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Advanced Averaging

In this chapter, we will look at a number of useful and important extensions
of averaging. Also, at the end there will again be a discussion of timescales.

12.1 Averaging over an Angle

In oscillations, we can identify amplitudes and angles and also other quantities
such as energy, angular momentum, etc. An angle can often be used as a time-
like quantity that can be used for averaging. A simple example is the Duffing
equation in Example 11.5.

Example 12.1
Consider the Duffing equation with positive damping and basic (positive)
frequency ω,

ẍ + εμẋ + ω2x + εγx3 = 0.

Using amplitude-phase variables r, ψ, we found slowly varying equations that
could be averaged. Instead, we put ẋ = ωy and propose an amplitude-angle
transformation of the form

x(t) = r(t) sinφ(t), y(t) = r(t) cos φ(t). (12.1)

When transforming x, ẋ(y) → r, φ, we use the differential equation and the
relation between ẋ and y to find

ṙ = ε
cos φ

ω
(−μωr cos φ − γr3 sin3 φ),

φ̇ = ω − ε
sin φ

ωr
(−μωr cos φ − γr3 sin3 φ).

These equations are 2π-periodic in φ, and the equation for r looks like the
standard form for averaging except that time is not explicitly present. We
average the first equation over φ to find
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ṙa = −1
2
εμra

with solution ra(t) = r(0) exp(− 1
2εt).

What does ra(t) represent? We have averaged over φ but are interested in
the behaviour with time. Below we will formulate a theorem that states that
ra(t) is an O(ε) approximation of r(t) on the timescale 1/ε if ω is bounded
away from zero (ω = Os(1)).

The last condition is quite natural. In averaging over φ, we treated φ as a
time-like variable. This would not hold in an asymptotic sense if for instance
ω is O(ε). In such a case, a different approach is needed.

We will now look at a classical example, a linear oscillator with slowly
varying (prescribed) frequency.

Example 12.2
Consider the equation

ẍ + ω2(εt)x = 0.

We put ẋ = ω(εt)y, τ = εt, and use transformation (12.1) to find

ṙ = −ε
1

ω(τ)
dω

dτ
r cos2 φ,

φ̇ = ω(τ) + ε
1

ω(τ)
dω

dτ
sin φ cos φ,

τ̇ = ε.

If we assume that 0 < a < ω(τ) < b (with a, b constants independent of ε),
we have a three-dimensional system periodic in φ with two equations slowly
varying. The function ω(τ) is smooth and its derivative is bounded.

Averaging the slowly varying equations over φ, we obtain

ṙa = −ε
1

2ω(τ)
dω

dτ
ra,

τ̇ = ε.

We write τ instead of τa, as the equation for τ does not change. From this
system, we get

dra

dτ
= − 1

2ω(τ)
dω

dτ
ra,

which can be integrated to find

ra(τ) =
r(0)

√
ω(0)√

ω(τ)
.

Note that the quantity ra(εt)
√

ω(εt) is conserved in time. The same tech-
niques can be applied to equations of the form
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ẍ + εμẋ + ω2(εt)x + εf(x) = 0.

The application is straightforward and we leave this as an exercise.

We now summarise the result behind these calculations:

Theorem 12.1
Consider the system

ẋ = εX(φ, x) + ε2 · · · ,

φ̇ = ω(x) + ε · · · ,

where the dots stand for higher-order terms. We assume that x ∈ D ⊂ R
n, φ

is one-dimensional, and 0 < φ < 2π. Averaging over the angle φ produces

X0(y) =
∫ 2π

0
X(φ, y)dφ.

Assuming that

• the right-hand sides of the equations for x and φ are smooth;
• the solution of

ẏ = εX0(y), y(0) = x(0)

is contained in an interior subset of D;
• ω(x) is bounded away from zero by a constant independent of ε,

then x(t) − y(t) = O(ε) on the timescale 1/ε.

What happens if the frequency in Example 12.2 is not bounded away from
zero? We consider a well-known example that can be integrated exactly.

Example 12.3
A spring with a stiffness that wears out in time is described by

ẍ + e−εtx = 0, x(0) = 0, ẋ(0) = 1.

In the analysis of Example 12.2, we considered such an equation with the
condition that the variable frequency ω(εt) is bounded away from zero. On
the timescale 1/ε, this is still the case, so we conclude from Example 12.2 that
the amplitude r(t) on this timescale is approximated by

ra(εt) =
r(0)

√
ω(0)√

ω(εt)
.

With r(0) = 1, ω(εt) = e− 1
2 εt, we find

r(t) = e
1
4 εt + O(ε)
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on the timescale 1/ε. Of course, this result may not carry through on longer
timescales.

The exact solution can be obtained by transforming s = 2ε−1e−εt/2, which
leads to the Bessel equation of index zero and the solution

x(t) =
π

ε
Y0

(
2
ε

)
J0

(
2
ε
e− 1

2 εt

)
− π

ε
J0

(
2
ε

)
Y0

(
2
ε
e− 1

2 εt

)
,

where J0, Y0 are the well-known Bessel functions of index zero. On the
timescale 1/ε, all of the arguments are large and we can use the known be-
haviour of Bessel functions for arguments tending to infinity. We find that the
solution is approximated by

x(t) = e
εt
4 sin

(
2
ε
(1 − e−εt/2)

)
+ O(ε).

Naturally, this agrees with the results obtained by averaging. If time runs
beyond 1/ε, the arguments of the Bessel functions J0 and Y0 tend to zero.
Using the corresponding known expansions, we find that the solution behaves
as c1t + c2 with

c1 =
√

ε

π
cos
(

2
ε

− π

4

)
, c2 =

π

ε

(
sin
(

2
ε

− π

4

)
− 2

π
cos
(

2
ε

− π

4

)
(ln

1
ε

+ γ)
)

,

where γ is Euler’s constant. Interestingly, on timescales larger than 1/ε, there
are no oscillations anymore, while the velocity c2 becomes large with ε.

In the examples until now, we have introduced a different way of averaging
but not a real improvement on elementary averaging as discussed in the pre-
ceding chapter. An improvement can arise when the equation for φ is rather
intractable and we are satisfied with an approximation of the quantity x.

As we have seen, interesting problems arise when ω(x) is not bounded away
from zero. In the next section, this will become a relevant issue in problems
with more angles. To prepare for this, we consider an example from Arnold
(1965).

Example 12.4
Consider the two scalar equations

ẋ = ε(1 − 2 cos φ),
φ̇ = x.

If x(0) > 0, independent of ε, ω(x) = x will remain bounded away from zero
and averaging produces

ẏ = ε, y(0) = x(0),

so that y(t) = x(0) + εt and x(t) − y(t) = O(ε) on the timescale 1/ε. What
happens if x(0) ≤ 0? The system is conservative (compute the divergence or
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differentiate the equation for φ to eliminate x), and the original system has
two stationary solutions (critical points of the right-hand side vector field):
(x, φ) = (0, π

3 ) and (x, φ) = (0, 5π
3 ). So for these solutions the expression y(t) =

x(0)+ εt is clearly not an approximation. However, this expression represents
an approximation of x(t) if x(0) < 0 until x(t) enters a neighbourhood of
x = 0. This is usually called the resonance zone and the set corresponding with
x = 0 the resonance manifold for reasons that will become clear in the next
section. A picture of the phase-plane of the solutions helps us to understand
the dynamics (see Fig. 12.1). Starting away from x = 0, x(t) increases as a
linear function with small modulations. In the resonance zone, the solutions
may be captured for all time or pass through the resonance zone.
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Fig. 12.1. Passage through resonance and capture into resonance in Example 12.4;
the resonance zone is located near the resonance manifold x = 0.

This resonance zone is really a boundary layer in the sense we discussed in
Chapter 4. We can see that by rescaling near x = 0: ξ = x/δ(ε). Transforming
x, φ → ξ, φ, the equations become

ξ̇ =
ε

δ(ε)
(1 − 2 cos φ),

φ̇ = δ(ε)ξ.

A significant degeneration arises when the terms on the right-hand side are
of the same order or

ε

δ(ε)
= δ(ε).

We conclude that δ(ε) =
√

ε, which is the size of the resonance zone.

This example of a conservative equation is more typical than it seems.
Consider for instance the two much more general scalar equations
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ẋ = εf(φ, x),
φ̇ = g(x),

with f and g smooth functions and f(φ, x) 2π-periodic in φ. Averaging over
φ is possible outside the zeros of g. Suppose g(a) = 0 and rescale

ξ =
x − a

δ(ε)
.

The equations become

δ(ε)ξ̇ = εf(φ, a + δ(ε)ξ),
φ̇ = g(a + δ(ε)ξ).

Expanding, we find

δ(ε)ξ̇ = εf(φ, a) + O(δ(ε)ε),
φ̇ = δ(ε)g′(a)ξ + O(δ2(ε)).

Again, a significant degeneration arises if we choose δ(ε) =
√

ε, which is the
size of the resonance zone. The equations in the resonance zone are to first
order

ξ̇ =
√

εf(φ, a),
φ̇ =

√
εg′(a)ξ,

which is again a conservative system.

12.2 Averaging over more Angles

When more angles are present, many subtle problems and interesting phe-
nomena arise. We start with a few simple examples.

Example 12.5
Consider first the system

ẋ = εx(cos φ1 + cos φ2),
φ̇1 = 1,

φ̇2 = 2.

We average the equation for x over φ1 and φ2, which produces the averaged
equation ẋa = 0 so that xa(t) = x(0). The solution x(t) can easily be obtained
and reads

x(t) = x(0)eε(sin(t+φ1(0))+ 1
2 sin(2t+φ2(0))),

so xa(t) = x(0) is an approximation and this correct answer seems quite
natural, as the right-hand sides of the angle equations do not vanish.
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We modify the equations slightly in the next example.

Example 12.6
Consider the system

ẋ = εx(cos φ1 + cos φ2 + cos(2φ1 − φ2)),
φ̇1 = 1,

φ̇2 = 2.

We average the equation for x over φ1 and φ2, which produces again the
averaged equation ẋa = 0 so that xa(t) = x(0). Also, the solution x(t) can
easily be obtained and reads

x(t) = x(0)eε(sin(t+φ1(0))+ 1
2 sin(2t+φ2(0))+t cos(2φ1(0)−φ2(0))),

so xa(t) = x(0) is in general not an approximation valid on the timescale 1/ε.
What went wrong?

The right-hand side of the equation for x actually contains three angle
combinations, φ1, φ2, and 2φ1 − φ2. Averaging should take place over three
angles instead of two. Adding formally the (dependent) equation for this third
angle, we find that the right-hand side vanishes. The experience from the pre-
ceding section tells us that we might expect trouble because of this resonance.

Note that this example is rather extreme in its simplicity. The angles vary
with a constant rate so that once we have resonance we have for all values of x
a resonance manifold, it fills up the whole x-space. In general, the angles do not
vary with a constant rate and behave more as in the following modification.

Example 12.7
Consider the system

ẋ = εx(cos φ1 + cos φ2 + cos(2φ1 − φ2)),
φ̇1 = x,

φ̇2 = 2.

We have still the same three angle combinations in the equation for x as in
the preceding example. Resonance can be expected if φ̇1 = 0, φ̇2 = 0, or
2φ̇1 − φ̇2 = 2(x − 1) = 0. This leads to resonance if x = 0 and if x = 1 with
corresponding resonance manifolds. Outside the resonance zones around these
manifolds, we can average over the three angles to find the approximation
xa(t) = x(0). How do we visualise the flow?

Outside the resonance manifolds x = 0 and x = 1, the variable x is nearly
constant. To see what happens for instance in the resonance zone near x = 1,
we put ψ = 2φ1 − φ2 and rescale,

ξ =
x − 1
δ(ε)

.
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Introducing this into the equations and expanding, we obtain

δ(ε)ξ̇ = ε(cos φ1 + cos φ2 + cos ψ) + O(εδ(ε)),
ψ̇ = 2δ(ε)ξ,

φ̇1 = 1 + O(δ(ε)),
φ̇2 = 2.

The three angles are dependent and can be replaced by two angles, for in-
stance φ1 and ψ, but this makes little difference in the outcome. A significant
degeneration arises on choosing δ(ε) =

√
ε, which is the size of the resonance

zone. We find locally

ξ̇ =
√

ε(cos φ1 + cos φ2 + cos ψ) + O(ε),
ψ̇ = 2

√
εξ,

φ̇1 = 1 + O(
√

ε),
φ̇2 = 2.

The system we obtained has two slowly varying variables, ξ and ψ, and two
angles with O(1) variation, so we can average over φ1 and φ2 to obtain equa-
tions for the first-order approximations ξa and ψa:

ξ̇a =
√

ε cos ψa,

ψ̇a = 2
√

εξa.

Differentiation yields that ψa satisfies the (conservative) pendulum equation

ψ̈a − 2ε cos ψa = 0,

which describes oscillatory motion in the resonance zone. It is remarkable that
we have found a conservative equation at first order, which is of course very
sensitive to perturbations. The original system of equations is not conserva-
tive, so this suggests that we have to compute a second-order approximation
to obtain a structurally stable result.

Before presenting a more general formulation, we consider the phenomenon
of resonance locking.

Example 12.8
Consider the four-dimensional system

ẋ1 = ε,

ẋ2 = ε cos(φ1 − φ2),
φ̇1 = 2x1,

φ̇2 = x1 + x2.
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There is one angle combination, φ1 −φ2, and we expect resonance if φ̇1 − φ̇2 =
x1 − x2 vanishes. Outside the resonance zone around the line x1 = x2 in the
x1, x2-plane, we can average over the angles to obtain

ẋ1a = ε, ẋ2a = 0,

so that x1a = εt + x1(0), x2a = x2(0). Inside the resonance zone, we can
analyse the original equations by putting

x = x1 − x2, ψ = φ1 − φ2,

which leads to the reduced system

ẋ = ε(1 − cos ψ),
ψ̇ = x.

Differentiation of the equation for ψ produces

ψ̈ + ε cos ψ = ε,

which is a forced pendulum equation.
Note that we have resonance locking as the solutions x = 0, cos ψ = 1 are

equilibrium solutions of the reduced system.
This is typical for many near-integrable Hamiltonian systems where we

have in general an infinite number of resonance zones in which resonance
locking can take place.

12.2.1 General Formulation of Resonance

We will now give a general formulation for the case of two or more angles.
Consider the system

ẋ = εX(φ, x),
φ̇ = Ω(x),

with x ∈ R
n, φ ∈ Tm; Tm is the m-dimensional torus described by m angles.

Suppose that the vector function X is periodic in the m angles φ and that we
have the multiple (complex) Fourier expansion

X(φ, x) =
+∞∑

k1,··· ,km=−∞
ck1,··· ,km(x)ei(k1φ1+k2φ2+···kmφm)

with (k1, · · · , km) ∈ Z
m. The resonance manifolds in R

n (x-space) are deter-
mined by the relations

k1Ω1(x) + · · · kmΩm(x) = 0,
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assuming that the Fourier coefficient ck with k = (k1, · · · , km) does not vanish.
In applications, there are usually order of magnitude variations in the

Fourier coefficients so that we can neglect some. If the resonance manifolds do
not fill up the whole x-space, we can average outside the resonance manifolds
to obtain the equation for the approximation xa(t),

ẋa = εc0,··· ,0(xa).

One can prove that outside the resonance manifolds, assuming that x(0) =
xa(0), we have the estimate

x(t) − xa(t) = O(ε) on the timescale 1/ε.

12.2.2 Nonautonomous Equations

In practice, it happens quite often that time t enters explicitly into the equa-
tions. Consider the system

ẋ = εX(φ, t, x),
φ̇ = Ω(x),

with the vector function X periodic in t. The scaling to the same period of
angles and time is important to make the variations comparable. Suppose that
φ is m-dimensional; put

φm+1 = t, φ̇m+1 = 1,

and consider averaging over m + 1 angles.
This procedure is correct, but of course the dependence on t may produce

many additional resonances.

Example 12.9
Consider the system

ẋ = εX(φ1, t, x),
φ̇1 = x,

with X(φ1, t, x) = 2x sin t sin φ1. Putting

φ2 = t, φ̇2 = 1, X(φ1, t, x) = x(cos(φ1 − t) − cos(φ1 + t)),

we obtain the system with two angles,

ẋ = εx(cos(φ1 − φ2) − cos(φ1 + φ2)),
φ̇1 = x,

φ̇2 = 1.
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The resonance manifolds correspond with the zeros of the right-hand sides of
φ̇1 − φ̇2 and φ̇1 + φ̇2, so we find x = 1 and x = −1. Outside these resonance
zones, we can average over the angles to find ẋa = 0. In the resonance zones,
the flow is again described by pendulum equations.
Note that the Fourier expansion of X contains only two terms. If there were
an infinite number of terms, we would have resonance relations like

k1x + k2 = 0,

which would produce resonance manifolds for an infinite number of rational
values of x.

12.2.3 Passage through Resonance

We have seen an example of locking into resonance. Interesting phenomena
arise when we have passage through resonance; in Example 12.11, we shall see
an application.

To start with, we discuss an interesting example of forced passage through
resonance that was constructed by Arnold (1965).

Example 12.10
A seemingly small variation of an earlier example is the system

ẋ1 = ε,

ẋ2 = ε cos(φ1 − φ2),
φ̇1 = x1 + x2,

φ̇2 = x2,

with initial values x1(0) = −a, x2(0) = 1, φ1(0) = φ2(0) = 0, with a a constant
independent of ε. We have one angle combination that can lead to resonance
(i.e., if φ̇1 − φ̇2 = x1 = 0). Integration produces

x1(t) = −a + εt, φ1(t) − φ2(t) = −at +
1
2
εt2,

and so we have

x2(t) = 1 + ε

∫ t

0
cos
(

−as +
1
2
εs2
)

ds.

If x1(0) > 0 (a negative), the solution does not pass through the resonance
zone around x1 = 0. Partial integration produces that x2(t) = 1 + O(ε) for
all time. If x1(0) < 0 (a positive), we have forced crossing of the resonance
zone. In the case a = 0, we start in the resonance zone and we can use the
well-known integral ∫ ∞

0
cos s2ds =

1
2

√
π

2
,
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so if a = 0 we find the long-term effect of this crossing by taking the limit
t → ∞:

lim
t→∞ x2(t) = 1 +

1
2
√

πε.
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Fig. 12.2. Dispersion of orbits by passage through resonance; the five orbits started
at x1(0) = −a with a = 2, 2 ± ε, 2 ± 1

2ε, ε = 0.1.

More generally, we have to calculate or estimate

lim
t→∞ x2(t) = 1 + ε

∫ ∞

0
cos
(

−as +
1
2
s2
)

ds.

Transforming

s =

√
2
ε
u +

a

ε
,

we find

ε

∫ ∞

0
cos
(

−as +
1
2
s2
)

ds =
√

2ε

∫ ∞

− a√
2ε

cos
(

−a2

2ε
+ u2

)
du,

which can be split into

√
2ε

(
cos
(

a2

2ε

)∫ ∞

− a√
2ε

cos u2du + sin
(

a2

2ε

)∫ ∞

− a√
2ε

sin u2du

)
.

The two integrals equal
√

(π/2) + o(1), so that we have an estimate for the
long-term effect of passing through resonance,

lim
t→∞ x2(t) = 1 +

√
πε

(
cos
(

a2

2ε

)
+ sin

(
a2

2ε

)
+ o(1)

)
.
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This shows that the effect of passing through resonance is O(
√

ε) and remark-
ably that the solution displays sensitive dependence on the initial condition.
Small changes of a produce relatively large changes of the solution. This “dis-
persion” of orbits is illustrated in Fig. 12.2.

Finally, we shall briefly discuss an application in mechanics that displays
both passage through and (undesirable) capture into resonance.

Example 12.11
Consider a spring that can move in the vertical x direction on which a rotating
wheel is mounted; the rotation angle is φ. The wheel has a small mass fixed on
the edge that makes it slightly eccentric, a flywheel. The vertical displacement
x and the rotation φ are determined by the equations

ẍ + x = ε(−x3 − ẋ + φ̇2 cos φ) + O(ε2),

φ̈ = ε

(
1
4
(2 − φ̇) + (1 − x) sinφ

)
+ O(ε2).

See Evan-Ewanowski (1976) for the equations; we have added an appropriate
scaling, assuming that the friction, the nonlinear restoring force, the eccentric
mass, and several other forces are small.

To obtain a standard form suitable for averaging, we transform

x = r sin φ2, ẋ = r cos φ2, φ = φ1, φ̇1 = Ω,

with r > 0, Ω > 0. This introduces two angles and two slowly varying quan-
tities:

ṙ = ε cos φ2(−r3 sin3 φ2 − r cos φ2 + Ω2 cos φ1),

Ω̇ = ε

(
1
4
(2 − Ω) + sin φ1 − r sin φ1 sin φ2

)
,

φ̇1 = Ω,

φ̇2 = 1 + ε

(
r2 sin4 φ2 +

1
2

sin 2φ2 − Ω2

r
cos φ1 sin φ2

)
.

The O(ε2) terms have been omitted. Resonance zones exist if

mΩ + n = 0, m, n ∈ Z.

In the equation for r and Ω to O(ε), the angles are φ1, φ2, φ1 + φ2, φ1 − φ2.
As φ1 and φ2 are monotonically increasing, the only resonance zone that can
arise is when φ1 − φ2 = 0, which determines the resonance manifold Ω = 1.
Outside the resonance zone, a neighbourhood of Ω = 1, we average over the
angles to find the approximations ra and Ωa given by

ṙa = −1
2
εra,

Ω̇a =
1
4
ε(2 − Ωa).
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This is already an interesting result. Outside the resonance zone, r(t) =
ra(t) + O(ε) will decrease exponentially with time; on the other hand, Ω(t)
will tend to the value 2. If we start with Ω(0) < 1, Ω(t) will after some time
enter the resonance zone around Ω = 1. How does this affect the dynam-
ics? Will the system pass in some way through resonance or will it stay in
the resonance zone, resulting in vertical oscillations that are undesirable for
a mounted flywheel.

The way to answer these questions is to analyse what is going on in the
resonance zone and find out whether there are attractors present. Following
the analysis of localising into the resonance zone as before, we introduce the
resonant combination angle ψ = φ1 − φ2 and the local variable

ω =
Ω − 1√

ε
.

Transforming the equations for r,Ω and the angles, the leading terms are
O(

√
ε); we find

ṙ = ε · · · ,

ω̇ =
√

ε

(
1
4

+ sin φ1 − 1
2
r cos ψ +

1
2
r cos(2φ1 − ψ)

)
+ ε · · · ,

ψ̇ =
√

εω + ε · · · ,

φ̇1 = 1 +
√

εω.

We can average over the remaining angle φ1; as the equation for r starts with
O(ε) terms, we have in the resonance zone that r(t) = r(0) + O(

√
ε). The

equations for the approximations of ω and ψ are

ω̇a =
√

ε

(
1
4

− 1
2
r cos ψ

)
,

ψ̇ =
√

εω.

By differentiation of the equation for ψa, we can write this as the pendulum
equation

ψ̈a +
1
2
εr(0) cos ψa =

1
4
ε.

The timescale of the dynamics is clearly
√

εt; there are two equilibria, one a
centre point and the other a saddle. They correspond with periodic solutions
of the original system. The saddle is definitely unstable, and for the centre
point we have to perform higher-order averaging, to O(ε), to determine the
stability. This analysis was carried out by Van den Broek (1988); see also Van
den Broek and Verhulst (1987). The result is that by adding O(ε) terms, the
centre point in the resonance zone becomes an attracting focus so that the
corresponding periodic solution is stable.

The implication is that for certain initial values the oscillator-flywheel
might pass into resonance and stay there. Van den Broek (1988) identified
three sets of initial values leading to capture into resonance.
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1. Remark
An extension of the theory of averaging over angles is possible for systems
of the form

ẋ = εX(φ, x),
φ̇ = Ω(φ, x).

This generalisation complicates the calculations; see Section 5.4 in Sanders
and Verhulst (1985).

2. Remark
In the examples studied here, we obtained pendulum equations describing
the flow in the resonance zones of the respective cases. This was observed
by many authors in examples. In Section 11.7 of Verhulst (2000), it is
shown that a first-order (in ε) computation in a resonance zone always
leads to a conservative equation - often a pendulum equation or system
of pendulum equations - describing the flow. This is remarkable, as the
original system need not be conservative at all and the first-order result
will probably change qualitatively under perturbation. The result stresses
again the importance of second-order calculations in these cases.

12.3 Invariant Manifolds

An important problem is to determine invariant manifolds such as tori or
cylinders in nonlinear equations. Consider a system such as

ẋ = f(x) + εR(t, x, ε).

Suppose for instance that we have found an isolated torus Ta by first-order
averaging. Does this manifold persist, slightly deformed as a torus T , when
considering the original equation? Note that the original equation can be seen
as a perturbation of the averaged equation, and the question can then be
rephrased as the question of persistence of the torus Ta under perturbation.
If the torus in the averaged equation is normally hyperbolic, the answer is af-
firmative. Normally hyperbolic means, loosely speaking, that the strength of
the flow along the manifold is weaker than the rate of attraction to the mani-
fold. We have used such results in Chapter 9 for Tikhonov-Fenichel problems.
In many applications, however, the approximate manifold that one obtains
is hyperbolic but not normally hyperbolic. In the Hamiltonian case, the tori
arise in families and they will not even be hyperbolic.

We will look at different scenarios for the emergence of tori in some exam-
ples. A torus is generated by various independent rotational motions - at least
two - and we shall find different timescales characterising these rotations.
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12.3.1 Tori in the Dissipative Case

First, we look at cases where the branching off of tori is similar to the emer-
gence of periodic solutions in the examples we have seen before. The theory
of such questions was considered extensively by Bogoliubov and Mitropolsky
(1961) and uses basically continuation of quasiperiodic motion under per-
turbations; for a summary and other references, see also Bogoliubov and
Mitropolsky (1963). Another survey and new results can be found in Hale
(1969); see the references therein.

There are many interesting open problems in this field, as the bifurca-
tion theory of invariant manifolds is clearly even richer than for equilibria or
periodic solutions. We present a few illustrative examples.

Example 12.12
Consider the system

ẍ + x = ε

(
2x + 2ẋ − 8

3
ẋ3 + y2x2 + ẏ2x2

)
+ ε2R1(x, y),

ÿ + ω2y = ε(ẏ − ẏ3 + x2y2 + ẋ2y2) + ε2R2(x, y),

where R1 and R2 are smooth functions. Introducing amplitude-phase coor-
dinates by x = r1 cos(t + ψ1), ẋ = −r1 sin(t + ψ1), y = r2 cos(ωt + ψ2), ẏ =
−ωr2 sin(ωt + ψ1), and after first-order averaging, we find, omitting the sub-
scripts a, the system

ṙ1 = εr1(1 − r2
1), ψ̇1 = −ε,

ṙ2 = ε
r2

2

(
1 − 3

4
r2
2

)
, ψ̇2 = 0.

The averaged equations contain a torus Ta in phase-space described by

xa(t) = cos(t − εt + ψ1(0)), ẋa(t) = − sin(t − εt + ψ1(0)),

ya(t) =
2
3

√
3 cos(ωt + ψ2(0)), ẏa(t) = −2ω

3

√
3 sin(ωt + ψ2(0)).

From linearisation of the averaged equations, it is clear that the torus is at-
tracting: it is hyperbolic but not normally hyperbolic, as the motion along
the torus has O(1) speed and the attraction rate is O(ε). If the ratio of 1 − ε
and ω is rational, the torus Ta is filled up with periodic solutions. If the ra-
tio is irrational, we have a quasiperiodic (two-frequency) flow over the torus.
Remarkably enough, the theorems in the literature cited above tell us that in
the original equations a torus T exists in an O(ε) neighbourhood of Ta with
the same stability properties. The torus is two-dimensional and the timescales
of rotation are in both directions O(1).

The next example was formulated as an exercise by Hale (1969). It is a rich
problem and we cannot discuss all of its aspects.
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Example 12.13
Consider the system

ẍ + x = ε(1 − x2 − ay2)ẋ,

ÿ + ω2y = ε(1 − y2 − αx2)ẏ,

with ε-independent positive constants a, α, ω. Using the same amplitude-phase
transformation as in the preceding example, we find the slowly varying system

ṙ1 = εr1 sin(t + ψ1)(1 − r2
1 cos2(t + ψ1) − ar2

2 cos2(ωt + ψ2)) sin(t + ψ1),
ψ̇1 = ε cos(t + ψ1)(1 − r2

1 cos2(t + ψ1) − ar2
2 cos2(ωt + ψ2)) sin(t + ψ1),

ṙ2 = εr2 sin(ωt + ψ2)(1 − r2
2 cos2(ωt + ψ2) − αr2

1 cos2(t + ψ1)) sin(ωt + ψ2),
ψ̇2 = ε cos(ωt + ψ2)(1 − r2

2 cos2(ωt + ψ2) − αr2
1 cos2(t + ψ1)) sin(ωt + ψ2).

First-order averaging yields different results in two cases, ω 
= 1 and ω = 1.
However, in all cases we have the following periodic solutions that are also
present as solutions of the original equations.

Normal modes
Putting r1 = 0, r2 = 2 produces a normal mode periodic solution P2 in the
y, ẏ coordinate plane. In the same way, we obtain a normal mode periodic
solution P1 in the x, ẋ coordinate plane by putting r2 = 0, r1 = 2. These
normal modes in the coordinate planes also exist in the original system. Their
stability is studied by linearisation of the averaged equations.

ω 
= 1
The averaged equations are (we omit again the subscript a)

ṙ1 =
ε

2
r1

(
1 − 1

4
r2
1 − 1

2
ar2

2

)
,

ψ̇1 = 0,

ṙ2 =
ε

2
r2

(
1 − 1

4
r2
2 − 1

2
αr2

1

)
,

ψ̇2 = 0.

Linearisation around the normal modes produces matrices with many zeros.
In the case r1 = 0, r2 = 2 (P2), we find for the derivative in the y, ẏ-plane
−ε, which means attraction in this plane; in the x, ẋ-plane, we find for the
derivative 1

2ε(1− 2a), which means attraction if a > 1
2 and repulsion if a < 1

2 .
In the case of repulsion, we have instability of the r1 = 0, r2 = 2 normal mode.
In the same way, we find instability of the r2 = 0, r1 = 2 normal mode P1 in
the x, ẋ-plane if α < 1

2 .

We will now study the flow outside the coordinate planes. Stationary so-
lutions outside the normal modes can be found if simultaneously
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1 − 1
4
r2
1 − 1

2
ar2

2 = 0, 1 − 1
4
r2
2 − 1

2
αr2

1 = 0.

These relations correspond with quadrics in the r1, r2-plane. They intersect,

Ta Unstable

P1 Unstable
P1 Unstable

P1 Stable

1
2

1
2

P2 Stable

P2 Unstable
P2 Stable

P1 Stable
α

a

Ta Stable

P2 Unstable

Fig. 12.3. Diagram of invariant manifolds, periodic solutions, and tori in Example
12.13; the point a = 1

2 , α = 1
2 is exceptional.

producing one solution, in the cases a < 1
2 , α < 1

2 and a > 1
2 , α > 1

2 . In these
two cases, the stationary solutions of the averaged equations correspond with
a torus Ta. By linearisation of the averaged equations, we can establish the
instability of the torus if a > 1

2 , α > 1
2 . Stability cannot be deduced from

the averaged system in these coordinates, as the matrix is singular. However,
it is interesting to write in this case the original system in amplitude-angle
coordinates and perform averaging over two angles.

Putting x = r1 sinφ1, ẋ = r1 cos φ1, y = r2 sin(ωφ2), ẏ = r2ω cos(ωφ2), we
find when averaging over φ1, φ2

ṙ1 =
ε

2
r1

(
1 − 1

4
r2
1 − 1

2
ar2

2

)
, φ̇1 = 1 + O(ε),

ṙ2 =
ε

2
r2

(
1 − 1

4
r2
2 − 1

2
αr2

1

)
, φ̇2 = 1 + O(ε).

For the system in amplitude-angle coordinates, we can apply the theory cited
above with the conclusion that the torus Ta, when it exists, corresponds with
a torus T of the original equations. The torus is stable if a < 1

2 , α < 1
2 and

unstable if a > 1
2 , α > 1

2 ; see Fig. 12.3. One can see immediately that a critical
case is a = α = 1

2 . In this case, the averaged equations contain an invariant
sphere r2

1 + r2
2 = 4 in four-dimensional phase-space. For the question of per-

sistence of this invariant sphere (slightly deformed) in the original equations,
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first-order averaging is sufficient. The sphere is a first-order approximation
of a centre manifold. For the flow on the sphere, we need higher-order ap-
proximations. Outside this special point, we can cross the lines a = 1

2 , α = 1
2

to pass from a phase-space with two periodic solutions to a phase-space of
two periodic solutions and a torus. When crossing these lines, one of the nor-
mal modes changes stability and produces the torus by a so-called branching
bifurcation. The results are summarised in the diagram of Fig. 12.3. In this
example, the torus again is two-dimensional and the timescales of rotation are
in both directions O(1).

ω = 1
We consider now the special resonance case when the basic frequencies are
equal. The averaged equations are

ṙ1 =
ε

2
r1

(
1 − 1

4
r2
1 − 1

2
ar2

2 +
1
4
ar2

2 cos 2(ψ1 − ψ2)
)

,

ψ̇1 = −ε

8
ar2

2 sin 2(ψ1 − ψ2),

ṙ2 =
ε

2
r2

(
1 − 1

4
r2
2 − 1

2
αr2

1 +
1
4
αr2

1 cos 2(ψ1 − ψ2)
)

,

ψ̇2 =
ε

8
αr2

1 sin 2(ψ1 − ψ2).

Using the combination angle χ = 2(ψ1 − ψ2), the equations become

ṙ1 =
ε

2
r1

(
1 − 1

4
r2
1 − 1

2
ar2

2 +
1
4
ar2

2 cos χ

)
,

ṙ2 =
ε

2
r2

(
1 − 1

4
r2
2 − 1

2
αr2

1 +
1
4
αr2

1 cos χ

)
,

χ̇ = −ε

4
(αr2

1 + ar2
2) sinχ.

Apart from the normal modes P1 and P2, we find phase-locked periodic so-
lutions in a general position by putting sinχ = 0. Introducing this condition
into the equations for the amplitudes, we find that for these solutions to exist
we have

1 − 1
4
r2
1 − 1

2
ar2

2 + ±1
4
ar2

2 = 0,

1 − 1
4
r2
2 − 1

2
αr2

1 + ±1
4
αr2

1 = 0.

The analysis of these equations and the corresponding stability is a lot of work
but straightforward and is left to the reader.

As stated in the introduction to this section, when we start off with a normally
hyperbolic torus, small perturbations will only deform the torus. A simple
example follows.
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Example 12.14

ẍ + x = μ(1 − x2)ẋ + εf(x, y),
ÿ + ω2y = μ(1 − y2)ẏ + εg(x, y),

with ε-independent positive constant ω, μ a fixed large, positive number,
and smooth perturbations f, g. Omitting the perturbations f, g, we have two
normally hyperbolic relaxation oscillations. If ω is irrational, the combined
oscillations attract to a torus filled with quasiperiodic motion. Adding the
perturbations f, g cannot destroy this torus but only deforms it. Also, in this
example the torus is two-dimensional but the timescales of rotation are in
both directions determined by the timescales of relaxation oscillation (see
Grasman, 1987) and so O(1/μ).

12.3.2 The Neimark-Sacker Bifurcation

Another important scenario for creating a torus arises from the Neimark-
Sacker bifurcation. Suppose that we have obtained an averaged equation ẋ =
εf(x, a) with dimension 3 or higher by variation of constants and subsequent
averaging; a is a parameter or a set of parameters. We have discussed before
that if this equation contains a hyperbolic critical point, the original equation
contains a periodic solution. The first-order approximation of this periodic
solution is characterised by the timescales t and εt.

Suppose now that by varying the parameter a a pair of eigenvalues of
the critical point becomes purely imaginary. For this value of a, the averaged
equation undergoes a Hopf bifurcation, producing a periodic solution of the
averaged equation; the typical timescale of this periodic solution is εt, so the
period will be O(1/ε). As it branches off an existing periodic solution in the
original equation, it will produce a torus, and the bifurcation has a different
name: the Neimark-Sacker bifurcation. The result will be a two-dimensional
torus that contains two-frequency oscillations, one on a timescale of order 1
and the other with timescale O(1/ε). A typical example runs as follows.

Example 12.15
A special case of a system studied by Bakri et al. (2004) is

ẍ + εκẋ + (1 + ε cos 2t)x + εxy = 0,

ÿ + εẏ + 4(1 + ε)y − εx2 = 0.

This is a system with parametric excitation and nonlinear coupling; κ is a pos-
itive damping coefficient that is independent of ε. Away from the coordinate
planes, we may use amplitude-phase variables with x = r1 cos(t + ψ1), ẋ =
−r1 sin(t + ψ1), y = r2 cos(2t + ψ2), ẏ = −2r2 sin(2t + ψ1); after first-order
averaging, we find, omitting the subscripts a, the system
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ṙ1 = εr1

(
r2

4
sin(2ψ1 − ψ2) +

1
4

sin 2ψ1 − 1
2
κ

)
,

ψ̇1 = ε

(
r2

4
cos(2ψ1 − ψ2) +

1
4

cos 2ψ1

)
,

ṙ2 = ε
r2

2

(
r2
1

4r2
sin(2ψ1 − ψ2) − 1

)
,

ψ̇2 =
ε

2

(
− r2

1

4r2
cos(2ψ1 − ψ2) + 2

)
.

Putting the right-hand sides equal to zero produces a nontrivial critical point
corresponding with a periodic solution of the system for the amplitudes and
phases and so a quasiperiodic solution of the original coupled system in x and
y. We find for this critical point the relations

r2
1 = 4

√
5r2, cos(2ψ1−ψ2) =

2√
5
, sin(2ψ1−ψ2) =

1√
5
, r1 =

√
2κ +

√
5 − 16κ2.

This periodic solution exists if the damping coefficient is not too large: 0 ≤
κ <

√
5

4 . Linearisation of the averaged equations at the critical point while
using these relations produces the matrix

A =

⎛
⎜⎜⎜⎜⎜⎝

0 0 r1

4
√

5
− r3

1
40

0 −κ 1
2
√

5
r2
1

80
r1

4
√

5
r2
1

2
√

5
− 1

2 − r2
1

4
√

5

− 2
r1

1 4
√

5
r2
1

− 1
2

⎞
⎟⎟⎟⎟⎟⎠ .

Another condition for the existence of the periodic solution is that the critical
point is hyperbolic (i.e., the eigenvalues of the matrix A have no real part
zero). It is possible to express the eigenvalues explicitly in terms of κ by us-
ing a software package such as Mathematica. However, the expressions are
cumbersome. Hyperbolicity is the case if we start with values of κ just below√

5
4 = 0.559. Diminishing κ, we find when κ = 0.546 that the real part of two

eigenvalues vanishes. This value corresponds with a Hopf bifurcation that pro-
duces a nonconstant periodic solution of the averaged equations. This in turn
corresponds with a torus in the orginal equations (in x and y) by a Neimark-
Sacker bifurcation. As stated before, the result will be a two-dimensional torus
that contains two-frequency oscillations, one frequency on a timescale of order
1 and the other with timescale O(1/ε).

12.3.3 Invariant Tori in the Hamiltonian Case

Integrability of a Hamiltonian system means, loosely speaking, that the sys-
tem has at least as many independent first integrals as the number of degrees
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of freedom. As each degree of freedom corresponds with one position and one
momentum, n degrees of freedom will mean a 2n-dimensional system of differ-
ential equations of motion. With n independent integrals, the special structure
of Hamiltonian systems will then invoke a complete foliation of phase-space
into invariant manifolds.

Most Hamiltonian systems are nonintegrable, but in practice most are
near an integrable system. A fundamental question is then how many of these
invariant manifolds survive the nonintegrable perturbation. This question was
solved around 1960 in the celebrated KAM theorem, which tells us that near a
stable equilibrium point under rather general conditions, an infinite subset of
invariant tori will survive. There is now extensive literature on KAM theory;
for introductions, see Arnold (1978) or Verhulst (2000). This is an extensive
subject and we restrict ourselves to an example here.

Example 12.16
A classical mechanical example is the elastic pendulum. Consider a spring
that can both oscillate in the vertical z direction and swing like a pendulum
with angular deflection φ, where the corresponding momenta are pz and pφ.
The model is discussed in many places, see for instance Van der Burgh (1975)
or Tuwankotta and Verhulst (2000). It is shown there that near the vertical
rest position, the Hamiltonian can be expanded as H = H0 + H2 + εH3 +
ε2H4 + O(ε3) with H0 a constant; ε measures the deflection from the rest
position. We have

H2 =
1
2
ωz

(
z2 + p2

z

)
+

1
2
ωφ

(
φ2 + p2

φ

)
,

H3 =
ωφ√
σωz

(
1
2
zφ2 − zp2

φ

)
,

H4 =
1
σ

(
3
2

ωφ

ωz
z2p2

φ − 1
24

φ4
)

,

with positive frequencies ωz, ωφ; σ is a positive constant depending on the
mass and the length of the pendulum. As expected from the physical setup,
the relatively few terms in the Hamiltonian are symmetric in the second degree
of freedom and also in pz. Due to the physical restrictions, we will have for
the frequency ratio ωz/ωφ > 1.

Fixing ωz/ωφ 
= 2, we find that by averaging to first order all terms vanish.
For these frequency ratios, interesting phenomena take place either on a longer
timescale or on a smaller scale with respect to ε. The important lower-order
resonance is the 2 : 1 resonance, which has been intensively studied. This
resonance is the one with resonant terms of the lowest degree.
The case ωz = 2, ωφ = 1.
The equations of motion derived from the Hamiltonian can, after rescaling of
parameters, be written as
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z̈ + 4z = ε

(
φ̇2 − 1

2
φ2
)

+ O(ε2),

φ̈ + φ = ε(zφ − 2żφ̇) + O(ε2).

Introduce the transformation z = r1 cos(2t + ψ1), ż = −2r1 sin(2t + ψ1), φ =
r2 cos(t + ψ2), φ̇ = −r2 sin(t + ψ2).

An objection against these amplitude-phase transformations is that they
are not canonical (i.e., they do not preserve the Hamiltonian structure of the
equations of motion). However, as we know, they yield asymptotically correct
results; also, the averaging process turns out to conserve the energy. We omit
the standard form and give directly the first-order averaging result, leaving
out the approximation index a:

ṙ1 = −ε
3
16

r2
2 sin χ,

φ̇1 = ε
3r2

2

16r1
cos χ,

ṙ2 = ε
3
4
r1r2 sin χ,

φ̇2 = ε
3r1

4
cos χ,

with χ = 2ψ2 −ψ1. Actually, because of the presence of the combination angle
χ, the system can be reduced to three equations. It is easy to find two integrals
of this system. First is the approximate energy integral

4r2
1 + r2

2 = 2E,

with E indicating the constant, initial energy. The second integral is cubic
and reads

zφ2 cos χ = I,

with I a constant determined by the initial conditions.
Note that the approximate energy integral represents a family of ellipsoids

in four-dimensional phase-space around stable equilibrium. For each value of
the energy, the second integral induces a foliation of the energy manifold into
invariant tori. In this approximation, the foliation is a continuum, but for
the original system the KAM theorem guarantees the existence of an infinite
number of invariant tori with gaps in between. The gaps cannot be “seen” in
a first-order approximation, and remarkably enough, they cannot be found at
any algebraic order of approximation.The gaps turn out to be exponentially
small (i.e., of size εa exp (−b/εc) with suitable constants a, b, c). This analy-
sis is typical for time-independent Hamiltonian systems with two degrees of
freedom and to some extent for more degrees of freedom. A description and
references can be found in Lochak et al. (2003).
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In this case of an infinite set of invariant tori, we have basically two
timescales. Embedded on the energy manifold are periodic solutions with pe-
riod O(1). Around the stable periodic solutions, the tori are nested, with the
periodic solutions as guiding centers. In the direction of the periodic solution,
the timescale is O(1), and in the other direction(s) it is O(1/ε).

The case of two degrees of freedom is easiest to visualise. The energy
manifold is three-dimensional, and a section perpendicular to a stable periodic
solution is two-dimensional. In this section, called a Poincaré section, the
periodic solution shows up in a few points where it subsequently hits the
section. Around these fixed points, we find closed curves corresponding with
the tori. Orbits moving on such a torus hit a particular closed curve recurrently
with circulation time on the closed curve O(1/ε).

12.4 Adiabatic Invariants

In Example 12.2, we considered a linear oscillator with slowly varying (pre-
scribed) frequency:

ẍ + ω2(εt)x = 0.

Putting τ = εt and assuming that 0 < a < ω(τ) < b (with a, b constants
independent of ε), we found

ra(τ) =
r(0)

√
ω(0)√

ω(τ)
,

so that the quantity ra(εt)
√

ω(εt) is conserved in time with accuracy O(ε)
on the timescale 1/ε. Such a quantity we call an adiabatic invariant for the
equation. More generally, consider the n-dimensional equation ẋ = f(x, εt, ε)
and suppose that we have found a function I(x, εt) with the property

I(x, εt) = I(x(0), 0) + o(1)

on a timescale that tends to infinity as ε tends to zero. In this case, we will
call I(x, εt) an adiabatic invariant of the equation.

Note that this concept is a generalisation of the concept of a “first integral”
of a system. The equation ẋ = f(x, εt, ε) may not have a first integral but,
to a certain approximation, it behaves as if it has the adiabatic invariant as a
first integral.

In a number of cases in the literature, the concept of an adiabatic invariant
is also used for equations of the type ẋ = f(x, ε). However, in such a case we
prefer the term “asymptotic integral”.

In some cases, the simple trick using τ = εt as a dependent variable pro-
duces results. Consider the following nearly trivial example.
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Example 12.17
Replace the equation

ẍ + x = εa(εt)x3,

with a(εt) a smooth function, by the system

ẍ + x = εa(τ)x3, τ̇ = ε.

First-order averaging in amplitude-angle coordinates r, φ as in Example 12.1
for the Duffing equation can easily be carried out. Supposing that r(0) = r0,
we have the approximation r(t) = r0 + O(ε) valid on the timescale 1/ε. The
implication is that the quadratic integral x2(t) + ẋ2(t) = r2

0 is conserved to
O(ε) on the timescale 1/ε. This is a simple but nontrivial adiabatic invariant
for the system.

A much more difficult example arises when the perturbation term depends
on εt but is not small. Consider for instance the equation

ẍ + x = a(εt)x2.

Huveneers and Verhulst (1997) studied this equation in the case where a(0) =
1 and the smooth function a(εt) vanishes as t → ∞. In this case, there exist
bounded and unbounded solutions and the analysis leans heavily on averaging
over elliptic functions that are the solutions of the equation

ẍ + x = x2.

The analysis is too technical to include here.
The example of the Duffing equation is typical for the treatment of Hamil-

tonian systems with one degree of freedom and slowly varying coefficients and
can be found in many texts on classical mechanics; see for instance Arnold
(1978). With additional conditions, it is sometimes possible to extend the
timescale of validity of the adiabatic invariant beyond 1/ε.

Such examples can also be extended to more degrees of freedom, but the
analysis becomes much more subtle. The extension of the timescale beyond 1/ε
is then not easy to reach. Fascinating problems arise when the slowly varying
coefficient leads the system through a bifurcation value. Unfortunately, this
topic is beyond the scope of this book, but we give some references in our
guide to the literature at the end of this chapter.

12.5 Second-Order Periodic Averaging

To calculate a second-order or even higher-order approximation, generally
takes a much larger effort than in first order. One reason for this extra ef-
fort could be to obtain an approximation with higher precision but a more
fundamental motivation derives from the fact that in quite a number of cases
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essential qualitative features are not described by first order. Let us consider
a few simple examples. For the Van der Pol equation (Example 11.3)

ẍ + x = εẋ(1 − x2),

we have obtained a first-order approximation of the unique periodic solution.
Suppose we add damping of a slightly larger magnitude. A model equation
would be

ẍ + εμẋ + x = ε2ẋ(1 − x2),

where the damping constant μ is positive. At first order, the solutions are
damped, but do we recover a periodic solution at second order? In this case the
answer is “no,” as we know from qualitative information about this particular
type of equation; see for instance Verhulst (2000). In most research problems,
we do not have much a priori knowledge. A slightly less trivial modification
arises when at first order we have just a phase shift, changing the “basic”
period. A model equation could be

ẍ + x − εax3 = ε2ẋ(1 − x2)

with a a suitable constant. We shall analyse this equation later on.

12.5.1 Procedure for Second-Order Calculation

Consider the n-dimensional equation in the standard form

ẋ = εf(t, x) + ε2g(t, x) + ε3R(t, x, ε),

in which the vector fields f and g are T -periodic in t with averages f0 and
g0 (T independent of ε). The vector fields f and g have to be sufficiently
smooth; in particular, f has to be expanded, as we shall see. The higher-order
term R(t, x, ε) is smooth and bounded as ε tends to zero. If we are looking
for T -periodic solutions, R in addition has to be T -periodic.

The interpretation of results of second-order averaging is more subtle than
in first order, so we have to show some of the technical details of the construc-
tion. We denote with ∇f(t, x) the derivative with respect to x only; this is an
n × n matrix. For instance, if n = 2, we have x = (x1, x2), f = (f1, f2), and

∇f(t, x) =

(
∂f1(t,x1,x2)

∂x1

∂f1(t,x1,x2)
∂x2

∂f2(t,x1,x2)
∂x1

∂f2(t,x1,x2)
∂x2

)
.

The reason we need this nabla operator (∇) is that to obtain a second-order
approximation we have to Taylor expand the vector field. We need another
vector field:

u1(t, x) =
∫ t

0
(f(s, x) − f0(x))ds − a(x),
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where of course f(s, x) − f0(x) has average zero, but this does not hold nec-
essarily for the integral (think of the function sin t cos t); a(x) is chosen such
that the average of u1, u10(x) vanishes. We now introduce the near-identity
transformation

x(t) = w(t) + εu1(t, w(t)). (12.2)

This is also called the averaging or normalising transformation. Substituting
Eq. (12.2) into the equation for x, we get

ẇ(t) + ε
∂u1

∂t
(t, w(t)) + ε∇u1(t, w(t))ẇ(t)

= εf(t, w(t) + εu1(t, w(t))) + ε2g(t, w(t) + εu1(t, w(t))) + ε3 · · · .

Using the definition of u1, the left-hand side of this equation becomes

(I + ε∇u1(t, w))ẇ + εf(t, w) − εf0(w),

where I is the identity n × n matrix. Inverting the matrix (I + ε∇u1(t, w))
and expanding f and g, we obtain

ẇ = εf0(w) + ε2∇f(t, w)u1(t, w) + ε2g(t, w) + ε3 · · · .

We put
f1(t, x) = ∇f(t, x)u1(t, x),

the product of a matrix and a vector. Introducing now also the average f0
1

and the equation

v̇ = εf0(v) + ε2f0
1 (v) + ε2g0(v), v(0) = x(0),

we can prove that

x(t) = v(t) + εu1(t, v(t)) + O(ε2)

on the timescale 1/ε.
Note, that we did not simply expand with the first-order approximation

as a first term; v(t) contains already terms O(ε) and O(ε2). What does this
mean for the timescales? One would expect εt and ε2t, but this conclusion is
too crude, as we shall see later on.

This second-order calculations has another interesting aspect. As u1 is
uniformly bounded, v(t) is an O(ε)-approximation of x(t). In general, it is
different from the first-order approximation that we obtained before. This
illustrates the nonuniqueness of asymptotic approximations. In some cases,
however, the interpretation will be that v(t) is an O(ε)-approximation on a
different timescale. We shall return to this important point in a later section.

As mentioned above, we are now able to compute more accurate approxi-
mations but, more excitingly, we are able to discover new qualitative phenom-
ena. A simple example is given below.
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Example 12.18
Consider the equation

ẍ + x − εax3 = ε2ẋ(1 − x2)

with a a suitable constant independent of ε. Introducing amplitude-phase
variables x(t) = r(t) cos(t + ψ(t)), ẋ(t) = −r(t) sin(t + ψ(t)), we find

f(t, r, ψ) =
(

−ar3 sin(t + ψ) cos3(t + ψ)
−ar2 cos4(t + ψ)

)
, f0(r, ψ) =

(
0

− 3
8ar2

)
.

Using initial values r(0) = r0, ψ(0) = 0, we have a first-order approximation
xa(t) = r0 cos(t − ε 3

8ar2
0t), ẋa(t) = −r0 sin(t − ε 3

8ar2
0t) corresponding with a

set of periodic solutions with an O(ε) shifted period that also depends on
the initial r0. Does a periodic solution branch off from one of the first-order
approximations when considering second-order approximations? We have to
compute and average f1 = ∇fu1. Abbreviating t + ψ = α, we find

∇f(t, r, ψ) =
(

−3ar2 sin α cos3 α −ar3 cos4 α + 3ar3 sin2 α cos2 α
−2ar cos4 α 4ar2 cos3 α sin α

)
,

and, using cos4 α = 3
8 + 1

2 cos 2α + 1
8 cos 4α,

u1(t, r, ψ) =
( 1

8ar3 cos 2α + 1
32ar3 cos 4α

− 1
4ar2 sin 2α − 1

32ar2 sin 4α

)
.

Multiplying, we find f1, and after averaging

f0
1 (r, ψ) =

(
0

− 51
256a2r4

)
.

Now we can write down the equation for v as formulated in the procedure for
second-order calculation. Note that g0(v) was calculated in Example 11.3 and
we obtain

v̇1 = ε2 v1

2

(
1 − 1

4
v2
1

)

v̇2 = −ε
3
8
av2

1 − ε2 51
256

a2v4
1 .

If v1(0) = r0 = 2, we have a stationary solution v1(t) = 2, and with v2(0) =
ψ(0) = 0

v2(t) = −ε
3
2
at − ε2 51

16
a2t.

An O(ε2)-approximation of the periodic solution is obtained by inserting this
into u1 so that

r(t) = 2 + εa cos 2(t + v2(t)) + ε
a

4
cos 4(t + v2(t)) + O(ε2),

ψ(t) = v2(t) − εa sin 2(t + v2(t)) − ε
a

8
sin 4(t + v2(t)) + O(ε2),



12.5 Second-Order Periodic Averaging 215

valid on the timescale 1/ε. At this order of approximation, the timescales for
the periodic solution are t, εt, and ε2t. Can you find the timescales for the
other solutions?

12.5.2 An Unexpected Timescale at Second-Order

As another example, we consider the following Mathieu equation.

Example 12.19
Consider

ẍ + (1 + εa + ε2b + ε cos 2t)x = 0

with free parameters a, b, which is a slight variation of the Mathieu equation
we studied in Examples 10.9 and 11.6; see also the discussion in Section 15.3.
Transforming by Eqs. 11.9

x(t) = y1(t) cos t + y2(t) sin t, ẋ(t) = −y1(t) sin t + y2(t) cos t,

we obtain the slowly varying system

ẏ1 = sin t(εa + ε cos 2t + ε2b)(y1(t) cos t + y2(t) sin t),
ẏ2 = − cos t(εa + ε cos 2t + ε2b)(y1(t) cos t + y2(t) sin t).

We use again the terminology of the procedure for second-order calculation.
We have to first order

f0(y1, y2) =
( 1

2 (a − 1
2 )y2

− 1
2 (a + 1

2 )y1

)

so that the first-order approximation is described by

ẏ1a = ε
1
2

(
a − 1

2

)
y2a,

ẏ2a = −ε
1
2

(
a +

1
2

)
y1a.

This is a system of linear equations with constant coefficients; the solutions
are of the form c exp(λt) with λ an eigenvalue of the matrix of coefficients.
We find

λ1,2 = ±1
2

√
1
4

− a2.

It is clear that we have stability of the trivial solution if a2 > 1
4 and instability

if a2 < 1
4 ; a = ± 1

2 determines the boundary of the instability domain, which
is called a Floquet tongue. On this boundary, the solutions are periodic to
first approximation. What happens when we look more closely at the Floquet
tongue? We find for ∇f and u1
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∇f(t, y1, y2) =
(

sin t cos t(a + cos 2t) sin2 t(a + cos 2t)
− cos2 t(a + cos 2t) − sin t cos t(a + cos 2t)

)
,

u1(t, y1, y2) =
(

−y1(a
4 cos 2t + 1

16 cos 4t) + y2(−a
4 sin 2t + 1

4 sin 2t − 1
16 sin 4t)

−y1(a
4 sin 2t + 1

4 sin 2t + 1
16 sin 4t) + y2(a

4 cos 2t + 1
16 cos 4t)

)
.

After some calculations, we find the average

f0
1 (y1, y2) =

(
(a
8 − a2

8 − 1
64 )y2

(a
8 + a2

8 + 1
64 )y1

)
.

When adding g0, we can write down the equation for v as formulated in the
procedure for second-order calculation:

v̇1 = ε
1
2

(
a − 1

2

)
v2 + ε2

(
a

8
− a2

8
− 1

64
+

1
2
b

)
v2,

v̇2 = −ε
1
2

(
a +

1
2

)
v1 + ε2

(
a

8
+

a2

8
+

1
64

− 1
2
b

)
v1.

Choosing for instance a = 1
2 , we have one of the boundaries of the Floquet

tongue consisting of periodic solutions. The equations for v become

v̇1 = ε2
(

1
64

+
1
2
b

)
v2,

v̇2 = −ε
1
2
v1 + ε2

(
7
64

− 1
2
b

)
v1.

For the eigenvalues of the matrix of coefficients to second order, we find

λ1,2 = ±

√
−1

4

(
1
32

+ b

)
ε3 +

(
1
64

+
1
2
b

)(
7
64

− 1
2
b

)
ε4.

We conclude that if 1
32 + b > 0, we have stability, and if 1

32 + b < 0, we have
instability. The value b = − 1

32 gives us the second-order approximation of the
Floquet tongue. This result has an interesting consequence for the timescales
of the solutions in the case a = 1

2 ; they are t, εt, ε
3
2 t, ε2t. The timescale ε

3
2 t is

quite unexpected.

Remark
Second-order general averaging, without periodicity assumptions, runs along
the same lines as demonstrated in the periodic case. For the theory and ex-
amples, see Sanders and Verhulst (1985).

12.6 Approximations Valid on Longer Timescales

In a number of problems, we have a priori knowledge that the solutions of
equations we are studying exist on a longer timescale than 1/ε or even exist for
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all time. Is it not possible in these cases to obtain approximations valid on such
a longer timescale? For instance, when calculating an O(ε2)-approximation on
the timescale 1/ε as in the preceding section, can we not as a trade-off consider
this as an O(ε)-approximation on the timescale 1/ε2? It turns out that in
general the answer is “no,” as can easily be seen from examples. However, we
shall consider an important case where this idea carries through.

12.6.1 Approximations Valid on O(1/ε2)

We formulate the following result.

Theorem 12.2
Consider again the n-dimensional equation in the standard form

ẋ = εf(t, x) + ε2g(t, x) + ε3R(t, x, ε)

in which the vector fields f and g are T -periodic in t with averages f0 and g0

(T independent of ε); f , g, and R are sufficiently smooth. Suppose that

f0(x) = 0.

We have from the first-order approximation x(t) = x(0) + O(ε) on the
timescale 1/ε. Following the construction of the second-order approximation
of the preceding section, we have with f0(x) = 0 the equation

v̇ = ε2g0(v), v(0) = x(0).

It is easy to prove that
x(t) = v(t) + O(ε)

on the timescale 1/ε2 (Van der Burgh, 1975).

A simple example is given as follows.

Example 12.20

ẍ + x − εax2 = 0, r(0) = r0, ψ(0) = 0,

with a an ε-independent parameter. In amplitude-phase variables r, ψ, we find
with transformation (11.5)

ṙ = −ar2 sin(t + ψ) cos2(t + ψ),
ψ̇ = −ar cos3(t + ψ),

so with f(t, r, ψ) for the right-hand side we have f0(r, ψ) = 0. For the second-
order approximation, we abbreviate t + ψ = α and calculate

∇f(t, r, ψ) =
(

−2ar sin α cos2 α −ar2 cos3 α + 2ar2 sin2 α cos α
−a cos3 α 3ar cos2 α sin α

)
,
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u1(t, r, ψ) =
( 1

3ar2 cos3 α
−ar sin α + 1

3ar sin3 α

)
.

With f1 = ∇fu1, we find after averaging

f0
1 (r, ψ) =

(
0

− 5
12a2r2

)
.

We conclude that v̇1 = 0, v̇2 = −ε2 5
12a2v2

1 , and we have x(t) = r0 cos(t −
ε2 5

12a2r2
0t) + O(ε), valid on the timescale 1/ε2.

This is already a nontrivial result, but a more interesting example arises when
considering the Mathieu equation for other resonance values than those stud-
ied in Example 12.19.

Example 12.21
Consider

ẍ + (n2 + εa + ε2b + ε cos mt)x = 0,

again with free parameters a, b. Transforming by Eq. (11.10)

x(t) = y1(t) cos nt +
1
n

y2(t) sinnt, ẋ(t) = −ny1(t) sinnt + y2(t) cos nt,

we obtain the slowly varying system

ẏ1 =
ε

n
sin nt(a + cos mt)

(
y1(t) cos nt +

1
n

y2(t) sinnt) + O(ε2
)

,

ẏ2 = − ε

n
cos nt(a + cos mt)

(
y1(t) cos nt +

1
n

y2(t) sinnt

)
+ O(ε2).

It is easy to see (by averaging) that f0 is nontrivial if 2n−m = 0, which is the
case of Example 12.19. This is the most prominent resonance of the Mathieu
equation. For other rational ratios of m and n, we find other resonances with
different sizes of the resonance tongues. As an example, we explore the case
m = n = 2. If 2n − m 
= 0, the averaged equations are dominated by the
parameter a so it makes sense to choose a = 0, as the Floquet tongue will be
narrower than in the case 2n − m = 0. The equation becomes

ẍ + (4 + ε2b + ε cos 2t)x = 0.

We omit the expressions for ∇f and u1 and produce f1 directly:

f1(t, y1, y2) =

⎛
⎝ 1

192 sin 4t(−6y1 + 2y1 cos 4t + y2 sin 4t)

−1
48 cos2 2t(−6y1 + 2y1 cos 4t + y2 sin 4t)

⎞
⎠ .

So we find
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f0
1 (y1, y2) =

⎛
⎝ 1

384y2

− 1
96y1

⎞
⎠

and for the second-order equations

v̇1 = ε2 y2

8

(
1
48

+ b

)
, v̇2 = ε2 y1

2

(
5
48

− b

)
.

The solutions v1(t) and v2(t) are O(ε)-approximations of y1(t) and y2(t) valid
on the timescale 1/ε2. From the eigenvalues, we conclude instability if

− 1
48

< b <
5
48

.

The Floquet tongue in the case m = n = 2 is determined by the boundary
values 4 − 1

48ε2 and 4 + 5
48ε2.

When assuming m 
= 2n and m 
= n, we can study higher order Floquet
tongues. See also the discussion in Example 10.9, where the tongues are de-
termined by the continuation (Poincaré-Lindstedt) method, and in particular
Fig. 10.1.

12.6.2 Timescales near Attracting Solutions

Another natural idea to obtain extension of the timescale of validity is at-
traction. Suppose the solutions are attracted exponentially fast to a special
solution, equilibrium or periodic, for which the process will also result in a
kind of compression of the neighbouring solutions. In this case, we have the
following result.

Theorem 12.3
Consider the n-dimensional equation in the standard form

ẋ = εf(t, x) + ε2R(t, x, ε)

in which the vector field f is T -periodic in t with average f0 (T independent
of ε); f and R are sufficiently smooth. Suppose that f0(x) contains a critical
point (equilibrium of the averaged equation) x = a, so f0(a) = 0. We assume
that all the eigenvalues in x = a have a negative real part. The solution
x(t) starting in x(0), which is located in an interior subset of the domain of
attraction of x = a, is approximated by the solution xa(t) of the averaged
equation starting in x(0) as

x(t) − xa(t) = O(ε), 0 ≤ t < ∞.

Example 12.22
A simple example is the one-dimensional equation
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ẋ = −ε2 sin2 tx + ε2R(t, x)

with averaged equation
ẋa = −xa.

We have x(t) = x(0) exp(−t) + O(ε) for all time.

Example 12.23
More important is the forced Duffing equation in Example 11.4

ẍ + εμẋ + εγx3 + x = εh cos ωt,

with μ > 0; we choose the case of exact resonance ω = 1. In this case, the
system averaged to first order is

ṙa = −1
2
ε(μra + h sin ψa),

ψ̇a = −1
2
ε

(
−3

4
γr2

a + h
cos ψa

ra

)
.

The critical points are determined by the equations

h sin ψa = −μra, h cos ψa =
3
4
γr3

a.

Using these equations, it is not difficult to find the eigenvalues

λ1,2 = −1
2
μ ± i

3
√

3
8

|γ|r2
a,

so if we find critical points, they are asymptotically stable and the solutions
attracting to the corresponding periodic solution are approximated by the
solutions of the averaged equation for all time.

A problem arises when the original equation is autonomous. In this case,
a periodic solution has at least one eigenvalue zero, a feature that is inherited
by the averaged equation.

Example 12.24
Consider again the Van der Pol equation

ẍ + x = ε(1 − x2)ẋ

with averaged equation (amplitude-phase)

ṙa = ε
ra

2

(
1 − 1

4
r2
a

)
, ψ̇a = 0.

As we remarked in the discussion of Example 11.3, we can reduce such an
autonomous equation by introducing τ = t + ψ and average over τ . We find
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dra

dτ
= ε

ra

2

(
1 − 1

4
r2
a

)
,

and we can apply the theory as follows. Solutions r(τ) starting outside a
neighbourhood of r = 0 are approximated for all times τ or t by the solutions
of the averaged equation. Such a result is not valid for the phase ψ.

This example can easily be generalised for second-order autonomous equa-
tions.

12.7 Identifying Timescales

A fundamental question that comes up very often is whether we have the
right expansion coefficients with respect to ε and, in the context of evolution
problems, whether we have the right timescales. In the framework of boundary
layer problems, we have developed a technique in Chapter 4 to identify local
or boundary layer variables. This technique works fine in many cases but not
always. When studying evolution problems, the situation is worse; we shall
first review some clarifying examples.

12.7.1 Expected and Unexpected Timescales

In Chapters 10 and 11, we have seen that in equations of the form ẋ = f(t, x, ε)
where the right-hand side depends smoothly on ε, the solutions can sometimes
be expanded in powers of ε while we have timescales such as t, εt, and ε2t. In
fact, as we have shown before, when first-order averaging is possible, we have
definitely the timescales t and εt. However, in general and certainly at second
order, the situation is not always as simple as that.

Example 12.25
Consider for t ≥ 0 the linear initial value problem

ẍ +
1

1 + t
ẋ = ε

2
(1 + t)2

, x(0) = ẋ(0) = 0,

with solution
x(t) = ε ln2(1 + t),

so x(t) is characterised by the timescale ε ln2(1+t), and ẋ(t) by the timescales
t and ε ln(1 + t).

Example 12.26
Consider the initial value problem for the Bernoulli equation

ẋ = xα − cx, x(0) = 1.
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For the constants, we have 0 < α < 1, c > 0. The solution of the initial value
problem is

x(t) =
(

1
c

+
(

1 − 1
c

)
e−c(1−α)t

) 1
1−α

.

The solutions starting with x(0) > 0 tend to stable equilibrium c− 1
1−α . We

consider two cases.

1. Choose c = ε, where α does not depend on ε:

ẋ = xα − εx, x(0) = 1,

with solution

x(t) =
(

1
ε

+
(

1 − 1
ε

)
e−ε(1−α)t

) 1
1−α

.

One of the expansion coefficients is ε− 1
1−α , and the relevant timescale is

εt.
2. Choose c = ε, 1 − α = ε, producing

ẋ = x1−ε − εx, x(0) = 1,

with solution

x(t) =
(

1
ε

+
(

1 − 1
ε

)
e−ε2t

) 1
ε

.

The relevant timescale is ε2t, and 1/ε plays a part in the expansion.

The Mathieu equation in Example 12.19 is important to show that unexpected
timescales occur in practical problems.We summarise as follows.

Example 12.27
Consider

ẍ + (1 + εa + ε2b + ε cos 2t)x = 0.

On choosing a = ± 1
2 , the solutions are located near or on the Floquet tongue.

A second-order approximation has shown that the timescales in this case are
t, εt, ε

3
2 t, ε2t. They naturally emerge from the averaging process.

Other important examples of unexpected timescales can be found in the
theory of Hamiltonian systems. These examples are much more complicated.

12.7.2 Normal Forms, Averaging and Multiple Timescales

The Mathieu equation that we discussed above is a linear equation where the
calculation to second order yields an unexpected timescale. In Section 15.3, we
show for matrices A with constant entries that, when arising in equations of
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the form ẋ = Ax, in particular the bifurcation values produce such unexpected
timescales. For nonlinear equations, we have no general theory, only examples
and local results.

Where does this leave us in constructing approximations for initial value
problems? When given a perturbation problem, we always start with transfor-
mations and other operations that we think suitable for the problem. The main
directive is that there should be no a priori assumptions on the timescales.
The general framework for this is the theory of normal forms, of which aver-
aging is one of the parts (see for instance Sanders and Verhulst, 1985). In this
framework, suitable transformations are introduced, and from the analysis of
the resulting equations the timescales follow naturally. Also, the correspond-
ing proofs of validity yield confirmation and natural restrictions on the use of
these timescales.

It should be clear by now that the method of multiple timescales for initial
value problems of ordinary differential equations is not suitable for research
problems except in the case of simple problems that are accessible also to first-
order averaging. For other problems, this method presupposes the presence of
certain timescales, a knowledge we simply do not have.

Multiple timing, as it is often called, is of course suitable and an elegant
method in the cases of solved problems where we know a priori the structure
of the approximations. It should also be mentioned that the formal calcula-
tion schemes of multiple timing are easier to extend to problems for partial
differential equations; we will return to this in Chapter 14. However, proofs
of validity of such extensions are often lacking.

12.8 Guide to the Literature

There are thousands of papers associated with this chapter. We will mention
here basic literature with good literature sections for further study. Several
times we touched upon the relation between averaging and normalisation.
Averaging can be seen as a special normal-form method with the advantage of
explicitly formulated normal forms. On the other hand, normal-form methods
are approximation tools, using in some form localisation around a special point
or another solution. More about this relation can be found in Arnold (1982)
and Sanders and Verhulst (1985). The same references can be used for the
theory of averaging over angles. A monograph by Lochak and Meunier (1988)
is devoted to this topic.

Invariant manifolds represent a subject that is still very much in devel-
opment. The idea to obtain tori by continuation was introduced by Bogoli-
ubov and Mitropolsky (1961, 1963) and extended by Hale (1969). Tori can
emerge in a different way by Hopf bifurcation of a periodic solution; this
is called Neimark-Sacker bifurcation. Usually, numerical bifurcation path-
following programs are used to pinpoint such bifurcations, but the demon-
stration by averaging is for instance shown in Bakri et al. (2004).
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Invariant tori in the Hamiltonian context is a very large subject with an
extensive body of literature and many interesting books; for an introduction,
see Arnold (1978) or Verhulst (2000). Lochak et al. (2003) discusses what
happens between the tori and gives many references. A survey of normalisation
and averaging for Hamiltonian systems is given in Verhulst (1998).

The theory of adiabatic invariants is a classical subject that is tied in both
with problems of averaging over angles and bifurcation theory. For the classical
theory, see Arnold (1978) and, in particular, the survey by Henrard (1993).
Slowly varying coefficients may lead a system to passage through a bifurcation.
Neishstadt (1986, 1991), Cary et al. (1986), Haberman (1978) and Bourland
and Haberman (1990) analysed the slow passage through a separatrix. See
also Diminnie and Haberman (2002) for changes of the adiabatic invariant in
such a setting. Adiabatic changes in a Hamiltonian system with two degrees
of freedom are discussed in Verhulst and Huveneers (1998).

Second-order averaging and longer timescales are studied in Sanders and
Verhulst (1985). Van der Burgh (1975) produced the first estimates on the
timescale 1/ε2. An extension to O(ε2) on the timescale 1/ε2 is given in Ver-
hulst (1988).

Multiple-timescale methods are discussed for instance in Hinch (1991),
Kevorkian and Cole (1996), and Holmes (1998). For a comparison of multiple
timing and averaging, see Perko (1969) and Kevorkian (1987).

12.9 Exercises

Exercise 12.1
ẍ + 2εẋ + εẋ3 + x = 0.

Use the amplitude-angle transformation 12.1 to obtain a system that can
be averaged over the angle φ; give the result for the approximation of the
amplitude.

Exercise 12.2
ẍ + εμẋ + ω2(εt)x + εx3 = 0.

Use the amplitude-angle transformation (12.1) to obtain a system that can be
averaged over the angle φ; give the result (with additional assumptions) for
the approximation of the amplitude.

Exercise 12.3 Consider the system

ẋ = ε + ε sin(φ1 − φ2),
φ̇1 = x,

φ̇2 = x2.

Determine the location(s) of the resonance manifold(s) and an approximation
away from these location(s).
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Exercise 12.4

ẋ = ε cos(t − φ1 + φ2) + ε sin(t + φ1 + φ2),
φ̇1 = 2x,

φ̇2 = x2.

Determine the location(s) of the resonance manifold(s) and an approximation
away from these location(s).

Exercise 12.5 In Example 12.9, we stated that in the two resonance zones
the flow is described by two pendulum equations. Verify this statement.

Exercise 12.6 Consider the Duffing equation with slowly varying coefficients
in the form

ẍ + ω2(εt)x = εa(εt)x3.

Compute an adiabatic invariant for the equation with suitable assumptions
on the coefficients a(εt) and ω(εt).

Exercise 12.7 In the beginning of Section 12.5, we stated that the equation

ẍ + εμẋ + x = ε2ẋ(1 − x2)

with positive damping constant μ does not contain a periodic solution. Ig-
noring the theory of periodic solutions behind this, verify this statement by
discussing the second-order approximation.

Exercise 12.8 Determine a second-order approximation for the solutions of

ẍ + x − εax2 = ε2ẋ(1 − x2)

with a a suitable constant independent of ε. Can we identify a periodic solu-
tion? Replace the O(ε) term by εxm with m an even number and repeat the
analysis.

Exercise 12.9 A start for the calculation of higher-order Floquet tongues
in the case of the Mathieu equation from Example 12.19 with m 
= 2n and
m 
= n is the determination of the second-order approximation. Show that the
equations are

v̇1 = ε2 v2

2n2

(
1

2m2 − 8n2 + b

)
, v̇2 = −ε2 v1

2

(
1

2m2 − 8n2 + b

)
.

What can we conclude at this stage for the size of the higher-order Floquet
tongues? Note in this context that the first tongue has a separation between
the boundaries that are to first order straight lines, the second tongue is
bounded by parabolas, and the higher-order tongues have boundaries that
are tangent as ε tends to zero; see Fig. 10.1.
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Exercise 12.10 Consider the system

ẋ = y + ε(x2 sin 2t − sin 2t),
ẏ = −4x.

Find equilibria and corresponding periodic solutions of the associated av-
eraged system. For which initial conditions can we extend the timescale of
validity beyond 1/ε?

Exercise 12.11 Consider a Hamiltonian system with two degrees of freedom,
the so-called Hénon-Heiles family:

ẍ + x = ε(a1x
2 + a2y

2),
ÿ + ω2y = ε2a2xy, a2 
= 0.

a. Show that for ω = 2 first-order averaging produces a nontrivial result.
b. Consider ω = 1 and determine the equations for the second-order approx-

imation.
c. Determine in the case ω = 1 two integrals of motion of the averaged

equations and indicate their geometrical meaning.
d. Determine in the case ω = 1 the conditions for the existence of short-

periodic solutions in a general position away from the normal modes.

Exercise 12.12 Consider a Hamiltonian system with two degrees of freedom
to which we have added damping and parametric excitation:

ẍ + 2εẋ + (4 + εa cos t)x = εy2,

ÿ + 2εẏ + (1 + εb cos 2t)y = 2εxy.

a. If ε = 0, we have two normal modes. Can we continue them for ε > 0?
b. Can you find other periodic solutions?




