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Introduction

Perturbation theory, defined as the theory of approximating solutions of math-
ematical problems, goes back to ancient times. An important example is the
practice of measurement, where quantities such as distance and volume (such
as the contents of wine barrels) have been estimated by professional people
through the ages.

The theory of perturbations expanded very rapidly when mathematical
analysis was founded in the eighteenth century, and many classical results
in this field can be traced to Newton, Euler, Lagrange, Laplace, and others.
One of the most stimulating fields of application of that time was celestial me-
chanics, where the controversies and excitement about Newton’s gravitational
theory triggered many detailed calculational studies.

The establishment of more rigorous foundations of perturbation theory had
to wait until Poincaré (1886) and Stieltjes (1886) separately published papers
on asymptotic series, which are in general divergent; see also the discussion on
the literature at the end of Chapter 2. In the twentieth century, an additional
stimulus came from other fields of application. In 1905, Prandtl published a
paper on the motion of a fluid or gas with small viscosity along a body. In the
case of an airfoil moving through air, the problem is described by the Navier-
Stokes equations with large Reynolds number; see also Prandtl and Tietjens
(1934) and, for modern developments, Van Ingen (1998). Ting (2000) and
other authors discuss the boundary layer theory of fluids in a special issue
of the Zeitschrift für Angewandte Mathematik und Mechanik dedicated to
Ludwig Prandtl.

In this problem, there are two regions of interest: a boundary layer around
the solid body, where the velocity gradient becomes large, and the region
outside this layer, where we can neglect the velocity gradient and the viscosity.
The mathematical analysis of the problem uses this insight to develop an
appropriate perturbation theory in the case of the presence of boundary layers.
Notes on the historical development of boundary layer theory are given by
O’Malley (1991).
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As mentioned above, the roots of classical perturbation theory, which are
mainly in celestial mechanics, are quite old. A modern stimulus came from the
theory of nonlinear oscillations in electronics and mechanics. The name of the
Dutch physicist Balthasar van der Pol is connected with this field, for instance
in the theory of relaxation oscillations. One can find historical remarks in the
books by Bogoliubov and Mitropolsky (1961), Sanders and Verhulst (1985),
and Grasman (1987).

We conclude this introduction by giving some examples. Note that here
and henceforth ε will always be a small positive parameter:

0 < ε � 1.

Quantities and functions will be real unless explicitly stated otherwise.

Example 1.1
The first example is a series studied by Euler (1754) with partial sum

Sm(ε) =
m∑

n=0

(−1)nn!εn.

It is clear that the series diverges as, denoting the terms of the series by an,
we have ∣∣∣∣ an

an−1

∣∣∣∣ = nε.

However, the size of the terms for small values of ε does not increase much in
the beginning (i.e. if nε � 1), but growth seriously affects the partial sum for
larger values of m. The question is, can we use a number of the first terms of
such a divergent series to approximate a function in some sense? This looks
like a wild idea, but consider the function f(ε) defined by the convergent
integral

f(ε) =
∫ ∞

0
e−t dt

1 + εt
.

Partial integration leads to the expression

f(ε) = Sm(ε) + (−1)m+1(m + 1)!εm+1
∫ ∞

0
e−t dt

(1 + εt)m+2 .

The integral on the right-hand side converges, and we estimate

|f(ε) − Sm(ε)| ≤ (m + 1)!εm+1.

In some sense, to be made precise later on, for ε small enough, Sm constitutes
an approximation of f . To be more explicit, we give some numerical details.

ε f(ε) S2(ε) = 1 − ε + 2ε2

.05 .9543 .9550
.10 .9156 .9200
.20 .8521 .8800
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To see when the divergence becomes effective, we list Sm(.10) for m =
1, · · · , 21. The best approximation in this case is found for m = 9.

In Fig. 1.1 we show the behaviour of the error |Sm − f(.1)| as a function
of m. It is typical for an asymptotic approximation that there is an optimal
choice of the number of terms that generates the best approximation. In ap-
proximations by a convergent series, there is not such a finite optimal choice
and usually we take as many terms as possible.

m Sm(f(.1) = .9156) m Sm(f(.1) = .9156)
0 1 11 .9154
1 .9000 12 .9159
2 .9200 13 .9153
3 .9140 14 .9161
4 .9164 15 .9148
5 .9152 16 .9169
6 .9159 17 .9134
7 .9154 18 .9198
8 .9158 19 .9076
9 .9155 20 .9319
10 .9158 21 .8809
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Fig. 1.1. The error |Sm − f(.1)| as a function of m; this behaviour is typical for an
asymptotic approximation that generally does not converge to the solution.

We shall now discuss some perturbation problems arising from differential
equations.

Example 1.2
The function φε(x) is defined for x ∈ [0, 1] as the solution of the differential
equation
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dφ

dx
+ εφ = cos x

with initial value φε(0) = 0.
Solving the “unperturbed” problem means putting ε = 0 in the equation;

we find, using the initial condition,

φ0(x) =
∫ x

0
cos tdt = sinx.

To solve the problem for ε > 0, we might try an expansion of the form

φε(x) =
∞∑

n=0

εnφn(x),

which, after substitution in the differential equation, leads to the recurrent
system

dφn

dx
= −φn−1, φn(0) = 0, n = 1, 2, · · · .

In this problem, it is natural to put all initial values for the higher-order
equations equal to zero. We find for the first correction to φ0(x), φ1(x) =
cos x − 1, so we have

φε(x) = sinx + ε(cos x − 1) + ε2 · · · .

The expansion for φε(x) is a so-called formal expansion, which leads to a
consistent construction of the successive terms. (Note that it is strange that
mathematicians call this a “formal” expansion when it is really “informal”.)
In this example, we can analyse the approximate character i.e., the validity
of this expansion, by writing down the solution of the problem, obtained by
variation of constants,

φε(x) = e−εx

∫ x

0
cos teεtdt.

We can study the relation between this solution and the formal expansion by
partial integration of the integral, see Fig. 1.2. We find

φε(x) = sinx + ε(cos x − e−εx) − ε2φε(x)

so that we have

φε(x) =
1

1 + ε2 (sin x + ε(cos x − e−εx)).

Expansion with respect to ε produces the validity of the formal approximation
on [0, 1].
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Fig. 1.2. Solution (full line) and formal expansion (dashed line) with ε = 0.1 in
Example 1.2. Calculating higher-order approximations will improve the approxima-
tion.

Example 1.3
Suppose now that we change the interval in which we are interested in the
behaviour of the solution of the equation in Example 1.2 to [0,∞]. Note that
the formal approximation to O(ε),

φε(x) = sinx + ε · · · ,

still holds on the whole interval but the approximation to O(ε2) is not a
formal approximation. For x in a neighbourhood of x = 0, we recover the
formal approximation from the exact solution to O(ε2), but for x very large,
we find from the exact solution the approximation

sin x + ε cos x.

This motivates us to be more precise in our notions of approximation; we shall
return to this in Chapter 2.

Example 1.4
We consider for x ∈ [0, 1] the function φε(x) defined by the initial value
problem

ε
dφ

dx
+ φ = cos x, φε(0) = 0.

The equation is nearly the same as in Example 1.2 but, as will be apparent
shortly, the different location of ε changes the problem drastically. Substitut-
ing again a formal expansion of the form
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φε(x) =
∞∑

n=0

εnφn(x)

produces, after regrouping the terms,

φ0 − cos x +
∞∑

n=1

εn

(
φn +

dφn−1

dx

)
= 0.

So we have φ0 = cos x, φn = −dφn−1
dx , n = 1, 2, · · · , and as a formal expansion

φε(x) = cos x + ε sin x − ε2 cos x + · · · .

However, the expansion makes little sense, as we cannot satisfy the initial con-
dition! To understand what is going on, we write down the solution obtained
by variation of parameters,

φε(x) =
1
ε
e−x/ε

∫ x

0
et/ε cos tdt.

We expand the integral by partial integration to find

φε(x) = cos x − e−x/ε + e−x/ε

∫ x

0
et/ε sin tdt.

The function exp(−x/ε) is quickly varying in a neighbourhood of x = 0, see
Fig. 1.3. For say, x ≥

√
ε, this term is very small; we call it “exponentially

small”.
To order m, we find

φε(x) =
∑m

n=0(−1)nεn[cos(n)(x) − e−x/ε cos(n)(0)]
+ (−1)m+1εme−x/ε

∫ x

0 et/ε cos(m+1)(t)dt.

Introducing the expansion

Sm(x) =
m∑

n=0

(−1)nε(n)[cos(n)(x) − e− x
ε cos(n)(0)],

we have in [0, 1]

|φε(x) − Sm(x)| ≤ C εme− x
ε

∫ x

0 e
t
ε dt

≤ C εm+1
(
1 − e− x

ε

)
.

Note that Sm(x) satisfies the initial condition and represents an approximation
of the solution. The structure of the expansion, however, is essentially different
from the formal expansion. On the other hand, the formal expansion represents
the solution well outside a neighbourhood of x = 0.

In the next chapter, we shall make our terminology more precise. This is
essential to avoid confusion and to obtain a fair appraisal of the results to be
obtained by expansion techniques.
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Fig. 1.3. Solution (full line) and formal expansion (dashed line) with ε = 0.1 in
Example 1.4. The solution goes through a fast transition near x = 0.




