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Abstract Bloat is a common and well studied problem in genetic programming. Size 
and depth limits are often used to combat bloat, but to date there has been little 
detailed exploration of the effects and biases of such limits. In this paper we 
present empirical analysis of the effects of size and depth limits on binary tree 
genetic programs. We find that size limits control population average size in 
much the same way as depth limits do. Our data suggests, however that size 
limits provide finer and more reliable control than depth limits, which has less of 
an impact upon tree shapes. 

Keywords: size limits, depth limits, genetic programming, population distributions, tree 
shape 

1. Introduction 
The causes and effects of code growth in Genetic Programming (GP) have 

been extensively researched (Langdon and Poli, 2002). In order to avoid the 
negative repercussions of bloat, a variety of corrective measures are employed 
to keep program sizes in check (Poli, 2003; Silva and Almeida, 2003; Luke and 
Panait, 2002; Koza, 1992). One frequently used method is to employ a fixed 
limit on program size by restricting either the depth or the size of syntax trees. 

While these limits have the desired effect of keeping the sizes down, little is 
known about what other impacts such limits might have on the dynamics of GP. 
Previous research has shown that decisions such as these can have significant 
effects on the behavior of runs (Gathercole and Ross, 1996) and on important 
structural features such as the size and shape distributions of populations (Poli 
and McPhee, 2003; McPhee and Poli, 2002). It would therefore be useful 
to better understand what structural effects size and depth limits might have, 
especially given their widespread use. 
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In (McPhee et al., 2004), we examined these issues using variable length 
linear structures. Here we extend that work to binary tree GPs. Several im
portant differences exist between these two structures. In variable length linear 
structures, which are essentially unary trees, a size limit is exactly the same as 
a depth limit. This is not the case in binary trees, where it is possible to have a 
large depth and small size. 

To evaluate the effects of depth and size limits, we performed a large number 
of empirical runs using various limits on a problem that induces bloat. In 
this chapter, we present and analyze data taken from these runs. The focus of 
this analysis is learning how depth and size limits affect the average size of 
individuals in a population and how they affect tree shape. From this analysis, 
we also draw conclusions about the differences between size and depth limits, 
and provide a tentative recommendation for the use of size limits. 

Of special significance to this result is the fact that depth limits have been 
widely used to combat bloat in genetic programming. This is in part a result of 
the use of depth limits in John Koza's first two highly influential books (Koza, 
1992; Koza, 1994). In explaining his use of depth limits, Koza noted 

... that for the default value of 17 for the maximum permissible depth ... for a 
program created by crossover is not a significant or relevant constraint on program 
size. In fact, this choice permits potentially enormous programs. For example, 
the largest permissible ... program consisting of entirely two-argument functions 
would contain 2^^ = 131,072 functions and terminals. (Koza, 1994, p. 659) 

This reasoning regarding depth limits certainly seems plausible, and depth 
limits have served the needed goal of reducing program size for over a decade. 
The results in this paper make it clear, though, that depth limits can severely 
constrain the space of trees that GP is likely to explore (supporting, e.g., (Daida, 
2003)). Using our definition of depth, a depth limit of 17 theoretically allows 
for a tree with 262,143 nodes. In doing this study we generated nearly 100 
million individuals with depth limit 17 using a problem with a strong tendency 
to bloat. The largest individual we generated had a size of 341. 

While many researchers (including Koza) have moved to using size limits, 
many continue to use depth limits. Such researchers may be under the mis
taken belief that these limits aren't significantly affecting the dynamics of their 
systems. It is valuable, then, to better understand the impact of both of these 
widely used types of limits. 

Surprisingly, our results show that, with appropriate values, both size and 
depth limits have nearly the same effects upon the average size of a population. 
The key difference between the two limits appears to be in how they affect 
the relationship between population average size and population average depth. 
Size limits do not seem to affect this relationship at all, while depth limits appear 
to bias the population towards slightly smaller average depths. 
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When comparing data from runs using a depth Hmit with that from runs 
using comparable size limits, we find that the distributions of sizes are extremely 
similar. The distribution of depths are also quite similar, but depth limits clearly 
restrict the depths much more than size limits restrict sizes. In both cases, the 
distributions are also very similar to the gamma-like distributions seen in earlier 
work on variable length linear structures. 

In Section 2 we present background material necessary for understanding 
the rest of the chapter, including problem set up and definition of terms. In 
Section 3 we present and analyze data generated from runs using depth limits, 
and in Section 4 we do the same for runs using size limits. Based on questions 
arising from those two sections, we present an analysis of the impact of depth 
and size limits on tree shape in Section 5. After discussing future avenues of 
research on this topic in Section 6, we summarize our conclusions in Section 5. 

2. Background 
In this section, we define several terms and concepts used in this chapter. We 

also define the test problem and parameters we use. 

Convergent average size and the strength of Umits 
In (McPhee et al., 2004), we defined the notion of a population's convergent 

average size in populations where a strong size limit is in place. We now extend 
this definition to account for tree depth. 

In the presence of bloat, the average size and average depth of individuals 
in any population increase rapidly during the early generations of a run. After 
this initial period of unchecked tree growth, the population "hits" the size or 
depth limit, and the population average size remains at a relatively constant 
value over time. We refer to this value as the run's convergent average size, and 
more precisely define it as the mean of the population's average size over all 
of the generations after a run has converged. Figure 15-1 in Section 3 provides 
several examples of the population average size "converging" after reaching a 
limit. 

Closely related to convergent average size is the notion of size or depth limit 
strength. Though all of the runs using limits that we examined experienced the 
convergence described above, it is clear from both (McPhee et al., 2004) and 
the work presented later in this chapter that not all limits cause the same amount 
of deviation from the convergent average size. Some limits cause very small 
amounts of variation from the convergent average size, and we refer to them 
as stronger limits than those which cause larger amounts of variation. Once 
again, this is easy to observe in Figure 15-1, where the larger limits clearly have 
more variation around the convergent average size than do the smaller limits. 
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We therefore define a size or depth limit's strength as the standard deviation of 
population average size over all of the generations after a run has converged. 

Binary Syntax Trees 
In our previous work (McPhee et al, 2004) we studied the impact of size 

limits on variable length linear structures. Those structures were essentially 
trees with two different unary functions (labeled 0 and 1) and a single type of 
leaf (labeled 0). 

In this chapter we extend our previous work to binary trees, which are more 
frequently used than linear structures. We will have two functions or internal 
nodes, again labeled 0 and 1, and a single type of leaf or terminal node, again 
labeled 0. Thus individuals will consist of binary trees where every internal 
node is labeled with a 0 or a 1, and every leaf is labeled with a 0. 

We also define the size of a tree to be the number of nodes (both internal 
nodes and leaves) in the tree. The depth of a tree is the number of edges along 
the longest path from the root node to a leaf. Thus, for example, a tree consisting 
of just a single leaf node has depth 0 and size one, while a full tree of depth 2 
has size 7. More generally, the size of a full tree of depth d is 2̂ "̂ ^ — 1. 

Crossover Operator 
Because our primary interest is the effect of size limits on code growth due to 

crossover, we focus exclusively on the standard subtree-swapping GP crossover 
operator. Thus there will be no use of mutation or any other genetic operators 
in this study. 

The crossover operator acts by removing a non-empty subtree of an individual 
and replacing it with a subtree taken from another individual. In the work 
reported here, the subtrees are chosen uniformly from the set of all a tree's 
(non-empty) subtrees, including the entire tree itself. Note that we are not using 
any sort of bias. This includes, for example, the common bias of choosing 90% 
of the crossover nodes as internal nodes. 

The One-Then-Zeros Problem 
We have used the one-then-zeros problem in a number of previous studies 

of the effect of bloat and genetic operators on variable length linear structures 
(McPhee et al., 2004; Rowe and McPhee, 2001). This problem has the advan
tage of being simple to explain and amenable to schema theory analysis. It 
also has a natural tendency to bloat, Le,, the average size of individuals tends 
to increase over time in a manner that is not directly dependent on their fitness. 

One limitation of this previous work has been the restriction to variable length 
linear structures, while a large proportion of the GP community uses (non-unary) 
tree structures to represent expressions and programs. In this study we extend 



The Effects of Size and Depth Limits on Tree Based Genetic Programming 227 

our earlier work to examine binary trees, and as a result need to generalize the 
one-then-zeros problem to the case of binary trees. 

We thus introduce the degree-N one-then-zeros problem. In this problem the 
trees will consist of N-ary internal nodes, all labeled either 0 or 1, and leaf nodes, 
all labeled 0. Regardless of the degree, the fitness function is the same. The 
fitness of a tree (or string in the unary case) is 1 if the root node is labeled 1, and 
all other nodes (internal and leaf) are labeled 0; the fitness is 0 otherwise. Thus 
the only fit trees are those that follow the pattern, and those trees are all equally 
fit. Given this, our earlier work used the degree-1 one-then-zeros problem, and 
the work presented here uses the degree-2 one-then-zeros problem. ̂  

Another important property of this problem is that it has no direct structural 
bias in the sense that (with two exceptions discussed below) the fitness function 
doesn't favor any particular sizes or shapes. Thus most of the data on sizes, 
depths, and tree shapes presented in this paper are being driven by the underlying 
dynamics of GP and standard subtree crossover, and not by particular properties 
of this problem. The two exceptions are (a) trees with a single (leaf) node are 
guaranteed to be unfit (since the only leaf label is 0), so there is a bias away 
from that particular tree shape and (b) this problem induces bloat, so there is a 
general pressure towards larger sizes and depths. If, as seems likely, the bloat 
is being driven in large part by the benefits of accurate replication (McPhee and 
Miller, 1995), then this can be obtained using any large tree, regardless of its 
shape and depth. 

Experimental Setup 
All the runs presented in this paper use the same parameters with the excep

tion of the size or limit. 

Number of generations All runs were for 3,000 generations. 

Control strategy We use a non-elitist generational control strategy. 

Initialization The populations were initialized entirely with fit individuals con
sisting of full trees of depth 2. 

Size and depth limits These were implemented such that an otherwise fit in
dividual received a fitness of 0 if its size was strictly greater than the size 
limit, or if its depth was strictly greater than the depth limit. 

Selection mechanism We used fitness proportionate selection in these exper
iments. Since all individuals have either fitness 0 or 1, this reduces to 
uniform selection from the set of individuals with fitness 1. 

^This could obviously be generalized further to account for trees with a mixture of node arities, but that 
would add complexity that would only complicate the current presentation. 
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Operators We used crossover exclusively in these experiments, so every in
dividual was constructed by choosing two fit parents and performing 
subtree crossover as described above. There was no mutation or copying 
of individuals from one generation to the next. 

In each run the convergent average size of the population was calculated by 
taking the mean value of the population averages in the final 1000 generations of 
the run. This region was selected because in all cases studied here the population 
had always converged by generation 2000. 

We did a series of about 30 runs each for a variety of size and depth limits in 
order to better understand the larger trends. In particular, we looked at a series 
of depth limits ranging from 5 to 50. We chose a set of 10 values following a 
geometric (exponential) series, yielding the set of values {5, 6, 8, 10, 13, 17, 
23, 29, 38, 50}. We chose the geometric series in an effort to broadly sample 
this range while still focusing more on the smaller values where (as was seen 
in (McPhee et al., 2004)) small differences were likely to be more significant. 
We then used a similar set of size limits ranging from 50 to 5,000, yielding the 
values {50, 83, 139, 232, 387, 645, 1077, 1796, 2997, 5000}. To better see 
the impact of some even larger size limits, we also did runs with size limits 
of 10,000, 12,000, and 15,000. Due to space limitations, only a representative 
sample of these runs are discussed in this paper, but the trends we present here 
hold for the entire data set. 

3. Depth Limit Analysis 
Figure 15-1 presents data about population average size over time for runs 

using a number of different depth limits. Each point in this graph represents 
the average size of the individuals in the population at a specific generation 
for one run. This provides excellent visual evidence that depth limits have an 
impact upon population size that is extremely similar to that of the size limits 
examined in (McPhee et al., 2004). In each case, we see the average size of 
the population increase rapidly in the early generations due to bloat and then 
quickly reach a convergent average size. 

Similar to (McPhee et al., 2004), the strength of the limit being used seems 
to control how much variation there is once the convergent average size has 
been reached. In the case of the depth limit 8 data, for instance, this variance is 
very small- no more than about 3. The depth limit 50 data, however, varies by 
as much as two hundred. Clearly, the stronger depth limit of 8 provides much 
tighter bounds on the convergent average size than does the weaker limit of 50. 
This observation has led us to the more precise definition of size limit strength 
given in Section 2. 

A key feature of Figure 15-1 is that the population average sizes of runs 
using depth limits are very small relative to the maximum size allowable by the 
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Figure 15-1. Population average size over time for a large number of runs using various depth 
limits. The "bands" of data correspond, from top to bottom, to runs using depth limits of 50, 29, 
17, and 8. 

depth limit. Depth limit 17, for instance, would allow for a maximum tree size 
of 2^̂  — 1, or 262,143. The convergent average size of the runs using depth 
17, however, is approximately 42. This is clearly very much smaller than the 
possible program sizes allowable by the limit, and it is not a priori obvious that 
this would be the case. As mentioned in Section 1, literature suggests that using 
a depth limit like 17 allows for the exploration of the space of very large trees. 
As we shall examine in Section 5, program sizes within a population appear to 
have a left skewed gamma distribution. This indicates that very little exploration 
of large sizes is in fact occurring. This is an important result, and suggests that 
existing assumptions about the behavior of depth limits are incorrect. 

Interestingly, the average depth of the population appears very correlated 
with the population's average size. In other words, there seems to be very little 
variation in average size for a given average depth. Figure 15-2 illustrates this 
phenomenon by presenting the average sizes that were contained in Figure 15-1 
and their corresponding average depths without accounting for time. Though 
there seems to be a general relationship between average size and average 
depth, it is also clear that each depth limit behaves slightly differently. There 
seems to be a "natural" relationship between average size and average depth 
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Figure 15-2. Population average size versus population average depth for runs using a variety 
of depth limits. The labeled clusters represent the space of convergent values for runs using 
different depth limits. 

that populations would follow in the absence of any size or depth limits. (See 
Figure 15-4 for an additional example, and Section 6 for additional discussion.) 
Indeed, it appears that for all of the depth limits we examined, runs follow this 
"natural" relationship until they reach convergence, where they cluster slightly 
below the "natural" curve. As the corresponding depths for thee average sizes 
are lower than those in the natural relationship, this suggests that depth limits 
cause trees to become slightly more bushy once the population has reached 
convergence. We examine this idea further in Section 5. 

An Exceptional Case 
We performed hundreds of runs to generate the data presented in this study. 

As we have shown, the behavior exhibited by runs using certain depth limits 
is remarkably consistent. In Section 4, we show this to be true for size limits 
as well. There was one run out of the hundreds, however, which displayed 
startlingly different behavior. 

This run, which used a depth limit of 23, had a convergent average size of 
about 50,000. Every other run using depth limit 23 had a convergent average 
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size of approximately 70. Further, there were individuals in the exceptional case 
which reached sizes of upwards of 3.7 million nodes. These observations made 
us conclude, initially, that some form of programming or software error was 
responsible for the deviant behavior of the run. Further investigation revealed 
the truth: the run, though definitely abnormal, was valid. 

Examination of the run's early generations suggested that, through a series 
of stochastic events, the population grew to consist of large, bushy trees, rather 
than the usual "stringy" trees which seem to be common in the other runs (see 
Section 5) and which are predicted by (Daida, 2003). This initial behavior likely 
produced a positive feedback loop which led to a continued increase in tree size. 
This resulted in the enormous average size observed after the population had 
reached convergence. 

This exceptional run, therefore, provides us with an example of the kind of 
behavior implied by the quote in Section 1. Though we are in no position to 
claim just how frequentiy this actually occurs, the fact that it happened only 
once in the hundreds of runs we performed suggests it is very rare. It also 
suggests disturbing implications about the reliability of depth limits. Though 
this errant run may be the exception (and our data certainly supports that idea), 
the fact that it is possible to unpredictably have program sizes balloon vastly 
beyond normal ranges makes the choice of using depth limits questionable. 
Size limits, for instance, would not have allowed the behavior described above, 
as they explicitly limit program size. 

There are at least two specific concerns about the possibility of this sort of 
aberrant run. The first is the obvious implications for computing resources. 
Using our hardware, for instance, a typical run using a depth limit of 23 took 
approximately five minutes to complete. The exceptional run took about 8 hours 
to complete. Though the times are, of course, specific to both our problem and 
hardware, it seems reasonable to assume a proportionate amount of resources 
would be required for a similar run using other problems and hardware. Second, 
and perhaps more important, is the problems of doing statistical analysis on a 
set of runs containing such outlier results. 

4. Size Limit Analysis 
Figure 15-3 presents data in much the same fashion as Figure 15-1, though 

for runs using a variety of size limits rather than depth limits. Like the runs 
using depth limits, discussed in Section 3, we see a distinct convergence in 
both size and depth after a very small number of generations, again mirroring 
the the findings of (McPhee et al., 2004). Figure 15-3 and 15-1 are in fact 
extremely similar. The scales of the two graphs differ, but this is simply due 
to the disparate strengths of the limits being shown. From a comparison of the 
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Figure 15-3. Population average size over time for a large number of runs using various size 
limits. The "bands" of data correspond, from top to bottom, to runs using size limits of 5000, 
1077, 387, and 139. 

two figures, it appears that size and depth limits have almost the same, if not 
identical, effects upon population average size. 

This is an important observation, as it is not conceptually obvious that size 
and depth limits would restrict population sizes in a similar way. Indeed, the 
fact that depth limits, which could conceivably allow an enormous range of 
sizes, behave in the same way as size limits, which explicitly limit tree size, is 
quite remarkable. 

Figure 15-4 shows the relationship between population average size and 
population average depth, as we did in in Figure 15-2 in Section 3. Unlike 
the depth limits analyzed in Section 3, the size limits used here do not display 
any marked deviance from the "natural'' relationship between average size and 
average depth discussed eariier. This is so much the case, in fact, that it becomes 
hard to discern which data corresponds to which size limit. 

By comparing Figures 15-2 and 15-4, several inferences can be made. The 
"natural" relationship between average size and average depth for this problem 
appears the same whether depth or size limits are used. Size limits seem to 
have no impact upon this relationship. Depth limits, however, evidently bias 
this relationship to some extent by lowering the depth slightly. Whether this bias 
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Figure 15-4. Population average size versus population average depth for a number of size 
limits. The labeled clusters represent the space of convergent values for runs using different 
depth limits. 

has a positive or negative impact upon a given run is almost certainly problem 
dependent, and there is no evidence to suggest what the extent of the bias might 
be for problems with fitness functions that alter tree shape. 

Sub-Quadratic Relationship Between Size and Depth Limits 
Given the close relationship between size and depth limits, an obvious ques

tion is, for a given depth limit, what size limit is roughly equivalent in the 
sense that it yields a similar convergent average size? An initial analysis of 
our data suggests that, at least for this problem, the relationship can be roughly 
approximated by 5 ^ 0.410063 * D^'^'^, where S is the size limit and D is the 
depth limit. The details of the constants aren't important except to note that 
the exponent is slightly less than two. Thus the "equivalent" size limit grows 
roughly with the square (or less) of the depth limit instead of the exponential 
relationship one might expect. 

From a practitioner's standpoint, this reinforces the idea that one can use 
size limits to achieve a qualitatively similar results to those obtained with depth 
limits. It also suggests that "equivalent" size limits are polynomial (quadratic 
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Figure 15-5. Visualization of ail of the 10,000 individuals taken from the last 10 generations 
(generations 2991-3000) of a representative run using depth limit 17 (on the left) and size limit 
118 (on the right). The inner circle is at depth 17, and the outer circle is at depth 40. 

or slightly sub-quadratic in our case) in the depth limit and not exponential as 
one might expect. 

5, Impact of Limits on Tree Shapes 
In the previous section we found that there are depth and size limits that lead 

to similar convergent average sizes. We saw earlier, however, that depth limits 
tend to push the tree shapes off the "natural" shape and size limits don't (see, 
e.g.. Figs 15-2 and 15-4). This then raises the question of whether the shapes 
of the trees using "equivalent" size and depth limits are in fact different. To see 
this we used the visualization techniques of (Daida et al., 2005) to visualize the 
entire population of a single run for two pairs of limits (depth limit 17 and size 
limit 118, and depth limit 50 and size limit 600) that are roughly equivalent. By 
equivalent, we mean that in each pair the size and depth limits produced similar 
convergent average sizes. 

Fig 15-5 shows a visualization of every individual present in each of the last 
10 generations {i.e., generations 2991 to 3000)^ of a representative run using 
depth limit 17 (on the left) and size limit 118 (on the right). The inner circle 
is at depth 17, so the size limit case has more trees that exceed that depth, and 
they exceed it by considerably more. Thus while the average sizes and depths 
of these two runs are extremely close, their distributions seem to be somewhat 
different. 

^Note, then, that each graph is displaying an aggregate view of 10,000 individuals. 
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Figure 15-6. Visualization of the entire population of 1000 individuals in the final generation 
(generation 3000) of a representative run using depth limit 50 (on the left) and size limit 600 (on 
the right). The inner circle is at depth 50, and the outer circle is at depth 100. 

Figure 15-6 shows a visualization of all the individuals present in the last 
generation (i.e., generation 3000) of a representative run using depth limit 50 
(on the left) and size limit 600 (on the right). The inner circle is at depth 50, 
and again the size limit case has more trees that exceed that depth, and they 
exceed it by considerably more. 

One of the key features of the visualizations in (Daida et al., 2005; Daida, 
2003) was the lack of variety of tree shapes, with the majority of the trees 
sharing a significant amount of structure. In our visualizations, however, there 
is a much wider variety of sizes and shapes. In Figure 15-5, for example, there 
are at least a few trees containing branches in almost every part of the space up 
to depth 17, whereas the population visualizations in (Daida et al., 2005; Daida, 
2003) cover only a tiny fraction of the space. 

It seems likely that this is a result of structural differences between the degree-
2 one-then-zeros problem used here, and the regression problems used in (Daida 
et al., 2005; Daida, 2003). In the one-then-zeros problem, all that matters is 
the simple pattern of having a one at the root and zeros elsewhere (which is 
largely independent of tree size and shape) and avoiding size or depth limits 
as appropriate. This implies that the "meaning" of subtrees is largely indepen
dent of context in the one-then-zeros problem, so a subtree can be moved, via 
crossover, to an entirely different location in the tree without (in many cases) 
changing the fitness. This is in strong contrast to most GP problems (like re
gression), where context is crucial to the "meaning" of a subtree, and moving a 
subtree to a different location often has a large, and typically detrimental, effect 
on the fitness. This context dependence presumably plays a large role in the 
uniformity of shapes seen in (Daida et al., 2005; Daida, 2003), just as the lack 
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Figure 15-7. Distribution of sizes (left) and depths (right) for depth limits 17 and 50 and size 
limits 118 and 600. Note the different scales for proportions. 

of this sort of dependence presumably plays a large role in the dispersion of 
shapes in our examples. 

Figures 15-5 and 15-6 speak volumes about the distribution of tree shapes, 
but leave open the question of how the sizes and depths are distributed. Previous 
work on variable length linear structures (Poli and McPhee, 2003; McPhee et al., 
2004) has shown a strong tendency for the size distribution of populations to 
be similar to a gamma distribution, with a very large proportion of short strings 
balancing out a small number of much longer strings. An open question has 
been whether these results would generalize to N-ary trees, and the distributions 
in Figure 15-7 suggest that they do. 

The graphs in Figure 15-7 show the distribution of sizes depths for the same 
two pairs of depth and size limits used in Figures 15-5 and 15-6. In all cases 
the distributions are again very similar within each pair, lending weight to the 
idea that corresponding size and depth limits can have very similar impacts on 
population structure. Note, for example, the size distributions for depth limit 
50 and size limit 600, which are nearly indistinguishable over the bulk of their 
range. 

We also find in all cases that the distributions are similar to the gamma-like 
distributions found in earlier work on variable length linear structures. Thus we 
find here that the distributions of both sizes and depths are skewed significantly 
to the left, with a large number of small sizes/depths being balanced by a much 
smaller number of large sizes/depths. 

These graphs also point out the specific impacts of size and depth limits on 
particular distributions. In the size distribution graph we see a sharp dip in the 
size limit 118 distribution right around size 118. There is a similar, but smaller, 
dip in the size limit 600 distribution that is off the right hand side of the graph. 
There are also similar, but more pronounced, dips in the depth distributions for 
the runs using depth limits, which again suggests that depth limits are having a 
stronger (perhaps undesirable) impact on our population distributions. 
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It's worth noting that in each case where a hmit creates a dip in the corre
sponding distribution, there is perforce an increase in some other part of the 
distribution to compensate. In the depth limit 17 depth distribution, for ex
ample, this is seen quite clearly as a significant increase in the proportions of 
depths around 10, indicating that a size limit of 118 allows for a slightly broader 
exploration of a range of depths than does the otherwise similar depth limit of 
17. Similarly, in the size limit 600 size distribution the small dip (not visible 
in this graph) leads to a small rise in the proportions of very small trees when 
compared to the depth limit 50 distribution. These dips and compensations 
are consistent with predictions from the "theory of holes" (Poli and McPhee, 
2003; McPhee et al., 2004), where schema theory analysis shows that limits 
like these (in the case of variable length linear structures) lead to the sort of 
shifts in distributions seen in this work. 

6. Future Work 
This study directly addresses one of the major questions from (McPhee et al., 

2004), namely how well the distribution results from variable length linear 
structures generalize to N-ary trees. Two other questions from that earlier paper 
remain open, however. First, prior results on different mutation operators (Rowe 
and McPhee, 2001) and combinations of genetic operators (McPhee and Poli, 
2002) suggest that these can themselves act to limit size and depth, so studying 
their interaction with explicit limits might be fruitful. Second, preliminary data 
suggests that population size plays a significant role in determining the strength 
of limits and the convergent average sizes and depths. The specifics of this 
relationship are unclear at the moment and warrant further investigation. 

Additionally, this work on binary trees raises questions about the "natural" 
relationship between size and depth (see Figures 15-2 and 15-4). This seems 
likely to be related to both the the Flajolet line (Langdon and Poli, 2002, Chapter 
11) and Region I of (Daida and Hilss, 2003). Exploring the details of these 
relationships is beyond the scope of this paper, but such an exploration would 
likely be fruitful. 

The work presented here is all for a single "toy" problem, and a key question 
is obviously how well the results generalize to other problems. Since our 
results on the relationship between size and shape look quite similar to results 
obtained by other researchers with a broader range of problems (Langdon and 
Poli, 2002; Daida and Hilss, 2003, Chapter 11), we can hope that other results 
will generalize (at least qualitatively) as well. As seen in Section 5, however, 
there is at least one important structural difference between the degree-2 one-
then-zeros problem and the regression problems studied in (Daida et al., 2005). 
Thus some additional work is clearly necessary to better understand which 
results will generalize to other problems, and to what degree. 
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The exceptional case discussed in Section 3 appears to be reasonably rare (we 
only saw such a thing once in over 300 runs), but we currently lack sufficient 
data to estimate how often it is likely to occur. Given how profoundly different 
the performance and results of such a run are going to be, knowing more about 
their frequency would be helpful. 

We've seen {e,g., Section 5) that there are size and depths limits that lead 
to similar outcomes. It would be useful to know more about the nature of 
that relationship, with the ultimate goal being the development of a model 
with predictive power that would allow us to map from size limits to roughly 
equivalent depth limits and vice versa. 

?• Conclusion 
Throughout this chapter, we have examined the behavior of depth limits and 

size limits on binary tree genetic programs. The results of this investigation 
have yielded several major findings. 

In Section 3 we show that depth limits, contrary to GP folklore, do not 
typically allow for large ranges of tree size. Instead, we observe that they 
produce tree sizes that are nearly the same as those produced by size limits with 
maximum sizes that are orders of magnitude below the maximum size possible 
using the depth limit. In only one case out of the hundreds of runs generated 
for this study did we observe tree sizes that were anywhere near the maximum 
possible using depth limits. This leads us to conclude that although in the vast 
majority of cases depth limits seem to control code growth very similarly to 
size limits, their consistency is questionable. Furthermore, since the one case 
where this inconsistency manifested took vastly more computational resources 
than the normal cases and led to results that were wildly different from the other 
cases, the unreliability of depth limits is worrying. 

In both Sections 3 and 4 we show that there is a well defined relationship 
between population average size and population average depth which is visible 
using either size limits or depth limits. Size limits did not appear to affect this 
relationship in any meaningful way, though depth limits appeared to add a small 
yet significant bias towards smaller depths. Though it is unclear how strong 
this bias actually is, lack of understanding regarding it supports the idea that 
using depth limits holds a great deal of uncertainty. 

Visualization of our populations suggests that runs with size limits are able to 
explore more of the tree space than those with depth limits. We also showed that 
both types of limits induce gamma-like distributions of both sizes and depths, 
similar to those seen in earlier work with variable length linear structures (Poli 
and McPhee, 2003; McPhee et al, 2004). 

Another finding of this study has been that our observations of how size 
limits affect population average size were almost identical to those made in our 
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earlier work using variable length linear structures (McPhee et al., 2004). This 
has important implications about the generalizability of research using linear 
structures. Use of analytical tools such as schema theory on N-ary syntax trees 
is exceedingly difficult, which makes the use of linear structures to simplify 
analysis desirable. A question that has always arisen from such analysis is 
whether the results can be generalized to N-ary trees. We show in this study 
that, in at least the context we use here, many of them do. 

It's important to remember that all these results are in the context laid out 
in Section 2, including the use of the degree-2 one-then-zeros problem, so care 
must be taken to not over generalize. We do believe however, that many of these 
results will generalize, at least qualitatively, to a variety of other problems. 
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