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Abstract Examination timetabling problems are traditionally solved by choosing a solu- 
tion procedure from a plethora of heuristic algorithms based either on a direct 
construction principle or on some incremental improvement procedure. A num- 
ber of hybrid approaches have also been examined in which a sequential heuris- 
tic and a metaheuristic are employed successively. As a rule, best results for a 
problem instance are obtained by implementing heuristics with domain-specific 
knowledge. However, solutions of this kind are not easily adoptable across dif- 
ferent problem classes. In order to lessen the need for a problem-specific knowl- 
edge we developed a novel solution approach to examination timetabling by in- 
corporating the case-based reasoning methodology. A solution to a given prob- 
lem is constructed by implementing case-based reasoning to select a sequential 
heuristic, which produces a good initial solution for the Great Deluge meta- 
heuristic. A series of computational experiments on benchmark problems were 
conducted which subsequently demonstrate that this approach gives compara- 
ble or better results than solutions generated not only by a single Great Deluge 
algorithm, but also the state-of-the-art approaches. 
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1 INTRODUCTION 
Examination timetabling problem is a difficult combinatorial optimisation 

problem. The task is to assign a set of examinations into a limited number of 
time periods and classrooms subject to constraints (Carter et al., 1996). The 
constraints are usually divided into two categories: hard and soft constraints. 
Hard constraints are those that must not be violated. One such constraint is 
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that no student can attend two examinations at the same time. An examination 
timetable is considered to be feasible only when it meets all hard constraints. 
On the other hand, soft constraints are not essential to a timetable, but highly 
desirable. For example, students might wish to have a two or three day interval 
between two consecutive examinations. The quality of a timetable is measured 
in terms of its satisfaction of soft constraints. A good review of a variety of 
constraints that are usually imposed on examination timetabling is given in 
Burke et al. (1996). 

A timetabling problem can be modelled by a graph where each vertex rep- 
resents an examination while an edge represents a conflict between two exam- 
inations (e.g. two examinations have some students in common and therefore 
cannot be scheduled into the same period). Thus, a timetabling problem is 
analogous to a graph colouring problem when neglecting soft constraints and 
resource requirements, with colour-coding for time slots (Welsh et al., 1967). 
The vertices of the graph have to be coloured in such a way so that no two 
adjacent vertices share the same colour. Note that finding a minimal number of 
colours to colour a graph is one of the classical NP-complete problems (Garey 
and Johnson, 1977). 

1.1 Examination Timetabling 
Over the last 40 years, various approaches to examination timetabling have 

been developed. A number of review papers discuss approaches and research 
issues in examination timetabling (Burke and Petrovic, 2002; Carter, 1986; 
Carter and Laporte, 1996). Approaches based on applications of graph colour- 
ing heuristics for solving timetabling problems were widely employed in the 
early days of timetabling research (Carter, 1986; Foxley and Lockyer, 1968). 
The idea behind these heuristics is to schedule examinations sequentially com- 
mencing with the examinations estimated to be the most difficult to schedule 
and ending with the easiest ones. By the beginning of the 1990s, sequential 
heuristics had been superseded by various metaheuristics such as Tabu search 
and Simulated Annealing (SA), which take into consideration soft constraints 
and therefore produce more satisfactory solutions (Carter and Laporte, 1996). 

Recently, there has been a growing interest in employing various sequential 
heuristics to generate initial solutions for metaheuristics. Saleh Elmohamed 
et al. (1998) used sequential heuristics which consider size of examinations 
to find a feasible solution and handled soft constraints by simulated anneal- 
ing. Burke and Newel1 (1999) used sequential heuristics to decompose a large 
problem into several sub-problems, which were then solved by memetic algo- 
rithm. Di Gaspero and Schaerf (2001) designed sequential heuristics, which 
are hybridised with Tabu Search. The hybrid approaches (Burke and Newel1 
1999; Casey and Thompson, 2003; Merlot et al., 2003; White et al., 2004) 
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produced the best results on a number of benchmark problems, and represent 
the state of the art in timetabling. Sequential heuristics serve an important role 
in the successful subsequent implementation of metaheuristics because they 
cannot only shorten the search time but may also greatly enhance their perfor- 
mance (Burke et al., 1998; Burke and Newell, 2002). 

However, a successful development of such a metaheuristic is a difficult task 
since it usually involves incorporation of problem domain-specific knowledge. 
For example in a simulated annealing timetabling algorithm (Merlot et al., 
2003), a sophisticated neighbourhood structure (such as the Kempe chains), 
and an appropriate cooling schedule, which involves choosing a cooling for- 
mula and setting values for parameters such as initial temperature and cool- 
ing factor, have to be defined. Similarly, a Tabu Search timetabling algorithm 
(White et al., 2004) requires an appropriate setting of parameters such as the 
length of the tabu list, the stopping criteria, and a candidate list strategy to re- 
strict the neighbourhood size. Generally, the current approaches suffer from 
limitation in their applicability when faced with changes in problem descrip- 
tion. 

It is well known in the timetabling community that a solution procedure 
which generates good results at one university might perform poorly for time- 
tabling problems in another university (Carter and Laporte, 1996). Naturally, 
the following question arises: which sequential heuristic should be used with 
a given metaheuristic for solving a timetabling problem at hand? In practice, 
a preferred solution for a given problem is usually obtained after appropriately 
selecting and "tailoring" both sequential heuristics and metaheuristics based 
on domain-specific knowledge of the problem. 

In light of the above limitations, Burke et al. (2003a) applied a local search 
method, the Great Deluge algorithm (GDA), to solve timetabling problems. 
The "beauty" of the GDA is that it is much easier to develop a GDA algorithm 
compared to other metaheuristics, because it only requires one input parameter 
and therefore requires the least effort to "tailor" it for a given problem. It is 
worth noting that the authors showed that GDA is effective even by using a 
very simply defined neighbourhood structure. Burke and Newel1 (2002,2003) 
extended this research further by applying an adaptive initialisation heuristic 
before running GDA. This adaptive heuristic firstly solves the problem a num- 
ber of times in order to learn how to adjust the heuristic's parameters. Both 
methods produced best-published results on a range of benchmark problems. 

It is desirable to develop a general timetabling system which works equally 
well for a variety of problem descriptions from different universities. Hyper- 
heuristic solution methodology, which is "an emerging methodology in search 
and optimisation" (Burke et al., 2003a) aims at addressing these needs. Broadly 
speaking, the term of hyper-heuristics is defined as "the process of using 
(meta-)heuristics to choose (meta-)heuristics to solve the problem in hand" 
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(Burke et al., 2003b). Terashima-Marin et al. (1999) presented a hyper-heuristic 
Evolutionary Approach for solving examination timetabling problems. The 
choices of different sequential heuristics, parameter value settings and the con- 
ditions for swapping sequential heuristics during the search process are en- 
coded as chromosomes and evolved by a genetic algorithm. The timetable is 
built by the best chromosome founded by the genetic algorithm. Petrovic and 
Qu (2002) proposed a novel case-based hyper-heuristic to intelligently select 
sequential heuristics. A timetable is constructed by applying iteratively a num- 
ber of sequential heuristics. The selection of a heuristic to improve the current 
partial solution is based on the performance of each heuristic in a similar situ- 
ation. Their system requires a training process using the knowledge discovery 
techniques. 

1.2 Case-Based Reasoning in Scheduling 
Case-Based Reasoning (CBR) is an artificial intelligence methodology in 

which a new problem is solved by reusing knowledge and experience gained 
in solving previous problems (Leake, 1996; Kolodner, 1993). A case contains 
a description of the problem, and its solution. Cases are stored in a case base. 
The CBR process is divided into four phases (Aarnodt and Plaza, 1994): re- 
trieval of the case most similar to the new problem, reuse and revision of its 
solution, and inclusion of the new case in the case base. 

Only a few applications of CBR to scheduling have been reported. The work 
on CBR so far can be classified into two categories. Approaches in the first 
category reuse the past problem solving methods or operators within a method 
for solving a new problem. Miyashita and Sycara (1995) built a CBR system 
CABINS, which improves sub-optimal solutions for job scheduling problems 
by applying iteratively a number of moves, chosen by CBR. A case in CAB- 
INS consists of a move operator and the context in which it proved to be useful. 
Schirmer (2000) applied CBR to choose the most suitable heuristic for solv- 
ing different project scheduling problems. Petrovic et al. (2003a) developed 
a CBR system for nurse rostering problems, which stores scheduling repair 
knowledge of experts as cases and uses CBR to drive the constraint satisfac- 
tion procedure. 

The second category of CBR approaches to scheduling reuse the whole solu- 
tions to a problem. Coello and Santos (1999) solved the real-time job schedul- 
ing problem by reusing solutions to similar problems. Similarly, Burke et al. 
(2001) established a CBR scheduler in which a new course timetabling prob- 
lem is solved by revising the solution of a previously stored similar timetabling 
problem. 

In this paper, (an early version of which appeared in Petrovic et al., 2003b), 
we aim to develop a new approach which enhances the performance of GDA 
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on examination timetabling problems by intelligently applying an appropriate 
sequential heuristic for its initialisation. Section 2 briefly introduces a GDA 
and different sequential heuristics. The CBR approach developed for exami- 
nation timetabling is described in Section 3. Section 4 presents experimental 
results and related discussion. Conclusions and future research work are given 
in Section 5. 

2. GREAT DELUGE ALGORITHM AND 
SEQUENTIAL HEURISTICS 

2.1 Great Deluge Algorithm 
The GDA is a local search method introduced by Dueck (1993) that has 

been successfully applied to examination timetabling problems (Burke et al., 
2003b). It represents a modification of the SA approach (Kirkpatrick et al., 
1983). Apart from accepting a move that improves the solution quality, GDA 
also accepts a move that results in a decrease of the solution quality as long 
as the decrease of the solution quality is smaller than a given upper boundary 
value, referred to as "water-level". In this work, the water-level is initially set 
to be the objective function value of the initial solution multiplied by a prede- 
fined factor. The neighbouring solutions of the current solution are obtained 
by moving an examination to a different time slot. After each move, the water- 
level is iteratively decreased by a fixed rate, which is equal to the initial value 
of the water-level divided by the time that is allocated to the search (expressed 
as the total number of moves). Not surprisingly, the GDA produces better so- 
lutions with the prolongation of the search time of the algorithm. This does 
not hold for a number of other local search algorithms where the user does not 
control the search time. 

2.2 Sequential Heuristics 
A variety of sequential heuristics can be used to construct initial solutions 

for GDA. They sort examinations based on the estimated difficulty of their 
scheduling. A number of sequential heuristics are briefly described as follows. 

1 Largest degree (LD). Examinations with the largest number of conflicts 
are scheduled first. 

2 Largest enrolment (LE). A modification of LD: it schedules examina- 
tions with the largest student enrolment first. 

3 Largest colour degree (CD). A dynamic version of LD: it prioritises ex- 
aminations by the largest number of conflicts with other examinations, 
which have already been scheduled. 
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4 Largest weighted degree (LWD). LWD is a combination of LD and LE. 
The highest priority is given to the examination with the largest sum of 
the weighted conflicts, where each conflict is weighted by the number of 
students who are enrolled in both examinations. 

5 Least saturation degree (SD). Examinations with the least number of 
available periods for placement should be scheduled first (Brelaz, 1979). 

These sequential heuristics can be enriched in a variety of ways. The most 
common ones are listed below: 

1 Maximum clique detection (MCD). The maximum clique is the largest 
completely connected subgraph of a graph. The cardinality of the max- 
imum clique determines the lower bound on the number of time periods 
needed for the timetable (Carter, 1986). Finding the maximum clique 
is an NP-complete problem (Garey and Johnson, 1977). Vertices of 
the maximum clique are regarded as the most difficult examinations to 
schedule and therefore should be scheduled first (Carter et al., 1996). In 
this research, a tabu search heuristic approach proposed by Gendreau et 
al. (1993) was implemented to find the vertices in the maximum clique 
of a given graph. 

2 Adding random elements (ARE). The examination to be scheduled next 
is selected from a subset of randomly chosen examinations (Burke et al., 
1998). The size of the subset is given as the percentage of the full set of 
examinations. 

3 Backtracking (BT). Some examinations cannot be assigned to any time 
period without violating hard constraints. In order to schedule these ex- 
aminations, some previously scheduled examinations that are in conflict 
with the examinations at hand are rescheduled. Several rules are used to 
prevent cycles (Laporte and Desroches, 1984). 

Sequential heuristics investigated in this research are hybridized with MCD, 
andlor BT, andlor ARE where 30%, 60% or 90% of examinations not yet 
scheduled are chosen randomly to form the subset of examinations to choose 
from. Selecting a suitable heuristic to generate an initial solution for the GDA 
is of high importance, because it can significantly affect the quality of the final 
solution. 

3. CBR SYSTEM FOR EXAMINATION 
TIMETABLING 

It is not an easy task to select an appropriate sequential heuristic to construct 
a good initial solution for GDA. It would be computationally very expensive to 



Case-Based Initialisation of Metaheuristics for Examination Timetabling 295 

try every combination of sequential heuristics and GDA. Thus, we developed 
a CBR system, which selects a sequential initialisation heuristic for GDA in 
order to produce a high quality solution for a given problem. The rationale 
behind this study is that given an effective hybridisation of a certain sequential 
heuristic and GDA for a specific timetabling problem, it is likely that it will 
also be effective for a "similar" problem. 

In our CBR system, a case memorises an examination timetabling problem 
and an effective sequential heuristic, which has generated an appropriate initial 
solution for GDA. For solving a new input timetabling problem, the sequential 
heuristic of the most similar case is proposed. The main research issue is how 
to define the "similarity" measure between two timetabling problems. 

3.1 Case Representation 
In this section, we explain how the important features of examination time- 

tabling problems are incorporated into the case representation. An exami- 
nation timetabling problem is represented by an undirected weighted graph 
G = (V, E, a, p), where V is the set of vertices that represent examinations, 
E C V x V is the finite set of edges that represent conflicts between examina- 
tions, a : V H N+ assigns positive integer weights to vertices that correspond 
to the number of students enrolled in the examination, and P : E H N+ is 
an assignment of weights to edges which correspond to the number of students 
enrolled in two examinations that are in conflict. IVI is used to denote the 
cardinality of the set V For illustration purpose, a simple example is given in 
Figure 1. In this figure the weight of Math is 2 because two students are en- 
rolled in this course. The edge connecting A1 and Physics is assigned weight 1 
because there is one student who is enrolled in both examinations. Important 
features of the timetabling problem, such as number of examinations, number 
of enrolments, and number of constraints, are incorporated into the weighted 
graph case representation. Moreover, the weighted graph case representation 
is capable of describing highly inter-connected constraints that are imposed 
between examinations and on examinations themselves. 

A solution to an examination timetabling problem is denoted by a vector 
S = (sl ,  ~ 2 , .  . . , s I V I ) ,  where s,, n = 1 , .  . . , IVI, represents the time period 
assigned to the examination n. A feasible (conflict free) solution is a solution 
in which for any two vertices a E V and b E V, then s,, must be different from 
sb if (a, b) E E. The cost function often used in timetabling community for 
solution evaluation soft constraints was proposed by Carter et al. (1994). The 
common cost function enables comparison of quality of solutions produced by 
different approaches. The cost function gives a cost w, to a solution whenever 
a student has to sit two examinations s periods apart. Costs that are used are 
wl = 16, w2 = 8, ws = 4, ws = 2, ws = 1. The cost function sums all the 
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tudent ID. Enrolled Examination 
000101 AI, PRl C. 
000102 AI; PRl C. 
000103 AI; PRl C. 
000104 AI, Physics. 
000105 Math; PR1 C. 
000106 Math; PR1 C. 
000107 Ph sics: PR1 C. f 

Figure I .  An examination timetabling problem represented by a graph. 

costs of each student and divides the obtained sum by the number of students. 
The value obtained is the average cost for each student. 

A case C can be formally represented by an ordered pair (G, H), where G 
is the graph representation of an examination timetabling problem, while H is 
the sequential heuristic that produced an initial solution appropriate for GDA. 

3.2 Similarity Measure 
An adequate definition of similarity measure is of great importance for a 

CBR system because it enables the retrieval of the case that is most closely 
related to the new problem. Since weighted graphs are used to represent 
timetabling problems, the retrieval of the most similar case from the case base 
requires solving a graph isomorphism problem, which is known to be NP- 
Complete (Garey and Johnson, 1977). 

The following notation will be used. We denote a new timetabling prob- 
lem to be solved (a query case) by Cq and a source case in the case base by 
C,, while their weighted graphs are denoted by Gq = (Vq, Eq, aq ,  Pq) and 
G, = (V,, E,, a,, P,), respectively. In order to compute the similarity degree 
between Cq and C,, a vertex-to-vertex correspondence has to be established 
that associates vertices in Vq with those in V,. The correspondence is repre- 
sented by the function f : Vq + V,. 

Latin and Greek letters are used to denote vertices and edges in Gq and G,, 
respectively. For instance, f (a) = x denotes that vertex a E T/p is mapped to 
the vertex x E V, by the correspondence f .  In this research, the computation of 
the similarity degree between pairs of vertices, edges and graphs proposed by 
Wang and Ishii (1997) is modified to include the concept of weights employed 
in our problem. 
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The similarity degree between two vertices in G, and G, determined by the 
correspondence f is denoted by DSf (a, x): 

Similarly, DSf (x, 9) represents the similarity degree between two edges 
determined by the correspondence f ,  where x = (a, b) E E, and y = ( x ,  6 )  E 
Es : 

We use the label 4 to denote an extraneous vertex or edge in a graph, 
which is not mapped by the correspondence f .  We set DSf (a, q5), DSf (4, x), 
DSf ((a, b), 4) and DSf (4, (x, 6)) to be equal to 0. Finally, the similarity de- 
gree DSf (G,, G,) between G, and G, determined by the correspondence f is 
calculated in the following way: 

Note that the value of DSf (G,, G,) E [O, 11 is subject to correspondence 
f .  The task is to find the correspondence f that yields as high a value of 
DSf (G,, G,) as possible. 

3.3 Case Retrieval 
The goal of the case retrieval is to find a case in the case base whose graph 

is the most structurally similar to that of the new problem. The retrieval of the 
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Reuse of the Retrieved 
Heuristic with GDA I 

Figure 2. Architecture of the CBR system for heuristic initialisation of meta-heuristics. 

graph-structured cases is a difficult process. Firstly, it is difficult to develop a 
valid indexing scheme to manage the organisation of graph-structured cases in 
the case base. Secondly, there is an expensive computational cost for calculat- 
ing the similarity degree between two cases that involves graph matching. 

For case retrieval we employ a two-stage Tabu Search described in more 
detail in Petrovic et al. (2002). The search procedure is guided by the short- 
term and long-term adaptive memories (Glover and Laguna, 1997). The short- 
term memory is used to prevent the search process from cycling by forbid- 
ding moves, which have been made recently. The long-term memory holds 
the history of all moves and is used to guide the search process to vicinities of 
elite solutions or regions that have not yet been explored. In order to reduce 
the computational cost required in the retrieval process, it is divided into two 
phases. Firstly, the simple Tabu Search with its short-term memory is used to 
quickly select a subset of cases from the case base considered to be similar 
enough to the new problem. Then the advanced Tabu Search enriched with 
long-term memory is used for the final more precise retrieval of the case. 

3.4 Architecture of the CBR System 
The architecture of our CBR system is depicted in Figure 2. The retrieval 

process is performed by the simple and advanced Tabu Search algorithms. The 
sequential heuristic, which has been shown to be the most appropriate for gen- 
erating the initial solution for GDA for solving the retrieved case, is then pro- 
posed for the initialisation of GDA to be applied to the new problem. Once 
the problem is solved, the new problem together with the retrieved sequential 
heuristic will be stored as a new case in the case base. 
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4. EXPERIMENTS 
The purpose of the designed experiments is twofold: evaluation of effective- 

ness and efficiency of the case retrieval and evaluation of system performance 
on a range of real world examination timetabling problems. Experiments were 
run on a PC with an Athlon 1400 Mhz CPU and 256 MB RAM. 

4.1 Description of Seeding Cases 
A number of real-world examination problems that are often used as bench- 

mark problems within the timetabling community are used for the construction 
of cases, which will form a case base. The characteristics of these timetabling 
problems are given in Table 1. The conflict matrix is used to represent conflicts 
between pairs of examinations. Rows and columns of the matrix represent ex- 
aminations, while each element of the matrix shows the number of students 
common for a pair of examinations. The density of the conflict matrix is cal- 
culated as the ratio of the number of exams in conflict to the total number of 
exams. 

Seven benchmark problems (ear-f-83, hec-s-92, kfu-s-93,lse-f-91, sta-f-83, 
tre-s-92, and yor-f-83) and their specially designed variations were used to 
seed the case base. Variation problems were created by adding or deleting a 
given a number of students and examinations from the benchmark problem. 
Each variation problem is denoted by x/y, where x gives the percentage of 
both examinations and students of a benchmark problem which were added, 
and y gives the same percentage of those which were deleted. We defined five 
categories of variation problems: 5/15, 5/10, 515, 1015, 1515. For example, 
the expression 5/15 denotes a variation problem that was created by randomly 
adding and deleting 5% and 15% of the numbers of examinations and students 
of an associated corresponding benchmark problem, respectively. Two case 
bases of different sizes were created. The large case base contains ten vari- 
ations of each seeding benchmark problem (two for each category). Thus it 
contains 77 cases (seven benchmark problems and 70 variations). The small 
case base contains five variations of each benchmark problem, which gives in 
total 42 cases (seven benchmark problems and 35 variations). 

For each seeding problem, all possible sequential heuristics were used to 
produce initial solutions for GDA. The sequential heuristic, which led to the 
best final solution, was stored in the case. In this experiment, GDA was run 
for 20,000,000 iterations while water-level was set to be 1.3. The number of 
iterations was set empirically and the "water-level" was taken from (Burke et 
al., 2003b). 

The modifications of benchmark problems were used as seeding cases, be- 
cause we noticed that heuristics proven to be the best for GDA initialisation 
for variation problems could be different from that of the original benchmark 
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Table I .  The benchmark problems used for seeding the case base. 

Data Institution Periods Number Number of Number of Density of 
of exams students enrolments conflict matrix 

Carleton University, 
Ottawa 
Carleton University, 
Ottawa 
Earl Haig Collegiate 
Institute, Toronto 
Ecole des Hautes Etudes 
Commercials, Montreal 
King Fahd University 
Dharan 
London School of 
Economics 
Ryeson University, 
Toronto 
St Andrew's Junior 
High School, Toronto 
Trent University, 
Peterborough, Ontario 
Faculty of Engineering, 
University of Toronto 
Faculty of Arts and 
Science, University of 
Toronto 
York Mills Collegiate 
Institute, Toronto 

problem. In addition, the system performance will be improved by adding 
timetabling problems with different graph structures. 

The aim of the first experiment is to show how often each heuristic appears 
to be the best for GDA in the timetabling problems of the large case base (77 
cases). Note that the best initial solution (with respect to the cost function) 
does not necessarily lead to the best final solution produced by the GDA. 

Figure 3 shows how many times each of the sequential heuristics appears 
in 77 seeding cases. A triplet (a, b, c) is assigned to each heuristic SD, LD, 
CD, LE and LWD, which denotes whether the heuristic was enriched with 
maximum clique detection (a = 1, otherwise a = 0), backtracking (b = 1, 
otherwise b = O), andlor adding random element (c = 30%, or 60%, or 90%). 
We can notice that although some heuristics are used more than the others, 
there is no single heuristic that outperforms all the rest. 
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Figure 3. Use of heuristics in GDA initialisation. 

4.2 Evaluation of the Case Retrieval Process 
Since the retrieval process uses the simple and advanced Tabu Search se- 

quentially, our second set of experiments investigates how precisely and with 
what computational cost for each of the approaches the similarity degree be- 
tween two timetabling problems can be calculated. Due to the NP-complete 
nature of the graph isomorphism problem, it is not possible to evaluate the per- 
formance of the two Tabu Search algorithms on two randomly chosen graphs. 
In this study we used the following method that is based on the experiments of 
Luo and Hancock (2001). 

In our experiments, for each graph G of the seeding case, a copy of it is de- 
noted by G,. The similarity degree between G and G, is 1 when each vertex in 
G is mapped to its corresponding vertex in G,. This vertex-to-vertex mapping 
is considered as the ideal one. Then for each pair of G and Gc, both simple 
and advanced Tabu Search algorithms were run where the initial solution was 
a random vertex-to-vertex mapping. We evaluate the performance of our Tabu 
Search algorithms by examining whether they could find this. ideal mapping 
between G and G,, or how closely they approach it. We use DStah to de- 
note the similarity degree obtained after running a Tabu search algorithm. The 
closer the value of DStah to 1, the better the vertex-to-vertex mapping that 
has been found. 

Figure 4 shows the performance and search time of the two Tabu Search 
algorithms, respectively. A test running is terminated either when a solution 
has not improved for 2,000 moves or when an ideal mapping has been found. 
Circles and squares show the average value of DStah obtained for the bench- 
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Similarity degree between two graphs Running time 

Figure 4. Performance of the simple and advanced Tabu Search. 

mark problem (denoted on the x-axis) and its 10 variation problems by simple 
and advanced Tabu Search algorithm, respectively. Benchmark problems are 
sorted by their number of examinations in ascending order. 

In Figure 4, it can be seen that the simple Tabu Search can obtain DStah in 
the range from 0.95 to 0.995. The advanced Tabu Search could find the "ideal" 
mapping of vertices in five out of seven benchmark problems. For the remain- 
ing two problems Sta-f-83 and Yor-f-83, the advanced Tabu Search did not 
provide the "ideal" mapping, but the average values of DStah are still high. 
On the other hand, the time required for advanced Tabu Search is not signif- 
icantly higher than for simple Tabu Search. This justifies the implementation 
of the advanced Tabu Search within the retrieval process. 

The experimental results show that the simple Tabu Search is capable of cal- 
culating the similarity degree approximately within a relatively short time and 
is used to filter the cases from the case base and to pass a predefined number 
of cases with the highest similarity degree with the new problem to the ad- 
vanced tabu search. The advanced Tabu Search then spends more time finding 
mapping for graph isomorphism on the smaller set of cases. 

4.3 Performance on Benchmark Problems 
The purpose of the third set of experiments is to test performance of our 

CBR system on benchmark problems. In addition we want to investigate 
whether the size of the case base has an impact on the performance of the sys- 
tem. For each of the five benchmark problems (Car-f-92, Car-s-91, 
Rye-s-93, Uta-s-92, and Ute-s-92), the problem was solved twice by using 
the small and the large case base. For each of the other seven seeding bench- 
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Table 2. Results obtained using case bases of different sizes. 

Small case base Large case base 
Data Time (s) Cost Time (s) Cost 

Retrieval Run GDA Best Avg. Retrieval RunGDA Best Avg. 

Car-f-92 2274 1231 3.97 4.08 3772 1231 3.97 4.08 
Car-S-91 3301 1321 4.54 4.65 5788 1321 4.54 4.65 
Ear-f-83 1164 1250 34.49 36.06 2158 811 34.49 36.06 
Hec-s-92 377 1540 10.92 11.29 699 1540 10.92 11.29 
K~u-S-93 1982 735 14.82 15.11 3701 735 14.82 15.11 
Lse-f-91 1769 587 11.48 11.60 3077 586 10.60 10.83 
Rye-s-93 1775 872 9.0 9.66 3097 930 9.0 9.39 
Sta-f-83 373 695 160.29 160.83 673 680 159.89 160.49 
Tre-s-92 1878 715 7.96 8.09 2936 786 7.96 8.09 
Ute-s-92 430 508 25.74 26.22 786 637 25.64 26.09 
Uta-s-92 2534 1271 3.26 3.29 4768 1271 3.26 3.29 
Yor-f-83 1096 1300 36.82 37.26 2006 1320 36.69 37.08 

mark problems, it was also used as a new problem and solved twice by the two 
case bases (the problem itself and its variation problems were removed from 
the case base in the retrieval process). Therefore, for each seeding benchmark 
problem, the small case base includes the other six benchmark problems and 
30 associated variation problems; the large case base includes the other six 
benchmark problems and 60 associated variation problems. We ran each ex- 
periment five times to obtain the average results. The results are summarised 
in Table 2. 

We can see that, as expected, the retrieval of more similar cases can lead 
to better solutions. For five problem instances Lse-f-91, Rye-s-93, Sta-f-83, 
Ue-s-92 and Yor-f-83 (highlighted by bold characters), the large case base 
yielded better solutions, while for the remaining instances both case bases gave 
the same solutions. The price to be paid is of course longer time spent on the 
case retrieval, which is proportional to the number of cases. 

Table 3 provides the comparison of the average results obtained by three 
other GDA initialisation approaches previously tried in the timetabling litera- 
ture on these benchmark problems, namely GDA where SD is used to provide 
the initial solution (Burke et al., 2003b), GDA where initial solutions drive the 
adaptation of the parameters of the algorithm throughout the search (Burke and 
Newell, 2003; Burke and Newell, 2002), and GDA where the combination of 
SD, MCD and BT is used to construct an initial solution (Carter et al., 1996). 
Again GDA was run for 200 x lo6 iterations, because that was the number 
of iterations used in the methods that we compare our approach with. For il- 
lustration purpose, we also provide the time spent on the search (in seconds). 
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Table 3. Comparison of results for benchmark problems obtained by different initialisation of 
GDA. 

SD Adaptive SD & MCD & BT CBR 
Data GDA Best Avg. GDABest Avg. GDA Best Avg. RetrievalGDA Best Avg. 

Time Cost Cost TimeCost Cost Time Cost Cost Time Time Cost Cost 

Car-f-92 1120 4.03 4.07 416 - 4.10 1220 3.97 4.04 3772 1231 3.97 4.08 
Car-S-91 1400 4.57 4.62 681 - 4.65 1441 4.62 4.66 5788 1321 4.54 4.65 
Ear-f-83 806 34.85 36.04 377 - 37.05 767 33.82 36.26 2158 811 34.49 36.06 
Hec-s-92 1471 11.27 12.43 516 - 11.54 1411 11.08 11.48 699 1540 10.92 11.29 
K~u-S-93 843 14.33 14.64 449 - 13.90 996 14.35 14.62 3701 735 14.82 15.11 
Lse-f-91 646 11.61 11.65 341 - 10.82 675 11.57 11.94 3077 586 10.60 10.83 
Rye-s-93 845 9.19 9.66 - - - 881 9.32 9.50 3097 930 9.0 9.39 
Sta-f-83 675 165.12 169.7 418 - 168.73 674 166.07 166.31 673 680 159.89160.49 
Tre-s-92 907 8.13 8.29 304 - 8.35 751 8.19 8.27 2936 786 7.96 8.09 
Ute-s-92 716 25.88 26.05 324 - 25.83 653 25.53 26.02 786 637 25.64 26.09 
Uta-s-92 1070 3.25 3.30 517 - 3.20 1101 3.24 3.31 4768 1271 3.26 3.29 
Yor-f-83 1381 36.17 36.59 695 - 37.28 1261 36.31 37.27 2006 1320 36.69 37.08 

Rank 2.58 2.55 2.5 2.08 

Although each algorithm was allocated the same number of iterations, the time 
is different due to computers of different characteristics. The table shows the 
average time spent on the search (each problem instance was solved five times). 

In order to examine the performance of each initialisation method further, 
we also show the rank of the average cost that a method obtained on problem 
instances. This evaluation method was introduced by White et al. (2004). For 
example, the rank on the problem instance Car-f-92 is computed as: SD, 2; 
Adaptive, 4; MCD&BT&SD, 1; CBR, 3. The bottom row of Table 3 shows the 
average of the ranks for the 12 problems (excluding the rank of Rye-s-93 for 
the Adaptive initialisation method) of four different approaches. 

We can see that our CBR system outperforms other initialisation methods 
for GDA. The CBR initialisation obtained the best rank (2.08) among all the 
methods. More significantly, we obtained the best average results for four 
benchmark problems (highlighted by bold characters). For the remaining seven 
problems, the other three methods only slightly outperformed our approach ex- 
cept for the problem instance Kfu-s-93. It is evident that our CBR system spent 
additional time on the case retrieval. However, the quality of the obtained re- 
sults justifies the time spent on the selection of an appropriate heuristic, which 
determines a good starting point for the GDA. 

Finally, we compare our results with those produced by the state-of- the-art 
timetabling metaheuristics: SA (Merlot et al., 2003), Tabu search (White et al., 
2004), and GRASP (Casey and Thompson, 2003) by Table 4. 
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Table 4. Results for benchmark problems obtained by different timetabling approaches. 

S A Tabu GRASP CBR 
Data Best Avg. Best Avg. Best Avg. Retrieval GDA Best Avg. 

Time Cost Cost Time Cost Cost Time Cost Cost Time Time Cost Cost 

Car-f-92 233 4.3 4.4 - 4.63 4.69 - 4.4 4.7 3772 1231 3.97 4.08 
Car-S-91 296 5.1 5.2 - 5.73 5.82 - 5.4 5.6 5788 1321 4.54 4.65 
Ear-f-83 26 35.1 35.4 - 45.8 45.6 - 34.8 35.0 2158 811 34.49 36.06 
Hec-s-92 5.4 10.6 10.7 - 12.9 13.4 - 10.8 10.9 699 1540 10.92 11.29 
Kfu-S-93 40 13.5 14.0 - 17.1 17.8 - 14.1 14.3 3701 735 14.82 15.11 
Lse-f-91 35 10.5 11.0 - 14.7 14.8 - 14.7 15.0 3077 586 10.6 10.83 
Rye-s-93 70 8.4 8.7 - 11.6 11.7 - - - 3097 930 9.0 9.39 
Sta-f-83 5 157.3 157.4 - 158 158 - 134.9 135.1 673 680 159.89 160.49 
Tre-s-92 39 8.4 8.6 - 8.94 9.16 - 8.7 8.8 2936 786 7.96 8.09 
Ute-s-92 9 25.1 25.2 - 29.0 29.1 - 25.4 25.5 786 637 25.64 26.09 
Uta-s-92 233 3.5 3.6 - 4.44 4.49 - - - 4768 1271 3.26 3.29 
Yor-f-83 30 37.4 37.9 - 42.3 42.5 - 37.5 38.1 2006 1320 36.69 37.08 

Table 5. Average of the ranks for benchmark problems obtained by different approaches. 

SD Adaptive SD & MCD & BT CBR 
Approaches SA Tabu GRASP GDA GDA GDA GDA 

Average Rank 3.00 6.17 4.0 3.58 3.36 3.67 3.08 

We obtained six best average costs and six best costs (highlighted) out of 12 
benchmark problems. 

Table 5 shows the average of the ranks for the 12 problem instances. Due to 
the incomplete results in Burke and Newel1 (2002) and Casey and Thompson 
(2003), we exclude the rank of Rye-s-93 for the Adaptive GDA method, and 
the rank of Rye-s-93 and Uta-f-92 for the GRASP method. 

We can see that SA and the GDA initialised by CBR obtained the best rank 
(3.00) and the second best rank (3.08) among the seven different approaches 
investigated. However, opposite to SA our approach does not require param- 
eter "tuning" for a particular timetabling problem and design of appropriate 
neighbourhood structure. In addition, the experience gained in solving one 
timetabling problem is not wasted but can be used in solving new similar 
timetabling problems. 

5. CONCLUSIONS 
In this paper we have presented a case-based reasoning system, which se- 

lects an appropriate sequential heuristic for generating an initial solution for 
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Great Deluge algorithm (GDA). We have shown that with an appropriate defi- 
nition of "similarity" measure, such initialisation of GDA provides high-quality 
solutions for a range of real-world problems. One of the insights of this study 
is that our CBR system significantly contributes to the attempt of building a 
general metaheuristic framework for timetabling. Usually in metaheuristics, 
a random initialisation is employed or a thorough investigation of heuristics 
needs to be performed, which is useful only for a given problem instance. 
In this paper, we demonstrated that knowledge gained in initialisation of one 
timetabling problem can be used for solving new similar timetabling problems. 

The developed CBR system examined in this paper contains cases with com- 
plex structures represented by weighted graphs. We have shown that the two- 
phase Tabu Search approach is capable of retrieving graph-structured cases 
where graphs are of large size and the case base contains hundreds of cases. 
We believe that the graph-structured case representation, the similarity mea- 
sure, and the proposed case retrieval are applicable to other domains such as 
job shop scheduling, planning and other CBR applications. 

The results obtained so far provide us with a good foundation for the de- 
velopment of a more general CBR system for solving timetabling problems. 
Our future research direction will include improvements aimed to shorten the 
required time for the case retrieval. We will also investigate hierarchical case 
representation that would enable the case retrieval process to examine only a 
subset of the case base. Finally, we will investigate the hybridisation of sequen- 
tial heuristics and other local search methods such as tabu search and simulated 
annealing. 
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