
SCHEDULING UNIT EXECUTION TIME TASKS 
ON TWO PARALLEL MACHINES WITH 
THE CRITERIA OF MAKESPAN AND 
TOTAL COMPLETION TIME 

Yakov Zinder and Van Ha Do 
Department of Mathematical Sciences, University of Technology, Sydney, Australia 
Yakov.ZinderQuts.edu.au and vhdoOit.uts.edu.au 

Abstract Two extensions of the classical scheduling model with two parallel identical ma- 
chines and a partially ordered set of unit execution time tasks are considered. It 
is well known that the Coffman-Graham algorithm constructs for this model a 
so-called ideal schedule: that is, a schedule which is optimal for both makespan 
and total completion time criteria simultaneously. The question of the existence 
of such a schedule for the extension of this model, where each task has a release 
time, has remained open over several decades. The paper gives a positive an- 
swer to this question and presents the corresponding polynomial-time algorithm. 
Another straightforward generalization of the considered classical model is ob- 
tained by the introduction of multiprocessor tasks. It is shown that, despite the 
fact that a slightly modified Coffman-Graham algorithm solves the makespan 
problem with multiprocessor tasks for arbitrary precedence constraints, gener- 
ally an ideal schedule does not exist and the problem with the criterion of total 
completion time turns out to be NP-hard in the strong sense even for in-trees. 

Keywords: scheduling, parallel machines, precedence constraints, multiprocessor tasks. 

1. INTRODUCTION 
This paper is concerned with two extensions of the classical scheduling 

model which can be stated as follows. Suppose that a set of n tasks (jobs, 
operations) N = (1, . . . , n)  is to be processed by two parallel identical ma- 
chines. The restrictions on the order in which tasks can be processed are given 
in the form of an anti-reflexive, anti-symmetric and transitive relation on the 
set of tasks and will be referred to as precedence constraints. If task i precedes 
task k, denoted i -+ k, then the processing of i must be completed before the 
processing of k begins. If i -+ k, then k is called a successor of i and i is 
called a predecessor of k .  Each machine can process at most one task at a 



84 Zinder and Do 

time, and each task can be processed by any machine. If a machine starts to 
process a task, then it continues until its completion, i.e. no preemptions are 
allowed. The processing time of each task i is equal to one unit of time. Both 
machines become available at time t = 0. Since preemptions are not allowed 
and the machines are identical, to specify a schedule a it suffices to define for 
each task i its completion time Ci(o). The goal is to find a schedule which 
minimizes some criterion y (a). 

In the standard three-field notation this problem is denoted by 

where P2 specifies that tasks are to be processed on two identical machines, 
prec indicates presence of precedence constraints, and pj = 1 reflects the fact 
that each task is a unit execution time (UET) task, i.e. requires one unit of 
processing time. 

The criteria of makespan 

and total completion time 

are among the most frequently used in scheduling theory. Several algorithms 
have been developed for the P2 (prec,pj = 1 1 Cm, problem. One of them, 
known as the Coffman-Graham algorithm (Coffman and Graham, 1972), also 
solves the P2 I prec, pj = 1 1 Cc problem (see Lawler et al., 1993; Coffman 
et al., 2003). Following Coffman et al. (2003), we will say that a schedule is 
ideal if it is optimal for both (2) and (3) simultaneously. 

A straightforward generalization of (1) is the P2 I prec, rj , pj = 1 I y prob- 
lem, which differs from the former one only by the assumption that the pro- 
cessing of each task j cannot commence before the given integer release time 
rj. Section 2 gives a positive answer to the open question of the existence of an 
ideal schedule for the model with release times. A polynomial-time algorithm, 
presented in Section 2, combines the ideas of the Coffman-Graham algorithm 
and the Garey-Johnson algorithm (Garey and Johnson, 1977), which solves the 
P2 I prec, rj , pj = 1 I L,,, problem with the criterion of maximum lateness, 
where 

and di is a due date associated with task i. A relevant result can also be found 
in Zinder (1986), which is concerned with the problem of finding a schedule 



Scheduling Unit Execution Time Tasks 

tasks not 
from the chain - 

7 

1 + 2k tasks of the chain 

Figure 1. Schedule a1 

tasks not 
from the chain 

1 + 2k tasks of the chain 

Figure 2. Schedule 02. 

with the smallest value of Cc among all schedules optimal for the criterion of 
maximum lateness. 

Another way of generalizing (1) is the introduction of multiprocessor tasks. 
The new problem, denoted by P 2  I prec,pj = 1, sizej ( y differs from the 
original one only by the assumption that each task requires for processing ei- 
ther one or two machines simultaneously, which is indicated by the parameter 
sizej.  If sizej = 1, then task j needs only one machine. If sizej = 2, then 
task j can be processed only if two machines are used simultaneously. An 
arbitrary instance of the model with multiprocessor tasks does not necessarily 
allow an ideal schedule. Indeed, for arbitrary positive integers k and 1, where 
1 > k ,  consider the set of 4k  + 1 tasks such that 1 + 2k tasks form a chain and 
all remaining tasks do not precede or succeed any other tasks. The first 1 tasks 
in this chain require two machines simultaneously and all other tasks can be 
processed on one machine. It is easy to see that in any schedule, optimal for 
the criterion C,,,, each task which does not belong to the chain must be pro- 
cessed in parallel with one of the last 2k tasks from the chain. Such a schedule, 
say 01, is depicted in Figure 1, where shaded tasks are the tasks constituting 
the chain. 

Figure 2 depicts another schedule, say az, where all tasks which do not 
belong to the chain are processed during the first k time units, followed by the 
tasks constituting the chain. 



86 Zinder and Do 

It is easy to see that 0 2  is not optimal for the criterion C,,, and that 

Section 3 shows that the P2 Iprec,pj = 1, sizej I Cc problem is NP-hard 
in the strong sense even if the precedence constraints are restricted to in- 
trees. This result strengthens the result in Brucker et al. (2000), where NP- 
hardness has been proven for series-parallel graphs, and complements Zinder 
et al. (2002), where NP-hardness has been proven for out-trees. 

2. IDEAL SCHEDULES WITH RELEASE TIMES 

2.1 Algorithms 
The model considered in this section assumes that each task j is assigned 

a non-negative integer rj (referred to as a release time) and that processing of 
this task cannot commence before time rj. Without loss of generality it will 
be assumed that the relation i -t j implies the inequality ri 5 rj - 1 and that 
miniEN ri = 0. 

The algorithm presented in this section uses the ideas introduced in Coffman 
and Graham (1972) and Garey and Johnson (1977). The central concept of 
Garey and Johnson (1977) is the notion of consistent due dates. In the process 
of constructing an ideal schedule, consistent due dates will be calculated for 
different subsets of the set N. Let J 2 { I , .  . . ,n). Let {Di : i E J )  be a 
set of arbitrary positive integers associated with tasks constituting J. We will 
refer to such integers as due dates. For any task u E J and any two numbers s 
and d such that 

r, 5 s  I Du I d ,  (4) 

S(u ,  s, d, J )  will denote the set of all tasks k E J such that k # u, Dk 5 d, 
and either u -t k or rk 2 s. Similar to Garey and Johnson (1977), we will 
say that the set of due dates {Di : i E J )  is consistent or that the due dates are 
consistent if r, 5 D, - 1, for all u E J ,  and for every task u E J and any two 
integers s and d satisfying (4), either IS(u, s, d, J)I = 2(d - s )  and D, = s, 
or IS(u, s, d, J)I < 2(d - s). 

Garey and Johnson (1977) developed a procedure which for any given set of 
positive due dates {di : i E J )  either determines a set of consistent due dates 
{Di : i E J )  satisfying the inequalities Di 5 di, for all i E J ,  or determines 
that such consistent due dates do not exist at all. If due dates {di : i E J )  are 
consistent, then the procedure returns these due dates as the set {Di : i E J) .  
The complexity of this procedure is o(I JI3). Some important results from 
Garey and Johnson (1977) are presented below in the form of three theorems. 
In what follows, the expression "schedule a for the set J" means that only 
tasks belonging to J are considered with precedence constraints which exist 



Scheduling Unit Execution Time Tasks 87 

between these tasks in the original problem. In other words, such a schedules 
only tasks from J and ignores the existence of other tasks. 

Theorem 1 Let {di : i E J )  be a set of arbitrary positive due dates. If 
the procedure from Garey and Johnson (1977) fails to determine the set of 
consistent due dates, then there is no schedule a for the set J satisfying the 
inequalities Ci (a)  5 di, for all i E J. 

Theorem 2 Let {di : i E J )  be a set of arbitrary positive due dates and let 
{Di : i E J )  be the set of the corresponding consistent due dates calculated by 
the procedure from Garey and Johnson (1977). Then a schedule a for the set 
J satisfies the inequalities Ci (a)  5 di, for all i E J,  if and only if it satisfies 
the inequalities C i (a )  5 Di, for all i E J. 

The third theorem shows how to construct a schedule that meets all due 
dates if such a schedule exists. The theorem uses the notion of list schedule. 
A list schedule is a schedule constructed by the following algorithm (known as 
the list algorithm). Suppose that all tasks are arranged in a list. 

1. Among all tasks select a task j with the smallest release time. Let T = 
r j  . 

2. Scan the list from left to right and find the first task available for pro- 
cessing in time interval [T, T + 1). Assign this task to the first machine 
and eliminate it from the list. 

3. Continue to scan the list until either another task available for processing 
in the time interval [T,T + 11 has been found, or the end of the list 
has been reached. If another task has been found, assign this task to 
the second machine and eliminate it from the list. Otherwise leave the 
second machine idle. 

4. If all tasks have been assigned, then halt. Otherwise among all tasks, 
which have not been assigned for processing, select task i with the small- 
est completion time. Set T = max{T + 1, r i )  and go to Step 2. 

Theorem 3 Let {Di : i E J )  be a set of consistent due dates. Then any 
list schedule a for the set J ,  corresponding to a list where tasks are arranged 
in a nondecreasing order of consistent due dates Di, meets these due dates, 
i.e. Ci (a)  < Di, for all i E J. 

The algorithm described in this section constructs an ideal schedule, denoted 
6, in iterative manner. At each iteration the procedure determines a fragment 
of 6 referred to as a block. A task can be included in a block only if all its 
predecessors have been already included in the same or previously constructed 



88 Zinder and Do 

blocks. Each block is a fragment of some list schedule. In constructing this 
list schedule the procedure associates with each task i ,  which has not been 
included in the previously constructed blocks, a positive integer pi, referred to 
as a priority, and forms a list by arranging tasks in the decreasing order of their 
priorities (no two tasks have the same priority). Although both criteria Cma, 
and Cc do not assume any due dates, the calculation of priorities is based on 
some consistent due dates. The subroutine, which calculates priorities, will 
be referred to as the p-algorithm. In order to describe the p-algorithm it is 
convenient to introduce the following notation. For an arbitrary integer t and 
an arbitrary task i ,  K( i ,  t) will denote the set of all tasks j such that rj < t  
and i  -+ j. Suppose that K(i ,  t) # 0 and each task j E K(i ,  t )  has been 
already assigned its priority pj. Denote by w(i, t )  the 1K(i, t)l-dimensional 
vector (&I , . . . , PjlK(i,t)l)7 where &I > . . . > Pj l~ ( i , t ) l  and jk E K(i ,  t )  for 
all 1 5 k 5 I K(i ,  t)l. In other words, w(i, t)  lists all successors j of task i ,  
satisfying the condition rj < t, in the decreasing order of their priorities. 

Let J 2 (1, . . . , n) be the set of all tasks that have not been included in the 
previously constructed blocks. In constructing a new block, only these tasks 
are considered and all tasks which have been already included in the previously 
constructed blocks are ignored. The construction of the first block and some 
other blocks will require calculating for each task i  E J a priority pi using the 
following algorithm. 

p-algorithm 

1. Set a = 1. 

2. Among all tasks from J, which have not been assigned their priorities, 
select a task with the largest due date. Denote this due date by d. If 
several tasks from J, which have not been assigned their priorities, have 
due dates equal to d, select among them any task without successors. 
If every task i  E J with di = d, which has not been assigned pi, has 
a successor, select among these tasks any task with the smallest in the 
lexicographical order vector w(i, d). Let u be the selected task. 

3. Set pu = a and a = a + 1. If there is a task in J, which has not been 
assigned its priority, go to step 2. Otherwise halt. 

The idea behind the algorithm, constructing an ideal schedule, can be de- 
scribed as follows. Suppose that we know that for any instance of the con- 
sidered scheduling problem there exists an ideal schedule. Since any ideal 
schedule is optimal for both Cma, and Cc, even without knowing any ideal 
schedule, it is not difficult to find integers dj such that 

cj ( v )  F dj, for some ideal schedule v  and all j E N ( 5 )  



Scheduling Unit Execution nme Tasks 

Figure 3. Partially ordered set of tasks. 

By ( 3 ,  the set of schedules that meet the due dates dj  is not empty. Therefore, 
using Garey and Johnson (1977), it is possible to construct a schedule, say o ,  
such that Cj(o) 5 dj for all j E N. If due dates dj  are sufficiently tight, 
a coincides with an ideal schedule. The Main Algorithm, described below, 
is an iterative procedure that at each iteration either tightens the current due 
dates, or determines that these due dates are already tight enough and specifies 
a fragment of an ideal schedule. 

The following example illustrates this idea. Consider the partially ordered 
set of tasks depicted in Figure 3, where nodes represent tasks and arrows rep- 
resent precedence constraints. The corresponding release time is given next to 
each node. 

It can be shown that for the considered problem there exists an ideal sched- 
ule (a proof that such a schedule exists for any instance of the problem with two 
parallel identical machines, precedence constraints, and unit execution time 
tasks with release times is given in the next section and is closely related to 
the analysis of the Main Algorithm). Denote this ideal schedule by v. Observe 
that the partially ordered set of tasks is comprised of 13 tasks. Taking into 
account that v is optimal for both C,, and Cc, it is easy to see that (5) holds 
if dj = rj + 13 for all 1 5 j 5 13. The priorities pj,  calculated for these dj 
according to the p-algorithm, are presented in the table below. 

taskj  1  2  3  4 5  6 7 8 9 10 11 12 13 
p 13 1 2 1 1  1 0 7 9 2 5 6  8 1 3  4 

For example, we have d5 = 15 and dlo = 15. Since according to the prece- 
dence constraints both 5 and 10 have successors, in order to determine p5 and 



Zinder and Do 

Figure 4. 

Figure 5. 

p10 we need to compare vectors w(5,15) and w(10,15). Because w(5,15) = 
(2,l) is smaller in the lexicographical order than w(10,15) = (4,3, I), p5 = 7 
whereas plo = 8. 

Consider the list schedule o, corresponding to the list 1, 2, 3, 4, 6, 10, 5, 
9, 8, 13, 12, 7, 11, where tasks are arranged in the decreasing order of pj.  
Schedule a is depicted in Figure 4. 

The smallest integer 0 < t < C,,(o) such that at most one task is pro- 
cessed in the time interval [t - 1, t] is t = 5. By the list algorithm, each task j, 
satisfying the inequality C8(o) < Cj(a), either is a successor of task 8 in the 
precedence constraints or has rj 2 5. Therefore, in any schedule, where task 8 
has the completion time greater than C8(o), only tasks 1, 2, 3,4,6, 5, 10 and 
9 can be processed in the time interval [0, C8(o)]. Hence, this schedule cannot 
be optimal for the criterion Cc, because in a task 8 is also processed in this 
time interval. Therefore Cg(v) < C8(a) = 5, and the replacement of d8 = 16 
by d8 = 5 does not violate the inequality C8(v) < d8. 

The table below presents consistent due dates Dj, calculated according to 
Garey and Johnson (1977) for the new set of due dates {dj : 1 < j < 13) 
that differs from the original one only by the value of d8 which now equals 5. 
By Theorem 2, C~(L/) < Dj for all 1 < j < 13. The above-mentioned table 
also contains new ~ l j ,  calculated according to the p-algorithm for the set of 
consistent due dates {Dj : 1 < j < 13). 

Again, denote by o the list schedule, corresponding to the list where tasks 
are arranged in the decreasing order of pj .  This schedule is depicted in Fig- 
ure 5. 

taskj 
D.j 
pj 

1  
4  

2 
4  

3  
4  

1 3 1 2 1 1 1 0 6  

4  
4  

5  
15 

6  
14 
8  

7  
18 

8  
5  

2 9 5  

9  
16 

10 
15 
7  

11 
20 

12 
17 

1 3  

13 
17 
4  



Scheduling Unit Execution l h e  Tasks 

Figure 6, 

Using o and reasoning analogous to that presented above for the task 8, 
it is easy to see that C g ( v )  I Cg(o) = 5. Therefore, the set of due dates 
{dj : 1 < j < 13),  where d j  = D j  for all j # 9 and dg = 5, satisfies (5). 
The table below presents consistent due dates { D j  : 1 < j < 131, calculated 
according to Garey and Johnson (1977) for this new set { d j  : 1 I j I 13). By 
Theorem 2, these new consistent due dates satisfy the inequalities Cj ( v )  < D j  
for all 1 I j < 13. Analogously to the previous iteration, the table below 
also contains new pj ,  calculated according to the p-algorithm for the new set 
of consistent due dates { D j  : 1 5 j 5 13). 

Again, let o be the list schedule, corresponding to the list where tasks are 
arranged in the decreasing order of C L ~ .  This schedule is depicted in Figure 6. 

Analogously to the above, o indicates that Clo(v) I C l o ( n )  = 5. There- 
fore, the set of due dates { d j  : 1 < j < 131, where d j  = D j  for all j # 10 
and dlo = 5, satisfies (5). The new set { d j  : 1 5 j 5 13) leads to a new set 
of consistent due dates { D j  : 1 5 j < 131, calculated according to Garey and 
Johnson (1977). These new due dates D j  are presented in the following table. 

taskj 
Dj 
~ l j  

By Theorem 2, these new consistent due dates satisfy the inequalities 
C j ( v )  < D j  for all 1 < j < 13. In other words, now we know that C s ( v )  5 5, 
C9(v) < 5,  C10(v) I 5, C1(v)  I 4, C2(v)  L 4, C3(v)  < 47 C4(v )  5 4 
and C s ( v )  5 4. In order to decide whether these consistent due dates are 
tight enough to determine a fragment of v, we need to calculate new priorities 
pj  and to construct a new list schedule a .  Using { D j  : 1 5 j < 131, the 
yalgorithm first assigns pll  = 1, and then, in the decreasing order of D j ,  
p7 = 2, p12 = 3, p13 = 4 and pg = 5. Since the next three tasks, 10, 9 and 
8, have equal due dates and since w(10,5) = w (9 ,5 )  = w(8,5) ,  the priorities 
6 ,  7 and 8 can be assigned to these three tasks in any order. Let plo = 6, 
pg = 7, and ps = 8. Now tasks 1 ,  2, 3, 4 and 6 have equal due dates, but 
w(1,4)  = w(2,4)  = w(3,4)  = w(4,4)  = (8 ,7 ,5)  whereas w(6,4)  = (6).  

1  
4 

2  
4 

3  
4 

1 3 1 2 1 1 1 0 5  

4 
4 

5  
15 

6 
14 
7  

7  
18 

8  
5  

9  
5  

2 8 9 6  

10 
15 

11 
20 

12 
17 

1 3  

13 
17 
4 



Zinder and Do 

Figure 7, 

Figure 8. 

Because in the lexicographical order (6) is smaller than (8,7,5), p6 = 9. The 
priorities 10, 1 1, 12, 13 can be assigned to the remaining tasks 1,2,3 and 4 in 
any order. Let pq = 10, p3 = 11, p2 = 12 and p l  = 13. 

Again, let o be the list schedule, corresponding to the list where tasks are 
arranged in the decreasing order of p j .  This schedule is depicted in Figure 7. 

Now Clo(a )  = dlo = 5 and we cannot tighten dlo. Consider the largest 
integer 0 < t < Clo(a) ,  satisfying the condition that there exists a task j 
such that C j ( a )  = t and p j  < p10. It is easy to see that t = 3 and j = 5. 
Observe that for i E {8,9,10) either 6 -, i or ri 2 3. Hence, in any schedule, 
where task 6 has the completion time greater than C6(o)  = 3, tasks 8-10 are 
processed in the time interval [3, oo] and therefore tasks 7, 11, 12 and 13 are 
processed in the time interval [5, oo] (see Figures 4-7). Hence, in this schedule 
only tasks 1-5 can be processed in the time interval [0, C6(#)] .  Such a schedule 
cannot be optimal for the criterion Cc, because in a task 6 is also processed 
in this time interval. Therefore, C6(v )  5 C 6 ( ~ )  = 3 and the set of due dates 
{ d j  : 1 5 j < 131, where d j  = Dj for all j # 6 and d6 = 3, satisfies (5). 

Now the due dates { d j  : 1 5 j 5 13) are tight enough. Indeed, consider the 
list schedule, depicted in Figure 8 and corresponding to the list, where tasks 
are arranged in a nondecreasing order of d j .  It is obvious that the part of this 
schedule, corresponding to the time interval [O, 71, is a fragment of an ideal 
schedule (actually, in this example, the entire schedule, obtained in the process 
of constructing the first fragment, is ideal). 

Reasoning in the above example was based on the assumption that an ideal 
schedule exists. As will be shown in the next section, this assumption is not 
necessary and can be replaced by two weaker conditions. The remaining part 
of this section presents the Main Algorithm, which constructs an ideal schedule 
block by block. The construction of each block commences with determining 
the starting time of this block, denoted by 7. So, in the above example, we 



Scheduling Unit Execution Time Tasks 93 

started with T = 0. The parameter T increases from iteration to iteration. So, 
if T' and T" are two successive values of T ,  then the block is a fragment of 
b corresponding to the time interval [T I ,  T"]. In the above example, the next 
value of T is 7. In what follows, for an arbitrary schedule a and an arbitrary 
integer t ,  R(a, t )  will denote the set of all tasks i such that Ci(a) 5 t .  

Main Algorithm 

1. Set J  = (1,.  . . ,n), T = minlliln T i ,  and di = ri + n, for all 1 < i < 
n. 

2. Using the procedure from Garey and Johnson (1977) and the set {di : 
i E J ) ,  determine the set of consistent due dates {Di : i E J )  such that 
Di < di for each i E J .  

3. Using the set of consistent due dates {Di : i E J )  and the p-algorithm, 
calculate pi for every task i E J .  Arrange tasks, constituting the set J, 
in a list in the decreasing order of their priorities and construct from time 
point T a list schedule a. 

4. Select the smallest integer T < t < Cmax(a) such that at most one task 
is processed in the time interval [t - 1, t] .  Denote this integer by t(a, T ) .  

If t(a, T )  does not exist or t(u, T )  = Cmax(a), then construct the last 
block of b by setting Ci(6) = Ci(u) for each task i E J  and halt. 

5. Among all tasks i satisfying the inequality Ci(u) > t(o, T )  select a 
task with the earliest release time and denote this release time by r. If 
r 2 t (a,  T ) ,  then construct a new block of 6 by setting Ci(d) = Ci(a) 
for each task i, satisfying the inequalities T < Ci(a) < t(u, 7). This 
block corresponds to the time interval [T, r].  Set T = r, J  = J  - R(6, r )  
and return to step 4. 

6. Set i ( ~ )  = j ,  where j is the task satisfying the equality Cj(a)  = t(a, T ) .  

7. If Di(,) > Ci(,)(u), then set di(,) = C+)(u) and dk = Dk, for all 
other tasks k E J ,  and return to step 2. If Di(,) = Ci(r)(u), then 
select the largest integer T < t < Ci(,)(u) such that at least one task, 
which is processed in the time interval [t - 1, t] ,  has priority less than 
pi(r). Denote this integer by t'. If either t' does not exist, or both tasks 
processed in the time interval [t' - 1, t'] have priorities less than pi(,)., 
then construct a new block of 6 by setting Ci(6) = Ci(a) for each task z, 
satisfying the inequalities T < Ci(u) < t(u, 7).  This block corresponds 
to the time interval [T, t(u, T ) ] .  Set J  = J  - R(6, t(a, 7)) .  Assign a 
new release time to every i E J  as the maximum between the old release 
time and t(a, T ) .  Recalculate, if necessary, the release times of all tasks 



Zinder and Do 

to satisfy the condition that the relation i + j implies the inequality 
ri 5 rj - 1. In doing this, consider the release times in increasing order 
and for any i and j such that i -+ j and ri = rj replace rj by rj + 1. Set 
T = t(u, T) and return to step 4. 

8. Let task j be the task satisfying the conditions Cj(u) = t' and pj > 
pi(,). Set i(r) = j and return to step 7. 

The validity of the algorithm is established by the following lemma. 

Lemma 1 For any set {di : i E J ) ,  utilized at step 2, the procedure from 
Garey and Johnson (1977) constructs a set of consistent due dates {Di : i E 
J )  satisfying the inequalities Di 5 di for all i E J. 

Pro08 By Theorem 1, if for some set of due dates {di : i E J )  the pro- 
cedure from Garey and Johnson (1977) fails to determine the set of consistent 
due dates, then there is no schedule a for the set J  satisfying the inequalities 
Ci(a) 5 di for all i E J .  Hence, if such a schedule exists, then the proce- 
dure from Garey and Johnson (1977) is able to calculate a set of consistent 
due dates, and it remains to show that for each set of integers {di : i E J ) ,  
utilized at step 2, there exists a schedule a such that Ci(a) 5 di for all i E J .  
It is easy to see that this holds at the first execution of step 2. Suppose that a 
set of consistent due dates {Di : i E J )  has been determined in accord with 
step 2 using a set of integers {di : i E J ) .  The schedule u, constructed as a 
result of the subsequent execution of step 3, is a list schedule corresponding 
to a list where tasks are arranged in a nondecreasing order of consistent due 
dates. Then by Theorem 3, Ci(o) < Di for all i E J ,  and hence at the next 
execution of step 2, Ci(u) 5 di for all i E J', where J' is the set of tasks and 
{di : i E J ' )  is the set of due dates considered at this execution of step 2. 0 

2.2 Proof of Optimality 
The execution of any step of the main algorithm, apart from the very first, 

starts with some value of the parameter T, some set of tasks J ,  and some set of 
due dates {di : i E J )  assigned either during the execution of step 1 or step 7. 
For the purpose of the following discussion, it is convenient to introduce the 
notion of a regular call. In conditions (cl) and (c2), stated below, T is the value 
of this parameter at the start of execution of the considered step, J  is the set of 
tasks which have not been included in the blocks constructed prior to this call, 
and {di : i E J )  are due dates associated with tasks from J  at the moment of 
this call. A call of a step is regular if 

(cl) there exists a schedule 7 for the set N, which is optimal for the crite- 
rion C,, , coincides with 6 on the time interval [minlliln Ti, TI,  and 
satisfies inequalities Ci(q) 5 di for all i E J ;  



Scheduling Unit Execution Time Tasks 95 

(c2) there exists a schedule P for the set N, which is optimal for the criterion 
Cc, coincides with 6 on the time interval [rninl<iln - ri, T] ,  and satisfies 
inequalities Ci(P) I di for all i E J .  

Lemma 2 Ifthe Main Algorithm terminates at a regular call of step 4, then 
6 is an ideal schedule. 

Pro03 According to (cl) and (c2), schedule 6 coincides with P and 7 in 
the time interval [minlliln ri, TI, and these two schedules are optimal for the 
criteria Cc and C,,, respectively. The tasks, which are not processed in this 
time interval, form the set J  and are processed in the current schedule a in the 
most efficient manner from the viewpoint of both criteria, since in this schedule 
both machines are busy in the time interval [T, C,,,(a) - 11. Therefore, the 
resulting schedule 6 is optimal for both criteria Cc and C,,,. 0 

The following lemmas show that any regular call results in another regular 
call. 

Lemma 3 Ifa call of step 5 is regular; then the next call is also regular 

Pro08 If the next call is a call of step 6, then this new call is also regular, 
because in this case neither value of T ,  nor sets J  and {di : i E J )  are changed. 

Suppose that the call of step 5 results in a call of step 4, and let T,  J  and 
{di : i E J )  be the value of the parameter T ,  the set of tasks and the set of 
due dates corresponding to this call of step 5. Let J' be the set of tasks which 
remain not included in the already constructed blocks after the completion of 
step 5. Since the call of step 5 is regular, there exists a schedule 0 ,  specified in 
(c2). Construct a new schedule P' by setting 

for all i E R(o, t(o, r ) )  
Ci(P), forall i $  R ( o , t ( a , ~ ) )  

where t(a, T )  and o are the point in time and the list schedule considered during 
the execution of step 5. Since ri 2 t(a, T )  for all i E J  - R(a, t(a, T ) ) ,  

This relation together with the observation that in P' both machines are occu- 
pied in the time interval [T, t(o, r )  - 11 leads to the conclusion that schedule 
,O' is optimal for the criterion Cc. 

On the other hand, step 5 does not change the set of due dates {di : i E J ) ,  
and the inequalities Ci(/3) 5 di and Ci(o) 5 di9 which hold for all i E J ,  
imply that Ci(P1) 5 di for all i E J'. Hence, (c2) holds after the completion 
of step 5. 



96 Zinder and Do 

Let q be a schedule specified in (cl). Then the result that (cl) holds af- 
ter the completion of step 5 can be proven analogously to the one above by 
constructing a new schedule r f ,  where 

for all i E R(o, t (a ,  r ) )  
Ci(q), forall i $ R(a, t (o ,r))  

So, the call of step 4 is a regular one. 

Suppose that a regular call of step 7 is followed by either a call of step 2 
or a call of step 4. Suppose that this call of step 7 corresponds to some r ,  J ,  
{di : i E J ) ,  {Di : i E J ) , a ,and i (~ ) .  

Lemma 4 Let a be an arbitrary schedule for J such that Cv(a)  5 dv, 
for all v E J, and let a satisfy at least one of the following two conditions: 
either CqT) ( a )  2 Ci(,) (a) ,  or there exists a E J such that p, > pi(,) and 
C, ( a )  = Di(,). Then 

Pro08 Suppose that the considered call of step 7 is the kth call of this step 
since the last call of step 6. Consider a sequence of tasks g l ,  . . . , gk and a se- 
quence of sets of tasks JO, J1, . . . , Jk determined as follows. Task gl satisfies 
the equality Cgl (0) = t (o ,  T ) .  Each task gi, 1 < i 5 k, is the task selected as 
a result of the ( i  - 1)st call of step 8. Set J O  is the set of all tasks i satisfying 
the inequality Ci(a) > Cgl(o).  Each Ji, 1 < i < k, is comprised of task 
gi and all tasks v such that Cgi+,(u) < Cv(a) < Cgi(a). Set Jk is defined 
as follows. If Cgk (a )  < Dgk, then Jk = {gk). If Cgk (a )  = Dgk, then Jk 
depends on whether or not t' has been calculated as a result of the kth call of 
step 7. If t' has been calculated, then Jk is comprised of task gr, and all tasks 
v such that t' < Cv(u) < Cgk (a).  If t' has not been calculated, then Jk is 
comprised of task gk and all tasks v such that T < Cv(o) < Cgk (a) .  

Consider a sequence of tasks yl, . . . , yk, where for all 1 < i < k 

cyi ( a )  = max Cv ( a )  
V E  J i  

For any task yi, Dyi and the corresponding Dgi satisfy the inequality Dyi 5 
Dgi, because pyi 2 pgi. On the other hand, Cv(a) < dv for all v E J,  
and therefore by Theorem 2, Cyi ( a )  5 Dyi. Hence, Cyi ( a )  5 Dgi for all 
l < i < l c .  

Observe that gl  -+ v for all v E J0 such that rv < Cgl (a) ,  because o is a 
list schedule and one of the machines is idle during the time interval [Cgl (a )  - 
1, Cg, (a)] .  Moreover, for all 1 < i < k, gi --+ v for all v E Ji-' such that rv < 
Cgi(u), because the list corresponding to u arranges tasks in the decreasing 



Scheduling Unit Execution Time Tasks 97 

order of their priorities and during the time interval [Cgi ( a )  - 1, Cgi ( o ) ]  one 
of the machines processes a task with a priority less then priorities of tasks in 
J~- ' .  Therefore, if Cgi ( a )  1 Cgi ( o ) ,  then 

min Cv ( a )  2 min C,(o) 
V E  J ~ - '  V E  

Suppose that there exists a task q such that p, > psi and C,(a) = Dgi. By 
Theorem 2, C,(a) 5 D,. The inequality p, > pgi implies that D, 5 D,, 
which together with Dgi = Cq(a)  5 D, gives D, = Dgi. Since D, = Dgi 
and p, > pgi, ~ ( q ,  D,) is greater than or equal to w (gi, Dgi) in the lexico- 
graphical order. This is equivalent to the statement that q -+ v for all v E J ~ - ~  
such that r, < Cgi (o), which again gives (7). 

The above reasonings lead to the conclusion that (6) holds if k = 1, because 
in this case gl = i ( r )  and consequently either Cg, ( a )  2 Cgl ( o ) ,  or C x ( a )  = 
Dgl . Suppose that k > 1, then Cgi ( a )  = Dgi for all 1 I i < k and gk = i ( r ) .  
Since either Cgk (a)  2 Cg, (o ) ,  or there exists x E J such that p, > pgk and 
Cx(a)  = Dgk' 

min Cv(a)  2 min C,(o) 
V E  Jk-I  V E  Jk-I  

which gives Cyk-,(a)  = Dgk-,. On the other hand, for any 1 < i < k ,  
either yi = gi, or yi # gi and pyi > pgi. Therefore the equality CYi(a)  = 
Dgi implies (7), which analogously to the above gives Cyi-l(a)  = Dgi-l. 
Consequently, CYk-, ( a )  = Dgk-, implies Cyl ( a )  = Dgl, which in turn gives 

min Cv ( a )  2 min C, ( o )  
V E  J0 V E  J0 

and therefore (6). 0 

Lemma 5 Ifa call of step 7 is regulal; then the next call is also regulal: 

Pro08 Let a regular call of step 7 correspond to some T ,  J ,  {di : i E J ) ,  
{Di : i E J ) ,  i(r) and u. Since this call is regular, there exist schedules q and 
p specified in (cl) and (c2). If this call is followed by a call of step 8, then the 
latter call is also regular, because in this case neither the parameter T ,  nor the 
sets J and {di : i E J )  change during the execution of step 7. 

Suppose that the call of step 7 is followed by a call of step 2. Then step 7 
results in the replacement of {di : i E J )  by due dates {d!, : i € J ) ,  where 
di(r) = Ci(r) ( o )  and dv = D, for all other v E J.  If Ci(,) (q )  I Ci(,) (o) 
and Ci(r) (P )  < Ci(r)(o) ,  then Ci(r) (v )  I d;(,) and Ci(r)(P) I d:(,). On the 
other hand, by Theorem 2, Cv(q) < Dv = d!,, and C,(P) I D, = d!,, for all 
other v E J.  Hence, in this case, the call of step 2 is also regular. 



98 Zinder and Do 

If Ci(,) ( P )  > Ci(,)(u), then consider schedule P', where 

Ci(P1) = 
for all i E R(u, t(a, 7 ) )  

Ci(p), for all i $ R(u, t (0, 7 ) )  

By Lemma 4 

Since in cr both machines are busy in the interval [T, t (u, 7 )  - 11, Cc(P1) < 
Cc(P). Therefore, schedule P' is optimal for the criterion Cc. On the other 
hand, Ci(,)(u) = d;(,), and by Theorem 3, Ci(u) I Di = di for all other 
i E R(u, t(u, 7)) .  Furthermore, by Theorem 2, Ci(P) 5 Di = di for all i E J 
such that i $ R(u, t(a, 7)) .  Therefore, CV(P1) 5 d; for all v E J, and 0' 
satisfies (c2) for {d: : v E J). 

Similarly, if Ci(,) (77) > Ci(,) (cr), then, at the moment of the call of step 2, 
(cl) holds for schedule ql, where 

for all i E R(u, t(u, 7 ) )  

Ci (q),  for all i $ R(u, t(u, 7 ) )  
(9) 

Hence, the call of step 2 is regular. 
Suppose that the call of step 7 is followed by a call of step 4. Consider 

schedule P' defined by (8). Let J' be the set of all tasks v satisfying the in- 
equality C, ( P I )  > t (a, 7) .  Since P satisfies (c2), C,(P1) < d ,  for all v E J1, 
and in order to prove that satisfies (c2) at the moment of the call of step 4, it 
remains to show that is optimal for the criterion Cc. Let 

t', if t' has been found during the execution of step 7 
7, otherwise 

Consider the set of tasks J I  which is comprised of i(7) and all tasks v such that 
T < C,(o) < Ci(,)(u). It is easy to see that C,(P) > T for all v E j. On 
the other hand, for any v E J", p, 2 pi(,) and therefore D, 5 Dq,). Since, 
by Theorem 2, C,(P) 5 D,, all tasks constituting J" are processed in P in the 
time interval [T, Di(,)]. Hence C,(P) = Di(,) for some v E J.  Then again by 
Lemma 4 

and because both machines are busy in the time interval [T, t(u, 7 )  - 11, so 
Cc(P1) I Cc ( P ) ,  which implies that P1 is optimal for the criterion Cc. Thus, 
at the moment of the call of step 4, satisfies (c2). The proof that Q', defined 
by (9), satisfies (cl) is similar. Hence, the call of step 4 is regular. 0 



Scheduling Unit Execution Time Tasks 99 

Theorem 4 The procedure constructs an ideal schedule and has complexity 
0(n6). 

Pro08 Each block of schedule 6 corresponds to a particular value of the 
parameter T and this parameter takes on at most n different values. Each di 
satisfies inequalities ri < di 5 ri + n and if its value changes, then a new 
value is at least one unit less than the previous one. Therefore, the number of 
calls of step 2 is 0(n2) .  Since the calculation of consistent due dates according 
to step 2 requires 0(n3)  operations, the total complexity is 0(n6). 

It is easy to see that the first call of steps 2 is regular. On the other hand, 
Lemmas 3 and 5 guarantee that all subsequent calls are regular too. Therefore, 
by Lemma 2, the resulting schedule is ideal. 0 

3. COMPUTATIONAL COMPLEXITY OF THE 
P2lin-tree, pj = 1,  sizej ICE PROBLEM 

This section shows that the problem P2lin-tree,pj = 1, sizejICc is NP- 
hard in the strong sense by a reduction of the 3-partition problem which is 
NP-complete in the strong sense (Garey and Johnson, 1979). The 3-partition 
problem can be stated as follows: 

Instance: A set of positive integers A = {al,. . . , a3,) together with 
a positive integer b such that C:zl ai = zb and 2 < ai < $, for all 
i € {I , .  . . ,3z}. 

Question: Does there exist a partition of the set A into subsets 
d l , .  . . ,A,, such that Ai n Aj = 8 for all i # j, and the sum of the 
elements of each subset is equal to b? 

For any instance of the 3-partition problem, the corresponding scheduling 
decision problem will contain 32 chains (one for each integer in A), an in-tree, 
and a set of 2-tasks. Following Brucker et al. (2000), a task j requiring sizej 
machines is referred to as a sizej-task. Analogously to Zinder et al. (submit- 
ted), for each integer aj E A, the corresponding scheduling problem contains 
a chain of 2aj tasks, where the first a j  tasks in the chain are 2-tasks, and the 
remaining tasks are 1-tasks. The chain for some ai E A and the in-tree are 
depicted in Figure 9. The set of a j  2-tasks associated with a j  will be denoted 
by Mi.  Similarly, the set of all remaining tasks associated with a j  will be de- 
noted by M;. Let MI = u!&M{ and M2 = u&M;. Thus, all tasks in MI 
are 2-tasks, whereas all tasks in M2 are 1-tasks. 

In contrast to Zinder et al. (submitted), where the out-tree is comprised of 
1-tasks only, the in-tree contains both 1-tasks and Ztasks. It is convenient to 
group these tasks into several sets denoted K:, where Ki for 1 5 i < z, Ki 
for 1 5 i 5 z - 1, and Ki for 1 5 i 5 z - 1 consist of 1-tasks, and K: for 



Zinder and Do 

Figure 9. 

1 < i < z - 1 consist of Ztasks. These sets have the following cardinalities: 
I K i  I = b, I K i  1 = I K i  I = 2zb2, 1 K: 1 = 2z2 b3. The tasks constituting each set 
form a chain. These chains will be referred to as Kt-chains and are linked as 
follows. For each 1 5 i 5 z - 1 

rn the last task in the K f  -chain precedes the first task in the Ki-chain; 

the last task in the K:-chain precedes the first task in the Ki-chain; 

the first task in the ~;+l-chain has two immediate predecessors: the last 
task in the Ki-chain and the last task in the Ki-chain. 

Let Kl = U ~ = ~ K ; ,  K2 = u~z~K; ,  K3 = U~Z;K~, and K4 = U~Z~K:, 
and let K5 be the set of Ztasks, where 

and each task of the set K5 does not precede nor succeed any other task. Then 
thesetofalltasksis N = MI U M2 U K1 U K2U K3U K4U Kg. 

Let a^ be a schedule, probably infeasible, satisfying the following conditions: 

(tl) for each 1 5 i < z, b tasks from MI are processed in the time interval 
[(2b + 2zb2 + 2z2b3)(i - I), (2b + 2zb2 + 2z2b3)(i - 1) + b]; 



Scheduling Unit Execution Time Tasks 101 

(t2) for each 1 5 i 5 z, b tasks from Ki and b tasks from M2 are processed 
in parallel in the time interval [(2b + 2zb2 + 2z2b3)(i - 1) + b, (2b + 
2zb2 + 2z2b3) (i - 1) + 2b]; 

(t3) for each 1 5 i < z - 1, 2z2b3 tasks from Ki are processed in the time 
interval [(2b + 2zb2 + 2z2b3)(i - 1) + 2b, (2b + 2zb2 + 2z2b3)(i - 1) + 
2b + 2z2b3]. 

(t4) for each 1 5 i 5 z - 1, 2zb2 tasks from K; and 2zb2 tasks from K; are 
processed in parallel in the time interval [(2b + 2zb2 + 2z2b3)(i - 1) + 
2b + 2z2b3, (2b + 2zb2 + 2z2b3)i]. 

(t5) all tasks from K5 are processed in the time interval [(2b + 2zb2 + 
2z2b3)(z - 1) + 2b, (2b + 2zb2 + 2z2b3)(z - 1) + 2b + I K51]. 

Let C = CjEN Cj(Z).  Then the scheduling decision problem is a prob- 
lem requiring to answer the question: does there exist a feasible schedule a 
satisfying the inequality Cc (a )  5 C? 

In what follows, for any positive integer t the time interval [t - 1, t ]  will be 
called a time slot t. 

Lemma 6 For any schedule a, optimal for the criterion Cc, 

and 
max Cj (o )  + 1 = min Cj (a )  

jEN-K5 jEK5 
(1 1) 

Pro08 Let a be an arbitrary optimal schedule. It follows from the optimal- 
ity of a that the time interval [O, maxj,cN Cj(o)]  does not contain any time 
slot in which both machines are idle. Suppose that a does not satisfy (10). 
Since each task in K5 is a 2-task and does not have any successor, o can be 
transformed into a schedule r] in which all tasks from N - K5 are processed 
in the same order as in o, all tasks from K5 are processed after all tasks from 
N - Kg, and 

max Cj (7) = max Cj (0) 
JEN jEN 

Because the set K5 is comprised of Ztasks, the optimality of o implies the 
optimality of r] ,  and since a does not satisfy (10) 

It is easy to see that there exists a feasible schedule p such that all 2-tasks 
comprising MI are processed in the time interval [0, (MII]; all 2-tasks consti- 
tuting K4 are processed in the time interval [ I  MI 1, I MI I + I K41]; all I-tasks 



102 Zinder and Do 

from K1 U K2 are processed in the time interval [ I  MI I + I K4 I ,  I MI I + I K4 I + 
lKi1 + IK21J each in parallel with some task from M2 u K3; and all 2-tasks 
from K5 are processed in the time interval [ I  Ml I + 1 K41 + IKl 1 + 1 K2), I M ~  I + 
lK41+ 1Kil + lK21 + 1K511. 

Because sets MI and K4 are comprised of Ztasks, 

and 

we have 

which contradicts the optimality of v, and therefore the optimality of cr. 
Let a be an optimal schedule, then (10) implies that every task from Kl U K2 

is processed in o in parallel with a task from K3 U M2. Hence, the time 
slot rnaxjEN-K5 CJo)  contains two 1-tasks: the last task in the Kf-chain 
and a task from M2. Since the set K5 is comprised of 2-tasks, the opti- 
mality of o implies that all these tasks are processed in o after the time slot 
maxj€l\r-~~ Cj(o) ,  which is equivalent to (1 1). 0 

In what follows, only schedules u, satisfying (10) and (1 I), will be consid- 
ered. For any two tasks j and g, let 

if Cj(u) < Cg(o) and j is a Ztask 
if Cj (o)  < Cg (a)  and j is a 1-task 
if j = g  

( 0 otherwise 

Let A2,(o) be the sum of all djg(o), where both j and g  are Ztasks; All(o) 
be the sum of all hjg (a) ,  where both j and g  are 1-tasks; A12 (o )  be the sum of 



Scheduling Unit Execution Time Tasks 103 

all bjg(o), where j is a 1-task and g is a 2-task; and Azl(a)  be the sum of all 
Jjg(a), where j is a 2-task and g is a 1-task. 

Since all 1-tasks are processed in a in pairs, for any g E N, 

and consequently, 

It is easy to see that Aa2(a) + All(a) is a constant and does not depend on a. 
Therefore, for any two schedules a and r ] ,  satisfying (10) and (1 l), 

Cc(a) - Cc(r]) = A12(a) - Aia(r]) + A21 ( a )  - A21 (v)  
Let j be a 1-task and g be a 2-task. Then 

and therefore 

1 
%(a)  - C E ( ~ )  = p 2 1 ( ~ )  - A21(d) (12) 

Let a be an arbitrary schedule. Consider a new schedule r] such that 

Cj (7) = Cj (a )  for all j 4 K4 U K3; 

{Cj(r]) : j E K4) = {Cj(o)  : j E K4); 

Cjl (7) < Cj2 ( r ] )  for any two tasks jl E ~2 and j2 E ~2 such that 
il < i2; 

Cjl (7) < Cj2 (11) for any two tasks jl and j2 from the same set Ki such 
that Cjl (a )  < Cj2 (a) ;  

rn {Cj (7) : j E K3) = {Cj(a) : j E K3); 

Cjl ( r ] )  < Cj,(r]) for any two tasks jl E K$ and j2 E K$ such that 
il < i2; 

Cjl ( r ] )  < Cj2 ( r ] )  for any two tasks jl and j2 from the same set Ki such 
that Cjl (a )  < Cjz (a).  

It is easy to see that r] is feasible and Cc(r]) = Cc(o). In what follows, 
only schedules 7 satisfying the conditions 

m?Cj(7)< min Cj(q),  f o r a l l l < i < z - 1  
jEK; ~EK;+' 

(13) 



104 Zinder and Do 

and 
m e C j ( q ) <  min Cj(r]), f o r a l l l < i < z - 1  
jEK; j € ~ ; + '  

(14) 

will be considered. 
Let a be an arbitrary schedule, and suppose that for some i 

m e  Cj (a)  + 1 < min Cj (a)  
jEK; jEK; 

Let 

Cjl (a)  = m e  Cj (a)  and Cj2 (a)  = min Cj (a) 
jEK; j ~ K 4  

Then consider a new schedule q, where 

Cx (0) if Cx (a)  < Cjl (a )  or Cx (a)  1 Cj2 (a)  
Cx (a)  - 1 if Cjl (a)  < Cx (a)  < Cj2 (a)  
Cj2(o) - 1 if x = jl  

Since jl  is a Ztask which has only one immediate successor, task j2, this 
schedule is feasible and Cc(r]) 5 Cc(o). In what follows, only schedules q 
satisfying the condition 

will be considered. 
Furthermore, let a be an arbitrary schedule, and suppose that for some i 

there exist two tasks jl E Ki and j2 E Ki such that Cj, (a)  + 1 < Cj, (a)  and 
j $ Ki for any j satisfying the inequalities Cjl (a)  < Cj(a)  < Cj2 (a).  Then 
consider a new schedule q where 

Cx(0) if Cx (a)  < Cjl (a)  or Cx (0) 2 Cj2 (o )  
Cx (a)  - 1 if Cjl (0)  < Cx (a )  < Cj2 (a)  
Cj2(o) - 1 if x = jl  

Since jl is a Ztask and j2 is its only immediate successor, it is obvious that r] 

is a feasible schedule and Cc(q) 5 Cc(a). Similar reasoning can be used if 
tasks jl  and j2 belong instead of K: to some M;. Therefore, in what follows, 
only schedules q satisfying the conditions 

and 

m q  Cj (a)  - min, Cj (a)  = I M: 1 - 1, for all 1 5 i 5 32 (17) 
jEM; jEM; 



Scheduling Unit Execution Time Tasks 105 

will be considered. 

Lemma 7 For any schedule r], optimal for the criterion Cc, each task from 
Kl is processed in parallel with a task from M2. 

Proofi Suppose that there exists an optimal schedule q which does not sat- 
isfy this lemma. Since r] is an optimal schedule, by Lemma 6, each task from 
Kl U K2 is processed in this schedule in parallel with some task from the set 
M2 U K3. Consider the first time slot containing a task from Kl,  say task 
u E K;, together with a task from K3, say task v. Suppose that h > 1. 
Since j 4 g for each j E u ~ < ~ < ~ K ~  and each g E K;, the processing of all 
tasks constituting u ~ ~ ~ < ~ K ~  completed in r] before the processing of tasks 
from ~ , h  begins. Each j E u ~ ~ ~ < ~ K ~  is processed in r ]  in parallel with some 
task from u ~ ~ ~ < ~ K $ ,  because all tasks constituting u ~ ~ ~ < ~ K ~  are processed 
in parallel with tasks from M2. Since I Ul<i<h KiI = I Ulli<h KiI, no other 
tasks from K3 are processed in parallel with tasks from U I < ~ < ~ K ~ .  Hence 
v is the first task in the K:-chain. Suppose that h = 1, then any task from 
K3 preceding v is to be processed in parallel with some task from K:, which 
contradicts the selection of v. Hence v is the first task of the K!-chain. 

Among all tasks j E M2, satisfying the condition Cj(r]) > Cu(q), select 
the task with the smallest completion time. Let it be task w and suppose that 
this task corresponds to a,. Let %: be the set of all tasks j E M: such that 

By Lemma 6 and by the selection of w, each time slot in the time interval 
[Cu(r]), Cw(r]) - 11, containing a 1-task, contains one task from Kl U K2 and 
one task from K3. Let El be the set of all tasks j E K1 which are processed in 
r] in the time interval [C,(r]), Cw ( r ] ) ] ,  Z2 be the set of all tasks j E K2 which 
are processed in r] in the time interval [C, (q),  Cw ( r ] ) ] ,  and i 73  be the set of all 
tasks j E K3 which are processed in r] in the time interval [Cu(r]), Cw ( r ] )  - 11. 
Let fi be the set of all tasks j such that 

Observe that all tasks in N are Ztasks. 
Among all j E E3 select a task with the largest completion time Cj(q). Let 

it be task y and let y E Kg for some r 2 h. Then by (14) and the fact that, for 
any i, I K ; ~  = IKiI, 

min Cj(r]) (18) 

and for any h 5 i < r 

m q  Cj (7) + 1 < min Cj ( r ] )  
jEK; j E K;+' 



106 Zinder and Do 

Consider a new schedule a where 

C, (a) = C, ( r ] )  if either C, (7) < min Cj ( r ] ) ,  or C, ( r ] )  > Cw (77); 
j € K t  

rn tasks comprising E: are processed in the time interval 

in the same order as in r] ;  

Cu(a) = Cw (a)  = min Cj ( r ] )  + 1 ;  
j€K,h 

tasks comprising K; are processed in the time interval 

in the same order as in r ] ;  

rn tasks comprising kl U & U % are processed in the time interval 

in the same order as in r] ;  

rn tasks comprising k3 are processed in parallel with tasks from kl U k2 
in the same order as in r]. 

The feasibility of a follows from (16), the selection of w, (18) and (19). On 
the other hand, by (12), 

which contradicts the optimality of q. 0 

Theorem 5 For any instance of the 3-partition problem, a 3-partition exists 
if and only if there is a feasible schedule r ]  for the corresponding scheduling 
problem such that Cc(7) I C. 



Scheduling Unit Execution Time Tasks 107 

Suppose that a 3-partition A1, . . . ,A, exists, and that for each i ,  Ai = 
{ail,  ai2, ai,). Consider a schedule r] in which 

for each 1 < i < z, tasks from M:' U M? U M? are processed in the 
time interval [(2b+2zb2 +2z2b3)(i - l ) ,  (2b+2zb2 +2z2b3)(i - 1) + b], 
and tasks from U M? U M? are processed in the time interval 
[(2b + 2zb2 + 2z2b3)(i - 1) + b, (2b + 2zb2 + 2z2b3)(i - 1) + 2b] in 
parallel with tasks from Ki; 

tasks from Ks and from all Ki,  K;, Ki are processed in accord with 
(t3), (t4) and (t5). 

This schedule is feasible, and since r ]  satisfies all the conditions (t1)-(t5), 
C c ( d  l C .  

Suppose that a 3-partition does not exist. Consider any schedule a ,  probably 
infeasible, satisfying conditions (t1)-(t5), and an optimal schedule 7 .  Denote 
by Mi(a) the set of all tasks j E M2 which are processed in a in parallel with 
one of the tasks from Ki, and denote by Mi(q) the set of all tasks j E M2 
which are processed in r] in parallel with one of the tasks from Ki. It is easy 
to see that for any 1 5 i < z and any g E Ki U Mi(o) 

6, ( a )  = bi + 2z2b3i 
jEMlUK4 

Similarly, taking into account (13), (14), (15), (17) and Lemmas 6 and 7, for 
any 15 i < tandany g E Kf U Mi(r]) 

and for at least one i ,  say i*, 

6,(r]) > bi* + 2z2b3i* + 1 
jEMluK4 



Hence by (20)-(24) and (12), 

Zinder and Do 

Since q is an optimal schedule, there is no feasible schedule with the criterion 
value less than or equal to C. 0 

Since the 3-partition problem is NP-complete in the strong sense, Theorem 5 
implies that P2lin-tree,pj = 1, sizejlCc is NP-hard in the strong sense. 

4. CONCLUSIONS 
The classical Coffman-Graham-Geray result establishing the existence of 

an ideal schedule for the problem with two identical parallel machines, arbi- 
trary precedence constraints and unit execution time tasks can be extended in 
two different ways: 

as has been shown above, an ideal schedule exists and can be found in 
polynomial time if each task has a release time; 

as has been proven in Coffman et al. (2003), an ideal schedule exists and 
can be found in polynomial time if preemptions are allowed. 

The question of the existence of an ideal schedule and a polynomial-time 
algorithm for the model, obtained from the original one by introducing both 
release times and preemptions, still remains open and can be viewed as a di- 
rection of further research. 

As has been proven above, the P2lprec,pj = 1, sizej ICc problem is NP- 
hard in the strong sense even if the precedence constraints are restricted to 
in-trees. Although this proof together with Zinder et al. (submitted), where 
NP-hardness has been proven for out-trees, strengthens the original result of 
Brucker et al. (2000), these two results do not provide the full characteriza- 
tion of the P2lprec,pj = 1, sizej ICE problem and its complexity status also 
requires further research. 

References 
Bmcker, P., Knust, S., Roper, D. and Zinder, Y. (2000) Scheduling UET task systems with con- 

currency on two parallel identical machines. Mathematical Methods of Operations Research, 
52/3:369-387. 

Coffman Jr, E. G. and Graham, R. L. (1972) Optimal scheduling for two-processor systems. 
Acta Infomatica, 1:200-213. 

Coffman, E. G., Sethuraman, J. and Timkovsky, V. G. (2003) Ideal preemptive schedules on two 
processors. Acta Informatica, 39:597-612. 



Scheduling Unit Execution Time Tasks 109 

Garey, M. R. and Johnson, D. S. (1977) %o-processor scheduling with start-time and deadlines. 
SIAM Journal of Computing, 6:416426. 

Garey, M. R, and Johnson, D. S. (1979) Computers and Intractability: A Guide to the Theory of 
NP-Completeness, Freeman, San Francisco. 

Lawler, E. L., Lenstra, J. K., Rinnooy Kan, A. H. G. and Shmoys, D. B. (1993) Sequencing 
and scheduling: algorithms and complexity. In Logistics of Production and Inventory, S. C .  
Graves, A. H. G. Rinnooy Kan and P. H. Zipkin (Eds.), Elsevier, Amsterdam. 

Zinder, Y. (1986) An efficient algorithm for deterministic scheduling problem with parallel ma- 
chines. Cybernetics, N2 (in Russian). 

Zinder, Y., Do, V. H. and Oguz, C. (2002) Computational complexity of some scheduling prob- 
lems with multiprocessor tasks. Discrete Applied Mathematics. Submitted. 



Personnel Scheduling 




