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Abstract This chapter gives a systematic view, based on the experience from The Dow 
Chemical Company, of the key issues for applying symbolic regression with 
Genetic Programming (GP) in industrial problems. The competitive 
advantages of GP are defined and several industrial problems appropriate for 
GP are recommended and referenced with specific applicafions in the 
chemical industry. A systemafic method for selecting the key GP parameters, 
based on stafisfical design of experiments, is proposed. The most significant 
technical and non-technical issues for delivering a successful GP industrial 
application are discussed briefly. 
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1. Introduction 

Recently, Genetic Programming (GP) has demonstrated its growing 
potential to resolve various industrial problems in modeling, process 
monitoring and optimization, and new product development (Kotanchek et 
al, 2003). In parallel to the theoretical development in the area of GP, much 
effort has been spent in developing a robust methodology for practical 
implementation that is applicable for a broad range of solutions. 
Unfortunately, the industrial application efforts are not so well published as 
the theoretical development and are virtually unknown to the research 
community. The objective of this chapter is to present a systematic view of 
the key results from exploiting GP in a large global company, such as The 
Dow Chemical Company. 
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The chapter is organized in the following manner. Some guidance on 
finding practical problems which are appropriate to be resolved by GP is 
given in Section 2. A methodology for selecting robust key GP parameters, 
based on Design Of Experiments (DOE), is described in Section 3. The key 
technical and non-technical issues to be resolved for successful GP 
applications in industry are presented in Section 4. 

2. When is Genetic Programming an Appropriate 
Industrial Solution? 

One of the significant factors for success in the current industrial R&D 
environment is the speed of introducing an emergent technology into 
practice. Usually a new technology is introduced in two phases: (1) 
capability exploration and (2) proof-of-concept application. In the first 
phase, the features of the technology are assessed and matched with the 
existing specific needs of each industry. An important component is the 
estimate of the potential effort for adopting the new technology into the 
existing work processes in research and manufacturing. Critical for business 
acceptance, however, is the second phase, which includes a convincing 
demonstration of the benefits in a well-selected case study. Usually it is 
based on real data and very often illustrates a novel solution to a difficult 
industrial problem. 

The first question that needs to be addressed in any new technology 
introduction is a clear definition of its competitive advantages relative to 
other, similar approaches. 

Competitive Advantages of Genetic Programming 

Computational intelligence is a research area that includes many 
competitive approaches with different technical nature (fiazzy logic, 
evolutionary computation, neural networks, swarm intelligence, etc.) for 
solving complex practical problems. On the one hand, this opens new 
opportunities and broadens the scope of potential applications. On the other 
hand, however, it requires additional efforts from industrial practitioners to 
understand the technical features of very diverse technologies and to 
estimate their potential value. The comparative analysis is not trivial and has 
to take into account not only the relative technical advantages but also the 
total cost-of-ownership (potential internal research, software development 
and maintenance, training, implementation efforts, etc.). 
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From our experience, one generic area where GP has demonstrated a 
clear competitive advantage is the development of simple empirical models. 
The specific approach within GP is symbolic regression (Koza, 1992). We 
have shown in several cases that the models generated by symbolic 
regression are a low-cost alternative to both high fidelity models (Kordon et 
al, 2003a) and expensive hardware analyzers (Kordon et al, 2003b). The 
specific competitive advantages of symbolic regression generated by GP and 
related to the generic area of empirical modeling are defined as follows: 

• No Ö priori modeling assumptions - GP model development does 
not require assumption space limited by physical considerations (as 
is in case of first-principle modeling) or by statistical considerations, 
such as variable independence, multivariate normal distribution and 
independent errors with zero mean and constant variance. 

• Empirical models with improved robustness - Using Pareto front 
GP (Smits and Kotanchek, 2004) allows the simulated evolution and 
model selection to be directed toward solutions based on an optimal 
balance between accuracy and expression complexity. The derived 
symbolic regression models have improved robustness during 
process changes relative to both conventional GP and neural-
network-based models. 

• Easy integration into existing work processes - Since the derived 
final solutions, generated by GP are symbolic expressions there is no 
need for specialized software environment for their run-time 
implementation. This feature allows for a relatively easy integration 
of the GP technology into most of the existing model development 
and deployment work processes. 

• Minimal training of the final user - The symbolic regression 
nature of the final solutions generated by GP is universally 
acceptable by any user with mathematical background at the high 
school level. This is not the case either with the first-principle 
models (where specific physical knowledge is required) or with the 
black-box models (where some training on neural networks is a 
must). In addition, a very important factor in favor of GP is that 
process engineers prefer mathematical expressions and very often 
can find an appropriate physical interpretation. They usually don't 
hide their distaste toward black boxes. 

• Low total cost of development, deployment, and maintenance -
Contrary to the common opinion, the key disadvantage of GP - the 
computationally intensive and time-consuming model generation-
does not add significantly to the development cost because it does 
not occipy the model developer's time. What is required from the 
model developer is to set the parameters at the beginning of the 
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simulation and to assess the selected models at the end. With the 
Pareto front GP method, the derived models have minimal total cost. 
They are derived and automatically selected at the optimum 
performance— complexity Pareto front and as such, have better 
robustness (I.e., reduced need for model re-tuning during process 
changes and maintenance cost), are parsimonious (even with 
potential interpretation by the experts), and with minimal 
implementation requirements and cost. The alternative approaches 
require specialized software, expertise on the specific technology, 
training on the approach and the related software, and significant 
model validation and support expenses. 

The major disadvantages of GP relative to other techniques are (1) the 
absence of commercial software infrastructure, (2) the computational effort 
typically required for the model building, and (3) typically lower absolute 
model accuracy relative to techniques such as neural networks. 

Recommendations for Industrial Problems Appropriate for 
Genetic Programming 

With this impressive list of competitive advantages over first-
principle, statistical and neural network frameworks for modeling, GP has 
very broad application potential in industry. Since the mid-90s we've 
explored the capabilities of GP, developed our intemal software toolboxes 
on MATLAB and Mathematica, and gradually introduced the technology to 
the businesses. Critical for the sustainability of the support of this R&D 
effort was the continuous series of successfiil applications that demonstrated 
the value from our GP development agenda. 

Our experience in applying GP to real industrial problems in the 
chemical industry suggests these suitable targets:: 

• Fast development of nonlinear empirical models - Symbolic-
regression problems are very suitable for industrial applications, and 
are often optimal in terms of both development and maintenance 
costs. One area with tremendous potential is inferential or soft 
sensors, i.e. empirical models that infer difficult-to-measure process 
parameters, such as NOx emissions, melt index, interface level, etc., 
from easy-to-measure process variables such as temperatures, 
pressures, flows, etc. (Kordon et al, 2003b). The current solutions in 
the market, which are based on neural networks, require frequent re
training and specialized run-time software. 

An example of an inferential sensor for propylene prediction 
based on an ensemble of four different models derived by Genetic 
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Programming is given in (Jordaan et al, 2004). The models were 
developed from an initial large manufacturing data set of 23 potential 
input variables and 6900 data points. The size of the data set was 
reduced by variable selection to 7 significant inputs and the models 
were generated by five independent GP runs. As a result of the 
model selection, a list of 12 models on the Pareto front was proposed 
for further evaluation to process engineers. All selected models have 
high performance (R^ of 0.97 - 0.98) and low complexity. After 
evaluating their extrapolation capabilities with "What-If' scenarios, 
the diversity of model inputs, and physical considerations, an 
ensemble of four models was selected for on-line implementation. 
Two of the models are shown below: 

GP Moden=A+B 
Tray64 _T "^Vapor 

2 

Rflx _ ßow 

GP Mockl2=C+D 
Feed^ -sJTrayAe _T - Tray56 _ T 

2 4 

Vcpor * Rflx _ flow 

where A, B, C, and D are fitting parameters, and all model inputs in 
the equations are continuous process measurements. 

These models are simple and interpretable by process engineers. 
The difference in model inputs increases the robustness of the 
estimation scheme in case of possible input sensor failure. The 
inferential sensor is in operation since May 2004. 
Emulation of complex first-principle models - Symbolic 
regression models can substitute parts of ftindamental models for 
on-line monitoring and optimization. The execution speed of most 
complex first-principle models is too slow for real-time operation. 
One effective solution is to replace a portion of the fundamental 
model with a simpler symbolic regression called an emulator, which 
is based only on a subset of variables. The data for the emulator are 
generated by design of experiments from the first-principle model. 
Usually the fundamental model is represented with several simple 
emulators, which are implemented on-line. One interesting benefit 
of emulators is that they can be used to validate fundamental models 
as well. The validation of a complex model in conditions where the 
process is chanting continuously requires tremendous efforts in data 
collection and numerous model parameter fittings. It is much easier 
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to validate the simple emulators and to infer the state of the complex 
model on the basis of the high correlation between them. An 
example of such an application for optimal handling of by-products 
is given in (Kordon et al, 2003a). The mechanistic model is very 
complex, and includes over 1500 chemical reactions with more than 
200 species. Ten input variables and 12 output variables were 
suggested by domain experts. A data set based on a four levels 
design of experiments was generated and used for model 
development and validation. For 7 of the outputs a linear emulator 
gave acceptable performance. For the remaining 5 emulators, a 
nonlinear model was derived by GP. An example of a nonlinear 
emulator selected by the experts is given below: 

6X3+X4 + X5+2X6+X2X9 z j -
_ (X2 +X7X1 ) 

ln(V X9X10 ) 

where Y is the predicted output (used for process optimization), and 
the X variables are measured process parameters. The emulators 
have been used for by-product optimization between two chemical 
plants in The Dow Chemical Company since March 2003. 

• Accelerated first-principle model building - Beginning first-
principle modeling not from scratch but from symbolic regression 
models and building blocks (transforms) can significantly reduce the 
hypothesis search space for potential physical/chemical 
mechanisms. New product development effort can be considerably 
reduced by eliminating unimportant variables, enabling rapid testing 
of new physical mechanisms and reducing the number of 
experiments for model validation. The large potential of this type of 
application was demonstrated in a case study for structure-property 
relationships (Kordon et al, 2002). The GP-augmented solution was 
similar to the fundamental model and was delivered with 
significantly less human effort (10 hours vs. 3 months). 

• Linearized transforms for Design Of Experiments - GP-
generated transforms of the input variables can eliminate significant 
lack of fit in linear regression models without the need to add 
expensive experiments to the original design, which can be time-
consuming, costly, or maybe technically infeasible because of 
extreme experimental conditions. An example of such type of 
application for a chemical process is given in (Castillo et al, 2002). 

A selected set of GP applications from the above-mentioned industrial 
problems is given in Table 16-1. For each application the following 
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information is given: initial size of the data set (including all potential 
inputs and data points), reduced size of the data set (after variable selection 
and data condensation), model structure (number of inputs used in the 
selected final models and the number of models; some of them are used in an 
ensemble), and a corresponding reference which contains a detailed 
description of the application, including the GP parameters used. In all the 
cases the final solutions obtained with the help of GP were parsimonious 
models with a significantly reduced number of inputs. 

Table 16-1. Selected GP applications in Dow chemical 

Application 

Inferential 
sensors 
Interface level 
prediction 
Interface level 
prediction 

Emissions 
prediction 

Biomass 
prediction 
Propylene 

prediction 
Emulators 
Chemical 
reactor 

1 Accelerated 
modeling 
Structure-

property 
Structure-
property 

Linearized 
transforms 
Chemical 

1 reactor model 

Initial data 
size 

(25 inputs X 

6500 data pts) 
(28 inputs X 
2850 data pts) 

(8 inputs X 
251 data pts) 

(10 inputs X 
705 data pts) 
(23 inputs X 

6900 data pts) 

(10 inputs X 
320 data pts) 

(5 inputs X 32 

data pts) 
(9 inputs X 24 
data pts) 

(4 inputs X 19 
data pts) 

Reduced 
data size 

(2 inputs X 

2000 data pts) 
(5 inputs X 
2850 data pts) 

(4 inputs X 34 
data pts) 

(10 inputs X 
705 data pts) 
(7 inputs X 

6900 data pts) 

(10 inputs X 
320 data pts) 

(5 inputs X 32 

data pts) 
(9 inputs X 24 
data pts) 

(4 inputs X 19 
data pts) 

Model 
structure 

3 models 

2 inputs 
One model 
3 inputs 

Two models 
4 inputs 

9 models ens 
2-3 inputs 
4 models ens 

2-3 inputs 

5 models 
8 inputs 

One model 

4 inputs 
7 models 
3-5 inputs 

3 transforms 

Reference 

Kordon and 

Smits, 2001 
Kalos et al, 
2003 

Kordon er a/, 
2003b 

Jordaan et al 
, 2004 
Jordaan et al 

, 2004 

Kordon e/a/, 
2003a 

Kordon et al, 

2002 
Kordon and 
Lue, 2004 

Castillo et 
al, 2002 
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3, How to Select the Genetic Programming Parameters 

Another important issue in industrial applications of GP is the GP 
algorithm parameter selection. As a first step, the parameters can be selected 
according to the rule-of-thumb recommendations of Koza (Koza, 1992). 
However, a more systematic statistical approach is recommended since the 
numerous parameters and settings used by GP introduce uncertainty about 
the way they affect the search algorithm and therefore the solution found. 
This has significant theoretical implications. Among them is the amount of 
information the parameters provide and the possible restrictions in the set of 
right solutions. It is therefore important to understand the effect of the 
parameters, the effect of the various combinations of them, and how robust 
they are to different data sets. This is of special importance given that the 
GP algorithm is used with a variety of data sets with different degrees of 
complexity. 

The optimum set of GP parameters can be determined through statistical 
experimental design techniques, such as design of experiments (DOE). This 
section explains how to use an appropriate DOE and the appropriate set of 
replications to understand the effect of GP parameters. 

Statistical Experimental Design: Design of Experiments 

Design of Experiments is a statistical approach that provides enhanced 
knowledge of a system by quantifying the effect of a set of inputs (factors) 
on an output (response). This is accomplished by systematically running 
experiments at different combinations of the factor settings (Box et al, 
1978). 

A classical DOE is the t design, in which all factors are investigated at 
an upper and lower level of a range, resulting in t experiments where k is 
the number of factors. This design has the advantage that the effects of the 
individual factors (main effects), as well as all possible interactions 
(combination of factors), can be estimated. However, the number of 
experimental runs increases rapidly as the number of factors increases. If the 
number of experiments is impractical, fractional factorial design can be used. 
Li this case, only a fraction of the fuU 2*" design is run by assuming that some 
interactions among factors are not significant. However, this assumption can 
sometimes confound the main effects and interactions, so they therefore 
cannot be estimated separately. 

Depending on the type of fractional factorial, main effects may be 
confounded with second-, third-, or fourth-order interactions. The level of 
confounding is dictated by the design resolution. The higher the design 
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resolution, the less confounding occurs among factors. For example, a 
resolution III design confounds main effects with second-order interactions; 
a resolution IV design confounds second-order interaction with other 
second-order interactions; and a resolution V design confounds second-order 
interactions with third-order interactions. Felt and Nordin (2000) 
investigated the effect of 17 GP parameters on three binary classification 
problems using highly fractionated designs assuming, in some cases, that 
even second- and third-order interaction are not significant, i,e., the 
combined effect of two factors and three factors has no effect on the 
response. However, these assumptions have not been verified. 

Given that the study of GP parameters involves computing experiments 
as opposed to pilot plant or laboratory experiments, it is desirable to run a 
full factorial when possible, so that any second and third order interaction 
which may have statistically significant effects on the response can be 
quantified. 

Pareto Front Genetic Programming DOE 

The GP experimental design we would like to describe differs from that 
of Felt and Nording in three aspects. First, it allows the estimation of 
interactions. Second, it uses the convergence to the Pareto front as the 
response variable. Third, the robustness of GP parameters to the different 
data sets is investigated with industrial data sets with different degrees of 
complexity based on dimension of input matrix and degree of input 
correlation. 

The need for a more systematic DOE approach is also driven by the 
significant benefits of the Pareto front-based GP, demonstrated in several 
industrial applications (Smits and Kotanchek, 2004). In this approach, the 
optimal models fall on the curve of the non-dominated solutions, called 
Pareto front, i.e., no other solution is better than the solutions on flie Pareto 
front in both complexity and performance. As discussed above in Section 
2.2, parsimonious models with high performance are the greatest importance 
in industry. These occupy the lower left comer of the Pareto front indicated 
in the diagram in Figure 16-2. In that context, the goal is to select GP 
parameters that consistently drive simulated evolution toward the lower left 
of this diagram. The Pareto front GP parameters (factors) and their ranges 
are presented in the following table: 
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Table 16-2. Factors for the Pareto Front GP Doe 

Factor 
xl - Number of cascades 
x2 - Number of generations 
x3 - Population size 
x4 - Probability of function selection 
x5 - Size of archive 

Low level (-1) 
10 
10 
100 
0.4 
100 

High Level (+1) 
50 
50 

500 
0.7 
500 

The response variable proposed is the convergence to the Pareto front 
(Smits and Kotanchek (2004) which includes the prediction error (1-R )̂ as 
the performance measure and the sum of the number of nodes of all sub-
equations as the value of complexity. The factor xl, number of cascades, is 
the number of independent runs with a freshly generated starting population. 
The ranges of the factors have been selected based on the experience from 
various types of practical problems, related to symbolic regression. Since the 
objective is a consistent Pareto front GP, they differ from the 
recommendations for the original GP. 

Once the factors and ranges are selected the necessary number of 
replications must be determined. This is of key importance because in the 
case cf GP parameters we do not know for sure if the variability of the 
response is the same for the different combination of factors. The following 
figure illustrates this situation for three factors. 

To estimate the number of required replications, an initial set of n 
replications can be run, from which the standard deviation of the response is 
calculated. In our case, the response is the convergence to the Pareto Front. 
Li this case a frxed level of complexity for the number of nodes is selected. 

For this level the corresponding number of models is observed and the 
standard deviation of the response between these models can be estimated. 
Figure 16-2 illustrates the concept. 

Once the standard deviation is calculated the number of replications can 
be found applying the half width (HW) confidence interval method 
(Montgomery, 1999)'. The half width can be use to represent the percent 
error in the point estimate of the mean response. The half width (HW) is 
defined as: 

100(l-a)% confidence interval is a range of values in which the true answer is believed to 
lie with 1- a probability. Usually a is set at 0.05 so that 95% confidence interval is 
calculated. Half width, sometimes called accuracy of the confidence interval, is the 
distance between the estimated mean and the upper or lower range of the confidence 
interval. 
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Where tn-i,a/2 is the upper all percentage point of the / distribution with n-1 
degrees of freedom, S is the standard deviation and n is the number of runs. 

Figure 16-1. Combination of factors in a 2 "̂  design showing different variances for the 
different factor combinations. 

A plot of the 100(l-a)% HW confidence interval reveals the number of 
replications above which little improvement in HW is obtained. This is 
illustrated in Fig. 3.3 with an example with 95% confidence interval in 
which 5'=0.08. The graph shows that beyond 10 replications there is little to 
be gained in terms of half width. 

The same procedure can be applied for the different combinations of 
factors, and the desirable half width can be fixed so that the experimental 
design can be completed with the required number of replications for the 
required accuracy. If we knew for certain that the variability of the response 
is about the same for the different combination of factors (experimental 
runs), we could find the confidence interval of the difference in mean 
response for any two combinations of factors, and find the number of 
replications required^ which in this case will be the same for all 
combinations of factors, (see, for example, Montgomery, 1999). 

spread of response for 
chosen level of 
complexity 

Pareto Front Models for 
different replications 

Complexity 100 

Figure 16-2. Spread of response for a chosen level of complexity. 

In this case the HW confidence interval is t a«-a,a/2 {2S In] ^ Where a is the number of 
combination of factors (experimental runs), S is the standard deviation and n is the number 
of replications 
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Robustness of Pareto Front GP Parameters to Different Data Sets. 

To address the issue of the robustness of GP parameters to the data set, the 
experimental design previously described needs to be executed for different 
industrial data sets with various degrees of complexity—for example, low, 
medium, and high. The complete set of experiments follows an orthogonal 
array design which is depicted in Figure 16-4 where yij is the response 
associated with the ith data set and thQjth combination of GP parameters. If 
there are n\ combinations of GP parameters and î  data sets, then we need 
«1*̂ 2 runs for the total experimental design and each run of the design will 
have the required number of replications as indicated by the desired half 
width. For simplicity. Figure 16-2 only shows one replication per 
experimental run. The n'l n2 experimental design is an orthogonal design 
composed of an inner array (GP parameter combinations) and an outer array 
(the data sets). This type of design allows quantifying the interactions 
(combined effect of two and three factors). It also reveals information on the 
combinations of GP parameters that result in a reasonable response even 
when different data sets are used (combinations of GP parameters that 
produce correct responses with minimum variation between data sets). Of 
particular importance in this case are the interactions between the GP 
parameters and the data sets since these interactions determine the sensitivity 
of the GP parameters to the type of data set. This is illustrated in the 
following diagram, Figure 16-5. 

0.15 

0.1 

0.05 

Half width of Confidence Interval 

• 

* • • ^ 

T i i i i i 

5 10 15 
Number of replications 

20 25 

Figure 16-3. 95% Half width confidence interval versus number of replications. 

In this case the diagram of the interaction shows a response that is not 
sensitive to the type of data set if the upper level (+) of parameter x\ is used. 
Determination of these types of interactions is fundamental to understand the 
robustness of Pareto front GP parameter combinations. 
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A proper statistical analysis of the orthogonal design can be valuable; it 
can provide information on how the response is affected by the Pareto front 
GP parameter, and how the choice of data can modify that effect. This can 
be used to determine the best set of parameters for different applications of 
GP symbolic regression in the chemical industry (and elsewhere). 

GP Parametei 

X2 X3 

Variables 

X4 X5 

Different Types of Data Sets 
Data1 

y11 
y12 
y13 
y14 
y15 
y16 
y17 
y18 
y19 
y110 
y111 
y112 
y113 
y114 
y115 
y116 
y117 
y118 
y119 
y120 
y121 
y122 
y123 
y124 
y125 
y126 
y127 
y128 
y129 
y130 
y131 
y132 

Data 2 

y21 
y22 
y23 
y24 
y25 
y26 
y27 
y28 
y29 
y210 
y211 
y212 
y213 
y214 
y215 
y216 
y217 
y218 
y219 
y220 
y221 
y222 
y223 
y224 
y225 
y226 
y227 
y228 
y229 
y230 
y231 
y232 

Data 3 

y31 
y32 
y33 
y34 
y35 
y36 
y37 
y38 
y39 
y310 
y311 
y312 
y313 
y314 
y315 
y316 
y317 
y318 
y319 
y320 
y321 
y322 
y323 
y324 
y325 
y326 
y327 
y328 
y329 
y330 
y331 
y332 

Figure 16-4. Orthogonal design with 32 runs in three data sets 

4. Issues with Genetic Programming Applications 

Applying a new technology, such as GP, in industry requires resolving 
not only many technical issues, but also systematically and patiently 
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handling problems of a non-technical nature. A short overview of the key 
technical and non-technical issues is given below. 

0 
(/> c o 
CO 
0 
Ql 

^ ^ 

I 

Data 
base 1 

^ x i ( - ) 

xi(+) 

1 ; 
1 

Data 
base 2 

Figure 16-5. Diagram of the interaction of the ith G? parameter with the data set type. 

Technical Shortcomings 

• Available computer infrastructure - Even with the help of 
Moore's Law, GP model development requires significant 
computational efforts. It is recommended to allocate a proper 
infrastructure, such as a computer cluster, to accelerate this 
process. The growing capability of grid computing to handle 
computationally intensive tasks is another option to improve the 
GP performance, especially in a big global corporation with 
thousand of computers. However, development of parallel GP 
algorithms in user-friendly software is needed. 

• Professional GP software- The current software options for GP 
implementation, either external or internally cfeveloped, are still 
used for algorithm development and research purposes. One 
of the obstacles to mass scale applications of GP is the lack of 
professional-seeming and user friendly software packages, from 
well-established vendors, that would also handle continuous 
product development and product support. Without such a 
product, the implementation effort is very high and it will be 
very difficult to convince people to use for GP industrial 
applications purposes. 

• Symbolic regression is still not accepted as a modeling 
standard - One of the difficulties in developing professional GP 
software is that symbolic regression via GP is still not 
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included in the recently developed Predictive Model Markup 
Language (PMML, 2004). Most of the other modeling 
methods— linear regression, neural networks, rule -based models, 
support vector machines, etc,, are techniques supported by this 
standard and included in the professional software of well-known 
empirical modeling vendors like the SAS Institute, SPSS, and 
StatSoft. The best-case scenario for more widespread industrial 
applications of symbolic regression with GP is to bundle the 
technology in the existing popular statistical and data mining 
tools, such as JMP, STATISTICA, Enterprise Miner, or some 
other package. If that were done, GP would be introduced to the 
modeling and statistical communities in a natural way and could 
be used in combination with the other well-known methods. 

• Special attention to data preparation - Another requirement of 
using symbolic regression in an integrated statistical software 
environment is the need for carefiil data preparation, including 
outlier removal, data pre-processing, scaling, normalization, etc., 
before beginning the simulated evolution. Existing GP software 
tools do not have built-in capabilities for data preparation. The 
hidden assumption is that the available data is of high quality, 
which for industrial data sets is often not the case. 

• Technical limitations of GP - In spite of the fast theoretical 
development since the early 90's, and increasing computational 
speed, GP still has several well-known limitations. Generating 
solutions in a high-dimensional search space takes significant 
time. Model selection is not trivial and is still more of an art than 
a science. Integrating heuristics and prior knowledge is not yet a 
straightforward process for practical applications. Generating 
complex dynamic systems by GP is still in its infancy. 

Non-technical Issues 

• Critical mass of developers - It is very important at this early 
phase of industrial applications of GP to coordinate development 
efforts. The probability for success based only on individual 
attempts is very low. The best-case scenario would be the 
creation of a virtual group that includes not only specialists 
directly involved in GP development and implementation, but 
also specialists with similar areas of expertise like machine 
learning, expert systems, and statistics. 

• GP marketing to business and research communities - Since 
GP is virtually unknown not only to business-related users but 
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also to other research communities as well, it is necessary to 
promote the approach by significant marketing efforts. Usually 
an approach to marketing research-grade includes a series of 
promotion meetings based on two different presentations. One of 
these presentations is directed toward the research communities 
focuses on the "technology kitchen," which gives enough 
technical details to describe GP, demonstrates the differences 
from other known methods, and clearly illustrates the 
competitive advantages of GP. The second presentation, for the 
business-related audience focuses on the "technology dishes," 
i.e., it demonstrates with specific industrial examples the types of 
applications that are appropriate for GP, describes the work 
process to develop, deploy, and support a GP application, and 
illustrates the potential financial benefits of applying GP. 

• Management support - Consistent management support for at 
least several years is critical for introducing any emerging 
technology, including GP. The best way to win this support is to 
define the expected research efforts and assess the potential 
benefits from specific application areas. Of decisive importance, 
however, is the demonstration of value creation by resolving 
practical problems as soon as possible. 

• Lack of initial credibility - As a new and virtually unknown 
approach, GP has almost no application history for convincing a 
potential user. Any GP application requires a risk-seeking culture 
and significant communication efforts. The successfiil 
application discussed in this chapter are a good start to gain 
credibility and increase the potential GP customer base. 

5, Summary 

Among the emerging technologies in the area of computational 
intelligence, GP has clear competitive advantages and potential for solving a 
broad range of industrial problems. Several application areas in the chemical 
industry—for example, inferential sensors, emulators of complex first-
principle models, accelerated development of fundamental models, and 
generation of linearized transforms for design-of-experiments-model-
building—already have demonstrated the power of GP and created value. 
However, a number of technical and non-technical issues, such as well-
defined data preparation, development of well-supported professional 
software packages, GP marketing to business and research communities, 
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consistent management support, etc., have to be resolved before we can 
expect mass-scale applications of GP in industry. 
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