
TASK SCHEDULING UNDER GANG CONSTRAINTS

Dirk Christian Mattfeld
Technical University of Braunschweig,
Institute of Business Administration,
Spielmannstr: 8,

38106 Braunschweig,
Germany

Jiirgen Branke
University of Karlsruhe,
Institute AIFB,
76128 Karlsruhe,

Germany
branke@aifb.uni-karlsruhe.de

Abstract In this paper, a short-term manpower planning problem is considered where
workers are grouped into gangs to support reliable and efficient operations. The
goal is to minimise the total number of workers required by determining an ap-
propriate gang structure, assignment of tasks to gangs, and schedule for each
gang. We model such a problem as a multi-mode task scheduling problem with
time windows and precedence constraints. While the gang structure and as-
signment of tasks is optimised by a tabu search heuristic, each gang's schedule
is generated by solving the corresponding one-machine scheduling problem by
an iterated Schrage heuristic. Because the evaluation of a tabu search move is
computationally expensive, we propose a number of ways to estimate a move's
impact on the solution quality.

Keywords: manpower planning, multi-mode scheduling, gang constraints, precedence con-
straints, tabu search, local search, one-machine scheduling.

1. INTRODUCTION
We consider a task scheduling problem as it arises: e.g., from the tranship-

ment of finished vehicles (Mattfeld and Kopfer, 2003). The inter-modal split
in the logistics chain requires the intermediate storage of vehicles at a stor-

114 Mattfeld and Branke

age area of an automobile terminal. The storage or retrieval of a charge of
vehicles forms a task. Since a charge can only be retrieved after it has been
stored, precedence constraints between pairs of storage and retrieval tasks are
introduced. Temporal constraints with respect to the availability of transport
facilities are modelled by time windows.

A task can be processed in different modes determined by the number of
drivers executing the task. In order to warrant a safe and reliable relocation
of vehicles, drivers are grouped into gangs. The gangs do not change over the
course of the planning horizon, typically a time span covering a work shift.
Therefore all tasks assigned to one gang are processed in the same mode. The
number of gangs as well as their sizes are subject to optimisation, as is the
sequence of operations within a task. Time windows of tasks and precedence
constraints complicate the seamless processing of tasks within a gang. The
objective is to minimise the sum of workers over all gangs established.

As long as the same gang processes two tasks coupled by a precedence con-
straint, gang scheduling can handle the constraint locally. Whenever a prece-
dence relation exists across gang boundaries, it becomes globally visible, and
is modelled as a dynamically changing time-window constraint for its asso-
ciated tasks. If many precedence constraints exist, the seamless utilisation of
manpower capacity within the various gangs is massively hindered by dynam-
ically changing time windows. Managing this constraint will be the greatest
challenge while searching for a near-optimal solution to the problem.

In this paper we propose a tabu search procedure which moves single tasks
between two gangs. The performance of a move requires the re-scheduling
of the two gangs involved. The associated sub-problems are modelled as one-
machine problems with heads and tails and varying modes of processing. Since
such a sub-problem is already NP-hard for a single mode of processing (Car-
lier, 1982), an efficient base-heuristic is iteratively applied to determine the
manpower demand. Because the evaluation of a move's impact on the solution
quality is computationally expensive, the selection of a move in the tabu search
heuristic is based on estimates of the move's impact on the manpower.

In Section 2 we discuss related problems and develop a mathematical model.
In Section 3 we describe the algorithm in detail, namely, the tabu search frame-
work, the neighbourhood definition, the procedure of scheduling a gang, and,
finally, the approximation proposed for selecting a move. We perform a com-
putational investigation for a set of problem parameters in Section 4 before we
conclude.

2. RELATED WORK AND PROBLEM MODELLING
We first describe some related problems before we develop a model for the

problem considered.

Task Scheduling Under Gang Constraints 115

The consideration of multiple modes in the resource constrained project
scheduling allows a trade-off between a task's processing time and its resource
consumption (Brucker et al., 1999). Mode-identity constraints for prescribed
subsets of tasks have been introduced in order to allow the assignment of iden-
tical personnel to a group of related tasks (Salewski et al., 1997).

In the audit staff scheduling problem, auditors are assigned to engagements
each consisting of various subtasks. All subtasks of an engagement have to be
performed by the same auditor in prescribed time windows. The duration of
subtasks differ depending on the performing auditor (Dodin et al., 1998).

Besides the apparent analogies to resource constrained project scheduling,
there is also a similarity to the vehicle routing problem with time windows.
There, a fleet of vehicles serves a number of customers, even though not every
vehicle has to be used. The problem is to assign customers to vehicles, and to
generate a route for each of the vehicles, such that a performance criterion is
optimal (Bramel and Simchi-Levi, 1997, Chapter 7).

Another related problem appears to be the assignment of non-preemptive
computing tasks to groups of processors of a multi-processor system (Droz-
dowski, 1996). The size and number of groups of processors performing a set
of tasks can vary, and time windows for the execution of tasks as well as prece-
dence relations between computing tasks exist (Blaiewicz and Liu, 1996). The
term "gang scheduling" has been introduced in the context of multi-processor
scheduling (Feitelson, 1996), but also relates to standard terms of port opera-
tions.

We model the logistics problem at hand as a multi-mode gang scheduling
problem. Let A be the set of (non-preemptive) tasks involved in a problem.
For each task j E A, a certain volume 4 is to be processed in a time interval
specified by its earliest permissible starting time ESTj and its latest permissi-
ble finishing time LFTj. The predecessor task of task j of an existing pairwise
precedence relation is denoted by r l j . If no predecessor is defined, qj = 0.

Time is modelled by 1, . . . , T discrete time steps, which are treated as peri-
ods rather than as points in time. If one task is complete at time t, its immediate
successor task cannot start before t + 1.

The workers are grouped into a set of G gangs 9 = { S 1 , S2 , . . . , S G) . Each
gang Si is assigned a subset of the tasks Ai A with uZ1 Ai = A and

G ni=l Ai = 0. The number of workers in gang Si is denoted by pi, the number
of tasks assigned to gang Si is denoted by hi = lAi I. At any time step, a gang
can only work on a single task.

A solution is described by the number of workers in each gang, an assign-
ment of tasks to gangs (i.e. a partition of A into &), and a sequence of tasks
for each gang.

Let the task on position k in gang i's permutation of tasks be denoted by
r i , k (i.e. task ~ i , k with k > 1 is processed after task Starting times

116 Mattfeld and Branke

of tasks s j E [I,. . . ,TI can be derived from such a task sequence by assum-
ing left-shifted scheduling at the earliest possible starting time. Similarly, the
completion times cj E [I, . . . , T] of tasks are fully determined by the starting
times and the manpower demand.

The model can be stated as follows:

Equation (1) minimises the sum of workers pi over all gangs. Time windows
of tasks are taken into account by (2) and (3). Precedence relations among
tasks are considered by Eq. (4). Equation (5) ensures a feasible order of tasks
belonging to the same gang. The completion time of each task is calculated
in (6). Finally, Eqs. (7)-(9) make sure that each task is assigned to exactly one
iwg .

3. THE TABU SEARCH ALGORITHM
As already stated in the previous section, a solution has to specify three

things:

1. The number of gangs G and the number of workers pi for each gang Si
2. the assignment of tasks to gangs, and

3. the sequence of operations in each gang.

In this paper, we are going to use a tabu search algorithm to assign tasks to
gangs. For every such assignment, inside the tabu search heuristic, an appro-
priate schedule for each gang is derived by applying a simple Schrage sched-
uler (Carlier, 1982).

Task Scheduling Under Gang Constraints 117

The basic idea of tabu search is to iteratively move from a current solution
s to another solution st E N(s) in the current solution's neighbourhood. The
neighbourhood definition allows "small" changes to a solution, called moves,
in order to navigate through the search space. The move to be executed is
selected based on costs C (s , s') associated with the move from s to st. For
minimisation problems, the deepest descent, mildest ascent strategy is applied
for selecting moves.

In order to avoid cycling in a local optimum, recently performed moves are
kept in a list of currently forbidden ("tabu") moves for a number of iterations.
This tabu list is maintained and updated each time a move has been carried
out (Glover and Laguna, 1993). We use a variable tabu list length.

In the remaining sections, the following four issues will be addressed in
more detail:

rn What is a suitable neighbourhood definition?

rn How to build an initial solution?

rn How to perform a move?

rn How to estimate the cost of a move?

3.1 Neighbourhood and Tabu List
The purpose of the tabu search framework is the integration and disintegra-

tion of gangs by re-assigning tasks. We have chosen the most elementary move
possible, namely the re-assignment of a single task from one gang to another,
resulting in a neighbourhood size of roughly H . G with H being the number of
tasks involved in a problem instance. We refrain from engaging more complex
neighbourhood definitions like the exchange of two tasks between two gangs,
because determining the costs C (s , st) for all st E N(s) is computationally
prohibitive and, as we will see, the remedy of estimating the costs becomes
almost intractable for complex neighbourhoods.

As a move attribute we consider a task entering a gang. Consequently, a
tabu list entry forbids a task to leave a certain gang for a certain number of
iterations. Not every move is permissible. For example, for a certain interval
of the planning horizon, whenever there are more tasks to be scheduled than
there are time steps available, the move is excluded from N(s). Also, moves
which disintegrate and integrate a gang at the same time are not considered.

3.2 Building an Initial Solution
The construction of a competitive and feasible solution is not trivial, because

the necessary number of gangs is not known. We build an initial solution by
separating tasks into as many gangs as possible. Tasks without precedence

118 Mattfeld and Branke

relations are placed in a gang of their own, whereas pairs of tasks coupled by
a precedence relation are processed by the same gang. In this way, precedence
relations can be handled within the local scope of individual gangs, and it is
guaranteed that the initial solution is feasible.

For each gang, we determine the minimum number of workers required to
process the tasks. For each task j, the number of workers required is rj =

[V,/((cj - sj) + 1)l.
In the event that only one task is assigned to a gang i, its minimum number

of workers is thus pi = [V,/((LFTj - ESTj) + 1)l
If two tasks j and k with r]k = j share a gang, the number of workers

required is at least as high as the maximum required for each task separately,
and at least as high as if the two tasks would be treated as one:

We start with the maximum of these two lower bounds and check for fea-
sibility. If the number of workers is not sufficient to ensure feasibility, we
iteratively increase the number of workers by 1 until the schedule becomes
feasible.

3.3 Performing a Move
A move is performed in three steps: first, we move the task from one gang

to the other. Then, these two gangs are re-scheduled, and contingently their
mode (number of workers) is adapted. Finally, it is checked whether the re-
scheduling of the two directly involved gangs can also lead to improvements
in other gangs due to dynamically changed time windows. These aspects shall
be discussed in the following.

Scheduling a Single Gang Let us first assume that the number of workers
is given. This problem can be seen as a one-machine scheduling problem with
heads and tails, where the head of a task denotes the non-available interval from
t = 1 to ESTj , and the tail denotes the corresponding interval from t = LFTj
up to the planning horizon T . The head of task no. 5 in Figure 1 ranges from
time unit 1 to 8, whereas its tail comprises only time unit 18. Consequently,
the time window of task no. 5 covers time units 9-17. In the current mode of
processing, two time units are covered.

For our purpose, we extend the notion of heads and tails by the consider-
ation of precedence relations of tasks placed in different gangs. Since only
one gang is modified at a time, predecessor and successor tasks placed in other
gangs may additionally constrain the temporal placement of tasks. The func-
tions est() and 1 f t () restrict the time window of a task to its currently largest

Task Scheduling Under Gang Constraints

Figure 1. Example of Schrage schedule consisting of seven tasks to be scheduled in 18 time
units. Dark grey rectangles represent the time of processing while light grey rectangles depict
the time windows given. Critical tasks are indicated by a black border.

permissible extension. est(j) returns ESTj if no predecessor rlj exists and
max{ESTj, cV3 + 1) otherwise. Similarly, 1 f t (j) returns LFTj if no succes-
sor task r;j exists and min{LFTj, sK3 - 1) otherwise.

For the objective of minimising the makespan, this problem has been shown
to be NP-hard (Carlier, 1982). Carlier proposes a branch & bound algorithm,
which alters a schedule built by the Schrage heuristic and solves the problem
optimally. However, because we have to schedule many gangs for each tabu
search move, we have to rely on a very fast heuristic. We therefore rely on
a single run of the Schrage heuristic which schedules all tasks of Ai in the
planning horizon 1, . . . , T in a given mode pi.

Basically, the Schrage heuristic schrage() schedules tasks sequentially with
respect to the smallest permissible finishing time. In every iteration, one task
is placed starting at time unit t . For this purpose, all tasks with est() 5 t enter
the selection set S. If IS1 = 0, then t is increased to the minimum est() of all
tasks not yet scheduled. Otherwise, from S, the task j with the smallest 1 f t ()
is selected. If it can be placed at time unit t in mode pi without violating its
time window, starting and completion time of j are determined, t is updated
and finally j is removed from further consideration.

Figure 1 shows a schedule built by the Schrage heuristic. Initially, tasks
no. 1 and 2 can be scheduled at t = 1. Task no. 1 is given preference because
of its smaller 1 f t(1) = 3. In the second iteration only task no. 2 can be placed
at t = 3. In iteration three, no task is available at t = 6 and therefore t is
updated to the minimal starting time of the remaining tasks t = 7. Task no. 3
dominates no. 4 due to its smaller l f t () . Then, no. 4 is placed at its latest

120 Mattfeld and Branke

permissible time of placement. Finally, the placement of tasks no. 5, 6, and 7
complete the schedule.

The number of workers required is determined in a similar way as for the
initial solution described in the previous section. First, let us generalise the
calculation of a lower bound to an arbitrary set of tasks Jli. The number of
workers required is at least as high as the maximum of the numbers required
for any single task, assuming each task can utilise its entire time window (p').
Also, it is at least as high as if the set of tasks is treated as one task (ptt).

More formally, the lower bound calculation looks as follows:

function lower-bound(Jli)
for all j E .Ai do rj = [V, / ((l f t j - estj) + 1)l
p' = maxjEA{rj)
u = CT=l usable(t,Jli)
P" = I(CjcJL, V,)/uI
return max{pl, pt')

end function

where function usable() returns 1 if time step t can be utilised by at least one
task, and 0 otherwise.

As for the initial solution, we first set pi = lower-bound(&) and contin-
gently increase pi by one as long as the Schrage heuristic fails to place all tasks
without violating a time window.

procedure schedule(Jli)
pi = lower-bound(&)
while schrage(Jli,pi) = false do

pi = pi + 1
end while

end procedure

Propagation of Time Windows Scheduling the tasks of a gang may also
entail the re-scheduling of other gangs. In the event that tasks of gang i and k
involved in the move have precedence constraints with tasks of other gangs, a
change of i's or k's schedule may change the time windows of tasks in other
gangs, which might lead to different (better or worse) schedules if the Schrage
heuristic were applied again.

In particular, we exploit new opportunities due to an enlargement of a time
window in the event that the completion time cj of task j impedes an earlier
starting time sl of the successor task 1 in another gang. Thus, whenever cj+l =
sl holds, and cj decreases because the gang of task j is re-scheduled, also the
gang of task 1 is noted for re-scheduling. Similarly, whenever the starting time
sl of task 1 has impeded a later completion at cj of the predecessor task j

Task Scheduling Under Gang Constraints 121

in another gang, that gang is noted for re-scheduling. Once noted, gangs are
re-scheduled in a random order.

Since time windows can be recursively extended, we call this procedure
time-window propagation. The prerequisites for propagating a time window
are rarely satisfied, such that the number of re-scheduling activities triggered
is limited. If, however, gang i is noted for re-scheduling, there is a reasonable
chance to decrease the number of workers pi.

3.4 Estimating the Cost of a Move
Since the simulation of a move implies at least two, but often many more

calls to the Schrage heuristic, it would be computationally very burdensome.
Therefore, we estimate a move's effects on the two gangs directly involved and
neglect further effects of the propagation of time windows.

To estimate the costs of a move we determine a contingent savings of work-
ers pi - fi due to the removal of a task j from gang i. Next, we determine
the additional effort j& - pk spent on integrating j into another gang k. We
calculate the difference of the two figures, i.e. fii +ak -p i - pk, and select the
move with the highest approximated gain (or the lowest approximated loss) for
execution.

Schedule Properties In order to estimate yji and l j k for gangs i and k,
we discuss some properties of schedules which will help to derive appropriate
estimates. Central notions of our arguments are the block of tasks and the
criticality of tasks.

Definition 1 A block consists of a sequence of tasks processed without in-
terruption, where the first task starts at its earliest possible starting time, and
all other tasks start later than their earliest possible starting time.

Tasks of a block are placed by the Schrage heuristic independent of all other
tasks not belonging to this block. Therefore, blocks separate a schedule into
several parts, which can be considered independently. Another interesting
property concerning blocks is that slack can occur only at the end of blocks
or before the first block.

In Figure 1 we identify three blocks. Block 1 consists of tasks no. 1 and
2 and is easily distinguished from block 2 consisting of tasks no. 3, 4, and 5
by the idle-time of time unit 6. Block 3 consisting of tasks no. 6 and 7 can be
identified by considering EST6 = sf3 = 14.

Definition 2 A task is said to be critical if it is involved in a sequence of
tasks (called a critical path), which cannot be shifted back or forth in any way
without increasing the number of workers involved.

122 Matgeld and Branke

In a Schrage-schedule, a critical block causes the violation of a time-window
constraint if the number of workers is decreased by one. Obviously, all tasks
of a critical path belong to the same block, but not every block necessarily
contains a critical path. However, if a critical path exists, it starts with the first
task of a block. A critical path terminates with the last critical task of its block.
Thus, it completes processing at its latest finishing time, although there may
exist additional non-critical tasks scheduled later in the same block.

Only one critical path can exist in a block. In the event that a task j sched-
uled directly before a critical task k causes k's criticality, obviously j itself
must be critical. Accordingly, if we classify any task to be critical, all preced-
ing tasks of its block are critical too.

In Figure 1 none of the tasks no. 1 and 2 forming the first block are critical,
because the entire block could be shifted to the right by one time unit without
delaying other tasks. Tasks 3 and 4 form a critical path within the second block.
Although task no. 5 cannot be shifted, it is not critical by definition, because
it does not complete at its latest finishing time. Task no. 6 is again critical
without the participation of other tasks placed.

As we will see, the notions of blocks and critical tasks make a valuable
contribution to the estimation of a move.

Estimating the Manpower Release of a Task Removal Obviously, ev-
ery schedule has at least one critical block (a block containing a critical path),
which impedes a further decrease of the number of workers pi. For that reason,
the only way to obtain a benefit from removing a task from a gang is to break
a critical block. If two or more critical blocks exist, and one critical block
breaks, at least one other critical block remains unchanged and consequently
no benefit can be gained. For instance, in Figure 1 the removal of the block
consisting of task no. 6 cannot lead to an improvement because tasks no. 3 and
4 still remain critical. If only one critical block exists, but a non-critical task
is removed, again no saving can be expected. In all these cases the estimation
procedure returns pi.

Estimating the Manpower Demand of the Critical Block Removing a
critical task from the only critical block existing can lead to a decrease of the
number of workers involved. Here we have to distinguish the removal of a task
(a) within a critical path, (b) at the beginning of a critical path, and finally,
(c) at the end of a critical path.

(a) In case of the removal of a task inside a path we determine the time-
span stretching from the starting time sj of the first task j of the block
to the completion time cl of the last critical task 1 of the block. We
sum the volumes of all tasks but the one to be removed from the critical
path, and divide the sum of volumes through the extension of the time-

Task Scheduling Under Gang Constraints 123

span. Consider a critical path consisting of tasks 1 , 2 and 3. If task 2 is
removed, the new number of workers is estimated by (Vl + V3)/((c3 -
81) + 1).

(b) The removal of the first task j of a critical path alters the starting con-
dition of the path. Therefore the path can start at the maximum of the
earliest possible starting time estl of the second task 1 of the path, and
the completion time c, + 1 of the predecessor task m of task j to be
removed (if m does not exists, set c, = 0). For the example of a criti-
cal path consisting of tasks 1 ,2 and 3, the new number of workers after
removing task 1 is estimated by (V2 + V3)/((c3 - cV1) + 1).

(c) Similarly, the removal of the last task of a critical path alters the ter-
minating condition of the path. Therefore the path can complete at the
minimum of the latest possible completion time 1 f t j of the last but one
task j of the path, and the starting time sl - 1 of task 1 succeeding the
path (if 1 does not exist, set sl = T + 1).

Integrating the Bound Imposed by Non-critical Blocks The approxi-
mated manpower demand refers to one critical block only. After the removal
of a critical task from this block, other, so far non-critical, blocks may become
critical, and for that reason may limit a further decrease of the manpower de-
mand.

Consider a critical block b, for which the removal of a critical task has been
estimated. For blocks in '8 = {bl,. . . , bc-l, b,+l, . . . , b,) a lower bound on
the number of workers required is calculated by prorating the sum of volumes
of its tasks onto the time-span used by the block plus a contingent idle-time
following the block. The number of workers applicable is then approximated
by the workers fi, determined for block c and for the other blocks of '8 by
6i = max{fic, maxkG!3{fik)).

The procedure accurately identifies the vast majority of non-improving task
removals. If the removal of critical tasks in the only critical block existing may
lead to a benefit, this benefit is limited by the manpower capacity required for
other blocks. In all these cases a conservative estimate fii is returned by the
procedure.

Estimating the Manpower Demand of a Task Insertion For estimating
the effect on pk caused by the insertion of a task v into gang k, we first try to fit
this task into an existing gang schedule. If v integrates a new gang, we calculate
the exact manpower demandpk of the new gang k aspk = [V,/((l f t j -estj)+
I)]. In all other cases, we estimate the additional number of workers (fik - pk)
required in order to produce a feasible schedule.

124 Mattfeld and Branke

We start by determining the task w in an existing gang schedule, before
which the new task v will be inserted. To identify w, we scan the tasks of the
schedule in the order produced by the Schrage heuristic and stop at the first task
w with est, I est, and 1 f t, < I f t,. After having found w, we determine
the earliest permissible starting time s, and the latest permissible completion
time c, with respect to the existing gang structure.

If v has to be appended to the end of the schedule, we easily check whether
contingent idle-time T - cj after the last task j suffices to integrate v.

If v is to be inserted, we are going to verify the available idle-time. Idle-time
to the left of w can be available only if w is the first operation of a block. In
this case v may start right after the completion time of w's predecessor u, i.e.
at time step c, + 1. The utilisation of the idle-time, however, is limited by est,,
thus S, = max{c, + 1, est,).

Idle-time on the right can be available only if w is non-critical. In this case
w and its non-critical successor tasks can be shifted to the right in order to
obtain additional idle-time. The maximal amount of idle-time available can be
determined by placing the tasks right-shifted in the opposite order of the task
sequence given in the Schrage schedule. We refer to the resulting starting time
of task w as 3,. Thus, c, = min{B, - 1, 1 ft,).

In the event that rV,/((c, - s,) + 1)l is smaller than or equal to the number
of workers currently engaged, task v can be integrated in the schedule without
engaging additional workers. The procedure returns I j i = pi and terminates.

Whenever the number of workers does not suffice to integrate task v, the ad-
ditional manpower demand has to be estimated. Since task v for sure becomes
critical, the blocks merged by v are considered for prorating v's volume by
means of function lower-bound(). The approximated increase of the number
of workers Iji is returned to the calling procedure.

Summary of the Approximation Effort Summarising, the estimation
scheme proposed accurately identifies the vast majority of task removals which
do not yield savings of workers. In other cases the estimation tends to produce
a conservative estimate of savings to be gained. Apart from some special cases,
only those insertions are estimated correctly which do not require additional
workers. In other cases again a conservative estimate on the additional number
of workers required is determined. Whether the approximation quality suffices
in order to guide the search successfully will be examined in the following
section.

4. COMPUTATIONAL INVESTIGATION
To assess the performance of our tabu search algorithm, we will evaluate it

empirically. To that end, we will first propose a benchmark generator, and then

Task Scheduling Under Gang Constraints

time

Figure 2. Exemplary optimal solution to a problem instance.

compare our tabu search algorithm with a simple local search approach on a
variety of benchmark problems.

4.1 Generating Problem Instances
In this section, we present a way to produce benchmark instances for which

the optima are known. The basic idea is to view a schedule as a rectangu-
lar plane, where the horizontal extension represents the time dimension and
the vertical extension denotes the number of workers involved. Obviously,
an entirely filled rectangle means that all workers are occupied for the whole
planning horizon, i.e. an optimal schedule.

The example in Figure 2 shows a schedule with 13 tasks organised in 4
gangs. The planning horizon comprises of 25 time units for which 20 workers
are utilised. Time windows and precedence relations are not yet specified, but
can be easily added to the schedule.

A benchmark instance is generated based on the following input parameters:

the number of time units in the planning horizon T

the total number of tasks H

the number of gangs G.

rn the minimal and maximal number of workers in a gang p,i, resp. p,,

rn the percentage of tasks involved in a precedence relation y E [O,1]

a parameter w E [O,1] determining the extension of time windows.

To produce a benchmark instance we proceed as follows:

1. The number of tasks hi for gang i is determined by prorating the H tasks
uniformly upon the G gangs. This can be implemented by first initialis-
ing array K of dimension [0, GI and setting K[O] = 0 and K[G] = H.

126 Mattfeld and Branke

Table 1. The mean relative error of the local optima found by the local hill-climber.

Small problems Large problems

y /w 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

0.00 2.5 6.3 10.4 18.0 2.1 5.9 10.4 17.3
0.25 2.6 6.5 10.6 16.8 2.1 6.0 10.2 16.2
0.50 2.7 8.1 11.9 17.2 2.3 6.5 10.9 15.9
0.75 3.3 9.9 14.6 18.6 3.1 9.1 13.6 17.1
1 .OO 5.8 13.3 17.1 20.5 6.0 12.8 16.8 18.7

Then, we assign uniformly distributed random numbers in the range
[I , H - 11 to K [l] , . . . , K [G - 11. Next, we sort K in ascending or-
der, and finally we determine hi := K [i] - K [i - 11.

2. The starting times sj of task j E Jli in gang i are determined by dis-
tributing the hi tasks onto the T time units. We proceed in analogy to
the procedure described for Step 1. The completion times cj of tasks are
determined by means of the gang's task chain: %j := sj - 1.

3. The number of workers pi of gang i is drawn uniformly distributed
from the range bmi,, p,,]. Finally we calculate the task volume by
multiplying the task's duration with its manpower demand, i.e. Vj :=
((cj - sj) + 1) .pi.

4. A task can have a precedence relation with every other non-overlapping
task of the schedule. For example, in Figure 2 task no. 2 can have a
precedence relation with tasks in {1,3,4,5,8,11,13). We iteratively
select random non-overlapping pairs of tasks not yet involved in a prece-
dence relation and insert a precedence relation until a fraction y of the
tasks are involved in a precedence relation or there is no pair of non-
overlapping tasks left.

5. Finally time windows are specified in percent w of the examined time
horizon. In particular, we determine ESTj := [sj w] and LFTj :=

+ (T - c j) . ~] .

4.2 Empirical Results
To assess the potential of our tabu search procedure, we generate problem

instances in two sizes, namely with 10 gangs and 100 tasks (small problems)
and with 20 gangs and 200 tasks (large problems). For each size, we addi-
tionally vary the extension of time windows w and the percentage of tasks

Task Scheduling Under Gang Constraints

Table 2. Mean number of hill-climbing moves performed.

Small problems Large problems

y l w 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

0.00 37.4 52.5 59.2 65.9 80.3 104.8 118.5 133.9
0.25 31.7 45.7 51.4 59.3 70.9 91.1 103.1 120.2
0.50 26.0 36.4 42.5 52.7 58.1 78.1 88.1 110.0
0.75 18.8 25.2 33.9 50.2 42.7 54.2 72.9 104.8
1.00 3.8 11.7 28.3 47.7 10.5 27.3 55.8 99.0

involved in precedence relations, y. Time windows are generated with w E
{0.25,0.50,0.75,1.00), and the percentage of tasks coupled by a precedence
relation are given by y E {0.0,O.25,O.5O,O.75,l.OO).

As parameters for the tabu search algorithm, we use a variable tabu list
length of [5, a] where H is the number of tasks involved in the problem,
and the stopping criterion is fixed at 10,000 iterations.

For every combination of size, time-window extension and number of prece-
dence relations specified, 10 benchmark instances are generated which are
solved three times each, because of the non-deterministic nature of the vari-
able sized tabu list length used. Overall, every figure given in Tables 3 and 4
represents the mean over 30 samples observed.

In order to gauge the competitiveness of the tabu search procedure, addi-
tionally a local hill-climber is applied. The algorithm starts from the same
initial solution as proposed in Section 3.2 and uses the same neighbourhood
definition as the tabu search procedure, refer to Section 3.1. Different from
tabu search, the local hill-climber calculates its C (s , s f) exactly by simulating
all moves in advance. Iteratively, the move yielding the greatest reduction in
the number of workers is performed until a local optimum is reached.

For the local hill-climber, the mean relative error (against the optimal so-
lution) over the 10 benchmark instances is presented in Table l. For uncon-
strained problems, the relative error is quite small, with 2.5% and 2.1% for
small and large instances respectively. However, with an increasing tightness
of the constraints imposed, the relative error increases drastically to approxi-
mately 20% for y = 1.00 and w = 0.25.

Obviously, the search space becomes more rugged, which goes along with a
decreasing performance of the hill-climber. However, as shown in Table 2, the
number of hill-climbing moves performed does not directly reflect the rugged-
ness of the space to be searched. As one may expect, the hill-climbing paths
get shorter with an increasing number of precedence constraints imposed (7).
The reasonable relative error of ~ 6 % for y = 1.0 and w = 1.0 is obtained by

128 Mattfeld and Branke

Table 3. The mean relative error of the best solutions found by the tabu search procedure.

Small problems Large problems

a mere 3.8 moves on average for small problems and 10.5 for large problems
respectively.

By narrowing the time windows starting from the entire planning horizon
(w = 1.0) towards 114th of the horizon (w = 0.25), the number of moves
performed on a downhill walk increases significantly. Apparently, tight time
windows introduce a locality to search such that only tiny improvements per
move can be obtained. Although with w = 0.25 more than 100 moves are
performed for large problems, the relative error obtained increases with an
increasing tightness of time windows.

Despite performing an increasing number of moves, an increasing relative
error is observed. Thus, a further improvement in searching a rugged search
space requires the temporary deterioration of the objective function value. Al-
though the tabu search procedure provides this feature, the large number of
iterations needed requires a considerably faster estimation of move costs.

Table 3 presents the mean relative error observed for the tabu search pro-
cedure. For a maximal time-window extension w = 1.00 the relative error
comprises ~ 4 % regardless of the number of precedence relations specified.
This is twice the relative error observed for the hill-climber, and pinpoints at
the shortcoming of the estimation procedure. Obviously, the estimation deliv-
ers poor approximation of the changes in the number of workers imposed by a
move in the case of loose constraints.

Narrowing the time windows increases the relative error of the tabu search
procedure only slightly up to ~ 1 0 % for w = 0.25. This figure is approxi-
mately half of the relative error observed for the hill-climber, which convinc-
ingly demonstrates the advantage of tabu search for problem instances with
tight constraints.

The tighter the constraints are, the better the costs of a move are approxi-
mated by our estimation procedure, because the time span onto which process-
ing times are prorated decreases with an increasing tightness of constraints.
Therefore, the estimation procedure is able to guide the search more accu-

Task Scheduling Under Gang Constraints

Table 4. Number of gangs recorded with the best solution observed.

Small problems Large problems

ylw 1.00 0.75 0.50 0.25 1.00 0.75 0.50 0.25

0.00 70.2 30.5 16.2 11.2 138.5 61.3 29.3 20.5
0.25 64.6 29.1 14.1 11.0 125.5 51.3 23.9 19.4
0.50 57.1 20.5 14.6 11.3 115.3 54.4 27.7 19.0
0.75 49.8 18.7 14.9 10.8 100.7 56.2 25.8 18.3
1.00 39.5 28.8 13.3 10.5 82.9 36.1 21.4 18.4

rately. The algorithm proposed seems pleasantly robust against the existence
of precedence relations and an increasing problem size.

Table 4 shows the mean number of gangs recorded with the best solution
observed. This figure demonstrates how well the gang structure of the optimal
solution has been reproduced by the tabu search procedure. For large time win-
dows (w = 1.00) an enormous number of gangs have been integrated. Since
only the integer condition on the number of workers restricts the algorithm
from finding the optimal solution, there is no need to reduce the number of
gangs. However, merely the existence of precedence relations (which has only
a small influence on the solution quality) cuts the number of gangs in half.

For higher constrained problems with y 1 0.5 and w < 0.5 the gang struc-
ture of the optimal solution is successfully approximated. Here, for small prob-
lem instances ~ 1 0 gangs are integrated, whereas the 200 tasks of large problem
instances are essentially distributed among ~ 2 0 gangs. For highly constrained
problems an effective gang structure is a prerequisite for obtaining high quality
solutions. Obviously, this structure is identified by the algorithmic approach
proposed.

5. CONCLUSION
In this paper, we have addressed the problem of finding a suitable gang

structure for a task scheduling problem. For this problem, we have presented a
model and we have proposed a way to generate benchmark instances of varying
properties. We have developed an efficient tabu search procedure in order to
solve such gang scheduling problems.

Particular attention has been paid to the design of the Schrage-scheduler
acting as a base-heuristic in the tabu search framework. Although the move
of a task from one gang to another modifies just these two gangs directly, the
other gangs are indirectly affected by the change of time-window constraints
and have to be rescheduled as well.

130 Mattfeld and Branke

Since the move neighbourhood is large and the calculation of the cost or
benefit is computationally expensive, we have proposed a cost estimation pro-
cedure, which approximates the outcome of a move before it is actually per-
formed. Although an estimate must be imperfect in the face of the move's
complexity, experience has confirmed the applicability of the estimate devel-
oped. For a wide range of benchmark instances a promising solution quality
has been achieved.

References
Bla2ewicz, J. and Liu, Z. (1996) Scheduling multiprocessor tasks with chain constraints. Euro-

pean Journal of Operational Research, 94:23 1-241.
Bramel, J. and Simchi-Levi, D. (1997) The Logic of Logistics. Operations Research Series.

Springer, Berlin.
Bmcker, R, Drexl, A., Mohring, R., Neumann, K., and Pesch, E. (1999) Resource-constrained

project scheduling: Notation, classification, models, and methods. European Journal of Op-
erational Research, 112:341.

Carlier, J. (1982) The one-machine scheduling problem. European Journal of Operational Re-
search, 11:4247.

Dodin, B., Elimam, A. A,, and Rolland, E. (1998) Tabu search in audit scheduling. European
Journal of Operational Research, 106:373-392.

Drozdowski, M . (1996) Scheduling multiprocessor tasks-an overview. European Journal of
Operational Research, 94:215-230.

Feitelson, D. G. (1996) Packing schemes for gang scheduling. In Feitelson, D. G. and Rudolph,
L. (Eds.), Job Scheduing Strategies for Parallel Processing, Lecture Notes in Computer Sci-
ence, Vol. 1162, Springer, Berlin, pp. 89-1 10.

Glover, F. and Laguna, M. (1993) Tabu search. In Reeves, Colin R. (Ed.), Modern Heuristic
Techniques for Combinatorial Problems, Blackwell, Oxford, pp. 70-150.

Mattfeld, D. C. and Kopfer, H. (2003) Terminal operations management in vehicle transship-
ment. Transportation Research A, 37.

Salewski, F., Schirmer, A., and Drexl, A. (1997) Project scheduling under resource and mode
identity constraints: Model, complexity, methods, and application. European Journal of Op-
erational Research, 102:88-110.

Scheduling in Space

