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Abstract We examine round robin tournaments with m teams and m rounds, for m 2 3, 
with the property that every team plays no game in one round and exactly one 
game in each of the remaining m - 1 rounds. We show that for every such m 
there exists a unique schedule in which no team plays two consecutive home or 
away games. 
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1 INTRODUCTORY NOTES AND DEFINITIONS 
Many sport competitions are played as round robin tournaments. A round is 

a collection of games in which every team plays at most one game. A k-round 
round robin tournament of m teams, denoted RRT(m, k), is a tournament in 
which each team meets every other team exactly once and the games are di- 
vided into k rounds. A schedule, which is played in the minimum number of 
rounds possible is called compact; if more than the minimum number of rounds 
is used the schedule is non-compact. Although tournaments where every pair 
of opponents meets exactly 1 times (called I-leg tournaments) are very com- 
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mon, we will discuss only 1-leg tournaments here. An 1-leg tournament can be 
indeed scheduled as a 1-leg tournament repeated 1 times with teams exchang- 
ing their respective home fields regularly. There are many different models 
that are widely used. In some competitions, like North-American NHL, NBA, 
NFL and others, the teams are divided into several divisions and it is required 
that games "inside" the divisions (called intradivisional games) and "across" 
the divisions (called interdivisional games) are distributed according to some 
rules. These rules often take into account travel distances. Therefore a team 
usually plays several games in a row with teams of another division at their 
fields. Then there follow several games played at the team's home field or 
with teams of the same division. Many other constraints are also considered. 
These can include TV schedules, availability of fields/stadiums, traditional ri- 
vals, etc. However, the schedule is usually not strictly divided into rounds and 
the number of days when the games are played is therefore larger than the 
necessary minimum. Construction of schedules of this kind is usually based 
on optimization methods like integer programming or finite-domain constraint 
programming (see e.g. Henz, 1999, 2001; Henz, et al., 2003; Nemhauser and 
Trick, 1998; Schaerf, 1999; Schreuder, 1992; Trick, 2000). The result is then 
an exact schedule in which the dates and fields of all games between particular 
pairs of opponents are assigned. A graph-theoretic approach can be used for 
leagues with a small number of teams (see e.g. Dinitz and Froncek, 2000). 

In other cases the rules are based on certain restrictions resulting from a 
limited number of available fields and/or suitable time slots. Schedules of this 
type were studied among others by Finizio (1993) and Straley (1983). On the 
other hand, most European national football (soccer) leagues are scheduled 
as 2-leg compact round robin tournaments (see e.g. Griggs and Rosa, 1996; 
UEFA, 2004). These tournaments are usually scheduled in such a way that a 
schedule for a 1-leg RRT(2n, 2n - 1 )  is repeated twice. It is then required 
that for each team the home and away games should interchange as regularly 
as possible provided that each team meets every opponent in one leg at its own 
field and in the other leg at the opponent's field. 

In competitions that are played in regular rounds it is usually desirable that 
for each team the home games and away games interchange as regularly as 
possible. The leagues often have fixed draw tables (or generic schedules) 
with teams denoted just 1,2, . . . , m that are used repeatedly every season. The 
teams then draw their numbers either from the whole pool of m numbers (if 
they have no specific requirements) or from a limited pool (if they have some 
specific constraints). In this paper we actually present such generic schedules. 
Fundamental theoretical results concerning such generic schedules were stud- 
ied by de Werra (1981) and Schreuder (1980). 
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2. SCHEDULES WITH ONE BYE 
In what follows we consider RRT(2n, 2n - 1 ) .  The home-away pattern 

of a team i ,  denoted HAP(i), is a sequence al( i ) ,  a2(i) ,  . . . , a2,-1(i), where 
aj( i )  = H  if team i  plays in round j a game in the home field and aj ( i )  = A  
if team i  plays in round j a game in the opponent's field. If the regularity of 
the home-away patterns is our top priority, then the most desirable HAP is in- 
deed either AHAH..  . AH or HAHA..  . HA in which no subsequence AA 
or HH appears. Obviously, one can never find a schedule in which all teams 
would have one of these two HAPs. In this case the teams, which start the 
season with a home game would never meet. A natural way to measure how 
"good" a given schedule is is to count the number of breaks in HAPs. A break 
in the HAP of team i  is a subsequence AA or HH. Therefore, if we concen- 
trate only on HAPs, we can say that the best schedule is the one with the least 
number of breaks. By a break game we mean the second game in any sequence 
AA or HH. For instance, in the sequence HHHAA the break games are the 
games in rounds 2,3,5. Two teams il and i2 have complementary HAPs if 
aj ( i l )  = A  if and only if aj( i2)  = H. 

The best possible schedule with respect to the number of breaks is given by 
the following theorem, which was proved by de Werra (1981). 

Theorem 1 In an RRT(2n, 2n - I ) ,  the least number of breaks is 2n - 2. 
It can be attained in such a way that there are exactly n  - 1 teams with a home 
break, n  - 1 teams with an away break and 2  teams with no break. There are 
exactly n  - 1 rounds with break games, each of them containing exactly one 
home break game and one away break game. 

2.1 Odd Number of Teams 
It is well known that a schedule for an odd number of teams, 2n - 1, can be 

constructed by taking a schedule for 2n teams and leaving out one team (called 
the dummy team). Then the team i  that was scheduled to play the dummy team 
in round j plays no game in that round and is said to have a bye. We denote a 
bye in HAP(i)  by aj ( i )  = B. It is also well known that the most commonly 
used schedule, sometimes called the canonical or I-rotational schedule has the 
nice property that if we let the dummy team be the team 2n, then the remaining 
teams have no breaks in their schedules. This includes also no breaks around 
byes, that is, there is no sequence AA, HH, HBH, or ABA in any HAP. The 
schedule is described in the following construction. 

Construction 2 We construct an RRT(2n + 1,2n + 1 ) .  First we introduce 
some necessary notation. When a game between teams i  and k  is scheduled for 
round j, wedenote it by g(i, k) = g(k, i )  = j .  Set g(i, k) = g(k, i )  = i+k-1. 
Obviously, g(i ,  i )  = 2i - 1 means that the team i  has a bye in the round 2i - 1. 
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Table I .  RRT(7 ,7 ) .  

7 - 2  4 - 6  1 - 3  5 - 7  2 - 4  6 - 1  3 - 5  
6 - 3  3 - 7  7 - 4  4 - 1  1 - 5  5 - 2  2 - 6  
5 - 4  2 - 1  6 - 5  3 - 2  7 - 6  4 - 3  1 - 7  
1 bye 5 bye 2 bye 6 bye 3 bye 7 bye 4 bye 

The addition is modulo 2n + 1 with the exception that 0 is replaced by 2n + 1 .  
Home field is determined as follows. In the first round, team 1 has a bye, teams 
2,3, . . . , n + 1 play home and teams n + 2 ,  n  + 3, . . . ,2n + 1 play away. We 
observe that having scheduled a round j, we can obtain opponents for round 
j + 1 by adding n + 1 to each team number. That is, if j = g(i, k) = g(k, i )  = 
i  + k  - 1  with i  playing home and k  away, then 

and the team ( i  + n + 1 )  plays home while (k + n + 1 )  plays away. 

An example of the schedule for seven teams is shown in Table 1. A game 
between teams i  and k with i  playing home is denoted by Ic - i .  

Surprisingly, this schedule is the only one with this property. Notice that 
for schedules with byes the definition of complementary HAPS of teams i l ,  i2 
requires the following: If a j ( i l )  = B for some j ,  then also aj( i2)  = B. 

Theorem 3 For every n  2 1 there exists an RRT(2n+ 1,2n + 1 )  such that 
no HAP(i)  contains any sequence AA, HH, HBH, or ABA. Moreovel; for 
each such n, the schedule is unique up to permutation of team numbers. 

Proo$ The existence was proved in Construction 2. Now we prove the unique- 
ness. First we observe that there is exactly one team with a bye in each round. 
In an RRT(2n + 1,2n + 1 )  we need to play n(2n + 1) games. Because we 
can schedule at most n games in each of the 2n + 1 rounds, it is easy to see 
that there must be exactly n  games in each round. 

As opposed to the notation used in Construction 2, we will assume that a 
team i ,  i  = 1 , 2 , .  . . ,2n + 1,  has a bye in the round i .  That is, ai(i)  = B. 
For clarity, we present in Table 2 the schedule for seven teams again following 
the notation used in this proof. We can observe that the schedule here can be 
obtained from Construction 2 by the permutation ~ ( i )  = 2i - 1. 

We can without loss of generality (WLOG) assume that a2( l )  = H, as ( l )  = 
A and so on. Then, because az(2) = B and teams 1 and 2 cannot play in either 
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Table 2. RRT(7 ,7 ) .  

6 - 3  7 - 4  1 - 5  2 - 6  3 - 7  4 - 1  5 - 2  
4 - 5  5 - 6  6 - 7  7 - 1  1 - 2  2 - 3  3 - 4  
2 - 7  3 - 1  4 - 2  5 - 3  6 - 4  7 - 5  1 - 6  
1 bye 2 bye 3 bye 4 bye 5 bye 6 bye 7 bye 

Table 3. HAP for RRT(2n + 1,2n + 1).  

A  H  A  
H A H  
A H A  
H A H  

H A H  
B H A  
A B H  
H A B  

round 1 or 2 since one of them has a bye in each of these rounds, we can see that 
a1 (2)  = A, a3(2) = H, a4(2) = A and so on. For similar reasons, because 
a3(3) = B, we have a1(3)  = H,a2(3)  = A,a4(3)  = H , .  . . or otherwise 
the teams 2 and 3 can never play against each other. Inductively, we can see 
that for teams i  and i  + 1 one of them has to start the schedule with a home 
game while the other one with an away game otherwise they never meet. An 
example is shown in Table 3. 

We introduce some more notation. By S( i ,  k )  we denote the set of all rounds 
in which teams i  and k can possibly meet. In other words, j E S( i ,  k )  if and 
only if aj  ( i )  = H and a j (k )  = A or a j  ( i )  = A and a j ( k )  = H .  

We now proceed inductively. First we observe that the teams 1 and 3 can 
meet only in round 2 as after round 3 they have both the home games in even 
rounds and away games in odd rounds. In general, for any team i ,  S ( i ,  i  + 2 )  = 
i  + 1 and hence there is a unique round in which the game between i  and i  + 2 
can be scheduled (team numbers are taken modulo 2n + 1 with the exception 
that 0 is replaced by 2n + 1). In particular, for i  = 1 ,2 , .  . . ,2n + 1 we have 
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to set g(i,  i + 2)  = i + 1. Now the teams 1 and 5 can play each other only in 
round 3: in rounds 1 and 5 one of them has a bye, in round 2 the team 1 plays 
the game against the team 3, and in round 4 the team 5 plays the game against 
the team 3. After round 5 their HAPs are equal. We can also check that for 
i = 1,2, ..., n w e h a v e S ( i , i + 4 )  = {i+l , i+2, i+3)astherespective 
HAPs are equal before round i and after round i + 4. But the game between i 
and i + 4 cannot be played in round i + 1, since there is the uniquely determined 
game g (i, i + 2). Or, in our notation, i + 1 = g(i,  i + 2). Also, this game cannot 
be scheduled for round i + 3, as i + 3 = g(i + 2, i + 4).  Therefore, we must 
have g(i,  i + 4 )  = i + 2. 

We continue inductively and suppose that for every i = 1,2, . . . ,2n + 1 all 
values g(i,  i + 2) ,  g(i, i + 4) ,  . . . , g(i,  i + 2s) have been uniquely determined. 
This indeed means that also the values g(i,  i - 2) ,  g(i, i - 4 ) ,  . . . ,g(i ,  i - 2s) 
have been uniquely determined. We want to show that subsequently the game 
between i and i + 2s + 2 is also uniquely determined. We can assume here 
that 2s 5 2n - 1 because of modularity. Then S ( i ,  i + 2s + 2)  = { i  + 
1, i + 2, . . . , i + 2s - 1). From our assumption it follows that g(i, i + 2)  = 
i+1 ,g( i , i+4)  = i+2 ,  ... ,g( i , i+2s)  = i+s .  A l sog ( i+2s , i+2~+2)  = 
i+2s+l, g(i+2s-2, i+2s+2) = i+2s,. . . , g(i+2, i+2s+2) = i+s+2, and 
hence the game between i and i + 2s + 2 must be scheduled for round i + s  + 1. 
We notice here that because of modularity we get here also all games between 
teams i and i + 2t + 1, since i + 2t + 1 r i + 2t - 2n (mod 2n + 1).  0 

2.2 Even Number of Teams 
One can now ask an obvious question: When it is possible to play an 

R R T ( 2 n  + 1,2n + 1) with no breaks, is it possible for an RRT(2n ,  2n)  as 
well? The answer is affirmative. Although it may seem unnatural to construct 
a schedule that needs one more round than the necessary minimum, we can 
find a motivation in North-American collegiate competitions. The teams are 
divided into many conferences and it is required that conference games and 
non-conference games are distributed according to certain rules. Sometimes 
the non-conference games are scheduled before and after a block of conference 
games. However, some conferences have schedules where one or more non- 
conference games are scattered among conference games. Thus, the schedule 
of the conference games is usually non-compact. 

The schedule is actually very simple and as in the case of an odd number 
of teams, it is also unique up to permutation of team numbers and reflection 
of the order of rounds. We first construct such a schedule and then prove the 
uniqueness. 

Construction 4 Set g(i,  k )  = g(k ,  i )  = i + k  - 1. The addition is modulo 
2n with the exception that 0 is replaced by 2n. Obviously, g(i,  i )  = 2i - 1 
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Table 4. RRT(8,8). 

R1 R 2  R 3  R 4  R 5  R6 R 7  R 8  

8-2 5-6 1 - 3  6 - 7  2 - 4  7 -8  3-5 8 - 1  
7-3 4-7 8 -4  5-8  1 -5  6 - 1  2 - 6  7-2 
6 - 4  3-8 7-5 4 - 1  8-6 5-2 1 -7  6-3  

2-1  3-2 4-3 5-4 
1,5 bye 2,6 bye 3,7 bye 4,8 bye 

means that the team i  has a bye in the round 2i - 1. So the teams with byes 
in the first rounds are 1 and n + 1, and we choose as home teams for the first 
round the teams 2,3 , .  . . , n. Notice that for i  = 1 , 2 , .  . . , n the teams i  and 
i  + n have complementary home-away patterns with a bye in round 2i - 1. 
By setting gl(i, k) = 2n + 1 - g(i, k) we get a tournament with byes in even 
rounds. 

An example for eight teams is shown in Table 4. 

Theorem 5 For every n  2 2 there exists an RRT(2n, 2n) such that no 
HAP(() contains any sequence AA, HH, HBH, or ABA. Moreovel; for 
each such n, the schedule is unique up to permutation of team numbers and 
rejection of the order of rounds. 

ProoJ: The existence was proved in Construction 4. Now we prove the unique- 
ness. Clearly, each team has exactly one bye, as there are 2n teams and 2n 
rounds. First we observe that there are at most two teams with a bye in each 
round. Obviously, the number of bye teams in each round must be even. Sup- 
pose there are at least four teams, i l ,  i2 ,  i3, and i4, having a bye in round j .  At 
least two teams of the quadruple i l ,  i2,  i s ,  i4 play their first game either both 
away or both home. This is either in round 1 (if j  > 1)  or in round 2 (if j  = 1). 
Suppose il  and i2 play both an away game. Then their HAPs are equal and they 
can never play each other, because they play in each round either both a home 
game or both an away game. This contradicts our definition of a round robin 
tournament. We also observe that the two teams i ,  k  that have a bye in a week 
j  (recall that this is denoted by aj ( i )  = aj (k )  = B) must have complementary 
schedules. 

Now we show that there are at most two teams with a bye in any two con- 
secutive rounds. Suppose it is not the case and there are teams il and in with a 
bye in a round j and kl and k2 with a bye in the round j  + 1 .  Let am(il)  = A 
for some m # j, j  + 1.  Then from the complementarity of HAPs of kl and ka it 
follows that am(kl) = A and a,(k2) = H or vice versa. Suppose the former 
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Table 5. HAP for RRT(2n, 2n). 

holds. Then the HAPs of the teams il and kl are equal with the exception of 
rounds j and j + 1. Therefore, they cannot play each other except possibly in 
round j or j + 1. But a j ( i l )  = B and aj+l(kl )  = B and hence they cannot 
play in rounds j or j + 1 either. This is the desired contradiction. 

Next we show that there are exactly two teams with a bye in any two con- 
secutive rounds. In other words, we prove that the byes occur either in all odd 
rounds, or in all even rounds. We again proceed by contradiction. Suppose to 
the contrary that there are two consecutive rounds j and j + 1 without byes. 
As there are no consecutive rounds with byes, it must happen that j is even 
and the byes occur precisely in rounds 1,3 , .  . . , j - 1 ,  j + 2 , .  . . ,2n. But then 
there are teams il  and i2 with HAP(i l )  = BAHA..  . H A  and HAP(i2) = 
BHAH . . . AH and also teams kl and kg with HAP(kl)  = AHA. .  . HAB 
and HAP(k2) = HAH . . . AHB. Obviously, teams il  and k2 can never play 
each other since their HAPs are equal except for weeks 1 and 2n, when one 
of them has a bye. This contradiction shows that we can WLOG assume that 
byes occur in weeks 1,3, . . .2n - 1.  

Therefore, we define HAPs of respective teams as follows. For i  = 1,2, . . . , n 
we have a2i-l (i) = a2i-l (n  + i )  = B. For i  = 2,3, . . . , n we have al ( i )  = H 
and al(n + i )  = A. An example is shown in Table 5. 
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We again proceed by induction. First we observe that for any team i, S(i,  i+ 
1) = {i) and hence there is a unique round in which the game between i and 
i + 1 can be scheduled (team numbers are taken modulo 2n with the exception 
that 0 is replaced by 2n). In particular, for i = 1,2, . . . , n we have to set 
g(i, i + 1) = 2i and g(n + i, n + i + 1) = 2n - 2i. We can also check that for 
i = 1,2, ... ,nwehaveS(i , i+2)  = S(n+ i ,n+ i+2)  = {2i,2i+l,2i+2). 
But the game between i and i + 2 cannot be played in round 2i, since there is 
the uniquely determined game g(i, i + 1). Or, in our notation, 2i = g(i, i + 1). 
Also, this game cannot be scheduled for round 2i + 2, as 2i + 2 = 2(i + 1) = 
g(i + 1, i + 2). The games between n + 1 and n + i + 2 can be argued similarly. 
Therefore, we must have g(i, i + 2) = g(n + i, n + i + 2) = 2i + 1. 

We can now continue inductively and suppose that for every i = 1,2, . . . ,2n 
all values g(i, i + I ) ,  g(i, i + 2), . . . , g(i, i + s) are uniquely determined. This 
indeed means that also the values g(i, i - I), g(i, i - 2), . . . , g(i, i - s) are 
uniquely determined. We want to show that subsequently the game between i 
and i+s+l is also uniquely determined. We can assume here that s 5 n- 1 be- 
cause of modularity. Then S(i, i + s + 1) = {2i, 2i + 1, . . . ,2i + 2s). From our 
assumption it follows that g(i, i + l )  = 2i, g(i, i+2) = 2i+l , .  . . , g(i, i+s)  = 
2 i + s  - 1. A l s o g ( i + l , i + s + l )  = 2i + s + l , g ( i + 2 , i + s + l )  = 
2i + s + 2, g(i + s ,  i + 1) = 2i + 2s, and hence the game between i and 
i + s + 1 must be scheduled for round 2i + s. 0 

We observe that even if we consider a non-conference game to be scheduled 
in each conference bye slot, a schedule with the perfect HAP without breaks 
for more than two teams again cannot be found. The reason is the same as 
when we considered the compact schedule. Suppose there are more than two 
teams with a perfect HAP. Then two of them begin with a home game and no 
matter when they play their respective non-conference games, they again never 
play against each other. 

In this paper we focused on schedules for 1-leg tournaments. Although 
there are competitions where 1-leg tournaments are widely used (e.g., chess 
tournaments, North-American collegiate football conferences, etc), 2-leg tour- 
naments are much more common. It is natural to examine extensions of our 
schedules to 2-leg tournaments. The extension for 2n teams is easy and natu- 
ral, because after swapping the home and away games in the second leg we get 
no breaks. For 2n + 1 teams, however, each team has a break between the first 
and second leg, that is, between the rounds 2n + 1 and 2n + 2. This can be 
avoided only by reversing the order of rounds in the second leg. This indicates 
that the new schedule for 2n teams, which we have constructed here may find 
its way to real life and we certainly hope it will. 

Finally, we observe that if we number the teams and rounds O,1,. . . ,2n 
or O,1,. . . ,2n - 1, respectively, and disregard the home and away games, 
the game assignment function can be now defined in both cases as gl(i, k) = 
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gl(Ic, i) = i + Ic which is corresponding to the additive group of order 2n + 1 
or 2n, respectively. 
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