
Chapter 19 

GENETIC PROGRAMMING IN INDUSTRIAL 
ANALOG CAD: APPLICATIONS 
AND CHALLENGES 

Trent McConaghy^ and Georges Gielen^ 
Katholieke Universiteit Leuven, Leuven, Belgium 

Abstract This paper investigates the application of genetic programming to problems in 
industrial analog computer-aided design (CAD). One CAD subdomain, analog 
structural synthesis, is an often-cited success within the genetic programming 
(GP) literature, yet industrial use remains elusive. We examine why this is, by 
drawing upon our own experiences in bringing analog CAD tools into industrial 
use. In sum, GP-synthesized designs need to be more robust in very specific 
ways. When robustness is considered, a GP methodology of today on a reasonable 
circuit problem would take 150 years on a 1,000-node 1-GHz cluster. Moore's 
Law cannot help either, because the problem itself is 'Anti-Mooreware' - it 
becomes more difficult as Moore's Law progresses. However, we believe the 
problem is still approachable with GP; it will just take a significant amount of 
' algorithm engineering.' We go on to describe the recent application of GP to two 
other analog CAD subdomains: symbolic modeling and behavioral modeling. In 
contrast to structural synthesis, they are easier from a GP perspective, but are 
already at a level such that they can be exploited in industry. Not only is GP the 
only approach that gives interpretable SPICE-accurate nonlinear models, it turns 
out to outperform nine other popular blackbox approaches in a set of six circuit 
modeling problems. 
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1. Introduction 
One of the flagship problems in Genetic Programming is that of analog 

structural synthesis, where the aim is to automatically determine the circuit 
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components, interconnections, and suggested component dimensions to meet 
a set of circuit design goals. This is an industrially relevant problem and a 
challenge to automated design techniques. 

In this domain, GP has evolved several patent-quality circuits (Koza et al., 
2003), which is a remarkable success by almost any measure. It is an espe­
cially notable accomplishment from an artificial intelligence perspective be­
cause "patent-worthiness" is a good measure of success for testing techniques 
in automated "creative" design. 

Given such impressive results, a GP researcher might have expected GP to 
be barnstorming the field of analog design. However, this is not the case; GP 
is actually not in use at all for topology design in industry. In fact, industrial 
analog engineers and CAD developers would be very surprised to hear that 
analog synthesis is considered a success within the field of GP. In effect, the 
bar of "GP success," even success on industrially relevant problems, is different 
than the bar of "usefulness to industry." How can GP make the transition? In 
this paper, we draw upon our experiences in industrial analog CAD, with the 
aim to identify what would make GP useful to that field. 

This chapter is organized as follows. We first describe analog CAD's context, 
then how GP-based synthesis would fit in. We highhght industrial robustness 
issues and tactics, which we use to reframe the problem of GP-based synthesis. 
Then, we show two other analog CAD applications where GP is making inroads: 
symbolic modeling and behavioral modeling. 

2. The Problem Domain: Analog CAD 
Context. Electronic Design Automation (EDA) is the field devoted to 
building computer-aided design (CAD) tools for electrical engineers. Because 
of the massive size of the semiconductor industry and the constant changes in 
design constraints due to Moore's Law, EDA is an active industry, with billions 
in revenue every year. Analog CAD (Gielen and Rutenbar, 2002) is a subfield 
devoted to tools for analog circuit designers. 

Design "Implementation". When researchers in GP read about GP for 
analog synthesis, they're used to reading about "front-end design," in which the 
problem input is circuit specifications {e.g. get power consumption < lOmW), 
and the target output is a "nedist," which describes the synthesized circuit in 
terms of components, interconnections, and component dimensions. 

That's actually just one step in a much broader flow. Somehow, that netlist 
has to get into the real world, /, e, as part of a discrete circuit, or as a "chip" (VLSI 
circuit). The industrial value is in chips. The back-end flow is as follows: Once 
the netlist is determined, it is converted into a "layout," which is essentially a 
set of overlapping polygons, where specific shapes represent specific types of 
components and interconnects. The layout is integrated into an overall system 
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layout, which is sent to a billion-dollar fabrication facility. The system layout 
is used for creation of process masks, which are a sort of physical filter on 
whether to dope / etch / etc, different parts of a silicon wafer. Process mask 
generation can cost hundreds of thousands of dollars or more. Using the masks, 
many chips at once are fabricated on a wafer. The chips are sliced apart from 
each other, then packaged, and finally tested. 

If a problem is detected after a step, then the process backtracks to the 
previous step. The most expensive step is creation of the process masks, so 
this is where it is most important to avoid backtracking. In a worst case, which 
still often happens in practice, a fabricated chip does not work at all, and to 
make it work one needs to go back to front-end design. This is known as a 
"respin." Obviously, respins are to be avoided because of mask costs, but even 
more importantly, loss of profitability in time-to-market. 

A new analog topology significandy raises the chance of a respin due to lack 
of experience with that topology; this makes adoption of an analog structural 
synthesis tool a risky proposition (and costly to try). But, ultimately, GP would 
need to demonstrate working chips. 

3. GP Application: Analog Structural Synthesis, Part I 

Designer Perspective 
Since the late 1980's, analog designers have been presented with impressive-

sounding claims about "analog synthesis." Researchers have labeled "analog 
synthesis" to mean many things, including global parameter optimization, au­
tomated conversion from netlist to layout, and automated topology design (the 
version that GP targets). For a survey, see (Gielen and Rutenbar, 2002). 

Our focus here is automated topology design. Most analog designers would 
acknowledge that if such a technology actually worked, it would drastically 
change the field. Their counterparts in digital design have already experienced 
such a revolution: the mid 1980's introduction of digital circuit logic synthesis. 

Unlike digital synthesis, few claims of analog synthesis have held true. The 
analog synthesis techniques were typically too unscalable or brittle to be useful 
in industry. Of the dozens of various types of analog synthesis technologies 
reported over the last twenty years, just a few have found their way into industrial 
use, and that was only recendy (Synopsys, 2005; Cadence, 2005b; Cadence, 
2005a). None of these do automated topology design. Thus, when designers 
hear about a new structural synthesis technology, from GP or elsewhere, they 
immediately question them, and to a much stronger degree than automation-
friendly digital designers. 

How do the claims of GP look, from a designer's perspective? 
For starters, they're not shocked, even when they see the patent results. 

With every other structural synthesis technology reported until now, something 
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was missing, something that Hmited its widespread industrial use. Despite their 
hmited understanding of GP, designers have no real reason to treat GP specially. 
They simply believe that something's missing for GP too. 

They're right. When an analog designer digs more deeply into the GP 
methodology for automated topology design, he/she finds problems. Some 
are obvious (to an electrical engineer), and some are subtle. But, whereas prior 
analog structural synthesis approaches had showstopping problems of brittle-
ness and scalability, we believe that GP has no such problems. Instead, GP faces 
''engineering-style'' challenges in problem setup, and especially in improving 
GP's speed. 

Current Industrial Practice 
It is fruitful to look at what flow and automation tools that industry uses 

which are closest to the analog structural synthesis problem. 
Figure 19-1 illustrates the overall flow of front-end design for cell-level 

circuits. 

Setup 

problem 

description, 

testbenches 

Choose 

topology 

Setup 

design space, 

optimization 

goals, 

initial sizing 

Auto-size 

circuit with 

performance 

optimization 

Choose 

circuit from 

tradeoff of 

possible 

circuits 

A 
T 

Adjust 

sizings 

to improve 

yield 

Sized, 

yield-robust 

circuit 

Figure 19-1. State of the Art Industrial Front End Analog Design Flow 

The automation happening at the front end is in local / global optimization 
tools (Synopsys, 2005; Cadence, 2005b), which take in a fixed topology, and 
automatically determine the component values in order to best meet the de­
sign specifications. This step is often referred to as circuit sizing or circuit 
optimization, rather than synthesis. The topology has been manually designed 
beforehand. Yield improvement is typically manual, though there is a shift to 
automation there too. 

These tools need to make chips that meet certain performance measures 
once they've been manufactured. Thus, the tools need a means for estimating 
performance and taking robustness into account. 

Performance Estimation and Robustness 
In analog synthesis, robustness is strongly related to performance estima­

tion. A performance estimator takes in a candidate design {i,e. a topology and 
component values in our case), and estimates the performances of the circuit. 



GP and Industrial Analog CAD 295 

To achieve a robust design, one has to estimate performance as accurately as 
possible. 

The ideal performance estimator would predict with 100% accuracy how 
a design performs after layout, manufacturing, and testing without actually 
fabricating it. It would run quickly enough to be invoked thousands or millions 
of times throughout optimization, to allow automated exploration of designs. 
SPICE is the most accurate and general estimator, but there are also faster, less 
general, less accurate ones. 

Layout issues. "Layout parasitics" are effects that were not accounted for 
prior to layout. An example layout parasitic is when the material between two 
wires acts like a circuit component {e,g, a capacitor) which is supposed to be 
an open circuit. 

Environmental conditions. The manufactured chip will need to work at the 
desired performance level, even as temperatures change, power supply changes, 
and load changes. These are conditions of the circuit's operating environment. 

Manufacturing variations. When manufacturing a VLSI circuit, random 
variations get introduced into the implementation of the designs as an inherent 
effect of the fabrication process. The automated tool must model this and handle 
it. 

The simplest model is so-called "Fast/Slow comers," which in effect try to 
capture the 3-sigma extremes in each type of transistor's operating speed due 
to manufacturing variations. This approach is popular for its simplicity and 
availability. However, comers do not model the problem well because they do 
not bracket the variations in analog design goals (they are really only suitable 
for digital design). 

Some approaches build empirically-based statistical models to estimate a 
probability density function, such as (Power et al., 1994). These models almost 
always make assumptions that render them inaccurate, for example, assuming 
that certain random variables are independent when they are not, or ignoring 
local statistical variations as in (Alpaydin et al, 2003). 

One approach (Drennan and McAndrew, 2003) uses a more physical basis 
for randomness modeling and is quite accurate, though an implication is that 
for every transistor, 8 random variables are introduced; thus, a medium sized 
circuit could have hundreds of random variables. 

Analog Structural Synthesis Problem 
The problem of analog structural synthesis is the same as the sizing prob­

lem, except the design space is broadened drastically, to include choice of the 
topology (devices and connections among devices, in addition to device sizes). 
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Synthesis cannot make assumptions about the topology; this has big implica­
tions, which we will discuss later. 

Current Industrial Practice: Details 
We are now ready to ask how the industrial tools account for robustness. 
For environmental variations, they use a set of user-defined "comers," with 

each comer specifying a temperature, power supply, etc. SPICE is used to 
estimate performance for each comer, and the worst-case value is taken. 

For layout, they can ignore it for a first-pass design. Then, after layout has 
been done, if layout parasitics degrade the performance too much, the most 
important parasitics can be inserted into the design and a local optimization 
performed. 

For manufacturing variations, they (Synopsys, 2005; Cadence, 2005b) use 
model comers, which as mentioned, is less accurate. There are many other 
approaches in the literature (Phelps et al., 2000; Schenkel et al., 2001; Smedt 
and Gielen, 2003), but each is forced to trade oif accuracy for feasible mntime, 
or pessimistic design. GP tactics such as (Teller and Andre, 1997; Hu and 
Goodman, 2004b) are too expensive for refining designs. 

4. Analog Design for Robustness (on a Fixed Topology) 
This section highlights how a fixed topology implicitly brings robustness, or 

conversely, what other robustness issues must be considered when evolving a 
topology. 

Robustness in Manual Topology Design 
By definition, optimization approaches operate on manually designed topolo­

gies. For VLSI circuits, and perhaps as a surprise to GPers, manually-designed 
topologies are almost always designed with robustness in mind. 

We now examine what analog designers do to make topologies more robust. 
We will refer to a well-known circuit shown in Figure 19-2. 

Topologies Are Designed For Process Variations. The effect of "local" 
or "mismatch" variations within a chip ("mismatch") has always been smaller 
than "global" variations which are between chips and between runs (1-2% vs. 
10-20%). 

The main tactic to deal with global variations is to design structures in which 
performance is a function of ratios ofsizings, rather than absolute values. For 
example, in common-source gain stages, a load resistor would have variation 
of 10-20%. So, designers use a PMOS load instead, matched up to an NMOS 
gain transistor, and gain is dependent on the ratios (e,g. in Figure 19-2, M5a is 
a resistive load for M3a). 



GP and Industrial Analog CAD 297 

nvb3Q 

nvb20-

%w] 
O-ip M1a M1b UUo 

I 
^ 

M2b 

n 
vss 
n2b 

Figure 19-2. "High-speed operational transconductance amplifier (OTA)" analog circuit 

Differential design is another tactic to move away from "absolute" values. 
Here, "mirrors of structures" are created, and the circuit operates on a difference 
between two voltages, rather than one voltage and ground. The Figure 19-2 
OTA is symmetrical about a vertical axis centered on M5 and M7; the output is 
a function of the difference between the positive and negative inputs, nin_p and 
nin_n. 

A precise current is expensive to generate; it's a much better idea to generate 
one or a few reference currents and copy them throughout the circuit with 
"current mirrors." The OTA does this: the three transistors on the left are the 
"biasing" circuitry to generate currents, which are then copied throughout the 
circuit. Sometimes a single current can be shared, rather than trying to match 
two separate currents. The OTA's differential pair (Mia and Mlb) does this: 
instead of having different "tail" currents, they share the same current which 
goes through M6 and M7. 

Negative feedback is a well-known general engineering technique for com­
promising some performance in the interest of precision. Analog circuits often 
do this too, such as for improving common-mode rejection ratio of a differential 
amplifier or for reducing variation of an amplifier's gain (Razavi, 2000). 

Trust and Re-Use. The topology is trusted because it has been created and 
characterized by expert analog designer(s), and has been fabricated and tested in 
many process generations. Topology re-use is widespread because past success 
means more confidence that the topology will work. A new topology is typically 
a derivative of an existing topology, because similarity maintains trust. 
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SPICE can lie. SPICE can lie due to problems in its device models, conver­
gence, and perhaps inadequate models of parasitics. SPICE transistor models 
seem to be in a continually inadequate state, with known deficiencies {e.g. non-
smooth transitions from one operating region to another). Part of the difficulty 
is that the models have to work for several processes, typically require hundreds 
of parameters that should be easy to extract, and strive to have as good a phys­
ical basis as possible. Because of this, designers consciously avoid transistor 
operating regions where the models are known to be inadequate. 

Whitebox Constraints. Topologies have whitebox constraints based on the 
strategy underlying the topology's design. Every transistor in a circuit has been 
designed with the assumption that it will be operating in a specific operating 
region; there is a good chance that the assumptions break down outside those 
constraints. 

Clear Path To Layout. The designer knows that, for manually-designed 
topologies, there is a clear path to layout; to a large extent, the designer has 
already anticipated the parasitics. Layout designers also have tactics to improve 
robustness, such as: folding transistors, guard rings, and careful routing to avoid 
cross-coupling between sensitive wires (Hastings, 2000; Lampaert et al., 1999). 
Analog layout synthesis is another analog CAD subproblem (Rutenbar and 
Cohn, 2000); it is difficult to model and solve well, as illustrated by continued 
research activity. When layout parasitics are more pronounced, such as in RF 
design, there are ways to tighten the coupling between sizing and layout design 
(DeSmedt and Gielen, 2003; Zhang et al., 2004; Bhattacharya et al., 2004). 

To properly account for layout effects in synthesis, one possibility is to unite 
the front-end design space (topology and circuit sizes) with the back- end space 
(layout), and approach the whole problem at once, as in Section 5.2 of (Koza 
et al., 2003). Unfortunately, runtime was 1.5 orders of magnitude slower, and 
that work drastically simplified the layout synthesis problem - it didn't even 
extract the parasitics from the layout before simulating the netlist. 

Synthesis Exaggerates "Cheating" of Search Algorithms. We say a 
"cheat" occurs when design has good measured performances, but which upon 
inspection is useless {e.g. not physically realizable). An example is too many 
long, narrow transistors; the solution is to add more constraints on width/length 
ratios. Each added constraint takes time to detect, correct, and re-run. There 
is more opportunity for structural synthesis to cheat compared to optimization, 
because synthesis design space is drastically larger, and SPICE can cheat more 
readily. Evolvable hardware research is filled with examples of odd designs; 
however, in non-reprogrammable analog VLSI, one cannot embrace odd designs 
because of the high cost of fabrication. 
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5. GP Application: Analog Structural Synthesis, Part II 

An Updated Model of the Analog Synthesis Problem 
Most earlier GP structural synthesis work such as (Koza et al, 1999; Lohn 

and Colombano, 1998; Zebulum et al., 2002; Sripramong and C.Toumazou, 
2002; Koza et al., 2003) did not have a very thorough model of the problem 
compared to analog CAD optimization, but is has been getting better recently. 
In (Koza et al., 2004a), comers have been added to account for environmental 
and (very roughly) manufacturing variations. And, they employ testbenches 
directly from an industrial CAD vendor (Synopsys, 2005). Though some recent 
research has not yet acknowledged the need for more robustness (Dastidar et al., 
2005). 

GP does not have whitebox constraints, because it does not make assump­
tions about what region each transistor will operate in. GP actually has stronger 
performance measures in one regard: it also tries to match waveforms of be­
havior. 

Compared to analog CAD optimization work, GP's biggest deficiency in 
problem modeling is its lack of a good model of manufacturing variations. The 
closest, robust HFC (Hu and Goodman, 2004a), did have Monte Carlo sampling, 
but the randomness model is not suitable for VLSI circuits. 

Beyond analog CAD optimization, GP-evolved circuits must somehow get 
the same advantages as a manually-designed topology. Such circuits must get 
designer trust, including an explanation and formulae for behavior; ultimately, 
successful fabrication and testing. On the way, there are the hurdles of SPICE 
(mis)behavior, layout parasitics, search space cheats, and extra challenges from 
first-order process variations. 

New Computational Challenges 
Ultimately, the only way to accurately model manufacturing variations is via 

simulation on good statistical models. Let us examine the runtime of a typical 
structural synthesis run that uses brute force Monte Carlo sampling. Except 
for layout, we will temporarily ignore all the extra challenges wrought by a 
non-fixed topology. 

Let us say: 8 comers (for environmental variations), 10 Monte Carlo sam­
ples (for manufacturing variations, 10 is optimistic), and simulation time of 1 
minute for a circuit at one comer and one sample on all testbenches on a 1 GHz 
machine. Parasitic-extracted layouts might mean lOx longer. Larger designs 
and/or longer-than-transient analyses could easily take 6x, 60x, or even 600x 
longer to simulate. 
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It is typical for a GP run to explore 100 million designs for more challenging 
problems. 1 billion or even 10 billion would not be unreasonable (Koza et al , 
2003). But let us have 1,000 1-Ghz machines in parallel. 

Then, total run time = 152 years! And it's even longer for tougher problems, 
where simulation time is 6x-600x longer and number of individuals is lOx-lOOx 
more. One might ask if Moore's Law can ease this challenge. 

The Impact of Moore's Law 
Mooreware vs. Anti-Mooreware. GP is considered an example of "Moore-
ware" (Koza et al., 1999), where an algorithm becomes more effective with more 
computational power, and therefore with the march of Moore's Law over time. 

However, Moore's Law, when attacking VLSI design problems, is a double-
edged sword. Each new technology generation also requires more modeling 
effort, and therefore more compute time! For example, the need for substrate 
noise modeling is growing; to model this takes 30 minutes on four modem 
processors (Soens et al., 2005), i.e, 120x more computational effort. 

Thus, analog synthesis is an "Anti-Mooreware" problem: it gets more diffi­
cult as Moore's Law progresses. So, we cannot rely on the "Mooreware" aspect 
of GP to eventually be fast enough. 
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Figure 19-3. Effects of Moore's Law on Analog Structural Synthesis 

Moore's Law Breaks Topologies. Topologies are getting constrained in 
new ways due to Moore' Law. Here is an example. Supply voltages and 
threshold voltages are steadily decreasing, but threshold voltages cannot scale 
as quickly because of fundamental physical constants. At some point, "cascode" 
configurations, which stack two transistors on top of each other, are unusable 
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Table 19-1. GP-generated symbolic circuit models with < 10% train and test error. 

Perf. Char. 

ALF 

fu 

PM 

voffset 

SRp 

SRn 

Expression 

-10.3 + 7.08e-5 / idl + 1.87 * ln( -1.95e-f9 + l.OOe+10 / (vsgl*vsg3) 
+ 1.42e+9 *(vds2*vsd5) / (vsgl*vgs2*vsg5*id2)) 

10( 5.68 - 0.03 * vsgl / vds2 - 55.43 * idl+ 5.63e-6 / idl ) 

90.5 + 190.6 * idl / vsgl + 22.2 * id2 / vds2 

- 2.00e-3 

2.36e+7 + 1.95e+4 * id2 / idl - 104.69 / id2 + 2.15e+9 * id2 + 4.63e+8 * idl 

- 5.72e+7 - 2.50e+l 1 * (idl*id2) / vgs2 + 5.53e4-6 * vds2 / vgs2 + 109.72 / idl 

{e.g, M4b and M5b in figure 19-2 are in cascode). The alternatives are less 
ideal: folded cascodes mean larger power consumption, and extra stages mean 
slower speed and instability risk. Figure 19-3 summarizes. 

The Road Ahead for GP and Structural Synthesis 
GP has come a long way along the road of analog structural synthesis and 

the milestones have been remarkable, but a full industrial-strength version is 
orders of magnitude away. 

Speeding up GP sufficiently may actually be possible because there are so 
many facets to the problem and the algorithms. It comes down to an "algo­
rithm engineering" problem. There are possible speedups at (1) the general EA 
level, for example in population management, handling modularity / hierarchy, 
exploiting advances in theory, reuse of run information, in representation and 
operators, parallelism; (2) at the robustness level, for example exploiting the 
transparency in manufacturing variations, environmental variations, and simu­
lation analyses; and (3) at the domain-specific level of cell-level analog circuits, 
for example to guide design of representation, operators and building blocks, 
special constraints, faster performance estimators. Koza has elaborated on some 
possibilities (Koza et al., 2004b). 

6. GP Application: Symbolic Modeling 
Given the overall goal of finding ways to aid analog engineers in the design 

process, we can ask ourselves what other problems GP might help in. That's a 
question that we asked in the last year, and so far we've demonstrated two other 
industrially-relevant applications. Let's examine each, starting with symbolic 
modeling. 
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In all designs that an engineer does, the more he or she understands a circuit, 
the more he will be able to improve it (in terms of performance and yield), 
and the more productive he or she will be. This is independent of whether the 
tools are automated or manual. Equations are a very useful tool for helping 
designers improve understanding, e.g. equations that map design variables 
{e.g. component values) to circuit performances {e.g. power consumption). 
Such equations have traditionally been created by hand, but they are so useful 
that since the early 90s, there has been considerable research effort to devise 
algorithms to automate this (Gielen, 2002). This subfield of of analog CAD 
is called "symbolic analysis" when the equations are directly extracted from 
the topology, or "symbolic modeling" when the equations come from SPICE 
simulations. The ideal approach would produce SPICE-accurate, interpretable 
equations of arbitrary nonlinear circuits. So far, no approach could do all those 
things at once. 

Interestingly (and almost surprisingly), no one had yet used OF in symbolic 
regression mode on SPICE-generated training data. So, we applied it, with a few 
modifications to GP to keep the expressions readily interpetable (McConaghy 
et al., 2005). Table 19-1 gives models for each of six different performance 
expressions, for the circuit previously examined (Figure 19-2). 
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Figure 19-4. Comparison of prediction error for several state-of-the-art modeling approaches. 

GP turned out to predict remarkably well. In a separate study on six circuit 
datasets (McConaghy and Gielen, 2005a), we found that GP could generate 
nonlinear expressions that outperformed several state-of-the-art approaches, as 
shown in Figure 19-4. 
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Table 19-2. GP-generated behavioral models for a latch circuit. 

Train error 

15.11% 

6.25% 

3.32% 

Expression 

dxl/dt = nBit 
dx2/dt = Bit*xl 

dxl/dt = - 21.3 - 9.28e-03 * bufclk * xl + l.Oe+04 * nBit * bufclk 

dxl/dt = 2.21e-02 - 3.72e-02 * xl - 21.8 * Bit*nBit * bufclk 
dx2/dt = nBit * bufclk * xl 
dx6/dt = xl 

1. GP Application: Behavioral Modeling 
Another challenge in circuit design is how to manage system-level design. 

One of its sub-problems is how to simulate a whole system in a feasible time, 
ideally fast enough to optimize with. A good approach is behavioral models, 
which approximate the dynamic behavior of each of the system's sub-blocks. 
Automatically devising behavioral models is very difficult: it's common for a 
student to spend his whole Ph.D on (manually) designing a good behavioral 
model for one building block! There's a long history of attempts to automated 
approaches as well, starting from linear, progressing to weakly nonlinear, and 
finally recent successes in strongly nonlinear behavioral models. But those 
approaches are, once again, black box. With behavioral modeling, even more 
than symbolic analysis, trustworthiness of a model is very important, and black-
box models compromise that because there is no guarantee how the model will 
perform under other input stimuli. 

Once again, we saw opportunity. We adapted our GP system to build dy­
namic models, and tested it on a strongly nonlinear circuit (McConaghy and 
Gielen, 2005b). It successfully built interpretable behavioral models with good 
prediction ability. Table 19-2 gives some of the behavioral models generated, 
at different levels of complexity and accuracy. 

8. Conclusions 
While GPers have considered analog synthesis a success story for GP, and 

with good reason from an AI perspective, it still remains for GP to be put into 
industrial analog design practice. 

To understand why, we examined the problem context and the details of how 
a design is implemented. It comes down to achieving more robust designs, with 
the main aim of reducing risk of costly manufacturing respins. Furthermore, it 
needs to be trusted by the designer. To address this, the GP computational effort 
goes up drastically, and Moore's Law cannot be relied upon to help because the 
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problem is "Anti-Mooreware." Thus, we have a grand "algorithm engineering" 
challenge for clever GP researchers. 

Structural synthesis is not the only opportunity for GP in analog CAD. We 
demonstrated GP as applied to two other applications, symbolic modeling and 
behavioral modeling, where the barrier to entry was far lower, and the industrial 
payoff much sooner. 

GP is not barnstorming the field of analog design... yet. But it is slowly 
gaining ground in multiple aspects of analog CAD. 
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