, but the solution of
the problem is

φε(x) = 1 + ε − ε cos
( x

ε2

)
with, for all x ≥ 0,

lim
ε→0

φε(x) = 1.

Note that ψ(x) = 0 is not a formal approximation since it does not satisfy the
boundary conditions. However, more dramatically, there is also no subdomain
where ψ(x) represents an asymptotic approximation of φ. On the other hand,
the function φ0(x) = 1 does represent an asymptotic approximation, but this
function does not satisfy the limit equation!

Fortunately, this example is not typical for applications, but it is instruc-
tive to keep it in mind as a possible phenomenon. It also illustrates the im-
portance of giving proofs of asymptotic validity.

4.4 Guide to the Literature

The idea of a boundary layer orginates from physics, in particular fluid me-
chanics; see Prandtl (1905) and Prandtl and Tietjens (1934). Degenerations
of operators, significant degenerations in local variables, and matching tech-
niques are more recent concepts. Both the terminology and the techniques
may take rather different forms.

One of the approaches to validate matching is the assumption of the so-
called overlap hypothesis. This assumes that if one has two neighbouring local
expansions or a neighbouring local and a regular expansion, there exists a
common subdomain where both expansions are valid. This provides a sufficient
condition to match the expansions by using in this subdomain intermediate
variables. Such variables were considered by Kaplun and Lagerstrom (1957).
More discussion of matching rules is found in Section 6.2 and Section 15.4.

The foundations are further discussed by Van Dyke (1964), Fraenkel
(1969), Lagerstrom and Casten (1972), Eckhaus (1979) and Kevorkian and
Cole (1996).

A different approach to identify scales and layers is to use blow-up transfor-
mations; see Krupa and Szmolyan (2001) and Popović and Szmolyan (2004).
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The theory of singular perturbations as far as boundary layer theory is con-
cerned, is still largely a collection of inductive methods in which taste and
inventiveness play an important part.

4.5 Exercises

Exercise 4.1 Compute a second-order approximation of Example 4.4 treated
in Section 4.2. Discuss the asymptotic character of the approximation.

Exercise 4.2 Consider the boundary value problem{
εy′′ + y′ + y = 0,
y(0) = a, y(1) = b.

Compute a first-order approximation of the solution yε(x) of the boundary
value problem and compare this approximation with the exact solution. Is
this first-order approximation a formal approximation?

Exercise 4.3 Consider the operator

Lε = ε(ε2 + x − 1)
d

dx
+ ε(ε + 1) + x − 1.

a. Compute the significant degenerations of the operator Lε in a neighbour-
hood of x = 0 and x = 1. (Show that the other degenerations are contained
in them.)

b. To illustrate the result of (a), we solve the initial value problem

Lεy = 0, y(1) = 1.

Compute the solution of this problem and compare it with the result in
(a).

Exercise 4.4 Consider the boundary value problem

εL1y − y = 1, x ∈ (0, 1),
y(0) = a, y(1) = b, a, b 
= 0,

L1 = (1 + x2) d2

dx2 + d
dx − x.

Compute the first- and second-order terms of a formal approximation; show
explicitly that this expansion is a formal approximation.




