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7.1 Introduction

Stochastic models of evolution play a prominent role in the field of molecular
evolution; they are used in applications as far-ranging as phylogeny estima-
tion, uncovering the pattern of DNA substitution, identifying amino acids
under directional selection, and in inferring the history of a population using
models such as the coalescence. The models used in molecular evolution have
become quite sophisticated over time. In the late 1960s one of the first stochas-
tic models applied to molecular evolution was introduced by Jukes and Cantor
[38] to describe how substitutions might occur in a DNA sequence. This model
was quite simple, really having only one parameter—the amount of change
between two sequences—and assumed that all of the different substitution
types had an equal probability of occurring. A familiar story, and one of the
greatest successes of molecular evolution, has been the gradual improvement
of models to describe new observations as they were made. For example, the
observation that transitions (substitutions between the nucleotides A ↔ G
and C ↔ T ) occur more frequently than transversions (changes between the
nucleotides A ↔ C, A ↔ T , C ↔ G, G ↔ T ) spurred the development of
DNA substitution models that allow the transition rate to differ from the
transversion rate [40, 24, 23]. Similarly, the identification of widespread vari-
ation in rates across sites led to the development of models of rate variation
[72] and also to more sophisticated models that incorporate constraints on
amino acid replacement [21, 50]. More recently, rates have been allowed to
change on the tree (the covarion-like models of Tuffley and Steel [70]) and can
explain patterns such as many substitutions at a site in one clade and few if
any substitutions at the same position in another clade of roughly the same
age.

The fundamental importance of stochastic models in molecular evolution
is this: they contain parameters, and if specific values can be assigned to these
parameters based on observations, such as an alignment of DNA sequences,
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then biologists can learn something about how molecular evolution has oc-
curred. This point is very basic but important. It implies that in addition to
careful consideration of the development of models, one needs to be able to
efficiently estimate the parameters of the model. By efficient we mean the abil-
ity to accurately estimate the parameters of an evolutionary model based on
as little data as possible. There are only a handful of methods that have been
used to estimate parameters of evolutionary models. These include the parsi-
mony, distance, maximum likelihood, and Bayesian methods. In this chapter,
we will concentrate on Bayesian estimation of evolutionary parameters. More
specifically, we will show how the program MrBayes [35, 59] can be used to
investigate several important questions in molecular evolution in a Bayesian
framework.

7.2 Maximum Likelihood and Bayesian Estimation

Unlike the parsimony and distance methods, maximum likelihood and Bayes-
ian inference take full advantage of the information contained in an alignment
of DNA sequences when estimating parameters of an evolutionary model. Both
maximum likelihood and Bayesian estimation rely on the likelihood function.
The likelihood is proportional to the probability of observing the data, con-
ditioned on the parameters of the model

�(Parameter) = Constant × Prob[Data|Parameter],

where the constant is arbitrary. The probability of observing the data con-
ditioned on specific parameter values is calculated using stochastic models.
Details about how the likelihood can be calculated for an alignment of DNA
or protein sequences can be found elsewhere [14]. Here, we have written the
likelihood function with only one parameter. However, for the models typically
used in molecular evolution, there are many parameters. We make the nota-
tional change in what follows by denoting parameters with the Greek symbol
θ and the data as X so that the likelihood function for multiple-parameter
models is

�(θ1, θ2, . . . , θn) = K × f(X|θ1, θ2, . . . , θn),

where K is the constant.
In a maximum likelihood analysis, the combination of parameters that

maximizes the likelihood function is the best estimate, called the maximum
likelihood estimate. In a Bayesian analysis, on the other hand, the object
is to calculate the joint posterior probability distribution of the parameters.
This is calculated using Bayes’ theorem as

f(θ1, θ2, . . . , θn|X) =
�(θ1, θ2, . . . , θn) × f(θ1, θ2, . . . , θn)

f(X)
,
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where f(θ1, θ2, . . . , θn|X) is the posterior probability distribution, �(θ1, θ2, . . . ,
θn) is the likelihood function, and f(θ1, θ2, . . . , θn) is the prior probability
distribution for the parameters. The posterior probability distribution of pa-
rameters can then be used to make inferences.

Although both maximum likelihood and Bayesian analyses are based upon
the likelihood function, there are fundamental differences in how the two meth-
ods treat parameters. Many of the parameters of an evolutionary model are
not of direct interest to the biologist. For example, for someone interested in
detecting adaptive evolution at the molecular level, the details of the phy-
logenetic history of the sequences sampled is not of immediate interest; the
focus is on other aspects of the model. The parameters that are not of direct
interest but that are needed to complete the model are called nuisance pa-
rameters (see [20], for a more thorough discussion of nuisance parameters in
phylogenetic inference). There are a few standard ways of dealing with nui-
sance parameters. One is to maximize the likelihood with respect to them. It
is understood, then, that inferences about the parameters of interest depend
upon the nuisance parameters taking fixed values. This is the approach usually
taken in maximum likelihood analyses and also in empirical Bayes analyses.
The other approach assigns a prior probability distribution to the nuisance
parameters. The maximum likelihood or posterior probabilities are calculated
by integrating over all possible values of the nuisance parameters, weighting
each by its (prior) probability. This approach is rarely taken in maximum like-
lihood analyses (where it is called the integrated likelihood approach [6]) but
is the standard method of accounting for nuisance parameters in a Bayesian
analysis, where all of the parameters of the model are assigned a prior proba-
bility distribution. The advantage of marginalization is that inferences about
the parameters of interest do not depend upon any particular value for the
nuisance parameters. The disadvantage, of course, is that it may be difficult
to specify a reasonable prior model for the parameters.

Maximum likelihood and Bayesian analyses also differ in how they inter-
pret parameters of the model. Maximum likelihood does not treat the para-
meters of the model as random variables (variables that can take their value
by chance), whereas in a Bayesian analysis, everything—the data and the
parameters—is treated as random variables. This is not to say that a Bayesian
does not think that there is only one actual value for a parameter (such as a
phylogenetic tree) but rather that his or her uncertainty about the parame-
ter is described by the posterior probability distribution. In some ways, the
treatment of all of the variables as random quantities simplifies a Bayesian
analysis. First, one is always dealing with probability distributions. If one
is interested in only the phylogeny of a group of organisms, say, then one
would base inferences on the marginal posterior probability distribution of
phylogeny. The marginal posterior probability of a parameter is calculated by
integrating over all possible values of the other parameters, weighting each by
its probability. This means that an inference of phylogeny does not critically
depend upon another parameter taking a specific value. Another simplifica-
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tion in a Bayesian analysis is that uncertainty in a parameter can be easily
described. After all, the probability distribution of the parameter is avail-
able, so specifics about the mean, variance, and a range that contains most of
the posterior probability for the parameter can be directly calculated from the
marginal posterior probability distribution for that parameter. In a maximum
likelihood analysis, on the other hand, the parameters of the model are not
treated as random variables, so probabilities cannot be directly assigned to the
parameters. If one wants to describe the uncertainty in an estimate obtained
using maximum likelihood, one has to go through the thought experiment of
collecting many data sets of the same size as the original, with parameters set
to the maximum likelihood values. One then asks what the range of maximum
likelihood estimates would be for the parameter of interest on the imaginary
data.

In practice, many studies in molecular evolution apply a hybrid approach
that combines ideas from maximum likelihood and Bayesian analysis. For ex-
ample, in what is now a classic study, Nielsen and Yang [54] identified amino
acid positions in a protein-coding DNA sequence under the influence of pos-
itive selection using Bayesian methods; the posterior probability that each
amino acid position is under directional selection was calculated. However,
they used maximum likelihood to estimate all of the parameters of the model.
This approach can be called an empirical Bayes approach because of its re-
liance on Bayesian reasoning for the parameter of interest (the probability
a site is under positive selection) and maximum likelihood for the nuisance
parameters.

In the following section, we describe three uses of Bayesian methods in
molecular evolution: phylogeny estimation, analysis of complex data, and es-
timating divergence times. We hope to show the ease with which parameters
can be estimated, the uncertainty in the parameters can be described, and
uncertainty about important parameters can be incorporated into a study in
a Bayesian framework.

7.3 Applications of Bayesian Estimation in Molecular
Evolution

7.3.1 A Brief Introduction to Models of Molecular Evolution

Before delving into specific examples of the application of Bayesian inference
in molecular evolution, the reader needs some background on the modeling as-
sumptions made in a Bayesian analysis. Many of these assumptions are shared
by maximum likelihood and distance-based methods. Typically, the models
used in molecular evolution have three components. First, they assume a tree
relating the samples. Here, the samples might be DNA sequences collected
from different species or different individuals within a population. In either
case, a basic assumption is that the samples are related to one another through
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an (unknown) tree. This would be a species tree for sequences sampled from
different species, or perhaps a coalescence tree for sequences sampled from in-
dividuals from within a population. Second, they assume that the branches of
the tree have an (unknown) length. Ideally, the length of a branch on a tree is
in terms of time. However, in practice it is difficult to determine the duration
of a branch on a tree in terms of time. Instead, the lengths of the branches on
the tree are in terms of expected change per character. Figure 7.1 shows some
examples of trees with branch lengths. The main points the reader should re-
member are: (1) Trees can be rooted or unrooted. Rooted trees have a time
direction, whereas unrooted trees do not. Most methods of phylogenetic infer-
ence, including most implementations of maximum likelihood and Bayesian
analysis, are based on time-reversible models of evolution that produce un-
rooted trees, which must be rooted using some other criterion, such as the
outgroup criterion (using distantly related reference sequences to locate the
root). (2) The space of possible trees is huge. The number of possible unrooted
trees for n species is B(n) = (2n−5)!

2n−3(n−3)! [61]. This means that for a relatively
small problem of only n = 50 species, there are about B(50) = 2.838 × 1074

possible unrooted trees that can explain the phylogenetic relationships of the
species.

The third component of a model of molecular evolution is a process that de-
scribes how the characters change on the phylogeny. All model-based methods
of phylogenetic inference, including maximum likelihood and Bayesian estima-
tion of phylogeny, currently assume that character change occurs according
to a continuous-time Markov chain. At the heart of any continuous-time
Markov chain is a matrix of rates specifying the rate of change from one state
to another. For example, the instantaneous rate of change under the model
described by Hasegawa et al. ([24, 23]; hereafter called the HKY85 model) is

Q = {qij} =

⎛⎜⎜⎝
− πC κπG πT

πA − πG κπT

κπA πC − πT

πA κπC πG −

⎞⎟⎟⎠µ.

This matrix specifies the rate of change from one nucleotide to another; the
rows and columns of the matrix are ordered A, C, G, T , so that the rate of
change C → G is qCG = πG. Similarly, the rates of change C → T , G →
A, and T → C are qCT = κπT , qGA = κπA, and qTG = πG, respectively.
The diagonals of the rate matrix, denoted with the dash, are specified such
that each row sums to zero. Finally, the rate matrix is rescaled such that
the mean rate of substitution is one. This can be accomplished by setting
µ = −1/

∑
i∈{A,C,G,T} πiqii. This rescaling of the rate matrix such that the

mean rate is one allows the branch lengths on the phylogenetic tree to be
interpreted as the expected number of nucleotide substitutions per site.

We will make a few important points about the rate matrix. First, the
rate matrix may have free parameters. For example, the HKY85 model has
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Fig. 7.1. Example of unrooted and rooted trees. An unrooted tree of four species
(center) with the branch lengths drawn proportional to their length in terms of
expected number of substitutions per site. The five trees surrounding the central,
unrooted tree show the five possible rooted trees that result from the unrooted tree.

the parameters κ, πA, πC , πG, and πT . The parameter κ is the transi-
tion/transversion rate bias when κ = 1 transitions occur at the same rate
as transversions. Typically, the transition/transversion rate ratio, estimated
using maximum likelihood or Bayesian inference, is greater than one and tran-
sitions occur at a higher rate than transversions. The other parameters—πA,
πC , πG, and πT —are the base frequencies and have a biological interpreta-
tion as the frequency of the different nucleotides and are also, incidentally,
the stationary probabilities of the process (more on stationary probabilities
later). Second, the rate matrix, Q, can be used to calculate the transition
probabilities and the stationary distribution of the substitution process. The
transition probabilities and stationary distribution play a key role in calculat-
ing the likelihood, and we will spend more time here developing an intuitive
understanding of these concepts.

Transition probabilities

Let us consider a specific example of a rate matrix with all of the parameters
of the model taking specific values. For example, if we use the HKY85 model
and fix the parameters to κ = 5, πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1,
we get the following matrix of instantaneous rates



7 Bayesian Analysis of Molecular Evolution 189

Q = {qij} =

⎛⎜⎜⎝
−0.886 0.190 0.633 0.063

0.253 −0.696 0.127 0.316
1.266 0.190 −1.519 0.063
0.253 0.949 0.127 −1.329

⎞⎟⎟⎠ .

Note that these numbers are not special in any particular way. That is to say,
they are not based upon any observations from a real data set but are rather
arbitrarily picked to illustrate a point. The point is that one can interpret
the rate matrix in the physical sense of specifying how changes occur on
a phylogenetic tree. Consider the very simple case of a single branch on a
phylogenetic tree. Let’s assume that the branch is v = 0.5 in length and
that the ancestor of the branch is the nucleotide G. The situation we have is
something like that shown in Figure 7.2(a). How can we simulate the evolution
of the site starting from the G at the ancestor? The rate matrix tells us how
to do this. First of all, because the current state of the process is G, the only
relevant row of the rate matrix is the third one:

Q = {qij} =

⎛⎜⎜⎝
· · · ·
· · · ·

1.266 0.190 −1.519 0.063
· · · ·

⎞⎟⎟⎠ .

The overall rate of change away from nucleotide G is qGA+qGC+qGT = 1.266+
0.190 + 0.063 = 1.519. Equivalently, the rate of change away from nucleotide
G is simply −qGG = 1.519. In a continuous-time Markov model, the waiting
time between substitutions is exponentially distributed. The exact shape of
the exponential distribution is determined by its rate, which is the same as
the rate of the corresponding process in the Q matrix. For instance, if we are
in state G, we wait an exponentially distributed amount of time with rate
1.519 until the next substitution occurs. One can easily construct exponential
random variables from uniform random variables using the equation

t = − 1
λ

loge(u),

where λ is the rate and u is a uniform(0,1) random number. For example, our
calculator has a uniform(0,1) random number generator. The first number it
generated is u = 0.794. This means that the next time at which a substitution
occurs is 0.152 up from the root of the tree (using λ = 1.519; Figure 7.2(b)).
The rate matrix also specifies the probabilities of a change from G to the
nucleotides A, C, and T . These probabilities are

G → A : 1.266
1.519 = 0.833, G → C : 0.190

1.519 = 0.125, G → T : 0.063
1.519 = 0.042.

To determine the nucleotide to which the process changes, we would generate
another uniform(0,1) random number (again called u). If u is between 0 and
0.833, we will say that we had a change from G to A. If the random number
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Fig. 7.2. Simulation under the HKY85 substitution process. A single realization of
the substitution process under the HKY85 model when κ = 5, πA = 0.4, πC = 0.3,
πG = 0.2, and πT = 0.1. The length of the branch is v = 0.5 and the starting
nucleotide is G (light gray). (a) The process starts in nucleotide G. (b) The first
change is 0.152 units up the branch. (c) The change is from G to A (dark gray).
The time at which the next change occurs exceeds the total branch length, so the
process ends in state C.

is between 0.833 and 0.958, we will say that we had a change from G to C.
Finally, if the random number u is between 0.958 and 1.000, we will say we
had a change from G to T . The next number generated on our calculator was
u = 0.102, which means the change was from G to A. The process is now in a
different state (the nucleotide A), and the relevant row of the rate matrix is

Q = {qij} =

⎛⎜⎜⎝
−0.886 0.190 0.633 0.063

· · · ·
· · · ·
· · · ·

⎞⎟⎟⎠ .

We wait an exponentially distributed amount of time with parameter λ =
0.886 until the next substitution occurs. When the substitution occurs, it is to
a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714, and 0.063

0.886 = 0.072,
respectively. This process of generating random and exponentially distributed
times until the next substitution occurs and then determining (randomly)
which nucleotide has changed is repeated until the process exceeds the length
of the branch. The state of the process when it passes the end of the branch
is recorded. In the example of Figure 7.2, the process started in state G and
ended in state A. (The next uniform random variable generated on our cal-
culator was u = 0.371, which means that the next substitution would occur
1.119 units above the substitution G → A. The process was in the state A
when it passed the end of the branch.) The only nonrandom part of the entire
procedure was the initial decision to start the process in state G. All other
aspects of the simulation used a uniform random number generator and our
knowledge of the rate matrix to simulate a single realization of the HKY85
process of DNA substitution.
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This Monte Carlo procedure for simulating the HKY85 process of DNA
substitution can be repeated. The following table summarizes the results of
100 simulations, each of which started with the nucleotide G:

Starting Ending Number of
Nucleotide Nucleotide Replicates

G A 27
G C 10
G G 59
G T 4

This table can be interpreted as a Monte Carlo approximation of the tran-
sition probabilities from nucleotide G to nucleotide i ∈ (A, C, G, T ). Specifi-
cally, the Monte Carlo approximations are pGA(0.5) ≈ 0.27, pGC(0.5) ≈ 0.10,
pGG(0.5) ≈ 0.59, and pGT (0.5) ≈ 0.04. These approximate probabilities are
all conditioned on the starting nucleotide being G and the branch length
being v = 0.5. We performed additional simulations in which the starting
nucleotide was A, C, or T . Together with the earlier Monte Carlo simulation
that started with the nucleotide G, these additional simulations allow us to
fill out the following table with the approximate transition probabilities:

Ending
Nucleotide

A C G T
A 0.67 0.13 0.20 0.00

Starting C 0.13 0.70 0.07 0.10
Nucleotide G 0.27 0.10 0.59 0.04

T 0.12 0.30 0.08 0.50

Clearly, these numbers are only crude approximations to the true transition
probabilities; after all, each row in the table is based on only 100 Monte Carlo
simulations. However, they do illustrate the meaning of the transition proba-
bilities; the transition probability pij(v) is the probability that the substitution
process ends in nucleotide j conditioned on it having started in nucleotide i
after an evolutionary amount of time v. The table of approximate transition
probabilities above can be interpreted as a matrix of probabilities, usually
denoted P(v). Fortunately, we do not need to rely on Monte Carlo simulation
to approximate the transition probability matrix. Instead, we can calculate
the transition probability matrix exactly using matrix exponentiation:

P(v) = eQv.

For the case we have been simulating, the exact transition probabilities (to
four decimal places) are

P(0.5) = {pij(0.5)} =

⎛⎜⎜⎝
0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
0.3670 0.0813 0.5244 0.0271
0.1085 0.2985 0.0542 0.5387

⎞⎟⎟⎠ .
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The transition probability matrix accounts for all the possible ways the process
could end up in nucleotide j after starting in nucleotide i. In fact, each of
the infinite possibilities is weighted by its probability under the substitution
model.

Stationary distribution

The transition probabilities provide the probability of ending in a particular
nucleotide after some specific amount of time (or opportunity for substitu-
tion, v). These transition probabilities are conditioned on starting in a par-
ticular nucleotide. What do the transition probability matrices look like as
v increases? The following transition probability matrices show the effect of
increasing branch length:

P(0.00) =

⎛⎜⎜⎝
1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

⎞⎟⎟⎠, P(0.01) =

⎛⎜⎜⎝
0.991 0.002 0.006 0.001
0.003 0.993 0.001 0.003
0.013 0.002 0.985 0.001
0.003 0.009 0.001 0.987

⎞⎟⎟⎠,

P(0.10) =

⎛⎜⎜⎝
0.919 0.018 0.056 0.006
0.024 0.934 0.012 0.029
0.113 0.018 0.863 0.006
0.025 0.086 0.012 0.877

⎞⎟⎟⎠, P(0.50) =

⎛⎜⎜⎝
0.708 0.081 0.184 0.027
0.106 0.738 0.054 0.100
0.367 0.081 0.524 0.027
0.109 0.299 0.054 0.539

⎞⎟⎟⎠,

P(1.00) =

⎛⎜⎜⎝
0.580 0.141 0.232 0.047
0.188 0.587 0.094 0.131
0.464 0.141 0.348 0.047
0.188 0.394 0.094 0.324

⎞⎟⎟⎠, P(5.00) =

⎛⎜⎜⎝
0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.106
0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.107

⎞⎟⎟⎠,

P(10.0) =

⎛⎜⎜⎝
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100

⎞⎟⎟⎠, P(100) =

⎛⎜⎜⎝
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100

⎞⎟⎟⎠.

(Each matrix was calculated under the HKY85 model with κ = 5, πA = 0.4,
πC = 0.3, πG = 0.2, and πT = 0.1.) Note that as the length of a branch, v,
increases, the probability of ending up in a particular nucleotide converges to
a single number, regardless of the starting state. For example, the probability
of ending up in C is about 0.300 when the branch length is v = 100. This is
true regardless of whether the process starts in A, C, G, or T . The substitution
process has in a sense “forgotten” its starting state.

The stationary distribution is the probability of observing a particular
state when the branch length increases without limit (v → ∞). The station-
ary probabilities of the four nucleotides are πA = 0.4, πC = 0.3, πG = 0.2, and
πT = 0.1 for the example discussed above. The models typically used in phy-
logenetic analyses have the stationary probabilities built into the rate matrix,
Q. You will notice that the rate matrix for the HKY85 model has parameters
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πA, πC , πG, and πT and that the stationary frequencies of the four nucleotides
for our example match the input values for our simulations. Building the sta-
tionary frequency of the process into the rate matrix, while somewhat unusual,
makes calculating the likelihood function easier. For one, specifying the sta-
tionary distribution saves the time of identifying the stationary distribution
(which involves solving the equation πQ = 0, which simply says that if we
start with the nucleotide frequencies reflecting the stationary distribution,
the process will have no effect on the nucleotide frequencies). For another,
it allows one to more easily specify a time-reversible substitution model. (A
time-reversible substitution model has the property that πiqij = πjqji for all
i, j ∈ (A, C, G, T ), i �= j.) Practically speaking, time reversibility means that
we can work with unrooted trees instead of rooted trees (assuming that the
molecular clock is not enforced).

Calculating the likelihood

The transition probabilities and stationary distribution are used when cal-
culating the likelihood. For example, consider the following alignment of se-
quences for five species1:

Species 1 TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC
Species 2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC
Species 3 CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC
Species 4 CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC
Species 5 TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC

This is clearly a rather small alignment of sequences to use for estimating
phylogeny, but it will illustrate how likelihoods are calculated. The likelihood
is the probability of the alignment of sequences, conditioned on a tree with
branch lengths. The basic procedure is to calculate the probability of each
site (column) in the matrix. Assuming that the substitutions are independent
across sites, the probability of the entire alignment is simply the product of
the probabilities of the individual sites.

How is the likelihood at a single site calculated? Figure 7.3 shows the
observations at the first site (T , T , C, C, and T ) at the tips of one of the
possible phylogenetic trees for five species. The tree in Figure 7.3 is unusual in
that we will assume that the nucleotide states at the interior nodes of the tree
are also known. This is clearly a bad assumption because we cannot directly
observe the nucleotides that occurred at any point on the tree in the distant
past. For now, however, ignore this fact and bear with us. The probability of
observing the configuration of nucleotides at the tips and interior nodes of the
tree in Figure 7.3 is

1This alignment was simulated on the tree of Figure 7.3 under the HKY85 model
of DNA substitution. Parameter values for the simulation can be found in the caption
of Table 7.1.
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Fig. 7.3. A tree with states assigned to the tips. One of the possible (rooted) trees
describing the evolutionary history of the five species. The states at the first site in
the alignment of the text are shown at the tips of the tree. The states at the interior
nodes of the tree are also shown, though in reality these states are not observed.
The length of the ith branch is denoted vi.

Pr(TTCCT,ATCG|τ,v, θ) =
πG pGA(v3) pAT (v1) pAT (v2) pGC(v8) pCT (v6) pCT (v7) pTC(v4) pTC(v5).

Here we show the probability of the observations (TTCCT) and the states
at the interior nodes of the tree (ATCG) conditioned on the tree (τ), branch
lengths (v), and other model parameters (θ). Note that to calculate the prob-
ability of the states at the tips of the tree, we used the stationary probability
of the process (π) and also the transition probabilities [pij(v)]. The stationary
probability of the substitution process was used to calculate the probability
of the nucleotide at the root of the tree. In this case, we are assuming that
the substitution process was running for a very long time before it reached
the root of our five-species tree. We then use the transition probabilities to
calculate the probabilities of observing the states at each end of the branches.
When taking the product of the transition probabilities, we are making the
additional assumption that the substitutions on each branch of the tree are
independent of one another. This is probably a reasonable assumption for real
data sets.

The probability of observing the states at the tips of the tree, described
above, was conditioned on the interior nodes of the tree taking specific values
(in this case ATCG). To calculate the unconditional probability of the ob-
served states at the tips of the tree, we sum over all possible combinations of
nucleotide states that can be assigned to the interior nodes of the tree,

Pr(TTCCT |τ,v, θ) =
∑
w

∑
x

∑
y

∑
z

Pr(TTCCT, wxyz|τ,v, θ),
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where w, x, y, z ∈ (A, C, G, T ). Averaging the probabilities over all combina-
tions of states at the interior nodes of the tree accomplishes two things. First,
we remove the assumption that the states at the interior nodes take specific
values. Second, because the transition probabilities account for all of the pos-
sible ways we could have state i at one end of a branch and state j at the
other, the probability of the site is also averaged over all possible character
histories. Here, we think of a character history as one realization of changes
on the tree that is consistent with the observations at the tips of the tree. For
example, the parsimony method, besides calculating the minimum number of
changes on the tree, also provides a character history; the character history fa-
vored by parsimony is the one that minimizes the number of changes required
to explain the data. In the case of likelihood-based methods, the likelihood
accounts for all possible character histories, with each history weighted by
its probability under the substitution model. Nielsen [53] described a method
for sampling character histories in proportion to their probability that relies
on the interpretation of the rate matrix as specifying waiting times between
substitutions. His method provides a means to reconstruct the history of a
character that does not inherit the flaws of the parsimony method. Namely,
Nielsen’s method allows multiple changes on a single branch and also allows
for nonparsimonious reconstructions of a character’s history. In Chapter 16,
Bollback describes how character histories can be mapped onto trees under
continuous-time Markov models using the program SIMMAP.

Before moving on to some applications of Bayesian estimation in molecular
evolution, we will make two final points. First, in practice, no computer pro-
gram actually evaluates all combinations of nucleotides that can be assigned
to the interior nodes of a tree when calculating the probability of observing
the data at a site. There are simply too many combinations for trees of even
small size. For example, for a tree of 100 species, there are 99 interior nodes

Table 7.1. Probabilities of individual sites. The probabilities of the 50 sites for the
example alignment from the text. The likelihoods are calculated assuming the tree
of Figure 7.3 with the branch lengths being v1 = 0.1, v2 = 0.1, v3 = 0.2, v4 = 0.1,
v5 = 0.1, v6 = 0.1, v7 = 0.2, and v8 = 0.1. The substitution model parameters were
also fixed, with κ = 5, πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1.

Site Prob. Site Prob. Site Prob. Site Prob. Site Prob.
1 0.004025 11 0.029483 21 0.179392 31 0.179392 41 0.003755
2 0.001171 12 0.006853 22 0.001003 32 0.154924 42 0.005373
3 0.008008 13 0.024885 23 0.154924 33 0.007647 43 0.016449
4 0.002041 14 0.154924 24 0.179392 34 0.000936 44 0.029483
5 0.005885 15 0.007647 25 0.005719 35 0.024885 45 0.154924
6 0.000397 16 0.024124 26 0.001676 36 0.000403 46 0.047678
7 0.002802 17 0.154924 27 0.000161 37 0.024124 47 0.010442
8 0.179392 18 0.004000 28 0.154924 38 0.154924 48 0.179392
9 0.024124 19 0.154924 29 0.001171 39 0.011088 49 0.002186

10 0.024885 20 0.004025 30 0.047678 40 0.000161 50 0.154924
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and 4.02×1059 combinations of nucleotides at the ancestral nodes on the tree.
Instead, Felsenstein’s [14] pruning algorithm is used to calculate the likelihood
at a site. Felsenstein’s method is mathematically equivalent to the summation
shown above but can evaluate the likelihood at a site in a fraction of the time
it would take to plow through all combinations of ancestral states. Second, the
overall likelihood of a character matrix is the product of the site likelihoods.
If we assume that the tree of Figure 7.3 is correct (with all of the parameters
taking the values specified in the caption of Table 7.1), then the probability
of observing the data is

0.004025 × 0.001171 × 0.008008 × . . . × 0.154924 = 1.2316 × 10−94,

where there are fifty factors, each factor representing the probability of an
individual site (column) in the alignment. Table 7.1 shows the probabilities
of all fifty sites for the tree of Figure 7.3. Note that the overall probabil-
ity of observing the data is a very small number (≈ 10−94). This is typical
of phylogenetic problems and results from the simple fact that many num-
bers between 0 and 1 are multiplied together. Computers cannot accurately
hold very small numbers in memory. Programmers avoid this problem of com-
puter “underflow” by using the log probability of observing the data. The log
probability of observing the sample alignment of sequences presented earlier
is loge � = loge(1.2316 × 10−94) = −216.234734. The log-likelihood can be
accurately stored in computer memory.

7.3.2 Phylogeny Estimation

Frequentist and Bayesian perspectives on phylogeny estimation

The phylogenetic model described in the preceding section has numerous pa-
rameters. Minimally, the parameters include the topology of the tree and
the lengths of the branches on the tree. In the following, we imagine that
every possible tree is labeled: τ1, τ2, . . . , τB(n). Each tree has its own set of
branches, and each branch has a length in terms of expected number of sub-
stitutions per site. The lengths of the branches on the ith tree are denoted
vi = (v1, v2, . . . , v2n−3). In addition, there may be parameters associated with
the substitution model. The parameters of the substitution model will be de-
noted θ. For the HKY85 model, the parameters are θ = (κ, πA, πC , πG, πT ),
but other substitution models may have more or fewer parameters than the
HKY85 model. When all of the parameters are specified, one can calculate the
likelihood function using the general ideas described in the previous section.
The likelihood will be denoted �(τi,vi, θ) and is proportional to the probabil-
ity of observing the data conditioned on the model parameters taking specific
values (�(τi,vi, θ) ∝ Pr[X|τi,vi, θ]; the alignment of sequences is X).

Which of the possible trees best explains the alignment of DNA sequences?
This is among the most basic questions asked in many molecular evolution
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studies. In a maximum likelihood analysis, the answer is straightforward: the
best estimate of phylogeny is the tree that maximizes the likelihood. This is
equivalent to finding the tree that makes the observations most probable. For
the toy alignment of sequences given in the previous section, the likelihood is
maximized when the tree of Figure 7.3 is used. The 14 other possible trees had
a lower likelihood. (This is not surprising because the sequences were simu-
lated on the tree of Figure 7.3.) How was the maximum likelihood tree found?
In this case, the program PAUP* [64] visited each of the 15 possible trees.
For each tree, it found the combination of parameters that maximized the
likelihood. In this analysis, we assumed the HKY85 model, so the parameters
included the transition/transversion rate ratio and the nucleotide frequencies.
After maximizing the likelihood for each tree, the program picked that tree
with the largest likelihood as the best estimate of phylogeny. The approach
was described earlier in this chapter; the nuisance parameters (here all of the
parameters except for the topology of the tree) are dealt with by maximizing
the likelihood with respect to them. The tree of Figure 7.3 has a maximum
likelihood score of −211.25187. The parameter estimates on this tree are:
v̂1 = 0.182, v̂2 = 0.124, v̂3+8 = 0.226, v̂4 = 0.162, v̂5 = 0.018, v̂6 = 0.159,
v̂7 = 0.199, κ̂ = 5.73, π̂A = 0.329, π̂C = 0.329, π̂G = 0.253, and π̂T = 0.089.
The method of maximum likelihood is described in more detail in Chapter
2. Importantly, there are many computational shortcuts that can be taken to
speed up calculation of the maximum likelihood tree.

In a Bayesian analysis, inferences are based upon the posterior probabil-
ity distribution of the parameters. The joint posterior probability of all the
parameters is calculated using Bayes’ theorem as

Pr[τi,vi, θ|X] =
Pr[X|τi,vi, θ] × Pr[τi,vi, θ]

Pr[X]

and was only recently applied to the phylogeny problem [44, 45, 57, 46, 74,
41, 47, 52]. The posterior probability is equal to the likelihood (Pr[X|τi,vi, θ])
times the prior probability of the parameters (Pr[τi,vi, θ]) divided by a nor-
malizing constant (Pr[X]). The normalizing constant involves a summation
over all possible trees and, for each tree, integration over all possible combi-
nations of branch lengths and parameter values. Clearly, the Bayesian method
is similar to the method of maximum likelihood; after all, both methods make
the same assumptions about the evolutionary process and use the same like-
lihood function. However, the Bayesian method treats all of the parameters
as random variables (note that the posterior probability is the probability
of the parameters), and the method also incorporates any prior information
the biologist might have about the parameters through their prior probability
distribution.

Unfortunately, one cannot calculate the posterior probability distribution
of trees analytically. Instead, one resorts to a heuristic algorithm to approx-
imate posterior probabilities of trees. The program MrBayes [35, 59] uses
Markov chain Monte Carlo (MCMC; [48, 25]) to approximate posterior prob-
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abilities of phylogenetic trees (and the posterior probability density of the
model parameters). Briefly, a Markov chain is constructed that has as its
state space the parameter values of the model and a stationary distribution
that is the posterior probability of the parameters. Samples drawn from this
Markov chain while at stationarity are valid, albeit dependent, samples from
the posterior probability distribution of the parameters [69]. If one is inter-
ested in the posterior probability of a particular phylogenetic tree, one simply
notes the fraction of the time the Markov chain visited that tree; the propor-
tion of the time the chain visits the tree is an approximation of that tree’s
posterior probability. A thorough discussion of MCMC is beyond the scope
of this chapter. However, an excellent description of MCMC and its applica-
tions in molecular evolution can be found in Chapter 3. We will make only
one comment on MCMC as applied to phylogenetics: although MCMC is a
wonderful technology that can in many instances practically solve problems
that cannot be solved any other way, it is dangerous to apply the method
uncritically. It is important when running programs that implement MCMC,
such as MrBayes, to critically examine the output from several independent
chains for convergence.

We performed a Bayesian analysis on the simulated data set discussed
above under the HKY85 model. (We describe how to do the Bayesian analy-
ses performed in this chapter in Appendix 2.) This is an ideal situation because
the example data were simulated on the tree of Figure 7.3 under the HKY85
model; the model assumed in the Bayesian analysis is not misspecified. We
ran a Markov chain for 1,000,000 cycles using the program MrBayes. The
Markov chain visited the tree shown in Figure 7.3 about 99% of the time;
the MCMC approximation of the posterior probability of the tree in Fig-
ure 7.3 then is about 0.99. This can be considered strong evidence in favor of
that tree. The posterior probabilities of phylogenetic trees were calculated by
integrating over uncertainty in the other model parameters (such as branch
lengths, the transition/tranversion rate ratio, and base frequencies). However,
we can turn the study around and ask questions about the parameters of the
substitution model. Table 7.2 shows information on the posterior probability
density distribution of the substitution model parameters. The table shows
the mean, median, and variance of the marginal posterior probability dis-
tribution for the tree length (V ), transition/transversion rate ratio (κ), and
base frequencies (πA, πC , πG, πT ). The table also shows the upper and lower
limits of an interval that contains 95% of the posterior probability for each
parameter. The table shows, for example, that with probability 0.95 the tran-
sition/transversion rate ratio is in the interval (2.611, 10.635). In reality, the
transition/transversion rate ratio was in that interval. (The data matrix was
simulated with κ = 5.) The mean of the posterior probability distribution
for κ was 5.576 (which is fairly close to the true value). The interval we con-
structed that contains the true value of the parameter with 0.95 probability
is called a 95% credible interval. One can construct a credible set of trees
in a similar manner; simply order the trees from highest to lowest posterior



7 Bayesian Analysis of Molecular Evolution 199

probability and put the trees into a set (starting from the tree with highest
probability) until the cumulative probability of trees in the set is 0.95 [13].

One of the great strengths of the Bayesian approach is the ease with which
the results of an analysis can be summarized and interpreted. The posterior
probability of a tree has a very simple and direct interpretation: the posterior
probability of a tree is the probability that the tree is correct, assuming that
the substitution model is correct. It is worth considering how uncertainty
in parameter estimates is evaluated in a more traditional phylogenetic ap-
proach. Because the tree is not considered a random quantity in other types
of analyses, such as a maximum likelihood phylogenetic analysis, one can-
not directly assign a probability to the tree. Instead, one has to resort to a
rather complicated thought experiment. The thought experiment goes some-
thing like this. Assuming that the phylogenetic model is correct and that
the parameter estimates take the maximum likelihood values (or better yet,
their true values), what would the parameter estimates look like on simulated
data sets of the same size as the original data matrix? The distribution of
parameter estimates that would be generated in such a study represents the
sampling distribution of the parameter. One could construct an interval from
the sampling distribution that contains 95% of the parameter estimates from
the simulated replicates, and this would be called a confidence interval. A
95% confidence interval is a random interval containing the true value of the
parameter with probability 0.95. Very few people have constructed confidence
intervals/sets of phylogenetic trees using simulation. The simulation approach
we just described is referred to as the parametric bootstrap. A related ap-
proach, called the nonparametric bootstrap, generates data matrices of the
same size as the original by randomly sampling columns (sites) of the original
data matrix with replacement. Each matrix generated using the bootstrap
procedure is then analyzed using maximum likelihood under the same model
as in the original analysis. The nonparametric bootstrap [16] is widely used
in phylogenetic analysis.

Table 7.2. Summary statistics for the marginal posterior probability density dis-
tributions of the substitution parameters. The mean, median, variance, and 95%
credible interval of the marginal posterior probability density distribution of the
substitution parameters of the HKY85 model. The parameters are discussed in the
text.

95% Cred. Interval
Parameter Mean Variance Lower Upper Median

V 0.990 0.025 0.711 1.333 0.980
κ 5.576 4.326 2.611 10.635 5.219

πA 0.323 0.002 0.235 0.418 0.323
πC 0.331 0.002 0.238 0.433 0.329
πG 0.252 0.002 0.176 0.340 0.250
πT 0.092 0.001 0.047 0.152 0.090
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Interpreting posterior probabilities on trees

Trees are rather complex parameters, and it is common to break them into
smaller components and analyze these separately. Any tree can be divided
into a set of statements about the grouping of taxa. For instance, a rooted
tree for four taxa—A, B, C, and D—might contain the groupings (AB) and
(ABC). These groupings are called clades, or sometimes taxon bipartitions.
In a Bayesian analysis, we can summarize a sample from the posterior distri-
bution of trees in terms of the frequency (posterior probability) of individual
clades. This provides an efficient summary of the common characteristics of a
possibly large sample of different trees. One of the concerns in Bayesian phylo-
genetic analysis is the interpretation of the posterior probabilities on trees, or
the probabilities of individual clades on trees. The posterior probabilities are
usually compared with the nonparametric bootstrap proportions, and many
workers have reached the conclusion that the posterior probabilities on clades
are too high or that the posterior probabilities do not have an easy interpre-
tation [63]. We find this concern somewhat frustrating, mostly because the
implicit assumption is that the nonparametric bootstrap proportions are in
some way the correct number that should be assigned to a tree and that any
method that gives a different number is in some way suspect. However, it is not
clear that the nonparametric bootstrap values on phylogenetic trees should be
the gold standard. Indeed, it has been known for at least a decade now that
the interpretation of nonparametric bootstrap values on phylogenetic trees is
problematic [27]; the bootstrap proportions on trees are better interpreted as
a measure of robustness rather than as a confidence interval [28].

What does the posterior probability of a phylogenetic tree represent?
Huelsenbeck and Rannala [34] performed a small simulation study that did two
things. First, it pointed out that the technique many people used to evaluate
the meaning of posterior probabilities was incorrect if the intention was to in-
vestigate the best-case scenario for the method (i.e., the situation in which the
Bayesian method does not misspecify the model). Second, it pointed out that
the common interpretation of the posterior probability of a phylogenetic tree
is correct; the posterior probability of a phylogenetic tree is the probability
that the tree is correct. The catch is that this is true only when the assump-
tions of the analysis are correct. Figure 7.4 summarizes the salient points of
the Huelsenbeck and Rannala [34] study. The experimental design was as fol-
lows. They first randomly sampled a tree, branch lengths, and substitution
model parameters from the prior probability distribution of the parameters.
(The tree was a small one, with only six species.) This is the main difference
between their analysis and all others; they treated the prior model seriously
and generated samples from it instead of considering the parameters of the
model as fixed when doing the simulations. For each sample from the prior
distribution they simulated a data matrix of 100 sites. They then analyzed
the simulated data matrix under the correct analysis. Figure 7.4 summarizes
the results of 10,000 such simulations for each model. They simulated data
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Fig. 7.4. The meaning of posterior probabilities under the model. The relationship
between the posterior probability of a phylogenetic tree and the probability that the
tree is correct when all of the assumptions of the analysis are satisfied.

under a very simple model (the JC69 model, in which the base frequencies
are all equal and the rates of substitution between states are the same) and a
complicated model (the GTR+Γ model, in which the nucleotide frequencies
are free to vary, the rates of substitution between states are allowed to differ,
and the rates across sites are Gamma-distributed). In both cases, the rela-
tionship between posterior probabilities and the probability that the tree is
correct is linear; the posterior probability of a tree is the probability that the
tree is correct, at least when the assumptions of the phylogenetic analysis are
satisfied. Importantly, to our knowledge, posterior probabilities are the only
measure of support that have this simple interpretation.

Of course, to some extent the simulation results shown in Figure 7.4 are
superfluous; the posterior probabilities have always been known to have this
interpretation, and the simulations merely confirm the analytical expectation
(and incidentally are additional evidence that the program MrBayes is gener-
ating valid draws from the posterior probability distribution of trees, at least
for simple problems). The more interesting case is when the assumptions of
the analysis are incorrect. Suzuki et al. [63] attempted to do such an analy-
sis. Unfortunately, they violated the assumptions of the analysis in a very
peculiar way; they simulated data sets in which the underlying phylogeny
differed from one gene region to another. This scenario is not a universal con-
cern in phylogenetic analysis (though it can be a problem in the analysis of
closely related species, in bacterial phylogenetics, or in population studies).
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Fig. 7.5. The meaning of posterior probabilities when the model is incorrect. The
relationship between the posterior probability of a phylogenetic tree and the prob-
ability that the tree is correct when all of the assumptions of the analysis are not
met.

The common worry is that the substitution model is incorrect. Huelsenbeck
and Rannala [34] performed a few simulations when the assumptions of the
analysis are incorrect (Figure 7.5). The top panel in Figure 7.5 shows the case
when the evolutionary model is not incorporating some important parameters
(the model is underspecified). In this case, the relationship between posterior
probabilities and the probability that the tree is correct is not linear. Instead,
the method places too much posterior probability on incorrect trees. The situ-
ation is not so dire when the evolutionary model has unnecessary parameters
(bottom panel in Figure 7.5). These simulation results are consistent with
empirical observations of decreasing clade probabilities when the same data
are analyzed under increasingly complex models [55].

Bayesian model choice

It appears that Bayesian analysis can be sensitive to model misspecification. It
is important to note that the best tree selected under the Bayesian criterion
is unlikely to differ significantly from the maximum likelihood tree, mostly
because the prior should have a small effect on phylogeny choice when the
data set is reasonably large. It is also important to note that it is not really a
problem with the Bayesian method but rather with the models used to analyze
the data. In a sense, biologists have a method in hand that, in principle, has
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some very desirable properties: it is fast, allows analysis of complex models in a
timely way, and has a correct and simple interpretation when the assumptions
of the analysis are satisfied.

The simulation studies summarized in the previous section, along with
many simulation studies that examine the performance of phylogenetic meth-
ods [29, 30], suggest that it is important to analyze sequence data under as
realistic a model as possible. Unfortunately, even the most complicated mod-
els currently used in phylogenetic analysis are quite simple and fail to capture
important evolutionary processes that generated the sequence data. Phylo-
genetic models need to be improved to capture evolutionary processes most
likely to influence phylogeny estimation. It is impossible to know with cer-
tainty what advances will be made in improving phylogenetic models, but we
can speculate on what the future might hold. For one thing, it seems impor-
tant to relax the assumption that the substitution process is homogeneous
over the entire phylogenetic history of the organisms under study. This as-
sumption might be relaxed in a number of ways. For example, Foster [17] has
relaxed the assumption that nucleotide frequencies are constant over time, and
Galtier and Gouy [18] and Galtier et al. [19] relaxed the assumption that the
GC content is a constant over a phylogenetic tree. Other such improvements
are undoubtedly in store, and Bayesian methods are likely to play an impor-
tant role in evaluating such models. We can also imagine upper bounds on
how many parameters can be added to a phylogenetic model while still main-
taining the ability to estimate them from sequence data. It is not clear how
close we currently are to that situation. We know that maximum likelihood is
consistent for the models typically used in phylogenetic analysis [9, 58], but
we do not know whether consistency will be maintained for nonhomogeneous
models or other models that account for other evolutionary processes.

We can be certain that analysis of more parameter-rich models will be quite
complicated and may require a different perspective on model choice than the
one that is widespread in phylogenetics today. Currently, selecting the best
model for a particular alignment of DNA sequences is a straightforward affair.
For example, the substitution models implemented in the program PAUP* are
all a special case of the general time-reversible (GTR) model. The GTR model
has instantaneous rate matrix

Q = {qij} =

⎛⎜⎜⎝
− rACπC rAGπG rAT πT

rACπA − rCGπG rCT πT

rAGπA rCGπC − rGT πT

rAT πA rCT πC rGT πG −

⎞⎟⎟⎠µ

[67]. Other commonly used models of phylogenetic analysis are all special
cases of the GTR model with constraints on its parameters. For example, the
HKY85 model constrains the transitions to be one rate (rAG = rCT ) and the
transversions to have another, potentially different rate (rAC = rAT = rCG =
rGT ). The Felsenstein (F81, [14]) model further constrains the transitions and
transversions to have the same rate (rAC = rAG = rAT = rCG = rCT=rGT ).
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These models are nested one within the other. The F81 model is a special
case of the HKY85 model, and the HKY85 model is a special case of the GTR
model. In the programs PAUP* and MrBayes, these different models are set
using the “nst” option: nst can be set to 1, 2, or 6 for the F81, HKY85, or
GTR models, respectively. Because the models are nested, one can choose
an appropriate model using likelihood ratio tests. The likelihood ratio for a
comparison of the F81 and HKY85 models is

Λ =
max[�(F81)]

max[�(HKY85)]
.

Because the models are nested, Λ ≤ 1 and −2 loge Λ asymptotically follows
a χ2 distribution with one degree of freedom under the null hypothesis. This
type of test can be applied to a number of nested models in order to choose
the best of them. This approach is easy to perform by hand using a program
such as PAUP* but has also been automated in the program Modeltest [56].

The current machinery for model choice appears to work quite well when
the universe of candidate models is limited (as is the current case in phylo-
genetics). But what happens when we reach that happy situation in which
the universe of candidate models (pool of models to choose among) is large
and the relationship among the models is not nested? There are a number of
alternative ways model choice can be performed in this situation. One could
use information criteria, such as the Akaike information criterion (AIC), to
choose among a pool of candidate models [3]. One could also use the Cox test
[10], which uses the likelihood ratio as the test statistic but simulates the null
distribution. One might also use Bayes factors to choose among models. Here
we will describe how Bayes factors, calculated using MCMC, can be used to
choose among a potentially large set of candidate models.

The Bayes factor for a comparison of two models, M1 and M2, is

BF12 =
Pr[X|M1]
Pr[X|M2]

.

A Bayes factor greater than one is support for M1, whereas the opposite is true
for Bayes factors less than one. Note that the Bayes factor is simply the ratio
of the marginal likelihoods of the two models. The Bayes factor integrates
over uncertainty in the parameters. The likelihood ratio, on the other hand,
maximizes the likelihood with respect to the parameters of the model. Jeffreys
[36] provided a table for the interpretation of Bayes factors. In general, the
Bayes factor describes the degree by which you change your opinion about
rival hypotheses after observing data.

Here we will describe how Bayes factors can be used to choose among
substitution models ([32]; also see [62]). First, we will note that the universe
of possible time-reversible substitution models is much larger than typically
implemented in phylogenetic programs. Appendix 1 shows all of the possible
time-reversible substitution models. There are 203 of them, though only a few
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of them have been named (formally described in a paper). (For the reader
interested in the combinatorics, the number of substitution models is given
by the Bell [5] numbers.) We use a special notation to describe each of these
models. We assign index values to each of the six substitution rates in the order
AC, AG, AT, CG, CT, GT . If a model has the constraint that ri = rj , then the
index value for those two rates is the same. Moreover, the index number for
the first rate is always 1, and indices are labeled sequentially. So, for example,
“111111” denotes the Jukes and Cantor [38] or Felsenstein [14] model and
“121121” denotes the Kimura [40], Hasegawa et al. [24, 23], or Felsenstein [15]
model. The simplest model is “111111” and the most complex is the GTR
model, “123456.” The program PAUP* can implement all of these models
through a little-used option. (The command “lset nst=6 rmatrix=estimate
rclass=(abbcba)” implements one of the unnamed models, constraining rAC =
rGT and rAG = rAT = rCT , with rCG having another independent rate.)
The interested reader can contact J.P.H. for a file that instructs the program
PAUP* to maximize the likelihood for each of the 203 possible substitution
models. This would allow one to choose among substitution models using AIC
or related information criteria.

To calculate the Bayes factors for the different substitution models, we first
need to calculate the posterior probability for each of the possible models. We
do this using MCMC. Here, the goal is to construct a Markov chain that visits
substitution models in proportion to their posterior probability. We could not
use the normal theory for constructing a Markov chain for MCMC analysis
because the dimensionality of the problem changes from model to model; the
203 models often differ in the number of substitution rates. Instead, we con-
structed a Markov chain using reversible jump to visit candidate substitution
models [22]. Reversible jump MCMC is described in more detail by Larget
(Chapter 3). The program we wrote uses two proposal mechanisms to move
among models. One proposal mechanism takes a group of substitution rates
that are constrained to be the same and splits them into two groups with
potentially different rates. The other mechanism takes two groups of substi-
tution rates, each of which has substitutions constrained to be the same, and
merges the two groups into one.

To begin, let’s examine the simple data matrix that we have been using
throughout this chapter: the five-species matrix of 50 sites simulated under the
HKY85 model on the tree of Figure 7.3. Up to now, we have been performing
all of our analyses—maximum likelihood and Bayesian—under the HKY85
model of DNA substitution (the true model) for this alignment. However,
which model is selected as best using the Bayesian reversible jump MCMC
approach? Is the true model, or at least one similar to the true model, chosen as
the best? We ran the reversible jump MCMC program for a total of 10,000,000
cycles on the small simulated data set. The true model (M15, 121121) was
visited with the highest frequency; this model was visited 14.2% of the time,
which means the posterior probability of this model is about 0.142. What is
the Bayes factor for a comparison of M15 with all of the other models (MC

15)?
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As described above, the Bayes factor is the ratio of the marginal likelihoods.
It also can be calculated, however, as the ratio of the posterior odds to the
prior odds of the two hypotheses of interest:

BF12 =
Pr[X|M1]
Pr[X|M2]

=
Pr[M1|X]
Pr[M2|X]
Pr[M1]
Pr[M2]

.

The posterior probability of M15 is Pr[M15|X] = 0.142, and the posterior
probability of all of the other models against which we are comparing M15 is
just Pr[MC

15|X] = 1−Pr[M15|X] = 1− 0.142 = 0.858. We also know the prior
probabilities of the hypotheses. We assumed a uniform prior distribution on
all of the possible models, so the prior probability of any specific model is
1/203 = 0.0049. The Bayes factor for a comparison of M15 with the other
models is then

BF12 =
Pr[M15|X]
Pr[MC

15|X]
Pr[M15]
Pr[MC

15]

=
0.142
0.858
1/203

202/203

= 33.4.

This means that we change our mind about the relative tenability of the two
hypotheses by a factor of about 33 after observing the small data matrix. A
Bayes factor of 33 would be considered strong evidence in favor of the model
[36]. We can also construct a 95% credible set of models. This is a set of mod-
els that has a cumulative posterior probability of 0.95. The 95% credible set
included 41 models, which in order were 121121, 121131, 123123, 121321,
121341, 123143, 121323, 123321, 121343, 123121, 123341, 121123, 123323,
123141, 121134, 123343, 121331, 121345, 123423, 123421, 123451, 123453,
123145, 121324, 123124, 123324, 123424, 123454, 123345, 123456, 121133,
123441, 121334, 121333, 123443, 123425, 123313, 121111, 123131, 121344, and
123331. Note that the best of these models (the first 16, in fact, which have
a cumulative posterior probability of 0.72) do not constrain a transition to
have the same rate as a transversion. One can see that the second-best model
(M40, 121131) has this property. The second best-model also happens to be a
named one (it is the model described by Tamura and Nei, [66]). The third-best
model, however, is not a named one.

Huelsenbeck et al. [32] examined 16 data sets using the approach described
here. The details about the data sets can be found in that paper. Table 7.3
summarizes the results. In most cases, the posterior probability was spread
across a handful of models. The Bayes factors ranged from 52.3 to about
500, suggesting that all of the alignments contained considerable information
about which models are preferred. Also, one can see that for 14 of the 16
data matrices, the 95% credible set contains models that do not constrain
transitions to have the same rate as transversions. The best models are usually
variants of the model first proposed by Kimura [40]. The exceptions are the
HIV-env and vertebrate β-globin alignments. The Bayesian approach helped
us find these unusual models, which would not usually be considered in a more
traditional approach to model choice.
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Practicing biologists already favor “automated” approaches to choosing
among models. The program Modeltest [56] is very popular for this reason;
even though the universe of models of interest to the biologist (i.e., imple-
mented in a computer program) is of only moderate size, it is convenient to
have a program that automatically considers each of these models and re-
turns the best of them. The program Modeltest, for example, typically looks
at seven of the 203 possible time-reversible substitution models, considering
only nested models that are implemented in most phylogeny packages. One
could reasonably argue that the number of models currently implemented is
small enough that one could perform model choice by hand, with the corre-
sponding advantage that it promotes a more intimate exploration of the data
by the biologist, promotes understanding of the models, and keeps the ba-
sic scientific responsibility of choosing which hypotheses to investigate in the
biologist’s hands. However, as models become more complicated and the num-
ber of possible models increases, it becomes more difficult to perform model
choice by hand. In such cases, an approach like the one described here might
be useful.

Table 7.3. The best models for 16 data sets using Bayes factors. PP, the model
with the highest posterior probability, with its corresponding probability; BF, the
Bayes factor for the best model.

Name PP BF 95% Credible Set of Models
Angiosperms 189 (0.41) 142.7 (189, 193, 125, 147, 203)
Archaea 198 (0.70) 472.1 (198, 168, 203)
Bats 112 (0.32) 95.0 (112, 50, 162, 147, 125, 152, 90, 183, 157, 122,

15, 189)
Butterflies 136 (0.32) 93.7 (136, 162, 112, 90, 168, 40, 125, 191, 201, 183,

198, 152, 189)
Crocodiles 40 (0.27) 74.2 (40, 125, 166, 134, 168, 189, 191, 162, 193)
Gophers 112 (0.28) 77.5 (112 ,162, 15, 50, 40, 189, 125, 147, 95, 90,

138, 201, 183, 136, 117, 152, 122, 191)
HIV-1 (env) 25 (0.29) 83.0 (25, 60, 50, 64, 100, 125, 102, 97, 164, 169, 152,

159, 173, 157, 175, 147, 171, 191, 193, 189, 140,
117)

HIV-1 (pol) 50 (0.62) 335.2 (50, 125, 157, 152, 147, 193)
Lice 15 (0.56) 260.0 (15, 40, 117, 90, 50, 122, 136, 95, 166, 112,

125)
Lizards 193 (0.70) 481.1 (193, 138, 200, 203)
Mammals 193 (0.64) 364.3 (193, 203)
Parrotfish 162 (0.56) 258.0 (162, 189, 201)
Primates 15 (0.31) 91.0 (15, 40, 112, 95, 138, 162, 90, 136, 50, 125, 168,

122, 166, 117, 134)
Vertebrates 125 (0.21) 52.3 (125, 40, 168, 64, 134, 189, 166, 193, 191, 162,

136, 171, 198, 138, 50, 175, 173)
Water snakes 166 (0.55) 242.9 (166, 191, 117, 152, 134, 200, 198, 177)
Whales 15 (0.60) 300.1 (15, 40, 117, 95, 85, 122, 112, 90, 134, 50, 166)
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7.3.3 Inferring Phylogeny under Complex Models

Alignments that contain multiple genes, or data of different types, are becom-
ing much more common. It is now relatively easy to sequence multiple genes
for any particular phylogenetic analysis, leading to data sets that were uncom-
mon just a few years ago. For example, consider the data set collected by Kim
et al. [39], which is fairly typical of those that are now collected for phyloge-
netic problems. They looked at sequences from three different genes sampled
from 27 leaf beetles: the second variable region (D2) of the nuclear rRNA
large subunit (28S) and partial sequences from a nuclear gene (EF-1α) and a
mitochondrial gene (COI). They also had information from 49 morphological
characters. (Although the program MrBayes can analyze morphological data
in combination with molecular data, using the approach described by Lewis
[43], we do not examine the morphological characters of the Kim et al. study
in this chapter. This is a book on molecular evolution, after all. The reader
interested in Bayesian analysis of combined morphological and molecular data
is referred to the paper by Nylander et al. [55].) The molecular characters of
the Kim et al. [39] study were carefully aligned; the ribosomal sequences were
aligned using the secondary structure as a guide, and the protein-coding genes
were aligned first by the translated amino acid sequence. For illustrative pur-
poses, we are going to consider the amino acid sequences from the COI gene
and not the complete DNA sequence. This is probably not the best approach
because there is information in the DNA sequence that is being lost when
only the amino acid sequence of the gene is considered. However, we want to
show how data of different types can be analyzed in MrBayes.

The data from the Kim et al. [39] study that we examine, then, consists of
three parts: the nucleotide sequences from the 28S rRNA gene, the nucleotide
sequences from the EF-1α gene, and the amino acid sequences from the COI
gene. Each of these partitions of the data requires careful consideration. To
begin with, it is clear that the same sort of continuous-time Markov chain
model is not going to be appropriate for each of these gene regions. After all,
the nucleotide part of the alignment has only four states whereas the amino
acid part of the alignment (the COI gene) has 20 potential states. We could
resort to a very simple partitioned analysis, treating all of the nucleotide se-
quences with one model and the amino acid sequences with another. However,
this approach, too, has problems. Is it really reasonable to treat the protein-
coding DNA sequences in the same way as the ribosomal sequences? Moreover,
in this case we have information on the secondary structure of the ribosomal
gene; we know which nucleotides probably form Watson-Crick pairs in the
stem regions of the ribosomal gene. It seems sensible that this information
should be accommodated in the analysis of the sequences.

One of the strengths of likelihood-based approaches in general, and the pro-
gram MrBayes in particular, is that heterogeneous data of the type collected
by Kim et al. [39] can be included in a single analysis, with the peculiarities of
the substitution process in each partition accounted for. Here are the special
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considerations we think each data partition of the Kim et al. [39] study raise:

Stem regions of the 28S rRNA nucleotide sequences. Although the
assumption of independence across sites (invoked when one multiplies the
probabilities of columns in the alignment to get the likelihood) is not neces-
sarily a good one for any data set, it seems especially bad for the stem regions
of ribosomal genes. The secondary structure in ribosomal genes plays an im-
portant functional role. The functional importance of secondary structure in
ribosomal genes causes nonindependence of substitutions in sites participat-
ing in a Watson-Crick pair: specifically, if a mutation occurs in one member
of a base pair in a functionally important stem, natural selection causes the
rate of substitution to be higher for compensatory changes. That is, individ-
uals with a mutation that restores the base pairing have a higher fitness than
individuals that do not carry the mutation, and the mutation may eventually
become fixed in the population. The end result of natural selection acting on
maintenance of stems is a signature of covariation between paired nucleotides.

Schöniger and von Haeseler [60] described a model that accounts for the
nonindependence of substitutions in stem regions of ribosomal genes. They
suggest that instead of modeling the substitution process on a site-by-site
basis using the models described earlier in this chapter, as was then common,
substitutions should be modeled on both of the nucleotides participating in
the stem pair bond—the doublet. Instead of four states, the doublet model
of Schöniger and von Haeseler [60] has 16 states (all possible doublets: AA,
AC, AG, AU,. . ., UA, UC, UG, UU). The instantaneous rate matrix instead
of being 4 × 4 is now 16 × 16. Each element of the rate matrix, Q, can be
specified as follows:

qij =

⎧⎨⎩κπj : transition
πj : transversion
0 : i and j differ at two positions .

Note that this model only allows a single substitution in an instant of time;
substitutions between doublets like AA → CG have an instantaneous rate of
zero. This is not to say that transitions between such doublets are not al-
lowed, only that a minimum of two substitutions is required. Just as there
are different parameterizations of the 4 × 4 models, one can have different
parameterizations of the doublet model. The one described here allows a tran-
sition/transversion rate bias. However, one could construct a doublet model
under any of the models shown in Appendix 1.

Loop regions of the 28S rRNA nucleotide sequences. We will use a
more traditional 4 × 4 model for the loop regions of the ribosomal genes.
Nucleotides in the loop regions presumably do not participate in any strong
interactions with other sites (at least that we can identify beforehand).
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EF-1α nucleotide sequences. Special attention should be paid to the choice
of model for protein-coding genes, where the structure of the codon causes
heterogeneity at the different codon positions, along with potential noninde-
pendence of substitutions within the codon. The rate of substitution is the
most obvious difference at different codon positions. Because of the redun-
dancy of the genetic code, typically second positions are the most conservative
and third codon positions are the least conservative. Often people approach
this problem of rate variation by grouping the nucleotides at the first, sec-
ond, and third codon positions into different partitions and allow the overall
rate of substitution to differ at the different positions. Another approach, and
the one we take here, is to stretch the model of DNA substitution around the
codon [21, 50]. We now have 64 possible states (the triplets AAA, AAC, AAG,
AAT, ACA,. . ., TTT), and instead of a 4×4—or even a 16×16—rate matrix,
we have a 64 × 64 instantaneous rate matrix describing the continuous-time
Markov chain. Usually, the stop codons are excluded from the state space,
and the rate matrix, now 61 × 61 for the universal code, is

qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωκπj : nonsynonymous transition
ωπj : nonsynonymous transversion
κπj : synonymous transition
πj : synonymous transversion
0 : i and j differ at more than one position,

where ω is the nonsynonymous/synonymous rate ratio, κ is the transi-
tion/transversion rate ratio, and πj is the stationary frequency of codon j
[21, 50]. This matrix specifies the rate of change from codon i to codon j.
This rate matrix, like the 4 × 4 and 16 × 16 rate matrices, only allows one
substitution at a time.

The traditional codon model, described here, does not allow the nonsyn-
onymous/synonymous rate to vary across sites. This assumption has been
relaxed. Nielsen and Yang [54] allowed the ω at a site to be a random vari-
able. Their method allows ω to vary across the sequence and also the identi-
fication of amino acid positions under directional, or positive, selection. The
program PAML [73] implements an empirical Bayes approach to identifying
amino acid positions under positive selection. MrBayes uses the same general
idea to identify positive selection but implements a fully Bayesian approach,
integrating over uncertainty in model parameters [31]. Here, we will not allow
the nonsynonymous/synonymous rate to vary across sites.

COI amino acid sequences. In some ways, modeling the amino acid
sequences is more complicated for the nucleotide sequences. Some sort of
continuous-time Markov chain with 20 states seems appropriate. The most
general time-reversible substitution model for amino acids is
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Q = {qij} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− rARπR rANπN · · · rAW πW rAY πY rAV πV

rARπA − rRNπN · · · rRW πW rRY πY rRV πV

rANπA rRNπR − · · · rNW πW rNY πY rNV πV

...
...

...
. . .

...
...

...
rAW πA rRW πR rNW πN · · · − rWY πY rWV πV

rAY πA rRY πR rNY πN · · · rY W πW − rY V πV

rAV πA rRV πR rNV πN · · · rWV πW rY V πY −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
µ.

(The dots represent rows and columns that are not shown. The entire ma-
trix is too large to be printed nicely on the page.) There are a total of 208
free parameters; 19 of them involve the stationary frequencies of the amino
acids. Knowing 19 of the amino acid frequencies allows you to calculate the
frequency of the 20th, so there are a total of 19 free parameters. Similarly,
there are a total of 20 × 19/2 − 1 = 189 rate parameters. Contrast this with
the codon model. The size of the rate matrix for the codon model is much
larger than the size of the amino acid rate matrix (61 × 61 = 3721 versus
20 × 20 = 400). However, there are fewer free parameters for even the most
general time-reversible codon model (given that it is formulated as specified
above) than there are for the most general time-reversible amino acid model
(66 and 208 for the codon and amino acid matrix, respectively). Of course,
the reason the codon model has so few parameters for its size is that many of
the entries in the matrix are zero.

Molecular evolutionists have come up with a unique solution to the prob-
lem of the large number of potential free parameters in the amino acid matri-
ces. They fix them all to specific values. The parameters are estimated once on
large databases of amino acid sequence alignments. The details of how to do
this are beyond the scope of this chapter. But, the end result is that we have
a number of amino acid rate matrices, each with no free parameters (nothing
to estimate), that are designed for specific types of data. These matrices go
by different names: Poisson [7], Jones [37], Dayhoff [11], Mtrev [1], Mtmam
[8], WAG [71], Rtrev [12], Cprev [2], Blossum [26], and Vt [49]. The amino
acid models are designed for use with different types of data. For example,
WAG was estimated on nuclear genes, Cprev on chloroplast genes, and Rtrev
on viral genes. Which of these models is the appropriate one for the mitochon-
drial COI gene sequences for leaf beetles? It is not clear which one we should
use; nobody has ever designed a mitochondrial amino acid model for insects,
much less leaf beetles. It might make sense to use one of the mitochondrial
matrices, such as the Mtrev or Mtmam models. However, we can do better
than this. Instead of assuming a specific model for the analyses, we can let
the amino acid model be a random variable. We will assume that the ten
amino acid models listed above all have equal prior probability. We will use
MCMC to sum over the uncertainty in the models. This is the same approach
described in the previous section, where we used reversible jump MCMC to
choose among all possible time-reversible nucleotide substitution models. For-
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tunately, we do not need to resort to reversible jump MCMC here because all
of the parameters of the models are fixed. We do not change dimensions when
going from one amino acid model to another.

There are only a few other caveats to consider before we can actually
start our analysis of the leaf beetle data with the complex substitution model.
Many of the parameters of the model for the individual partitions are shared
across partitions. These parameters include the tree, branch lengths, and the
rates of substitution under the GTR model for the nucleotide data. Because
we are mostly interested in estimating phylogeny here, we will assume that
the same tree underlies each of the partitions. That is, we will not allow
one tree for the EF-1α gene and another for the loop regions of the 28S
ribosomal gene. This seems like a reasonable choice as we have no a priori
reason to expect the trees for each partition to differ. However, we might
expect the rates of substitution to differ systematically across genes (some
might be more evolutionarily constrained) and also for rates to vary from site
to site within a gene. We do the following to account for rate variation across
and within partitions. Across partitions, we apply a site-specific model by
introducing a single parameter for each partition that increases or decreases
the rate of substitution for all of the sites within the gene. For example, if
the rate multipliers were m1 = 0.1, m2 = 1.0, m3 = 2.0, and m4 = 0.9, then
the first and fourth partitions would have, on average, a rate of substitution
lower than the mean rate, and the third partition would have a rate greater
than the mean rate. In this hypothetical example, the second partition has
a rate exactly equal to the mean rate of substitution. Site-specific models
are often denoted in the literature by SS; the GTR model with site-specific
rate variation is denoted GTR+SS. The site-specific model, although it allows
rates to vary systematically from one partition to another, does not account
for rate variation among site within a partition. Here we assume that the
rate at a site is a random variable drawn from a Gamma distribution. This is
commonly assumed in the literature, and Gamma rate variation models are
often denoted with a Γ . We are assuming a mixture of rate variation models,
so our models could be denoted something like GTR+SS+Γ . The modeling
assumptions we are making can be summarized in a table:

Substitution Rate
Partition # States Model Variation
Stem 16 GTR Gamma
Loop 4 GTR Gamma
EF-1α 61 GTR Equal
COI 20 Mixture Gamma

We will also allow parameters that could potentially be constrained to be equal
across partitions, such as the shape parameters of the Gamma rate variation
model, to be different. The parameters of the model that need to be estimated
include:
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Parameters Notes
τ & v Tree and branch lengths, shared across all of the partitions

πAA . . . πUU State frequencies for the stem region partition
πA . . . πT State frequencies for the loop region partition

πAAA . . . πTTT Codon frequencies for the EF-1α gene
πA . . . πV Amino acid frequencies for the COI gene

r
(1)
AC . . . r

(1)
GT The GTR rate parameters for the loop region partition

r
(2)
AC . . . r

(2)
GT The GTR rate parameters for the stem region partition

r
(3)
AC . . . r

(3)
GT The GTR rate parameters for the EF-1α gene

ω The nonsynonymous/synonymous rate ratio for the EF-1α gene
α1 The Gamma shape parameter for the loop region partition
α2 The Gamma shape parameter for the stem region partition
α4 The Gamma shape parameter for the COI amino acid data
m1 The rate multiplier for the loop region partition
m2 The rate multiplier for the stem region partition
m3 The rate multiplier for the EF-1α gene
m4 The rate multiplier for the COI gene
S The amino acid model for the COI gene

Note that we are allowing most of the parameters to be estimated indepen-
dently for each gene partition. It is not clear that this is the best strategy.
For example, the data might be consistent with some of the parameters being
constrained to be the same across partitions. This would allow us to be more
parsimonious with our parameters. However, at this time there is no easy way
of deciding which pattern of constraints is the best for partitioned data.

We used MrBayes to analyze the data under the complicated substitution
model. We ran an MCMC algorithm for 3,000,000 update cycles, sampling the
chain every one hundredth cycle. Figure 7.6 shows a majority rule consensus
tree of the trees that were visited during the course of the MCMC analysis.
(The tree is based on samples taken during the last two million cycles of the
chain.) The tree has additional information on it. For one thing, the num-
bers at the interior nodes represent the posterior probability of that clade
being correct (again assuming the model is correct). For another, the branch
lengths on the majority rule tree are proportional to the mean of the posterior
probability of the branch length.

The Bayesian analysis also provided information on the parameters of
the model. Appendix 3 summarizes the marginal posterior probability of
each parameter. There are a few points to note here. First, the nonsynony-
mous/synonymous rate ratio (ω) is estimated to be a very small number. This
is consistent with the EF-1α gene being under strong purifying selection. (Sub-
stitutions leading to amino acid changes are strongly selected against.) Second,
the rate multiplier parameters for the site specific model (m1, m2, m3, m4) in-
dicate that the rate of substitution is different for the gene regions. The stem
partition of the ribosomal gene is the most conservative. Third, the doublet
stationary frequency parameters (πAA . . . πTT ) are consistent with a pattern
of higher rates for Watson-Crick doublets; note that the stationary frequency
is highest for the AT, TA, GC, and CG doublets. Finally, in this analysis, we
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Fig. 7.6. Bayesian phylogenetic tree of leaf beetles. A majority rule tree of the
trees sampled during the course of the MCMC analysis. The numbers at the interior
nodes are the marginal posterior probability of the clade being correct.

allowed the stationary frequencies of the states to be random variables and
integrated over their uncertainty. All of the state frequency parameters were
given a flat Dirichlet prior distribution. Although the base frequencies are
commonly estimated via maximum likelihood for simple (4 × 4) models, they
are rarely estimated for codon models. Instead, they are usually estimated by
using the observed frequencies of the nucleotides at the three codon positions
to predict the codon frequencies. In the Bayesian analysis, on the other hand,
estimating these parameters is not too onerous.

The only parameter not shown in Appendix 3 is the amino acid model,
which was treated as unknown in this analysis. The Markov chain proposed
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moves among the ten different amino acid models listed earlier. The chain
visited the Mtrev model almost all of the time, giving it a posterior proba-
bility of 1.0. The results of the Bayesian analysis confirm our guess that the
Mtrev should be the most reasonable of the amino acid models because it was
estimated using a database of mitochondrial sequences. Importantly, we did
not need to rely on our guess of what amino acid model to use and could let
the data inform us about the fit of the alternative models.

7.3.4 Estimating Divergence Times

The molecular clock hypothesis states that substitutions accumulate at roughly
the same rate along different lineages of a phylogenetic tree [75, 76]. Besides
being among the earliest ideas in molecular evolution, the molecular clock
hypothesis is an immensely useful one. If true, it suggests a way to estimate
the divergence times of species with poor fossil records. The idea in its sim-
plest form is shown in Figure 7.7. The figure shows a tree of three species.
The numbers on the branches are the branch lengths in terms of expected
number of substitutions per site. Note that the branch lengths on the tree
satisfy the molecular clock hypothesis; if you sum the lengths of the branches
from the root to each of the tips, you get the same number (0.4). One can
estimate branch lengths under the molecular clock hypothesis by constrain-
ing the branch lengths to have this property. Figure 7.7 shows the second
key assumption that must be made to estimate divergence times. We assume
that the divergence of at least one of the clades on the tree is known. In this
hypothetical example, we assume that species A and B diverged five million
years ago. We have calibrated the molecular clock. The calibration is this: if
five million years have elapsed since the common ancestor of A and B, then
0.1 substitutions is equal to five million years. Together, the assumptions of
a molecular clock and a calibration allow us to infer that the ancestor of the
three species must have diverged 20 million years ago.

There are numerous potential problems with the simple picture we pre-
sented:

• Substitutions may not accumulate at the same rate along different lin-
eages. In fact, it is easy to test the molecular clock hypothesis using, for
example, a likelihood ratio test [14]. The molecular clock hypothesis is
usually rejected for real data sets.

• Even if the molecular clock is true, we do not know the lengths of the
branches with certainty. In fact, there are potential errors not only in the
branch lengths but also in the tree.

• We do not know the divergence times of any of the species on the tree with
absolute certainty. This uncertainty should in some way be accommodated.

The first problem—that substitutions may not accumulate at a constant rate
along the phylogenetic tree—has received the most attention from biologists.
Many statistical tests have been devised to examine whether rates really are
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Fig. 7.7. Estimating divergence times using the molecular clock. A tree of three
species showing how divergence times can be estimated.

constant over the tree. As already mentioned, applying these tests to real
data usually results in the molecular clock being rejected. However, it is still
possible that divergence times can be estimated even if the clock is not perfect.
Perhaps the tests of the molecular clock are sensitive enough to detect small
amounts of rate variation, but the degree of rate variation does not scupper
our ability to estimate divergence times. Some biologists have attempted to
account for the variation in rates. One approach is to find taxa that are
the worst offenders of the clock and either eliminate them [65] or allow a
different rate just for those taxa. Another approach specifies a parametric
model describing how substitution rates change on the tree. These relaxed
clock models still allow estimation of divergence times but may correct for
limited degrees of rate variation across lineages. To date, two different models
have been proposed for allowing rates to vary across the tree [68, 33] and, in
both cases, a Bayesian MCMC approach was taken to estimate parameters.

In the remainder of this section, we will assume that the molecular clock
is true or at least that if the molecular clock is violated, we can still meaning-
fully estimate divergence times. The point of this section is not to provide a
definitive answer to the divergence time of any particular group but rather to
show how uncertainty in the tree, branch lengths, and calibration times can
be accounted for in a Bayesian analysis. We examine two data sets. The first
data set included complete mitochondrial protein-coding sequences from 23
mammals [4]. We excluded the platypus (Ornithorhynchus anatinus) and the
guinea pig (Cavia porcellus) from our analysis. We analyzed the alignment
of mitochondrial sequences under the GTR+SS model of DNA substitution.
The data were partitioned by codon position, and the rates for the first, sec-
ond, and third positions were estimated. The second data set consists of 104
amino acid sequences sampled from mouse, rat, an artiodactyl, human, and
chicken collated by Nei et al. [51]. Nei et al. [51] were mainly interested in
estimating the divergence times of the rodents and the rodent-human split
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and pointed out the importance of taking a multigene approach to divergence
time estimation. We analyze their data using the partitioned approach de-
scribed in the previous section. We partition the data by gene, resulting in
104 divisions in the data. We allow rates to vary systematically across genes
using the site-specific model. We allow rates to vary within genes by treating
the rate of substitution at an amino acid position as a Gamma-distributed
random variable. We allow different Gamma shape parameters for each parti-
tion. Moreover, we allow a different amino acid model for each partition, with
the actual identity of the amino acid model being unknown. For both data
sets, we constrained the branch lengths to obey the molecular clock hypoth-
esis. MrBayes was used to approximate the joint posterior probability of all
of the parameters of the evolutionary model. For the mammalian mitochon-
drial alignment, we ran the MCMC algorithm for a total of one million cycles
and based inferences on samples taken during the last 900,000 MCMC cycles.
For the amino acid alignments, we ran each of the two independent Markov
chains for a total of three million update cycles. We combined the samples
taken after the five hundred thousandth cycle.

For the mammalian data set, we had a total of 9000 trees with branch
lengths that were sampled from the posterior probability distribution of trees.
Each of the trees obeyed the molecular clock, meaning that if one were to take
a direct path from each tip of the tree to the root and sum the lengths of the
branches on each path, one would obtain the same number. Importantly, the
lengths of the branches and the topology of the tree differed from one sample
to another. The differences reflect the uncertainty in the data about the tree
and branch lengths. The final missing ingredient is a calibration time for some
divergence time on the tree. We used the divergence between the cows and
the whales as the calibration. Our first analysis of these samples will reflect
the typical approach taken when estimating divergence times; we will assume
that the divergence between cows and whales was precisely 56.5 million years
ago. This is a reasonable guess at the divergence time of cows and whales. Fig-
ure 7.8 shows the posterior probability distribution of the divergence time at
the root of the tree, corresponding to the divergence of marsupial and placen-
tal mammals. The top-left panel, marked “Fixed(56.5)”, shows the posterior
probability of the marsupial-placental split when the cows and whales are as-
sumed to diverge precisely 56.5 million years ago. It shows that even when
we assume that the molecular clock is true and the calibration time is known
without error, there is considerable uncertainty about the divergence time.
The 95% credible interval for the divergence of marsupials from placentals is
(115.6, 145.1), a span of about 30 million years in the early Cretaceous period.
In fact, it is easy to calculate the probability that the divergence time was in
any specific time interval; with (posterior) probabilities 0.0, 0.97, 0.03, and
0.0, the divergence was in the late Cretaceous, early Cretaceous, late Juras-
sic, and middle Jurassic periods, respectively. These probabilities account for
the uncertainty in the topology of the tree, branch lengths on the tree, and
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Fig. 7.8. The posterior probability density distribution of the divergence time
of placental and marsupial mammals. The distributions were calculated assum-
ing the divergence time between cows and whales was precisely 56.5 million years
[Fixed(56.5)], uniformly distributed between two times (U), or no less than 56.5
million years, with an exponentially declining prior distribution into the past [56.5
+ Exp(0.2)]. K, J, and Tr are the Cretaceous, Jurassic, and Triassic time periods,
respectively.

parameters of the substitution model but do assume that the calibration time
was perfectly known.

The three other panels in Figure 7.8 show the posterior probability dis-
tribution of the divergence of marsupial and placental mammals when the
calibration is not assumed known with certainty. In two of the analyses, we as-
sumed that the cows and whales diverged at some unknown time, constrained
to lie in an interval. The probability of the divergence at any time in the in-
terval was uniformly distributed. The last analysis, shown in the lower-right
panel of Figure 7.8, assumed that the divergence of cows and whales occurred
no more recently than 56.5 million years and was exponentially distributed
before then (an offset exponential prior distribution). As expected, the effect
of introducing uncertainty in the calibration times is reflected in a posterior
probability distribution that is more spread out. The additional uncertainty
can be neatly summarized by the 95% credible intervals:

Prior Credible Interval Size
Fixed(56.5) (115.6, 145.1) 29.5
U(50, 60) (107.8, 145.8) 38.0
U(50, 70) (110.3, 166.9) 56.6
56.5 + Exp(0.2) (119.8, 175.6) 55.8

The column marked “Size” shows the duration of the credible interval in
millions of years. Clearly, introducing uncertainty in the calibration time is
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Fig. 7.9. The distribution of best amino acid models for the 104 amino acid align-
ments. The number of alignments for which each amino acid model was best for the
Nei et al. [51] study.

reflected in the posterior probability distribution, and the credible interval
becomes larger as more uncertainty is introduced into the calibration time.

The results from the analysis of the 104 concatenated amino acid align-
ments was similar to that of the mammalian mitochondrial data. However,
the model for the amino acid data sets was quite complicated. Besides the
tree and branch lengths, there were 104 Gamma shape parameters, 104 rate
multipliers for the site-specific model, and 104 unknown amino acid models
to estimate. We do not attempt to summarize the information for all of these
parameters here. We only show the results for the amino acid models. Fig-
ure 7.9 shows which models were chosen as best for the various amino acid
alignments. In 82 cases, the model of Jones et al. [37] was chosen as best. The
Dayhoff and Wag models [11, 71] were chosen 11 times each. The seven other
amino acid models were never chosen as the best one in any of the 104 align-
ments, though some did receive considerable posterior probability. There was
no uncertainty in the topology of the tree chosen using the Bayesian method
(Figure 7.10).

As a calibration, Nei et al. [51] assumed that the divergence of birds and
mammals occurred exactly 310 million years ago. Table 7.4 summarizes the
results of the divergence times for three clades on the tree, assuming the
calibration time of Nei et al. [51] as well as three other calibrations that allow
for uncertainty in the divergence time of birds and mammals. As might be
expected, the uncertainty is greater for the older divergences. Also, having a
calibration time that is older than the group of interest makes the posterior
probability distribution less vulnerable to errors in the calibration time.

The prior models for the uncertainty in the calibration times we used here
are largely arbitrary and chosen mostly to make the point that errors in cali-
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Table 7.4. Credible intervals for divergence times of the amino acid data. The 95%
credible intervals for the divergence of mouse from rat, human from rodents, and
the time at the root of the tree for four different calibrations of the bird-mammal
split.

Calibration Mouse-Rat Human-Rodent Root
310 (25.9, 33.4) (84.5, 97.5) (448.3, 487.8)
U(288, 310) (25.0, 33.0) (80.6, 97.5) (427.7, 491.8)
288 + Exp(0.1) (24.6, 32.6) (79.8, 96.6) (423.3, 495.1)
288 + Exp(0.05) (24.9, 34.9) (80.4, 106.5) (426.4, 551.6)

bration times can be accounted for in a Bayesian analysis and that these errors
can make a difference in the results (at least, these errors can make a differ-
ence in how much one believes the results). Experts in the fossils from these
groups would place very different prior distributions on the calibration times.
For example, Philip Gingerich (pers. comm.) would place a much smaller error
on the divergence times between cows and whales than we did here; the fossil
record for this group is rich, and it is unlikely that cows and whales diverged as
early as 100 million years ago (our offset exponential prior distribution places
some weight on this hypothesis along with divergences that are much earlier).
Lee [42] pointed out that the widely used bird-mammal calibration of 310
million years is poorly chosen. The earliest synapsids (fossils on the lineage
leading to modern-day mammals) are from the upper Pennsylvanian period,
about 288 million years ago. This is much more recent than the calibration of
310 million years used by some to calibrate the molecular clock. The Bayesian
framework makes it possible to explore how different prior distributions affect
the conclusions drawn from a particular data set. When the data are highly
informative about the parameters examined, as is commonly the case, the ex-
act choice of prior distribution is likely to have little influence on the results.
In dating exercises, however, particularly when only one calibration point is
used, the precision of the calibration is likely to affect the dating significantly.

rat

Xenopus

human

chicken

mouse

Fig. 7.10. The best tree for the 104 amino acid alignments. This tree had a posterior
probability approximated to be 1.0 by the MCMC algorithm. The length of the
branch is the mean of the posterior probability distribution.
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7.4 Conclusions

In this chapter, we have attempted to demonstrate some of the power and
flexibility of the Bayesian approach to the inference of phylogeny and mole-
cular evolution. The most important aspect we want to convey is the effi-
ciency of the Bayesian MCMC methodology in addressing complex models.
Current statistical analyses of molecular evolution are based on very sim-
ple models inspired by the apparent simplicity of molecular sequences. But
beyond the simple sequences of symbols lies tremendous evolutionary com-
plexity. Approaches that ignore this complexity do not utilize the molecular
information efficiently and are prone to produce erroneous inferences. Mod-
eling the complexity of molecular evolution more accurately will be critical
to future progress in statistical analysis of molecular evolution. The Bayesian
MCMC approach provides promising tools for the analysis of these realistic
evolutionary models.
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[61] E. Schröder. Vier combinatorische probleme. Z. Math. Phys., 15:361–376,
1870.

[62] M. A. Suchard, R. E. Weiss, and J. S. Sinsheimer. Bayesian selection of
continuous-time Markov chain evolutionary models. Molecular Biology
and Evolution, 18:1001–1013, 2001.

[63] Y. Suzuki, G. V. Glazko, and M. Nei. Overcredibility of molecular phy-
logenies obtained by Bayesian phylogenetics. Proceedings of the National
Academy of Sciences, USA, 99:15138–16143, 2002.

[64] D. L. Swofford. PAUP*. Phylogenetic Analysis Using Parsimony (*and
Other Methods). Version 4. Sinauer Associates, Sunderland, MA, 2002.

[65] N. Takezaki, A. Rzhetsky, and M. Nei. Phylogenetic test of molecular
clock and linearized trees. Molecular Biology and Evolution, 12:823–833,
1995.

[66] K. Tamura and M. Nei. Estimation of the number of nucleotide sub-
stitutions in the control region of mitochondrial DNA in humans and
chimpanzees. Molecular Biology and Evolution, 10:512–526, 1993.
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Appendix 1. All Possible Time-Reversible Models of
DNA Substitution

M1 = 111111 M35 = 122322 M69 = 121322 M103 = 112132 M137 = 121314 M171 = 112343
M2 = 122222 M36 = 122232 M70 = 121232 M104 = 112123 M138 = 121134 M172 = 112334
M3 = 121111 M37 = 122223 M71 = 121223 M105 = 111233 M139 = 112341 M173 = 112342
M4 = 112111 M38 = 123111 M72 = 122312 M106 = 111232 M140 = 112314 M174 = 112324
M5 = 111211 M39 = 121311 M73 = 122321 M107 = 111223 M141 = 112134 M175 = 112234
M6 = 111121 M40 = 121131 M74 = 122132 M108 = 112233 M142 = 111234 M176 = 123412
M7 = 111112 M41 = 121113 M75 = 122123 M109 = 112323 M143 = 123344 M177 = 123421
M8 = 112222 M42 = 112311 M76 = 122231 M110 = 112332 M144 = 123434 M178 = 123142
M9 = 121222 M43 = 112131 M77 = 122213 M111 = 121233 M145 = 123443 M179 = 123124
M10 = 122122 M44 = 112113 M78 = 123311 M112 = 121323 M146 = 123244 M180 = 123241
M11 = 122212 M45 = 111231 M79 = 123131 M113 = 121332 M147 = 123424 M181 = 123214
M12 = 122221 M46 = 111213 M80 = 123113 M114 = 122133 M148 = 123442 M182 = 121342
M13 = 122111 M47 = 111123 M81 = 121331 M115 = 122313 M149 = 122344 M183 = 121324
M14 = 121211 M48 = 122333 M82 = 121313 M116 = 122331 M150 = 122343 M184 = 121234
M15 = 121121 M49 = 123233 M83 = 121133 M117 = 123123 M151 = 122334 M185 = 122341
M16 = 121112 M50 = 123323 M84 = 123211 M118 = 123132 M152 = 123423 M186 = 122314
M17 = 112211 M51 = 123332 M85 = 123121 M119 = 123213 M153 = 123432 M187 = 122134
M18 = 112121 M52 = 123322 M86 = 123112 M120 = 123231 M154 = 123243 M188 = 123455
M19 = 112112 M53 = 123232 M87 = 122311 M121 = 123312 M155 = 123234 M189 = 123454
M20 = 111221 M54 = 123223 M88 = 122131 M122 = 123321 M156 = 123342 M190 = 123445
M21 = 111212 M55 = 122332 M89 = 122113 M123 = 123444 M157 = 123324 M191 = 123453
M22 = 111122 M56 = 122323 M90 = 121321 M124 = 123433 M158 = 123144 M192 = 123435
M23 = 111222 M57 = 122233 M91 = 121312 M125 = 123343 M159 = 123414 M193 = 123345
M24 = 112122 M58 = 121333 M92 = 121231 M126 = 123334 M160 = 123441 M194 = 123452
M25 = 112212 M59 = 123133 M93 = 121213 M127 = 123422 M161 = 121344 M195 = 123425
M26 = 112221 M60 = 123313 M94 = 121132 M128 = 123242 M162 = 121343 M196 = 123245
M27 = 121122 M61 = 123331 M95 = 121123 M129 = 123224 M163 = 121334 M197 = 122345
M28 = 121212 M62 = 112333 M96 = 112331 M130 = 122342 M164 = 123413 M198 = 123451
M29 = 121221 M63 = 112322 M97 = 112313 M131 = 122324 M165 = 123431 M199 = 123415
M30 = 122112 M64 = 112232 M98 = 112133 M132 = 122234 M166 = 123143 M200 = 123145
M31 = 122121 M65 = 112223 M99 = 112321 M133 = 123411 M167 = 123134 M201 = 121345
M32 = 122211 M66 = 123122 M100 = 112312 M134 = 123141 M168 = 123341 M202 = 112345
M33 = 123333 M67 = 123212 M101 = 112231 M135 = 123114 M169 = 123314 M203 = 123456
M34 = 123222 M68 = 123221 M102 = 112213 M136 = 121341 M170 = 112344



228 J. P. Huelsenbeck and F. Ronquist

Appendix 2. Using MrBayes 3.0

MrBayes 3.0 [35, 59] is a program distributed free of charge and can be down-
loaded from the web at http://www.mrbayes.net. The program takes as
input an alignment of DNA, RNA, amino acid, or restriction site data. (Matri-
ces of morphological characters can be input, too.) The program uses Markov
chain Monte Carlo methods to approximate the joint posterior probability
distribution of the phylogenetic tree, branch lengths, and substitution model
parameters. The parameter values sampled by the Markov chain are saved to
two files; one file contains the trees that were sampled, whereas the other file
has the parameter values that were sampled. The program also provides some
commands for summarizing the results. The basic steps (and commands) that
need to be executed to perform a Bayesian analysis of phylogeny using Mr-
Bayes include: (1) reading in the data file (“execute [file name]”); (2) setting
the model (using the “lset” and “prset” commands); (3) running the Markov
chain Monte Carlo algorithm (using the “mcmc” command); and (4) summa-
rizing the results (using the “sumt” and “sump” commands). The program
has extensive online help, which can be reached using the “help” command.
We urge the user to explore the available commands and the extensive amount
we have written about each by exploring the “help” option.

Analyzing the “toy” example of simulated data. The data matrix an-
alyzed in numerous places in the text was simulated on the tree of Figure 7.3
under the HKY85 model of DNA substitution. The specific HKY85 parame-
ter values and the branch lengths used for the simulation can be found in the
text. The input file contained the alignment of sequences and the commands:

begin data;
dimensions ntax=5 nchar=50;
format datatype=dna;
matrix
Species_1 TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC
Species_2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC
Species_3 CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC
Species_4 CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC
Species_5 TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC
;

end;

begin mrbayes;
lset nst=2 rates=equal;
mcmc ngen=1000000 nchains=1 samplefreq=100 printfreq=100;
sumt burnin=1001;
sump burnin=1001;

end;

The actual alignment is in a NEXUS file format. More accurately, the input
file format is NEXUS(ish) because we do not implement all of the NEXUS
standards in the program, and have extended the format in some (unlawful)
ways. The data are contained in the “data block”, which starts with a “begin
data” command and ends with an “end” command. The next block is specific
to the program and is called a “MrBayes” block. Other programs will simply
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skip this block of commands, just as MrBayes skips over foreign blocks it does
not understand. All of the commands that can be issued to the program via
the command line can also be embedded directly into the file. This facilitates
batch processing of data sets.

The first command sets the model to HKY85 with no rate variation across
sites. The second command runs the MCMC algorithm, and the third and
fourth commands summarize the results of the MCMC analysis, discarding
the first 1001 samples taken by the chain. Inferences then are based on the
last 9000 samples taken from the posterior probability distribution.

Analyzing the leaf beetle data under a complicated model. The fol-
lowing shows the data and MrBayes block used in the analysis of the Kim et al.
[39] alignment of three different genes. We do not show the entire alignment,
though we do show the most relevant portions of the data block. Specifically,
we show that you need to specify the data type as mixed when you perform
a simultaneous Bayesian analysis on different types of data
begin data;

dimensions ntax=27 nchar=1090;
format datatype=mixed(rna:1-516,dna:517-936,protein:937-1090) gap=- missing=?;
matrix
Orsodacne gGGUAAACCUNAGaA [ 1060 other sites ] DPILYQHLFWFFGHP
Chrysomela GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Altica --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Agelastica GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Monolepta GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Phyllobrotica ---------UGANAA [ 1060 other sites ] DPILYQHLFWFFGHP
Allochroma GGGUAAaCcUGAgAA [ 1060 other sites ] DPILYQHLFWFFGHP
Chrysolina GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Aphthona GGGUAACCCUGAGAA [ 1060 other sites ] ???????????????
Chaetocnema --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Systena ---CCGACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Monocesta ----------GAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Disonycha -------------AA [ 1060 other sites ] DPILYQHLFWFFGHP
Blepharida --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Galeruca GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Orthaltica GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Paropsis GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Timarcha -----AACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Zygograma GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Syneta -----GAACUUACAA [ 1060 other sites ] DPILYQHLFWFFGHP
Dibolia ggguaaaccugagaa [ 1060 other sites ] DPILYQHLFWFFGHP
Sangariola --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Aulacophora -----------AGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Diabrotica GGGUAAACcUGAgAA [ 1060 other sites ] DPILYQHLFWFFGHP
Diorhabda -----------AGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Schematiza -----????UGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Oides GGGUAACCCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
;

end;

begin mrbayes;
pairs 22:497, 21:498, 20:499, 19:500, 18:501, 17:502, 16:503, 33:172,

34:171, 35:170, 36:169, 37:168, 38:167, 45:160, 46:159, 47:158,
48:157, 49:156, 50:155, 51:154, 53:153, 54:152, 55:151, 59:150,
60:149, 61:148, 62:147, 63:146, 86:126, 87:125, 88:124, 89:123,
187:484, 186:485, 185:486, 184:487, 183:488, 182:489, 191:295, 192:294,
193:293, 194:292, 195:291, 196:290, 197:289, 198:288, 199:287, 200:286,
201:283, 202:282, 203:281, 204:280, 205:279, 206:278, 213:268, 214:267,
215:266, 216:265, 217:264, 226:259, 227:258, 228:257, 229:256, 230:255,
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231:254, 232:253, 233:252, 304:477, 305:476, 306:475, 307:474, 308:473,
316:335, 317:334, 318:333, 319:332, 336:440, 337:439, 338:438, 339:437,
340:436, 341:435, 343:422, 344:421, 345:420, 346:419, 347:418, 348:417,
349:416, 351:414, 352:413, 353:412, 354:411, 355:408, 356:407, 357:406,
358:405, 359:404, 360:403, 361:402, 369:400, 370:399, 371:398, 372:397,
373:396, 376:394, 377:393, 379:392, 380:391, 381:390;

charset ambiguously_aligned = 92-103 108-122 234-251 320-327 449-468;
charset stems = 22 497 21 498 20 499 19 500 18 501 17 502

16 503 33 172 34 171 35 170 36 169 37 168
38 167 45 160 46 159 47 158 48 157 49 156
50 155 51 154 53 153 54 152 55 151 59 150
60 149 61 148 62 147 63 146 86 126 87 125
88 124 89 123 187 484 186 485 185 486 184 487

183 488 182 489 191 295 192 294 193 293 194 292
195 291 196 290 197 289 198 288 199 287 200 286
201 283 202 282 203 281 204 280 205 279 206 278
213 268 214 267 215 266 216 265 217 264 226 259
227 258 228 257 229 256 230 255 231 254 232 253
233 252 304 477 305 476 306 475 307 474 308 473
316 335 317 334 318 333 319 332 336 440 337 439
338 438 339 437 340 436 341 435 343 422 344 421
345 420 346 419 347 418 348 417 349 416 351 414
352 413 353 412 354 411 355 408 356 407 357 406
358 405 359 404 360 403 361 402 369 400 370 399
371 398 372 397 373 396 376 394 377 393 379 392
380 391 381 390;

charset loops = 1-15 23-32 39-44 52 56-58 64-85 90-122 127-145
161-166 173-181 188-190 207-212 218-225 234-251
260-263 269-277 284 285 296-303 309-315 320-331
342 350 362-368 374 375 378 382-389 395 401 409
410 415 423-434 441-472 478-483 490-496 504-516;

charset rna = 1-516;
charset dna = 517-936;
charset protein = 937-1090;
charset D2 = 1-516;
charset EF1a = 517-936;
charset EF1a1st = 517-936\3;
charset EF1a2nd = 518-936\3;
charset EF1a3rd = 519-936\3;
charset CO1aa = 937-1090;
partition by_gene_and_pos = 5:rna,EF1a1st,EF1a2nd,EF1a3rd,CO1aa;
partition by_gene = 3:rna,EF1a,CO1aa;
partition by_gene_and_struct = 4:stems,loops,EF1a,CO1aa;
exclude ambiguously_aligned;
set partition = by_gene_and_struct;
lset applyto=(1) nucmodel=doublet;
lset applyto=(2) nucmodel=4by4;
lset applyto=(3) nucmodel=codon;
lset applyto=(1,2,4) rates=gamma;
lset nst=6;
prset ratepr=variable aamodelpr=mixed;
unlink shape=(all) revmat=(all);
mcmc ngen=3000000 nchains=1 samplefreq=100 printfreq=100;
sumt burnin=10001;
sump burni=10001;

end;

The commands in the MrBayes block show how to specify a very compli-
cated model. First, we specify which nucleotides pair with one another using
the pairs command. We then specify a number of character sets using the
“charset” command. Specifying character sets saves the hassle of having to
type in a long list of character numbers every time you want to refer to some
division of the data (such as a gene). We then specify three character parti-
tions. A character partition divides the data into groups of characters. Each
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character in the matrix must be assigned to one, and only one, group. For
example, one of the partitions we define (by gene) divides the characters into
three groups. When a data file is executed, it sets up a default partition of
the data that groups characters by data type. We need to tell the program
which of the four partitions to use (where the four partitions are default,
by gene and pos, by gene, and by gene and struct). We do this using the set
command. Finally, we use lset and prset to specify different models for differ-
ent groups of characters. In fact, with the applyto option in lset and prset and
the link and unlink commands, one can specify a very large number of possi-
ble models that currently cannot be implemented with any other phylogeny
program. The last three commands will run the MCMC algorithm and then
summarize the results.

Analyzing the 104 amino acid alignments. The analysis of the data
collated by Nei et al. [51] was conceptually simple, though laborious, to set up.
The data block, as usual, has the alignment, this time in interleaved format.
The MrBayes block has 104 character set definitions, specifies a partition,
grouping positions by gene, sets the partition, and then sets up a model in
which the parameters are estimated independently for each gene and that
enforces the molecular clock. The “outgroup” command can be used to specify
the location of the root in output trees. The trees are simply rooted between
the outgroup and the rest of the taxa. By default, MrBayes uses the first taxon
in the matrix as the outgroup.

begin data;
dimensions ntax=5 nchar=48092;
format datatype=protein interleave=yes;
matrix
[The data for the 104 alignments were here. We do not include
them here for obvious reasons (see the nchar command above).]
;

end;

begin mrbayes;
charset M00007 = 1 - 112;
charset M00008 = 113 - 218;
charset M00037 = 219 - 671;
[There were another 98 character set definitions, which we have deleted here.]
charset N01447 = 45917 - 46694;
charset N01456 = 46695 - 47285;
charset N01479 = 47286 - 48092;
partition by_gene = 104:M00007,M00008,[100 other partitions],N01456,N01479;
set autoclose=yes nowarn=yes;
set partition=by_gene;
outgroup xenopus;
lset rates=gamma;
prset ratepr=variable aamodel=mixed brlenspr=clock:uniform;
unlink shape=(all) aamodel=(all);
mcmcp ngen=30000000 nchains=1 samplefreq=1000 savebrlens=yes;

end;
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Appendix 3. Parameter Estimates for the Leaf Beetle
Data

The numbers are the mean and 95% credible interval of the posterior proba-
bility density distribution for each parameter.

Param. Mean (CI) Param. Mean (CI) Param. Mean (CI)
V 3.495 (3.209, 3.828) πG 0.222 (0.180, 0.267) πGAC 0.012 (0.008, 0.016)
r
(1)
CT 0.428 (0.187, 0.850) πT 0.285 (0.240, 0.332) πGAG 0.007 (0.006, 0.009)

r
(1)
CG 0.616 (0.166, 1.616) πAAA 0.023 (0.020, 0.024) πGAT 0.018 (0.016, 0.019)

r
(1)
AT 2.130 (0.703, 5.436) πAAC 0.006 (0.006, 0.008) πGCA 0.014 (0.012, 0.018)

r
(1)
AG 0.780 (0.340, 1.594) πAAG 0.019 (0.014, 0.023) πGCC 0.023 (0.019, 0.027)

r
(1)
AC 0.828 (0.214, 2.240) πAAT 0.005 (0.004, 0.006) πGCG 0.005 (0.005, 0.005)

r
(2)
CT 3.200 (2.037, 4.915) πACA 0.011 (0.007, 0.013) πGCT 0.036 (0.034, 0.037)

r
(2)
CG 0.335 (0.116, 0.683) πACC 0.021 (0.017, 0.024) πGGA 0.019 (0.014, 0.022)

r
(2)
AT 0.994 (0.522, 1.699) πACG 0.006 (0.004, 0.009) πGGC 0.013 (0.006, 0.015)

r
(2)
AG 2.805 (1.702, 4.447) πACT 0.025 (0.019, 0.027) πGGG 0.004 (0.004, 0.006)

r
(2)
AC 1.051 (0.541, 1.880) πAGA 0.020 (0.013, 0.021) πGGT 0.018 (0.015, 0.019)

r
(3)
CT 2.292 (1.471, 3.555) πAGC 0.016 (0.014, 0.019) πGT A 0.022 (0.017, 0.028)

r
(3)
CG 1.021 (0.400, 2.127) πAGG 0.004 (0.001, 0.007) πGT C 0.014 (0.008, 0.014)

r
(3)
AT 1.320 (0.766, 2.184) πAGT 0.001 (0.001, 0.002) πGT G 0.014 (0.012, 0.016)

r
(3)
AG 2.276 (1.424, 3.621) πAT A 0.003 (0.003, 0.004) πGT T 0.020 (0.016, 0.020)

r
(3)
AC 1.041 (0.575, 1.756) πAT C 0.025 (0.024, 0.029) πT AC 0.033 (0.030, 0.034)

ω 0.010 (0.010, 0.012) πAT G 0.014 (0.009, 0.017) πT AT 0.011 (0.010, 0.016)
πAA 0.001 (0.000, 0.004) πAT T 0.026 (0.016, 0.029) πT CA 0.020 (0.017, 0.026)
πAC 0.004 (0.000, 0.008) πCAA 0.015 (0.011, 0.019) πT CC 0.026 (0.023, 0.033)
πAG 0.006 (0.003, 0.012) πCAC 0.010 (0.009, 0.014) πT CG 0.015 (0.014, 0.016)
πAT 0.122 (0.086, 0.170) πCAG 0.009 (0.006, 0.011) πT CT 0.025 (0.024, 0.037)
πCA 0.003 (0.000, 0.008) πCAT 0.009 (0.005, 0.010) πT GC 0.003 (0.003, 0.005)
πCC 0.005 (0.001, 0.013) πCCA 0.022 (0.021, 0.024) πT GG 0.014 (0.008, 0.016)
πCG 0.257 (0.191, 0.319) πCCC 0.012 (0.011, 0.014) πT GT 0.001 (0.001, 0.003)
πCT 0.002 (0.000, 0.005) πCCG 0.008 (0.003, 0.010) πT T A 0.020 (0.013, 0.025)
πGA 0.001 (0.000, 0.003) πCCT 0.008 (0.007, 0.010) πT T C 0.045 (0.044, 0.049)
πGC 0.284 (0.222, 0.353) πCGA 0.002 (0.001, 0.004) πT T G 0.025 (0.025, 0.026)
πGG 0.003 (0.000, 0.008) πCGC 0.009 (0.009, 0.009) πT T T 0.011 (0.010, 0.011)
πGT 0.078 (0.057, 0.106) πCGG 0.001 (0.000, 0.000) α1 0.422 (0.308, 0.570)
πT A 0.145 (0.103, 0.190) πCGT 0.016 (0.014, 0.016) α2 0.381 (0.296, 0.484)
πT C 0.004 (0.001, 0.008) πCT A 0.005 (0.004, 0.010) α4 0.226 (0.175, 0.288)
πT G 0.073 (0.056, 0.093) πCT C 0.016 (0.015, 0.020) m1 0.708 (0.553, 0.894)
πT T 0.003 (0.001, 0.008) πCT G 0.042 (0.036, 0.046) m2 0.870 (0.732, 1.027)
πA 0.252 (0.209, 0.301) πCT T 0.042 (0.034, 0.048) m3 1.274 (1.171, 1.378)
πC 0.239 (0.199, 0.284) πGAA 0.034 (0.031, 0.044) m4 0.856 (0.651, 1.100)




