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An Overview of Group
Factor Screening

Max D. Morris

The idea of using a group screening procedure to identify the important or active factors
using a small designed experiment was described by Watson (1961) and is now applied
in a variety of areas of science and engineering. Watson’s work built on the earlier ideas
of Dorfman (1943) for screening pooled samples of blood in order to identify diseased
individuals using minimal resources. Generalizations and extensions of Watson’s technique
have been developed by a number of authors who have relaxed some of the stringent
assumptions of the original work to make the methods more widely applicable to real
problems. An overview of some of the proposed screening strategies is presented, including
the use of several stages of experimentation, the reuse of runs from earlier stages, and
screening techniques for detecting important main effects and interactions.

1 Introduction

In experimental programs involving large numbers of controllable factors, one of
the first goals is the identification of the subset of factors that have substantial
influence on the responses of interest. There are at least two practical reasons
for this. One is the empirical observation that, in many important physical sys-
tems, much or most of the variability in response variables can eventually be
traced to a relatively small number of factors—the concept of effect sparsity (see,
for example, Box and Meyer, 1986). When this is true, it is certainly sensible
to “trim down” the problem to the factors that are “effective” or “active” before
detailed experimentation begins. Even when effect sparsity does not hold, how-
ever, it is obvious that careful experimentation involving many factors simply
costs more than careful experimentation involving a few. Economic and opera-
tional reality may necessitate experimentation in phases, beginning with attempts
to characterize the influence of the apparently most important factors while con-
ditioning on reasonable fixed values for other possibly interesting factors. Hence,
small factor screening experiments are performed not to provide definitive es-
timates of parameters but to identify the parameters that should be estimated
first.
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Following Dorfman’s (1943) description of an analysis for screening physically
pooled samples of blood, the idea of using group screening strategies to design
factorial experiments was carefully described by Watson (1961) whose analysis is
the starting point for much of the subsequent research in this area. As a matter of
historical record, Watson credited W. S. Conner as having suggested the idea of
group factor screening to him.

This overview begins with a description of Watson’s treatment (Section 2) and
then briefly discusses a number of modifications and generalizations that have
been presented by others (see Kleijnen, 1987, and Du and Hwang, 2000, for
additional reviews). Section 3 discusses strategies involving more than two stages
and a variety of other issues, including the reuse of runs. Multiple grouping strate-
gies and screening for interactions are discussed in Sections 4 and 5, respectively.
The intent of this chapter is not to offer a complete review of all that has been done
in the area, but to give the reader a sense of some things that can be done to make
group factor screening more applicable in specific situations.

2 Basic Group Factor Screening

Watson began his description of the technical problem in the following way.

Suppose that f factors are to be tested for their effect on the response. Initially we
will assume that

(i) all factors have, independently, the same prior probability of being effective,
p (q = 1 − p),

(ii) effective factors have the same effect, � > 0,
(iii) there are no interactions present,
(iv) the required designs exist,
(v) the directions of possible effects are known,

(vi) the errors of all observations are independently normal with a constant known
variance, σ 2,

(vii) f = gk where g = number of groups and k = number of factors per group.

These stringent assumptions are made only to provide a simple initial frame-
work. . . . Actually they are not as limiting as they appear.

The two-level experimental designs that Watson goes on to describe partition the
individual factors into the groups referenced in point (vii). In each experimental
run, all factors in the same group are either simultaneously at their high values or
simultaneously at their low values. In other words, the level of the group factor
dictates the level of all individual factors within the group.

Watson’s seven points might be restated in the common modern language of
linear models (although admittedly with a loss of some elegance and intuitive
simplicity) by saying that the collection of n observed responses may be written
in matrix notation as

Y = 1β0 + Xβ + ε, (1)
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where Y and ε are vectors containing the n responses and the n error variables,
respectively, 1 is a vector of 1s, β is a vector of the f main effect parameters, and
X is an n × f matrix, and where

1. For each element of β, independently,

βi = �/2 with probability p,

= 0 with probability q = 1 − p,

for some � > 0 (Watson’s (i) and (ii)),
2. ε ∼ N (0, σ 2 I) with known σ 2 (Watson’s (vi)),
3. X contains f columns, and has the (i, j)th element equal to

+1 if the j th individual factor is at its “high” level in the i th run
−1 if the j th individual factor is at its “low” level in the i th run

(Watson’s (iii) and (v)), and
4. X may be written in partitioned form as

X = (z1 · 1′|z2 · 1′| . . . |zg · 1′), (2)

where each z is an n × 1 vector and each 1′ is a 1 × k vector, and

(1|Z) = (1|z1|z2| . . . |zg)

is of full column rank (Watson’s (iv) and (vii)).

Section 2.1 contains an example with explicit quantities for several of the expres-
sions listed in these items.

The distinguishing characteristics of basic group factor screening, from the per-
spective of linear models, are the probabilistic assumption about the value of the
parameter vector β and the grouped-column restriction on the form of the model
matrix X. The intent of group screening is to learn important characteristics of
the system using fewer (often, far fewer) runs than would be required in a “con-
ventional” experiment. When data are lacking, inference requires that assumptions
must be made, and Watson’s points (i) and (ii) provide a practical and often reason-
able basis for approximate interpretation of the system. In fact, these assumptions
are “not as limiting as they appear” (see Watsons’s text above); the group screen-
ing technique often works quite well in cases where at least some of them are
violated.

The generation of the matrix X from Z is a statement of the group design strategy.
Physical factors are initially confounded in groups of size k > 1 so as to construct
artificially a reduced statistical model (which can be estimated based on the desired
smaller sample size). By this intentional confounding, the investigator abandons
the goal of estimating individual elements of β, focusing instead on grouped
parameters representing estimable functions in the original problem. Practically,
the problem can be restated as being

Y = 1β0 + Zγ + ε, (3)
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where γ = [γ1, . . . , γg]′ is a g × 1 vector and Z is an n × g matrix, and where γi

is the sum of the subset of elements of β associated with individual factors in the
ith group. These grouped parameters can, therefore, be written as

γi = Ai�/2,

where Ai is a binomial random variable with parameters k and p, and Ai are
independent for i = 1, 2, 3, . . . , g. In the first stage, the focus is on determining
which of these grouped parameters is nonzero.

The second stage or “follow-up” experiment is designed to examine only those
individual factors included in groups that appear to be effective under the assump-
tions of the model, those for which γi > 0 based on Watson’s assumption (ii). The
decisions concerning whether groups are effective could, for example, be based
on individual z- (σ known) or t- (σ estimated) tests for each grouped parameter. If
Watson’s assumption (ii) is taken seriously, these would logically be one-sided tests
(H0 : γi = 0, HA : γi > 0), but a two-sided test (H0 : γi = 0, HA : γi �= 0) is more
robust against the failure of this assumption and so is often preferred in practice.
Factors included in groups that do not appear to be effective are fixed at constant
values in the second stage experiment. Watson applied the word “effective” only
to individual factors. Here I substitute the more popular term “active”, and extend
this use to say that a group factor is active if it includes at least one active factor.

Hence, a two-stage screening experiment as described by Watson requires
a predetermined number n of runs in the first stage and a random number
M of runs in the second. The distribution of M and the effectiveness of the
screening program (that is, success in labeling individual factors as “active” or
“not active”) depend on characteristics that can be controlled, at least to some
degree:

� value of k,
� value of n,
� the specific form of the stage 1 decision rule for each group; for example, selec-

tion of a significance level α for a z- or t-test,

and characteristics that cannot:

� value of p,
� value of �,
� value of σ 2.

Given values of p and �/σ , values of k, n, and α can be selected to pro-
duce desirable results, such as small expected sample size or small probability of
misclassifying individual factors. As with other statistical design problems, the
obvious goals are generally in conflict; smaller n + E(M) generally corresponds
to a larger expected number of misclassifications of at least one kind, and so some
degree of compromise between expense and performance is required. Watson de-
rived expected values of the number of runs required and the number of factors
misclassified, as functions of the parameters. These expressions may be used to
evaluate the performance of alternative sampling plans.
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2.1 Example

To demonstrate the strategy, suppose f = 50 experimental factors are to be
screened and that a decision is made to do this by forming g = 7 groups composed
of k = 7 factors (as factors 1–7, 8–14, and so on), with the 50th factor added as
an “extra” to the 7th group. If σ has a known value of 4, say, replicate runs will
not be needed and an orthogonal 8-run, 2-level design can be used in stage 1. For
example, the 8-run Plackett and Burman (1946) design has design matrix

Z =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

+ + + − + − −
− + + + − + −
− − + + + − +
+ − − + + + −
− + − − + + +
+ − + − − + +
+ + − + − − +
− − − − − − −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The expanded X matrix for individual factors would be comprised of the columns
of Z, each repeated 7 times (or 8 for z7).

Suppose now that the true parameter values are as displayed in Table 1. These
values do not exactly correspond to Watson’s assumptions; in particular, (ii) is
violated. Still, if model (3) is fitted to the data via least squares, estimates of the
elements of γ will be independent and normally distributed, each with a stan-
dard error of

√
2, and with means E(γ̂1) = 6, E(γ̂2) = 0, E(γ̂3) = −4, E(γ̂4) = 0,

E(γ̂5) = 0, E(γ̂6) = 3, and E(γ̂7) = 1. It is likely that groups 1 and 6 will be de-
clared active, because z statistics based on γ̂1 and γ̂6 will probably be unusually
large. Group 3 would also be detected with high probability, but only if a two-sided
test is used; if Watson’s working assumption (v) is taken seriously, this would not
be the indicated procedure, but the uncertainty associated with many real appli-
cations would make two-sided testing an attractive modification. Group 7 might
be detected as active, but the probability of this is reduced, for either a one- or
two-sided test, by the partial “cancellation” of individual effects of opposite sign

Table 1. Individual parameters, grouped as in a first-stage screening experiment, for the
example in Section 2.1
Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7

β1 = 0 β8 = 0 β15 = 0 β22 = 0 β29 = 0 β36 = 3 β43 = 0
β2 = 0 β9 = 0 β16 = −4 β23 = 0 β30 = 0 β37 = 0 β44 = 0
β3 = 2 β10 = 0 β17 = 0 β24 = 0 β31 = 0 β38 = 0 β45 = −2
β4 = 0 β11 = 0 β18 = 0 β25 = 0 β32 = 0 β39 = 0 β46 = 0
β5 = 0 β12 = 0 β19 = 0 β26 = 0 β33 = 0 β40 = 0 β47 = 0
β6 = 0 β13 = 0 β20 = 0 β27 = 0 β34 = 0 β41 = 0 β48 = 3
β7 = 4 β14 = 0 β21 = 0 β28 = 0 β35 = 0 β42 = 0 β49 = 0

β50 = 0

γ1 = 6 γ2 = 0 γ3 = −4 γ4 = 0 γ5 = 0 γ6 = 3 γ7 = 1
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in this group—a violation of Watson’s assumption (ii). Mauro and Smith (1982)
examined the effect of factor cancellation on screening in the more extreme case
where parameters associated with active factors all have the same absolute value,
but not the same sign. They presented tables and graphs summarizing a numerical
study of performance. Expected degradation in performance is modest when both
p and the factor group sizes are small, because the probability is minimal that
active factors having main effects of opposite signs mask each other. However,
performance degradation becomes a more important issue as either p or the fac-
tor group sizes increase. Both the expected number of runs in the second stage
of the experiment and the expected number of correctly identified active factors
are minimized when, other things being equal, the proportion of active factors
with positive main effects equals the proportion with negative main effects. One
interesting conclusion from the study is that the factor group size leading to the
minimum number of runs is the same whether or not the main effects of the active
factors have the same signs.

In the present example, if each of groups 1, 3, 6, and 7 were to be declared
active, a follow-up experiment in the associated 29 individual factors might be
undertaken to complete the screening process. If an orthogonal design is used,
this will require M = 32 new runs. This ignores the possibility that some of the
original 8 runs might be “reused” which is discussed later. Regardless of the specific
orthogonal two-level plan used, the standard error of each parameter estimate will
be σ/

√
sample size = 4/

√
32, so all active factors are likely to be discovered if

two-sided testing is used. The expected number of “false positives” will depend on
the significance level selected. The total number of runs used here is n + M = 40,
compared to the 52 that would be required by a minimal orthogonal design for all
50 factors.

3 Strategies Involving More Than Two Stages

Most group screening experiments are sequential because the specific form of the
second stage design depends upon the analysis of data collected at the first stage.
Many other sequential plans are possible. I briefly describe a few strategies that
can be viewed as generalizations of (and, in some cases, improvements over) basic
group screening.

3.1 Multiple Stage Screening and Sequential Bifurcation

Perhaps the most obvious extension of Watson’s basic screening strategy is to
grouped factor plans involving more experimental stages. Patel (1962) described
multiple stage screening as follows.

� in stage 1, group the f factors into g1 groups of size ki = f/g1;
� for each group found apparently active at stage 1, the k1 factors are grouped into

g2 groups of size k2 = f/(g1g2);
� . . .
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� for each group found apparently active at stage s − 1, the ks−1 factors are grouped
into gs groups of size ks = f/(g1g2 · · · gs−1gs);

� for each group found apparently active at stage s, all factors are individually
examined.

Here, s refers to the number of screening stages not counting the final follow-up
in which each of the remaining factors is examined individually. Hence, Watson’s
description is of a 2-stage procedure characterized by s = 1.

Patel offered an analysis based on assumptions that the experimental design used
at each stage is of minimal size (and so contains one more run than the number
of group factors being investigated) and that σ 2 = 0. Under these conditions, he
showed that values of gi which minimize the expected number of total runs required
are approximately

g1 ≈ f ps/(s+1), gi ≈ p−1/(s+1), i = 2, . . . , s,

and that, when these numbers of equal-sized groups are used, the expected number
of runs required by this multiple stage procedure is approximately

(s + 1) f ps/(s+1) + 1.

These expressions can, in turn, be used to determine an optimal number of stages
for a given value of p, at least under the idealized assumptions of the analysis.
So, for example, if p were taken to be 6/50 in the example of Section 2.1, these
expressions would yield rounded values of 17 groups and 36 runs, respectively,
for the two-stage plans of Watson (s = 1). If one additional stage is added (s = 2)
then the values would be 12 groups for the first stage and 2 groups for the second
stage with a total of 37 runs, indicating that the addition of a stage does not improve
the expected number of required runs in this case.

Multiple stage screening could also be defined without the requirement of suc-
cessive splitting of each apparently active group. Instead, the factors included in
active groups at one stage could be randomly assigned to smaller groups at the
next stage without imposing this constraint.

Bettonvil (1995) discussed a particular form of the multiple group screening
idea called sequential bifurcation, in which

1. all factors are included in a single group in the first stage, k1 = f , and
2. the factors from an apparently active group at any stage are divided into two

subgroups of equal size in the next, ki+1 = ki/2.

Chapter 13 reviews sequential bifurcation in more detail.

3.2 Orthogonality and Reuse of Runs

The expected number of runs required by a sequential screening plan depends,
sometimes heavily, on (1) whether a response value may be used only once in the
analysis immediately following the experimental stage in which it is acquired or
may be reused in subsequent analyses, and (2) whether the experimental designs
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Table 2. Example of experimental runs added at each stage and used in each analysis:
sequential bifurcation

Data used in
analysis following

Factor stage

Run Added at stage 1 2 3 4 5 6 7 8 1 2 3 4

1 1 − − − − − − − − • • • •
2 1 + + + + + + + + • •
3 2 + + + + − − − − • •
4 3 + + − − − − − − • •
5 4 + − − − − − − − •

used at each stage are required to be orthogonal. Neither Patel (1962) nor Bettonvil
(1995) required orthogonality in the designs that they described. This is because
each author initially motivated his design for situations in which σ 2 = 0, and so
the usual statistical arguments for precision associated with orthogonality are not
relevant. However, Bettonvil allowed the reuse of as many runs as possible from
stage to stage, resulting in further reduction in the required number of runs. For
example, Table 2 presents a sequence of experimental runs that would be made
using sequential bifurcation as described by Bettonvil in an experiment in which
there are 8 factors, only the first is active, and no mistakes are made in testing. After
stage 1, runs 1 and 2 are used to test all 8 factors as a single group. After stage 2,
runs 1, 2, and 3 are used to test group factors (1, 2, 3, 4) and (5, 6, 7, 8); hence runs
1 and 2 are reused. Similarly, following stage 3, runs 1, 3, and 4 are used to test
group factors (1, 2) and (3, 4) and, following stage 4, runs 1, 4, and 5 are used to test
individual factors 1 and 2. In the analysis following each of stages 2, 3, and 4, the
response values of two runs from previous stages are incorporated in the analysis.

In comparison, Table 3 displays a similar description of how Patel’s multiple
screening would evolve in the same situation. An initial group of all the factors
(g1 = 1, k1 = f ) is used, followed in subsequent stages by groups that are half

Table 3. Example of experimental runs added at each stage and used in each analysis:
multiple stage (Patel •, modified ◦)

Data used in
analysis following

Factor stage

Run Added at stage 1 2 3 4 5 6 7 8 1 2 3 4

1 1 − − − − − − − − • • • •
2 1 + + + + + + + + • ◦
3 2 + + + + − − − − • ◦
4 2 − − − − + + + + •
5 3 + + − − − − − − • ◦
6 3 − − + + − − − − •
7 4 + − − − − − − − •
8 4 − + − − − − − − •
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Table 4. Example of experimental runs added at each stage and used in each analysis:
multiple stage with orthogonal plans at each stage and no reuse of runs

Data used in
analysis following

Factor stage

Run Added at stage 1 2 3 4 5 6 7 8 1 2 3 4

1 1 − − − − − − − − •
2 1 + + + + + + + + •
3 2 − − − − − − − − •
4 2 + + + + + + + + •
5 2 + + + + − − − − •
6 2 − − − − + + + + •
7 3 − − − − − − − − •
8 3 + + + + − − − − •
9 3 + + − − − − − − •

10 3 − − + + − − − − •
11 4 − − − − − − − − •
12 4 + + − − − − − − •
13 4 + − − − − − − − •
14 4 − + − − − − − − •

the size of their predecessors. Patel assumed that only the first run (all factors at
the low level) is reused at each stage. Hence runs 1, 3, and 4 are used for testing
group factors (1, 2, 3, 4) and (5, 6, 7, 8) following stage 2; runs 1, 5, and 6 are used
for testing group factors (1, 2) and (3, 4) following stage 3; and runs 1, 7, and 8
are used for testing factors 1 and 2 following stage 4. All eight runs are unique,
but all are not strictly necessary for the estimation of the group effects required
in the screening strategy. In this example, the analysis of Patel’s design can be
modified somewhat to allow the reuse of two runs at each stage, as indicated
by the open circles in Table 3, but this modification does not change the result
of the tests if the assumptions actually hold and there are no random errors in
observations.

When σ 2 is not negligible, the benefits of run reuse and nonorthogonal satu-
rated designs are not so clear-cut. Then, the reuse of runs makes the analysis of
performance more complicated because it introduces dependencies between test
statistics at each stage. Some duplication of runs (rather than reuse) would allow
estimation, or at least a check on the assumed value, of σ 2. Furthermore, as noted
by Watson, when observations include error, many investigators would be more
comfortable with the more efficient orthogonal designs. Table 4 shows a sequence
of runs for a modified version of multiple stage screening using minimal orthog-
onal designs at each stage and allowing no reuse of runs from previous stages.
This design requires more runs than either Patel’s multiple group procedure or
Bettonvil’s sequential bifurcation, but it provides more precise estimates of group
factor parameters in stages 2–4 when there is random error. Furthermore, it allows
for the option of blocking to correct for stage effects, or 6 degrees of freedom
(after the last stage) for estimating σ 2 if blocking is not needed. In this example,
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the strategy based on orthogonal designs with maximum reuse of runs from stage
to stage would be equivalent to the modified multiple stage plan in Table 3.

The decision to use orthogonal plans or to allow nonorthogonal plans, and
the decision to allow or disallow the reuse of runs from stage to stage, are related
operational issues. They individually and jointly affect the performance of a screen-
ing plan and the complexity of calculations required to assess analytically that
performance. Depending on characteristics of the application, such as the degree
of measurement error and the need to account for block effects in sequential ex-
perimentation, either or both may be important considerations.

3.3 Stepwise Screening

Odhiambo and Manene (1987) introduced a stepwise screening plan featuring se-
quential testing of individual factors after the first (grouped) experiment. After an
initial stage as described by Watson, a new experiment is undertaken for each ap-
parently active group in which individual factors are tested one by one until one of
them is found to be active. At that point, any remaining factors (not yet individually
tested) are tested together as a group, and depending on the result of that test, all are
labeled as not active or subjected to further individual examination as following the
initial stage. The sequential process of individual tests and group tests, following
the discovery of individual active factors, continues until all factors are classified.
A schematic of how this might develop in a hypothetical example is given in
Figure 1.

This strategy can offer some additional efficiency if some initial groups contain
only one active factor, because this factor may be discovered early in follow-up
testing and the remaining factors eliminated in one further group test. This occurs
in the second and third initial groups in Figure 1. Such efficiency may not neces-
sarily occur, however. For example, identification of the active factors in group 6
(individual factors 26–30) in Figure 1 requires 6 follow-up runs.

Odhiambo and Manene presented a performance analysis of stepwise screening
that assumes σ 2 > 0, where statistical tests are fallible even if all assumptions are
correct. They derived expected values of the number of runs required, the number
of factors mistakenly classified as active, and the number of factors mistakenly
classified as not active, in terms of p, f, k, and the significance level and power
of the tests used. These expressions are fairly complicated and are not repeated
here, but Odhiambo and Manene also provide simpler approximations that are
appropriate for small values of p.

4 Multiple Grouping Strategies

Sequential group screening methods can lead to substantial test savings; loosely
speaking, the more sequential a procedure, in terms of the number of decision
points, the greater is the potential for reduction in the expected number of runs
required. However, there are settings in which such approaches are operationally
impractical, for example, where execution of each run takes substantial time but



9. Group Screening Overview 201

Figure 1. Example of analyses and decisions made in a stepwise experiment. The numbers
in the boxes refer to factors and each box represents a test of the indicated group or individual
factor. Dashed and solid boxes indicate tests in which factors are determined to be not
active and active, respectively; asterisks indicate points at which individual active factors
are discovered.

many runs can be executed simultaneously as a “batch”. Nonsequential procedures
based on assigning each object/factor to more than one group were discussed by
Federer (1987) for the blood screening problem addressed by Dorfman, and by
Morris (1987) for factor screening. These “multiple grouping” methods can in some
cases, attain some of the savings of sequential approaches although requiring only
one or two temporal sets of tests.

The first, and sometimes only, stage of a multiple grouping screening experiment
can be thought of as r simultaneous applications of Watson’s original concept, in
which the factor groups are defined “orthogonally” in the different applications.
Hence f = 48 factors might be organized in g(1) = 3 type-1 groups of size k(1) =
16 factors, and g(2) = 4 type-2 groups of size k(2) = 12 factors, such that the
intersection of any group of type 1 with any group of type 2 contains 4 factors. This
arrangement is depicted graphically in Figure 2. The individual factors followed
up in the second stage are those for which all types of groups are apparently active.
So, for example, if only the first group of type 1 (containing factors 1–16) and
the first group of type 2 (containing factors 1–4, 17–20, and 33–36) are declared
active, only factors 1, 2, 3, and 4 would be examined in the follow-up experiment.
If intersections contain only one factor each, the second stage may be eliminated
or used for verification purposes.
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Figure 2. Example of individual factor assignments in a multiple grouping screening ex-
periment involving factors labeled 1, 2, . . . , 48.

Morris discussed the construction of minimal experimental designs for such
procedures, assuming σ 2 = 0. In most practical applications, performance trade-
offs involving run reuse and orthogonality, as discussed above, would need to be
addressed.

5 Interactions

All discussion up to this point is predicated fairly seriously on Watson’s assumption
(iii), that is, the assumption that factors do not interact. However, suppose now
that some two-factor interactions do exist so that, as distinct from equation (3), the
model is

Y = 1β0 + Z1γ1 + Z2γ2 + ε, (4)

where

� Z1 and γ1 are as described as Z and γ before (representing main effects for
factor groups), and

� Z2 is the appropriate model matrix for a set of two-factor interactions, elements
of the vector γ2.



9. Group Screening Overview 203

For experiments in which Z1 is of full column rank, it is well known that if model
(3) is used as the basis for analysis, least squares estimation is biased by the nonzero
elements of γ2:

E(γ̂1) = γ1 + (Z′
1 Z1)−1 Z′

1 Z2γ2. (5)

This issue is addressed, for instance, in the discussion of model coefficient aliasing
in books on response surface analysis such as Myers and Montgomery (2002). It
is clear that this aliasing can introduce serious problems into decision processes
based upon the realized estimates of model coefficients.

5.1 Avoiding Bias Due to Interactions

In a classic reference, Box and Hunter (1961) noted that “foldover” designs com-
prised of pairs of runs that are “mirror images” of each other, for example:

(+ + − − − + −)

(− − + + + − +),

eliminate the aliasing between odd- and even-order effects, and so allow unbiased
estimation of main effects even when two-factor interactions exist. Resolution
IV main effects plans comprised of foldover run pairs require at least twice as
many runs as factors—the operational cost of this benefit. Bettonvil (1993) noted
that the sequential bifurcation strategy can be modified to avoid aliasing of main
effects with two-factor interactions by adding foldover pairs of runs, rather than
individual runs, at each step; similar modifications could certainly be made to the
other strategies mentioned here.

5.2 Modeling Interactions

Often interest lies not in simply eliminating the bias from main effect estimates, but
also in identifying the interactions that are nonzero. The goal here is screening the
effects (main effects and two-factor interactions together) rather than the factors
(assuming only main effects are present). Dean and Lewis (2002) and Lewis and
Dean (2001) discussed the use of Resolution V designs (which allow estimation
of main effects and two-factor interactions) in the group factors in the first stage of
a two-stage screening study. These designs use more runs than the Resolution III
plans (main effects only) typically used in screening experiments. However, they
allow estimation of

� group main effects (the sum of all individual main effects for the group), and
� two-group interactions (the sum of all individual two-factor interactions with

one factor in each of two different groups).

Individual two-factor interactions for pairs of factors within the same group are
aliased with the intercept and so are not part of any informative estimable combi-
nation. In the second stage, the model of interest contains:
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� all individual main effects for factors included in an apparently active group
main effect,

� all individual two-factor interactions for pairs of factors included in a single
group with an apparently active group main effect,

� all individual two-factor interactions for pairs of factors, one each from two
groups with an apparently active group interaction, and

� any additional individual main effects required to make the model fully
hierarchical.

For example, to screen the main effects and two-factor interactions associated
with 20 individual factors, 5 groups of 4 factors each might be formed (say, with
factors 1–4 in group 1, and so on). Each 25−1 half-replicate associated with the
defining relation I = ±ABC DE is a resolution V design that supports estimation
of grouped main effects and two-factor interactions. Suppose that only the main
effect associated with group 1 and the two-factor interaction associated with groups
1 and 2 appear to be active in the first stage. Then the individual-factors model
used in the second stage would contain:

� an intercept,
� main effects for factors 1–4, because the group 1 main effect is active,
� two-factor interactions for all pairs of factors 1–4, because the group 1 main

effect is active,
� two-factor interactions involving one factor from group 1 (1, 2, 3, and 4) and

one factor from group 2 (5, 6, 7, and 8), because the interaction for groups 1 and
2 is active, and

� main effects for factors 5–8, so that the model is hierarchical.

The motivating context for this work is robust product design, where each factor
is labeled as either a control factor or noise factor. The distinction between these
factors leads to somewhat different effect classification rules and allows the use
of group designs of total resolution less than V when some interactions are not
of interest. See Lewis and Dean (2001) and Vine et al. (2004) for details, as well
as a description of software to evaluate interaction screening designs; the soft-
ware is available at www.maths.soton.ac.uk/staff/Lewis/screen assemble/group
screening.html.

6 Discussion

The essential characteristic of group screening for factors is the intentional con-
founding of main effects at various experimental stages, with the aim of reducing
the number of runs required to identify those factors that are most important. The
number of possible variations on the original theme described in Watson’s (1961)
paper is nearly limitless. The degree to which runs may be reused, the decision as
to whether orthogonal designs should be required at each stage, and modifications
to allow consideration of models that include interactions have been briefly con-
sidered here.
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The formulae for the expected numbers of runs and misclassified factors de-
rived in some of the referenced papers are somewhat complicated, but they are
useful in understanding how alternative screening designs and procedures can
be expected to perform under simple assumptions. When less stringent assump-
tions can be made, more elaborate decision rules can be considered. In other
circumstances for which classical analysis is difficult, expected performance of
competing plans may more easily be evaluated by numerical simulation stud-
ies that mimic the screening process. Randomly generated “realities” (such as
the number and magnitude of active effects) can be generated, results of each
screening strategy/plan applied to the simulated experiment, and those strategies
with the best statistical properties (such as smallest expected number of runs or
misclassified factors) can be identified. An investigator facing a specific factor
screening problem, with specific requirements for replication, blocking, and the
possibility that some combination of Watson’s working assumptions may be in-
appropriate, can experiment numerically with the ideas discussed in the literature
in order to understand the most relevant performance characteristics of alternative
strategies.
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