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Wave Equations on Unbounded Domains

In the study of evolution equations describing wave phenomena on unbounded
domains, one is confronted with a great many concepts and methods but
usually only formal results. This is not a good reason to avoid the subject, as
there are many interesting mathematical questions and physical phenomena
in this field. Also, many parts of physics and engineering require a practical
approach to real-life problems that cannot wait until rigorous mathematical
methods are available.

So, this chapter will be different from the preceding ones because in some of
the results discussed here a mathematical justification is lacking. This holds in
particular when we are discussing perturbations of strongly nonlinear partial
differential equations. The interest of the problems and the elegance of the
methods will hopefully make up for this. Also, it may inspire exploration of
the mathematical foundations of the methods discussed in this chapter.

14.1 The Linear Wave Equation with Dissipation

Consider as a simple example the wave equation with weak energy dissipation
(damping)

∂2u

∂x2 =
∂2u

∂t2
+ ε

∂u

∂t
, −∞ < x < ∞, t > 0,

with initial values u(x, 0) = f(x), ut(x, 0) = 0.
It is not difficult to see that a regular expansion of the form u(x, t) =

u0(x, t) + εu1(x, t) + · · · produces secular terms (Exercise 14.1). If ε = 0, it is
useful to use characteristic coordinates

ξ = x − t, η = x + t.

From earlier experiences, we expect that the perturbation will also involve a
timescale τ = εt and maybe a spatial scale εx. For simplicity, we will consider
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a multiple-timescale expansion in three variables: ξ, η, and τ . Assuming that
the solutions are C2, we have

∂

∂x
=

∂

∂ξ
+

∂

∂η
,

∂

∂t
= − ∂

∂ξ
+

∂

∂η
+ ε

∂

∂τ
,

∂2

∂x2 =
∂2

∂ξ2 + 2
∂2

∂ξ∂η
+

∂2

∂η2 ,

∂2

∂t2
=

∂2

∂ξ2 − 2
∂2

∂ξ∂η
+

∂2

∂η2 + 2ε

(
− ∂2

∂ξ∂τ
+

∂2

∂η∂τ

)
+ ε2 ∂2

∂τ2 .

The wave equation transforms to

∂2u

∂ξ∂η
=

ε

2

(
− ∂2u

∂ξ∂τ
+

∂2u

∂η∂τ

)
+

ε

4

(
−∂u

∂ξ
+

∂u

∂η

)
+ ε2 · · · .

The multiple-timescale expansion is of the form

u = u0(ξ, η, τ) + εu1(ξ, η, τ) + ε2 · · · .

Substitution in the transformed wave equation yields equations for u0 and u1:

∂2u0

∂ξ∂η
= 0,

∂2u1

∂ξ∂η
=

1
2

(
− ∂2u0

∂ξ∂τ
+

∂2u0

∂η∂τ

)
+

1
4

(
−∂u0

∂ξ
+

∂u0

∂η

)
.

From the first equation, we obtain

u0(ξ, η, τ) = F (ξ, τ) + G(η, τ)

with F and G arbitrary C2 functions. Integration of the equation for u1 yields

u1(ξ, η, τ) =
1
2

(
−η

∂F

∂τ
+ ξ

∂G

∂τ

)
+

1
4
(−Fη + Gξ) + A(ξ) + B(η)

with A, B arbitrary C2 functions. There are secular terms that can be elimi-
nated by putting

−∂F

∂τ
− 1

2
F = 0,

∂G

∂τ
+

1
2
G = 0.

In the next section, we shall see that the secularity conditions are obtained
from an averaging process. The initial conditions require that

F (x, 0) + G(x, 0) = f(x), −∂F

∂x
(x, 0) +

∂G

∂x
(x, 0) = 0,

so that
u0(ξ, η, τ) =

1
2
(f(ξ) + f(η))e−τ/2.

If f(x) is localised (compact support), this corresponds with two waves, ini-
tially half the size of f(x), moving respectively to the right and to the left but
slowly damped in time.
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14.2 Averaging over the Characteristics

The multiple-scale expansion of the preceding section is a simple example of a
more general method developed by Chikwendu and Kevorkian (1972) that can
also be called “averaging over the characteristics”. They consider problems of
the form

∂2u

∂x2 =
∂2u

∂t2
+ εH

(
∂u

∂t
,
∂u

∂x

)
, −∞ < x < ∞, t > 0,

with initial values u(x, 0) = f(x), ut(x, 0) = g(x).
The nonlinearity H is chosen such that the solutions of the nonlinear

wave equation are bounded. However, with the actual constructions, one can
consider various useful generalisations of H and other wave equations. We
return to this later.

We assume again that the characteristic coordinates ξ = x − t, η = x + t
play a part and that the perturbation will also involve the timescale τ = εt. In
fact, Chikwendu and Kevorkian (1972) introduce a more general fast timescale
T by putting dT/dt = 1+ω1(τ)ε+ω2(τ)ε2+ε3 · · · . They show that ω1(τ) = 0
so that, restricting ourselves to first order and O(ε) expansions, we may as
well use t. Transforming the equation as in Section 14.1, we have

∂2u

∂ξ∂η
=

ε

2

(
− ∂2u

∂ξ∂τ
+

∂2u

∂η∂τ

)
+

ε

4
H

(
−∂u

∂ξ
+

∂u

∂η
+ ε

∂u

∂τ
,
∂u

∂ξ
+

∂u

∂η

)
.

The multiple-timescale expansion is again of the form

u = u0(ξ, η, τ) + εu1(ξ, η, τ) + ε2 · · · ,

and substitution in the wave equation yields equations for u0 and u1:

∂2u0

∂ξ∂η
= 0,

∂2u1

∂ξ∂η
=

1
2

(
− ∂2u0

∂ξ∂τ
+

∂2u0

∂η∂τ

)
+

1
4
H

(
−∂u0

∂ξ
+

∂u0

∂η
,
∂u0

∂ξ
+

∂u0

∂η

)
.

As before, we obtain from the first equation

u0(ξ, η, τ) = F (ξ, τ) + G(η, τ)

with F and G arbitrary C2 functions. The equation for u1 can then be written
as

∂2u1

∂ξ∂η
=

1
2

(
− ∂2F

∂ξ∂τ
+

∂2G

∂η∂τ

)
+

1
4
H

(
−∂F

∂ξ
+

∂G

∂η
,
∂F

∂ξ
+

∂G

∂η

)
.

Integration gives for the first derivatives
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∂u1

∂ξ
=

1
2

(
−η

∂2F

∂ξ∂τ
+

∂G

∂τ

)
+

1
4

∫ η

H(· · · , · · · )dη,

∂u1

∂η
=

1
2

(
−∂F

∂τ
+ ξ

∂2G

∂η∂τ

)
+

1
4

∫ ξ

H(· · · , · · · )dξ.

As ξ, η → ∞, the derivatives must be bounded, which results in the conditions

∂2F

∂ξ∂τ
= lim

η→∞
1
2η

∫ η

H

(
−∂F

∂ξ
+

∂G

∂η
,
∂F

∂ξ
+

∂G

∂η

)
dη,

∂2G

∂η∂τ
= − lim

ξ→∞
1
2ξ

∫ ξ

H

(
−∂F

∂ξ
+

∂G

∂η
,
∂F

∂ξ
+

∂G

∂η

)
dξ.

These secularity conditions are partial differential equations for F and G cor-
responding with (general) averaging over ξ and η. The averaged equations
have to be solved while applying the initial conditions. The next step is to
solve the equation for u1. This again produces arbitrary functions that are
determined by considering the equation for u2 and again applying secularity
conditions. If we have no a priori estimates for boundedness of the solutions,
we still have to check whether the resulting approximation for u0 + εu1 is
bounded, as the secularity conditions on the derivatives are necessary but not
sufficient.

Remark
The actual boundedness of the solutions is not essential for the constructions
as long as the solutions are bounded on a timescale of the order 1/ε. In this
respect, the secularity conditions are misleading. As we have seen for ordinary
differential equations in Chapters 11 and 12, the averaging process is the basic
technique producing a normal form for the original equation. After obtaining
a normal form, one can usually estimate the error introduced by normalisation
on a long timescale.

Following Chikwendu and Kevorkian (1972), we give some examples.

Example 14.1
Suppose that we have nonlinear damping H = u3

t and so

∂2u

∂x2 =
∂2u

∂t2
+ ε

(
∂u

∂t

)3

, −∞ < x < ∞, t > 0.

Assume that if ε = 0 we have a progressive wave, initially u(x, 0) =
f(x), ut(x, 0) = −fx(x). This gives a drastic simplification, as in this case

u0 = F (ξ, τ).

The secularity conditions reduce to
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∂2F

∂ξ∂τ
= lim

η→∞
1
2η

∫ η (
−∂F

∂ξ

)3

dη = −1
2

(
∂F

∂ξ

)3

.

Considering this as an ordinary differential equation of the form wτ =
− 1

2w3, w = Fξ, we find
∂F

∂ξ
=

1
(τ + A(ξ))1/2

with A(ξ) still arbitrary. As ξ = x when t = τ = 0, we can apply the initial
condition so that

A(ξ) = (fξ(ξ))−2.

The approximation to first order becomes finally

u0(ξ, τ) =
∫ ξ

0

fs(s)
(1 + f2

s (s)τ)1/2 ds + f(0).

For a number of elementary functions f(x), we can evaluate the integral ex-
plicitly.

Remark
We have started with an initial progressive wave, which simplifies the calcula-
tion. For more general initial conditions, we have to put u0 = F (ξ, τ)+G(η, τ),
which enables the presence of another wave moving to the left.

Another classical example is the Rayleigh wave equation.

Example 14.2
Choosing H = −ut + 1

3u3
t , we have

∂2u

∂x2 =
∂2u

∂t2
+ ε

(
−∂u

∂t
+

1
3

(
∂u

∂t

)3
)

, −∞ < x < ∞, t > 0.

Starting again with a progressive wave u(x, 0) = f(x), ut(x, 0) = −fx(x), we
find with u0 = F (ξ, τ) from the secularity condition

∂2F

∂ξ∂τ
= lim

η→∞
1
2η

∫ η
(

∂F

∂ξ
− 1

3

(
∂F

∂ξ

)3
)

dη =
1
2

(
∂F

∂ξ
− 1

3

(
∂F

∂ξ

)3
)

.

We consider this as an ordinary differential equation of the form wτ = 1
2 (w −

1
3w3), w = Fξ, with solution

w(τ) =
(

C(ξ)eτ

1 + 1
3C(ξ)eτ

) 1
2

,

where C(ξ) will be determined by the initial conditions so that
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∂F

∂ξ
=

|fξ(ξ)|
( 1
3f2

ξ (ξ) + (1 − 1
3f2

ξ (ξ))e−τ )
1
2
.

Choosing certain elementary functions f(x), we can explicitly integrate the
equation for F (ξ, τ).

Chikwendu and Kevorkian (1972) note that an interesting result is ob-
tained by letting τ tend to infinity. We find

lim
τ→∞

∂F

∂ξ
=

√
3

fξ(ξ)
|fξ(ξ)|

,

which corresponds with a sawtooth oscillation. Choosing for instance that ini-
tially u(x, 0) = A sin px, ut(x, 0) = −Ap cos px, we have a sawtooth limit with
amplitude

√
3/p (depending on the wave number only) with spatial oscillation

period (wavelength) 2π/p. This limiting behaviour where an initially smooth
wave train evolves towards a nonsmooth, generalised solution is confirmed by
numerical analysis. Also, it is easy to see that there exist an infinite number
of exact sawtooth solutions with slopes ±

√
3. Their stability for general initial

conditions is still an open question.

14.3 A Weakly Nonlinear Klein-Gordon Equation

We return again to the cubic Klein-Gordon equation discussed earlier with
boundary values (Chapter 13) but now on an unbounded domain,

∂2u

∂t2
− ∂2u

∂x2 + u = εu3, −∞ < x < ∞, t > 0.

This is an example of a nonlinear dispersive wave equation displaying slowly
varying wave trains. It is well-known that if ε = 0 we can substitute functions
of the form f(kx ± ωt), with k and ω constants, to obtain Fourier (trigono-
metric) wave trains satisfying the equation

(ω2 − k2)f ′′ + f = 0.

With dispersion relation ω2−k2 = 1, this produces for instance wave solutions
of the form

A cos(kx − ωt) + B sin(kx − ωt).

In this nonlinear case, we shall take a more restricted approach than in Section
14.1. We want to investigate for instance what happens to the wave trains
found moving to the right for ε = 0 when the nonlinearity is turned on. We
put θ = kx − ωt, with k and ω constants, and assume the dispersion relation
ω2 − k2 = 1 for ε > 0 and moreover that the modulated wave train, at
least to first order, only depends on θ and τ = εt. With these assumptions,
transforming the equation, we find
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∂2u

∂θ2 − 2ωε
∂2u

∂θ∂τ
+ ε2 ∂2u

∂τ2 + u = εu3.

We assume that we may substitute the expansion

u = u0(θ, τ) + εu1(θ, τ) + ε2 · · · .

To order 1, we find
∂2u0

∂θ2 + u0 = 0

with solution u0 = a(τ) cos(θ + φ(τ)). To O(ε), we find

∂2u1

∂θ2 + u1 = 2ω
∂2u0

∂θ∂τ
+ u3

0

or

∂2u1

∂θ2 + u1 = −2ω

(
da

dτ
sin(θ + φ) + a(τ) cos(θ + φ)

dφ

dτ

)

+a3(τ)
(

3
4

cos(θ + φ) +
1
4

cos(3θ + 3φ)
)

.

To avoid secular terms, we put

da

dτ
= 0, −2ωa(τ)

dφ

dτ
+

3
4
a3(τ) = 0,

with solutions a(τ) = a0, φ(τ) = 3
8ω a2

0τ , where a(0) = a0. We conclude that

u(x, t) = a0 cos
(

kx − ωt +
3
8ω

a2
0εt

)
+ · · ·

represents the first-order (formal) approximation of the solution. Note that in
this approximation the amplitude is still constant but there is a modulation
of the phase speed.

Remark
In this problem, we have fixed k and ω and allowed for slow variations of
amplitude and phase. Another classical approach is to look for solutions of
θ, or explicitly U = U(kx − ωt). Again putting ω2 − k2 = 1, we find after
substitution

d2U

dθ2 + U = εU3.

We can solve this equation in terms of elliptic functions or alternatively we
can approximate U . In the latter case, the perturbation scheme again must
allow for variations of amplitude and phase.
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14.4 Multiple Scaling and Variational Principles

A large number of equations, in particular conservative ones, can be derived
from a variational principle. Consider for instance the function u : R

n×R �→ R

characterised by the Lagrangian

L = L(ut, ux, u)

and the variational principle

δ

∫ ∫
L(ut, ux, u)dtdx = 0.

This so-called first-order variation leads to a Euler equation for u(x, t) of the
form

∂

∂t

∂L

∂ut
+

∂

∂x

∂L

∂ux
− ∂L

∂u
= 0.

Note that ux and ∂L/∂ux are vectors with components ∂u/∂xi and ∂L/∂uxi
,

i = 1, · · · , n. Assuming that the Euler equation corresponds with a dispersive
wave problem, we can look for special solutions of the form

u = U(θ), θ = kixi − ωt,

where ki, i = 1, · · · , n and ω are constants, respectively called wave numbers
and frequency. Substitution in the Euler equation produces a second-order or-
dinary differential equation, in general nonlinear, which upon integration will
contain two free constants, the amplitude and the phase. The free parame-
ters ki, ω, amplitude and phase, are not arbitrary but must satisfy a so-called
dispersion relation. We shall see examples later on. This approach to Euler
(wave) equations has been applied by many scientists since the end of the
nineteenth century.

In a number of papers starting in 1965, Whitham gave a new perturbation
approach; in the description we will follow Whitham (1970, 1974) and Luke
(1966). To fix the idea, consider the strongly nonlinear, one-dimensional Klein-
Gordon equation

∂2u

∂t2
− ∂2u

∂x2 + V ′(u) = 0,

which can be derived as the Euler equation generated by the Lagrangian

L =
1
2
u2

t − 1
2
u2

x − V (u).

Exact periodic wave trains can be produced by substituting u = U(θ) as
discussed above. We will study the slowly varying behaviour of the wave train
over large distances and for large times by introducing the slow variables
X = εx and τ = εt. The quantity θ will depend on X and τ ; moreover the
rescaling
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θ =
Θ(X, τ)

ε

is sometimes used. The wave number and the frequency will be slowly varying:

k = θx → k(X, τ) = ΘX , ω = −θt → ω(X, τ) = −Θτ .

Consistency then requires that

kτ + ωX = 0.

The solution describing the slowly varying wave train is supposed to have the
expansion

u = U(θ, X, τ) + εU1(θ, X, τ) + ε2 · · · .

Transformation of the differential operators as in the previous sections yields

uxx → Uθθk
2 + ε(UθkX + 2UθXk + U1θθk

2) + ε2 · · · ,

utt → Uθθω
2 + ε(−Uθωτ − 2Uθτω + U1θθω

2) + ε2 · · · ,

V ′ → V ′(U) + εU1V
′′(U) + ε2 · · · .

Substitution into the Klein-Gordon equation produces at lowest order

(ω2 − k2)Uθθ + V ′(U) = 0

and to O(ε)

(ω2 − k2)U1θθ + V ′′(U)U1 = 2ωUθτ + 2kUθX + ωτUθ + kXUθ.

As before, we have obtained a system of ordinary differential equations, only
the first one is nonlinear. The constants of integration may depend on τ and
X. In general, the nonlinear equation will have an infinite number of solutions
periodic in θ (see, for instance, Verhulst, 2000). We choose one, U0(θ), and
normalise the period to 2π. The lowest order equation has the integral

1
2
(ω2 − k2)U2

θ + V (U) = E(X, τ),

where the parameter E (“energy”) still depends on τ and X. From the energy
integral, we can extract Uθ and integrate

θ =

√
1
2
(ω2 − k2)

∫
dU0√

E − V (U0)
.

Integration for U0(θ) over the whole period in the phase-plane yields

2π =

√
1
2
(ω2 − k2)

∮
dU0√

E − V (U0)
.
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This is a relation between ω, k, and E that we will again call the dispersion
relation. Whitham (1970, 1974) introduces the averaged Lagrangian L̄ by
substituting U0(θ) into the expression for the Lagrangian and averaging over
the period

L̄ =
1
2π

∫ 2π

0

(
1
2
(ω2 − k2)U ′2

0 − V (U0)
)

dθ.

We eliminate V (U0) using the energy integral so that

L̄ =
1
2π

∫ 2π

0
(ω2 − k2)U ′2

0 dθ − E =
1
2π

∮
(ω2 − k2)U ′

0dU0 − E,

which can also be written as

L̄ =
1
2π

√
2(ω2 − k2)

∮ √
E − V (U0)dU0 − E.

The last expression for the averaged Lagrangian L̄ depends for a given poten-
tial V on ω, k, and E only; for the integration, U0 is a dummy variable.

Whitham proposes to use this averaged Lagrangian to obtain appropriate
Euler equations for the unknown quantities ω, k, and E. So far, we did not
apply the secularity conditions to the equation for U1. Remarkably enough,
these are tied in with the variations of the averaged Lagrangian. For technical
details, see the literature cited.

Example 14.3
Consider the strongly nonlinear, one-dimensional Klein-Gordon equation

∂2u

∂t2
− ∂2u

∂x2 + u + au3 = 0,

corresponding with V (u) = 1
2u2 + a

4u4 with a a constant; the equation can be
derived as a Euler equation by variation of the Lagrangian

L =
1
2
u2

t − 1
2
u2

x − 1
2
u2 − a

4
u4.

With the multiple-timescale expansion u = U + εU1 + ε2 · · · , we have

(ω2 − k2)Uθθ + U + aU3 = 0

and to O(ε)

(ω2 − k2)U1θθ + (1 + 3aU2)U1 = 2ωUθτ + 2kUθX + ωτUθ + kXUθ.

The solutions for U can be obtained as elliptic functions that are periodic in θ.
They oscillate between the two zeros of E(X, τ)− 1

2U2 − a
4U4. The dispersion

relation among ω, k, and E takes the form
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2π =

√
1
2
(ω2 − k2)

∮
dU0√

E − 1
2U2

0 − a
4U4

0

.

The averaged Lagrangian becomes

L̄ =
1
2π

√
2(ω2 − k2)

∮ √
E − 1

2
U2

0 − a

4
U4

0 dU0 − E,

for which various series expansions are available.

In the case of weakly nonlinear problems, it is easier to obtain explicit
expressions. We show this with another example that is used quite often in
the literature.

Example 14.4
Consider Bretherton’s model equation

∂2u

∂t2
+

∂4u

∂x4 +
∂2u

∂x2 + u = εu3,

which can be derived from the Lagrangian

L =
1
2
u2

t − 1
2
u2

xx +
1
2
u2

x − 1
2
u2 +

1
4
εu4.

If ε = 0, substitution of u = a cos(kx − ωt) produces the dispersion relation

ω2 − k4 + k2 = 1.

For ε > 0, we assume that the solution is slowly varying in θ = k(X, τ)x −
ω(X, τ)t, X = εx, and τ = εt:

u = a(X, τ) cos(k(X, τ)x − ω(X, τ)t) + ε · · · .

For the averaged Lagrangian at lowest order, we find

L̄ =
1
2π

∫ 2π

0
Ldθ =

1
4
a2(ω2 − k4 + k2 − 1) +

1
32

εa4 + · · · .

The Euler-Lagrange equation with respect to the amplitude a is ∂L̄/da = 0;
this produces the dispersion relation

ω2 − k4 + k2 = 1 +
3
4
εa2,

which is an extension of the “linear” dispersion relation. Other variations of
L̄ will produce relations among amplitude a, frequency ω, and wave number k
that play a part in wave mechanics. For explicit calculations, see for instance
Shivamoggi (2003).
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14.5 Adiabatic Invariants and Energy Changes

In Chapter 12, we looked at adiabatic invariants that can be seen as asymp-
totic integrals or asymptotic conservation laws of a system. In contrast with
“classical integrals of motion,” these adiabatic invariants represent a relation
between phase variables and time that is conserved with a certain precision
on a certain timescale. This is of particular interest when we want to char-
acterise changes of energy or angular momentum without having to integrate
the complete equations of motion.

In this section, we explore the ideas for ordinary differential equations,
after which, in the next section, we give an application to the Korteweg-de
Vries equation.

Example 14.5
Consider initial value problems for the equation

ẍ + x = εf(x, ẋ, εt)

with sufficiently smooth right-hand side. Applying averaging as in Chapter
11, we can introduce amplitude-phase variables of the form (11.5) by putting
x(t) = r(t) cos(t + φ(t)), ẋ(t) = −r(t) sin(t + φ(t)). We will add two variables,

E(t) =
1
2
ẋ2(t) +

1
2
x2(t), τ = εt,

and, after differentiation of E(t), the two equations

dE

dt
= εẋf(x, ẋ, τ), τ̇ = ε.

Note that E(t) = 1
2r2(t). The four equations (for r, φ, E, τ) that we can derive,

are all slowly varying; we only average the equation for E:

dEa

dt
= − ε

2π

∫ 2π

0
r sin(t + φ)f(r cos(t + φ),−r sin(t + φ), τ)dt.

As in Chapter 11, we can put s = t + φ with the result that φ does not occur
in the averaged equation. We find after averaging an expression of the form

dEa

dt
= εF (ra(t), τ) = εF (

√
2Ea, τ).

This is a first-order differential equation for Ea(t) that we can study without
solving the averaged equations of motion. Ea(t) is an adiabatic invariant with
Ea(t) − E(t) = O(ε) on the timescale 1/ε.

Consider as an example the Rayleigh equation

ẍ + x = εẋ

(
1 − 1

3
ẋ2
)
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with
dE

dt
= εẋ2

(
1 − 1

3
ẋ2
)

.

Amplitude-phase variables produce

dE

dt
= εr2(t) sin2(t + φ(t))

(
1 − 1

3
r2(t) sin2(t + φ(t))

)

and, after averaging over t,

dEa

dt
=

1
2
εr2

a(t)
(

1 − 1
4
r2
a(t)
)

= εEa

(
1 − 1

2
Ea

)
.

If we choose Ea(t) = 2, the energy does not change in time. This is the energy
value of the well-known limit cycle of the Rayleigh equation. If we start with
E(0) < 2, the energy grows to the value 2 as the solution tends to the limit
cycle, and if we start with E(0) > 2, the energy decreases to this value.

Integrating the equation for Ea, we obtain an expression that we can
interpret as an adiabatic invariant for the Rayleigh equation.

We consider now a strongly nonlinear problem based on Huveneers and
Verhulst (1997).

Example 14.6
Consider the equation

ẍ + x = a(εt)x2

with a(0) = 1 and a(εt) a smooth, positive function decreasing towards zero.
This is a simple model exemplifying a Hamiltonian system with asymmetric
potential that by some evolution process tends towards a symmetric one.
Transforming y = a(εt)x, we obtain the equation

ÿ + y = y2 + 2ε
a′(εt)
a(εt)

ẏ + ε2 · · · .

A prime denotes differentiation with respect to its argument. The result is
surprising. The O(ε) term represents a dissipative term, which means that
our system in evolution towards symmetry is characterised by an autonomous
Hamiltonian system with dissipation added. To see what happens, we consider
a special choice: a(εt) = e−εt. The equation becomes

ÿ + y = y2 − 2εẏ + ε2 · · · .

If ε = 0, we have a centre point at (0, 0) and a saddle at (1, 0) with a homoclinic
loop emerging from the saddle and intersecting the y-axis at (− 1

2 , 0). If ε > 0,
the loop will break up but the saddle still has two stable and two unstable
one-dimensional manifolds. If ε = 0, we can associate with the equation the
energy
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E =
1
2
ẏ2 +

1
2
y2 − 1

3
y3

and by differentiation and using the equation for ε > 0

dE

dt
= −2εẏ2 + ε2 · · · .

To see what happens to the homoclinic loop, we approximate E by Ea, omit-
ting the ε2 terms and using in the equation the unperturbed homoclinic loop
behaviour of ẏ. Integrating from y0 to y1, we have

Ea = −2ε

∫ t(y1)

t(y0)
ẏ2(t)dt = −2ε

∫ y1

y0

ẏdy.

We now use that for ε = 0 the homoclinic loop is given by

1
2
ẏ2 +

1
2
y2 − 1

3
y3 =

1
6

and that the loop is symmetric with respect to the y-axis; we have

Ea =
1
6

− 4ε

∫ 1

− 1
2

√
2
3
y3 − y2 +

1
3
dy.

Fortunately, this is an elementary integral. (Use Mathematica or an integral
table.) We find for the first-order changed energy

Ea =
1
6

− 12
5

ε.

It is interesting to deduce from this the position where the stable manifold of
the unstable equilibrium intersects the y-axis. The top half of the homoclinic
loop is bent inwards with an energy change of 6

5ε, so the stable manifold has
energy (to a first approximation) 1

6 + 6
5ε and is approximately described by

1
2
ẏ2 +

1
2
y2 − 1

3
y3 =

1
6

+
6
5
ε.

Introducing into this equation ẏ = 0, y = − 1
2 + εα + · · · , we find α = − 8

5 , so
the intersection takes place at approximately (− 1

2 − ε 8
5 , 0).

Remark
This type of energy change for one homoclinic loop can be found in Gucken-
heimer and Holmes (1997). In the interior of the homoclinic loop “ordinary”
averaging is valid, but this is not the case in a boundary layer near the loop.
In Huveneers and Verhulst (1997), the computations use elliptic functions and
cover both the interior of the homoclinic loop and the boundary layer near
the homoclinic loop and the saddle. The error analysis is subtle and involves
various domains and different expressions for the adiabatic invariants; for the
passage of the saddle, the analysis follows Bourland and Haberman (1990).
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14.6 The Perturbed Korteweg-de Vries Equation

In the spirit of example 14.6 and following Scott (1999), we discuss pertur-
bations of solitons in the Korteweg-de Vries (KdV) equation. The equation
is

ut + uux + uxxx = εf(· · · ), −∞ < x < ∞, t > 0,

where we have the KdV equation if ε = 0, and f is a perturbation that
may depend on x, t, u and the derivatives of u. The well-known single soliton
solution of the KdV equation is

u(x, t) = 3v sech2
(√

v

2
(x − vt)

)

with v the constant soliton velocity. The perturbation f can have many con-
sequences, but we will study the case with the assumption that we have only
small variations of the velocity v, v = v(τ), τ = εt.

As in the preceding section, we can directly derive an equation for the
behaviour of the energy with time. It is convenient to introduce the function
w by wx = u. The KdV equation can be derived from the Lagrangian density

L =
1
2
wxwt +

1
6
w3

x − 1
2
w2

xx.

Instead of the Lagrangian, we will use the associated Hamiltonian density

H = wt
∂L
∂wt

− L = −1
6
w3

x +
1
2
w2

xx.

The total energy (which we will later specify for a soliton) is

H =
∫ ∞

−∞
Hdx.

From this energy functional, we find by differentiation

dH

dt
=
∫ ∞

−∞

(
−1

2
w2

xwxt + wxxwxxt

)
dx.

The first term is partially integrated once and the second term twice; we also
assume that the first three derivatives of w vanish as x → ±∞. We find

dH

dt
=
∫ ∞

−∞
(wxxx + wxxxx)wtdx

and finally, using that wx satisfies the perturbed KdV equation,

dH

dt
=
∫ ∞

−∞
(−wxt + εf)wtdx = ε

∫ ∞

−∞
fwtdx.
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We can explicitly compute the total soliton energy by substituting the ex-
pression for the soliton while neglecting variations of v(τ); they are of higher
order. We find after integration

H = −36v
5
2 (τ)
5

and so derive variations of the energy from long-term variations of v(τ):

dH

dt
= −18v

3
2
dv

dt
.

Combining the general expression for dH/dt with this specific one, we find for
the velocity variation

dv

dt
= −ε

1
18v

3
2

∫ ∞

−∞
fwtdx.

For the soliton (ε = 0), we have the relation

wt = −vwx = −vu,

and assuming that for ε > 0 we have to first order wt = −v(τ)u, we obtain

dv

dt
= ε

1
18v

1
2

∫ ∞

−∞
fwtdx.

One of the simplest examples is the choice f = −u; inserting this and using
the expression for a single soliton yields after integration

dv

dt
= −ε

4
3
v

with solution
v(εt) = v(0)e− 4

3 εt.

As we can observe, in the expression for the single soliton, the amplitude
obeys the same variation with time. In an interesting discussion, Scott (1999)
notes that this result is confirmed by numerical calculations. On the other
hand, when analysing other conservation laws of the KdV equation with the
same technique, the results are not always correct. The implication is that
mathematical analysis of these approximation techniques is much needed.

14.7 Guide to the Literature

An early reference is Benney and Newell (1967), where multiple-scale meth-
ods are developed to study wave envelopes and interacting nonlinear waves.
Around the same time, Luke (1966) gave a multiple-scale analysis for some
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prominent wave equations; this is tied in with work started in 1965 and ex-
tensively described in Whitham (1970, 1974). In Whitham’s work, multiple-
scale analysis is imbedded in variational principles, employing averaged La-
grangians, which puts the computations in a more fundamental although still
formal framework. If the medium is not homogeneous, Whitham shows that
the wave action is conserved for strongly nonlinear dispersive waves analogous
to the action being an adiabatic invariant for strongly nonlinear Hamiltonian
oscillations.
Until the papers of Haberman and Bourland (1988) and Bourland and Haber-
man (1989), modulations of the phase shift for strongly dispersive waves got
little attention. Using the equation for the wave action, they developed a
modification of the approximation scheme to include higher-order effects and
characterise at what order of the perturbation scheme such effects play a part.

Chikwendu and Kevorkian (1972) developed a general multiple-scale ap-
proach for wave equations that we have called “averaging over the charac-
teristics”. See also Kevorkian and Cole (1996), where wave equations and
conservation laws are discussed. Chikwendu and Easwaran (1992) extended
this for semi-infinite domains.

Van der Burgh (1979) has shown that in a large number of weakly nonlin-
ear equations the multiple-scale analysis yields asymptotically valid results.
This is based on the usual integral inequality estimates, and the asymptotic
estimates may even be improved. See also the discussion in De Jager and
Jiang Furu (1996). We are not aware of other proofs of asymptotic validity
for unbounded domains.

Important extensions and applications have been found and are being im-
plemented. Ablowitz and Benney (1970) extended Whitham’s averaged vari-
ational principle to multiphase dispersive nonlinear waves. McLaughlin and
Scott (1978) did this extension for solitary waves and solitons. In Scott’s
(1999) book, used in the previous section, applications to the sine-Gordon
equation, the nonlinear Schrödinger equation, and other interesting examples
can be found.

14.8 Exercises

Exercise 14.1 Consider the weakly damped Klein-Gordon equation in the
form

∂2u

∂x2 − ∂2u

∂t2
= ε

∂u

∂t
, −∞ < x < ∞, t > 0,

with u(x, 0) = f(x), ut(x, 0) = 0.

a. Introduce a regular expansion u(x, t) = u0(x, t) + εu1(x, t) + · · · and
formulate the initial value problems for u0 and u1.

b. Reformulate the initial value problems for u0 and u1 in characteristic
coordinates ξ, η.
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c. Solve the initial value problems for u0 and u1 to show that secular terms
arise.

Exercise 14.2 Compare the first-order multiple-timescale expansion of Sec-
tion 14.1 with the exact solution. For comparison, see Chikwendu and Kevorkian
(1972).

Exercise 14.3 Consider the weakly nonlinear wave equation from Section
14.3 with damping added:

∂2u

∂t2
− ∂2u

∂x2 + u + ε
∂u

∂t
= εu3, −∞ < x < ∞, t > 0.

Consider a wave train moving to the right. Determine the change in the sec-
ularity conditions.

Exercise 14.4 Consider the wave equation with a Van der Pol perturbation

∂2u

∂x2 =
∂2u

∂t2
− ε

∂u

∂t
(1 − u2), −∞ < x < ∞, t > 0.

Initially we have a progressive wave u(x, 0) = f(x), ut(x, 0) = −fx(x). Com-
pute a first-order approximation as in Section 14.2. Consider a suitable initial
f(x) explicitly.




