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Abstract Order scheduling models can be described as follows: A machine environment 
with a number of non-identical machines in parallel can produce a fixed variety 
of different products. Any one machine can process a given set of the different 
product types. If it can process only one type of product it is referred to as a 
dedicated machine, otherwise it is referred to as a flexible machine. A flexible 
machine may be subject to a setup when it switches from one product type to 
another product type. Each product type has certain specific processing require- 
ments on the various machines. There are n customers, each one sending in one 
order. An order requests specific quantities of the various different products and 
has a release date as well as a due date (committed shipping date). After the 
processing of all the different products for an order has been completed, the or- 
der can be shipped to the customer. This paper is organised as follows. We first 
introduce a notation for this class of models. We then focus on various different 
conditions on the machine environment as well as on several objective functions, 
including the total weighted completion time, the maximum lateness, the num- 
ber of orders shipped late, and so on. We present polynomial time algorithms 
for the easier problems, complexity proofs for NP-hard problems and worst case 
performance analyses as well as empirical analyses of heuristics. 

Keywords: order scheduling, models, complexity results, heuristics. 
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1. INTRODUCTION 
We consider a facility with m different machines in parallel. There are 

k different product types that can be produced on these m machines. Each 
product type 1 = 1,2, . . . , k can be produced on a subset of the machines, 
namely Ml C {1,2, . . . , m). To produce one unit of type 1 on a machine 
i E Ml requires a processing time tli. When a machine i E {1,2, . . . , m) 
produces a batch of type 1 products, a setup time of sli is required before the 
batch can be started. Assume there are n orders from n different clients. Order 
j requests a quantity qlj 2 0 of product type 1, j = 1,. . . , n, 1 = 1,. . . , k. 
For order j ,  the processing time required to produce items of type 1 on machine 
i E Ml is plij = qlj.tli. Order j may have a release date rj ,  a due date (delivery 
date) dj ,  and a positive weight wj. The completion time of order j ,  denoted by 
C j ,  is the time when the last product for order j has been completed on one of 
the machines. Let Cl j  denote the completion time of the type I production for 
order j on one of the machines. Clearly, 

C j  = max{Clj) 
1 

The idea of measuring the overall completion time of an entire set of jobs 
(i.e. all the jobs required by one order) rather than the individual completion 
times of each part of any given order is somewhat new. There are several rea- 
sons for considering the orders rather than the individual jobs within the orders. 
First of all, shipping partial orders inevitably causes additional shipping cost. 
Secondly, it also causes extra management effort. Finally, some customers 
may require suppliers to ship complete orders. Therefore, suppliers have to 
wait until all products for an order are ready. 

With regard to the completion times C l , .  . . , C, of the n orders several 
objectives are of interest, namely, the makespan C,,, the maximum late- 
ness L,,, the total weighted completion time x wjCj  of orders, the total 
weighted tardiness x wjTj of orders, and the total weighted number of late 
orders x wj Uj . 

Clearly, the class of models described above is very rich. Several special 
cases are of interest, namely: 

(i) The fully dedicated case: there are m machines and m product types; 
each machine can produce one and only one type. 

(ii) Thefully flexible case: the m machines are identical and each machine 
is capable of producing all k products. 

(iii) The arbitrary case: there are no restrictions on the subsets ML. 

The classes of models have a large number of practical applications. Any 
Make-To-Order environment at a production facility with a number of flexible 
resources in parallel gives rise to models of the type described above. 
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Julien and Magazine (1990) presented two interesting applications of the 
models described above. The first example involves a manufacturer of com- 
puter peripherals such as terminals, keyboards and disk drives. Small busi- 
nesses that purchase new computer systems order different quantities of each 
of these peripherals, and often require their entire order to be shipped together. 
From the manufacturer's point of view, it is advantageous to aggregate the de- 
mand of each peripheral and produce large batches in order to minimise the 
number of setups. 

A second example that illustrates the models described is a pharmaceutical 
company that can produce different types of pills. Each type of pill needs to 
be bottled separately. However, for a given pill type, it is often necessary to 
have different bottle sizes. The pills and the bottles may be produced based 
on forecasts. However, the bottling and packaging stage is order driven. The 
customers, which may be drugstores or hospitals, order certain quantities of 
each product type (a product type being a bottle of a given size of a given pill 
type). The production setups are the switch-overs in the bottling facility. 

Yang (1998) presented another example in the form of a car repair shop. 
Suppose each car has several broken parts that need to be fixed. Each broken 
part can only be fixed by a certain set of mechanics in the shop. Several me- 
chanics can work on different parts of the same car at the same time. The car 
will leave the shop when every broken part is fixed. 

In manufacturing systems that consist of two stages, different types of com- 
ponents (or subassemblies) are produced first in a pre-assembly stage, and then 
put together into final products (jobs) in an assembly stage. The pre-assembly 
stage consists of parallel machines (called feeding machines), each of which 
produces its own subset of components. Each assembly operation cannot start 
its processing until all the necessary components are fed in. As shown in sev- 
eral papers (Duenyas, 1994; Lee et al., 1993; Potts et al., 1995), there are many 
examples of such two-stage assembly systems. An interesting example arises 
in parallel computing systems, in which several programs (or tasks) are first 
processed independently on certain processors, and then gathered at a main 
processor for final data-processing. The main processor can only start its pro- 
cessing after all the programs have fed in their results. As noted by Sung and 
Yoon (1998), our models only deal with the pre-assembly stage in such two- 
stage systems. 

The general problem has not received much attention in the literature. Some 
of the concepts underlying the general problem were introduced by Julien and 
Magazine (1990), who were probably the first to identify this type of problem 
as order scheduling. The problem was studied in more detail in a dissertation 
by Yang (1998). 

Various special cases of the general problem have been considered in the 
literature. However, most of these special cases are significantly less compli- 
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cated than the general problem. An important special case is the case in which 
each order requests just a single product type. If, in addition, the machines are 
fully flexible and no product type requires any setup, then the problem imme- 
diately reduces to the standard parallel machine environment which is usually 
referred to as P m  I P I y in the literature. If the machines are not fully flex- 
ible and there is no setup time for any product type, the problem reduces to 
a more general parallel machine environment that is often referred to as unre- 
lated machines in parallel ( R m  ( P I y). There is a very rich literature on these 
parallel machine scheduling problems. For an overview, see Brucker (1995) 
and Pinedo (2002). 

We propose the following notation for our class of scheduling problems. 
Our notation is an extension of the cu I 0 I y notation introduced by Graham 
et al. (1979). In what follows, we always assume that there are m machines in 
parallel and n orders that come in from n different customers. The fully dedi- 
cated case of this parallel machine environment is denoted by PDm,  the fully 
flexible case by PFm,  and the arbitrary case by PAm;  when the m is omitted 
we assume that the number of machines is arbitrary. In the ,O field we include 
nk to refer to the fact that we have k different product types; the absence of 
the k indicates that the number of different product types may be arbitrary. In 
addition, we include in the P field an s when the setup times for all product 
types are identical, an sl when the setup times for the various product types are 
different but identical for each machine, and an sli when the setup times are 
dependent on both product types and machines. The absence of sli, sl, and s 
indicates that there is no setup time for any product type. Note that setup times 
do not make sense for the fully dedicated case. In addition, if all machines are 
identical, then sli = sl for each machine i = 1,2, . . . , m. As an example of the 
notation, PF6 I prmt, s,  n3 1 L,,, refers to the fully flexible case with six 
machines in parallel and three different product types. Each product type has 
the same setup time s, order j has a due date d j ,  and preemptions are allowed. 
The objective is the minimisation of maximum lateness. 

In the next section, we consider the fully dedicated case. The fully flexible 
case is considered in Section 3. Finally, we draw some conclusions in the last 
section. 

2. THE FULLY DEDICATED CASE 
As mentioned before, in the fully dedicated case, there are m machines and 

the number of product types is equal to m ;  each machine can produce only one 
type. Since machine i is the only machine that can produce type i and type i 
is the only type that can be produced on machine i, the subscript i refers to a 
machine as well as to a product type. We note that Wagneur and Sriskandarajah 
(1993) referred to this model as "open shops with job overlaps", while Ng et 
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al. (2003) called this model "concurrent open shops". This case is considerably 
easier than the other cases because there is no freedom in the assignment of 
jobs to machines. Each machine can start processing at time 0 and keeps on 
producing as long as there is a demand. The main issue here is the assignment 
of finished products to customers. For dedicated machines, the setup times do 
not play a role in scheduling, and can therefore be dropped from consideration. 

For unweighted objectives, the following structural properties can be shown 
easily. 

Lemma 1 ( i )  The makespan C,, is independent of the schedule, provided 
that the machines are always kept busy whenever there are orders avail- 
able for processing (i.e. provided unforced idleness is not allowed). 

(ii) I f  all rj = 0 and fj(Cj) is increasing in Cj for all j, then there exists 
an optimal schedule for the objective function f,, as well as an opti- 
mal schedule for the objective function C f j (C j )  in which all machines 
process the orders in the same sequence. 

(iii) Iffor some machine i there exists a machine h such that pij 5 phj for 
j = 1, . . . , n, then machine i does not play any role in determining the 
optimal schedule and may be ignored. 

Some remarks with regard to these properties are in order. The second prop- 
erty does not hold for the more general problem in which the function f j  (Cj) is 
not monotonic (e.g., problems that are subject to earliness and tardiness penal- 
ties). The third property is useful for reducing the size of an instance of a 
problem. 

Consider the problem PD I P ( C f j  (Cj) .  Since this problem is strongly 
NP-hard, it is advantageous to develop dominance conditions or elimination 
criteria. We can prove the following order dominance result. 

Lemma 2 I f  in the problem PD 1 1  C fj(Cj) there are two orders j and k 
such that pij 5 pik for each i = 1,2, . . . , m, and 

then there exists an optimal schedule in which order j precedes order k. 

Let us consider the total weighted completion time objective, C wjCj. 
Sung and Yoon (1998) showed the following result. 

Theorem 3 The problem PD2 I I C wjCj is strongly NP-hard. 

Wagneur and Sriskandarajah (1993) considered the C Cj objective. They 
presented a proof claiming that PD2 I I C Cj is strongly NP-hard. Unfortu- 
nately, as pointed out by Leung et al. (2005), their proof is not correct. The 
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complexity status of this two machine problem remains open so far. However, 
Leung et al. (2002a) obtained the following result for three machines. 

Theorem 4 The problem PD3 I I x Cj  is NP-hard in the strong sense. 

Since the problem to minimise C Cj is strongly NP-Hard with three or more 
machines, it makes sense to develop and analyse heuristics for this problem. 
A number of researchers have focused their attention on the development of 
heuristics and the following heuristics have been proposed for PD I I C Cj .  

Definition 1 The Shortest Total Processing Time first (STPT) heuristic gen- 
erates a sequence of orders one at a time, each time selecting as the next order 
the one with the smallest total amount of processing over all m machines. 

Definition 2 The Shortest Maximum Processing Time first (SMPT) heuris- 
tic generates a sequence of orders one at a time, each time selecting as the next 
order the one with the smallest maximum amount of processing on any one of 
the m machines. 

Definition 3 The Smallest Maximum Completion Time first (SMCT) heuris- 
tic first sequences the orders in nondecreasing order of pij on each machine 
i = 1,2, . . . , m, then computes the completion time for order j as C; = 

max& {Cij ) ,  and finally schedules the orders in nondecreasing order of c;. 
Definition 4 The Shortest Processing Time first on the machine with the 

largest current load (SPTL) is a heuristic that generates a sequence of orders 
one at a time, each time selecting as the next order the one with the smallest 
processing time on the machine that currently has the largest load. 

Definition 5 The Earliest Completion Time first (ECT) heuristic generates 
a sequence of orders one at a time; each time it selects as the next order the 
one that would be completed the earliest. 

The STPT and the SMPT heuristics have been studied by Sung and Yoon 
(1998). They focused on two machines. Wang and Cheng (2003) studied the m 
machine case. Besides the STPT and the SMPT heuristics, they also analysed 
the SMCT heuristic. The last two heuristics, i.e. SPTL and ECT, were proposed 
by Leung et al. (2002a). 

It turns out that all these heuristics may perform quite poorly in their worst 
case. For example, Wang and Cheng (2003) obtained the following worst-case 
bound. 

Theorem 5 For the problem PDm I I x Cj, 

C c m  < m  
C Cj (OPT) - 
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where H E {STPT,  SMPT, SMCT). 

Leung et al. (2002a) showed that SPTL is unbounded. They also obtained 
the following result. 

Theorem 6 For the problem PDm I I Cj, 

It is not clear whether the worst-case bound is tight for these heuristics. For 
two machines, Leung et al. (2002a) presented an instance for which the ratio 
is 1.618 for the STPT heuristic. They also gave an instance for which the ratio 
is f i  for both ECT and SMCT. 

Leung et al. (2002a) performed an extensive empirical analysis showing 
that among the five heuristics described above, the ECT rule performs on the 
average clearly the best. 

For minimising C wjCj,  the performance bounds of the weighted version 
of STPT, SMPT, SMCT remain unchanged (Wang and Cheng, 2003). Leung 
et al. (2003a) also modified the ECT and SPTL heuristics to take the weights 
of the orders into account. The new heuristics are referred to as the WECT 
and WSPL rules. In detail, the WECT heuristic selects the next order j* which 
satisfies 

Cj - Ck 
j* = arg min - 

jsn { wj } 
where Ck is the completion time of the order that was scheduled immediately 
before order j * .  A postprocessing procedure interchanges order j* with order 
Ic in case Cj* 5 Ck in order to obtain a better (at least no worse) solution. Note 
that the case Cj* 5 Ck occurs only when ppj* = 0, where i* is the machine 
on which order k has, over all machines, the largest finish time. Assume that 
after the swap the order immediately before order j* is order I .  If Cj* 5 Cl, 
we proceed with an interchange of order j* with order 1. We continue with 
this postprocessing until Cj* is larger than the completion time of the order 
that immediately precedes it. Note that after each swap, the finish time of j* 
either decreases or remains unchanged, while the finish time of each order that 
is swapped with j* remains unchanged. This is due to the fact that order j* 
has zero processing time on the machine on which the swapped order has its 
largest finish time. Thus, the postprocessing, if any, produces a solution that is 
no worse than the one without postprocessing. Note that following the WECT 
heuristic, there may at times be ties. Since ties may be broken arbitrarily, the 
WECT heuristic may lead to various different schedules. For the performance 
of WECT, we can show the following result. 
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Theorem 7 For the problem P D m  I  I  C wjCj, 

The proof of the above theorem turns out to be much more complicated 
than that of Theorem 6. With additional constraints of processing times for 
each order, we can show that the performance bounds of the heuristics can be 
much better (close to 2 or 3). For details, see Leung et al. (2003a). 

We also note that Wang and Cheng (2003) proposed an approximation al- 
gorithm which has a worst-case ratio of 1613. The algorithm is based on a 
linear programming relaxation which is formulated on the time intervals geo- 
metrically divided over the time horizon. Leung et al. (2003a) also presented 
a 2-approximation algorithm which is based on a linear programming formu- 
lation on the completion time of the orders. However, the implementation of 
this algorithm is quite complicated. 

Leung et al. (2003a) did an extensive experimental analysis of the five sim- 
ple heuristics listed above as well as of the 1613-approximation algorithm. 
Experimental results show that among the five simple heuristics, WECT is the 
best. For instances with certain characteristics, the WECT rule performs even 
better than the 1613-approximation algorithm. 

The NP-hardness of problem P D 1  I  n1 I  C Tj is a direct consequence of 
the NP-hardness of 1 1 )  C Tj, see Du and Leung (1990). 

The maximum lateness L,, can be minimised by the Earliest Due Date 
rule; i.e., the next finished product is assigned to the customer with the earliest 
due date. Through an adjacent pairwise interchange argument the following 
theorem can be shown. 

Theorem 8 The Earliest Due Date rule solves the problem P D  1 1  L,,, 
and the Preemptive Earliest Due Date rule solves the problem P D  I prmt, rj I  

In a more general setting, the processing of the orders are subject to prece- 
dence constraints and the objective function is the more general f,,. Lawler 
(1973) developed an algorithm based on (backwards) dynamic programming 
that solves the single machine version of this problem in polynomial time. 
Lawler's algorithm can be extended in such a way that it generates optimal 
solutions for the more general P D  machine environment. 

Theorem 9 The problem P D  I  prec I  f,, can be solved in 0(n2) time. 

The problem P D 1  I  rj, n l  I  L,, is NP-hard, which is a direct conse- 
quence of the NP-hardness of 1 I  rj I L,,. 

The total number of late jobs objective, C wjUj, is also of interest. When 
wj = 1, Wagneur and Sriskandarajah (1993) showed the following result. 
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Theorem 10 The problem P D 2  I I x Uj is NP-hard in the ordinary sense. 

In fact, Cheng and Wang (1999) showed that there exists a pseudo-poly- 
nomial time algorithm for every fixed m 1 2. When the number of machines 
is arbitrary, Ng et al. (2003) showed the following result. 

Theorem 11 The problem P D  I I x Uj is NP-hard in the strong sense. The 
NP-hardness in the strong sense remains in effect even for the very restricted 
case P D  Ipij E {O,l),dj = d I XUj .  

For the problem P D  ( dj = d I C Uj, Leung et al. (2002b) showed that the 
problem reduces to the Multiset Multicover (MSMC) problem (Rajagopalan 
and Vazirani, 1998). Thus, any algorithm solving the MSMC problem also 
solves the problem P D  I dj = d ( C U j .  Leung, Li and Pinedo (2002b) 
adapted Rajagopalan and Vazirani's greedy algorithm for MSMC in such a 
way that it is also applicable to the P D  ( dj = d ( C Uj problem. In the 
next theorem this modified version of the Rajagopalan and Vazirani algorithm 
is denoted by Hg. Leung et al. (2002b) obtained the following result for the 
H, algorithm. 

Theorem 12 For P D  I dj  = d I C Uj, ifall pij and d are integers, then 

where = GCD(pil,pia,. . . ,pin,d) for i = 1,2, .  . . ,m, and N(k) - 
~ f = ~ ( l / i )  is the harmonic series. In addition, the bound is tight. 

It should be noted that Rajagopalan and Vazirani's greedy algorithm was 
designed for the weighted MSMC problem. If in our problem each order has 
a weight wj, then it is also easy to adapt the greedy algorithm to solve P D  I 
dj = d I C wj Uj. The approximation ratio of the revised greedy algorithm for 
PD I dj  = d I C wjUj remains unchanged. Another observation for P D  I 
d j  = d I C wjUj is that it is in fact the dual problem of the multidimensional 
0-1 knapsack problem (MKP) with an arbitrary number of dimensions. Thus, 
the resolution methods for MKP also shed light on solving P D  1 dj  = d I 
C wjUj. For a very recent survey for the MKP problem, the reader is referred 
to Frkville (2004). 

For the restricted case P D  ( p j  E (0, I}, dj = d I C Uj, Ng et al. (2003) 
proposed a (d + 1)-approximation algorithm based on a linear programming 
relaxation. However, if we apply the greedy algorithm for P D  I dj  = d I 
C Uj to solve P D  ( pij E {0,1}, dj = d I C Uj, the approximation ratio 
is at most N(m). Thus, if m < ed, the approximation ratio of the greedy 
algorithm would be better than that of the LP-based heuristic. In fact, by our 
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reduction, the P D  I pij = 0 or 1, dj  = d I C Uj problem turns out to be 
a set multicover (SMC) problem, since the elements in each constructed set 
are unique but each element requires to be covered multiple times. Thus, any 
approximation algorithm for the SMC problem can be applied to solve P D  I 
pij = 0 or 1, dj  = d I C Uj with the approximation ratio being preserved. 
Hochbaum (1996) presented several LP-based p-approximation algorithms for 
weighted SMC, where 

Clearly, these p-approximation algorithms can be applied to solve P D  I pij = 
0 or 1, d j  = d I C wjUj. Since X(p) < p for p 2 2, it is easy to see that the 
approximation ratio of our greedy algorithm is still better. 

Heuristics for P D  1 1  C Uj can be designed based on the ideas of the 
Hodgson-Moore (1968) algorithm which solves the single machine version 
of this problem, i.e. P D 1  I n l  I C Uj, to optimality. The Hodgson-Moore 
algorithm for the single machine version generates a schedule by inserting the 
jobs in a forward manner one at a time according to the EDD rule. Whenever 
a job is completed after its due date, the procedure selects among the jobs that 
are currently still part of the schedule the longest one and takes it out of the 
schedule. Once a job has been taken out of the schedule, it never can get back 
in. Using the main idea behind the Hodgson-Moore algorithm the following 
heuristic can be designed for P D  1 I C Uj. The orders are put in the schedule 
S in a forward manner one at a time; whenever an order j' that is put into the 
schedule is completed after its due date, one of the orders that are currently 
part of the schedule has to be taken out. 

The selection of the order that has to be taken out can be done based on a 
priority ranking system. In order to make sure that not more than one order 
has to be deleted from the schedule, it pays to keep a set of candidate orders Sc 
with the property that the removal of any one order in S, from S ensures that 
the rest of the orders in S are completed before their due dates. 

First of all, the tardy order j' itself is already a candidate order, since all the 
orders that precede j' in S can be completed before their due dates. For each 
order j E S, j # j ', if its removal from S enables order j' to be completed 
in time, then j becomes a candidate in S,, otherwise, j will not become a 
candidate. It is clear that 1 < IS,I 5 IS(. 

Secondly, for each candidate order j E S,, a weighted sum of all its pro- 
cessing times pij on the m machines, denoted by W(SC)j, has to be computed. 
The weight of machine i, denoted by wi, is a function of the current load on 
machine i, denoted by CLi,  and the future workload of machine i due to all 
the orders that still have to be considered, denoted by FLi. A typical weight 
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function can be 
wi = wlCLi + w2FLi 

where wl and w2 are the weights for CLi and FLi, respectively, for any i, 1 _< 
i 5 m. With wi, the weighted sum of each candidate order j E S, is computed 
as 

Finally, the candidate order to be taken out is the one with the maximum 
weighted sum, i.e. order j* such that 

Leung et al. (2002b) have done an extensive empirical analysis of the heuris- 
tic above. They also proposed an exact algorithm that uses constraint propaga- 
tion, backtracking, and bounding techniques. Their result shows that the exact 
algorithm can solve instances of moderate size in a reasonable running time; 
and the results of the above heuristic are quite close to those of the exact algo- 
rithm. Recently, Leung et al. (2005) generalised the heuristic above so that it 
is applicable to the weighted case. 

3. THE FULLY FLEXIBLE CASE 
In the fully flexible case, the m machines are identical and each machine 

is capable of producing all k products. Two sets of problems are of interest, 
namely 

(i) the fully flexible cases without setup times, 

(ii) the fully flexible cases with arbitrary setup times. 

Clearly, the fully flexible case is more difficult than the fully dedicated case, 
the reason being that we have to take care of two issues for this case: besides 
sequencing the orders, we need also to assign the product types to the ma- 
chines. Recall that for the fully dedicated case, we need only to consider the 
issue of sequencing the orders. 

3.1 The Fully Flexible Case Without Setup Times 
The problem PF1 I nk,P I y is identical to the problem 1 I P I y. In the 

following we will consider m 2 2 only. As we shall see, there are similarities 
as well as differences between the case P F m  I nk, P I y and the standard 
parallel machine environment P m  I /3 I y. 
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For the objectives of C,,, L,, and C wjTj, the complexities follow 
closely those of the standard parallel machine scheduling environment. Thus, 

PF 1 prmt, nk 1 C,, and PF 1 prmt, nk 1 L,, 
are solvable in polynomial time, whereas 

are NP-hard (since PF1 1 nl I C Tj is NP-hard). 
On the other hand, the complexities are different for the C Cj objective. It 

is well known that P 1 1  Cj and P I prmt I C Cj can be solved by the 
Shortest Processing Time first (SPT) rule (Pinedo, 2002). The following result 
was obtained by Blocher and Chhajed (1996). 

Theorem 13 The problem PF2 I nk I C Cj is NP-hard in the ordinary 
sense. 

When k = 2, Yang (1998) showed that the problem remains NP-hard. 

Theorem 14 The problem PF2 1 n2 1 Cj is NP-hard in the ordinary 
sense. 

But it is not known whether or not there exists a pseudo-polynomial time 
algorithm for the above ordinary NP-hard problem. When the number of ma- 
chines is arbitrary, Blocher and Chhajed (1996) showed the following result. 

Theorem 15 The problem PF I nk I C Cj is NP-hard in the strong sense. 

Consider now the preemptive version of this same problem. One can think 
of two different sets of assumptions for a preemptive version of this problem. 

Under the first set of assumptions, the processing of a particular product 
type for a given order may be shared by multiple machines and the various 
machines are allowed to do this processing simultaneously. It is easy to show 
that the class of problems in this case, i.e. PF I prmt, I y is identical to the 
class of problems 1 I prmt, P I y. This equivalence implies that this particular 
preemptive version is very easy. 

Under the second set of assumptions for a preemptive version of this prob- 
lem, any product for any given order can be processed partly on one machine 
and partly on an other. However, now we assume that if a product type for a 
given order is done on more than one machine, then these different process- 
ing times are not allowed to overlap. Leung et al. (2002~) showed that this 
particular preemptive version is hard. 
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Theorem 16 The problem PF2 I prmt, n2 I x Cj is NP-hard in the ordi- 
nary sense. 

It is possible to design for PF I nk I x Cj heuristics that have two phases. 
The first phase determines the sequence of the orders, and the second phase 
assigns the different products of an order to the machines. Based on these 
ideas, Blocher and Chhajed (1996) developed two classes of heuristics. 

The first class of heuristics can be referred to as the static two phase heuris- 
tics. In these two phase heuristics, the orders are sequenced first, and then 
the different products for each order are assigned to the machines. Rules for 
sequencing the orders include: 

The smallest average processing time first (SAPT) rule sequences the 
orders in increasing order of c:=, pU/m. 

The smallest maximum completion timefirst (SMCT) rule sequences the 
( j  1 di 1 orders in increasing order of CLPT, j = 1,2,. . . , n, where CLPT is 

the makespan of the schedule that is obtained by scheduling the differ- 
ent product types of order j on the m parallel machines according to 
the longest processing time first (LFT) rule, assuming each machine is 
available from time zero on. 

After the sequence of orders is determined by one of the above rules, the 
product types of each order can be assigned to machines following one of the 
two assignment rules below: 

The Longest Processing Timefirst rule (LFT) assigns in each iteration an 
unassigned product type with the longest processing time to a machine 
with the smallest workload, until all product types are scheduled. 

The Bin Packing rule (BIN) starts by determining the completion time of 
an order using the LPT assignment rule above (just as a trial, not being 
the real assignment). This completion time is used as a target completion 
time (bin size). In each iteration, the BIN rule assigns an unassigned 
product type with the longest processing time to one of the machines 
with the largest workload. If the workload of the machine exceeds the 
target completion time after the assignment, then undo this assignment 
and try the assignment on the machine with the second largest workload. 
This procedure is repeated until the product type can be assigned to a 
machine without exceeding the target completion time. If assigning the 
product type to the machine with the smallest workload still exceeds 
the target completion time, then assign it to this machine, and reset the 
target completion time to the completion time of the product type on this 
machine. 
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Combinations of the sequencing rules with the assignment rules lead to four 
different heuristics: namely, SAPT-LPT, SAPT-BIN, SMCT-LPT, and SMCT- 
BIN. 

The second class of heuristics may be referred to as the dynamic two-phase 
heuristics. In these heuristics, the sequence of orders is not fixed prior to the as- 
signment of product types to machines, i.e., the sequence is determined dynarn- 
ically. The heuristics still use the LPT rule or the BIN rule for the assignment. 
However, to determine the next order to be sequenced, a greedy approach is 
applied to make a trial assignment of the product types of all remaining orders 
by using either the LPT or the BIN rule, and the order that gives the small- 
est completion time is selected as the next order in the sequence. These two 
heuristics may be referred to as Greedy-LPT and Greedy-BIN. 

Blocher and Chhajed (1996) did not obtain performance bounds for these 
heuristics. However, they did an experimental analysis and found that the re- 
sults obtained with the heuristics are very close to the lower bound they devel- 
oped. They also found that not one of the heuristics consistently dominates any 
one of the others. It turns out that these heuristics do have certain performance 
bounds. For details, the reader is referred to Leung et al. (2003b). 

3.2 The Fully Flexible Case With Setup Times 
The scheduling problems become considerably harder with arbitrary setup 

times, even for a single machine. Leung et al. (2003b) considered P F 1  1 sl I  
L,, and P F 1  I  sl I C U j  and proved the following theorem. 

Theorem 17 Theproblems PF1  1 sl I L,, and P F 1  I sl I Uj are both 
NP-hard in the ordinary sense. 

This result is rather surprising, since 1 1 )  L,, can be solved by the Earliest 
Due Date rule and 1 I  I  C U j  can be solved by the Hodgson-Moore algorithm. 

Minimising C,, on one machine is solvable in polynomial time. All we 
need to do is to batch all requests of the same product type together and se- 
quence the product types in an arbitrary order. In this way, each product type 
will incur its setup time at most once and C,, will be minimised. Unfortu- 
nately, Leung et al. (2003b) showed that we lose polynomiality when we have 
two or more machines. 

Theorem 18 The problems PF2  I  sl I  C,, and P F 2  I  prmt, sl I  C,, 
are both NP-hard in the ordinary sense. 

For the objective of minimising the total completion time, some work has 
been done recently for the single machine case. Ng et al. (2002) showed the 
following result. 
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Theorem 19 The problem PF1 I s, nk,plj E {O,l) I C Cj  is strongly 
NP-hard. 

Interestingly, they mentioned that the complexity of PF1 I sl,rk,plj > 
0 I C Cj remains an open problem. If there is a requirement for all the 
operations of any given product type to be scheduled contiguously (i.e. the 
operations for each product type must be scheduled in one batch), then the 
process is said to follow the group technology (GT) approach (see Gerodimos 
et al., 1999; Ng et al., 2002). While Gerodimos et al. (1999) showed that 
PF1 I sl, nk,  GT, plj > 0 I C Cj is polynomially solvable, Ng et al. (2002) 
obtained the following complexity result. 

Theorem 20 The problem PF1 I s, nk, GT, plj E {0,1) I C Cj is strongly 
NP-hard. 

For two machines, we can derive the following result from Theorem 16. 

Theorem 21 The problem P F 2  I prmt, s, nk I C Cj is NP-hard in the 
ordinary sense. 

Consider now the case in which the orders have different release dates. Le- 
ung et al. (2003b) showed that no online algorithm (i.e. algorithms that operate 
without any knowledge of future order arrivals) can do as well as an optimal 
offline algorithm. 

Theorem 22 There is no optimal online algorithm for PF1 I rj ,  s, nk I 
C,, and PF1 I prmt, rj, s, nk I C,,. 

4. CONCLUDING REMARKS 
Order scheduling models have many real world applications. It is a rela- 

tively new idea to optimise the objective functions of the completion times of 
orders rather than individual completion time of the jobs included in the orders. 
Some work has been done in the past for special cases. Our goal has been to 
classify the previous work in a single framework based on the characteristics 
of machine environment and objectives. While the complexity of some of the 
problems are known, many remain open. It will be interesting to settle these is- 
sues in the future. Developing heuristics with provably good worst case bounds 
andlor good empirical performance is also a worthwhile direction to pursue. 
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