
CASE-BASED INITIALISATION OF
METAHEURISTICS FOR
EXAMINATION TIMETABLING

Sanja Petrovic, Yong Yang
School of Computer Science and Information Technology,
The University of Nottingham, Nottingham NG8 IBB, UK

Moshe Dror
University of Arizona, Tucson, AZ 85721, USA

Abstract Examination timetabling problems are traditionally solved by choosing a solu-
tion procedure from a plethora of heuristic algorithms based either on a direct
construction principle or on some incremental improvement procedure. A num-
ber of hybrid approaches have also been examined in which a sequential heuris-
tic and a metaheuristic are employed successively. As a rule, best results for a
problem instance are obtained by implementing heuristics with domain-specific
knowledge. However, solutions of this kind are not easily adoptable across dif-
ferent problem classes. In order to lessen the need for a problem-specific knowl-
edge we developed a novel solution approach to examination timetabling by in-
corporating the case-based reasoning methodology. A solution to a given prob-
lem is constructed by implementing case-based reasoning to select a sequential
heuristic, which produces a good initial solution for the Great Deluge meta-
heuristic. A series of computational experiments on benchmark problems were
conducted which subsequently demonstrate that this approach gives compara-
ble or better results than solutions generated not only by a single Great Deluge
algorithm, but also the state-of-the-art approaches.

Keywords: case-based reasoning, heuristic selection, graph matching and retrieval.

1 INTRODUCTION
Examination timetabling problem is a difficult combinatorial optimisation

problem. The task is to assign a set of examinations into a limited number of
time periods and classrooms subject to constraints (Carter et al., 1996). The
constraints are usually divided into two categories: hard and soft constraints.
Hard constraints are those that must not be violated. One such constraint is

290 Petrovic, Yang and Dror

that no student can attend two examinations at the same time. An examination
timetable is considered to be feasible only when it meets all hard constraints.
On the other hand, soft constraints are not essential to a timetable, but highly
desirable. For example, students might wish to have a two or three day interval
between two consecutive examinations. The quality of a timetable is measured
in terms of its satisfaction of soft constraints. A good review of a variety of
constraints that are usually imposed on examination timetabling is given in
Burke et al. (1996).

A timetabling problem can be modelled by a graph where each vertex rep-
resents an examination while an edge represents a conflict between two exam-
inations (e.g. two examinations have some students in common and therefore
cannot be scheduled into the same period). Thus, a timetabling problem is
analogous to a graph colouring problem when neglecting soft constraints and
resource requirements, with colour-coding for time slots (Welsh et al., 1967).
The vertices of the graph have to be coloured in such a way so that no two
adjacent vertices share the same colour. Note that finding a minimal number of
colours to colour a graph is one of the classical NP-complete problems (Garey
and Johnson, 1977).

1.1 Examination Timetabling
Over the last 40 years, various approaches to examination timetabling have

been developed. A number of review papers discuss approaches and research
issues in examination timetabling (Burke and Petrovic, 2002; Carter, 1986;
Carter and Laporte, 1996). Approaches based on applications of graph colour-
ing heuristics for solving timetabling problems were widely employed in the
early days of timetabling research (Carter, 1986; Foxley and Lockyer, 1968).
The idea behind these heuristics is to schedule examinations sequentially com-
mencing with the examinations estimated to be the most difficult to schedule
and ending with the easiest ones. By the beginning of the 1990s, sequential
heuristics had been superseded by various metaheuristics such as Tabu search
and Simulated Annealing (SA), which take into consideration soft constraints
and therefore produce more satisfactory solutions (Carter and Laporte, 1996).

Recently, there has been a growing interest in employing various sequential
heuristics to generate initial solutions for metaheuristics. Saleh Elmohamed
et al. (1998) used sequential heuristics which consider size of examinations
to find a feasible solution and handled soft constraints by simulated anneal-
ing. Burke and Newel1 (1999) used sequential heuristics to decompose a large
problem into several sub-problems, which were then solved by memetic algo-
rithm. Di Gaspero and Schaerf (2001) designed sequential heuristics, which
are hybridised with Tabu Search. The hybrid approaches (Burke and Newel1
1999; Casey and Thompson, 2003; Merlot et al., 2003; White et al., 2004)

Case-Based Initialisation of Metaheuristics for Examination Rmetabling 29 1

produced the best results on a number of benchmark problems, and represent
the state of the art in timetabling. Sequential heuristics serve an important role
in the successful subsequent implementation of metaheuristics because they
cannot only shorten the search time but may also greatly enhance their perfor-
mance (Burke et al., 1998; Burke and Newell, 2002).

However, a successful development of such a metaheuristic is a difficult task
since it usually involves incorporation of problem domain-specific knowledge.
For example in a simulated annealing timetabling algorithm (Merlot et al.,
2003), a sophisticated neighbourhood structure (such as the Kempe chains),
and an appropriate cooling schedule, which involves choosing a cooling for-
mula and setting values for parameters such as initial temperature and cool-
ing factor, have to be defined. Similarly, a Tabu Search timetabling algorithm
(White et al., 2004) requires an appropriate setting of parameters such as the
length of the tabu list, the stopping criteria, and a candidate list strategy to re-
strict the neighbourhood size. Generally, the current approaches suffer from
limitation in their applicability when faced with changes in problem descrip-
tion.

It is well known in the timetabling community that a solution procedure
which generates good results at one university might perform poorly for time-
tabling problems in another university (Carter and Laporte, 1996). Naturally,
the following question arises: which sequential heuristic should be used with
a given metaheuristic for solving a timetabling problem at hand? In practice,
a preferred solution for a given problem is usually obtained after appropriately
selecting and "tailoring" both sequential heuristics and metaheuristics based
on domain-specific knowledge of the problem.

In light of the above limitations, Burke et al. (2003a) applied a local search
method, the Great Deluge algorithm (GDA), to solve timetabling problems.
The "beauty" of the GDA is that it is much easier to develop a GDA algorithm
compared to other metaheuristics, because it only requires one input parameter
and therefore requires the least effort to "tailor" it for a given problem. It is
worth noting that the authors showed that GDA is effective even by using a
very simply defined neighbourhood structure. Burke and Newel1 (2002,2003)
extended this research further by applying an adaptive initialisation heuristic
before running GDA. This adaptive heuristic firstly solves the problem a num-
ber of times in order to learn how to adjust the heuristic's parameters. Both
methods produced best-published results on a range of benchmark problems.

It is desirable to develop a general timetabling system which works equally
well for a variety of problem descriptions from different universities. Hyper-
heuristic solution methodology, which is "an emerging methodology in search
and optimisation" (Burke et al., 2003a) aims at addressing these needs. Broadly
speaking, the term of hyper-heuristics is defined as "the process of using
(meta-)heuristics to choose (meta-)heuristics to solve the problem in hand"

292 Petmvic, Yang and Dror

(Burke et al., 2003b). Terashima-Marin et al. (1999) presented a hyper-heuristic
Evolutionary Approach for solving examination timetabling problems. The
choices of different sequential heuristics, parameter value settings and the con-
ditions for swapping sequential heuristics during the search process are en-
coded as chromosomes and evolved by a genetic algorithm. The timetable is
built by the best chromosome founded by the genetic algorithm. Petrovic and
Qu (2002) proposed a novel case-based hyper-heuristic to intelligently select
sequential heuristics. A timetable is constructed by applying iteratively a num-
ber of sequential heuristics. The selection of a heuristic to improve the current
partial solution is based on the performance of each heuristic in a similar situ-
ation. Their system requires a training process using the knowledge discovery
techniques.

1.2 Case-Based Reasoning in Scheduling
Case-Based Reasoning (CBR) is an artificial intelligence methodology in

which a new problem is solved by reusing knowledge and experience gained
in solving previous problems (Leake, 1996; Kolodner, 1993). A case contains
a description of the problem, and its solution. Cases are stored in a case base.
The CBR process is divided into four phases (Aarnodt and Plaza, 1994): re-
trieval of the case most similar to the new problem, reuse and revision of its
solution, and inclusion of the new case in the case base.

Only a few applications of CBR to scheduling have been reported. The work
on CBR so far can be classified into two categories. Approaches in the first
category reuse the past problem solving methods or operators within a method
for solving a new problem. Miyashita and Sycara (1995) built a CBR system
CABINS, which improves sub-optimal solutions for job scheduling problems
by applying iteratively a number of moves, chosen by CBR. A case in CAB-
INS consists of a move operator and the context in which it proved to be useful.
Schirmer (2000) applied CBR to choose the most suitable heuristic for solv-
ing different project scheduling problems. Petrovic et al. (2003a) developed
a CBR system for nurse rostering problems, which stores scheduling repair
knowledge of experts as cases and uses CBR to drive the constraint satisfac-
tion procedure.

The second category of CBR approaches to scheduling reuse the whole solu-
tions to a problem. Coello and Santos (1999) solved the real-time job schedul-
ing problem by reusing solutions to similar problems. Similarly, Burke et al.
(2001) established a CBR scheduler in which a new course timetabling prob-
lem is solved by revising the solution of a previously stored similar timetabling
problem.

In this paper, (an early version of which appeared in Petrovic et al., 2003b),
we aim to develop a new approach which enhances the performance of GDA

Case-Based Initialisation of Metaheuristics for Examination Emetabling 293

on examination timetabling problems by intelligently applying an appropriate
sequential heuristic for its initialisation. Section 2 briefly introduces a GDA
and different sequential heuristics. The CBR approach developed for exami-
nation timetabling is described in Section 3. Section 4 presents experimental
results and related discussion. Conclusions and future research work are given
in Section 5.

2. GREAT DELUGE ALGORITHM AND
SEQUENTIAL HEURISTICS

2.1 Great Deluge Algorithm
The GDA is a local search method introduced by Dueck (1993) that has

been successfully applied to examination timetabling problems (Burke et al.,
2003b). It represents a modification of the SA approach (Kirkpatrick et al.,
1983). Apart from accepting a move that improves the solution quality, GDA
also accepts a move that results in a decrease of the solution quality as long
as the decrease of the solution quality is smaller than a given upper boundary
value, referred to as "water-level". In this work, the water-level is initially set
to be the objective function value of the initial solution multiplied by a prede-
fined factor. The neighbouring solutions of the current solution are obtained
by moving an examination to a different time slot. After each move, the water-
level is iteratively decreased by a fixed rate, which is equal to the initial value
of the water-level divided by the time that is allocated to the search (expressed
as the total number of moves). Not surprisingly, the GDA produces better so-
lutions with the prolongation of the search time of the algorithm. This does
not hold for a number of other local search algorithms where the user does not
control the search time.

2.2 Sequential Heuristics
A variety of sequential heuristics can be used to construct initial solutions

for GDA. They sort examinations based on the estimated difficulty of their
scheduling. A number of sequential heuristics are briefly described as follows.

1 Largest degree (LD). Examinations with the largest number of conflicts
are scheduled first.

2 Largest enrolment (LE). A modification of LD: it schedules examina-
tions with the largest student enrolment first.

3 Largest colour degree (CD). A dynamic version of LD: it prioritises ex-
aminations by the largest number of conflicts with other examinations,
which have already been scheduled.

294 Petrovic, Yang and Dror

4 Largest weighted degree (LWD). LWD is a combination of LD and LE.
The highest priority is given to the examination with the largest sum of
the weighted conflicts, where each conflict is weighted by the number of
students who are enrolled in both examinations.

5 Least saturation degree (SD). Examinations with the least number of
available periods for placement should be scheduled first (Brelaz, 1979).

These sequential heuristics can be enriched in a variety of ways. The most
common ones are listed below:

1 Maximum clique detection (MCD). The maximum clique is the largest
completely connected subgraph of a graph. The cardinality of the max-
imum clique determines the lower bound on the number of time periods
needed for the timetable (Carter, 1986). Finding the maximum clique
is an NP-complete problem (Garey and Johnson, 1977). Vertices of
the maximum clique are regarded as the most difficult examinations to
schedule and therefore should be scheduled first (Carter et al., 1996). In
this research, a tabu search heuristic approach proposed by Gendreau et
al. (1993) was implemented to find the vertices in the maximum clique
of a given graph.

2 Adding random elements (ARE). The examination to be scheduled next
is selected from a subset of randomly chosen examinations (Burke et al.,
1998). The size of the subset is given as the percentage of the full set of
examinations.

3 Backtracking (BT). Some examinations cannot be assigned to any time
period without violating hard constraints. In order to schedule these ex-
aminations, some previously scheduled examinations that are in conflict
with the examinations at hand are rescheduled. Several rules are used to
prevent cycles (Laporte and Desroches, 1984).

Sequential heuristics investigated in this research are hybridized with MCD,
andlor BT, andlor ARE where 30%, 60% or 90% of examinations not yet
scheduled are chosen randomly to form the subset of examinations to choose
from. Selecting a suitable heuristic to generate an initial solution for the GDA
is of high importance, because it can significantly affect the quality of the final
solution.

3. CBR SYSTEM FOR EXAMINATION
TIMETABLING

It is not an easy task to select an appropriate sequential heuristic to construct
a good initial solution for GDA. It would be computationally very expensive to

Case-Based Initialisation of Metaheuristics for Examination Timetabling 295

try every combination of sequential heuristics and GDA. Thus, we developed
a CBR system, which selects a sequential initialisation heuristic for GDA in
order to produce a high quality solution for a given problem. The rationale
behind this study is that given an effective hybridisation of a certain sequential
heuristic and GDA for a specific timetabling problem, it is likely that it will
also be effective for a "similar" problem.

In our CBR system, a case memorises an examination timetabling problem
and an effective sequential heuristic, which has generated an appropriate initial
solution for GDA. For solving a new input timetabling problem, the sequential
heuristic of the most similar case is proposed. The main research issue is how
to define the "similarity" measure between two timetabling problems.

3.1 Case Representation
In this section, we explain how the important features of examination time-

tabling problems are incorporated into the case representation. An exami-
nation timetabling problem is represented by an undirected weighted graph
G = (V, E, a, p), where V is the set of vertices that represent examinations,
E C V x V is the finite set of edges that represent conflicts between examina-
tions, a : V H N+ assigns positive integer weights to vertices that correspond
to the number of students enrolled in the examination, and P : E H N+ is
an assignment of weights to edges which correspond to the number of students
enrolled in two examinations that are in conflict. IVI is used to denote the
cardinality of the set V For illustration purpose, a simple example is given in
Figure 1. In this figure the weight of Math is 2 because two students are en-
rolled in this course. The edge connecting A1 and Physics is assigned weight 1
because there is one student who is enrolled in both examinations. Important
features of the timetabling problem, such as number of examinations, number
of enrolments, and number of constraints, are incorporated into the weighted
graph case representation. Moreover, the weighted graph case representation
is capable of describing highly inter-connected constraints that are imposed
between examinations and on examinations themselves.

A solution to an examination timetabling problem is denoted by a vector
S = (sl , ~ 2 , . . . , s I V I) , where s,, n = 1 , . . . , IVI, represents the time period
assigned to the examination n. A feasible (conflict free) solution is a solution
in which for any two vertices a E V and b E V, then s,, must be different from
sb if (a, b) E E. The cost function often used in timetabling community for
solution evaluation soft constraints was proposed by Carter et al. (1994). The
common cost function enables comparison of quality of solutions produced by
different approaches. The cost function gives a cost w, to a solution whenever
a student has to sit two examinations s periods apart. Costs that are used are
wl = 16, w2 = 8, ws = 4, ws = 2, ws = 1. The cost function sums all the

296 Petmvic, Yang and Dmr

tudent ID. Enrolled Examination
000101 AI, PRl C.
000102 AI; PRl C.
000103 AI; PRl C.
000104 AI, Physics.
000105 Math; PR1 C.
000106 Math; PR1 C.
000107 Ph sics: PR1 C. f

Figure I . An examination timetabling problem represented by a graph.

costs of each student and divides the obtained sum by the number of students.
The value obtained is the average cost for each student.

A case C can be formally represented by an ordered pair (G, H), where G
is the graph representation of an examination timetabling problem, while H is
the sequential heuristic that produced an initial solution appropriate for GDA.

3.2 Similarity Measure
An adequate definition of similarity measure is of great importance for a

CBR system because it enables the retrieval of the case that is most closely
related to the new problem. Since weighted graphs are used to represent
timetabling problems, the retrieval of the most similar case from the case base
requires solving a graph isomorphism problem, which is known to be NP-
Complete (Garey and Johnson, 1977).

The following notation will be used. We denote a new timetabling prob-
lem to be solved (a query case) by Cq and a source case in the case base by
C,, while their weighted graphs are denoted by Gq = (Vq, Eq, aq , Pq) and
G, = (V,, E,, a,, P,), respectively. In order to compute the similarity degree
between Cq and C,, a vertex-to-vertex correspondence has to be established
that associates vertices in Vq with those in V,. The correspondence is repre-
sented by the function f : Vq + V,.

Latin and Greek letters are used to denote vertices and edges in Gq and G,,
respectively. For instance, f (a) = x denotes that vertex a E T/p is mapped to
the vertex x E V, by the correspondence f . In this research, the computation of
the similarity degree between pairs of vertices, edges and graphs proposed by
Wang and Ishii (1997) is modified to include the concept of weights employed
in our problem.

Case-Based Initialisation of Metaheuristics for Examination Timetabling 297

The similarity degree between two vertices in G, and G, determined by the
correspondence f is denoted by DSf (a, x):

Similarly, DSf (x, 9) represents the similarity degree between two edges
determined by the correspondence f , where x = (a, b) E E, and y = (x , 6) E
Es :

We use the label 4 to denote an extraneous vertex or edge in a graph,
which is not mapped by the correspondence f . We set DSf (a, q5), DSf (4, x),
DSf ((a, b), 4) and DSf (4, (x, 6)) to be equal to 0. Finally, the similarity de-
gree DSf (G,, G,) between G, and G, determined by the correspondence f is
calculated in the following way:

Note that the value of DSf (G,, G,) E [O, 11 is subject to correspondence
f . The task is to find the correspondence f that yields as high a value of
DSf (G,, G,) as possible.

3.3 Case Retrieval
The goal of the case retrieval is to find a case in the case base whose graph

is the most structurally similar to that of the new problem. The retrieval of the

298 Petrovic, Yang and Dror

Reuse of the Retrieved
Heuristic with GDA I

Figure 2. Architecture of the CBR system for heuristic initialisation of meta-heuristics.

graph-structured cases is a difficult process. Firstly, it is difficult to develop a
valid indexing scheme to manage the organisation of graph-structured cases in
the case base. Secondly, there is an expensive computational cost for calculat-
ing the similarity degree between two cases that involves graph matching.

For case retrieval we employ a two-stage Tabu Search described in more
detail in Petrovic et al. (2002). The search procedure is guided by the short-
term and long-term adaptive memories (Glover and Laguna, 1997). The short-
term memory is used to prevent the search process from cycling by forbid-
ding moves, which have been made recently. The long-term memory holds
the history of all moves and is used to guide the search process to vicinities of
elite solutions or regions that have not yet been explored. In order to reduce
the computational cost required in the retrieval process, it is divided into two
phases. Firstly, the simple Tabu Search with its short-term memory is used to
quickly select a subset of cases from the case base considered to be similar
enough to the new problem. Then the advanced Tabu Search enriched with
long-term memory is used for the final more precise retrieval of the case.

3.4 Architecture of the CBR System
The architecture of our CBR system is depicted in Figure 2. The retrieval

process is performed by the simple and advanced Tabu Search algorithms. The
sequential heuristic, which has been shown to be the most appropriate for gen-
erating the initial solution for GDA for solving the retrieved case, is then pro-
posed for the initialisation of GDA to be applied to the new problem. Once
the problem is solved, the new problem together with the retrieved sequential
heuristic will be stored as a new case in the case base.

Case-Based Initialisation of Metaheuristics for Examination Timetabling 299

4. EXPERIMENTS
The purpose of the designed experiments is twofold: evaluation of effective-

ness and efficiency of the case retrieval and evaluation of system performance
on a range of real world examination timetabling problems. Experiments were
run on a PC with an Athlon 1400 Mhz CPU and 256 MB RAM.

4.1 Description of Seeding Cases
A number of real-world examination problems that are often used as bench-

mark problems within the timetabling community are used for the construction
of cases, which will form a case base. The characteristics of these timetabling
problems are given in Table 1. The conflict matrix is used to represent conflicts
between pairs of examinations. Rows and columns of the matrix represent ex-
aminations, while each element of the matrix shows the number of students
common for a pair of examinations. The density of the conflict matrix is cal-
culated as the ratio of the number of exams in conflict to the total number of
exams.

Seven benchmark problems (ear-f-83, hec-s-92, kfu-s-93,lse-f-91, sta-f-83,
tre-s-92, and yor-f-83) and their specially designed variations were used to
seed the case base. Variation problems were created by adding or deleting a
given a number of students and examinations from the benchmark problem.
Each variation problem is denoted by x/y, where x gives the percentage of
both examinations and students of a benchmark problem which were added,
and y gives the same percentage of those which were deleted. We defined five
categories of variation problems: 5/15, 5/10, 515, 1015, 1515. For example,
the expression 5/15 denotes a variation problem that was created by randomly
adding and deleting 5% and 15% of the numbers of examinations and students
of an associated corresponding benchmark problem, respectively. Two case
bases of different sizes were created. The large case base contains ten vari-
ations of each seeding benchmark problem (two for each category). Thus it
contains 77 cases (seven benchmark problems and 70 variations). The small
case base contains five variations of each benchmark problem, which gives in
total 42 cases (seven benchmark problems and 35 variations).

For each seeding problem, all possible sequential heuristics were used to
produce initial solutions for GDA. The sequential heuristic, which led to the
best final solution, was stored in the case. In this experiment, GDA was run
for 20,000,000 iterations while water-level was set to be 1.3. The number of
iterations was set empirically and the "water-level" was taken from (Burke et
al., 2003b).

The modifications of benchmark problems were used as seeding cases, be-
cause we noticed that heuristics proven to be the best for GDA initialisation
for variation problems could be different from that of the original benchmark

300 Petrovic, Yang and Dror

Table I . The benchmark problems used for seeding the case base.

Data Institution Periods Number Number of Number of Density of
of exams students enrolments conflict matrix

Carleton University,
Ottawa
Carleton University,
Ottawa
Earl Haig Collegiate
Institute, Toronto
Ecole des Hautes Etudes
Commercials, Montreal
King Fahd University
Dharan
London School of
Economics
Ryeson University,
Toronto
St Andrew's Junior
High School, Toronto
Trent University,
Peterborough, Ontario
Faculty of Engineering,
University of Toronto
Faculty of Arts and
Science, University of
Toronto
York Mills Collegiate
Institute, Toronto

problem. In addition, the system performance will be improved by adding
timetabling problems with different graph structures.

The aim of the first experiment is to show how often each heuristic appears
to be the best for GDA in the timetabling problems of the large case base (77
cases). Note that the best initial solution (with respect to the cost function)
does not necessarily lead to the best final solution produced by the GDA.

Figure 3 shows how many times each of the sequential heuristics appears
in 77 seeding cases. A triplet (a, b, c) is assigned to each heuristic SD, LD,
CD, LE and LWD, which denotes whether the heuristic was enriched with
maximum clique detection (a = 1, otherwise a = 0), backtracking (b = 1,
otherwise b = O), andlor adding random element (c = 30%, or 60%, or 90%).
We can notice that although some heuristics are used more than the others,
there is no single heuristic that outperforms all the rest.

Case-Based Initialisation of Metaheuristics for Examination Emetabling 301

Figure 3. Use of heuristics in GDA initialisation.

4.2 Evaluation of the Case Retrieval Process
Since the retrieval process uses the simple and advanced Tabu Search se-

quentially, our second set of experiments investigates how precisely and with
what computational cost for each of the approaches the similarity degree be-
tween two timetabling problems can be calculated. Due to the NP-complete
nature of the graph isomorphism problem, it is not possible to evaluate the per-
formance of the two Tabu Search algorithms on two randomly chosen graphs.
In this study we used the following method that is based on the experiments of
Luo and Hancock (2001).

In our experiments, for each graph G of the seeding case, a copy of it is de-
noted by G,. The similarity degree between G and G, is 1 when each vertex in
G is mapped to its corresponding vertex in G,. This vertex-to-vertex mapping
is considered as the ideal one. Then for each pair of G and Gc, both simple
and advanced Tabu Search algorithms were run where the initial solution was
a random vertex-to-vertex mapping. We evaluate the performance of our Tabu
Search algorithms by examining whether they could find this. ideal mapping
between G and G,, or how closely they approach it. We use DStah to de-
note the similarity degree obtained after running a Tabu search algorithm. The
closer the value of DStah to 1, the better the vertex-to-vertex mapping that
has been found.

Figure 4 shows the performance and search time of the two Tabu Search
algorithms, respectively. A test running is terminated either when a solution
has not improved for 2,000 moves or when an ideal mapping has been found.
Circles and squares show the average value of DStah obtained for the bench-

302 Petrovic, Yang and Dror

Similarity degree between two graphs Running time

Figure 4. Performance of the simple and advanced Tabu Search.

mark problem (denoted on the x-axis) and its 10 variation problems by simple
and advanced Tabu Search algorithm, respectively. Benchmark problems are
sorted by their number of examinations in ascending order.

In Figure 4, it can be seen that the simple Tabu Search can obtain DStah in
the range from 0.95 to 0.995. The advanced Tabu Search could find the "ideal"
mapping of vertices in five out of seven benchmark problems. For the remain-
ing two problems Sta-f-83 and Yor-f-83, the advanced Tabu Search did not
provide the "ideal" mapping, but the average values of DStah are still high.
On the other hand, the time required for advanced Tabu Search is not signif-
icantly higher than for simple Tabu Search. This justifies the implementation
of the advanced Tabu Search within the retrieval process.

The experimental results show that the simple Tabu Search is capable of cal-
culating the similarity degree approximately within a relatively short time and
is used to filter the cases from the case base and to pass a predefined number
of cases with the highest similarity degree with the new problem to the ad-
vanced tabu search. The advanced Tabu Search then spends more time finding
mapping for graph isomorphism on the smaller set of cases.

4.3 Performance on Benchmark Problems
The purpose of the third set of experiments is to test performance of our

CBR system on benchmark problems. In addition we want to investigate
whether the size of the case base has an impact on the performance of the sys-
tem. For each of the five benchmark problems (Car-f-92, Car-s-91,
Rye-s-93, Uta-s-92, and Ute-s-92), the problem was solved twice by using
the small and the large case base. For each of the other seven seeding bench-

Case-Based Initialisation of Metaheuristics for Examination Zimetabling 303

Table 2. Results obtained using case bases of different sizes.

Small case base Large case base
Data Time (s) Cost Time (s) Cost

Retrieval Run GDA Best Avg. Retrieval RunGDA Best Avg.

Car-f-92 2274 1231 3.97 4.08 3772 1231 3.97 4.08
Car-S-91 3301 1321 4.54 4.65 5788 1321 4.54 4.65
Ear-f-83 1164 1250 34.49 36.06 2158 811 34.49 36.06
Hec-s-92 377 1540 10.92 11.29 699 1540 10.92 11.29
K~u-S-93 1982 735 14.82 15.11 3701 735 14.82 15.11
Lse-f-91 1769 587 11.48 11.60 3077 586 10.60 10.83
Rye-s-93 1775 872 9.0 9.66 3097 930 9.0 9.39
Sta-f-83 373 695 160.29 160.83 673 680 159.89 160.49
Tre-s-92 1878 715 7.96 8.09 2936 786 7.96 8.09
Ute-s-92 430 508 25.74 26.22 786 637 25.64 26.09
Uta-s-92 2534 1271 3.26 3.29 4768 1271 3.26 3.29
Yor-f-83 1096 1300 36.82 37.26 2006 1320 36.69 37.08

mark problems, it was also used as a new problem and solved twice by the two
case bases (the problem itself and its variation problems were removed from
the case base in the retrieval process). Therefore, for each seeding benchmark
problem, the small case base includes the other six benchmark problems and
30 associated variation problems; the large case base includes the other six
benchmark problems and 60 associated variation problems. We ran each ex-
periment five times to obtain the average results. The results are summarised
in Table 2.

We can see that, as expected, the retrieval of more similar cases can lead
to better solutions. For five problem instances Lse-f-91, Rye-s-93, Sta-f-83,
Ue-s-92 and Yor-f-83 (highlighted by bold characters), the large case base
yielded better solutions, while for the remaining instances both case bases gave
the same solutions. The price to be paid is of course longer time spent on the
case retrieval, which is proportional to the number of cases.

Table 3 provides the comparison of the average results obtained by three
other GDA initialisation approaches previously tried in the timetabling litera-
ture on these benchmark problems, namely GDA where SD is used to provide
the initial solution (Burke et al., 2003b), GDA where initial solutions drive the
adaptation of the parameters of the algorithm throughout the search (Burke and
Newell, 2003; Burke and Newell, 2002), and GDA where the combination of
SD, MCD and BT is used to construct an initial solution (Carter et al., 1996).
Again GDA was run for 200 x lo6 iterations, because that was the number
of iterations used in the methods that we compare our approach with. For il-
lustration purpose, we also provide the time spent on the search (in seconds).

304 Petrovic, Yang and Dror

Table 3. Comparison of results for benchmark problems obtained by different initialisation of
GDA.

SD Adaptive SD & MCD & BT CBR
Data GDA Best Avg. GDABest Avg. GDA Best Avg. RetrievalGDA Best Avg.

Time Cost Cost TimeCost Cost Time Cost Cost Time Time Cost Cost

Car-f-92 1120 4.03 4.07 416 - 4.10 1220 3.97 4.04 3772 1231 3.97 4.08
Car-S-91 1400 4.57 4.62 681 - 4.65 1441 4.62 4.66 5788 1321 4.54 4.65
Ear-f-83 806 34.85 36.04 377 - 37.05 767 33.82 36.26 2158 811 34.49 36.06
Hec-s-92 1471 11.27 12.43 516 - 11.54 1411 11.08 11.48 699 1540 10.92 11.29
K~u-S-93 843 14.33 14.64 449 - 13.90 996 14.35 14.62 3701 735 14.82 15.11
Lse-f-91 646 11.61 11.65 341 - 10.82 675 11.57 11.94 3077 586 10.60 10.83
Rye-s-93 845 9.19 9.66 - - - 881 9.32 9.50 3097 930 9.0 9.39
Sta-f-83 675 165.12 169.7 418 - 168.73 674 166.07 166.31 673 680 159.89160.49
Tre-s-92 907 8.13 8.29 304 - 8.35 751 8.19 8.27 2936 786 7.96 8.09
Ute-s-92 716 25.88 26.05 324 - 25.83 653 25.53 26.02 786 637 25.64 26.09
Uta-s-92 1070 3.25 3.30 517 - 3.20 1101 3.24 3.31 4768 1271 3.26 3.29
Yor-f-83 1381 36.17 36.59 695 - 37.28 1261 36.31 37.27 2006 1320 36.69 37.08

Rank 2.58 2.55 2.5 2.08

Although each algorithm was allocated the same number of iterations, the time
is different due to computers of different characteristics. The table shows the
average time spent on the search (each problem instance was solved five times).

In order to examine the performance of each initialisation method further,
we also show the rank of the average cost that a method obtained on problem
instances. This evaluation method was introduced by White et al. (2004). For
example, the rank on the problem instance Car-f-92 is computed as: SD, 2;
Adaptive, 4; MCD&BT&SD, 1; CBR, 3. The bottom row of Table 3 shows the
average of the ranks for the 12 problems (excluding the rank of Rye-s-93 for
the Adaptive initialisation method) of four different approaches.

We can see that our CBR system outperforms other initialisation methods
for GDA. The CBR initialisation obtained the best rank (2.08) among all the
methods. More significantly, we obtained the best average results for four
benchmark problems (highlighted by bold characters). For the remaining seven
problems, the other three methods only slightly outperformed our approach ex-
cept for the problem instance Kfu-s-93. It is evident that our CBR system spent
additional time on the case retrieval. However, the quality of the obtained re-
sults justifies the time spent on the selection of an appropriate heuristic, which
determines a good starting point for the GDA.

Finally, we compare our results with those produced by the state-of- the-art
timetabling metaheuristics: SA (Merlot et al., 2003), Tabu search (White et al.,
2004), and GRASP (Casey and Thompson, 2003) by Table 4.

Case-Based Initialisation of Metaheuristics for Examination i7rnetabling 305

Table 4. Results for benchmark problems obtained by different timetabling approaches.

S A Tabu GRASP CBR
Data Best Avg. Best Avg. Best Avg. Retrieval GDA Best Avg.

Time Cost Cost Time Cost Cost Time Cost Cost Time Time Cost Cost

Car-f-92 233 4.3 4.4 - 4.63 4.69 - 4.4 4.7 3772 1231 3.97 4.08
Car-S-91 296 5.1 5.2 - 5.73 5.82 - 5.4 5.6 5788 1321 4.54 4.65
Ear-f-83 26 35.1 35.4 - 45.8 45.6 - 34.8 35.0 2158 811 34.49 36.06
Hec-s-92 5.4 10.6 10.7 - 12.9 13.4 - 10.8 10.9 699 1540 10.92 11.29
Kfu-S-93 40 13.5 14.0 - 17.1 17.8 - 14.1 14.3 3701 735 14.82 15.11
Lse-f-91 35 10.5 11.0 - 14.7 14.8 - 14.7 15.0 3077 586 10.6 10.83
Rye-s-93 70 8.4 8.7 - 11.6 11.7 - - - 3097 930 9.0 9.39
Sta-f-83 5 157.3 157.4 - 158 158 - 134.9 135.1 673 680 159.89 160.49
Tre-s-92 39 8.4 8.6 - 8.94 9.16 - 8.7 8.8 2936 786 7.96 8.09
Ute-s-92 9 25.1 25.2 - 29.0 29.1 - 25.4 25.5 786 637 25.64 26.09
Uta-s-92 233 3.5 3.6 - 4.44 4.49 - - - 4768 1271 3.26 3.29
Yor-f-83 30 37.4 37.9 - 42.3 42.5 - 37.5 38.1 2006 1320 36.69 37.08

Table 5. Average of the ranks for benchmark problems obtained by different approaches.

SD Adaptive SD & MCD & BT CBR
Approaches SA Tabu GRASP GDA GDA GDA GDA

Average Rank 3.00 6.17 4.0 3.58 3.36 3.67 3.08

We obtained six best average costs and six best costs (highlighted) out of 12
benchmark problems.

Table 5 shows the average of the ranks for the 12 problem instances. Due to
the incomplete results in Burke and Newel1 (2002) and Casey and Thompson
(2003), we exclude the rank of Rye-s-93 for the Adaptive GDA method, and
the rank of Rye-s-93 and Uta-f-92 for the GRASP method.

We can see that SA and the GDA initialised by CBR obtained the best rank
(3.00) and the second best rank (3.08) among the seven different approaches
investigated. However, opposite to SA our approach does not require param-
eter "tuning" for a particular timetabling problem and design of appropriate
neighbourhood structure. In addition, the experience gained in solving one
timetabling problem is not wasted but can be used in solving new similar
timetabling problems.

5. CONCLUSIONS
In this paper we have presented a case-based reasoning system, which se-

lects an appropriate sequential heuristic for generating an initial solution for

306 Petrovic, Yang and Dror

Great Deluge algorithm (GDA). We have shown that with an appropriate defi-
nition of "similarity" measure, such initialisation of GDA provides high-quality
solutions for a range of real-world problems. One of the insights of this study
is that our CBR system significantly contributes to the attempt of building a
general metaheuristic framework for timetabling. Usually in metaheuristics,
a random initialisation is employed or a thorough investigation of heuristics
needs to be performed, which is useful only for a given problem instance.
In this paper, we demonstrated that knowledge gained in initialisation of one
timetabling problem can be used for solving new similar timetabling problems.

The developed CBR system examined in this paper contains cases with com-
plex structures represented by weighted graphs. We have shown that the two-
phase Tabu Search approach is capable of retrieving graph-structured cases
where graphs are of large size and the case base contains hundreds of cases.
We believe that the graph-structured case representation, the similarity mea-
sure, and the proposed case retrieval are applicable to other domains such as
job shop scheduling, planning and other CBR applications.

The results obtained so far provide us with a good foundation for the de-
velopment of a more general CBR system for solving timetabling problems.
Our future research direction will include improvements aimed to shorten the
required time for the case retrieval. We will also investigate hierarchical case
representation that would enable the case retrieval process to examine only a
subset of the case base. Finally, we will investigate the hybridisation of sequen-
tial heuristics and other local search methods such as tabu search and simulated
annealing.

Acknowledgments
The authors wish to thank Dr Jim Newall for offering the source code of the

timetabling library, and the anonymous reviewers for their valuable remarks on
this work.

References
Aamodt, A, and Plaza, P. (1994) Case-based reasoning: foundational issues, methodological

variations and system approaches. The European Journal on ArtiJcial Intelligence, 7:39-59.
Brelaz, D. (1979) New methods to color the vertices of a graph. Communication of ACM,

22:251-256.
Burke, E. K. and Newell, J. P. (1999) A multi-stage evolutionary algorithm for the timetable

problem. IEEE Transactions on Evolutionary Computation, 31:63-74.
Burke, E. K. and Newall, J. P. (2002) Enhancing Timetable Solutions with Local Search Meth-

ods. In The Practice and Theory of Automated lfmetabling IV, Lecture Notes in Computer
Science, Vol. 2740, Springer, Berlin, pp. 195-206.

Burke, E. K, and Newell, J. P. (2003) Solving examination timetabling problems through adap-
tation of heuristic orderings. Annals of Operations Research, accepted for publication.

Case-Based Initialisation of Metaheuristics for Examination Timetabling 307

Burke, E. K. and Petrovic, S. (2002) Recent research directions in automated timetabling. Eu-
ropean Journal of Operational Research, 140:266-280.

Burke, E. K., Elliman, D. G., Ford, P. H. and Weare, R. F. (1996) Examination timetabling
in british universities-A survey. In The Practice and Theory of Automated Timetabling I,
Lecture Notes in Computer Science, Vol. 1153, Springer, Berlin, pp. 76-92.

Burke, E. K., Newall, J. P, and Weare, R. E (1998) Initialisation strategies and diversity in
evolutionary timetabling. Evolutionary Computation Journal, 6:81-103.

Burke, E. K., Newell, J. P. and Weare, R. E (1998) A simple heuristically guided search for the
timetable problem. In Proceedings of the International ICSC Symposium on Engineering of
Intelligent Systems, University of La Laguna, pp. 574-579.

Burke, E. K., MacCarthy, B., Petrovic, S. and Qu, R. (2001) Case-based reasoning in course
timetabling: an attribute graph approach. In Proceedings of 4th International Conference on
Case-Based Reasoning, Lecture Notes in Artificial Intelligence, Vol. 2080, Springer, Berlin,
pp. 90-104.

Burke, E. K., Hart, E., Kendall, G., Newall, J., Ross, P. and Schulenburg, S. (2003a) Hyper-
heuristics: an emerging direction in modem search technology. In Handbook of Meta-Heur-
istics, Chapter 16, pp. 457-474, Kluwer, Dordrecht.

Burke, E. K., Bykov, Y., Newall, J. P. and Petrovic, S. (2003b) A time-predefined local search ap-
proach to exam timetabling problems. IIE Transactions on operations Engineering, 36509-
528.

Carter, M. W. (1986) A survey of practical applications on examination timetabling. Operations
Research, 34: 193-202.

Carter, M. W, and Laporte, G. (1996) Recent developments in practical examination timetabling.
In The Practice and Theory of Automated Timetabling I, Lecture Notes in Computer Science,
Vol. 1153, Springer, Berlin, pp. 3-21.

Carter, M. W., Laporte, G. and Chinneck, J. W. (1994) A general examination scheduling sys-
tem. Intefaces, 24: 109-120.

Carter, M. W., Laporte, G, and Lee, S. Y. (1996) Examination timetabling: algorithmic strategies
and applications. Journal of the Operational Research Society, 47:373-383.

Casey, S. and Thompson, J. (2003) GRASPing the examination scheduling problem. In The
Practice and Theory of Automated Timetabling IV, Lecture Notes in Computer Science,
Vol. 2740, Springer, Berlin, pp. 232-246.

Coello, J. M. A. and Santos, R. C. (1999) Integrating CBR and heuristic search for learning and
reusing solutions in real-time task scheduling. In Proceedings of 3rd International Confer-
ence on Case-Based Reasoning, Lecture Notes in Artificial Intelligence, Vol. 1650, Springer,
Berlin, pp. 89-103.

Di Gaspero, L. and Schaerf, A. (2001) Tabu search techniques for examination timetabling. In
Proceedings of Practice and Theory of Automated Timetabling III, Lecture Notes in Com-
puter Science, Vol. 2079, Springer, Berlin, pp. 104-1 17.

Dueck, G. (1993) New optimization heuristics. Journal of Computational Physics, 10486-92.
Foxley, E. and Lockyer, K. (1968) The construction of examination timetable by computer. The

Computer Journal, 11:264-268.
Garey, M. R. and Johnson, D. S. (1977) Computers and Intractability: A Guide to the Theory of

NP-Completeness, Freeman, San Francisco.
Gendreau, M., Soriano, P. and Salvail, L. (1993) Solving the maximum clique problem using a

tabu search approach. Annals of Operations Research, 41:385-403.
Glover, E and Laguna, M. (1997) Tabu Search. Kluwer, Dordrecht.

308 Petrovic, Yang and Dror

Kirkpatrick, S., Gelatt, C. D, and Vecchi, M. P. (1983) Optimisation by simulated annealing.
Science, 220:671-680.

Laporte, G. and Desroches, S. (1984) Examination timetabling by computer. Computers and
Operations Research, 11:351-360.

Leake, D. B. (1996) CBR in context: the present and future. In Case-Based Reasoning: Experi-
ences, Lessons, and Future Directions, D. Leake (Ed.), AAAI PressMIT Press, Menlo Park,
CA.

Luo, B, and Hancock, E. R. (2001) Structural graph matching using the em algorithm and singu-
lar value decomposition. IEEE Transactions Analysis and Machine Intelligence,
23: 1120-1 136.

Kolodner, J. (1993) Case-Based Reasoning. Morgan Kaufmann, San Mateo, CA.
Merlot, L. T. G., Boland, N., Hughs, B. and Stucky, P. J. (2003) A hybrid algorithm for the

examination timetabling problem. In The Practice and Theory of Automated Timetabling IV,
Lecture Notes in Computer Science, Vol. 2740, Springer, Berlin, pp. 207-23 1.

Miyashita, K. and Sycara, K. (1995) CABINS: A framework of knowledge acquisition and iter-
ative revision for schedule improvement and reactive repair. Artijcial Intelligence, 76:377-
426.

Petrovic, S. and Qu, R. (2002) Case-based reasoning as a heuristic selector in a hyper-heuristic
for course timetabling problems. In Proceedings of Knowledge-Based Intelligent Informa-
tion Engineering Systems and Allied Technologies, Frontiers in Artificial Intelligence and
Applications, Vol. 82, IOS Press, Amsterdam, pp. 336-340.

Petrovic, S., Kendall, G. and Yang, Y. (2002) A tabu search approach for graph-structured case
retrieval. In Proceedings of the STarting Art@cial Intelligence Researchers Symposium, IOS
Press, Amsterdam, pp. 55-64.

Petrovic, S., Beddoe, G. R. and Berghe, G. V. (2003a) Storing and adapting repair experiences
in employee rostering. In Practice and Theory of Automated Timetabling IV, Lecture Notes
in Computer Science, Vol. 2740, Springer, Berlin, pp. 149-166.

Petrovic, S., Yang, Y, and Dror, M. (2003b) Case-based initialisation of metaheuristics for ex-
amination timetabling. In Proceedings of the 1st Multidisciplinary International Conference
on Scheduling: Theory and Applications, pp. 137-155.

Saleh Elmohamed, M. A., Coddington, P. and Fox, G. (1998) A comparison of annealing
techniques for academic course scheduling. In The Practice and Theory of Automated
Timetabling II, Lecture Notes in Computer Science, Vol. 1408, Springer, Berlin, pp. 92-1 12.

Schirmer, A. 2000 Case-based reasoning and improved adaptive search for project scheduling.
Naval Research Logistics, 47:201-222.

Terashima-Marh, H., Ross, P. and Valenzuela-Rendh, M. (1999) Evolution of constraint satis-
faction strategies in examination timetabling. In Proceedings of the Genetic and Evolution-
ary Conference, pp. 635-642.

Wang, Y. and Ishii, N. (1997) A method of similarity metrics for structured representations.
Expert Systems with Applications, 12239-100.

Welsh, D. J. A. and Powell, M. B. (1967) An upper bound on the chromatic number of a graph
and its application to timetabling problems. The Computer Journal, 10:85-86.

White, G. M. Xie, B. S. and Zonjic, S. (2004) Using tabu search with longer-term memory
and relaxation to create examination timetables. European Journal of Operational Research,
lS3:8&91.

