
AN O (N log N) STABLE ALGORITHM FOR
IMMEDIATE SELECTIONS ADJUSTMENTS

Laurent Peridy and David Rivreau
Institut de Mathimatiques Appliquies, Universiti Catholique de I'Ouest, France
{ la~rent.~erid~,david.rivreau) @irna.uco.fr

Abstract Using local operations within branch-and-bound methods for job-shop schedul-
ing problems has been proved to be very effective. In this paper, we present an
efficient algorithm that applies ascendant set-like adjustments for the immediate
selections. This procedure is given within an original framework that guarantees
a good convergence process and an easy integration of other classical disjunctive
elimination rules.

Keywords: disjunctive scheduling, edge finding, local adjustments, elimination rule, job-
shop.

INTRODUCTION
Many scheduling problems found in a typical factory environment involve

the processing of jobs on a fixed set of machines that can handle at most one
job at a time. If we focus on one machine, we are given a set of operations to be
processed without interruption in their time windows. The purpose of local ad-
justments is to narrow these time windows in order to speed up the enumerative
approaches used for the whole problem. This kind of elimination rule has been
in particular successfully applied to solve to optimality notoriously difficult
scheduling problems such as job-shops (Carlier and Pinson, 1989; Brinkkiitter
and Brucker, 2001). In this paper, we consider the immediate selections due
to Carlier (1975) and give an O(n logn) procedure that finds all adjustments
associated with these selections.

The paper is organised as follows. In the first section, we recall the main
classical adjustment procedures and give some properties that entitle to design
stable algorithms. Section 2 is devoted to the presentation of the new elim-
ination rule. Then, in Section 3, this procedure is implemented by a stable
procedure that it is proved to run in O(n log n) time. Finally, we report some
experimental results on job-shop in Section 4 and draw some conclusions in
Section 5.

206 Piridy and Rivreau

1. LOCAL ADJUSTMENTS FOR DISJUNCTIVE
PROBLEM

1 . Disjunctive Scheduling Problem
As mentioned before, we concentrate on the process of a set 0 of n opera-

tions on a single machine that can process only one operation at a time. Each
operation i from 0 is given an integer processing time pi and must be pro-
cessed in a certain time window [ri, di]. No pre-emption is allowed. There-
fore, any feasible schedule of O is characterised by a set {ti) of starting times
for operations such that the following two relations hold:

The main goal of local operations is precisely to reduce the time windows
bounds of operations in order to reduce the problem size. Since adjustments
of release dates and of deadlines are clearly symmetrical, we will henceforth
only consider release date adjustments.

1.2 Local Adjustments
One of the first local adjustments has been proposed by Carlier (1975). This

elimination rule attempts to deduce an adjustment from the relative positioning
of two given operations i and j. It can be stated as follows:

Immediate selections adjustments (Carliel; 1975). If rj + pj + pi > di
then i precedes j in any feasible solution. In that case, we can let

These immediate selections have been extended by Carlier and Pinson (1989).
To this end, they evaluate the relative positioning of an operation i in a given
subset J such that i $ J. Three cases are distinguished:

(C 1) Operation i cannot be scheduled before subset J if

(C2) Operation i cannot be scheduled inside subset J if

An O(n logn) Stable Algorithm for Immediate Selections Adjustments

(C3) Operation i cannot be scheduled afer subset J if

Carlier and Pinson deduce the so-called ascendant sets adjustments from
those conditions:

Ascendant sets adjustments (Carlier and Pinson, 1989). If (Cl) and
(C2) are satisfied then i is processed after all operations from J in any
solution. In that case, we can let

It can be noticed that the potential ascendant set adjustment of ri corre-
sponds to the optimal makespan of the pre-emptive schedule of J.

It has been proved by Carlier and Pinson (1990, Theorem 1) that the ascen-
dant set adjustment of i leads to the immediate selection rj + pj +pi > di for
all j E J. However, some of the precedence relations identified by immediate
selections cannot be found by the ascendant sets procedure. It follows that a
better adjustment is missed, even when ascendant sets adjustments are used
with classical immediate selections.

In the remainder of the paper, we present a procedure that allows us to apply
the ascendant set adjustments to all the precedence relations found by imme-
diate selections and, by extension, induced by Carlier and Pinson (1990, The-
orem I), to all precedence relations found by the ascendant sets procedure. To
distinguish our immediate selection adjustments from the original version of
Carlier, we speak from now on of improved immediate selection adjustments.

1.3 Properties
We recall the main concepts given in Pkridy and Rivreau (2005) to qualify

the properties of local operations and related algorithms. In particular, we
focus on the characteristics that allow us to define a class of methods for which
several adjustments of release dates can be combined in a single stable pass.

So, let E be the set of n-dimensional vectors of possible release dates for
a given one-machine problem. Clearly, any local adjustment can be seen as
a function f from E to E. A few questions arise naturally. First of all, is it
necessary to apply a local adjustment procedure in several runs to reach the
fixpoint of f (in other words, does the local adjustment procedure is stable or
not)? How to combine several local adjustment procedures? In what order?
These questions have been investigated in Pbidy and Rivreau (2005) for the

208 Piridy and Rivreau

classical adjustment procedures, but in this paper, we are only interested in the
first question, since we specifically focus on a single adjustment rule. Never-
theless, it remains the case that improved immediate selections adjustments are
easy to integrate in the more general framework defined in Ptridy and Rivreau
(2005).

The stability of our general framework is based on two properties of the
underlying adjustments:

the adjustments must be increasing;

w the adjustments must be non-anticipative.

The increasing characteristic is a property defined on the following partial
order 5 on E (which defines (E, 5) as a lattice):

Increasing property (monotonicity). A function f from E to E--or a
local adjustment-will be said to be increasing if the following relation holds:

V(u, v) E E x E, u 5 v + f (u) 1: f (v)
This monotonicity characteristic is crucial to reach a unique fix-point when

several adjustment procedures are involved. For more details, see Tarski (1955)
and Ptridy and Rivreau (2005). There is also a second, more interesting, out-
come to monotonicity due to the fact that adjustments of release dates can only
occurs at specific point of the planning horizon: clearly, with this property you
can "jump" from two consecutive critical time breakpoints without checking
the in-between values. These points-the so-called critical time breakpoints-
are defined more precisely in the next section and roughly correspond to the ini-
tial release dates and to the completion times of some specific sets. Finally, this
increasing characteristic seems a priori to be a natural property: finding less
information from a more constrained problem is a little bit counter-intuitive.
However, if the great majority of local adjustments are indeed monotonic, it
should be noted that some of them-for instance Fix Triple Arcs (Brucker et
al., 1994)-are non-increasing.

Non-anticipative property. A local adjustment f is said to be non-
anticipative if the final adjustment value cui of any release date is independent
of the final adjustment values of release dates of operations such that O L ~ 2 ai.

This second core property means that the final adjustment ai of initial re-
lease date ri is only a function of all processing times, all deadlines and of final
adjustments values olj of operations such that aj < cri. This characteristic al-
lows in particular a chronological study of critical time breakpoints: at each

An O(n log n) Stable Algorithm for Immediate Selections Adjustments 209

time breakpoint we can check if a given release date reaches its final adjust-
ment value or not. Moreover, since this value does not rely on future adjusted
release dates, the overall procedure can be proved to be stable (f o f = f).

Not-first, immediate selections and ascendant set adjustments have been in
particular shown to satisfy these properties (Pkridy and Rivreau, 2005). In this
paper, this framework is completed with the improved immediate selections.

2. IMPROVED IMMEDIATE SELECTIONS
ADJUSTMENTS

2.1 Object
For the sake of clarity, the ascendant set-like adjustments for immediate

selections will be precisely stated as follows:

Improved Immediate selections adjustments. Let i E O and also J =
{ j E O \ {i) I + p i + pj > d j) . Operation i must be processed after
all operations from J. Hence, we can let

ri +- max ri ; rnax min r j + C pj (.IGJ })
One can observe that these improved immediate selections adjustments are

increasing and non-anticipative. Indeed, increasing the value of a release date
can only add new selections and also result in an increase of the values of ad-
justments made. Hence, improved immediate selections are increasing. More-
over, once the adjustments are stabilised, we necessarily have for any opera-

Since all durations are positive, it follows that any final adjustment value a i of a
release date only relies on the final adjustment values o ~ j of operations such that
olj < a i , and thus improved immediate selections are also non-anticipative.

As already mentioned, these properties correspond to the framework of
Pkridy and Rivreau (2005): therefore, we can use here the same technique
which consists in a chronological study of potential adjustment dates (the crit-
ical time breakpoints).

The present contribution will mostly concern

the quality (value) of adjustments performed;

the stability of the algorithm;

210 Pe'ridy and Rivreau

the O(n log n) complexity of this procedure.

However, we should add that there still remains an important open question:
is it possible to design an effective and stable algorithm that is able to simul-
taneously perform adjustments of release and due dates? Indeed, like most
adjustment procedures in the literature, when the adjustment of release dates
is performed it is assumed that the due dates are fixed (and vice versa). There-
fore, if we consider the whole process, which implies adjusting both release
and due dates, any adjustment of a due date requires us to start again the ad-
justment procedure on release dates (and reciprocally). Finally, it appears that
the overall stability is probably a difficult problem to handle if we consider the
literature, which remains very discrete on that particular subject.

2.2 Notation and Basic Properties
In order to explain and justify our procedure, we need to introduce some

auxiliary notation and exhibit some properties. In the following sections we
will assume that operations are numbered in increasing di - pi order, i.e.

Let us recall that our algorithm proceeds by a chronological examination
of critical time breakpoints at which adjustments can occur. For each critical
breakpoint t, some operations can either reach their final adjustment value,
or be delayed (i.e. adjusted on a later date). We will denote by D the set of
operations that are at least delayed up to t (those who satisfy ri < t < ai) and
by L the set of operations that are not available before t (with t 5 ri). Please
note that for operations from L U D we will necessarily have ai 2 t at the end
of the algorithm, and that operations that do not belong to L U D have been
necessarily adjusted before t. For reasons of convenience, at a given critical
time breakpoint t, the ai-values of unfixed operations-those in L U D-are
arbitrarily set to +m.

Now, let us consider a given subset of operations at time t. We denote

By definition, if J contains one operation from L U D, then C (J) is arbitrarily
set to +m. We will also denote by Kl the following set:

We can now express the improved immediate selections with this notation.
Let us assume that we are at a given critical time breakpoint t. We need to

An O(n logn) Stable Algorithm for Immediate Selections Adjustments 21 1

evaluate for operations in D and those in L with rj = t , if they must be
delayed or, on the contrary, if their final adjustment value aj is equal to t. Let
us denote by j a given operation from D U {k E L I rk = t) and let operation
i be defined as follows:

i = min { l E O (C (K l) > t)

Clearly, for all k < i, we have k 4 L U D (otherwise, C (K k) = +oo, which
is in contradiction with the definition of i). In other words, i is the only one
operation from Ki that can be in L U D.

If j # i then clearly j must be delayed if t + pj > di - pi. Indeed, in that
case we have t + pj > dk - pk for all k in Ki. Hence, Ki is a valid set of
predecessors for j. Since the completion time C(Ki) of Ki is greater than t ,
then j should be delayed. On the other hand, if t + pj 5 di - pi, then any
potential set K of predecessors is strictly included in Ki. By construction of
Ki, we have necessarily C (K) 5 t : it follows that j cannot be delayed at time
t , with respect to the improved immediate selections.

So, let us assume now that j = i. Clearly, operation i cannot be in the set of
its potential predecessors. So we must remove i to this set and define if as

if = min { l E O I C(Kl \ {i)) > t)
The same reasoning as used for j applies, and thus, we conclude that operation
i must be delayed if and only if t + p i > di1 - p g . For i $! L U D, we will
arbitrarily set i' = i + 1, so in any case we have if > i. Please note that if
L U D = {i)-in other words, if i = n-then operation i cannot be delayed
by any operation at time t (indeed, we have C(O \ {i)) 5 t). In that case
operation if is not considered.

There is a strong relation between sets Ki and Ki! that guarantees we avoid
any removal of operation from these sets during the execution of the algorithm.
Therefore, the sequence of sets Ki and Kit will always be increasing for the
inclusion operator. This property is stated in the next proposition.

Proposition 1 Let i and if be deJined as above for a given critical time
period t . Then, we have

C(Ki!-i) = C(Ki)

Proo$ If i $- L U D, the result is straightforward since if = i + 1. Now, if
i E L U D, we have C(Ki!-i \ {i)) 5 t by definition of i'. Since operation
i belongs to L u D, we have ai > t . It follows that the value of C(Kit-i) is
given by the completion time of i, and C(Kit-1) = C(Ki) . 0

2.3 Example
Before describing the details of the algorithm, we will illustrate its operating

mode and main characteristics through the following example.

Piridy and Rivreau

ri 6 0 4 14
pi 7 2 7 4
di 18 15 22 26

d i - p i 11 13 15 22

As already mentioned, we proceed by a chronological examination of criti-
cal time breakpoints that correspond to initial release dates and potential final
adjustment values. For a given critical breakpoint t, operations i and it, and
sets L and D are defined as in the previous section.

At every critical time, the next potential adjustment date for operations of
(L U D) \ {i) is given by C(Ki). If the final adjustment value ai has not yet
been determined (if i E L U D), it is also necessary to take into account its
possible adjustment date C(Kil \ {i)).

For brevity purposes, we start our presentation at time t = 6: final ad-
justment values a 2 and a 3 for operations 2 and 3 have been already deter-
mined to be equal to the initial release dates (since 7-2 + p2 < dl - pl and
r3 + P3 I dl - ~ 1) .

Operation i is equal to 1 and C(Ki) = +co since operation i still belongs to
L. The related operation i' is 3 because C(K2 \ (1)) = 2 < 6. Since operation
3 has been adjusted, the exact C(K3 \ (1))-value is known and is equal to 11.

Critical time breakpoint t = 6.

8 Operation 1 becomes available: we have t + pl < dil -pi!, then 1 is not
delayed, and a1 = 6

ai is fixed: we can determine C(Ki) = 13. Operation i is adjusted, so
C(Kil \ {i))-value becomes useless: we set C(Kil \ {i)) = +oo

The next critical time breakpoint is given by the minimum value over the
release dates of operations from L and the C(Ki)-value: so t = 13.

Critical time breakpoint t = 13.

C(Ki) = t: i and i' must be updated. From Proposition 1, we know that
the next i-value is necessarily greater or equal than the current value of
i'. So, we have i 2 3. Moreover C(K3) = 18 > t, it follows that i = 3.
Once i updated, we need to reevaluate i'. Necessarily, i' is greater than
the new i-value. Since operation 4 belongs to L U D, we deduce i' = 4
and C(Kif \ {i)) = +co.

The next critical time breakpoint is given by the minimum value over
the release dates of operations from L and the C(Ki)- and C(Kit \ {i))-
values: so t = 14.

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

Figure 1. Example 1 .

Critical time breakpoint t = 14.

Operation 4 becomes available: t + p4 > di - pi, so 4 is delayed: D +-

D U (41

rn The next critical time breakpoint is given by the minimum value over the
release dates of operations from L and the C(Ki)-values: so t = 18.

Critical time breakpoint t = 18.

C(Ki) = t: save operation it = 4, no operation allows to increase
C(Ki)-value, so the release date of operation 4 is definitively adjusted
t o t = 18.

rn All operations are considered, the algorithm is completed.

3. IMPLEMENTATION

3.1 Notation and Basic Properties
In our algorithm, we reuse the main notation given in Section 2.2. For im-

plementation reasons, two sets K and K' related to Ki and Kit \ {i) are intro-
duced. The C(Ki) and C(Kit \ {i)) values are abbreviated in C and C'. Sets
K and K' are implemented by means of red-black trees in order to be able to
get in constant time the C(K)-value and to insert a new operation in O(1og n).
Please note that i and i' are inserted in K and K t only when final values ai

and sit are known.
As said before, the property described in Section 2.2 is the basis of the effi-

ciency of our algorithm, since it guarantees that sets K and K' can be updated
in an incremental fashion, without any removal of operation. Indeed, when K
must be updated (that is when i needs to be incremented), we know that all
operations between the current values of i and i' must be added to K , since
we have C(Kit-l) = C(Ki). In more precise terms, if we note ik, i;,
ii+l the consecutive values of i and it during the execution of the procedure,
we have

i k < i i I ik+l < i;+l

214 Pkridy and Rivreau

Thus, this property enables us to gradually add operations in K and K' when
necessary, that it is to say each time i or it reaches its final adjustment value.

Finally, in the algorithm, it is implicitly assumed that there is a dummy
operation n + 1 4 0, with the following characteristics: = d,, p, = 0.

3.2 Algorithm
The main algorithm is detailed below. At the beginning, all the operations

are still to be considered and the first critical time breakpoint is the minimum
release date (lines 1-2). In the main loop, we are given a current time break-
point t .

For this critical time breakpoint, it is necessary to determine the relevant
operations i and it , the related K and Kt sets and C and C1 values (procedure
updateii', line 4). With this information we can evaluate if the new avail-
able operation or previously delayed ones must be delayed or not (procedure
updateLD, line 5). After this step, all delayed operations at time t are in D.

If operation i reaches its final adjustment value at time t , it is inserted in red-
black tree K and we deduce the exact value of C(Ki) (line 7). Since operation
i cannot be adjusted any more, this operation is also inserted in red-black tree
Kt (line 8). In the same way, if i' reaches its final adjustment value, it is added
in K' and C(Ki f) is updated (line 10).

At last, the next critical time breakpoint to consider is updated, according to
the fact that operation i can still be adjusted to C' (line 12) or not (line 13). The
main loop is finished when all operations have been considered (L U D = 0).

procedure adjustments(r, a)
{

1. L c 0, D t 0 , t t minjELrj
2. i e 1, K c 0, C c +m, it t 2, Kt t 0, C' t +m
3. while (L u D # 0) do

update-iir(t, L, D, i , K , C , i', K', C')
update-LD(t, L, D, i , i')
if (a i = t)

then
{

C c insert(K, i)
insert(K1, i)

1
i f (ai, = t)

then C' t insert(K1, i t)
if (i E LUD)

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

12. then t' t min{minjGr, rj ; C ; C')
13. else t' +- min{minjEL rj ; C)

1
1

Procedure updateii' is reproduced below.
First, we consider operation i and related set K: if C = t then the set K

cannot delay any operation after t. Therefore, it is necessary to increase i to add
operations in this set (procedure updatec) until we get either a new operation
i which has not yet reach its final adjustment value, or a definitively adjusted
operation such that C(Ki) > t. In both cases, operations between i' + 1 and
i - 1 are added in the set K'. If the new operation i is not yet adjusted (lines 3-
6), we need to evaluate the new related i'. For that purpose, a call to updateC
beginning at index i + 1 is made (lines 5-6). On the other hand, if i is already
adjusted, then i' is not necessary for the current operation: in that case, we add
i in K' for further computations, we set i' = i + 1 and insert i' in Kt if ai, is
known (lines 7-10).

The same modus operandi is used to update operation i' (lines 11-12).

procedure updateiit(t, L, D, i , K, C, i t , K', C')
{

1. i f (C = t)
then

2.
{

updateC(C, i , K, t , L, D)
3. i f (i ~ L u D)

then

4.
{

forall k E [i' + 1; i - 11 do insert(K1, k)
5. i' t i
6. updateC(C1, i', K', t , L, D)

1
else
{

forall k E [i' + 1; i] do insert(K1, k)
i t c i + l
i f (i' q! L u D) and (i' # n + 1)

then insert(K1, i')
1

11.
1
i f (i E L u D) a n d (C 1 = t)

12. then updateC(C1, i', K', t , L, D)

216 Pe'ridy and Rivreau

The code of procedure updateC is basic: operations are inserted in the given
set-in fact a red-black tree-in increasing order of di -pi, until we get either
an operation which is not yet adjusted or a set with a completion time strictly
greater than t .

procedure updateC(Completion, index, Set, t , L, D)

do
{

index c index + 1
i f (index E L U D) or (index = n + 1)

then Completion c +cm
else Completion c insert(Set, index)

1
while (Completion I t)

1
Finally, procedure updateLD is also easy to state. Please note that sets L

and D are implemented as heap data structures: function top returns-without
removal-the operation with minimum release date for L and with minimum
processing time for D.

In the first place, operations that have been delayed to t are considered
(lines 1-8): all operation j from D that is not selected in respect to i-such
that t +pj 5 di - pi-is removed from D, since it reaches its final adjustment
value at t (lines 2-5). If i was previously delayed, we check if this operation
is still selected in respect to it. If it is not the case, operation i also reaches its
final adjustment value (lines 6-8).

In the same way, operations from L that become available at time t may
either be delayed t (line 13) or simply not adjusted (line 14).

procedure update-LD(t, L, D, i, i')
{

1. i f (D # 0) then j c top(D)
2. while (D # 0) and (t + pj 5 di -p i)

3.
{

remove(D, j)
4. aj +- t
5. i f (D # 0) then j c top(D)

1

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

6. if (i E D) and (t + pi I dil - pit)
then

7.
{

remove(D, i)
8. w t t

1
9. if (L # 0) then j +- top(L)
10. while (L # 0) and (r j = t)

{
11. remove(L, j)
12. if ((j # i) and (t + p i 5 di - pi)) or ((j = i) and

(t + ~j I di' - pi]))
13. then insert(D, j)
14. else olj c rj
15. if (L # 0) then j t top(L)

1
1

3.3 Proofs
Proposition 2 Algorithm adjustments is a stable procedure that per3orms

improved immediate selections adjustments.

Proo$ As mentioned in Section 2, improved immediate selections adjustments
are monotonic and non-anticipative. This means that any increase of a release
date value necessarily induces better adjustments (monotonicity) and that the
final adjustment value of any adjustment is only based only previously adjust-
ments made (non anticipation). These properties allow to focus on the chrono-
logical study of potential adjustment dates (which correspond to initial release
dates, C-values for all operations except operation i and Cf-value for opera-
tion i) without having to test the in-between values or to go back on earlier
decisions. Since the C- and C'-values correspond to the makespan of sets Ki
and Kit as defined in Section 2.2, we deduce that adjustments procedure is a
stable procedure that performs improved immediate selections adjustments.

Proposition 3 Algorithm adjustments runs in O(n log n) time.

Proofi As mentioned above, the critical time breakpoints correspond to the
initial release dates and the potential adjustments dates C and C' that are given
by the makespan of sets K and K'. These sets are implemented by mean of
red-black trees. In the Appendix, it is shown that insert procedure runs in
O(1ogn) time. These sets only strictly increase during the algorithm, so the
overall complexity to insert at most n operations is O(n1og n). In the same
way, each operation is inserted and removed at most once in sets D and L.

218 Pe'ridy and Rivreau

Clearly, insert and remove procedures can be done in O(1og n) by mean of
a heap data structure. In consequence, the overall complexity for algorithm
adjustments is O(n log n). 0

4. COMPUTATIONAL EXPERIMENTS
To evaluate the efficiency of our procedure, we performed to kind of test

for our procedure: qualitative tests to check if improved immediate selection
can contribute to get more information, and performance tests to see if this
procedure can compete with less sophisticated ones.

4.1 Qualitative Test
In table 1, we give some results on classical job-shop scheduling problems.

LB1 and LB2 are obtained by bisection search on the value of the makespan
until no infeasibility is derived. LB 1 corresponds to classical immediate selec-
tions whereas LB2 is related to improved immediate selections. Lower bounds
LB3 and LB4 are also obtained by bisection search, but global operations (Car-
lier and Pinson, 1994)-also called shaving (Martin and Shmoys, 1996)-are
performed respectively on classical and improved immediate selections.

One can observe that improved immediate selections clearly outperform
classical immediate selections in terms of pruning.

4.2 Performance Test
In order to see if the fact that our procedure is stable and in O(n1ogn)

counterbalance its use of a time consuming red-black tree, we compare the
relative performance of two algorithms that both perform improved immediate
selection adjustments: the first one is the O(n log n) stable algorithm proposed
in this paper and the second one is a basic non-stable 0(n2) algorithm.

Table 2 reports a comparison between the CPU times obtained for lower
bounds given by shaving on 10 x 10 job shop scheduling problems from the
literature. The first column "Stable version" is given as the reference. Table 2
shows that on average the O(n log n) stable algorithm can favourably be com-
pared with the non-stable one. It seems that the stable algorithm especially
allows one to avoid large deviations on non-stable instances.

5. CONCLUSION
In this paper, we have introduced a stable algorithm that improves imme-

diate selections adjustments. This led to a stable procedure that can adjust
release dates with these local operations in a single pass in O(n log n). Com-
putational results confirm that this new algorithm outperforms the classical one
in adjustments with comparable CPU time. This algorithm can be introduced

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

Table I . Lower bound on hard instances of job-shop scheduling problems

Instance C* n m LB 1 LB2 LB3 LB4

in the framework given in (P6ridy and Rivreau, 2005): indeed improved imme-
diate selection adjustments are proved to be monotonic and non-anticipative.
Since all precedence relations found by ascendant sets adjustments are selected
by ascendant sets adjustments (from Theorem 1 in (Carlier and Pinson, 1990)),
the use of ascendant sets combined with improved immediate selections allows
us to perform ascendant set-like adjustments for both kinds of selections. Fu-
ture work may include a domain splitting feature, in order to integrate a better
support for Constraint Programming approaches, and an incremental feature.

220 Pe'ridy and Rivreau

Table 2. CPU comparison hard instances of Job-Shop Scheduling Problems.

Instance O(n log n) Stable version 0(n2) Classical version

ORB 1
ORB2
ORB3
ORB4
ORB5
ORB6
ORB8
ORB9
ORB10
MTlOlO

Average 100 127.2

APPENDIX. C(Ki) COMPUTATION WITH A RED-BLACK
TREE

At each step, we need to compute

Let us define a red-black data structure to compute C(Ki).
Let 7 be a red-black tree. In the tree, we denote for any node k associated

with operation k:
a kl, k,, kf, its left successor, its right successor and its predecessor in 7.

a Ck, Rk, its associated left and right subtrees (if Ck = 0 (resp. Rk = $
then k, = 0 (resp. kl = 0)).

a Fk, the subtree of root k.

a v, the root of 7.

7 verifies the property

Let us assign to any node lc, the following quantities:

m a j e r k { a j + G E F k l O i > ~ j if Fk ' (A.2)
i k = {

-00 otherwise

An O(n log n) Stable Algorithm for Immediate Selections Adjustments

From (A. 1)-(A.2), we can deduce the following recursive definitions:

with the convention that 00 = 0, TO = 0 and Q = 0.
Indeed, we have

In particular, it is straightforward to check that

In a red-black tree, the following property holds: "if a function f for a node
x can be computed using only the information in nodes k , kl and k,, then we
can maintain the values of f in all nodes of 7 during insertion and deletion
without affecting the O(1og n) performance of these operations." (See Cormen
et al., 1989.) The relations (A.3)-(A.5) verifying this property in the red-
black tree 7, we can compute C(Ki) in O(1og n). The procedure insert(K, i)
inserts operation i in the red-black tree K and returns the [-value of the root,
fv = C(Ki) according to relation (A.6).

References
Brinkkotter, W. and Bmcker, P. (2001) Solving open benchmark instances for the job-shop

problem by parallel head-tail adjustments. Journal of Scheduling, 453-64.
Bmcker, P., Jurisch, B. and Krtimer, A. (1994) The job-shop problem and immediate. selection.

Annals of Operations Research, 50:73-114.
Carlier, J. (1975) These de 3e cycle, Paris VI.
Carlier, J, and Pinson, 8. (1989) An algorithm for solving the job-shop problem. Management

Science, 35: 165-176.
Carlier, J. and Pinson, 8. (1990) A practical use of Jackson's preemptive schedule for solving

the job-shop problem. Annals of Operations Research, 26:269-287.
Carlier, J. and Pinson, 8. (1994) Adjustment of heads and tails for the job-shop problem. Euro-

pean Journal of Operational Research, 78: 146-161.

222 Pe'ridy and Rivreau

Cormen, T., Leiserson, C. and Rivest, R. (1989) Introduction to Algorithms. MIT Press, Cam-
bridge, MA.

Martin, P. and Shmoys, D. B. (1996) A new approach to computing optimal schedules for the
job-shop scheduling problem, in: Proceedings of the 5th International IPCO Conference,
pp. 389-403.

Pkridy, L, and Rivreau, D. (2005) Local adjustments: a general algorithm. European Journal of
Operational Research, 16424-38.

Tarski, A. (1955) A lattice-theoretical fixpoint theorem and its applications, Pac$ic Journal of
Mathematics, 5285-309.

