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Abstract In this paper, a short-term manpower planning problem is considered where 
workers are grouped into gangs to support reliable and efficient operations. The 
goal is to minimise the total number of workers required by determining an ap- 
propriate gang structure, assignment of tasks to gangs, and schedule for each 
gang. We model such a problem as a multi-mode task scheduling problem with 
time windows and precedence constraints. While the gang structure and as- 
signment of tasks is optimised by a tabu search heuristic, each gang's schedule 
is generated by solving the corresponding one-machine scheduling problem by 
an iterated Schrage heuristic. Because the evaluation of a tabu search move is 
computationally expensive, we propose a number of ways to estimate a move's 
impact on the solution quality. 

Keywords: manpower planning, multi-mode scheduling, gang constraints, precedence con- 
straints, tabu search, local search, one-machine scheduling. 

1. INTRODUCTION 
We consider a task scheduling problem as it arises: e.g., from the tranship- 

ment of finished vehicles (Mattfeld and Kopfer, 2003). The inter-modal split 
in the logistics chain requires the intermediate storage of vehicles at a stor- 
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age area of an automobile terminal. The storage or retrieval of a charge of 
vehicles forms a task. Since a charge can only be retrieved after it has been 
stored, precedence constraints between pairs of storage and retrieval tasks are 
introduced. Temporal constraints with respect to the availability of transport 
facilities are modelled by time windows. 

A task can be processed in different modes determined by the number of 
drivers executing the task. In order to warrant a safe and reliable relocation 
of vehicles, drivers are grouped into gangs. The gangs do not change over the 
course of the planning horizon, typically a time span covering a work shift. 
Therefore all tasks assigned to one gang are processed in the same mode. The 
number of gangs as well as their sizes are subject to optimisation, as is the 
sequence of operations within a task. Time windows of tasks and precedence 
constraints complicate the seamless processing of tasks within a gang. The 
objective is to minimise the sum of workers over all gangs established. 

As long as the same gang processes two tasks coupled by a precedence con- 
straint, gang scheduling can handle the constraint locally. Whenever a prece- 
dence relation exists across gang boundaries, it becomes globally visible, and 
is modelled as a dynamically changing time-window constraint for its asso- 
ciated tasks. If many precedence constraints exist, the seamless utilisation of 
manpower capacity within the various gangs is massively hindered by dynam- 
ically changing time windows. Managing this constraint will be the greatest 
challenge while searching for a near-optimal solution to the problem. 

In this paper we propose a tabu search procedure which moves single tasks 
between two gangs. The performance of a move requires the re-scheduling 
of the two gangs involved. The associated sub-problems are modelled as one- 
machine problems with heads and tails and varying modes of processing. Since 
such a sub-problem is already NP-hard for a single mode of processing (Car- 
lier, 1982), an efficient base-heuristic is iteratively applied to determine the 
manpower demand. Because the evaluation of a move's impact on the solution 
quality is computationally expensive, the selection of a move in the tabu search 
heuristic is based on estimates of the move's impact on the manpower. 

In Section 2 we discuss related problems and develop a mathematical model. 
In Section 3 we describe the algorithm in detail, namely, the tabu search frame- 
work, the neighbourhood definition, the procedure of scheduling a gang, and, 
finally, the approximation proposed for selecting a move. We perform a com- 
putational investigation for a set of problem parameters in Section 4 before we 
conclude. 

2. RELATED WORK AND PROBLEM MODELLING 
We first describe some related problems before we develop a model for the 

problem considered. 
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The consideration of multiple modes in the resource constrained project 
scheduling allows a trade-off between a task's processing time and its resource 
consumption (Brucker et al., 1999). Mode-identity constraints for prescribed 
subsets of tasks have been introduced in order to allow the assignment of iden- 
tical personnel to a group of related tasks (Salewski et al., 1997). 

In the audit staff scheduling problem, auditors are assigned to engagements 
each consisting of various subtasks. All subtasks of an engagement have to be 
performed by the same auditor in prescribed time windows. The duration of 
subtasks differ depending on the performing auditor (Dodin et al., 1998). 

Besides the apparent analogies to resource constrained project scheduling, 
there is also a similarity to the vehicle routing problem with time windows. 
There, a fleet of vehicles serves a number of customers, even though not every 
vehicle has to be used. The problem is to assign customers to vehicles, and to 
generate a route for each of the vehicles, such that a performance criterion is 
optimal (Bramel and Simchi-Levi, 1997, Chapter 7). 

Another related problem appears to be the assignment of non-preemptive 
computing tasks to groups of processors of a multi-processor system (Droz- 
dowski, 1996). The size and number of groups of processors performing a set 
of tasks can vary, and time windows for the execution of tasks as well as prece- 
dence relations between computing tasks exist (Blaiewicz and Liu, 1996). The 
term "gang scheduling" has been introduced in the context of multi-processor 
scheduling (Feitelson, 1996), but also relates to standard terms of port opera- 
tions. 

We model the logistics problem at hand as a multi-mode gang scheduling 
problem. Let A be the set of (non-preemptive) tasks involved in a problem. 
For each task j E A, a certain volume 4 is to be processed in a time interval 
specified by its earliest permissible starting time ESTj and its latest permissi- 
ble finishing time LFTj. The predecessor task of task j of an existing pairwise 
precedence relation is denoted by r l j .  If no predecessor is defined, qj = 0. 

Time is modelled by 1, . . . , T discrete time steps, which are treated as peri- 
ods rather than as points in time. If one task is complete at time t, its immediate 
successor task cannot start before t + 1. 

The workers are grouped into a set of G gangs 9 = { S 1 ,  S2 ,  . . . , S G ) .  Each 
gang Si is assigned a subset of the tasks Ai A with uZ1 Ai = A and 

G ni=l Ai = 0. The number of workers in gang Si is denoted by pi, the number 
of tasks assigned to gang Si is denoted by hi = lAi I. At any time step, a gang 
can only work on a single task. 

A solution is described by the number of workers in each gang, an assign- 
ment of tasks to gangs (i.e. a partition of A into &), and a sequence of tasks 
for each gang. 

Let the task on position k in gang i's permutation of tasks be denoted by 
r i , k  (i.e. task ~ i , k  with k > 1 is processed after task Starting times 
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of tasks s j  E [I,. . . ,TI can be derived from such a task sequence by assum- 
ing left-shifted scheduling at the earliest possible starting time. Similarly, the 
completion times cj E [I, . . . , T] of tasks are fully determined by the starting 
times and the manpower demand. 

The model can be stated as follows: 

Equation (1) minimises the sum of workers pi over all gangs. Time windows 
of tasks are taken into account by (2) and (3). Precedence relations among 
tasks are considered by Eq. (4). Equation (5) ensures a feasible order of tasks 
belonging to the same gang. The completion time of each task is calculated 
in (6). Finally, Eqs. (7)-(9) make sure that each task is assigned to exactly one 
iwg .  

3. THE TABU SEARCH ALGORITHM 
As already stated in the previous section, a solution has to specify three 

things: 

1. The number of gangs G and the number of workers pi for each gang Si 
2. the assignment of tasks to gangs, and 

3. the sequence of operations in each gang. 

In this paper, we are going to use a tabu search algorithm to assign tasks to 
gangs. For every such assignment, inside the tabu search heuristic, an appro- 
priate schedule for each gang is derived by applying a simple Schrage sched- 
uler (Carlier, 1982). 
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The basic idea of tabu search is to iteratively move from a current solution 
s  to another solution st E N(s) in the current solution's neighbourhood. The 
neighbourhood definition allows "small" changes to a solution, called moves, 
in order to navigate through the search space. The move to be executed is 
selected based on costs C ( s ,  s') associated with the move from s  to st. For 
minimisation problems, the deepest descent, mildest ascent strategy is applied 
for selecting moves. 

In order to avoid cycling in a local optimum, recently performed moves are 
kept in a list of currently forbidden ("tabu") moves for a number of iterations. 
This tabu list is maintained and updated each time a move has been carried 
out (Glover and Laguna, 1993). We use a variable tabu list length. 

In the remaining sections, the following four issues will be addressed in 
more detail: 

rn What is a suitable neighbourhood definition? 

rn How to build an initial solution? 

rn How to perform a move? 

rn How to estimate the cost of a move? 

3.1 Neighbourhood and Tabu List 
The purpose of the tabu search framework is the integration and disintegra- 

tion of gangs by re-assigning tasks. We have chosen the most elementary move 
possible, namely the re-assignment of a single task from one gang to another, 
resulting in a neighbourhood size of roughly H .  G with H being the number of 
tasks involved in a problem instance. We refrain from engaging more complex 
neighbourhood definitions like the exchange of two tasks between two gangs, 
because determining the costs C ( s ,  st) for all st E N(s) is computationally 
prohibitive and, as we will see, the remedy of estimating the costs becomes 
almost intractable for complex neighbourhoods. 

As a move attribute we consider a task entering a gang. Consequently, a 
tabu list entry forbids a task to leave a certain gang for a certain number of 
iterations. Not every move is permissible. For example, for a certain interval 
of the planning horizon, whenever there are more tasks to be scheduled than 
there are time steps available, the move is excluded from N(s).  Also, moves 
which disintegrate and integrate a gang at the same time are not considered. 

3.2 Building an Initial Solution 
The construction of a competitive and feasible solution is not trivial, because 

the necessary number of gangs is not known. We build an initial solution by 
separating tasks into as many gangs as possible. Tasks without precedence 
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relations are placed in a gang of their own, whereas pairs of tasks coupled by 
a precedence relation are processed by the same gang. In this way, precedence 
relations can be handled within the local scope of individual gangs, and it is 
guaranteed that the initial solution is feasible. 

For each gang, we determine the minimum number of workers required to 
process the tasks. For each task j, the number of workers required is rj = 

[V,/((cj - sj)  + 1)l. 
In the event that only one task is assigned to a gang i, its minimum number 

of workers is thus pi = [V,/((LFTj - ESTj )  + 1)l 
If two tasks j and k with r]k = j share a gang, the number of workers 

required is at least as high as the maximum required for each task separately, 
and at least as high as if the two tasks would be treated as one: 

We start with the maximum of these two lower bounds and check for fea- 
sibility. If the number of workers is not sufficient to ensure feasibility, we 
iteratively increase the number of workers by 1 until the schedule becomes 
feasible. 

3.3 Performing a Move 
A move is performed in three steps: first, we move the task from one gang 

to the other. Then, these two gangs are re-scheduled, and contingently their 
mode (number of workers) is adapted. Finally, it is checked whether the re- 
scheduling of the two directly involved gangs can also lead to improvements 
in other gangs due to dynamically changed time windows. These aspects shall 
be discussed in the following. 

Scheduling a Single Gang Let us first assume that the number of workers 
is given. This problem can be seen as a one-machine scheduling problem with 
heads and tails, where the head of a task denotes the non-available interval from 
t = 1 to ESTj ,  and the tail denotes the corresponding interval from t = LFTj 
up to the planning horizon T .  The head of task no. 5 in Figure 1 ranges from 
time unit 1 to 8, whereas its tail comprises only time unit 18. Consequently, 
the time window of task no. 5 covers time units 9-17. In the current mode of 
processing, two time units are covered. 

For our purpose, we extend the notion of heads and tails by the consider- 
ation of precedence relations of tasks placed in different gangs. Since only 
one gang is modified at a time, predecessor and successor tasks placed in other 
gangs may additionally constrain the temporal placement of tasks. The func- 
tions est()  and 1 f t ( )  restrict the time window of a task to its currently largest 
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Figure 1. Example of Schrage schedule consisting of seven tasks to be scheduled in 18 time 
units. Dark grey rectangles represent the time of processing while light grey rectangles depict 
the time windows given. Critical tasks are indicated by a black border. 

permissible extension. est(j) returns ESTj if no predecessor rlj exists and 
max{ESTj, cV3 + 1) otherwise. Similarly, 1 f t ( j )  returns LFTj if no succes- 
sor task r;j exists and min{LFTj, sK3 - 1) otherwise. 

For the objective of minimising the makespan, this problem has been shown 
to be NP-hard (Carlier, 1982). Carlier proposes a branch & bound algorithm, 
which alters a schedule built by the Schrage heuristic and solves the problem 
optimally. However, because we have to schedule many gangs for each tabu 
search move, we have to rely on a very fast heuristic. We therefore rely on 
a single run of the Schrage heuristic which schedules all tasks of Ai in the 
planning horizon 1, . . . ,  T in a given mode pi. 

Basically, the Schrage heuristic schrage() schedules tasks sequentially with 
respect to the smallest permissible finishing time. In every iteration, one task 
is placed starting at time unit t .  For this purpose, all tasks with est() 5 t  enter 
the selection set S. If IS1 = 0, then t  is increased to the minimum est() of all 
tasks not yet scheduled. Otherwise, from S, the task j  with the smallest 1 f t ( )  
is selected. If it can be placed at time unit t  in mode pi without violating its 
time window, starting and completion time of j  are determined, t  is updated 
and finally j  is removed from further consideration. 

Figure 1 shows a schedule built by the Schrage heuristic. Initially, tasks 
no. 1 and 2 can be scheduled at t  = 1. Task no. 1 is given preference because 
of its smaller 1 f t(1) = 3. In the second iteration only task no. 2 can be placed 
at t  = 3. In iteration three, no task is available at t  = 6 and therefore t  is 
updated to the minimal starting time of the remaining tasks t  = 7. Task no. 3 
dominates no. 4 due to its smaller l f t ( ) .  Then, no. 4 is placed at its latest 
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permissible time of placement. Finally, the placement of tasks no. 5, 6, and 7 
complete the schedule. 

The number of workers required is determined in a similar way as for the 
initial solution described in the previous section. First, let us generalise the 
calculation of a lower bound to an arbitrary set of tasks Jli. The number of 
workers required is at least as high as the maximum of the numbers required 
for any single task, assuming each task can utilise its entire time window (p'). 
Also, it is at least as high as if the set of tasks is treated as one task (ptt). 

More formally, the lower bound calculation looks as follows: 

function lower-bound(Jli) 
for all j E .Ai do rj = [V, / ( ( l  f t j  - estj) + 1)l 
p' = maxjEA{rj)  
u = CT=l usable(t,Jli) 
P" = I(CjcJL, V,)/uI 
return max{pl, pt') 

end function 

where function usable() returns 1 if time step t can be utilised by at least one 
task, and 0 otherwise. 

As for the initial solution, we first set pi = lower-bound(&) and contin- 
gently increase pi by one as long as the Schrage heuristic fails to place all tasks 
without violating a time window. 

procedure schedule(Jli) 
pi = lower-bound(&) 
while schrage(Jli,pi) = false do 

pi = pi + 1 
end while 

end procedure 

Propagation of Time Windows Scheduling the tasks of a gang may also 
entail the re-scheduling of other gangs. In the event that tasks of gang i and k 
involved in the move have precedence constraints with tasks of other gangs, a 
change of i's or k's schedule may change the time windows of tasks in other 
gangs, which might lead to different (better or worse) schedules if the Schrage 
heuristic were applied again. 

In particular, we exploit new opportunities due to an enlargement of a time 
window in the event that the completion time cj of task j impedes an earlier 
starting time sl of the successor task 1 in another gang. Thus, whenever cj+l = 
sl holds, and cj decreases because the gang of task j is re-scheduled, also the 
gang of task 1 is noted for re-scheduling. Similarly, whenever the starting time 
sl of task 1 has impeded a later completion at cj of the predecessor task j 
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in another gang, that gang is noted for re-scheduling. Once noted, gangs are 
re-scheduled in a random order. 

Since time windows can be recursively extended, we call this procedure 
time-window propagation. The prerequisites for propagating a time window 
are rarely satisfied, such that the number of re-scheduling activities triggered 
is limited. If, however, gang i is noted for re-scheduling, there is a reasonable 
chance to decrease the number of workers pi. 

3.4 Estimating the Cost of a Move 
Since the simulation of a move implies at least two, but often many more 

calls to the Schrage heuristic, it would be computationally very burdensome. 
Therefore, we estimate a move's effects on the two gangs directly involved and 
neglect further effects of the propagation of time windows. 

To estimate the costs of a move we determine a contingent savings of work- 
ers pi - fi due to the removal of a task j from gang i. Next, we determine 
the additional effort j& - pk spent on integrating j into another gang k. We 
calculate the difference of the two figures, i.e. fii +ak -p i  - pk, and select the 
move with the highest approximated gain (or the lowest approximated loss) for 
execution. 

Schedule Properties In order to estimate yji  and l j k  for gangs i and k, 
we discuss some properties of schedules which will help to derive appropriate 
estimates. Central notions of our arguments are the block of tasks and the 
criticality of tasks. 

Definition 1 A block consists of a sequence of tasks processed without in- 
terruption, where the first task starts at its earliest possible starting time, and 
all other tasks start later than their earliest possible starting time. 

Tasks of a block are placed by the Schrage heuristic independent of all other 
tasks not belonging to this block. Therefore, blocks separate a schedule into 
several parts, which can be considered independently. Another interesting 
property concerning blocks is that slack can occur only at the end of blocks 
or before the first block. 

In Figure 1 we identify three blocks. Block 1 consists of tasks no. 1 and 
2 and is easily distinguished from block 2 consisting of tasks no. 3, 4, and 5 
by the idle-time of time unit 6. Block 3 consisting of tasks no. 6 and 7 can be 
identified by considering EST6 = sf3 = 14. 

Definition 2 A task is said to be critical if it is involved in a sequence of 
tasks (called a critical path), which cannot be shifted back or forth in any way 
without increasing the number of workers involved. 
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In a Schrage-schedule, a critical block causes the violation of a time-window 
constraint if the number of workers is decreased by one. Obviously, all tasks 
of a critical path belong to the same block, but not every block necessarily 
contains a critical path. However, if a critical path exists, it starts with the first 
task of a block. A critical path terminates with the last critical task of its block. 
Thus, it completes processing at its latest finishing time, although there may 
exist additional non-critical tasks scheduled later in the same block. 

Only one critical path can exist in a block. In the event that a task j sched- 
uled directly before a critical task k causes k's criticality, obviously j itself 
must be critical. Accordingly, if we classify any task to be critical, all preced- 
ing tasks of its block are critical too. 

In Figure 1 none of the tasks no. 1 and 2 forming the first block are critical, 
because the entire block could be shifted to the right by one time unit without 
delaying other tasks. Tasks 3 and 4 form a critical path within the second block. 
Although task no. 5 cannot be shifted, it is not critical by definition, because 
it does not complete at its latest finishing time. Task no. 6 is again critical 
without the participation of other tasks placed. 

As we will see, the notions of blocks and critical tasks make a valuable 
contribution to the estimation of a move. 

Estimating the Manpower Release of a Task Removal Obviously, ev- 
ery schedule has at least one critical block (a block containing a critical path), 
which impedes a further decrease of the number of workers pi. For that reason, 
the only way to obtain a benefit from removing a task from a gang is to break 
a critical block. If two or more critical blocks exist, and one critical block 
breaks, at least one other critical block remains unchanged and consequently 
no benefit can be gained. For instance, in Figure 1 the removal of the block 
consisting of task no. 6 cannot lead to an improvement because tasks no. 3 and 
4 still remain critical. If only one critical block exists, but a non-critical task 
is removed, again no saving can be expected. In all these cases the estimation 
procedure returns pi. 

Estimating the Manpower Demand of the Critical Block Removing a 
critical task from the only critical block existing can lead to a decrease of the 
number of workers involved. Here we have to distinguish the removal of a task 
(a) within a critical path, (b) at the beginning of a critical path, and finally, 
(c) at the end of a critical path. 

(a) In case of the removal of a task inside a path we determine the time- 
span stretching from the starting time sj of the first task j of the block 
to the completion time cl of the last critical task 1 of the block. We 
sum the volumes of all tasks but the one to be removed from the critical 
path, and divide the sum of volumes through the extension of the time- 
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span. Consider a critical path consisting of tasks 1 , 2  and 3. If task 2 is 
removed, the new number of workers is estimated by (Vl + V3)/((c3 - 
81) + 1). 

(b) The removal of the first task j of a critical path alters the starting con- 
dition of the path. Therefore the path can start at the maximum of the 
earliest possible starting time estl of the second task 1 of the path, and 
the completion time c, + 1 of the predecessor task m of task j to be 
removed (if m does not exists, set c, = 0). For the example of a criti- 
cal path consisting of tasks 1 ,2  and 3, the new number of workers after 
removing task 1 is estimated by (V2 + V3)/((c3 - cV1) + 1). 

(c) Similarly, the removal of the last task of a critical path alters the ter- 
minating condition of the path. Therefore the path can complete at the 
minimum of the latest possible completion time 1 f t j  of the last but one 
task j of the path, and the starting time sl - 1 of task 1 succeeding the 
path (if 1 does not exist, set sl = T + 1). 

Integrating the Bound Imposed by Non-critical Blocks The approxi- 
mated manpower demand refers to one critical block only. After the removal 
of a critical task from this block, other, so far non-critical, blocks may become 
critical, and for that reason may limit a further decrease of the manpower de- 
mand. 

Consider a critical block b, for which the removal of a critical task has been 
estimated. For blocks in '8 = {bl,. . . , bc-l, b,+l, . . . , b,) a lower bound on 
the number of workers required is calculated by prorating the sum of volumes 
of its tasks onto the time-span used by the block plus a contingent idle-time 
following the block. The number of workers applicable is then approximated 
by the workers fi, determined for block c and for the other blocks of '8 by 
6i = max{fic, maxkG!3{fik)). 

The procedure accurately identifies the vast majority of non-improving task 
removals. If the removal of critical tasks in the only critical block existing may 
lead to a benefit, this benefit is limited by the manpower capacity required for 
other blocks. In all these cases a conservative estimate fii is returned by the 
procedure. 

Estimating the Manpower Demand of a Task Insertion For estimating 
the effect on pk caused by the insertion of a task v into gang k, we first try to fit 
this task into an existing gang schedule. If v integrates a new gang, we calculate 
the exact manpower demandpk of the new gang k aspk = [V,/((l f t j  -estj)+ 
I)]. In all other cases, we estimate the additional number of workers (fik - pk) 
required in order to produce a feasible schedule. 
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We start by determining the task w in an existing gang schedule, before 
which the new task v will be inserted. To identify w, we scan the tasks of the 
schedule in the order produced by the Schrage heuristic and stop at the first task 
w with est, I est, and 1 f t, < I f  t,. After having found w, we determine 
the earliest permissible starting time s, and the latest permissible completion 
time c, with respect to the existing gang structure. 

If v has to be appended to the end of the schedule, we easily check whether 
contingent idle-time T - cj after the last task j suffices to integrate v. 

If v is to be inserted, we are going to verify the available idle-time. Idle-time 
to the left of w can be available only if w is the first operation of a block. In 
this case v may start right after the completion time of w's predecessor u, i.e. 
at time step c, + 1. The utilisation of the idle-time, however, is limited by est,, 
thus S, = max{c, + 1, est,). 

Idle-time on the right can be available only if w is non-critical. In this case 
w and its non-critical successor tasks can be shifted to the right in order to 
obtain additional idle-time. The maximal amount of idle-time available can be 
determined by placing the tasks right-shifted in the opposite order of the task 
sequence given in the Schrage schedule. We refer to the resulting starting time 
of task w as 3,. Thus, c, = min{B, - 1, 1 ft,). 

In the event that rV,/((c, - s,) + 1)l is smaller than or equal to the number 
of workers currently engaged, task v can be integrated in the schedule without 
engaging additional workers. The procedure returns I j i  = pi and terminates. 

Whenever the number of workers does not suffice to integrate task v, the ad- 
ditional manpower demand has to be estimated. Since task v for sure becomes 
critical, the blocks merged by v are considered for prorating v's volume by 
means of function lower-bound(). The approximated increase of the number 
of workers Iji is returned to the calling procedure. 

Summary of the Approximation Effort Summarising, the estimation 
scheme proposed accurately identifies the vast majority of task removals which 
do not yield savings of workers. In other cases the estimation tends to produce 
a conservative estimate of savings to be gained. Apart from some special cases, 
only those insertions are estimated correctly which do not require additional 
workers. In other cases again a conservative estimate on the additional number 
of workers required is determined. Whether the approximation quality suffices 
in order to guide the search successfully will be examined in the following 
section. 

4. COMPUTATIONAL INVESTIGATION 
To assess the performance of our tabu search algorithm, we will evaluate it 

empirically. To that end, we will first propose a benchmark generator, and then 
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Figure 2. Exemplary optimal solution to a problem instance. 

compare our tabu search algorithm with a simple local search approach on a 
variety of benchmark problems. 

4.1 Generating Problem Instances 
In this section, we present a way to produce benchmark instances for which 

the optima are known. The basic idea is to view a schedule as a rectangu- 
lar plane, where the horizontal extension represents the time dimension and 
the vertical extension denotes the number of workers involved. Obviously, 
an entirely filled rectangle means that all workers are occupied for the whole 
planning horizon, i.e. an optimal schedule. 

The example in Figure 2 shows a schedule with 13 tasks organised in 4 
gangs. The planning horizon comprises of 25 time units for which 20 workers 
are utilised. Time windows and precedence relations are not yet specified, but 
can be easily added to the schedule. 

A benchmark instance is generated based on the following input parameters: 

the number of time units in the planning horizon T 

the total number of tasks H 

the number of gangs G. 

rn the minimal and maximal number of workers in a gang p,i, resp. p,, 

rn the percentage of tasks involved in a precedence relation y E [O,1] 

a parameter w E [O,1]  determining the extension of time windows. 

To produce a benchmark instance we proceed as follows: 

1. The number of tasks hi for gang i is determined by prorating the H tasks 
uniformly upon the G gangs. This can be implemented by first initialis- 
ing array K of dimension [0, GI and setting K[O] = 0 and K[G] = H. 
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Table 1. The mean relative error of the local optima found by the local hill-climber. 

Small problems Large problems 

y /w  1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 

0.00 2.5 6.3 10.4 18.0 2.1 5.9 10.4 17.3 
0.25 2.6 6.5 10.6 16.8 2.1 6.0 10.2 16.2 
0.50 2.7 8.1 11.9 17.2 2.3 6.5 10.9 15.9 
0.75 3.3 9.9 14.6 18.6 3.1 9.1 13.6 17.1 
1 .OO 5.8 13.3 17.1 20.5 6.0 12.8 16.8 18.7 

Then, we assign uniformly distributed random numbers in the range 
[ I ,  H - 11 to K [ l ] ,  . . . , K [ G  - 11. Next, we sort K in ascending or- 
der, and finally we determine hi := K [ i ]  - K [ i  - 11. 

2. The starting times sj of task j E Jli in gang i are determined by dis- 
tributing the hi tasks onto the T  time units. We proceed in analogy to 
the procedure described for Step 1. The completion times cj of tasks are 
determined by means of the gang's task chain: %j := sj - 1. 

3. The number of workers pi of gang i is drawn uniformly distributed 
from the range bmi,, p,,]. Finally we calculate the task volume by 
multiplying the task's duration with its manpower demand, i.e. Vj := 
((cj - sj) + 1) .pi. 

4. A task can have a precedence relation with every other non-overlapping 
task of the schedule. For example, in Figure 2 task no. 2 can have a 
precedence relation with tasks in {1,3,4,5,8,11,13).  We iteratively 
select random non-overlapping pairs of tasks not yet involved in a prece- 
dence relation and insert a precedence relation until a fraction y of the 
tasks are involved in a precedence relation or there is no pair of non- 
overlapping tasks left. 

5. Finally time windows are specified in percent w of the examined time 
horizon. In particular, we determine ESTj := [sj w] and LFTj := 

+ ( T - c j ) . ~ ] .  

4.2 Empirical Results 
To assess the potential of our tabu search procedure, we generate problem 

instances in two sizes, namely with 10 gangs and 100 tasks (small problems) 
and with 20 gangs and 200 tasks (large problems). For each size, we addi- 
tionally vary the extension of time windows w and the percentage of tasks 
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Table 2. Mean number of hill-climbing moves performed. 

Small problems Large problems 

y l w  1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 

0.00 37.4 52.5 59.2 65.9 80.3 104.8 118.5 133.9 
0.25 31.7 45.7 51.4 59.3 70.9 91.1 103.1 120.2 
0.50 26.0 36.4 42.5 52.7 58.1 78.1 88.1 110.0 
0.75 18.8 25.2 33.9 50.2 42.7 54.2 72.9 104.8 
1.00 3.8 11.7 28.3 47.7 10.5 27.3 55.8 99.0 

involved in precedence relations, y. Time windows are generated with w E 
{0.25,0.50,0.75,1.00), and the percentage of tasks coupled by a precedence 
relation are given by y E {0.0,O.25,O.5O,O.75,l.OO). 

As parameters for the tabu search algorithm, we use a variable tabu list 
length of [5, a] where H is the number of tasks involved in the problem, 
and the stopping criterion is fixed at 10,000 iterations. 

For every combination of size, time-window extension and number of prece- 
dence relations specified, 10 benchmark instances are generated which are 
solved three times each, because of the non-deterministic nature of the vari- 
able sized tabu list length used. Overall, every figure given in Tables 3 and 4 
represents the mean over 30 samples observed. 

In order to gauge the competitiveness of the tabu search procedure, addi- 
tionally a local hill-climber is applied. The algorithm starts from the same 
initial solution as proposed in Section 3.2 and uses the same neighbourhood 
definition as the tabu search procedure, refer to Section 3.1. Different from 
tabu search, the local hill-climber calculates its C ( s ,  s f )  exactly by simulating 
all moves in advance. Iteratively, the move yielding the greatest reduction in 
the number of workers is performed until a local optimum is reached. 

For the local hill-climber, the mean relative error (against the optimal so- 
lution) over the 10 benchmark instances is presented in Table l. For uncon- 
strained problems, the relative error is quite small, with 2.5% and 2.1% for 
small and large instances respectively. However, with an increasing tightness 
of the constraints imposed, the relative error increases drastically to approxi- 
mately 20% for y = 1.00 and w = 0.25. 

Obviously, the search space becomes more rugged, which goes along with a 
decreasing performance of the hill-climber. However, as shown in Table 2, the 
number of hill-climbing moves performed does not directly reflect the rugged- 
ness of the space to be searched. As one may expect, the hill-climbing paths 
get shorter with an increasing number of precedence constraints imposed (7). 
The reasonable relative error of ~ 6 %  for y = 1.0 and w = 1.0 is obtained by 
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Table 3. The mean relative error of the best solutions found by the tabu search procedure. 

Small problems Large problems 

a mere 3.8 moves on average for small problems and 10.5 for large problems 
respectively. 

By narrowing the time windows starting from the entire planning horizon 
(w = 1.0) towards 114th of the horizon (w = 0.25), the number of moves 
performed on a downhill walk increases significantly. Apparently, tight time 
windows introduce a locality to search such that only tiny improvements per 
move can be obtained. Although with w = 0.25 more than 100 moves are 
performed for large problems, the relative error obtained increases with an 
increasing tightness of time windows. 

Despite performing an increasing number of moves, an increasing relative 
error is observed. Thus, a further improvement in searching a rugged search 
space requires the temporary deterioration of the objective function value. Al- 
though the tabu search procedure provides this feature, the large number of 
iterations needed requires a considerably faster estimation of move costs. 

Table 3 presents the mean relative error observed for the tabu search pro- 
cedure. For a maximal time-window extension w = 1.00 the relative error 
comprises ~ 4 %  regardless of the number of precedence relations specified. 
This is twice the relative error observed for the hill-climber, and pinpoints at 
the shortcoming of the estimation procedure. Obviously, the estimation deliv- 
ers poor approximation of the changes in the number of workers imposed by a 
move in the case of loose constraints. 

Narrowing the time windows increases the relative error of the tabu search 
procedure only slightly up to ~ 1 0 %  for w = 0.25. This figure is approxi- 
mately half of the relative error observed for the hill-climber, which convinc- 
ingly demonstrates the advantage of tabu search for problem instances with 
tight constraints. 

The tighter the constraints are, the better the costs of a move are approxi- 
mated by our estimation procedure, because the time span onto which process- 
ing times are prorated decreases with an increasing tightness of constraints. 
Therefore, the estimation procedure is able to guide the search more accu- 
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Table 4. Number of gangs recorded with the best solution observed. 

Small problems Large problems 

ylw 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25 

0.00 70.2 30.5 16.2 11.2 138.5 61.3 29.3 20.5 
0.25 64.6 29.1 14.1 11.0 125.5 51.3 23.9 19.4 
0.50 57.1 20.5 14.6 11.3 115.3 54.4 27.7 19.0 
0.75 49.8 18.7 14.9 10.8 100.7 56.2 25.8 18.3 
1.00 39.5 28.8 13.3 10.5 82.9 36.1 21.4 18.4 

rately. The algorithm proposed seems pleasantly robust against the existence 
of precedence relations and an increasing problem size. 

Table 4 shows the mean number of gangs recorded with the best solution 
observed. This figure demonstrates how well the gang structure of the optimal 
solution has been reproduced by the tabu search procedure. For large time win- 
dows (w = 1.00) an enormous number of gangs have been integrated. Since 
only the integer condition on the number of workers restricts the algorithm 
from finding the optimal solution, there is no need to reduce the number of 
gangs. However, merely the existence of precedence relations (which has only 
a small influence on the solution quality) cuts the number of gangs in half. 

For higher constrained problems with y 1 0.5 and w < 0.5 the gang struc- 
ture of the optimal solution is successfully approximated. Here, for small prob- 
lem instances ~ 1 0  gangs are integrated, whereas the 200 tasks of large problem 
instances are essentially distributed among ~ 2 0  gangs. For highly constrained 
problems an effective gang structure is a prerequisite for obtaining high quality 
solutions. Obviously, this structure is identified by the algorithmic approach 
proposed. 

5. CONCLUSION 
In this paper, we have addressed the problem of finding a suitable gang 

structure for a task scheduling problem. For this problem, we have presented a 
model and we have proposed a way to generate benchmark instances of varying 
properties. We have developed an efficient tabu search procedure in order to 
solve such gang scheduling problems. 

Particular attention has been paid to the design of the Schrage-scheduler 
acting as a base-heuristic in the tabu search framework. Although the move 
of a task from one gang to another modifies just these two gangs directly, the 
other gangs are indirectly affected by the change of time-window constraints 
and have to be rescheduled as well. 
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Since the move neighbourhood is large and the calculation of the cost or 
benefit is computationally expensive, we have proposed a cost estimation pro- 
cedure, which approximates the outcome of a move before it is actually per- 
formed. Although an estimate must be imperfect in the face of the move's 
complexity, experience has confirmed the applicability of the estimate devel- 
oped. For a wide range of benchmark instances a promising solution quality 
has been achieved. 
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