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Abstract Using local operations within branch-and-bound methods for job-shop schedul- 
ing problems has been proved to be very effective. In this paper, we present an 
efficient algorithm that applies ascendant set-like adjustments for the immediate 
selections. This procedure is given within an original framework that guarantees 
a good convergence process and an easy integration of other classical disjunctive 
elimination rules. 
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INTRODUCTION 
Many scheduling problems found in a typical factory environment involve 

the processing of jobs on a fixed set of machines that can handle at most one 
job at a time. If we focus on one machine, we are given a set of operations to be 
processed without interruption in their time windows. The purpose of local ad- 
justments is to narrow these time windows in order to speed up the enumerative 
approaches used for the whole problem. This kind of elimination rule has been 
in particular successfully applied to solve to optimality notoriously difficult 
scheduling problems such as job-shops (Carlier and Pinson, 1989; Brinkkiitter 
and Brucker, 2001). In this paper, we consider the immediate selections due 
to Carlier (1975) and give an O(n logn) procedure that finds all adjustments 
associated with these selections. 

The paper is organised as follows. In the first section, we recall the main 
classical adjustment procedures and give some properties that entitle to design 
stable algorithms. Section 2 is devoted to the presentation of the new elim- 
ination rule. Then, in Section 3, this procedure is implemented by a stable 
procedure that it is proved to run in O(n log n)  time. Finally, we report some 
experimental results on job-shop in Section 4 and draw some conclusions in 
Section 5. 
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1. LOCAL ADJUSTMENTS FOR DISJUNCTIVE 
PROBLEM 

1 .  Disjunctive Scheduling Problem 
As mentioned before, we concentrate on the process of a set 0 of n opera- 

tions on a single machine that can process only one operation at a time. Each 
operation i from 0 is given an integer processing time pi and must be pro- 
cessed in a certain time window [ri, di]. No pre-emption is allowed. There- 
fore, any feasible schedule of O is characterised by a set {ti) of starting times 
for operations such that the following two relations hold: 

The main goal of local operations is precisely to reduce the time windows 
bounds of operations in order to reduce the problem size. Since adjustments 
of release dates and of deadlines are clearly symmetrical, we will henceforth 
only consider release date adjustments. 

1.2 Local Adjustments 
One of the first local adjustments has been proposed by Carlier (1975). This 

elimination rule attempts to deduce an adjustment from the relative positioning 
of two given operations i and j. It can be stated as follows: 

Immediate selections adjustments (Carliel; 1975). If rj + pj + pi > di 
then i precedes j in any feasible solution. In that case, we can let 

These immediate selections have been extended by Carlier and Pinson (1989). 
To this end, they evaluate the relative positioning of an operation i in a given 
subset J such that i $ J. Three cases are distinguished: 

(C 1) Operation i cannot be scheduled before subset J if 

(C2) Operation i cannot be scheduled inside subset J if 
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(C3) Operation i cannot be scheduled afer  subset J if 

Carlier and Pinson deduce the so-called ascendant sets adjustments from 
those conditions: 

Ascendant sets adjustments (Carlier and Pinson, 1989). If (Cl) and 
(C2) are satisfied then i is processed after all operations from J in any 
solution. In that case, we can let 

It can be noticed that the potential ascendant set adjustment of ri corre- 
sponds to the optimal makespan of the pre-emptive schedule of J. 

It has been proved by Carlier and Pinson (1990, Theorem 1) that the ascen- 
dant set adjustment of i leads to the immediate selection rj + pj +pi > di for 
all j E J. However, some of the precedence relations identified by immediate 
selections cannot be found by the ascendant sets procedure. It follows that a 
better adjustment is missed, even when ascendant sets adjustments are used 
with classical immediate selections. 

In the remainder of the paper, we present a procedure that allows us to apply 
the ascendant set adjustments to all the precedence relations found by imme- 
diate selections and, by extension, induced by Carlier and Pinson (1990, The- 
orem I), to all precedence relations found by the ascendant sets procedure. To 
distinguish our immediate selection adjustments from the original version of 
Carlier, we speak from now on of improved immediate selection adjustments. 

1.3 Properties 
We recall the main concepts given in Pkridy and Rivreau (2005) to qualify 

the properties of local operations and related algorithms. In particular, we 
focus on the characteristics that allow us to define a class of methods for which 
several adjustments of release dates can be combined in a single stable pass. 

So, let E be the set of n-dimensional vectors of possible release dates for 
a given one-machine problem. Clearly, any local adjustment can be seen as 
a function f from E to E. A few questions arise naturally. First of all, is it 
necessary to apply a local adjustment procedure in several runs to reach the 
fixpoint of f (in other words, does the local adjustment procedure is stable or 
not)? How to combine several local adjustment procedures? In what order? 
These questions have been investigated in Pbidy and Rivreau (2005) for the 
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classical adjustment procedures, but in this paper, we are only interested in the 
first question, since we specifically focus on a single adjustment rule. Never- 
theless, it remains the case that improved immediate selections adjustments are 
easy to integrate in the more general framework defined in Ptridy and Rivreau 
(2005). 

The stability of our general framework is based on two properties of the 
underlying adjustments: 

the adjustments must be increasing; 

w the adjustments must be non-anticipative. 

The increasing characteristic is a property defined on the following partial 
order 5 on E (which defines (E, 5 )  as a lattice): 

Increasing property (monotonicity). A function f from E to E--or a 
local adjustment-will be said to be increasing if the following relation holds: 

V(u, v) E E x E, u 5 v + f (u) 1: f (v) 
This monotonicity characteristic is crucial to reach a unique fix-point when 

several adjustment procedures are involved. For more details, see Tarski (1955) 
and Ptridy and Rivreau (2005). There is also a second, more interesting, out- 
come to monotonicity due to the fact that adjustments of release dates can only 
occurs at specific point of the planning horizon: clearly, with this property you 
can "jump" from two consecutive critical time breakpoints without checking 
the in-between values. These points-the so-called critical time breakpoints- 
are defined more precisely in the next section and roughly correspond to the ini- 
tial release dates and to the completion times of some specific sets. Finally, this 
increasing characteristic seems a priori to be a natural property: finding less 
information from a more constrained problem is a little bit counter-intuitive. 
However, if the great majority of local adjustments are indeed monotonic, it 
should be noted that some of them-for instance Fix Triple Arcs (Brucker et 
al., 1994)-are non-increasing. 

Non-anticipative property. A local adjustment f is said to be non- 
anticipative if the final adjustment value cui of any release date is independent 
of the final adjustment values of release dates of operations such that O L ~  2 ai. 

This second core property means that the final adjustment ai of initial re- 
lease date ri is only a function of all processing times, all deadlines and of final 
adjustments values olj of operations such that aj < cri. This characteristic al- 
lows in particular a chronological study of critical time breakpoints: at each 
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time breakpoint we can check if a given release date reaches its final adjust- 
ment value or not. Moreover, since this value does not rely on future adjusted 
release dates, the overall procedure can be proved to be stable (f o f = f). 

Not-first, immediate selections and ascendant set adjustments have been in 
particular shown to satisfy these properties (Pkridy and Rivreau, 2005). In this 
paper, this framework is completed with the improved immediate selections. 

2. IMPROVED IMMEDIATE SELECTIONS 
ADJUSTMENTS 

2.1 Object 
For the sake of clarity, the ascendant set-like adjustments for immediate 

selections will be precisely stated as follows: 

Improved Immediate selections adjustments. Let i E O and also J = 
{ j  E O \ {i) I + p i  + pj > d j ) .  Operation i must be processed after 
all operations from J. Hence, we can let 

ri +- max ri ; rnax min r j  + C pj ( .IGJ }) 
One can observe that these improved immediate selections adjustments are 

increasing and non-anticipative. Indeed, increasing the value of a release date 
can only add new selections and also result in an increase of the values of ad- 
justments made. Hence, improved immediate selections are increasing. More- 
over, once the adjustments are stabilised, we necessarily have for any opera- 

Since all durations are positive, it follows that any final adjustment value a i  of a 
release date only relies on the final adjustment values o ~ j  of operations such that 
olj < a i ,  and thus improved immediate selections are also non-anticipative. 

As already mentioned, these properties correspond to the framework of 
Pkridy and Rivreau (2005): therefore, we can use here the same technique 
which consists in a chronological study of potential adjustment dates (the crit- 
ical time breakpoints). 

The present contribution will mostly concern 

the quality (value) of adjustments performed; 

the stability of the algorithm; 
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the O(n log n) complexity of this procedure. 

However, we should add that there still remains an important open question: 
is it possible to design an effective and stable algorithm that is able to simul- 
taneously perform adjustments of release and due dates? Indeed, like most 
adjustment procedures in the literature, when the adjustment of release dates 
is performed it is assumed that the due dates are fixed (and vice versa). There- 
fore, if we consider the whole process, which implies adjusting both release 
and due dates, any adjustment of a due date requires us to start again the ad- 
justment procedure on release dates (and reciprocally). Finally, it appears that 
the overall stability is probably a difficult problem to handle if we consider the 
literature, which remains very discrete on that particular subject. 

2.2 Notation and Basic Properties 
In order to explain and justify our procedure, we need to introduce some 

auxiliary notation and exhibit some properties. In the following sections we 
will assume that operations are numbered in increasing di - pi order, i.e. 

Let us recall that our algorithm proceeds by a chronological examination 
of critical time breakpoints at which adjustments can occur. For each critical 
breakpoint t, some operations can either reach their final adjustment value, 
or be delayed (i.e. adjusted on a later date). We will denote by D the set of 
operations that are at least delayed up to t (those who satisfy ri < t < ai)  and 
by L the set of operations that are not available before t (with t 5 ri). Please 
note that for operations from L U D we will necessarily have ai 2 t at the end 
of the algorithm, and that operations that do not belong to L U D have been 
necessarily adjusted before t. For reasons of convenience, at a given critical 
time breakpoint t, the ai-values of unfixed operations-those in L U D-are 
arbitrarily set to +m. 

Now, let us consider a given subset of operations at time t. We denote 

By definition, if J contains one operation from L U D, then C ( J )  is arbitrarily 
set to +m. We will also denote by Kl the following set: 

We can now express the improved immediate selections with this notation. 
Let us assume that we are at a given critical time breakpoint t. We need to 
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evaluate for operations in D and those in L with rj = t ,  if they must be 
delayed or, on the contrary, if their final adjustment value aj is equal to t. Let 
us denote by j a given operation from D U {k E L I rk = t )  and let operation 
i be defined as follows: 

i = min { l  E O ( C ( K l )  > t )  

Clearly, for all k < i, we have k 4 L U D (otherwise, C ( K k )  = +oo, which 
is in contradiction with the definition of i). In other words, i is the only one 
operation from Ki that can be in L U D. 

If j # i then clearly j must be delayed if t + pj > di - pi. Indeed, in that 
case we have t + pj > dk - pk for all k in Ki.  Hence, Ki is a valid set of 
predecessors for j. Since the completion time C(Ki )  of Ki is greater than t ,  
then j should be delayed. On the other hand, if t + pj 5 di - pi, then any 
potential set K of predecessors is strictly included in Ki. By construction of 
Ki, we have necessarily C ( K )  5 t :  it follows that j cannot be delayed at time 
t ,  with respect to the improved immediate selections. 

So, let us assume now that j = i. Clearly, operation i cannot be in the set of 
its potential predecessors. So we must remove i to this set and define if as 

if = min { l  E O I C(Kl  \ {i)) > t) 
The same reasoning as used for j applies, and thus, we conclude that operation 
i must be delayed if and only if t + p i  > di1 - p g .  For i $! L U D, we will 
arbitrarily set i' = i + 1, so in any case we have if > i. Please note that if 
L U D = {i)-in other words, if i = n-then operation i cannot be delayed 
by any operation at time t (indeed, we have C(O \ {i)) 5 t). In that case 
operation if is not considered. 

There is a strong relation between sets Ki and Ki! that guarantees we avoid 
any removal of operation from these sets during the execution of the algorithm. 
Therefore, the sequence of sets Ki and Kit will always be increasing for the 
inclusion operator. This property is stated in the next proposition. 

Proposition 1 Let i and if be deJined as above for a given critical time 
period t .  Then, we have 

C(Ki!-i)  = C(Ki )  

Proo$ If i $- L U D, the result is straightforward since if = i + 1. Now, if 
i E L U D, we have C(Ki!-i \ {i)) 5 t by definition of i'. Since operation 
i belongs to L u D, we have ai > t .  It follows that the value of C(Kit-i)  is 
given by the completion time of i, and C(Kit-1) = C(Ki) .  0 

2.3 Example 
Before describing the details of the algorithm, we will illustrate its operating 

mode and main characteristics through the following example. 
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ri 6 0 4 14 
pi 7 2 7 4  
di 18 15 22 26 

d i - p i  11 13 15 22 

As already mentioned, we proceed by a chronological examination of criti- 
cal time breakpoints that correspond to initial release dates and potential final 
adjustment values. For a given critical breakpoint t, operations i and it, and 
sets L and D are defined as in the previous section. 

At every critical time, the next potential adjustment date for operations of 
(L U D) \ {i) is given by C(Ki). If the final adjustment value ai has not yet 
been determined (if i E L U D), it is also necessary to take into account its 
possible adjustment date C(Kil \ {i)). 

For brevity purposes, we start our presentation at time t = 6: final ad- 
justment values a 2  and a 3  for operations 2 and 3 have been already deter- 
mined to be equal to the initial release dates (since 7-2 + p2 < dl - pl and 
r3 + P3 I dl - ~ 1 ) .  

Operation i is equal to 1 and C(Ki) = +co since operation i still belongs to 
L. The related operation i' is 3 because C(K2 \ (1)) = 2 < 6. Since operation 
3 has been adjusted, the exact C(K3 \ (1))-value is known and is equal to 11. 

Critical time breakpoint t = 6. 

8 Operation 1 becomes available: we have t + pl < dil -pi!, then 1 is not 
delayed, and a1 = 6 

ai is fixed: we can determine C(Ki) = 13. Operation i is adjusted, so 
C(Kil \ {i))-value becomes useless: we set C(Kil \ {i)) = +oo 

The next critical time breakpoint is given by the minimum value over the 
release dates of operations from L and the C(Ki)-value: so t = 13. 

Critical time breakpoint t = 13. 

C(Ki) = t: i and i' must be updated. From Proposition 1, we know that 
the next i-value is necessarily greater or equal than the current value of 
i'. So, we have i 2 3. Moreover C(K3) = 18 > t, it follows that i = 3. 
Once i updated, we need to reevaluate i'. Necessarily, i' is greater than 
the new i-value. Since operation 4 belongs to L U D, we deduce i' = 4 
and C(Kif \ {i)) = +co. 

The next critical time breakpoint is given by the minimum value over 
the release dates of operations from L and the C(Ki)- and C(Kit \ {i))- 
values: so t = 14. 
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Figure 1. Example 1 .  

Critical time breakpoint t = 14. 

Operation 4 becomes available: t + p4 > di - pi, so 4 is delayed: D +- 

D U (41 

rn The next critical time breakpoint is given by the minimum value over the 
release dates of operations from L and the C(Ki)-values: so t = 18. 

Critical time breakpoint t = 18. 

C(Ki) = t: save operation it = 4, no operation allows to increase 
C(Ki)-value, so the release date of operation 4 is definitively adjusted 
t o t  = 18. 

rn All operations are considered, the algorithm is completed. 

3. IMPLEMENTATION 

3.1 Notation and Basic Properties 
In our algorithm, we reuse the main notation given in Section 2.2. For im- 

plementation reasons, two sets K and K' related to Ki and Kit \ {i) are intro- 
duced. The C(Ki) and C(Kit \ {i)) values are abbreviated in C and C'. Sets 
K and K'  are implemented by means of red-black trees in order to be able to 
get in constant time the C(K)-value and to insert a new operation in O(1og n). 
Please note that i and i' are inserted in K and K t  only when final values ai 

and sit are known. 
As said before, the property described in Section 2.2 is the basis of the effi- 

ciency of our algorithm, since it guarantees that sets K and K' can be updated 
in an incremental fashion, without any removal of operation. Indeed, when K 
must be updated (that is when i needs to be incremented), we know that all 
operations between the current values of i and i' must be added to K ,  since 
we have C(Kit-l) = C(Ki). In more precise terms, if we note ik, i;, 
ii+l the consecutive values of i and it during the execution of the procedure, 
we have 

i k  < i i  I ik+l < i;+l 
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Thus, this property enables us to gradually add operations in K and K' when 
necessary, that it is to say each time i or it reaches its final adjustment value. 

Finally, in the algorithm, it is implicitly assumed that there is a dummy 
operation n + 1 4 0, with the following characteristics: = d,, p, = 0. 

3.2 Algorithm 
The main algorithm is detailed below. At the beginning, all the operations 

are still to be considered and the first critical time breakpoint is the minimum 
release date (lines 1-2). In the main loop, we are given a current time break- 
point t .  

For this critical time breakpoint, it is necessary to determine the relevant 
operations i and it ,  the related K and Kt sets and C and C1 values (procedure 
updateii', line 4). With this information we can evaluate if the new avail- 
able operation or previously delayed ones must be delayed or not (procedure 
updateLD, line 5). After this step, all delayed operations at time t are in D. 

If operation i reaches its final adjustment value at time t ,  it is inserted in red- 
black tree K and we deduce the exact value of C(Ki )  (line 7). Since operation 
i cannot be adjusted any more, this operation is also inserted in red-black tree 
Kt  (line 8). In the same way, if i' reaches its final adjustment value, it is added 
in K' and C(Ki f )  is updated (line 10). 

At last, the next critical time breakpoint to consider is updated, according to 
the fact that operation i can still be adjusted to C' (line 12) or not (line 13). The 
main loop is finished when all operations have been considered (L U D = 0). 

procedure adjustments(r, a) 
{ 

1. L c 0, D t 0 ,  t t minjELrj 
2. i e 1,  K c 0, C c +m, it t 2, Kt t 0, C' t +m 
3. while (L  u D # 0)  do 

update-iir(t, L, D, i ,  K ,  C ,  i', K', C') 
update-LD(t, L,  D,  i ,  i') 
if  (a i  = t )  

then 
{ 

C c insert(K, i )  
insert(K1, i )  

1 
i f  (ai, = t )  

then C' t insert(K1, i t)  
if  (i E LUD)  
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12. then t' t min{minjGr, rj ; C ; C') 
13. else t' +- min{minjEL rj ; C )  

1 
1 

Procedure updateii' is reproduced below. 
First, we consider operation i and related set K: if C = t then the set K 

cannot delay any operation after t. Therefore, it is necessary to increase i to add 
operations in this set (procedure updatec) until we get either a new operation 
i which has not yet reach its final adjustment value, or a definitively adjusted 
operation such that C(Ki) > t. In both cases, operations between i' + 1 and 
i - 1 are added in the set K'. If the new operation i is not yet adjusted (lines 3- 
6), we need to evaluate the new related i'. For that purpose, a call to updateC 
beginning at index i + 1 is made (lines 5-6). On the other hand, if i is already 
adjusted, then i' is not necessary for the current operation: in that case, we add 
i in K' for further computations, we set i' = i + 1 and insert i' in Kt  if ai, is 
known (lines 7-10). 

The same modus operandi is used to update operation i' (lines 11-12). 

procedure updateiit(t, L, D, i ,  K,  C, i t ,  K', C') 
{ 

1. i f  (C = t )  
then 

2. 
{ 

updateC(C, i ,  K,  t ,  L,  D) 
3. i f ( i ~ L u D )  

then 

4. 
{ 

forall k E [i' + 1; i - 11 do insert(K1, k)  
5. i' t i 
6. updateC(C1, i', K', t ,  L, D) 

1 
else 
{ 

forall k E [i' + 1; i] do insert(K1, k )  
i t c i + l  
i f  (i' q! L u D) and (i' # n + 1) 

then insert(K1, i') 
1 

11. 
1 
i f ( i  E L u D ) a n d ( C 1 = t )  

12. then updateC(C1, i', K', t ,  L, D) 
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The code of procedure updateC is basic: operations are inserted in the given 
set-in fact a red-black tree-in increasing order of di -pi, until we get either 
an operation which is not yet adjusted or a set with a completion time strictly 
greater than t .  

procedure updateC(Completion, index, Set, t ,  L, D) 

do 
{ 

index c index + 1 
i f  (index E L U D) or (index = n + 1) 

then Completion c +cm 
else Completion c insert(Set, index) 

1 
while (Completion I t )  

1 
Finally, procedure updateLD is also easy to state. Please note that sets L 

and D are implemented as heap data structures: function top returns-without 
removal-the operation with minimum release date for L and with minimum 
processing time for D. 

In the first place, operations that have been delayed to t are considered 
(lines 1-8): all operation j from D that is not selected in respect to i-such 
that t +pj 5 di - pi-is removed from D, since it reaches its final adjustment 
value at t (lines 2-5). If i was previously delayed, we check if this operation 
is still selected in respect to it. If it is not the case, operation i also reaches its 
final adjustment value (lines 6-8). 

In the same way, operations from L that become available at time t may 
either be delayed t (line 13) or simply not adjusted (line 14). 

procedure update-LD(t, L, D, i, i') 
{ 

1. i f  ( D  # 0 )  then j c top(D) 
2. while ( D  # 0) and (t + pj 5 di -p i )  

3. 
{ 

remove(D, j)  
4. aj  +- t 
5. i f  ( D  # 0) then j c top(D) 

1 
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6.  if (i E D) and (t + pi I dil - pit) 
then 

7. 
{ 

remove(D, i) 
8. w t t  

1 
9. if (L # 0 )  then j +- top(L) 
10. while (L # 0 )  and (r j  = t) 

{ 
11.  remove(L, j )  
12. if ( ( j  # i) and (t + p i  5 di - pi)) or  ( ( j  = i) and 

(t + ~j I di' - pi])) 
13. then insert(D, j )  
14. else olj c rj 
15. if (L # 0) then j t top(L) 

1 
1 

3.3 Proofs 
Proposition 2 Algorithm adjustments is a stable procedure that per3orms 

improved immediate selections adjustments. 

Proo$ As mentioned in Section 2, improved immediate selections adjustments 
are monotonic and non-anticipative. This means that any increase of a release 
date value necessarily induces better adjustments (monotonicity) and that the 
final adjustment value of any adjustment is only based only previously adjust- 
ments made (non anticipation). These properties allow to focus on the chrono- 
logical study of potential adjustment dates (which correspond to initial release 
dates, C-values for all operations except operation i and Cf-value for opera- 
tion i) without having to test the in-between values or to go back on earlier 
decisions. Since the C- and C'-values correspond to the makespan of sets Ki 
and Kit as defined in Section 2.2, we deduce that adjustments procedure is a 
stable procedure that performs improved immediate selections adjustments. 

Proposition 3 Algorithm adjustments runs in O(n log n) time. 

Proofi As mentioned above, the critical time breakpoints correspond to the 
initial release dates and the potential adjustments dates C and C' that are given 
by the makespan of sets K and K'. These sets are implemented by mean of 
red-black trees. In the Appendix, it is shown that insert procedure runs in 
O(1ogn) time. These sets only strictly increase during the algorithm, so the 
overall complexity to insert at most n operations is O(n1og n). In the same 
way, each operation is inserted and removed at most once in sets D and L. 
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Clearly, insert and remove procedures can be done in O(1og n)  by mean of 
a heap data structure. In consequence, the overall complexity for algorithm 
adjustments is O(n log n). 0 

4. COMPUTATIONAL EXPERIMENTS 
To evaluate the efficiency of our procedure, we performed to kind of test 

for our procedure: qualitative tests to check if improved immediate selection 
can contribute to get more information, and performance tests to see if this 
procedure can compete with less sophisticated ones. 

4.1 Qualitative Test 
In table 1, we give some results on classical job-shop scheduling problems. 

LB1 and LB2 are obtained by bisection search on the value of the makespan 
until no infeasibility is derived. LB 1 corresponds to classical immediate selec- 
tions whereas LB2 is related to improved immediate selections. Lower bounds 
LB3 and LB4 are also obtained by bisection search, but global operations (Car- 
lier and Pinson, 1994)-also called shaving (Martin and Shmoys, 1996)-are 
performed respectively on classical and improved immediate selections. 

One can observe that improved immediate selections clearly outperform 
classical immediate selections in terms of pruning. 

4.2 Performance Test 
In order to see if the fact that our procedure is stable and in O(n1ogn) 

counterbalance its use of a time consuming red-black tree, we compare the 
relative performance of two algorithms that both perform improved immediate 
selection adjustments: the first one is the O(n log n)  stable algorithm proposed 
in this paper and the second one is a basic non-stable 0(n2)  algorithm. 

Table 2 reports a comparison between the CPU times obtained for lower 
bounds given by shaving on 10 x 10 job shop scheduling problems from the 
literature. The first column "Stable version" is given as the reference. Table 2 
shows that on average the O(n log n) stable algorithm can favourably be com- 
pared with the non-stable one. It seems that the stable algorithm especially 
allows one to avoid large deviations on non-stable instances. 

5. CONCLUSION 
In this paper, we have introduced a stable algorithm that improves imme- 

diate selections adjustments. This led to a stable procedure that can adjust 
release dates with these local operations in a single pass in O(n log n). Com- 
putational results confirm that this new algorithm outperforms the classical one 
in adjustments with comparable CPU time. This algorithm can be introduced 
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Table I .  Lower bound on hard instances of job-shop scheduling problems 

Instance C* n m LB 1 LB2 LB3 LB4 

in the framework given in (P6ridy and Rivreau, 2005): indeed improved imme- 
diate selection adjustments are proved to be monotonic and non-anticipative. 
Since all precedence relations found by ascendant sets adjustments are selected 
by ascendant sets adjustments (from Theorem 1 in (Carlier and Pinson, 1990)), 
the use of ascendant sets combined with improved immediate selections allows 
us to perform ascendant set-like adjustments for both kinds of selections. Fu- 
ture work may include a domain splitting feature, in order to integrate a better 
support for Constraint Programming approaches, and an incremental feature. 
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Table 2. CPU comparison hard instances of Job-Shop Scheduling Problems. 

Instance O(n log n)  Stable version 0(n2)  Classical version 

ORB 1 
ORB2 
ORB3 
ORB4 
ORB5 
ORB6 
ORB8 
ORB9 
ORB10 
MTlOlO 

Average 100 127.2 

APPENDIX. C(Ki )  COMPUTATION WITH A RED-BLACK 
TREE 

At each step, we need to compute 

Let us define a red-black data structure to compute C(Ki).  
Let 7 be a red-black tree. In the tree, we denote for any node k associated 

with operation k: 
a kl, k,, kf, its left successor, its right successor and its predecessor in 7. 

a Ck, Rk, its associated left and right subtrees (if Ck = 0 (resp. Rk = $ 
then k, = 0 (resp. kl = 0)). 

a Fk, the subtree of root k. 

a v, the root of 7. 

7 verifies the property 

Let us assign to any node lc, the following quantities: 

m a j e r k  { a j  + G E F k l O i > ~ j  if Fk ' (A.2) 
i k  = { 

-00 otherwise 
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From (A. 1)-(A.2), we can deduce the following recursive definitions: 

with the convention that 00 = 0, TO = 0 and Q = 0. 
Indeed, we have 

In particular, it is straightforward to check that 

In a red-black tree, the following property holds: "if a function f for a node 
x can be computed using only the information in nodes k ,  kl and k,, then we 
can maintain the values of f in all nodes of 7 during insertion and deletion 
without affecting the O(1og n) performance of these operations." (See Cormen 
et al., 1989.) The relations (A.3)-(A.5) verifying this property in the red- 
black tree 7, we can compute C(Ki) in O(1og n). The procedure insert(K, i) 
inserts operation i in the red-black tree K and returns the [-value of the root, 
fv = C(Ki) according to relation (A.6). 
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