
Chapter 7

A HIGHER-ORDER FUNCTION APPROACH TO
EVOLVE RECURSIVE PROGRAMS

Tina Yû
Chevron Information Technology Company

Abstract We demonstrate a functional style recursion implementation to evolve recursive
programs. This approach re-expresses a recursive program using a non-recursive
application of a higher-order function. It divides a program recursion pattern into
two parts: the recursion code and the application of the code. With the higher-
order functions handling recursion code application, GP effort becomes focused
on the generation of recursion code. We employed this method to evolve two
recursive programs: a STRSTR C library function, and programs that produce
the Fibonacci sequence. In both cases, the program space defined by higher-
order functions are much easier for GP to search and to find a solution. We have
learned about higher-order function selection and fitness assignment through this
study. The next step will be to test the approach on applications with open-ended
solutions, such as evolutionary design.

Keywords: recursion, Fibonacci sequence, strstr, PolyGP, type systems, higher-order func­
tions, recursion patterns, filter, foldr, scanr, A abstraction, functional program­
ming languages, Haskell

!• Introduction
In August of 2000, I met Inman Harvey at the Seventh International Con­

ference on Artificial Life in Portland, Oregon. "I just finished my Ph.D in
genetic programming last year," I told Inman at the dinner table. "Great, I have
a challenge for you. Can you evolve (faster than random search) the STRSTR
program?"

94 GENETIC PROGRAMMING THEORY AND PRACTICE III

He was referring to the C library function which scans the first appearance
of one character string in another character string. If the first string does not
exist in the second string, STRSTR returns an empty string. For example ^

strstr (''example'\ ''test example'') = ''example''
strstr (''example'',''example test'') = ''example test''
strstr ("example" ,"test") ^ <' <'

This program clearly needs recursion or iteration, a subject which I spent half
of my Ph.D to investigate. Although I was eager to undertake the challenge,
many other projects had higher priorities at that time. It was not until early this
year when I got the chance to work on this problem.

In this chapter, I present my results of using a higher-order function ap­
proach to evolve the STRSTR program. Additionally, I will show that programs
generating the Fibonacci sequence can be evolved using higher-order functions.

This chapter is organized as follows: Section 2 explains higher-order func­
tions and reviews previous work on using higher-order functions to evolve
computer programs. In Section 3, the PolyGP system is described. Section
4 presents Genetic Programming (GP) (Koza, 1992) experiments to evolve
STRSTR. The experiments to generate programs producing the Fibonacci se­
quence are given in Section 5. In Section 6, we discuss our results and review
other approaches to evolve recursive programs. Finally, section 7 concludes
the chapter.

2, Higher-Order Functions and Program Evolution
Higher-order functions are functions which take other functions as inputs or

return functions as outputs. This ability to pass functions around as inputs and
outputs can be used to express patterns of recursion. A recursion pattern has
two components: operations (recursion code) and application of the operations.
By extracting the operations into a function and passing it to a higher-order
function, the operations can be carried out by the higher-order function.

For example, if the pattern of recursion is performing a series of operations
on every element of a list, the operation can be extracted as a function/ which
is then passed as an argument to the higher-order function map, which applies
it to every element of the list:

map f [] = []
map f list = cons (f (head list)) (map f (tail list))

map (+1) [1,2,3,4,5] = [2,3,4,5,6]

'in this study, STRSTR returns a character string itself instead of the pointer to the character string.

Evolving Recursive Programs Using Higher-Order Functions 95

Consequently, a recursive function can be re-expressed using a non-recursive
application of a higher-order function (Field and Harrison, 1988).

In a previous work, we have adapted this programming style to evolve recur­
sive EVEN-PARITY programs (Yu, 1999). Semantically, EVEN-PARITY takes
a list of Boolean inputs and returns True if an even number of inputs are True
and Fa l se otherwise. Experienced circuit design engineers might be able to
identify one or two familiar methods to obtain recursion. One example is ap­
plying XOR to each pair of the Boolean inputs and then negating the result as
the final output.

When combined with the higher-order function foldr (with polymorphic
types), the PolyGP system (described in Section 3) discovered 8 different recur­
sion patterns; each of which operates differently by applying different Boolean
function (xOR, NOR, NAND) to the Boolean input pairs (Yu,1999, Chapter 6).
This work not only shows that higher-order functions provide a feasible way to
evolve recursive programs, but also demonstrates the power of GP for discov­
ering solutions that are beyond human capability.

Higher-order functions are not restricted to express recursion patterns for list
data structures. Other data types, such as tree and integer, can have higher-order
functions defined over them to carry out the recursive operations. In Section 5,
we will show such an example. In that case, a higher-order function is defined
over an integer value. A set of operations are performed repeatedly until the
integer value reaches zero. We have applied this higher-order function to evolve
programs generating the Fibonacci sequence successfully.

Higher-order functions are not expressly limited to programs with recursion
patterns. Non-recursive programs can also incorporate higher-order functions
to create modular programs. As an argument to a higher-order function, a
function becomes a self-contained module (a A abstraction) in a program. This
module has its own identity and can only exchange materials with the same
kind of modules in another program during evolution. Consequently, higher-
order functions provide the ability to explore the regularity in a given problem
during GP evolution. This module mechanism has been incorporated with GP
to evolve financial technical trading rules based on S&P500 index (Yu et al.,
2004). Those results demonstrated that modular GP rules give higher returns
than the returns of non-modular GP rules.

96 GENETIC PROGRAMMING THEORY AND PRACTICE III

3. The PolyGP System
PolyGP (Yu, 1999) is a GP system which is able to evolve programs con­

taining higher-order functions. The programs have the following syntax:

exp :: c constant

I X identifier

I / built-in function

I expl exp2 application of one expression to another

I Xx,exp lambda abstraction

Constants and identifiers are given in the terminal set while built-in functions
are provided in the function set. Application of expressions and A abstractions
are constructed by the system.

Each program expression has an associated type. The types of constants and
identifiers are specified with known types or type variables. For example, the
input variable strl has type [char] and constant True has Boolean type.

s t r l : : [c h a r]
True: :Bool

Each function in the function set is also specified with its argument and
return types. For example, the function and takes two Boolean type inputs,
and returns a Boolean type output.

and::Bool-^Bool-^Bool

Higher-order functions have brackets around their function arguments. For
example,^ter takes two arguments: one is a function and the other is a [char]
type value. The function argument has type (c h a r ^ B o o l) , which indicates
that it is a function which takes one input of char type and return a Boolean
value. The output of filter is a [char] value.

f i l t e r : : (char-^Bool)—>[char]—>[char]

Using the specified type information, a type system selects type-matching
functions and terminals to construct type-correct program trees. A program
tree is grown from the top node downwards. There is a required type for the top
node of the tree. The type system selects a function whose return type matches
the required type. The selected function will require arguments to be created
at the next (lower) level in the tree; there will be type requirements for each
of those arguments. If the argument has a function type, a A abstraction tree
will be created. Otherwise, the type system will randomly select a function (or
a terminal) whose return type matches the new required type to construct the
argument node. This process is repeated many times until the permitted tree
depth is reached.

Evolving Recursive Programs Using Higher-Order Functions 97

Lambda Abstraction and Higher-order Functions
A abstractions are local function definitions, similar to function definitions in

a conventional language such as C. The following is an example A abstraction
together with an equivalent C function:

(Ax (+ X 1)) (A abstraction)
Inc (int x){return (x+1)} (C function)

However, A abstractions are anonymous and can not be invoked by name.
The application of A abstractions is done by passing them as arguments to a
higher-order function. The following shows the above defined A abstraction is
applied by the higher-order function twice:

twice f X = f (f x)
twice (Ax (+ X 1)) 2
= (A X (+ X 1))((A X (+ X D) 2)
= + ((A X (+ X D) 2) 1
= + (+ 2 1) 1
= + 3 1
= 4

The procedure to create A abstraction trees is similar to that used to create
the main program tree. The only difference is that their terminal set consists
not only of the terminal set used to create the main program, but also the input
variables to the A abstraction. Input variable naming in A abstractions follows a
simple rule: each input variable is uniquely named with a hash symbol followed
by an unique integer, e.g. #1, #2. This consistent naming style allows cross­
over to be easily performed between A abstraction trees with the same number
and the same type of inputs and outputs. Figure 7-1 gives the program tree with
higher-order function twice and A abstraction described in the above example.

Figure 7-1. The program tree with higher-order function twice and A abstraction.

98 GENETIC PROGRAMMING THEORY AND PRACTICE III

4. Evolving STRSTR Programs

To evolve STRSTR program, the first step is to select higher-order functions
that facilitate the evolution of recursion patterns. Functional programming
languages, such as Haskell , have a rich set of higher-order functions in their
libraries. From the Haskell library (Jones, 2002), we selected two higher-order
functions: filter and scanr.

The function filter applies a predicate to a list and returns the list of those
elements that satisfy the predicate.

f i l t e r : : (a—>Bool)--^[a]—>[a]
f i l t e r (/= ^pO [' a ' , ' p ' , ' p \ ' l ' , ' e ^] = [^ a ' , ' l \ ' e ']

The function scanr first applies its function argument if) to the last item
of the list argument and the second argument {qO). Next, it applies/ to the
penultimate item from the end of the list argument and the result from the
previous application. This operation continues until all elements in the list
argument is processed. It then retums the list of all intermediate and final
results.

scanr: : (a—>b—>b) —^b-^ [a] -^ [b]
scanr f qO [] = [qO]
scanr f qO (x:xs) = f x q:qs

where qs@(q_)= scanr f qO xs

scanr cons [] [̂ 'apple''] =
Capple''/'pple'\''ple'\''le'S''e''] .

In addition, the library function isPrefixOf is handy for implementing
STRSTR. It checks if the first argument is a prefix of the second argument.

i sP re f ixOf : : [a] - ^ [a]->Bool
isPrefixOf C a p p "] C a p p l e ' '] = True

With the 3 library functions, STRSTR function is defined as:

s t r s t r s t r l s t r 2 =
head (f i l t e r (isPref ixOf s t r l) (scanr cons [] s t r 2))

Here, scanr produces all sub-strings of the input str2. The function filter
checks each of the sub-strings and retums the list of the sub-strings where strl
is the prefix. The function head then retums the first sub-string in the list. This
STRSTR implementation works fine as long as strl occurs in str2. When this is
not the case, filter would retum an empty list, which will cause head retum a
mn-time error. To avoid such an error, a function headORnil is defined:

headORnil [] = []
headORnil list = head list

Evolving Recursive Programs Using Higher-Order Functions 99

The recursive STRSTR defined using higher-order functions is therefore:

strstr strl str2=

headORnil (filter (isPrefixOf strl) (scanr cons [] str2)

Figure 7-2a is the defined STRSTR program tree. As explained, the role of
higher-order functions in a recursive program is to apply the recursion code to
data inputs. The recursion code, however, is defined by programmers. In the
case where GP is the programmer, we have to provide terminals and functions
for GP to evolve the code. Figure 7-2b shows the areas of the code which are
generated by GP. In particular, the triangle with a A root is the recursion code for
filter to apply. The recursion code for scanr is inside the other triangle which
is also evolved by GP.

Figure 7-2a. The defined recursive Figure 7-2b. The STRSTR program tree
STRSTR program tree. structure; the code inside the two triangles

will be evolved by GR

Experimental Setup
Table 7-1 gives the function set for GP to evolve STRSTR. Among them,

three are higher-order functions: filter and scanr are selected from the Haskell
library while fold2lists is defined for GP to evolve a function operating like
isPrefixOf. foldllists is an extension of foldr. Instead of applying recursion
code on single list, foldllists applies recursion code over two lists. When an
empty list is encountered, foldllists returns different default value, depending
on which one of the two lists is empty.

fold21ists f defaultl default2 [] list2 = defaultl

fold21ists f defaultl default2 listl [] = default2

fold21ists f defaultl default2 (frontl:restl)(front2:rest2) =

f frontl front2 (fold21ists f defaultl default2 restl rest2)

The second column of Table 7-1 specifies the type of each function. We
used special types such as input and output to constrain the functions on

100 GENETIC PROGRAMMING THEORY AND PRACTICE III

certain tree nodes, so that the top two layers of the program trees have the same
structure as that shown in Figure 7-2b.

For example, we specify the return type of STRSTR to be [output]. The only
function which returns this type is headORniU which will always be selected as
the program tree root. The single argument of headORnil has type [[output]]
and the only function that returns this type \^filter, which will always be selected
as the argument node below headORnil, Although there are other ways to
constrain tree structures, typing is convenient since the PolyGP system has a
powerful type system to perform type checking for the program trees.

Table 7-1. Function Set

function type

headORnil \output\ —> [output]
filter {[char] -^ Bool) —̂ |c/iar] —> {output}
scanr {char -^ [char] -^ [char]) —> [output] -^ [output] —> [c/iar|
cons char -^ [char] —> [char]
fold21ists {char -^ char —> Bool —> Bool) —> Bool —> Bool —>

[input] —̂ [c/iar] —> Bool
and Bool -^ Bool —> Bool

Table 7-2 gives the terminal set. The variable strl will always be selected as
the fourth argument to fold2lists. Similarly, str2 and [] will always be selected
as either the second or the third argument to scanr. At a first look, it seems that
the program trees are so constrained that the generation of STRSTR programs
would be very easy. However, after careful examination, you will find that all
that have been specified are the skeleton of STRSTR program: the higher-order
functions and the inputs list which the recursion code will apply. The core of a
recursive program, the recursion code must be discovered by GP.

terminal

strl
true
[]

Table 7-2.

type

[input]
Bool
[output]

Terminal Set

terminal

str2
false

type

[output]
Bool

The GP parameters are given in Table 7-3 while the three test cases used to
evaluate GP programs are listed in Table 7-4. For this problem, three test cases
are sufficient as they include all possible scenarios: the first string appears at
the beginning of the second string; the first string appears in the middle of the
second string and the first string does not exist in the second string.

Evolving Recursive Programs Using Higher-Order Functions 101

population size
maximum tree depth
mutation rate
selection method

Table 7-3. GP Parameters

500 max generation
5 crossover rate
40% copy rate
tournament of size 2 number of runs

100
50%
10%
100

The fitness function is defined as follows:

/-p»w.^«+{r:Är^:r"^ length(i?^) > length(E^
length(Ä^)), otherwise

R is the output returned by a GP program and E is the expected output; diff
computes the number of different characters between the two outputs. If the
two outputs have different length, diff stops computing when the shorter output
ends. The length difference then becomes a penalty in the fitness calculation.
Note that a program which returns an output shorter than the expected length
is given a penalty five times higher than a program which returns an output
longer than the expected length. This is based on my observation that the most
frequently produced shorter output is an empty list. Such programs obtain
a reasonably good fitness by satisfying the easiest test case: case number 3.
However, they are very poor in handling the other two test cases. Once the
population converges toward that kind of program, some important terminal
nodes (e,g. False) become distinct and crossover or mutation are not able to
correct them. To avoid such premature convergence, programs which generate
shorter outputs than the expected outputs are penalized severely. A program
which satisfies all 3 test cases successfully has fitness 0.

case no.

1
2
3

Table 7-4.

strl

"sample"
"sample"
"sample"

Three Test Cases

str2

"sample test"
"test sample"
"test"

expected output

"sample test"
"sample"

Results
The program space turns out to be very easy for GP to search: all 100 runs

find a solution before generation 31. The "computation effort" required to find

102 GENETIC PROGRAMMING THEORY AND PRACTICE III

a solution is given in Figure 7-3a. The minimum number of programs GP has
to process in order to find a solution is 20,000.

The computational effort was calculated using the method described in (Koza,
1992). First, the cumulative probability of success by generation / using a
population size M (F(MJ)) is computes. This is the total number of of runs
that succeeded on or before the ith generation, divided by the total number runs
conducted. Next, the number of individuals that must be processed to produce a
solution by generation / with probability greater than z (by convention, z=99%)
is computed using the following equation:

The hardware CPU time used on a Pentium 4 machine to complete the 100
runs is 40 minutes, which is longer than our other GP experimental runs. This
is because each program has 3 recursions. In particular, fold2lists is inside of
filter. This nested recursion takes machines a long time to evaluate.

0 1 2 3 4 5 6 7 8 9 10 1112 13 14 15 16 17 13 19 20 21 22 23 24 25 26 27 28 29 30

Figure 7-3a. Computation effort required
to generate a STRSTR programs.

Figure 7-3b. The average population fit­
ness during program evolution.

After editing, all evolved STRSTR programs look the same (see Figure 7-4).
The scanr function generates a list of sub-strings from input str2. The filter
function then removes the sub-strings whose initial characters do not match the
input strl. The headORnil function then retums the first item in the resulting
list. If the resulting list is empty, headORnil retums an empty list.

To investigate if a random search can do as well a job as GP does for this
problem, we made 100 random search runs, each of which generated 20,000
programs randomly. None of them found a solution. We also evaluated the
average population fitness of the 100 GP runs (see Figure 7-3b). They show
the average population fitness improves as the evolution progress (the data after
generation 18 are insignificant as they are based on a very small number of

Evolving Recursive Programs Using Higher-Order Functions 103

Figure 7-4, The shortest STRSTR program generated by GP.

runs); the improvement is particularly evident during the first 8 generations. In
other words, GP search leads the population converge toward fitter solutions
and finds an optimal at the end. All the evidences indicate that fitness and
selection have positive impact on the search. GP is a better search algorithm
than random search to find STRSTR programs in this program search space.

5. Fibonacci Sequence
Fibonacci sequence is defined as the following:

«. X _ f 1 ,if n=Oorn=l
•̂ ^ ^ ~ I Ui-i + ni-2 > otherwise

To generate the first n values of the sequence, a program has to compute the
two previous sequence values recursively for n time. The recursion, recursion
pattem in this case is therefore applying some operations over an integer value.
A higher-order function/oWn is designed for this pattem of recursion:

foldn: : ([int]—^ [int])^int—>input—» [output]—^ [output]

foldn f default 0 list = cons default list

foldn f default 1 list = cons default (foldn f default 0 list)

foldn f default n list = f (foldn f default n-1 list)

Here, list is an accumulator to store the sequence values generated so far. The
recursion code (/) is applied on the accumulator to compute the next sequence
value. As mentioned previously, the role of higher-order functions in a recursive
program is to apply the recursion code, which are generated by GP. In Figure 7-5,
the left triangle is the recursion code area. The right triangle is the default value.
Both of them are generated by GP . Similar to the previous experiment, we use

104 GENETIC PROGRAMMING THEORY AND PRACTICE III

special types input and output to constrain the functions and terminals on
certain tree nodes so that the evolved program trees have the specified structure.

Figure 7-5. The program tree structure; the area inside the two triangles are generated by GP.

Experimental Setup
The function and terminal sets are given in Table 7-5 and Table 7-6 respec­

tively. We specify [output] as the program return type, hence enforce/oWn,
the only function that returns this type, to be the program tree root . This
function has four arguments; the third one will always be the variable n and the
fourth one will always be the variable list. Initially, accumulator list is an empty
list. It grows as the sequence values are generated. Randomint is a random
number generator which returns a random integer value in the range of 0 and
3. The GP parameters are listed in Table 7-3.

Table 7-5. Function Set

function type

foldn
plus
minus
head
tail
cons

{[int] -^ [int]) —> int
int —> int —> int
int —> int -^ int
[int] -^ int
[int] —> int
int —> [int] —> [int]

input -^ [output] —> [output]

Table 7-6. Terminal Set

terminal type terminal type terminal type

input list [output] randomint int

Each evolved GP program is tested on n value of 8. The expected return list
is therefore [34,21,13,8,5,3,2,1,1] . The fitness function is basically the
same as the one in the previous experiments. One exception is that there is a

Evolving Recursive Programs Using Higher-Order Functions 105

run-time error penalty of 10 for programs applying head or tail to an empty
list. The fitness function is therefore:

/ -:: diff(R,E)+10*rtError+
length(R)-length(E)
5*(length(E)-length(R))

,length(R)> length(E)
»otherwise

where R is the return list while E is the expected list. The run-time error flag
rtError is 1 if a run time error is encountered during program fitness evaluation.
Otherwise, it is 0.

Results
This program space is slightly harder than the STRSTR program space for

GP. Among 100 runs, 97 found a solution; all of them are general solutions
work for any value of n. The computation effort required to find a solution is
given in Figure 7-6a. The minimum number of programs evaluated by GP to
find a solution is 33,000. The hardware CPU time on a Pentium 4 machine to
complete the 100 runs is 7 minutes. After editing, all programs become the
same as that shown in Figure 7-7.

The left most branch in the program tree is the recursion code that the higher-
order function foldn applies to a list. It is a function, specified by A, with
one argument (#1). The argument is an accumulator containing the Fibonacci
sequence values generated so far. The function adds the first two elements of the
list together and then concatenates the result to the accumulator. This operation
is repeated until the input n becomes 0, when the default value 1 is returned. It
is a general solution that produces the first n values of the Fibonacci sequence.

generation

Figure 7-6a. Computation effort required
to evolve a program generating Fibonacci
sequence.

Figure 7-6b. The average population fit­
ness during program evolution.

We also made 100 random search runs, each generates 33,000 programs
randomly. Similar to the results of the STRSTR experiments, none of them
found a program capable of producing the Fibonacci sequence. The average

106 GENETIC PROGRAMMING THEORY AND PRACTICE III

Figure 7-7. The shortest program generated by GP.

population fitness of the 100 GP runs in Figure 7-6b indicates that GP search
guided by fitness and selection has led the population converging toward fitter
programs and found an optimal at the end. This supports the case that GP is a
better search algorithm for this program space.

6. Discussion
Recursion is a powerful programming technique that not only reduces pro­

gram size through reuse but also improves program scalability. Evolving recur­
sive programs, however, has not been easy due to issues such as non-termination
and fitness assignment (Yu, 1999, Chapter 3). By re-expressing recursive pro­
grams using non-recursive application of a higher-order function, the produced
recursive programs always terminate. It is therefore a promising approach to
evolve recursive programs.

In a previous work, we have shown that when using higher-order function
foldr (with monomorphic types) to define recursive EVEN-PARITY, the problem
difficulty is greatly reduced. In fact, random search is sufficient to find a solution
in this program space (Yu, 1999, Chapter 7). In this chapter, we study two other
recursive programs using a similar approach. Both program spaces defined by
higher-order functions are not difficult for GP to find a solution. Random
search, however, could not find a solution. Further analysis of population
average fitness confirms that GP search is indeed superior than random search
in these two problem spaces.

One important characteristic of this approach is that GP effort is mostly
on evolving the recursion code (A abstractions). The application of the code
is handled by higher-order functions. It is important to note that GP has no
knowledge about how the recursion code is applied. The relationship between
the code and its application is leamed through the iterative process of programs

Evolving Recursive Programs Using Higher-Order Functions 107

evaluation, correction and selection. Our experimental results indicate that GP
is able to acquire such knowledge to evolve recursion code that work with the
higher-order function to produce correct outputs.

Although incorporating designed/selected higher-order functions is an effec­
tive way to evolve recursive programs, it has its shortcoming: domain knowl­
edge are not always available to design/select the appropriate higher-order func­
tions. A more general approach would be to let GP evolve the higher-order func­
tions suitable for a given problem. In this way, problems with poorly-defined
scope can also benefit this technique.

Koza and his colleagues proposed Automatic Defined Recursion (ADR) as
a way for GP to evolve recursive programs (Koza et al., 1999). An ADR tree
has 4 branches: condition, body, update and ground. Since an ADR can call
itself inside its body and the update branch may be ill-defined during program
evolution, an ADR may never terminate. It is therefore necessary to set an
ADR execution limit when evolving recursive programs. They have employed
ADR with architecture-alternating operations to successfully evolve programs
generating the Fibonacci sequence. However, the solution is not general and
does not work for input n beyond 12.

Through incremental program transformation, Olsson showed that recursive
programs can be developed by his ADATE system (Olsson, 1995). Instead of
relying on fitness-based selection and genetic operation, his system applies four
transformation operations to induce recursive programs. He gave some example
programs, such as a sorting algorithm, which were successfully generated using
this approach.

7. Conclusions
Functional implementation of recursive programs is not well understood nor

utilized in the GP community. The implementation does not make explicit re­
cursive calls. Instead, recursion is carried out by non-recursive application of
a higher-order function. This chapter explains this style of recursion imple­
mentation and demonstrates one way to incorporate it in a GP system to evolve
recursive programs.

In this GP system, higher-order functions are included in the function set.
Recursion occurs when a higher-order function appears in a program tree node.
We applied this GP system to evolve two recursive programs. In the first case,
a challenge by Inman Harvey, multiple recursions are involved. We selected
two Haskell library functions and designed one higher-order function for these
recursion patterns. In the second case, a higher-order function operating over
an integer value is designed. In both cases, the GP system is able to evolve
the recursive programs successfully by evaluating a small number of programs.
Random search, however, is not able to find a solution.

108 GENETIC PROGRAMMING THEORY AND PRACTICE III

These results clearly endorse GP ability to evolve recursive programs that
random search can not. Yet, the success is linked to the problem-specific higher-
order functions. When domain knowledge is available, like the two problems
we studied, identify such higher-order functions is not hard. However, when
this is not the case, it becomes unclear if GP is able to compose the recursive
code to work with a general purpose higher-order function. An altemative
approach is to have GP evolve the problem-specific higher-order functions. In
this way, the GP system is more general and can be applied to problems that do
not have a well-defined scope. This is the area of our future research.

Are we ready to tackle real-world problems using this approach? Maybe.
We have learned quite a deal about higher-order functions selection and fit­
ness assignment. However, both problems we studied have known solutions,
which help the selection of higher-order functions. Most real-world problems
are open-ended in the sense that there is no known optimum. However, this
does not preclude the possibility of applying the method. In particular, in the
area of evolutionary design where creativity is essential to problem solving, an
imperfect higher-order function might still be able to deliver good solutions.

8. Acknowledgements
I thank Lee Spector and Inman Harvey for their comments and suggestions.

References
Field, Anthony J. and Harrison, Peter G. (1988). Functional Programming.

Addison-Wesley Publishing Company.
Jones, Simon Peyton (2002). Haskell 98 language and libraries, the revised

report. Technical report, Haskell Org.
Koza, John R. (1992). Genetic Programming: On the Programming of Com­

puters by Means of Natural Selection, MIT Press, Cambridge, MA, USA.
Koza, John R., Andre, David, Bennett III, Forrest H, and Keane, Martin (1999).

Genetic Programming 3: Darwinian Invention and Problem Solving. Morgan
Kaufman.

Olsson, Roland (1995). Inductive functional programming using incremental
program transformation. Artificial Intelligence, 74(1):55-81.

Yu, Gwoing Tina (1999). An Analysis of the Impact of Functional Program­
ming Techniques on Genetic Programming. PhD thesis. University College,
London, Gower Street, London, WCIE 6BT.

Yu, Tina, Chen, Shu-Heng, and Kuo, Tzu-Wen (2004). Discovering financial
technical trading rules using genetic programming with lambda abstraction.
In U-M O'Reilly, T. Yu, R. Riolo and Worzel, B., editors. Genetic Program­
ming Theory and Practice 11, pages 11-30.

