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The Continuation Method

In Chapter 1 we considered an equation Lεy = 0 that contains a small pa-
rameter ε. We associate with this equation an “unperturbed” problem, the
equation L0y = 0. If the difference between the solutions of both equations
in an appropriate norm does not tend to zero as ε tends to zero, we call the
problem a singular perturbation problem.

Actually, when formulated with suitable norms, most perturbation prob-
lems are singular. This does not only apply to boundary layer problems as
considered in the preceding chapters, but also to slow-time problems, as we
shall see in what follows. In all of these cases, the solutions of the unperturbed
problem can not be simply continued with a Taylor expansion in the small
parameter to obtain an approximation of the full problem.

Simple perturbation examples can be found in the exercises of Chapter 2,
where we looked at solutions of algebraic equations of the form

a(ε)x2 + b(ε)x + c(ε) = 0,

in which a, b, and c depend smoothly on ε. Associating with this problem the
“unperturbed” or “reduced” equation

a(0)x2 + b(0)x + c(0) = 0,

we found that in the analysis the implicit function theorem plays a fundamen-
tal part. If x0 is a solution of the unperturbed problem and if

2a(0)x0 + b(0) 
= 0,

the implicit function theorem tells us that the solutions of the full problem
depend smoothly on ε and we may expand in integral powers of ε: xε =
x0 + ε · · · . If this condition is not satisfied, we cannot expect a Taylor series
with respect to ε and there may be bifurcating solutions.

We shall discuss this application of the implicit function theorem for initial
value problems for ordinary differential equations.
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10.1 The Poincaré Expansion Theorem

We start with a few examples.

Example 10.1
x(t) is the solution of the initial value problem

ẋ = −x + ε, x(0) = 1.

The unperturbed problem is

ẏ = −y, y(0) = 1.

We have x(t) = ε + (1 − ε)e−t, y(t) = e−t, so

|x(t) − y(t)| = ε − εe−t ≤ ε, t ≥ ε.

The approximation of x(t) by y(t) is valid for all time.

Example 10.2
x(t) is the solution of the initial value problem

ẋ = x + ε, x(0) = 1.

The unperturbed problem is

ẏ = y, y(0) = 1,

and we have
|x(t) − y(t)| = ε(et − 1),

so we have an approximation that is valid for 0 ≤ t ≤ 1 (or any positive
constant that does not depend on ε).

We might conjecture that in the second example the approximation breaks
down because the solutions are not bounded. However, to require the solutions
to be bounded is not sufficient, as the following example shows.

Example 10.3
Consider the initial value problem

ẍ + (1 + ε)2x = 0, x(0) = 1, ẋ(0) = 0,

with solution x(t) = cos(1 + ε)t. The unperturbed problem is

ÿ + y = 0, y(0) = 1, ẏ(0) = 0

which is solved by y(t) = cos t. So we conclude that |x(t) − y(t)| = 2| sin(t +
1
2εt) sin(1

2εt)|, which does not vanish with ε; take for instance t = π/ε. One
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might expect an improvement of the timescale where the approximation is
valid when expanding to higher order. However, this is generally not the case.
Expand x(t) = cos t + εx1(t) + ε2 · · · and substitute this expression into the
differential equation. To O(ε) we obtain the problem

ẍ1 + 2 cos t + x1 = 0, x1(0) = ẋ1(0) = 0.

The solution is x1(t) = −t sin t and is an unbounded expression, which we
cannot call an improvement.

We shall now formulate the general perturbation procedure and state what
we can expect in general of the accuracy of the approximation. Consider the
initial value problem for x ∈ R

n

ẋ = f(t, x, ε), x(t0) = a(ε).

We assume that f(t, x, ε) can be expanded in a Taylor series with respect to
x (in a neighbourhood of the initial value) and with respect to ε. We also
assume that a(ε) can be expanded in a Taylor series with respect to ε. The
solution of the initial value problem is xε(t).

We associate with this problem the unperturbed (or reduced) problem

ẋ0 = f(t, x0, 0), x(t0) = a(0),

with solution x0(t). The Poincaré expansion theorem tells us that

||xε(t) − x0(t)|| = O(ε), t0 ≤ t ≤ t0 + C,

with C a constant independent of ε. As C is O(1) with respect to ε, this is
sometimes called an approximation valid on the timescale 1.

We can improve the result by expanding to higher order. More generally
the Poincaré expansion theorem asserts that xε(t) can be expanded in a con-
vergent Taylor series of the form

xε(t) = x0(t) + εx1(t) + · · · + εnxn(t) + · · · .

The terms xn(t) are obtained by substituting the series in the differential
equation and expanding the vector function f with respect to ε as

ẋ0 + εẋ1 + ε2 · · · = f(t, x0 + x1 + ε2 · · · , ε), a(ε) = a0 + εa1 + ε2 · · · ,

which after expansion and collecting equations at the same power of ε produces

ẋ0 = f(t, x0, 0), x0(t0) = a0,

ẋ1 =
∂f

∂x
(t, x0, 0)x1 +

∂f

∂ε
(t, x0.0), x1(t0) = a1,

and similar equations at higher order. Note that, apart from the unperturbed
equation for x0, all equations are linear. For the nth-order partial sum, we
have the estimate
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||xε(t) − (x0(t) + εx1(t) + · · · + εnxn(t))|| = O(εn+1)

for t0 ≤ t ≤ t0 + C. So by this type of expansion we can improve the accuracy
but not the timescale!

Example 10.4
Consider the damped harmonic oscillator

ẍ + 2εẋ + x = 0, x(0) = 1, ẋ(0) = 0.

Ignoring the known, exact solution, we put xε(t) = x0(t) + εx1(t) + · · · to
obtain the initial value problems

ẍ0 + x0 = 0, x0(0) = 1, ẋ0(0) = 0,

ẍ1 + x1 = −2ẋ0, x1(0) = 0, ẋ1(0) = 0.

We find x0(t) = cos t and for x1

ẍ1 + x1 = −2 cos t, x1(0) = 0, ẋ1(0) = 0,

with solution
x1(t) = sin t − t cos t.

This looks bad. The solutions of the damped harmonic oscillator are bounded
for all time and even tend to zero, while the approximation has an increasing
amplitude. However, the approximation is valid only on the timescale 1.

Such terms that are increasing with time were called “secular terms” in as-
tronomy. The discussion of how to avoid them played an important part in
the classical perturbation problems of celestial mechanics. Poincaré adapted
the approximation scheme to get rid of secular terms.

10.2 Periodic Solutions of Autonomous Equations

To a certain extent, periodic solutions are determined by their behaviour on
a timescale 1. This characteristic enables us to obtain a fruitful application of
the Poincaré expansion theorem. Usually this is called the Poincaré-Lindstedt
method.

In this section, we consider autonomous equations of the form

ẋ = f(x, ε), x ∈ R
n,

for which we assume that the conditions of the expansion theorem have been
satisfied. In addition, we assume that the unperturbed equation ẋ = f(x, 0)
has one or more periodic solutions. Can we continue such a periodic solution
for the equation if ε > 0?
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The reason to make a distinction between autonomous and nonautonomous
equations is that in autonomous equations the period is not a priori fixed. As
a consequence, a period T0 of a periodic solution of the unperturbed equation
will in general also be perturbed. To fix the idea consider the two-dimensional
equation

ẍ + x = εf(x, ẋ, ε).

If ε = 0, we have a rather degenerate case, as all solutions are periodic and even
have the same period, 2π. We cannot expect that all of these periodic solutions
can be continued for ε > 0, but maybe some periodic solutions will branch
off. For such a solution, we will have a period T (ε) with T (0) = T0 = 2π. A
priori we do not know for which initial conditions periodic solutions branch
off (if they do!), so we assume that we find them starting at

x(0) = a(ε), ẋ(0) = 0.

For a two-dimensional autonomous equation, putting ẋ(0) = 0 is no restric-
tion. The expansion theorem tells us that on the timescale 1 we have

lim
ε→0

= a(0) cos t.

It is convenient to fix the period by the transformation

ωt = θ, ω−2 = 1 − εη(ε),

where η(ε) can be expanded in a Taylor series with respect to ε and is chosen
such that any periodic solution under consideration has period 2π. With the
notation x′ = dx/dθ, the equation becomes

x′′ + x = εη(ε)x + ε(1 − εη(ε))f(x, (1 − εη(ε))− 1
2 x′, ε)

with initial values x(0) = a(ε), x′(0) = 0.
Abbreviating the equation to

x′′ + x = εF (x, x′, ε, η(ε)),

we are now looking for a suitable initial value a(ε) and scaling of ω (or η) to
obtain 2π-periodic solutions in θ. This problem is equivalent with solving the
integral equation

x(θ) = a(ε) cos θ + ε

∫ θ

0
F (x(s), x′(s), ε, η(ε)) sin(θ − s)ds

with the periodicity condition x(θ + 2π) = x(θ) for each value of θ.
Applying the periodicity condition, we find∫ θ+2π

θ

F (x(s), x′(s), ε, η(ε)) sin(θ − s)ds = 0.
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Expanding sin(θ − s) = sin θ cos s − cos θ sin s and using that the sin- and
cos-functions are independent, we find the conditions

I1(a(ε), η(ε)) =
∫ 2π

0
F (x(s), x′(s), ε, η(ε)) sin sds = 0,

I2(a(ε), η(ε)) =
∫ 2π

0
F (x(s), x′(s), ε, η(ε)) cos sds = 0.

For each value of ε, this is a system of two equations with two unknowns, a(ε)
and η(ε). According to the implicit function theorem, this system is uniquely
solvable in a neighbourhood of ε = 0 if the corresponding Jacobian J does
not vanish for the solutions:

J =
∣∣∣∣ ∂(I1, I2)
∂(a(ε), η(ε))

∣∣∣∣ 
= 0.

The way to handle the periodicity conditions and the corresponding Jacobian
is to expand the solution xε(t) and the parameters a(ε), η(ε) with respect to
ε. At the lowest order, we find

F (x0(t), x′
0(t), 0, η(0)) = η(0)a(0) cos t + f(a(0) cos t, −a(0) sin t, 0)

and the equations ∫ 2π

0
f(a(0) cos s,−a(0) sin s, 0) sin sds = 0,

πη(0)a(0) +
∫ 2π

0
f(a(0) cos s,−a(0) sin s, 0) cos sds = 0.

These equations have to be satisfied (necessary condition) to obtain a periodic
solution. If the corresponding Jacobian does not vanish, a nearby periodic
solution really exists. The condition derived from the lowest-order equations
is

J0 =
∣∣∣∣ ∂(I1, I2)
∂(a(0), η(0))

∣∣∣∣ 
= 0.

We shall study this condition in a number of examples. Note that if we
can satisfy the periodicity conditions but the Jacobian vanishes at low-
est order, we have to calculate the Jacobian at the next order. Assuming
that the Poincaré expansion theorem applies, we have the convergent series
J = J0 + εJ1 + · · · + εnJn + · · · . This calculation may decide the existence of
a unique periodic solution, but it is possible that the Jacobian vanishes at all
orders. This happens for instance if we have a family of periodic solutions so
instead of having the existence of a unique solution, vanishing of the Jacobian
can in some cases imply that there are many more periodic solutions. We shall
meet examples of these phenomena.
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Example 10.5
(Van der Pol equation)
A classical example is the Van der Pol equation

ẍ + x = εẋ(1 − x2),

which has a unique periodic solution for each positive value of ε. Of course, we
consider only small values of ε. Transforming time by ωt = θ, ω−2 = 1−εη(ε),
we find

x′′ + x = εη(ε)x + ε(1 − εη(ε))
1
2 x′(1 − x2)

with unknown initial conditions x(0) = a(ε), x′ = 0. The periodicity condi-
tions at lowest order become

−
∫ 2π

0
a(0) sin s(1 − a2(0) cos2 s) sin sds = 0,

πη(0)a(0) −
∫ 2π

0
a(0) sin s(1 − a2(0) cos2 s) cos sds = 0.

After integration, we find

a(0)
(

1 − 1
4
a2(0)

)
= 0,

η(0)a(0) = 0.

Apart from the trivial solution, we find a(0) = 2, η(0) = 0 (the solution a(0) =
−2 produces the same approximation), so a periodic solution branches off at
amplitude 2. The existence has been given, but we check this independently
by computing the Jacobian at (a(0), η(0)) = (2, 0): J0 = 4 so the implicit
function theorem applies.

Andersen and Geer (1982) used a formal manipulation of the expansions
and obtained for the Van der Pol equation the expansion to O(ε164).

Example 10.6
Consider the equation

ẍ + x = εx3.

It is well-known that all the solutions of this equation are periodic in a large
neighbourhood of (0, 0). We follow the construction by again putting ωt =
θ, ω−2 = 1 − εη(ε) to find

x′′ + x = εη(ε)x + εx3

and at lowest order the periodicity conditions∫ 2π

0
a3(0) cos3 s sin sds = 0, πη(0)a(0) +

∫ 2π

0
a3(0) cos3 s cos sds = 0,
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so that the first condition is always satisfied and the second condition gives

a(0)
(

η(0) +
3
4
a2(0)

)
= 0.

We conclude that a(0) can be chosen arbitrarily and that η(0) = − 3
4a2(0). For

the Jacobian, we find J0 = 0, as there exists an infinite number of periodic
solutions.

Remark (on the importance of existence results)
Suppose that one can apply the periodicity conditions but that the Jacobian
J vanishes. Why bother about this existence question? The reason to worry
about this is that higher-order terms may destroy the periodic solution. A
simple example is the equation

ẍ + x = εx3 − εnẋ

with n a natural number ≥ 2. We can satisfy the periodicity conditions to
O(εn−1), but the equation has no periodic solution.

10.3 Periodic Nonautonomous Equations

In this section, we consider nonautonomous, periodic equations so the period
is a priori fixed. There are still many subtle problems here, as the period T0 of
a periodic solution of the unperturbed equation can be near the period of the
perturbation or quite distinct. To fix the idea, we consider the two-dimensional
equation

ẍ + x = εf(x, ẋ, t, ε).

We shall look for periodic solutions that can be continued for ε > 0. Let us
assume that the perturbation is T -periodic with a period near 2π. To apply the
periodicity condition, it is convenient to have periodicity 2π so we transform
time with a factor

ω−2 = 1 − εβ(ε), β(ε) = β0 + εβ1 + · · ·

with known constants β0, β1, · · · .
In autonomous equations, we have the translation property that if y(t)

is a solution, y(t − a) with a an arbitrary constant is also a solution. This
is not the case in nonautonomous equations, so it is natural to introduce a
phase ψ that will in general depend on ε: ψ(ε) = ψ0 + εψ1 + ε2 · · · . The time
transformation becomes

ωt = θ − ψ(ε)

and the equation transforms with x′ = dx/dθ to

x′′ + x = εβ(ε)x + ε(1 − εβ(ε))f(x, (1 − εβ(ε))
1
2 x′, (1 − εβ(ε))

1
2 (θ − ψ(ε)), ε).
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We shall look for 2π-periodic solutions starting at

x(0) = a(ε), ẋ(0) = 0,

with the expansion a(ε) = a0 + εa1 + · · · , which still has to be determined.
As before, the differential equation can be transformed to an integral equa-

tion, in this case of the form

x(θ) = a(ε) cos θ + ε

∫ θ

0
F (x(s), x′(s), ψ(ε), s, ε, ) sin(θ − s)ds

with F = F (x, x′, ψ, θ, ε) or

F = β(ε)x + (1 − εβ(ε))f(x, (1 − εβ(ε))
1
2 x′, (1 − εβ(ε))

1
2 (θ − ψ(ε)), ε)

and with the periodicity condition x(θ + 2π) = x(θ) for each value of θ. So∫ 2π

0
F (x(s), x′(s), ψ(ε), s, ε) sin(θ − s)ds = 0.

We find the two conditions∫ 2π

0
F (x(s), x′(s), ψ(ε), s, ε) sin sds = 0,

∫ 2π

0
F (x(s), x′(s), ψ(ε), s, ε) cos sds = 0.

This is a system of two equations with two unknowns, a(ε) and ψ(ε), which
we shall study in a number of examples.

Example 10.7
(forced Van der Pol equation)
Consider the case of the Van der Pol equation with a small forcing

ẍ + x = εẋ(1 − x2) + εh cos ωt.

Using the transformations outlined above, we have

F = β(ε)x(θ) + (1 − εβ(ε))[(1 − εβ(ε))
1
2 x′(1 − x2(θ)) + h cos(θ − ψ(ε))],

which can be expanded to

F = β0a0 cos θ − a0 sin θ(1 − a2
0 cos2 s) + h cos(θ − ψ0) + ε · · · .

From the periodicity conditions, to first order we find

I1 = −a0

(
1 − 1

4
a2
0

)
+ h sin ψ0 = 0,

I2 = β0a0 + h cos ψ0 = 0.
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For the Jacobian, we find at lowest order

J0 =
∣∣∣∣ ∂(I1, I2)
∂(a0, ψ0)

∣∣∣∣ = |h|
∣∣∣∣
(

1 − 3
4
a2
0

)
sin ψ0 − β0 cos ψ0

∣∣∣∣ .
Exact 2π-periodic forcing means β0 = 0.

Exploring this case first, we find ψ0 = π/2, 3π/2, and

a0

(
1 − 1

4
a2
0

)
= ±h.

If |h| > h∗ = 4/(3
√

3), we have one solution; see Fig. 11.3. When |h| passes
the critical value h∗, there is a bifurcation producing three solutions. At the
value h = 0, we have returned to the “ordinary” Van der Pol equation that
has one periodic solution with a0 = 2.

If β0 = 0, we have J0 = |(1 − 3
4a2

0)h|. We observe that at the bifurcation
values h = h∗, 0, the Jacobian J0 vanishes.

If β0 
= 0, we have the relation

tanψ0 =
1
4a2

0 − 1
β0

and a similar analysis can be made.

Example 10.8
(damped and forced Duffing equation)
A fundamental example of mechanics is an oscillator built out of a Hamilto-
nian system with damping and forcing added. A relatively simple but basic
nonlinear case is

ẍ + εμẋ + x + εγx3 = εh cos ωt

with damping coefficient μ > 0. The equation of motion of the underlying
Hamiltonian system is obtained when μ = h = 0. Putting εγ = −1/6 produces
the first nonlinear term of the mathematical pendulum equation.

Using the formulas derived above, we have in this case

f = μẋ − γx3 + h cos ωt

and after transformation

F = β(ε)x(θ) + (1 − εβ(ε))[−(1 − εβ(ε))
1
2 μx′ − γx3 + h cos(θ − ψ(ε))],

which can be expanded to

F = β0a0 cos θ + μa0 sin θ − γa3
0 cos3 θ + h cos(θ − ψ0) + ε · · · .

The periodicity conditions to first order produce
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I1 = μa0 + h sin ψ0 = 0,

I2 = β0a0 − 3
4
γa3

0 + h cos ψ0 = 0.

The Jacobian to first order becomes

J0 =
∣∣∣∣ ∂(I1, I2)
∂(a0, ψ0)

∣∣∣∣ = |h|
∣∣∣∣μ sin ψ0 +

(
β0 − 9

4
γa2

0

)
cos ψ0

∣∣∣∣ .
Easiest to analyse is the case without damping, μ = 0. We have the periodicity
conditions

h sin ψ0 = 0, β0a0 − 3
4
γa3

0 + h cos ψ0 = 0,

so that ψ0 = 0, π, and two possibilities,

a0

(
β0 − 3

4
γa3

0

)
= ±h.

Interestingly, the product β0γ also plays a part in the bifurcations (the ex-
istence of periodic solutions). If β0γ > 0, we have one or three solutions
depending on the value of h, and if β0γ < 0, there is only one solution. This
picture also emerges from the Jacobian

J0 =
∣∣∣∣h
(

β0 − 9
4
γa2

0

)
cos ψ0

∣∣∣∣ .
We conclude that a small detuning of the forcing from exact 2π-periodicity is
essential to obtain interesting bifurcations. On taking β0 = 0, we find to first
order the periodicity conditions

h sin ψ0 = −μa0, h cos ψ0 =
3
4
γa3

0.

Again there are two possible solutions for the phase shift ψ0 corresponding
with one periodic solution each for whatever the values of h, μ, and γ(
= 0)
are. This is also illustrated by the Jacobian, which at an exact 2π-periodic
forcing, using the periodicity conditions, becomes

J0 = |h|
∣∣∣∣μ sin ψ0 − 9

4
γa2

0 cos ψ0

∣∣∣∣ = |a0|
∣∣∣∣μ2 +

27
16

γ2a4
0

∣∣∣∣ .
Example 10.9
(Mathieu equation)
Linear equations with periodic coefficients play an important part in physics
and engineering. A typical example is the π-periodic Mathieu equation that
can be written in the form

ẍ + (ω2 + ε cos 2t)x = 0.
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Of particular interest is usually the question of for which values of ω and ε
the solutions are stable (i.e., decreasing to zero) or unstable. The answer to
this question is guided by Floquet theory, which tells us that for ω fixed,
the (two) independent solutions of the equation can be written in the form
exp(λ(ε)t)p(t) with p(t) a π-periodic function. So the two possible expressions
for the so-called characteristic exponents λ(ε) - call them λ1 and λ2 - deter-
mine the stability of the solutions. Also from Floquet theory we have that
λ1(ε) + λ2(ε) = 0. For extensive introductions to Floquet theory, see Magnus
and Winkler (1966) and Yakubovich and Starzhinskii (1975), for summarising
introductions Hale (1963) or Verhulst (2000).

The expansion theorem tells us that the exponents λ1,2(ε) can be expanded
in a Taylor series with respect to ε with λ1(0) = ωi, λ2(0) = −ωi. This has im-
portant consequences. If ω is not close to a natural number, any perturbation
of λ1,2(0) will cause it to move along the imaginary axis, so for the possibility
of instability we only have to consider the cases of ω near 1, 2, 3, · · · .

It turns out that in an ω, ε-diagram, we have domains emerging from the
ω-axis, called Floquet tongues, where the solutions are unstable; see Fig. 10.1.
The boundaries of these tongues correspond with the values of ω, ε where the
solutions are periodic (i.e., they are neutrally stable). We shall determine these
tongues in two cases.

One should note that if we have for a linear homogeneous equation one
periodic solution, we have a one-parameter family of periodic solutions and
definitely no uniqueness. In this case, the boundaries of the tongues corre-
spond with periodic solutions, so the two independent solutions are periodic
and have the same period. However, this uniqueness question need not bother
us, as we know a priori that in this case families of periodic solutions exist.

We assume that ω2 = m2 −εβ(ε) with m = 1, 2, · · · and β(ε) = β0 +β1ε+
· · · a known Taylor series in ε. The equation becomes

ẍ + m2x = εβ(ε)x − ε cos 2tx.

It will turn out that in the cases m = 2, 3, · · · we have to perform higher-
order calculations. In the case of nonautonomous equations, it is then more
convenient to drop the phase-amplitude representation of the solutions and
use the transformation x, ẋ → y1, y2:

x(t) = y1(t) cos mt + y2(t) sinmt,

ẋ(t) = −my1(t) sinmt + my2(t) cos mt.

The expansion of x(t) will take the form x(t) = y1(0) cos mt + y2(0) sinmt +
ε · · · . For y1, y2, we find the equations

ẏ1 = − ε

m
(β(ε) − cos 2t)(y1 cos mt + y2 sin mt) sinmt,

ẏ2 =
ε

m
(β(ε) − cos 2t)(y1 cos mt + y2 sin mt) cos mt.
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Fig. 10.1. Instability (or Floquet) tongues of the Mathieu equation ẍ + (ω2 +
ε cos 2t)x = 0. The shaded domains correspond with instability.

The Mathieu equation can be transformed to an integral equation by formally
integrating the equations for y1 and y2 and substituting them into the expres-
sion for x(t).
We shall now use the periodicity conditions in various cases.

10.3.1 Frequency ω near 1

The solutions of the unperturbed (harmonic) equation are near 2π-periodic
and the forcing is π-periodic; such a forcing is called subharmonic. We will
look for 2π-periodic solutions, and we have the periodicity conditions∫ 2π

0
(β(ε) − cos 2s)(y1(s) cos s + y2(s) sin s) sin sds = 0,

∫ 2π

0
(β(ε) − cos 2s)(y1(s) cos s + y2(s) sin s) cos sds = 0.

Expanding, we find to first order the periodicity conditions

y2(0)
(

β0 +
1
2

)
= 0, y1(0)

(
β0 − 1

2

)
= 0.

For the boundaries of the Floquet tongue, we find β0 = ± 1
2 or to first order

ω2 = 1 ± 1
2ε.
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10.3.2 Frequency ω near 2

The solutions of the unperturbed equation are π-periodic like the forcing, and
so we are looking for π-periodic solutions of the Mathieu equation. We have∫ π

0
(β(ε) − cos 2s)(y1(s) cos s + y2(s) sin s) sin 2sds = 0,

∫ π

0
(β(ε) − cos 2s)(y1(s) cos s + y2(s) sin s) cos 2sds = 0.

To first order, we find

y2(0)β0 = 0, y1(0)β0 = 0.

To have nontrivial solutions, we conclude that β0 = 0 and we have to expand
to higher order. For this we compute

y1(t) = y1(0) − ε

2

∫ t

0
(− cos 2s)(y1(0) cos 2s + y2(0) sin 2s) cos 2sds + O(ε2)

= y1(0) + ε
3
16

[
y1(0)

(
4
3

− cos 2t − 1
3

cos 6t

)

+ y2(0)
(

sin 2t − 1
3

sin 6t
)]

+ O(ε2).

Substituting this expression in the periodicity conditions produces β1 = 1
48 or

β1 = − 5
48 . Accordingly, the Floquet tongue is bounded by

ω2 = 4 − 1
48

ε2 + · · · , ω2 = 4 +
5
48

ε2 + · · · .

Subsequent calculations will show that the neglected terms are O(ε4).
The calculations for m = 3, 4, · · · will be even more laborious. The same

holds when we want more precision (i.e., calculation of higher-order terms)
for a particular value of m. In this case, computer algebra can be very helpful,
especially as we know in advance here that the expansions are convergent. For
a computer algebra approach, see for instance Rand (1994).

Remark
In Section 15.3, we will show that, for certain values of ω near 1, the solutions
in the instability tongue are growing exponentially with ε

3
2 t. This is not in

contradiction with the Poincaré expansion theorem, as the theorem guarantees
the existence of an expansion in integer powers of ε on the timescale 1. Such
an expansion is clearly not valid on the timescale where the instability is
developing. For periodic solutions the situation is different, as in this case
timescale 1 implies “for all time” (assuming that the period does not depend
on the small parameter). An extensive discussion of timescales is given in
Chapter 11.
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Example 10.10
(Mathieu equation with damping)
In general, dissipation effects play a part in mechanics, so it seems natural to
look at the effect of damping on the Mathieu equation

ẍ + εμẋ + (ω2 + ε cos 2t)x = 0,

where μ is a positive coefficient and we consider the simplest case of ω near
1: ω2 = 1 − εβ0 + O(ε2). Omitting the O(ε2) terms, the equation becomes

ẍ + x = εβ0x − εμẋ − ε cos(2t)x.

In the periodicity conditions derived in the preceding example, we have to
add the term

μ(y1(0) sin s − y2(0) cos s)

to the integrand. This results in the periodicity conditions

1
2
μy1(0) +

(
β0 +

1
2

)
y2(0) = 0,(

β0 − 1
2

)
y1(0) − 1

2
μy2(0) = 0.

To have nontrivial solutions, the determinant has to be zero or

β0 = ±1
2

√
1 − μ2,

and for the boundaries of the instability domain, we find

ω2 = 1 ± 1
2
ε
√

1 − μ2.

As a consequence of damping, the instability domain of the Mathieu equation
shrinks and the tongue is lifted off the ω-axis.

10.4 Autoparametric Systems and Quenching

Consider a system consisting of weakly interacting subsystems. To fix the idea,
we consider a system with two degrees of freedom (four dimensions). Suppose
that in one degree of freedom stable motion is possible without interaction
with the other subsystem; such motion is usually called “normal mode be-
haviour” and in many cases this will be a (stable) periodic solution. Is this
normal mode stable in the four-dimensional system? If not, the corresponding
instability phenomenon is called autoparametric resonance.

This question is of particular interest in engineering problems where the
normal mode may represent undesirable behaviour of flexible structures such
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as vibrations of overhead transmission lines, connecting cables, or chimney
pipes. In the engineering context, normal modes are often called “semitrivial
solutions”. We may try to destabilise them by actually introducing a suitable
interacting system. This may result in destabilisation or energy reduction
of the undesirable normal mode; this process of permanent reduction of the
amplitude of the normal mode is called “quenching”, and the second oscillator,
which does the destabilisation, is called the “energy absorber”. For a survey
and treatment of such problems, see the monograph by Tondl et al. (2000).

In the case of Hamiltonian systems, we may have autoparametric resonance
and a normal mode may be destabilised; an example is the elastic pendulum.
However, because of the recurrence of the phase flow, we have no quenching.
For this we need energy dissipation in the second oscillator.

Fig. 10.2. Example of an autoparametric system with flow-induced vibrations. The
system consists of a single mass on a spring to which a pendulum is attached as an
energy absorber. The flow excites the mass and the spring but not the pendulum.

Example 10.11
(quenching of self-excited oscillations)
Consider the system

ẍ − ε(1 − ẋ2)ẋ + x = εf(x, y),
ÿ + εμẏ + q2y = εyg(x, y),

where μ is the (positive) damping constant, f(x, y) is an interaction term with
expansion that starts with quadratic terms, and the interaction term g(x, y)
starts with linear terms. In Fig. 10.2, a pendulum is attached as an example of
an energy absorber. The equation for x is typical for flow-induced vibrations,
where (1 − ẋ2)ẋ is usually called Rayleigh self-excitation.

To fix the idea, assume that f(x, y) = c1x
2 + c2xy + c3y

2, g(x, y) = d1x +
d2y. (This is different from the case where a pendulum is attached.) Putting
y = 0 produces normal mode self-excited oscillations described by

ẍ − ε(1 − ẋ2)ẋ + x = εc1x
2.
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As in Example 10.5 for the Van der Pol equation, we transform time by
ωt = θ, ω−2 = 1 − εη(ε) to find

x′′ + x = εη(ε)x + ε(1 − εη(ε))
1
2 x′(1 − (1 − εη(ε))−1x′2) + ε(1 − εη(ε))c1x

2

with unknown initial conditions x(0) = a(ε), x′ = 0. The periodicity condi-
tions at lowest order become

−
∫ 2π

0
[a(0) sin s(1 − a2(0) sin2 s) + c1a

2(0) cos2 s] sin sds = 0,

πη(0)a(0) −
∫ 2π

0
[a(0) sin s(1 − a2(0) sin2 s) + c1a

2(0) cos2 s] cos sds = 0.

After integration, we find as for the Van der Pol equation

a(0)
(

1 − 1
4
a2(0)

)
= 0,

η(0)a(0) = 0,

so, apart from the trivial solution, we have a(0) = 2, η(0) = 0. (The solu-
tion a(0) = −2 produces the same approximation.) A periodic solution φ(t)
branches off at amplitude 2 with first-order approximation x0(t) = 2 cos t. For
the periodic solution we have the estimate φ(t) = 2 cos t + O(ε).

To study the stability of this normal mode solution, we put x(t) = φ(t)+u.
Substitution in the equation for x and using that φ(t) is a solution, we find

ü+u = ε(1− φ̇2)u̇− ε(2φ̇u̇+ u̇2)(φ̇+ u̇)+ ε(c1(2φu+u2)+ c2(φ+u)y + c3y
2).

Also, we substitute x(t) = φ(t) + u in the equation for y. To determine the
stability of φ(t), we linearise the system and replace φ(t) by its first-order
approximation x0(t) to obtain

ü + u = ε(1 − 12 sin2 t)u̇ + ε4c1u cos t + ε2c2y cos t,

ÿ + q2y = −εμẏ + ε2d1y cos t.

The equations are in a certain sense decoupled: first we can solve the problem
for y, after which we consider the problem for u. This decoupling happens
often in autoparametric systems.

As in Example 10.9, we use the transformation y, ẏ → y1, y2:

y(t) = y1(t) cos qt + y2(t) sin qt,

ẏ(t) = −qy1(t) sin qt + qy2(t) cos qt.

The expansion will take the form y(t) = y1(0) cos qt + y2(0) sin qt + ε · · · . For
y1, y2, we find the equations
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ẏ1 = −ε

q
[μqy1(t) sin qt − μqy2(t) cos qt + 2d1(y1 cos qt + y2 sin qt) cos t] sin qt,

ẏ2 =
ε

q
[μqy1(t) sin qt − μqy2(t) cos qt + 2d1(y1 cos qt + y2 sin qt) cos t] cos qt.

Integration and application of the periodicity conditions leads at first order
to nontrivial results if q = 1

2 . We find

1
2
μy1 − d1y2 = 0,

d1y1 − 1
2
μy2 = 0.

We have nontrivial solutions if the determinant of the matrix of coefficients
vanishes, or

μ2 = 4d2
1.

If the damping coefficient μ satisfies 0 ≤ μ ≤ 2|d1|, we have instability with re-
spect to perturbations orthogonal to the normal mode (in the y− ẏ direction);
if μ > 2|d1|, we have stability.

It is an interesting question whether perturbations in the normal mode
plane can destabilise the normal mode. For this we have to solve the equation
for u. With the choice q = 1

2 and if c2 
= 0, we find that u = 0 is unstable; the
calculation is left to the reader.

10.5 The Radius of Convergence

When obtaining a power series expansion with respect to ε by the Poincaré-
Lindstedt method, we have a convergent series for the periodic solution. So,
in contrast with the results for most asymptotic expansions, it makes sense to
ask the question of to what value of ε the series converges.

In the paper by Andersen and Geer (1982), where 164 terms were calcu-
lated for the expansion of the periodic solution of the van der Pol equation,
the numerics surprisingly suggests convergence until ε = Os(1). These re-
sults become credible when looking at the analytic estimates by Grebenikov
and Ryabov (1983). After introducing majorising equations for the expansion,
Grebenikov and Ryabov give some examples. First, for the Duffing equation
with forcing,

ẍ + x − εx3 = εa sin t.

Grebenikov and Ryabov show that the convergence of the Poincaré-Lindstedt
expansion for the periodic solution holds for

0 ≤ ε ≤ 1.11|a|− 2
3 .

In the case of the Mathieu equation
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ẍ + (a + ε cos 2t)x = 0

near a = 1, they obtain convergence for

0 ≤ ε ≤ 5.65.

For the resonances a = 4, 9, Os(1) estimates are also found.
Finally, we note that the radius of convergence of the power series with

respect to the small parameter ε does not exclude continuation of the periodic
solution beyond the radius of convergence. A simple example is the equation

ẍ +
3
2
εẋ + x = −3 sin 2t.

The equation contains a unique periodic solution

φ(t) =
1

1 + ε2 sin 2t +
ε

1 + ε2 cos 2t

that has a convergent series expansion for 0 ≤ ε < 1 but exists for all values
of ε.

10.6 Guide to the Literature

The techniques discussed in this chapter were already in use in the eigh-
teenth and nineteenth centuries, but the mathematical formulation of such
results for initial value problems for ordinary differential equations was given
by Henri Poincaré. Usually his method of using the expansion theorem to
construct periodic solutions is called the Poincaré-Lindstedt method, as Lind-
stedt produced a formal calculation of this type. The procedure itself is older,
but Poincaré (1893, Vol. 2) was the first to present sound mathematics. His
1893 proof of the expansion theorem is based on majorising series and rather
complicated, see also Roseau (1966) for an account. More recent proofs use
a continuation of the problem into the complex domain in combination with
contraction; an example of such a proof is given in Verhulst (2000, Chapter
9).

The analysis is in fact an example of a very general problem formulation.
Consider an equation of the form

F (u, ε) = 0

with F a nonlinear operator on a linear space - a Hilbert or Banach space -
and with known solution u = u0 if ε = 0, so F (u0, 0) = 0. The problem is
then under what condition we can obtain for the solution a convergent series
of the form

u = u0 +
∑
n≥1

εnun.
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The operator F can be a function, a differential equation, or an integral equa-
tion and can take many other forms. Vainberg and Trenogin (1974) give a
general discussion, with the emphasis on Lyapunov-Schmidt techniques, and
many examples.

A survey of the implicit function theorem with modern extensions and ap-
plications is given by Krantz and Parks (2002). Application of the Poincaré-
Lindstedt method to systems with dimension higher than two poses no funda-
mental problem but requires laborious formula manipulation. An example of
an application to Hamiltonian systems with two degrees of freedom has been
presented in two papers by Presler and Broucke (1981a, 1981b). They apply
formal algebraic manipulation to obtain expansions of relatively high order.
Rand (1994) gives an introduction to the use of computer algebra in nonlinear
dynamics.

More general nonlinear equations, in particular integral equations, are con-
sidered by Vainberg and Trenogin (1974). The theoretical background and
many applications to perturbation problems in linear continuum mechanics
can be found in Sanchez Hubert and Sanchez Palencia (1989).

Apart from this well-founded work, there are applications to partial differ-
ential equations using the Poincaré-Lindstedt method formally. It is difficult
to assess the meaning of these results unless one has a priori knowledge about
the existence and smoothness of periodic solutions.

10.7 Exercises

Exercise 10.1 Consider the algebraic equation

x3 − (3 + ε)x + 2 = 0,

which has three real solutions for small ε > 0.
a. Can one obtain the solutions in a Taylor series with respect to ε?
b. Determine a two-term expansion for the solutions.

Exercise 10.2 Kepler’s equation for the gravitational two-body problem is

E − e sin E = M

with M (depending on the period) and e (eccentricity) given. Show that the
angle E, 0 ≤ E ≤ 2π, is determined uniquely.

Exercise 10.3 Consider the equation

ẋ = 1 − x + εx2.

If ε = 0, x = 1 is a stable equilibrium and it is easy to see that if ε > 0, a
stable equilibrium exists in a neighbourhood of x = 1.
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a. Apply the Poincaré expansion theorem to find the first two terms of the
expansion x0(t) + εx1(t) + · · · .
b. Compute the limit for t → +∞ of this approximation. Does this fit with
the observation about the stable equilibrium?

Exercise 10.4 In Example 10.4, we showed for the damped harmonic oscil-
lator that secular (unbounded) terms arise in the straightforward expansion.
One might argue that this is caused by the presence of linear terms in the per-
turbation, as these are the cause of linear resonance. Consider as an example
the problem

ẍ + x = εx2, x(0) = 1, ẋ(0) = 0.

a. Show that no secular terms arise for x0(t) and x1(t).
b. Do secular terms arise at higher order, for instance for x2(t)?

Exercise 10.5 Consider again the Van der Pol equation (Example 10.5) and
calculate the periodic solution to second order. The calculation to higher order
becomes laborious but it is possible to implement the procedure in a computer
programme. Andersen and Geer (1982) did this for the Van der Pol equation
to compute the first 164 terms.

Exercise 10.6 It will be clear from Examples 10.5 and 10.6 that an interest-
ing application arises in examples such as

ẍ + x = εx3 + ε2ẋ(1 − x2).

At lowest order, we find that the first-order Jacobian J0 vanishes, but in this
case a unique periodic solution exists. When going to second order in ε, the
Jacobian does not vanish and this unique periodic solution is found. Check
this statement and compute the approximation to this order.




