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Abstract This paper considers a container rail service planning problem, in which cus- 
tomer demands are known in advance. The existing rail freight optimisation 
models are complex and not demand responsive. This paper focuses on con- 
structing profitable schedules, in which service supply matches customer de- 
mands and optimises on booking preferences whilst satisfying regulatory con- 
straints. A constraint satisfaction approach is used, in which optimisation crite- 
ria and operational requirements are formulated as soft and hard constraints re- 
spectively. We presen; a constraint-based search algorithm capable of handling 
problems of realistic size. It employs a randomised strategy for the selection of 
constraints and variables to explore, and uses a predictive choice model to guide 
and intensify the search within more promising regions of the space. Experimen- 
tal results, based on real data from the Royal State Railway of Thailand, have 
shown good computational performance of the approach and suggest significant 
benefits can be achieved for both the rail company and its customers. 

Keywords: rail container service planning, local search, constraint-based approach. 

1. INTRODUCTION 
The transportation of rail freight is a complex domain, with several pro- 

cesses and levels of decision, where investments are capital-intensive and usu- 
ally require long-term strategic plans. In addition, the transportation of rail 
freight has to adapt to rapidly changing political, social, and economic environ- 
ments. In general, the rail freight planning involves four main processes: path 
formulation, fleet assignment, schedule production, and fleet repositioning. 
This paper addresses an issue in schedule production, constructing profitable 
schedules for the container rail service, using a constraint-based approach. 

1 .  Container Rail Service Planning Problem 
Container rail service differs from conventional freight rail in several im- 

portant aspects. Because of the high costs of container handling equipment, 
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Figure I .  A short-term advance booking scheme. 

container rail networks have relatively few, and widely spaced, terminals. Net- 
works with a small number of terminals are common and the network flows 
are relatively simple. A typical container makes few or no stops and may be 
transferred between trains only up to a few times on its journey. In addition, 
small lot sizes of shipment, frequent shipment, and demand for flexible service 
are important characteristics of rail container transportation. 

This paper considers the container rail service from a container port to an 
inland container depot (ICD). Once containers arrive at the port, there is a need 
to move them to their final customers, which can be done by rail or truck via 
ICD, or by truck direct to the final destinations. 

A rail carrier's profitability is influenced by the railway's ability to con- 
struct schedules for which service supply matches customer demand. The need 
for flexible schedules is obvious because the take-up of some services in a 
fixed schedule may be low and not profitable. In order to create a profitable 
timetable, a container rail carrier needs to engage in a decision-making process 
with multiple criteria and numerous constraints, which is very challenging. 

This paper assumes an advance booking scheme as illustrated in Figure 1. 
It also assumes that all containers are homogeneous in terms of their physical 
dimensions, and they will be loaded on trains ready for any scheduled departure 
times. 

Customers are requested to state a preferred departure timeslot or an earliest 
departure time in advance. A number of alternative departure timeslots for 
each shipment may be specified, which might be judged from experience or 
estimated by the customer's delay time functions. These alternatives not only 
help a rail carrier consolidate customer demands to a particular train service 
with minimum total costs, but also provide flexible departure times for the 
customer's transport planning strategy. 

1.2 Literature Review 
There are two principal areas of work relating to the application domain and 

the solution approach. 
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Application domain. There is an increasing interest in flexible rail freight 
schedules in the literature, which may be distinguished into two types accord- 
ing to how the overall demand is met. Huntley et al. (1995), Gorman (1998) 
and Arshad et al. (2000) aggregate customers with minimum operating costs 
through flexible scheduling. They do not propose to meet individual demands. 
Newman and Yano (2000), Yano and Newman (2001) and Kraft (2002) share 
the same spirit of our study by being responsive to individual demands. 

The models proposed by Newman and Yano (2000), Yano and Newman 
(2001) and Kraft (2002) satisfy the operational constraints fully for each cus- 
tomer. In contrast, our framework models customer satisfaction, computed 
from preferred and alternative departure times, which is then maximised as 
one of the business criteria. Hence, some customers might not be given their 
most preferred departure times. This framework is more natural for supporting 
decision-makers, in which a rail carrier can measure how well their customers 
are satisfied and the implications of satisfying these customers in terms of cost. 

Solution approach. As the size of the problem that needs to be rou- 
tinely solved in the rail freight industry is large, local search methods, such 
as simulated annealing, tabu search, genetic algorithms, etc, have been em- 
ployed to produce near-optimal solutions. For instance, Huntley et al. (1995) 
applied simulated annealing to the problem of rail freight routing and schedul- 
ing, Marin and Salmeron (1996) evaluated a descent method, simulated an- 
nealing, and tabu search for solving large size rail freight networks, Gorman 
(1998) used a tabu-enhanced genetic algorithm for solving the freight railroad 
operating plan problem, and Arshad et al. (2000) combined constraint pro- 
gramming with a genetic algorithm to solve the multi-modal transport chain 
scheduling problem. A recent survey of optimisation models for train routing 
and scheduling is given by Cordeau et al. (1998). However, these approaches 
are complex and highly domain specific; thus they lose flexibility and the sus- 
tainability to solve rail container optimisation models in which the rail business 
strategy keeps changing. 

The concept of domain-independent algorithms is always attractive and may 
be appropriate for our problem. There are many algorithms in this class; for ex- 
ample, Connolly (1992) introduced general purpose simulated annealing (GP- 
SIMAN), Abramson and Randall (1999) extended GPSIMAN to solve integer 
programs (INTSA), and Nonobe and Ibaraki (1998) proposed a tabu search 
approach as a general solver for a constraint satisfaction problem. 

In contrast, our approach is inspired by SAT local search for the satisfiabil- 
ity (SAT) problem (Gomes et al., 1998; Selman et al., 1992, 1994). SAT is 
a problem of deciding whether a given Boolean formula is satisfiable. When 
the problem is not solvable in polynomial time by exact algorithms, SAT local 
search might be employed. An attractive framework of SAT local search is that 
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the structure of the local move is simple. GSAT and WalkSAT are well-known 
local search techniques for SAT problems (Selman et al., 1992, 1994). SATz- 
Rand, introduced by Gomes et al. (1998) is a recent solver for SAT problems. 
Walser (1999) extended WalkSAT to WSAT(O1P) for solving integer program- 
ming problems. 

However, our problem encoded into a Boolean formula or 0-1 integer con- 
straints would be large and the solution structure may be difficult to maintain 
by simple local move with a randomised strategy, as performed by SAT local 
search and other domain-independent algorithms. One way to enhance the al- 
gorithm whilst maintaining a simple structure of local move is to build in learn- 
ing capabilities in the algorithm. We propose a predictive choice model that 
learns from the search history in order to fix locally some variables, and enforce 
the consistency between different sets of variables. The model addresses the 
case in which all decision variables are binary. Our predictive learning algo- 
rithm has some similarities to other algorithms based on probabilistic models 
(Horvitz et al., 2001; Larraaga and Lozano, 2002; Marin and Salmeron, 1996; 
Resende and Ribero, 2001). All these algorithms attempt to draw inferences 
specific to the problem and therefore can be regarded as processes for learn- 
ing domain knowledge implicitly. However, the formulation and application 
of the models are different. Our predictive model is based on a discrete choice 
theory of human behaviour for choosing a particular value for variables in a 
probabilistic way, whilst the others are based on different theories and use the 
probabilistic models to limit the search space at different points of process. 

The paper is organised as follows. We first define the hard and soft con- 
straints and model the problem as a constraint satisfaction problem. The solu- 
tion algorithm will be described next. Experimental results, based on real data 
from the Royal State Railway of Thailand will be presented. Finally, conclu- 
sions are discussed. 

2. CONSTRAINT-BASED MODELLING 
Real-world problems tend to have a large number of constraints, which may 

be hard or soft. Hard constraints require that any solutions will never violate 
the constraints. Soft constraints are more flexible, constraint violation is toler- 
ated but attracts a penalty. Naturally, a real-world problem can be thought of 
as a constraint satisfaction problem (CSP). 

There are two critical advantages of using constraint-based modelling. 
Firstly, it is a clean separation between problem modelling and solution tech- 
nique. If new problem conditions are introduced, we only need to model such 
conditions as constraints. Secondly, problem-specific knowledge can influ- 
ence the search naturally. This is done by applying problem-specific weights, 
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reflecting their relative importance, directly to constraints in order to enhance 
a solution algorithm within a CSP framework. 

We model the demand-responsive container rail scheduling problem as a 
CSP and introduce a constraint-based search for solving this class of CSP. We 
consider problems in which the day is divided into hourly slots for weekly 
booking and scheduling. The following notation will be used. 

Subscripts: 
t schedulable timeslot (departure time), t = 1,2 ,3 , .  . ., T. 
j customer, j = l ,2 ,3 ,  . . . , M .  

Sets: 
Sj set of possible departure timeslots for customer j. 
Ct set of potential customers for departure timeslot t .  
R set of service restrictions for departure timeslots. 

Decision variables: 
xt 1, if a train departs in timeslot t ,  0 otherwise. 
ytj 1, if customer j is served by the train departing in timeslot t ,  

0 otherwise. 

Parameters: 
wtj customer j satisfaction in departure timeslot t .  
rt train congestion cost in departure timeslot t. 
gt staff cost in departure timeslot t. 
P2 capacity of a train (number of containers). 
Nj demand of customer j (number of containers). 

Our problem may be thought of as analogous to a capacitated facility (ware- 
house) location problem (CFLP) (Aardal, 1998; Beasley, 1988), with the con- 
tainer shippers being the customers, and the train departure timeslots being 
analogous to the possible warehouse locations. The CFLP class of prob- 
lems also include location and distribution planning, capacitated lot sizing 
in production planning, and communication network design (Boffey, 1989; 
Kochmann and McCallum, 1981), etc. However, in contrast to the CFLP, our 
problem is recurrent with complex interaction between the possible warehouse 
locations. We handle non-uniform demands that arrive at the container port 
dynamically with distinct target times to their final destinations. In addition, 
we include in our model a probabilistic decrease in customer satisfaction as the 
schedulable timeslots deviate from the customer target time. 

In a CSP-model, optimisation criteria and operational requirements are rep- 
resented as soft and hard constraints respectively. The criteria are handled by 
transforming them into soft constraints. This is achieved by expressing each 
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criterion as an inequality against a tight bound on its optimal value. As a result, 
such soft constraints are rarely satisfied. 

A feasible solution for a CSP representation of the problem is an assign- 
ment to all constrained variables in the model that satisfies all hard constraints, 
whereas an optimal solution is a feasible solution with the minimum total soft 
constraint violation (Henz et al., 2000; Lau et al., 2001; Walser, 1999). For 
a constraint satisfaction problem, the violation vi of constraint i is defined as 
follows: 

where au are coefficients, bi is a tight bound and xj are constrained variables. 
Note that violations for other types of linear and non-linear constraints can be 
defined in an analogous way. 

When all constrained variables are assigned a value, the violation of the hard 
and soft constraints can be tested and quantified for evaluating local moves. 

2.1 Soft Constraints 
The number of trains. The aim is to minirnise the number of trains on a 

weekly basis, which is defined as 

where O is a lower bound on the number of trains, e.g. [ (x j  ~ j )  1 ~ 2 1 .  

Customer satisfaction. This constraint aims to maximise the total cus- 
tomer satisfaction. The satisfaction is assigned values from a customer satis- 
faction function (e.g., Figure 2). Each customer holds the highest satisfaction 
at a preferred booking timeslot, the satisfaction then decreases probabilistically 
to the lowest satisfaction at the last alternative booking timeslot, i.e. later than 
preferred booking timeslots would cause a decrease in the future demand, and 
the rail carrier is expected to take a loss in future revenue. For the evaluation 
of a schedule, the probability of customer satisfaction is then multiplied by 
demand N j .  The customer satisfaction constraint can be expressed as 

where R is an upper bound on customer satisfaction, i.e. C W j N j ,  with W j  
j 

the maximum satisfaction on the preferred booking timeslot for customer j. 
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Timeslot operating costs. This constraint aims to minimise the operating 
costs. A rail carrier is likely to incur additional costs in operating a demand 
responsive schedule, in which departure times may vary from week to week. 
This may include train congestion costs and staff costs. The train congestion 
cost reflects an incremental delay resulting from interference between trains 
in a traffic stream. The rail carrier calculates the marginal delay caused by 
an additional train entering a particular set of departure timeslots, taking into 
account the speed-flow relationship of each track segment. The over-time costs 
for crew and ground staff would also be paid when evening and night trains are 
requested. The constraint is defined as 

where (A + 6) is a lower bound on the timeslot operating costs, X = C rt, T, 
tET, 

is the set of 8 least train congestion costs, 6 = C gt, Tb is the set of 8 least 
tETh 

staff costs, 8 is a lower bound on the number of trains. 

2.2 Hard Constraints 
'Rain capacity. This constraint ensures the demand must not exceed the 

capacity of a train, which is defined as 

Coverage constraint. It is a reasonable assumption that in practice cus- 
tomers do not want their shipment to be split in multiple trains, this constraint 
ensures that a customer can only be served by one train. The constraint is given 

Timeslot consistency. This constraint ensures that if timeslot t is selected 
for customer j ,  a train does depart at that timeslot. On the other hand, if de- 
parture time t is not selected for customer j ,  a train may or may not run at that 
time. The constraint is defined as 

Service restriction. This is a set of banned departure times. The re- 
strictions may be pre-specified so that a railway planner schedules trains to 
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achieve a desirable headway or to avoid congestion at the container terminal. 
The constraint is defined as 

2.3 Implied Constraints 
The soft and hard constraints completely reflect the requisite relationships 

between all the variables in the model, i.e. the operational requirements and 
business criteria. Implied constraints, derivable from the above constraints, 
may be added to the model. While implied constraints do not affect the set 
of feasible solutions to the model, they may have computational advantage in 
search-based methods as they reduce the size of the search space (Proll and 
Smith, 1998; Smith et al., 2000). 

Timeslot covering. A covering constraint can be thought of as a set cov- 
ering problem in which the constraint is satisfied if there is at least one depar- 
ture timeslot xt  serving customer j .  This constraint favours a combination of 
selected departure timeslots that covers all customers. The covering constraint 
is defined as 

C x t 2 1  W (9) 
t€Sj 

2.4 Customer Satisfaction 
A rail carrier could increase the quality of service by tailoring a service that 

satisfies customers. The rail schedule may be just one of the factors including 
cost, travel time, reliability, safety, and so forth. As customers have different 
demands, it is hard to find a single definition of what a good quality of service 
is. For example, some customers are willing to tolerate a delayed service in 
return for sufficiently low total shipping costs. 

In this paper, we only investigate customer satisfaction with respect to the 
rail schedule. To acquire the customer satisfaction data, face-to-face interviews 
were carried out. This survey includes 184 customers currently using both rail 
and trucking services or using only rail but with the potential to ship by truck in 
the future. To quantify customer satisfaction, customer satisfaction functions 
were developed. Total shipping costs associated with movement by different 
modes are calculated as a percentage of commodity market price or value of 
containerised cargo, expressed in price per ton. Average shipping costs of the 
cargo from survey data and the market price (Ministry of Commerce, 2002) 
are summarised in Table 1. 

We assume that all customers know a full set of shipping costs, and can 
justify modal preferences on the basis of accurately measured and understood 
costs. The freight rate may be adjusted by the relative costs that a customer 
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Table I .  Modal cost for a transport mode. 

Cost tunit price Market Modal cost (%) 
Cargo typestcost Truck Rail price Truck, CT Rail, CR AC 

Freight rate 
5 p e  1 
5 p e  11 
Qpe  I11 
5 p e  IV 

Terminal handling charge 
5 p e  1 
5 p e  11 
5 p e  I11 
5 p e  IV 

Terminal storage charges 
(within free time storage) 

Overhead cost 
(within free time storage) 

Total shipping costs 
S P ~  I 
Q P ~  11 
5 p e  I11 
5 p e  IV 

may be willing to pay to receive superior service. For example, some cus- 
tomers may have higher satisfaction using a trucking service even if the explicit 
freight rate is higher; speed and reliability of the service may be particularly 
important if the containerised cargo has a short shelf life. 

To determine customer satisfaction between modes, modal cost percentages 
are then applied to an assumed normal distribution (Indra-Payoong et al., 1998) 
and the difference between modal cost percentages, i.e. AC = CT - CR. The 
customer satisfaction derived from the cumulative probability density function 
is illustrated in Figure 2. 

Once the satisfaction function has been developed, a customer satisfaction 
score can be obtained from the modal satisfaction probability. This probability 
could also be used to predict the market share between transport modes and to 
test the modal sensitivity when the rail schedule is changed. 

The customer satisfaction is a probability of choosing rail service; hence sat- 
isfaction ranges from 0 to 1. Note that all customers currently using container 
rail service may already hold a certain level of satisfaction regardless of taking 
the quality of rail schedule into account. Once the rail carrier has been chosen 
as transport mode and later the schedule is delayed, customers incur additional 
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Figure 2. Customer satisfaction function of cargo type 11. 

total shipping costs, i.e. terminal storage and overhead costs involved at the 
seaport. This would result in a decrease in customer satisfaction. 

2.5 Generalised Cost Function 
For the evaluation of a schedule, a cost function taking into account the 

number of trains can be expressed in terms of operating costs; but it is hard 
to express customer satisfaction using a monetary unit. We shall express the 
customer satisfaction on a rail scheduling service in terms of shipping costs 
related to the delay time. We introduce the term "virtual revenue loss" as a unit 
cost. This term is derived from the difference in probability of choosing the 
rail service between the preferred timeslot and the alternatives. The probability 
is then multiplied by a demand and freight rate per demand unit. Therefore, a 
generalised cost function, GC, is the sum of the operating costs and the virtual 
loss of revenue: 

where FC is a fixed cost of running a train, F R  is a freight rate per demand 
unit (ton-container), sl, s2 and s3 are soft constraint violations for the num- 
ber of trains, customer satisfaction, and timeslot operating costs constraints 
respectively. 

3. SOLUTION ALGORITHM 
We propose a constraint-based search algorithm (CBS) for solving the con- 

straint satisfaction problem. The algorithm consists of two parts: CBS based on 
a randomised strategy and a predictive choice learning method, which guides 
and intensifies the search. 
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3.1 Constraint-Based Search Algorithm 
Points in the search space correspond to complete assignment of 0 or 1 to 

all decision variables. The search space is explored by a sequence of sample 
randomised moves which are influenced by the violated hard constraints at the 
current point. 

The CBS starts with an initial random assignment, in which some hard con- 
straints in the model can be violated. In the iteration loop, the algorithm ran- 
domly selects a violated constraint: e.g., the assigned train timeslot for which 
the demands exceed train capacity. Although different constraint selection 
rules have been studied for SAT local search (McAllester et al., 1997; Parkes 
and Walser, 1996; Walser, 1999), for instance choosing the violated constraint 
with maximum or minimum violation, none have been shown to improve over 
random selection. 

Having selected a violated constraint, the algorithm randomly selects one 
variable in that constraint and another variable, either from the violated con- 
straint or from the search space. Then, two flip trials are performed, i.e. chang- 
ing the current value of the variable to its complementary binary value. Sup- 
pose that V, takes the value vi at the start of the iteration, so that A = 
( v l ,  212, . . . , urn[ h) ,  where m is the total number of variables and h is the total 
violation of all hard constraints. Suppose further that V1,V2 are chosen and that 
their flipped values are 81, 82 respectively. We then look at the assignments 
A1 = (81, v2,  . . . , urn 1 h l ) ,  A2 = ( v l ,  82, . . . , urn 1 h2) and select the alterna- 
tive with the smaller total hard violation. Whenever all hard constraints are 
satisfied, the algorithm stores the soft violation penalties as feasible objective 
values, together with the associated variable values. The algorithm continues 
until the stopping criterion is met, i.e. a feasible solution is found or if no 
improvement has been achieved within a specified number of iterations. The 
procedure of CBS is outlined in Figure 3. 

The procedure can be readily modified to give a set of feasible solutions and 
to make more use of the soft constraints, which in the procedure of Figure 3 
are largely ignored. We do not do so here but do in the context of an enhanced 
procedure incorporating the predictive choice model in the following section. 

3.2 Predictive Choice Model 
The first development of choice models was in the area of psychology (see 

Marder, 1997). The development of these models arose from the need to ex- 
plain the inconsistencies of human choice behaviour, in particular consumer 
choice in marketing research. If it were possible to specify the causes of these 
inconsistencies, a deterministic choice model could be easily developed. 

These causes, however, are usually unknown or known but very hard to 
measure. In general, these inconsistencies are taken into account as random 
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proc CBS 
input soft and hard constraints 
A := initial random assignment 
while not stopping criterion do 

C := select-violated-hard-constraint (A) 
P := select-two-variables (C, A) 
A1, A2 := flip(A, P) 
if (hl < hp) then (A t A1) 
else (A c A2) 
if h = 0 then A is feasible, record solution A 
end if 

end while 
output a feasible solution found 

end proc 

Figure 3. The constraint-based search procedure. 

behaviour. Therefore, the choice behaviour could only be modelled in a prob- 
abilistic way because of an inability to understand fully and to measure all the 
relevant factors that affect the choice decision. 

Deciding on a choice of value for a variable in a CSP is not obviously similar 
to the consumer choice decision. However, we could set up the search algo- 
rithm to behave like the consumer behaviour in choice selection. That is, we 
consider the behavioural inconsistencies of the algorithm in choosing a good 
value for a variable. 

For general combinatorial problems, a particular variable may take several 
different values across the set of feasible solutions. Thus it may never be pos- 
sible to predict a consistently good value for the variable during the search. 
However, when the problem is severely constrained and has few feasible solu- 
tions, it may well be that some variables take a more consistent value in all the 
feasible solutions during the search. The predictive choice model is intended to 
discover such values and to use them to steer the search. Note that for the con- 
tainer rail scheduling model in Section 2, the problem becomes more severely 
constrained as the value of minimum train loading increases (Section 3.3). 

Violation history. Once a variable has been selected, the algorithm has 
to choose a value for it. The concept is to choose a good value for a variable: 
e.g. the one that is likely to lead to a smaller total hard constraint violation 
in a complete assignment. In our constraint-based search algorithm, two vari- 
ables are considered at each flip trial. The first variable is randomly chosen 
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Table 2. Violation history. 

Variable of interest XI Compared variable xj 
Flip Current Flipped Current Flipped 
trial Val hl Val hi j Val hz Val hi xi 

1  1  26 0  22 15 1  26 0  36 0  
2  1 2 0 0 1 2 9 0 2 0 1 6 1  
3  1 15 0  14 30 0  15 1  10 1  
N 0 4 6  1 5 3 8  0 4 6  1 3 1 0  

from those appearing in a violated constraint and considered as the variable 
of interest; the second variable is randomly selected, either from that violated 
constraint or from the search space, and is to provide a basis for comparison 
with the variable of interest. 

Clearly, the interdependency of the variables implies that the effect of the 
variable value chosen for any particular variable in isolation is uncertain. Flip- 
ping the first variable might result in a reduction in total hard constraint vio- 
lation. However, it might be that flipping the second variable would result in 
even more reduction in the violation. In this case, the flipped value of the first 
variable is not accepted. 

In Table 2, the variable of interest is xl and the compared variable is xj; 
the two variables are trial flipped in their values; the violations associated with 
their possible values are recorded and compared. In this table, h is the total 
hard violation, xTis the value of xl chosen in the flip trial. Note that only hl, 
hi, and x? are recorded for the violation history of XI. 

In flip trial 1 the selected variables are xl (current value 1) and, separately, 
$15 (current value 1). The current assignment has violation = 26. Flipping XI, 
with 215 fixed at 1, gives violation = 22; flipping 215, with xl fixed at 1, gives 
violation = 36. Hence in this trial the algorithm records xl = 0 as the better 
value. At some later iteration the algorithm chooses to flip xl again, this time 
(flip trial 2) with compared variable xg. Flipping XI, with x9 fixed at 0, gives 
violation = 12; flipping 29, with xl fixed at 1, gives violation = 6. Although 
flipping xl to 0 gives a better violation than the current assignment, in this flip 
trial the algorithm records xl = 1 as the better value as there is an assignment 
with xl = 1 which gives an even better violation. If we view the results of 
these flip trials as a random sample of the set of all assignments, we can build 
up a predictive model to capture the behavioural inconsistency in the choice 
selection and to predict what would be a "good" value for XI. 
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Utility concept. The predictive choice model is based on the random util- 
ity concept (Anderson et al., 1992; Ben-Akiva and Lerman, 1985). Choosing a 
good value for a variable in each flip trial is considered as a non-deterministic 
task of the search algorithm. The algorithm is designed to select a choice of 
value for a variable that has a maximum utility. 

However, the utility is not known by the algorithm with certainty and is 
therefore treated as a sum of deterministic and random utilities. The utility is 
defined as follows: 

uo = Vo + €0 (1 1) 
where Uo is an overall utility for the algorithm choosing value 0, Vo is a de- 
terministic utility for the algorithm choosing value 0, EO represents inconsis- 
tencies (uncertainties) in the choice selection, measurement errors and unob- 
served choice decision factors, and is a random utility for the algorithm choos- 
ing value 0. 

For each flip trial, the algorithm selects value 0, when flipping a variable to 
0 is preferred to 1. This can be written as follows: 

The random utilities EO and ~1 may cause uncertainty in the choice selection, 
i.e. Uo might be greater than Ul or Ul might be greater than Uo, even if the 
deterministic utility satisfies Vo > Vl. From this point, the probability for 
the algorithm choosing value 0 is equal to the probability that the utility of 
choosing value 0, Uo, is greater than the utility of choosing value 1, Ul. This 
can be written as follows: 

where Po is the probability for the algorithm choosing value 0. 
Thus, 

PO = Prob [(& - 6 )  > (€1 - EO)] (14) 

To derive a predictive choice model, we require an assumption about the joint 
probability distribution of the random utilities €1 and EO. 

Joint probability distribution. To derive the joint probability distribu- 
tion of the random utilities ~1 and EO, the difference between the random util- 
ities, i.e. E' = €1 - €0, is used. However, E' is unknown by the algorithm. We 
use the difference between deterministic utilities, i.e. V' = Vl - Vi, to inves- 
tigate the probability distribution of E' because the deterministic and random 
utilities are the components of the overall utility U. 

We can now look for an appropriate functional form for the distribution of 
V'. From the central limit theorem (Trotter, 1959), whenever a random sample 
of size n (n > 30) is taken from any distribution with mean p and variance 



Rail Container Service Planning 357 

a2, then the sample would be approximately normally distributed. We perform 
the Shapiro-Wilk test and Kolmogorov-Smirnov test (Patrick, 1982; Shapiro 
and Wilk, 1965) to find out whether the non-deterministic component appears 
to follow any specific distribution. From our experiments and the central limit 
theorem, we are first encouraged to assume normality of the distribution. 

Although the normal distribution seems reasonable based on the central 
limit theorem, it has a problem with not having a closed probability function 
form, i.e. the PDF is expressed in terms of an integral; thereby it is computa- 
tionally intractable. The logistic function is therefore chosen instead because 
its distribution is an approximation of the normal law (Kallenberg, 1997). Un- 
der the assumption that V' is logistically distributed, applying a standard logis- 
tic distribution function and probability theory, a specific probabilistic choice 
model, the logit model (Anderson et al., 1992; Ben-Akiva and Lerman, 1985), 
can be obtained as follows: 

where Po is the probability for the algorithm choosing value 0. 

Violation function. For any flip trial, the deterministic utility V may be 
characterised by many factors. In this research, the utility is determined by 
the total hard constraint violation h. This is because it can easily be measured 
by the algorithm and gives a reasonable hypothesis to the choice selection. In 
other words, we would like to use a function of deterministic utility for which 
it is computationally easy to estimate the unknown parameters. 

We define a function that is linear in its parameters. A choice specific pa- 
rameter is introduced so that one alternative is preferred to the other when the 
total hard violation is not given, i.e. the choice decision may be explained by 
other factors. The deterministic utility functions for Vo and Vl are defined as 

where PI is the choice specific parameter, P2 is the violation parameter, and ho 
and hl are the total hard violations when a variable is assigned a value to 0 and 
1 respectively. 

We could now use the predictive choice model to predict a value for a par- 
ticular variable from an individual flip trial. However, the predictions for an 
individual flip trial may not reliably help the algorithm make a decision on 
what a good value for a variable would be. Instead, we use an aggregate quan- 
tity, i.e. a prediction for the value choice based on a set of trials. We use the 
arithmetic mean of the total hard violation to represent the aggregate of N flip 
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trials, which can be written as 

where ho and h1 are the average total hard violations when a variable is as- 
signed a value 0 and 1 respectively. 

Logit method. When an occurrence of any choice value x* is not ob- 
viously dominating (Table 2), the logit method is called. As a statistical way 
to estimate the utility's parameter values requires a significant computational 
effort, we introduce a simplified estimation, in which logit method only ac- 
counts for the constraint violation. We set the choice-specific parameter a to 
any small value, e.g. pl = 0.05, so that the utility of one alternative is preferred 
to the other. This is because an equal utility lies outside the assumption of the 
choice theory. Then, the relative difference between ho and hl, Ah, is used in 
order to characterise the value choice selection. Ah is defined as follows: 

where ho and h1 are the average total hard violations when a variable is trial 
flipped or assigned a value 0 and 1 respectively. 

From (19), when the value of Ah is large, the probabilities of two alterna- 
tives (value 0 and 1) would be significantly different, and when Ah = 0, the 
probabilities of the two alternatives would tend to be equal. Ah is shown in a 
proportional scale so that the formulation could be generalised for a combina- 
torial problem in which the total hard violation and a number of flip trials can 
be varied. Then, we use a simplified estimation of P2 as follows: 

where P2 is the violation parameter. 

Proportional method. This method is also based on a probabilistic 
mechanism in the sense that the algorithm may select the current value of the 
variable even though flipping that variable to the other value gives a lower 
violation. 

The proportional method is more straightforward than the logit method. The 
choice selection is only affected by the number of occurrences of choice val- 
ues in z*, i.e. the constraint violation is not explicitly considered. This method 
is developed and used to enhance the choice prediction by the simplified es- 
timation of the utility's parameters when Lo and h1 are close. In this case 
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the logit method may not perform well. In addition, this method requires less 
computation than the logit method. The proportional method is defined as 

where Po is the probability for the algorithm choosing value 0, x;j is the number 
of occurrences of value 0 in x*, N is the number of flip trials. 

An outcome of the predictive choice model is the probability of choosing a 
particular value for a variable. The timeslot and customer's booking variables 
(xt and ytj) are chosen for flip trials, but propagation of their values for con- 
sistency may not be carried out fully all the time. At the beginning, constraint 
propagation is only carried out within each of the sets xt and ytj, but not across 
the two sets of variables, in order to promote wider exploration of the search 
space. 

After a specified number of iterations, the trial violation history is analysed. 
Some variables may have high probability of a particular value given by the 
predictive choice model. These variables will be fixed at their predicted value 
for a number of iterations determined by the magnitude of the associated prob- 
ability. At this point, consistency between timeslots and customer's bookings 
variables is enforced, leading to intensified exploration of the neighbouring 
search space. When the fixing iteration limit, F, is reached, the variable is 
freed and its violation history is refreshed. 

3.3 Minimum Train Loading 
The constraint-based search assigns a fixed number of trains according to 

the number of trains expected, which is derived from the minimum train load- 
ing. In other words, a fixed number of timeslots used is maintained during the 
search process, which can be written as 

where Texp is the number of trains expected. 
Setting a minimum train loading ensures satisfactory revenue for a rail car- 

rier and spreads out the capacity utilisation on train services. The carrier may 
want to set the minimum train loading as high as possible, ideally equal to the 
capacity of a train. Note that the minimum train loading is directly related to 
Tex,, which is defined as 
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where Nj is the demand of customer j ,  and PI is the minimum train loading. 
Apart from ensuring satisfactory revenue, minimum train loading is a key 

factor in the performance of the search algorithm. The higher the minimum 
train loading, the more constrained the problem is and hence the number of 
feasible solutions decreases. Using a high minimum train loading allows the 
algorithm to focus on satisfying the hard constraints more than the soft con- 
straints. In addition, it increases the usefulness of the value choice prediction 
mechanism, i.e. the variables in the container scheduling model would take 
more consistent values in all the feasible solutions during the search. 

However, it would be very hard to prove whether there exists a feasible solu- 
tion to the problem constrained by a high minimum train loading. If we could 
prove the existence of a feasible solution for the highest possible minimum 
train loading, it would imply that the solution is approximately optimal. A 
good setting of the minimum train loading helps limit the size of the search 
space. Although a few techniques for proving the existence of feasibility have 
been proposed (Hansen, 1992; Kearfott, 1998), implementations of these tech- 
niques for practical problems have not yet been achieved. In this research, the 
minimum train loading is derived from some heuristic rules. We estimate the 
minimum train loading by defining a risk parameter R. For example, R = 20% 
means that the estimated chance of the problem having no feasible solution is 
20%. An initial value of Pl is defined as follows: 

where T = L21, pn = ('9t")x(100-R) p 
loo , 2 is a capacity of a train, Nj is 

the demand of customer j ,  M is the total number of customers, and pg and ug 
are the mean and standard deviation of the total average demand. 

Whenever all hard constraints are satisfied (a feasible train schedule is ob- 
tained), the minimum train loading is implicitly increased by removing one 
train from the current state of the feasible solution, i.e. Tex, = Texp - 1, and 
CBS attempts to find a new feasible schedule. 

4. HIERARCHICAL CONSTRAINT SCHEME 
In SAT local search and its variants, the number of violated constraints (un- 

satisfied clauses) is used to evaluate local moves without accounting for how 
severely individual constraints are violated. In CBS, a quantified measure of 
the constraint violation to evaluate local moves is used. In this case, the vi- 
olated constraints may be assigned different degrees of constraint violation. 
This leads to a framework to improve the performance of the solving algo- 
rithm. The constraints can be weighted in the formulation of train measures of 
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violation in order to allow the search to give hierarchical priority to satisfying 
some subsets of the constraints. 

For the container rail service planning, soft and hard constraints in the model 
are treated separately. When all hard constraints are satisfied, the soft con- 
straint violations are calculated and used as a measure of the quality of the 
solution. Nevertheless, whilst the hard constraint have not yet been fully satis- 
fied, our scheme incorporates an artificial constraint, and its weighted violation 
measure is designed to exert some influence over the search process based on 
an estimation of the soft constraint violation (Section 4.2). 

4.1 Feasibility Weights 
The principal goal of the CBS is to find feasible solution to the problem, 

i.e. points at which the total violation of the hard constraints is zero. For the 
container rail service planning model, all sets of hard constraints use weighted 
measures of violation according to some heuristic rules. 

From (5) ,  any number of containers in a potential timeslot exceeding a train 
capacity is penalised with the same violation h,. An attempt to use different 
measures of the violation to different number of exceeded containers on an as- 
signed train makes little sense because one can never guarantee whether the 
lower number of exceeded containers is more likely to lead to feasible sched- 
ules. The violation penalty for a set of capacity constraints is defined as 

where h, is the violation penalty for a capacity constraint, and P2 is the ca- 
pacity of a train. 

From (7), the violation penalty for a set of consistency constraints is defined 
as 

<xtLt ,  violation = 0 
W 

1=1 
>xtLt ,  violation = h, 

where h, is a violation penalty for a consistency constraint, and Lt is number of 
potential customers for timeslot t. From (9), the algorithm allocates a penalty 
if the assigned trains do not serve all customer demands. In other words, the 
covering constraint favours a combination of selected timeslots that covers all 
customers' bookings. The violation penalty within a set of covering constraints 
uses the same quantification, which is defined as 

21, violation = 0 
vt 

=0, violation = h, 

where h, is a violation penalty for a covering constraint. 
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4.2 Timeslot Weights 
Timeslot violation ht has been introduced artificially so that the search con- 

siders an estimation of total soft constraint violation, whilst some other hard 
constraints are still to be fully satisfied. The timeslot violation is regarded as if 
it were a hard violation until the capacity, consistency, and covering constraints 
have all been satisfied, then the timeslot violation is set to zero. 

The algorithm assigns a penalty if a timeslot t is selected as a train departure 
time. This can be written as 

= 1, violation = ht 
W 

= 0, violation = 0 

In contrast to (25)-(27) which imply a fixed penalty for each member of the 
associated set of constraints, a violation penalty for the timeslot violation ht 
varies from timeslot to timeslot. The timeslot violation penalty depends on 
the possibility of assigning a particular timeslot on a train schedule with a 
minimum generalised cost. 

An attempt to derive the timeslot violation in monetary units by trading off 
between the business criteria is not possible. This is because a train schedule 
is not a single timeslot, but is a set of the timeslots. Therefore, considering 
only a single timeslot separately from the others cannot represent a total cost 
for the rail carrier. However, as in practice some business criteria play a more 
important role than others, the relative weights for the criteria could be applied. 

A rail carrier may assign a relative weight to the number of trains, customer 
satisfaction, and operating costs criteria in which the one with the lower weight 
is more important. In practice, given the relative weights 0.2, 0.5 and 0.3, the 
timeslot violation ht is therefore obtained as 

where ht is the timeslot violation if timeslot t is chosen (xt = I), Nt is the 
violation cost for the number of trains in timeslot t, St is the violation cost 
for the customer satisfaction in timeslot t, and Et is the violation cost for the 
carrier's operating costs in timeslot t. 

The violation cost Nt. We first assume that the higher the number of 
potential customers in timeslot t, the more likely that timeslot would lead to 
the minimum number of trains used. However, it is also necessary to consider 
the distribution of customer shipment size. Although there are a large number 
of potential customers in a timeslot, each customer shipment may be large. 
Therefore, such a timeslot could allow only a few customers to be served on a 
train so giving a high violation cost (or a priority) to this timeslot is no longer 
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reasonable. Nt is defined as 

where nt = at Vt, with at = 9 Vt  , with pt the mean of customer 
ELI at 

shipment sizes in timeslot t, ot the standard deviation of the customer shipment 
sizes in timeslot t, and Ct the number of customers in timeslot t. 

The violation cost St. Although the virtual loss of revenue in the gen- 
eralised cost function could represent customer satisfaction in terms of a mon- 
etary unit, it is an indirect cost. In practice, the indirect cost is not obvious 
for rail expenditure as it affects the long-term financial plan. Therefore, in a 
competitive transport market, the direct cost that affects the short-term cash 
flow is regarded as more important. Since satisfaction probability represents 
customer satisfaction, we can sum up the satisfaction weight for the violation 
cost of each timeslot. St is defined as 

where st = bt Vt, with bt = ET$twt Qt, and Wt a total customer 
E L 1  bt 

satisfaction weight in timeslot t. 
The violation cost Et. A rail carrier may have different operating costs 

for different timeslots. The operating costs comprise train congestion cost and 
staff cost. Although a train schedule is a set of timeslots, we could consider Et 
for the operating costs of each timeslot directly. This is because the operating 
cost is a cost unit and does not affect the number of timeslots in the optimal 
train schedule. The lower the operating costs for the timeslot, the higher the 
chance that the timeslot would lead to a schedule with the minimum gener- 
alised cost. Et is defined as 

where et = Ut Vt. 
E L  u t  

5. COMPUTATIONAL RESULTS 
The container rail scheduling model was tested on two sets of four suc- 

cessive weeks data from the eastern-line container service of the Royal State 
Railway of Thailand (SRT) and 184 shipping companies (customers). Each 
train has a capacity of 68 containers. The problem instances are summarised 
in Table 3. 
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Table 3. Problem instances (0 is a lower bound on number of trains). 

Test SRT schedules Supply-Demand 
case Customer Container 0 Trains Capacity Capacity Trains 

W1 134 2907 43 57 3876 969 14 
W2 116 2316 35 42 2856 540 7 
W3 84 1370 21 28 1907 537 7 
W4 109 2625 37 50 3400 775 13 
W5 225 4115 61 73 4964 816 12 
W6 198 3350 50 59 4012 612 9 
W7 126 2542 38 49 3332 748 11 
W8 286 4731 70 86 5848 1088 16 

Table 4. Comparative results. The unit cost x lo6 Baht (Thai currency), OC: operating costs, 
VC: virtual loss of revenue, GC: generalised cost. 

Test SRT CBS cost OC 
case cost OC VC GC Reduction (%) 

These eight instances were solved with the CBS algorithm described in Sec- 
tion 3.1 on a Pentium I11 1.5 GHz. Each test case is run ten times using dif- 
ferent random number seeds at the beginning of each run. If no improvement 
has been achieved within 2000 iterations, the search will terminate. For all test 
cases, we set R = 20, (h,, h,, h,) = 1,1,100 respectively. Table 4 compares 
the model results with current practice. 

Table 4 shows, in all the test cases, there are some reductions in terms of 
the number of trains and operating costs, but these are not considerable. This 
is because in practice the SRT schedule is not fixed at the same service level 
everyday. The rail carrier normally cuts down the number of train services with 
short notice if the train supply is a lot higher than the customer demand. This 
is done by delaying some customer's departure times according to its demand 
consolidation strategy. 
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Table 5. Results obtained by CBS and PCM. 

Test CBS schedule PCM schedule 
case Train Cost* Time Train Cost* Time 

Avg. Avg. (s) Avg. k Avg. SD. (s) 

W1 51 5.56 230 47 2 4.18 0.56 105 
W2 39 4.49 117 39 2 3.84 0.43 83 
W3 24 2.19 74 24 1 2.09 0.27 61 
W4 43 4.38 96 41 1 3.90 0.29 79 
W5 70 8.06 882 66 3 7.02 0.72 351 
W6 59 6.73 310 54 2 5.99 0.61 150 
W7 46 5.12 145 43 1 4.93 0.25 92 
W8 82 9.27 1170 75 3 8.15 0.66 509 

* The generalised cost (x lo6 Baht, Thai currency) 

However, the proposed model maximises customer satisfaction-in other 
words, minimises the virtual loss of future revenue within a generalised cost 
framework. Therefore, the schedule obtained by CBS could reflect the max- 
imum degree of customer satisfaction with the minimum rail operating costs 
through a demand responsive schedule. 

In addition, we demonstrate the performance of the constraint-based search 
incorporating the predictive choice model (PCM), and compare the results with 
CBS alone. The same test cases are run ten times using different random num- 
bers at the beginning of each run. If no improvement has been achieved within 
2000 iterations, the search will terminate. For all test cases, we set R = 20, 
(h,, h,, h,) = 1,1,100 respectively, the number of flip trials N = 20, choice 
specific parameter Dl = 0.05, decision method parameter D = 75, the number 
of fixing iterations F = 100, the number of fixing departure timeslots xt = 50, 
the number of fixing selected booking timeslots (ytj = 1) = 50, and the number 
of fixing unselected booking timeslots (ytj = 0) = 200. The last three parame- 
ters govern the maximum number of variables which are allowed to be fixed at 
a point in the search and are necessary to allow some flexibility in the search. 
The results for the test cases are shown in Table 5. 

Table 5 shows that the results of PCM are better than that of CBS alone. On 
average, the PCM schedule is 6.04% better in terms of the number of trains, 
and gives a reduction of 12.45% in generalised cost. Although in PCM learning 
from the search history implies a computational overhead over CBS, it is offset 
against a lower run-time required to find near optimal schedules, in particular 
for large test cases. 
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6. CONCLUSIONS 
The ability to find a profitable train schedule along with satisfying customer 

demand using demand consolidation leads to some reductions in total operating 
costs, and enhances the level of customer service through demand responsive 
schedules. 

The viability of using a CSP representation of the problem and solving this 
problem by CBS has been shown. CBS only relies on a simple local move 
and could accommodate new conditions without any change in the algorithm's 
structure. To achieve effective performance, problem-specific violation on a 
generalised scale is simply applied to constraints. The problem is first severely 
constrained so that few feasible solutions are likely to exist, the variables there- 
fore would take consistent values in most of the feasible solutions. A new 
learning model is then introduced to predict a likely optimal value for those 
variables in order to help CBS target optimality in a probabilistic way. The 
predictive choice learning model is developed on theoretical grounds, using an 
analogy with discrete choice theory. The experimental results for the container 
rail service planning problem have demonstrated that CBS is a convenient and 
effective tool in producing good solutions, particularly when the predictive 
choice model is incorporated. 
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