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6.1 Introduction

The field of molecular evolution, though wide-reaching in its breadth, can be
split into two types of investigations: studies of phylogeny and studies of the
molecular evolutionary process. Of course, each of these two categories en-
compasses many different types of questions, and many investigations require
studies of both phylogeny and evolutionary process, but the proposed binary
classification is a useful construct. Software for molecular evolution is focused
disproportionately on problems relating to phylogenetic reconstruction, with a
number of outstanding comprehensive packages from which to choose. On the
other hand, software for addressing questions of the molecular evolutionary
process tends to be found in stand-alone programs that answer only one or
two quite specific problems. The HyPhy system, available for download from
www . hyphy.org, was designed to provide a unified platform for carrying out
likelihood-based analyses on molecular evolutionary data sets, the emphasis
of analyses being the molecular evolutionary process; that is, studies of rates
and patterns of the evolution of molecular sequences.

HyPhy consists of three major components: a high-level programming lan-
guage designed to facilitate the rapid implementation of new statistical meth-
ods for molecular evolutionary analysis; a collection of prewritten analyses
for carrying out widely used molecular evolutionary methods; and a graphical
user interface that allows users to quickly and interactively analyze data sets
of aligned sequences using evolutionary models and statistical methods that
they design using the software system. This chapter is intended to provide
an overview of the key elements of each of the three system components, in-
cluding both specific details of the basic functionality as well as a conceptual
description of the potential uses of the software. The nature of the package
prevents the creation of an exhaustive “cookbook” of available methods. In-
stead, we hope to provide a collection of fundamental tools and concepts that
allow users to begin using HyPhy to carry out both existing and new methods
of data analysis.
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6.1.1 Standard Analyses

The second of the three enumerated HyPhy components was a collection of
prewritten “standard” analyses. Since this section of the software is essen-
tially just a collection of prepackaged analyses, we will not devote much time
to a detailed discussion of it. However, we choose to describe it first in this
chapter to illustrate the types of analyses that HyPhy has been designed to
address. In Figure 6.1, we show the initial Standard Analyses menu invoked
by ANALYSES:STANDARD ANALYSES... (note the use of SMALL CAPS to indi-
cate menu items, with submenus or selections separated by a colon). Each of
the nine major headings includes a collection of routines that can be selected
by the user. For example, the POSITIVE SELECTION menu item expands to
offer five different analyses relating to the task of identifying nucleotide sites
undergoing positive selection. A total of 35 batch files are included in the col-
lection, and most of these files include a variety of options enabling users to
select items such as evolutionary models or topology search methods. Topics
include molecular clock tests, positive selection analyses, phylogenetic recon-
struction, and model comparison procedures. The authors frequently add new
standard analyses to the package. HyPhy includes the ability to perform Web
updates, which ensures that the distribution is kept up-to-date.

Select a standard analysis to run
Basic Analyses
Data File Tools
Miscellaneous
Model Comparison
Molecular Clock
Phylogeny Reconstruction
Positive Selection
Relative Rate
Relative Ratio

T v vV vV vV v W

—Item Description
Perform codon-based positive selection tests.

oK Cancel

Fig. 6.1. HyPhy Standard Analyses menu (Mac OS X).
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6.2 Using the HyPhy Graphical User Interface

6.2.1 Basic Analysis

The fundamental component of likelihood analyses of molecular evolutionary
data is to fit a given phylogenetic tree with a specified model of evolution to an
alignment and obtain maximum likelihood estimates (MLE) of all independent
model parameters, which commonly include branch-length parameters and
character substitution rates [3]. Before we demonstrate how to use HyPhy for
simple model fitting, we will introduce the fundamental components required
of virtually every HyPhy data analysis.

1. Data Set. A data set is a multiple-sequence alignment. HyPhy is able
to read a variety of sequence formats, including NEXUS, PHYLIP, and
FASTA.

2. Data Filter. A data filter specifies a part (or parts) of a data set. HyPhy
provides powerful tools to select sites and sequences from a data set to
analyze. The simplest data filter specifies the entire data set. Examples of
nontrivial filters include every first and second position in a codon, exon-
intron-exon arrangements, or alignment sites matching a particular motif,
such as glycosylation sites. We will often refer to data filters as partitions.

3. Substitution Models. We also need to provide stochastic models describing
how character substitutions occur along branches in a phylogenetic tree.
HyPhy includes a multitude of standard “named” models and provides
unparalleled flexibility for users to define their own models. A substitu-
tion model is specified by its instantaneous rate matriz and the vector
of equilibrium character frequencies. For instance, one of the most com-
monly used nucleotide substitution models is the HKY85 model [5],whose
instantaneous rate matrix is given by

A C G T

A * KT Tg KT
0 - C| kma * KkWg 7T
T G| ma ke o+ wkmr |’

T \kma 7T KTg *

where k denotes the ratio of transversion and transition rates and 7; is
the base frequency of nucleotide i, i = A, C, G, T. We use x as a notation
to indicate that the diagonal elements of rate matrices are defined so that
the sum of each row in the rate matrix is 0. This condition ensures that
the transition probability matrix,

P(t) = e,

defines a proper transition probability function (i.e., the sum of each row
in Pis1).
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4. Tree. A phylogenetic tree specifies the evolutionary history of extant se-
quences represented in the data set. It can either be given or can be
inferred from the data/model combination. While most other software
packages force the evolutionary process to follow the same model along
every branch, in HyPhy the user can have multiple models, with different
rate matrices at each branch. Therefore the notion of the tree in HyPhy
is not just the evolutionary relationships but rather the combination of
a tree topology and substitution models attached to tree branches. The
distinction in HyPhy between a tree and a topology is an important one,
as we will illustrate through later examples.

5. Likelihood Function. A combination of a data filter and a tree (which
includes both topology and model information) is sufficient to define the
probability of the observed data given model parameter values (i.e., the
likelihood function). The likelihood function object in HyPhy is a con-
venient way to combine multiple data filter/tree objects (with shared or
distinct model parameters) into a single likelihood function, which can
then be maximized to obtain MLEs of all model parameters.

Ezxample 6.1 Basic analysis

We are now conceptually prepared to set up the simplest nucleotide sequence
analysis with the help of the HyPhy graphical user interface. Our example
data set is the p51 subunit of the reverse transcriptase gene of HIV-1, ob-
tained as one of the reference alignments from the Los Alamos HIV database,
hiv-web.lanl.gov. This data set is included as an example file with HyPhy
distribution.

Preparing the data

First we must load the sequence alignment. We accomplish this by starting
HyPhy and selecting the FILE:OPEN:OPEN DATA FILE menu command from
the HyPhy console window. The file we wish to open is named p51.nex and
can be found in the data directory of the HyPhy standard installation. Alter-
natively, all example alignments used in this chapter can be downloaded from
www . hyphy . org/pubs/HyphyBookChapter. tgz.

HyPhy will load the sequences and open a data Panel (fig. 6.2) We will
explore some features of the data panel interface in later examples. For now,
we wish to define a data filter (partition); in this case, the filter will sim-
ply be the entire alignment. Select all sites in the alignment by using the
EDIT:SELECT ALL menu command, and then create a new partition by choos-
ing DATA:SELECTION—PARTITION. The program creates a data filter with
all the sites selected in the sequence viewer, assigns a default name and
color to the partition, updates the navigation bar, and selects the newly
created partition. One can edit the name and color of a partition by dou-
ble clicking on the partition row in the “Analysis Setup” area or choosing
DATA:PARTITION PROPERTIES, with the partition row selected. Rename the



[CReK:) — Dataset g1

BT aakAGCAT[AGT T TGGALAAGE]

brassaccarfrost T TEOALAADE)
T AAKAGEATIIAGT

A TALKAGCAT

AL TARAAGEAT

A TAAKAGLAT

M7 )lllGEA'

Bapacis

Fig. 6.2. HyPhy data panel (Mac OS X).

Name: RT_Gene

Color: - (click to change)
Partition Info
8 sequences, 1320 tofal data sites, with 118 unique
pattems. Nucleotide partition.

S Cancel

Fig. 6.3. Partition properties dialog.
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Fig. 6.4. Analysis Setup.

partition “RT_Gene” (for technical reasons, HyPhy doesn’t allow spaces in the
names of partitions) as shown in Figure 6.3.

Specifying the model

Once the data have been filtered, we may assign a tree topology and a model
to the partition by clicking on the pulldown arrows in the appropriate columns
of the “Analysis Setup” table (Figure 6.4). The data file p51.nex already in-
cluded a tree topology, automatically loaded by HyPhy and made available in
the “Tree Topology” pulldown list. For the model, let us choose substitution
matrix HKY85, with global parameters (in this case meaning that there is a
single transversion/transition ratio « for every branch in the tree) and equilib-
rium frequencies gathered from the partition, so that entries of the frequency
vector 7 are simply the frequencies of characters observed in the data. Once
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all the necessary analysis components have been successfully assigned to at
least one data partition (RT_Gene in this case), the status light in the bottom
left corner of the window will change from red to yellow, indicating that we
are now ready to create a likelihood function.

Likelihood function

We will denote the likelihood function of the model parameters @, given a
data set D and a tree T, by
L(©|D,T).

HyPhy is then able to obtain maximum likelihood parameter estimates 6 by
maximizing L(O|D,T) over the possible values of 6.

Let us now create and optimize the likelihood function. First, we select
LIKELIHOOD:BUILD FUNCTION. HyPhy creates the likelihood function as re-
quested and prints out some diagnostic messages to the console:

Created likelihood function ‘p51_LF’ with

1 partition,

1 shared parameters,

13 local parameters,

0 constrained parameters.

Pruning efficiency 764 vs 1534 (50.1956 %, savings)

The number of local parameters refers to the branch-length parameters, t. An
unrooted binary tree on n sequences will have a total of 2N — 3 branches. In
our case, N = 8 and thus there are 13 branch-length parameters to estimate.
Pruning efficiency numbers show the computational savings that HyPhy was
able to realize using the column-sorting ideas of [6]. Now, choose LIKELI-
HOOD:OPTIMIZE to instruct HyPhy to proceed with fitting selected models to
the data and obtaining parameter MLEs.

Results

We are now ready to examine model-fitting results. For this example, HyPhy
produces maximum likelihood estimates of 14 model parameters by numerical
optimization of the likelihood function. The program reports a text summary
to the console and also opens a graphical parameter table display, as shown in
Figure 6.5. The status bar of the parameter table displays a one-line snapshot
of the likelihood analysis: the maximum log-likelihood for our RT data set
was —3327.25, and 14 parameters were estimated. Knowledge of these two
quantities is sufficient to evaluate various information-theoretic criteria for
relative goodness of fit, such as the Akaike information criterion [1], or to
perform likelihood ratio tests for nested models.

Notice how HyPhy groups items in the parameter table by class: trees,
global parameters (shared by all tree branches), and local parameters (those
that affect a single branch); each item is labeled both by name and with an
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® O © Likelihood parameters for p51

Current LF '-3]
(]| Parameter ID ]| Yalue Constraint
, pS51_tree
R | RT_Gene_Shared_TvTS 0.111272
@ | pS1_tree B_FR_83_HxB2.t 0.0395062
@ | pS1_tree B_US_B3_RF 1 0.086872
@ | p51_tree.B_US_86_JRFLt 0.0603127
@ | pS1_tree B_US_90_WEAU1601 | 0.0710718
@ | p51_tree.D_CD_83_ELLt 0.0637116
@ | p51_tree.D_CD_83_NDK 1 0.0339039
@ | p51_tree.D_CD_84_84ZR0OB5t | 0.0958528
@ | pS1_tree.D_UG_94_94UG1141t | 0.179702
O | p51_tree Nodei t 0.0792717
@ | p51_tree.Node10.t 0.00754076
O | pS1_tree Nodez t 0.0132454
@ | p51_tres.hode3.t 0.0355593
O | p51_tree Node9.t 0.0171837

Log Likelihood = -3327.25. Parameter Count = 14, A

Fig. 6.5. Graphical parameter display.

appropriate icon. The single global parameter is the transversion:transition
ratio, k, of the HKY85 model and is labeled as RT_Gene_Shared TVTS. By
default, each shared parameter is prefixed with the name of the data partition
to which it is attached (RT_Gene in this case). While at first the names of
local parameters may appear confusing, HyPhy uses a uniform naming scheme
for all local model parameters: tree name.branch name.parameter name. For
instance, pb1_tree. B_LFR_83_HXB2.t refers to a local parameter ¢ along the
branch ending in B_.FR_83_HXB2 in the tree p51_tree. Leaf names in the tree
correspond to sequence names in the data file, while Node N, where N is an
integer, are default names given to unlabeled internal nodes in the tree. (Users
can give internal nodes custom names as well.) Parameter estimates can be
exported in a variety of formats by invoking FILE:SAVE.

Let us now open a tree window to visualize the evolutionary distances
between HIV-1 sequences in the example by double clicking on the tree row
in the parameter table. HyPhy will open a tree viewer panel, as shown in
Figure 6.6. A common measure used to assess evolutionary distances is the
expected number of substitutions per site, F,;, along a particular branch,
equal to the weighted trace of the rate matrix:

Esub = *tzﬂijj' (61)
J
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The HyPhy tree viewer automatically scales branches on FEy, although the
scaling may be changed by the user.

e 06 Tree p51_tree

Tree Style Rectangular %

Branch Scaling E[Substitutions’ | ¢

EN E4Y bW i
Zoom/Rotate ""Eﬁmiti
Q4@

[0.01_|002 003 |0.04 |0.05 [0.06 |0.07 [|0.0803035

L C0_23_ELI
MNoded [(0.0105016
D_CD_S3_NDK

D G_24_24UG1 14

D_CD_24_24ZR0E5

BUS_22_RF

E_FR_23_HxE2

E_IS_36_JRFL

E_US_30_wEAU160
. Depth = 5. Leaf Count = 8. Ln-likelihood = -3327.25

y
Fig. 6.6. HyPhy Tree Viewer for p51.nex, scaled on the expected number of sub-

stitutions per site inferred using the HKY85 model, with an example of a tooltip
branch-length reporter.

Confidence intervals

All parameter estimates will be affected by sampling variations of various mag-
nitudes. For instance, substitution-bias parameters often have large variances
relative to those of branch-length estimates. HyPhy allows the user to ob-
tain confidence intervals using the asymptotic normality of MLEs. Likelihood
theory states that MLEs of model parameters are distributed asymptotically
as multivariate normal around the true parameter values, and the covariance
matrix of the normal distribution can be estimated by inverting the observed
Fisher information matrix
@_é)

L\ [ 0%log L(O|D,T)
1(9)_< 06,00,
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The Fisher information matrix measures the curvature of the log-likelihood
surface. Flat surfaces around the maximum do not inspire high confidence in
estimated parameter values, while steep surfaces lead to sharp estimates.

HyPhy can be instructed to construct the covariance matrix as well as the
confidence intervals for each parameter based on the estimated variance of
the normal distribution, either for every parameter or for selected parameters
(conditioned on the values of others). Select all the parameters in the table by
choosing EDIT:SELECT ALL and then LIKELIHOOD: COVARIANCE AND CI,
and set “Estimation Method” to “Asymptotic Normal[finer]” in the ensuing
dialog box. “Crude” and “Finer” estimates differ in how HyPhy computes
the Fisher Information Matrix (which must be done numerically because an-
alytical derivatives of the likelihood function are not available in general).
HyPhy will open two chart windows—the 95% confidence interval window for
all selected parameters and the covariance matrix.

ane Asymptotic Normal 95% € For p51_LF ‘an8 Likelihood Profile C1 For p5 1_LF [chid level 0.95]

[ s cres | o como . Emn
- -
L

Fig. 6.7. HyPhy confidence interval estimates using (A) asymptotic normality of
MLEs and (B) Profile plots using 95% levels of x3.

Likelihood profile

Confidence intervals based on asymptotic normality rely upon many assump-
tions that may be violated for short alignments or parameter-rich models. For
example, such confidence intervals are always symmetric about the maximum
likelihood estimate, and if the likelihood surface is skewed around the MLE,
such intervals may be a poor representation of the real variance of parameter
estimates. A second approach to determining statistical support for a parame-
ter value estimate is to employ likelihood profile confidence intervals, obtained
by inverting a likelihood ratio test.

Suppose we wish to compute a confidence interval C'I* of level a for a
single model parameter #;. A common method is first to fix all other model
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parameters 0;/,i # i at their maximum likelihood estimates. We can now
think of the likelihood function as a function of a single parameter 6,. Thus,
a restricted version of the full likelihood function is

Clearly, the maximum likelihood estimate for 6; using the restricted likelihood
is the same as that given by the full likelihood function: 0;.

Consider two hypotheses: Hg : 0; = x versus H 4 : 0; # x. These hypothe-
ses can be tested using the restricted likelihood function and a one degree of
freedom likelihood ratio test (assuming that 6/ is not on the boundary of the
parameter space)

2[log L(6;) — log L()] ~ x3.

If éj is on the boundary, then the asymptotic distribution changes to

U Xitxd
7

Using this observation, a confidence region can be defined as all those
values x for which we fail to reject Hy (i.e., all those x for which the likelihood
ratio statistic is less than the « percentile of the corresponding x? or mixture
distribution). If we also assume that the likelihood function is monotone (has
no local maxima), then we find the boundaries of the confidence interval by
tracing the log-likelihood function plot until the desired difference from the
maximum is obtained in both directions (see Figure 6.8).

There are a couple of issues with this approach: (i) we assume sufficient
data for the asymptotic likelihood distributions to be applicable, which may
fail for short alignments or models that are too parameter-rich; and (ii) we
are obtaining the confidence intervals for one parameter at a time rather
than a confidence region for all parameters (which is mostly due to technical
difficulties with finding such a region when there are many model parameters),
thus ignoring covariation among parameter estimates.

The first issue may be resolved, to an extent, by accepting or rejecting Hy
using a non-LRT criterion, such as AIC [1]. The procedure is exactly the same,
but the cutoff level is no longer determined by the asymptotic x? distribution
but rather by an information-theoretic parameter addition penalty. For AIC,
2[log L(6;) — log L(z)] < 2 would place z in the confidence interval.

Also, to see how reasonable the asymptotic normality assumption is, one
could check whether a quadratic approximation to the log-likelihood holds
well. The quadratic approximation for the log restricted likelihood around the
maximum likelihood estimate 6; can be derived from a Taylor series expansion:

(«-6)"

Because 0; maximizes the likelihood function, the first derivative term van-
ishes, and we have the desired quadratic approximation:

2[log L(6;) — log L()]

N (:r - él) + Czl:?logL(Gi)

D tog Z(6:)

log L(z) ~ log L(0;
og L(z) ~ log L( )+d9i

0;
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(a4

0;

2
log L(z) — log L(6;) ~ % log L(;)

By plotting the likelihood profile and the quadratic approximation on the
same graph, one can see how well the x? approximation to the likelihood
ratio test will work. HyPhy offers each of the confidence interval estima-
tion techniques above via LIKELIHOOD:COVARIANCE AND CI and LIKELI-
HOOD:PROFILE PLOT from the parameter table window.

L_Max-L

0. |4r 0.1 5‘
Likelihood Profile

T
0.08

Cutoff
-2 Faa 4 LY \\
) //, \
// Quadratic Approximation \
-It/

Fig. 6.8. Likelihood profile plot, with a quadratic approximation and a 95% x?
cutoff level.

RT _Gene_Shared TVTS

Saving the analysis

HyPhy can store all the information needed to recreate the analysis we just
performed in a single NEXUS file. This feature can be invoked by switching
back to the data panel, selecting FILE:SAVE, and choosing the format option
to include the data in the file. Let us save this simple analysis as p51_HKY85.bf
in the “Saves” directory of the HyPhy installation.

6.2.2 Local Branch Parameters

Almost all treatments of likelihood analysis of molecular sequence data as-
sume that there is only one parameter per branch in the phylogenetic tree—
branch-length—and that other model parameters are shared by all branches.
However, it may be often be desirable to relax this assumption. For example,
to test whether a group of branches (such as a single lineage or a clade) have
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different substitution process parameters than the rest of the tree, it is neces-
sary to compare likelihoods of constrained and unconstrained models. HyPhy
provides a general mechanism for defining an arbitrary number of branch-
specific and shared model parameters. Consider the HKY85 model discussed
in the previous section. Rewrite the rate matrix as

A C G T

A * ﬂ’lrc ang 671’7“

_C| PBra *  f[rg amr

Q= G| ara Brg * Brr
T \pra ame Prc *

This may seem like a different matrix altogether, but if one sets ¢ = a and
Kk = B/a, we return to the previous parameterization if 5 > 0. In fact, this
new parameterization allows the transition rate («) to be 0 and transversion
rate () to be nonzero, whereas the first (more common) parameterization
does not. Even more importantly, we can now let each branch have a separate
« and [, which is equivalent to allowing every branch to have its own transi-
tion/transversion ratio. We declare such a model to be fully local, as opposed
to the fully global model of the previous section. Obviously, there is a range of
intermediate models where some of the branches share transition/transversion
ratios while others are free to vary.

To specify the fully local HKY85 model in HyPhy for our example data
set, all that must be done differently is to select “Local” in place of “Global”
in the “Parameters” column of the analysis setup table in Figure 6.4. You can
either start a new analysis from scratch or continue from where we left off
in the global analysis of the previous section. In the latter scenario, HyPhy
will display a warning message because changing substitution models causes
a fundamental change in the likelihood function (i.e., a different set of para-
meters and rate matrices). Next, invoke LIKELIHOOD:BUILD FUNCTION and
observe that the resulting likelihood function has 26 local parameters (two
per branch, as requested). Upon selecting LIKELIHOOD:OPTIMIZE, a para-
meter table is once again shown, and we observe that the log-likelihood has
improved to —3320.84. A quick glance at the likelihood score improvement
of seven units for 12 additional parameters suggests that there is insufficient
evidence favoring the fully local model over the fully global model.

The rate parameter names in the parameter table for this analysis end
with “trst” and “trsv,” which hopefully mean “transition” and “transversion.”
HyPhy allows one to look at the rate matrix and map parameter names to
what they actually stand for in case parameter names are less descriptive.
To see how that is done, let us open the “Object Inspector” window (use
WINDOW:OBJECT INSPECTOR on the Mac and FILE:OBJECT INSPECTOR in
Windows). In the newly opened window (Figure 6.9(a)), select “Models” from
the pulldown option list, and scroll through the rather long list of models until
you find one in bold (meaning that this model is currently used in an active
likelihood function) named “RT_Gene HKY85 local.” Again, the name of the
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data partition is incorporated in the model identifier for easy reference. Double
click on that model and examine the rate matrix as shown in Figure 6.9b. The
equilibrium frequencies for this model () are the actual proportions of A, C,
G, and T in the RT gene alignment, and “trst” are indeed the rates for A <> G
and C' « T substitutions, while “trsv” are the rates for all other substitutions.
By default, HyPhy will automatically multiply rate matrix entries by the
appropriate 7, and hence there is no need to include them in the rate matrix
explicitly.

eoeée Object Inspector

8oe Model untitled
Parameters: [igl Tm User Defined Vector I+
|Equilibruim Fregs. A 0 G T

A | 2.404451 - trav trat trav

E B.166208 trav - trav trat

6 |o.z0wee trat trav * trav
MGS4_HICTES_Sné_2Min_Discrete_Universal T |e.z19697 trav trat trav *
MG _HEY_Jxt_GeneWrkSyn

Purines

i 1D [ SR EAULO] A 1 R oe Exressionbere

Empty celection

a b

Fig. 6.9. (a) Models in the “Object Inspector”; (b) HKY85 local model for the RT
gene.

Let us now open the tree window for the local model (Figure 6.10(a)).
Recall that branch lengths are given by (6.1). The tree looks very similar to
the global HKY85 tree from Figure 6.6. However, a more interesting com-
parison would be to see if the transition and transversion ratios vary from
branch to branch. HyPhy allows scaling of the tree display on any local model
parameter— “trst” and “trsv” in this instance.

Double click on the tree name in the parameter table once again to open
another instance of the tree window—very useful for side-by-side compari-
son. Scale one of the trees on “trst” and another on “trsv” (Figure 6.10(b,c)).
Notice that while the shapes are still similar, branch lengths are not quite pro-
portional between trees, as they would be if all branch transition/transversion
ratios were the same.

As a matter of fact, the HyPhy tree viewer allows scaling on any function
of model parameters. Let us define the transversion/transition ratio parame-
ter. For every branch, it is simply ratio = trsv/trst. To define this scaling
parameter, switch to a tree window, select all branches (EDIT:SELECT ALL),
and choose TREE:EDIT PROPERTIES. The dialog box that appears shows all
available local branch parameters. Click on the “Add User Expression” button
(the + icon), type in the formula for the expression, rename it “ratio,” and
select “OK” (Figure 6.11). HyPhy has added “ratio” to the list of local para-
meters (not estimable parameters but rather functions of other parameters).
You can view the value of each branch ratio in the parameter table and scale
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Fig. 6.10. RT gene tree under HK'Y85 local model scaled on (a) expected number
of substitutions per site, (b) transition rates, (c) transversion rates, (d) transver-
sion/transition ratios.

the tree on the transversion/transition ratio (Figure 6.10(d)). The differences
in branch-to-branch ratios are quite striking.

The HyPhy tree viewer can automatically label each branch of the tree
with any function of branch-model parameters. As an example, we will label
each branch with the number of transitions F; and transversions F, per site,
expected to occur along that branch. For the HKY85 local model,

E; =20t(mamg + monr), E, =2at[(ma + 7e)(me + 7))

Note that F; and E, add up to the total branch length and are linear functions
of the rates. Substituting the actual values of 7 for our data set (Figure 6.9(b)),
we get

E; = 0.2425836t, E, = 0.474001at.

Employ the same process we did for adding the ratio parameter, and define
E;, = 0.242583 % trst and E, = 0.474001 * trsv. Now use TREE:BRANCH
LABELS:ABOVE BRANCHES and TREE:BRANCH LABELS:BELOW BRANCHES
to label each branch with E; and E,, adjust fonts and alignments to your
liking, and check “Scale tree by resizing window” in the dialog opened with
TREE: TREE DIsPLAY OPTIONS. The final display should look like Figure 6.12.
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Fig. 6.11. New scaling parameter dialog.
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Fig. 6.12. RT tree scaled on expected number of substitutions per site and labeled
with the expected number of transitions and transversions per site (above and below,
respectively).

6.2.3 Multiple Partitions and Hypothesis Testing

Early attempts to model molecular evolution of protein-coding sequences used
the observation that the evolution in the first and second positions of a codon
differed markedly from that at the third position. Indeed, for the universal
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genetic code, every substitution in the second codon position is nonsynony-
mous (i.e., it changes the protein encoded by the codon). For the first position,
all but eight possible (sense) substitutions are nonsynonymous. In contrast,
at the third position, 126 out of 176 substitutions are synonymous. Because
random nonsynonymous substitutions are likely to be deleterious, it is often
observed that the substitution rate for the third position is different (typically
much higher) than those in the first and second positions. Our next task is
to define a HyPhy analysis that treats the first and second codon positions
as one data partition and the third codon position as another, and then fit a
collection of models to the data. We will continue using the HIV-1 p51 subunit
of the RT gene data set from p51.nex.

First, open the data panel with p51.nex and select all the sites in the
alignment. Next, invoke one of the numerous data-filtering tools in HyPhy-
—the combing tool—by clicking on the comb tool button in the data panel
(Figure 6.13). To select the first two positions in every codon, we need a comb
of size 3 with first and second sites selected and the third omitted. In the
combing dialog, set the size of the comb to 3 and check the boxes next to
positions 1 and 2. Repeat the process to define the partition with every third
codon position (make sure that the first partition is not highlighted in the
analysis setup table while you are applying the second comb; otherwise HyPhy
will comb the partition again, effectively selecting every third column in the
data partition of the first and second positions we have just created). Rename
the partitions to “First_Second” and “Third”, respectively. Assign the same
tree topology to both data partitions, the HKY85 model, global parameter
options, and equilibrium frequencies collected separately from each partition.
In the end, the data panel should resemble the one in Figure 6.13.

806 DataSet p51

78 e 1c

@ '( Can(el\.
Skl

Nucleotide Data. 1320 gives (118 distinct patterns), 8 species. Current Selection:1-1320

Fig. 6.13. Data panel with two data partitions and a comb filter dialog.

When we build the likelihood function, HyPhy prints out a message

Tree topology pb5l_tree was cloned for partition Third.
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Fig. 6.14. HIV-1 RT scaled on the expected number of substitutions per site for
(a) first and second codon positions and (b) third codon position.

It is important to understand that while both partitions share the tree topol-
ogy, for HyPhy a tree means both topology and models/parameters. The
two partitions need to have two trees with independent branch lengths and
transversion/transition ratio parameters, k12 and k3, assigned the names
First_Second_Shared_TVTS and Third_Shared_-TVTS by HyPhy.

After the models are fit to the data, we observe that both the shapes of
the trees (Figure 6.14) and the transversion/transition ratios (0.198 versus
0.067) differ quite a lot between the partitions.

A careful reader might correctly point out that the analysis we have just
performed could have been done by fitting HKYS85 to each of the partitions
separately. However, we will now illustrate what the joint likelihood function
of both partitions can offer in terms of hypothesis testing.

Simple hypothesis testing

Consider the null hypothesis Hy : k12 = k3 versus the full-model alternative
Hy @ k12 # k3. The analysis we just performed was for the full model, and
before proceeding with the definition of the constraint in Hy, the MLEs for
H 4 must be saved. To do so, click on the pulldown menu in the parameter
table (Figure 6.4) and choose SAVE LF STATE. A collection of parameter
MLEs and constraints constitute a state (i.e., a hypothesis). Name the state
“Full Model,” and choose SELECT AS ALTERNATIVE from the same pulldown
menu.

Now, the constraint for the null hypothesis must be defined, and a new set
of MLEs for all independent model parameters must be calculated. To define
the constraint, select both transversion/transition ratio parameters (shift-click
to select multiple rows) and click on the constraint (second) button. Note
that the parameter table updated to reflect that one of the ratios is no longer
independent of the remaining parameters. Next, we calculate a new set of
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parameter MLEs by optimizing the likelihood function anew. Not surprisingly,
Hy : k12 = k3 = 0.11, which is between the independently estimated values.

Save the set of MLEs for Hy as “Constrained” and then choose SELECT
AS NULL, which instructs HyPhy to treat “Constrained” as the null hypoth-
esis. With all the components of a hypothesis test in place, choose LRT
from the same pulldown menu. HyPhy computes the likelihood ratio statistic
2 (log L4 — log Lo) and a p-value based on the asymptotic x? distribution with
(in this case) one degree of freedom:

Likelihood Ratio Test
2xLR = 12.5286
DF = 1
P-Value = 0.000400774

The likelihood ratio test strongly rejects the null hypothesis of equal transver-
sion/transition ratios between partitions.

Parametric bootstrap

The x? distribution is the asymptotic distribution for the LRT statistic, and
one would be well-advised to realize that it may not always apply directly.
However, one can always verify or replace the results of a x2 test by the para-
metric bootstrap (2, 4]. HyPhy has a very general way of simulating sequence
alignments parametrically — it can do so transparently for any likelihood func-
tion using current parameter values. For the purposes of this example, HyPhy
simulates 1000 8-sequence alignments with 1320 sites each, using the model
in the null hypothesis (i.e., constrained ratios). HyPhy then fits the models
in Hy and H 4 to every simulated data set and tabulates the likelihood ratio
test statistic. The resulting LRT distribution may then be used for obtaining
significance values for the original LRT value or for verifying how well the
LRT statistic follows the asymptotic x? distribution.

The parametric bootstrap function can be accessed via the same pulldown
menu in the parameter table window. Enter the number of data replicates to
be simulated and choose whether or not HyPhy should save data and para-
meter estimates for every replicate. For the current data set, 1000 replicates
should take 20 — 30 minutes on a typical desktop computer. HyPhy opens a
summary bootstrap table and adds simulated LRT statistic values as they
become available, as well as keeping tabs on the current p-value. Replicates
with larger values of the LRT than the original test are highlighted in bold.
After bootstrapping has finished, you may open a histogram or cumulative
distribution function plot for the LRT statistic, as shown in Figure 6.15. Your
simulation results will differ from run to run, but you should still obtain a p-
value very close to the asymptotic x? p-value and an LRT histogram mirroring
the shape of a x? distribution with a single degree of freedom.
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Fig. 6.15. (a) Simulated density for the likelihood ratio statistic and (b) bootstrap-
ping window example.

Relative ratio test

It is clear from Figure 6.14 that the trees on the first and second positions 712
have much shorter branch lengths than the tree for the third position 73, which
is to be expected. However, apart from a few internal branches, the overall
shapes of the trees remain somewhat similar, suggesting that perhaps the only
fundamental difference between nucleotide level substitution processes is the
amount of change for the entire tree, while relative branch lengths Fg,p(b;)
are the same for both trees. Mathematically, this constraint can be expressed
as
Eoup(bi|Ti2) = RrEsup(b;|Ts), for all branches b;,

where the parameter Ry is the relative ratio. As we saw earlier, branch lengths
for HKYS85 are linear functions of the branch-length parameter t; thus it is
sufficient to constrain ¢ parameters to be proportional.

HyPhy has a built-in tool for easy specification of relative ratio con-
straints [13, 8] on trees or subtrees. To carry out the relative ratio test, select
two trees (or two branches that root the subtrees; see below) and click on the
relative ratio button (second from the right in the toolbar) in the parameter
table. Name the ratio parameter, and then reoptimize the parameters. Use the
technique from the previous example to save the full and constrained models
and to carry out the likelihood ratio test using either the asymptotic distribu-
tion or the parametric bootstrap. The result from the chi-squared distribution
is:

Likelihood Ratio Test
2xLR = 24.0092
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DF = 12
P-Value = 0.0202825

The relative ratio hypothesis can therefore be rejected at the 0.05 level but not
at the 0.01 level. Application of the parametric bootstrap yields a comparable
p-value.

Saving a complete analysis.

HyPhy is capable of saving an analysis and every hypothesis in a single file.
Invoke FILE:SAVE from the data panel, and choose the format that includes
sequence data in the resulting file dialog. If you later open the saved file by
selecting FILE:OPEN:OPEN BATCH FILE, the analysis and all the hypotheses
you have defined will be available.

6.2.4 Codon Models

The natural unit of evolution for stochastic models of protein-coding sequences
is a codon. By modeling the substitutions on the level of codons rather than
nucleotides, inherently different processes of synonymous and nonsynonymous
substitutions can be handled adequately. By expanding the state space for
the substitution process from four nucleotides to 61 nonstop codons in the
universal genetic code, the computational cost increases dramatically, both
when evaluating transition probability matrices and calculating the likelihood
function itself. Modern computers can handle the added burden quite easily,
though.

Consider a codon-based extension to the HKY85 model, which is similar
to the model in [7]. We dub it MG94xHKY85_3x4. The 61 x 61 rate matrix
for this model, which gives the probability of substituting codon x with codon
y in infinitesimal time, is

am,, T —y l-step synonymous transition,
KTy, , © — y l-step synonymous transversion,

Quy(a,B,k) = Bm,,, x— y l-step nonsynonymous transition, (6.2)
pKTp,, © — y l-step nonsynonymous transversion,
0, otherwise.

As before, & is the transversion/transition ratio. The parameter o denotes the
synonymous substitution rate, while g provides the nonsynonymous substi-
tution rate. The ratio of these two values, w = 3/a, can be used to measure
the amount of selective pressure along a specific branch. The value m,  is
the frequency of the “target nucleotide” for the substitution observed in the
appropriate codon position in the data set. For instance, if = ATC and
y = AGC, then m, would be the frequency of nucleotide G observed at sec-
ond codon positions in the alignment. The model only allows for one instan-
taneous nucleotide substitution between codons. For instance, ATC — AGG
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is not allowed to happen by two concurrent nucleotide substitutions because
such events have negligibly small probabilities. However, such changes are al-
lowed via multiple substitutions, as evidenced by the fact that all transition
probabilities (entries in the matrix e®*) are nonzero for ¢ > 0.

The specification of the model is completed by providing the equilibrium
frequencies of the 61 codons. For a codon composed of three nucleotides i, j, k

123
7T,L<7Tj’/Tk

1.2_3 1.2.3 1.2,.3°
1 — mpmamy — ey — TpTETy

Tijk = (6.3)
where 7% denotes the observed frequency of nucleotide n at codon position k.
The normalizing term accounts for the absence of stop codons T'AA, TAG,
and TGA from the state space and the model. Note that this model mixes
local (« and ) and global (k) parameters.

MG94xHKY85_3x4 applied to HIV-1 integrase gene

Following are the steps needed to apply a codon model to integrase _BDA.nex,
found in the Examples directory of HyPhy standard distribution. This data
file contains the integrase gene of six Ugandan subtype D, three Kenyan sub-
type A, and two subtype B (Bolivia and Argentina) HIV-1 sequences sampled
in 1999. The integrase gene is relatively conserved and is appropriate for com-
parison between subtypes.

1. Open the data file via FILE:OPEN:OPEN DATA FILE.

2. Select all the data and define a partition—it will be created as a nucleotide
partition at first.

3. Switch the partition type to “Codon.” HyPhy will display a partition prop-
erties box. Rename the partition “Integrase,” but keep all other default
settings.

4. Assign “Integrase_BDA _tree” topology, “MG94x HKY85_3x4” model, and
“Local” parameters option.

5. Build (LIKELIHOOD:BUILD FUNCTION) the likelihood function. Note that
38 local parameters (a and [ for each of the 19 branches) and one global
parameter (transversion/transition ratio) have been created.

6. Optimize (LIKELIHOOD:OPTIMIZE) the likelihood function. It should take
a minute or so on a desktop computer. Open two tree displays, and scale
one on synonymous rates and the other on nonsynonymous rates. Notice
the radical differences between the trees, both in lengths and shapes, as
shown in Figure 6.16.

Molecular clock tests

When reversible models of evolution are used, the rate parameters cannot be
identified separately from the time parameters because only their products are
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Fig. 6.16. HIV-1 integrase tree scaled on (a) synonymous rates a and (b) nonsyn-
onymous rates (3.

estimable. A set of sequences is said to have evolved under a molecular clock
if the expected amount of evolution (measured in expected numbers of sub-
stitutions) from the most recent common ancestor to each of the descendent
sequences is the same. Mathematically, we constrain the length of the paths
between each sequence and the most recent common ancestor in the phylo-
genetic tree to be the same. For the tree in Figure 6.17, a molecular clock
would be imposed by the following two constraints: to = t; and t3 = t1 + t4.
Note that imposing a molecular clock typically requires a rooted tree. Thus,
it is desirable to have a separate outgroup sequence (or groups of sequences)
that can be used to establish the root of a tree. For instance, in the HIV-1
integrase example (Figure 6.16), subtype A sequences form an outgroup to
both B and D subtype clades.

Fig. 6.17. Example of a molecular clock constraint.

For coding sequences, it is often useful to impose molecular clocks on
synonymous substitutions only. Synonymous substitutions are assumed to be
relatively free of selective constraints, whereas nonsynonymous substitutions
will be heavily influenced by purifying and positive selection. HyPhy provides
an easy way to impose molecular clock constraints on a subtree using some
or all model parameters. For MG94x HKY85_3x4, it can be shown that the
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expected number of substitutions per site on a branch has the form

Esup = talfi(m) + £ fa2(m)] + 1891 (7) + rga(m)],

where f1, fa2, g1, and go are functions determined by the nucleotide compo-
sition of the alignment. The first term in the sum corresponds to the con-
tribution of synonymous substitutions and the second to the contribution of
nonsynonymous substitutions. Since each is a multiple of the corresponding
substitution parameter (« or 3), imposing additive constraints on « and (3
will result in additivity of the corresponding expected substitution quanti-
ties. Note again that the time parameter ¢ is not estimable alone, and the
parameters actually being estimated (and constrained) are ot and [t.

Thus, three types of molecular clocks may be tested for local codon models:
(i) synonymous only, (ii) nonsynonymous only, and (iii) full (both synonymous
and nonsynonymous) rates.

Local clock tests on HIV-1 integrase

We now address the question of which, if any, of the three types of mole-
cular clocks are supported for the D-subtype clade. We assume that the
MG94xHKY85 model has been fit to the data as described above.

1. Save the likelihood function state as “Full Model.” Select it to be the
alternative hypothesis for our tests.

2. Select the branch that is the most recent common ancestor of the D clade
in the tree viewer. Invoke TREE:SHOW PARAMETERS IN TABLE. This
action will locate two rows in the parameter table, with the parameters
attached to that branch—“Node9.” This method is a general way for
locating branch-specific model parameters in the table quickly—it also
works for a multiple-branch selection. Highlight one of the two identified
TOWS.

3. Click on the molecular clock button (fifth from the left) in the toolbar of
the parameter table. A pulldown menu will appear with the parameters
available for the molecular clock constraints. Choose to constrain “syn-
Rate” for the synonymous rate clock.

4. Optimize the likelihood function, save the new likelihood function state
as “Synonymous Clock,” and set it to be the null hypothesis. Perform
the likelihood ratio test. The test will report the likelihood ratio statistic
of 9.52, which yields the p-value of 0.09 using the asymptotic x? with 5
degrees of freedom. This value is reasonably close to rejecting the molecu-
lar clock hypothesis, so a bootstrap p-value verification may be desirable.
For codon data, bootstrapping is a time-consuming process, so you may
only choose to do 100 replicates. Our simulation yielded a p-value of 0.14,
failing to reject the molecular clock.

5. Select “Full Model” from the pulldown menu in the toolbar of the parame-
ter table, and then go back to step 3 and repeat steps 3 and 4, constraining
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nonsynonymous rates first and then both rates. Likelihood ratio tests fail
to reject either of the clocks.
6. Save the analysis from the data panel.

6.2.5 More General Hypothesis Testing

The hypotheses of the previous section are all examples of nested hypothe-
ses, which can be obtained by constraining some of the model parameters in
the more general hypothesis to reduce it to a particular case, the null hy-
pothesis. Often, interesting biological questions cannot be framed as nested
hypotheses. For example, the question of whether a particular phylogeny with
certain taxa constrained to be monophyletic is significantly different from the
unconstrained phylogeny is a nonnested question. Another example would be
determining which of two competing models better explains the data when
the models are nonnested. HyPhy includes a rather general mechanism for
nonnested hypothesis testing based on the parametric bootstrap [2, 4]. All
one needs to do is to define competing models (by models, we mean more
than just the substitution matrices) on the same alignment and then test by
parametric bootstrapping.

Consider the example data set of the p51 subunit of HIV-1 reverse tran-
scriptase from the previous sections. As an illustration of testing nonnested
hypotheses, we will consider whether there is enough evidence to suggest that
the JTT model describes the data better than the Dayhoff model of amino
acid evolution.

First, we must convert a codon alignment found in p51.nex into amino
acids.

1. Open the data file p51.nex, select all alignment columns, and create a
nucleotide partition.

2. Change the data type of the partition to “Codon,” obeying the universal
genetic code.

3. Select DATA:ADDITIONAL INFO: AMINO ACID TRANSLATION. Choose “All”
in the ensuing dialog box. HyPhy will translate all the sequences in the
codon partitions into amino acids, create a new data set, and open a new
data panel displaying all the newly created amino acid sequences.

4. Let us now save the amino acid alignment to a separate data file. In the
newly opened data panel with the amino acid alignment, create a par-
tition with all the alignment sites and, with the partition row selected,
click on the “Save Partition To Disk” button. Choose the “NEXUS Se-
quential[Labels]” format in the file save dialog, and save the file as p51.aa
in the “data” directory of the HyPhy distribution.

Second, we evaluate the likelihood under the null hypothesis Hy: Dayhoff
model:

1. Open the amino acid alignment p51.aa, select all alignment columns, and
create a protein partition named “p51.”
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2. Assign the included p51 tree topology and the “Dayhoff” substitution
model to the “p51” partition.
3. Build and optimize the likelihood function.

The null model has 13 estimable parameters and yields a log-likelihood of
—2027.28.
Next, we set up the alternative hypothesis, H4: JTT model:

1. Open the amino acid alignment p51.aa, while the previous analysis is still
open. We need to keep both analyses in memory at the same time. Note
how HyPhy renamed the new data panel “p512” to avoid a naming conflict
with an already open window.

2. Assign the tree topology found in the data file and the “Jones” substitu-
tion model to the data partition.

3. Build and optimize the likelihood function.

The alternative model also has 13 adjustable parameters and yields a log-
likelihood of —1981.61.

The JTT model provides a higher likelihood value, but since the models are
not nested, we cannot simply compare the likelihoods to determine whether
the difference is statistically significant. We can, however, use the parametric
bootstrap to find a p-value for the test without relying on any asymptotic
distributional properties.

1. Switch to either of the data panels, and invoke LIKELIHOOD:GENERAL
BoorsTrAP. HyPhy will display a bootstrap setup window, which is very
similar to the window we have seen in nested bootstrap examples.

2. Set the appropriate null and alternative hypotheses by choosing the name
of the data panel (“p51” should be the null, and “p512” should refer to
the alternative, if you have followed the steps closely).

3. Click on the “Start Bootstrapping” button, select PARAMETRIC BOOT-
STRAP from the pulldown, and enter 100 for the number of iterates.

4. HyPhy will perform the requested number of iterates (it should take five
or ten minutes on a desktop computer), and report the p-value. In our
simulation, we obtained a p-value of 0, suggesting that the data are better
described by the JTT model.

6.2.6 Spatial Rate Heterogeneity: Selective Pressure and
Functional Constraints

It is a well-documented fact that evolutionary rates in sequences vary from
site to site. Good substitution models should be able to include such rate
variation and offer ways to infer the rates at individual sites. Consider again
the MG94x HKY85_3x4 codon model, but let us modify it to allow each codon
s to have its own synonymous () and nonsynonymous ([;) rates. The rate
matrix for codon s must be modified as follows:
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QsTp,, 2« — Yy l-step synonymous transition,
QsKTp,, T — y l-step synonymous transversion,

Quz.y = BsTn,, 2 — y l-step nonsynonymous transition,
BskTn,, * — y l-step nonsynonymous transversion,
0, otherwise.

The most general estimation approach would be to estimate ag and [,
separately for every codon, but that would require too many parameters and
result in estimability issues. Another idea, first proposed in [11], is to treat the
rate at a particular site as a random variable drawn from a specified distribu-
tion. Most work of this sort has considered only a single variable rate for each
site, and the distribution of those rates has usually been assumed to follow a
gamma distribution. We now extend the MG94xHKY85_3x4 model to have
synonymous and nonsynonymous rates at codon s described by the bivariate
distribution Fy, (e, 8s) whose parameters n are either given or estimated. The
likelihood for an alignment with S sites, tree T, and the vector @ of all model
parameters can be written as

S
LO|T,D) = [[ E[L(OIT, Dy, 05 = a, B = b)].

s=1

The expectation is computed using the distribution specified by Fy (o, 5).
Site likelihoods, conditioned on the values of as and (s, may be evaluated
using Felsenstein’s pruning algorithm [3]. Unless F},(as, O5) specifies a discrete
distribution with a small number of classes, the expectation is computationally
intractable. However, the approach of discretizing the continuous distribution
of rates to obtain a computationally tractable formulation was introduced in
[12].

If codon s in the alignment is following neutral evolution, then we expect
to infer (s &~ a. For sites subject to functional constraints, nonsynonymous
mutations are almost certain to be highly deleterious or lethal, leading to
purifying selection and s < as. If 85 > ag, the site s is likely to be evolving
under positive selective pressure or undergoing adaptive evolution.

In contrast to existing methods that simply have sites varying according
to their rates, HyPhy allows the user to identify multiple parameters that are
free to vary over sites. In the following example, we allow both synonymous
and nonsynonymous rates to be variable across sites, leading to the possibility,
for instance, that a particular site might have a fast nonsynonymous rate but
a slow synonymous rate. We will consider the case of MG94xHKYS85_3x4
applied to a codon data set with «, and 3 sampled independently from two
separate distributions. Because only products of evolutionary rates and times
can be estimated, we set the mean of the distribution of a; to one. Widely
used models of Nielsen and Yang [9] assume that o = 1 for every site s; thus
our approach is a natural extension. For our example, we choose to sample a
from a gamma distribution 7(cs; pte) with mean 1 and shape parameter g,
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discretized into four rate classes by the method of [11]. The nonsynonymous
rates s are assumed to come from a mixture of a general  distribution and
a point mass at 0 to allow for invariable sites (REF). The density of this
distribution is

Bs ~ R [Pléo(ﬁs) + (1 - PI)’Y(ﬁs;:U’ﬁ)] ) (64)

where P is the proportion of (nonsynonymous) invariable sites, and R is the
mean of the distribution and is the ratio of the means of the nonsynonymous
and synonymous distribution (similar to dN/dS). The density of the unit mean
gamma distribution with shape parameter pg is (s, 113). The gamma portion
of the distribution is discretized into three rates, and, with the invariant rate
class, the total number of nonsynonymous rate categories is four.

To perform a maximum likelihood fit of this model in HyPhy we follow
these steps:

1. Open the data file p51.nex.

2. Select all data, create a single partition, and change its data type to codon
and its name to RT_Gene.

3. Assign the tree and the model “MG94xHKY85x3_4x2_Rates” with “Rate
Het” model parameters and four (per parameter) rate categories. The
model we selected implements the extension to the MG94xHKY85_3x4
model we have just discussed.

4. Build the likelihood function and optimize it. Depending on the speed of
your computer, this may take up to an hour.

Parameter estimates returned by the analysis are as follows:

RT_Gene_Shape_alpha = 1.637
RT_Gene_Shape_beta_Inv = 0.708
RT_Gene_Shape_beta =1.174
RT_Gene_Shared_DNDS = 0.527

HyPhy can also display the discretized distributions along with their con-
tinuous originals. This feature can be accessed via the pulldown in menu
category variable rows in the parameter table (Figure 6.19). Density plots
show the continuous density curve, the table of discrete rate classes, and their
visual representations. Dotted lines depict the bounds for the intervals that
each rate class (a solid vertical line) represents.

It is immediately clear that synonymous rates are not constant across
sites. Indeed, the coefficient of variation for ag, which is equal to 1/ VH,, 18
estimated to be 0.61, whereas we would expect a much smaller value were the
synonymous rates equal among sites.

An especially interesting task is to determine which sites are conserved and
which are evolving under selective pressure. An approach proposed in [14] is
to employ the empirical Bayes technique. To do so, we fix all model parame-
ter estimates (more on the validity of that later) and compute the posterior
probability pf ; of observing rates a; and b; at site s. HyPhy can compute
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Fig. 6.18. Synonymous and nonsynonymous distributions for the analysis of the
HIV-1 RT gene

the conditional likelihoods for every site (choose LIKELIHOOD:CATEGORIES
PROCESSOR from the parameter table; see Figure 6.19) given that the rates
come from the category i, j:

lf,j = L(9|7-7 Dsuas — ai,,Bs = bj)
Application of the Bayes rule yields

lijPr{as = ai765 = b]}
Zm,n ZTSn,n

Consider two events at site s: positive selection, PSy = {a, < (s}, and neg-
ative or purifying selection, NSy, = {as > O5}. For any event, one can define
the Bayes factor, which is simply the ratio of posterior and prior odds of an
event. If the Bayes factor of an event is significantly greater than 1, then the
data support the event.

Having opened the categories processor (Figure 6.20), we proceed to per-
form the posterior Bayes analysis as follows:

pf,j = Pr{as = a’iM@S = bJ|D5} =

1. Create a new random variable 8, — a,. To do so, invoke CATEGORIES:
DEFINE NEW VARIABLE and enter the expression (try to use the pulldown
menu for quick access to category variables) 0.527RT _Gene_Categ_beta —
RT _Gene_Categ-alpha. We multiply by the value of R (= 0.527) since in
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Fig. 6.19. Conditional site likelihoods module of HyPhy.
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Fig. 6.20. (a) Bayes factor for the event of positive selection at a site. (b) Log of
the Bayes factor for the event of negative selection at a site.

the HyPhy parameterization RT_Gene_Categ_beta refers to the expression
inside the brackets in (6.4)—you can check that by opening the model
display in “Object Inspector.”

2. Expand the view for the new difference variable by clicking on the arrow
next to it, and choose (shift-click or drag select) the event for positive
selection: all positive values of the difference variable.

3. Perform empirical Bayes analysis by selecting CATEGORIES:EVENT POs-
TERIORS. In the window that opens, select a type of “Bar Chart” and Y
of “Bayes Factor.” This display gives an easy overview of sites with large
support for positive selection, say, with Bayes factor over 20.

4. Instruct HyPhy to find all the sites with the Bayes factor over 20. For this
task, select the Bayes factor column (click on the column header), and
choose CHART:DATA PROCESSING:SELECT CELLS BY VALUE. HyPhy will
prompt for the selection criterion: type in “cell_value>20.” The results are
shown in Figure 6.21. According to this criterion, there are 12 positively
selected codons: 35,178,179, 200, 211, 243, 272, 282, 329, 376, 377, and 403.
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Fig. 6.21. Sites found to be under positive selection and supporting Bayes factors
in the HIV-1 RT gene.

The weakness of empirical Bayes

It has been argued that maximum likelihood empirical Bayes methods for de-
tecting rates at sites may yield many false positives. Alternatively, if very few
sites in the alignment are under selective pressure, it is possible that the prior
(and hence posterior) distributions will place zero probability on any site being
positively selected, resulting in low power. The main shortcoming of empirical
Bayes approaches is that parameter estimates are treated as correct values,
and the uncertainties in estimation procedures are discounted altogether. If
one were to compute 95% confidence intervals based on likelihood profiles with
HyPhy, one would discover that

fia € (0.759,10.175), 5 € (0.589, 3.467),

Py € (0.642,0.779), R € (0.405, 0.688).

That is quite a range of variation, and a change in any of those parame-
ters would affect the conclusions of empirical Bayes methods. For instance,
the most conservative (in terms of limiting false positives but also reducing
power) estimates can be obtained by choosing the maximum possible values
for piq, 13, and Pr and the minimum possible value for R. For this choice of
parameters, the maximum Bayes factor at any site is a mere 17.914 and by
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our old criteria no sites are found to be under selective pressure. One should
always realize that uncertainties in parameter estimates can greatly influence
the conclusions of an empirical Bayes analysis, and it helps to compare various
scenarios to assess inference reliability.

Further pointers

HyPhy can run analyses like the one just described in parallel on distributed
systems using Message Passing Interface (MPI). For instance, if 16 proces-
sors are available, computations of [ ; for each of the 16 possible rate class
combinations (7, j) are placed automatically on separate processors, achieving
speeds similar to those of a single rate analysis on a single CPU system and
making analyses with hundreds of sequences in an alignment feasible. Refer
to www.hyphy.org for more details.

HyPhy also implements an ever-expanding collection of rapid positive/
negative selection analyses for data exploration loosely based on the counting
method of [10], as well as site-by-site (and/or lineage-specific) likelihood ratio
testing. It is accessible via standard analyses, and more details can be found
in the HyPhy documentation.

6.2.7 Mixed Data Analyses

As more and more organisms are being fully sequenced, methods and tools for
analyzing multigene sequence alignments and, ultimately, genome-wide data
sets are becoming increasingly relevant. In the small example that follows, we
will show how one can use HyPhy to begin to address such analytic needs.

We consider a sequence alignment of five sequences, each consisting of
two introns and an exon, which can be found in intronexon.nex within the
Examples directory. We must partition the data into introns and exons. As a
first pass, it is appropriate to consider two partitions: coding and noncoding.
For more complex data sets, one can easily define a separate partition for
every gene, and so on. First, create a partition that includes all of the data
(EDIT:SELECT ALL, followed by DATA:SELECTION->PARTITION).

The exon spans nucleotide positions 90 through 275. One of the ways to
create the partition for the exon is to locate alignment column 90 in the
data panel and select it, and then scroll to column 275 and shift-click on it
(this selects the whole range). Note that the status line of the data panel
was updated to reflect your current selection. Make sure it shows “Current
Selection: 90-275.” An alternative approach is to start at column 90 and then
click-drag to column 275. Yet another possibility is to choose DATA:INPUT
PARTITION and enter 89-274 (indices are 0-based).

Once the range has been selected, invoke DATA:SELECTION->PARTITION.
We now have two partitions, overlapping over columns 90-275, as shown in
the Navigation Bar. The final step is to “subtract” the partitions to create
a new partition for the introns. To do this, we select both partition rows
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in the data panel table (shift-click selects multiple rows). Next, click on the
“Subtract 2 Overlapping Partitions” button. Select the appropriate operation
in the resulting pulldown menu. We have now specified two nonoverlapping
partitions. Note that the intron partition is not contiguous. Rename the intron
partition to “Introns” and the exon partition to “Exon.” One could achieve
this same partitioning scheme by defining three partitions, 1-89, 90-275, 276—
552, and joining the first one and the third one.

There is one more filtering step left to do before we can begin analyzing
the data. As often happens with smaller subsets extracted from larger align-
ments, there are several alignment columns consisting entirely of deletions.
Such columns do not contribute informational content to likelihood analyses
and should be removed. Select the “Exon” row in the partition table, click
on the “Data Operations” button, and select SITES WITH ALL DELETIONS.
HyPhy will locate all such sites inside the selected partition only and select
them. Create a partition with those sites, subtract it from the exon partition
as discussed above, and delete the partition with uninformative sites (select
its row and click on the “Delete Partition” button).

Since introns are not subject to the functional constraints of coding se-
quences, it makes sense to model their evolution with a nucleotide model
(HKY85 with global options). For the exon partition, a codon model is
appropriate. Change the data type of “Exon” to “Codon” and apply the
MG94xHKY85%x3_4 model with local options. The end result should look
like Figure 6.22 (a).

Next, build and optimize the likelihood function and open the parameter
table. Our analysis includes two trees with the same topology (one for introns
and the other for exons). The model for the intron tree has a single para-
meter per branch (branch length) and a shared transversion/transition ratio
(Exon_Shared TVTS = 0.308), whereas the model for the exon tree has two
parameters per branch, synonymous and nonsynonymous rates, and a shared
transversion/transition ratio (Introns_Shared TVTS = 0.612). (Note that
we could use previously discussed methods for testing hypotheses to decide
whether the two transversion/transition ratios are different.)

One of the common assumptions made for analyses of molecular sequence
data is that differences between coding and noncoding sequences can be ex-
plained by functional constraints and selective pressures on coding sequences,
namely by changes in rates of nonsynonymous substitutions. In other words,
synonymous substitutions in coding regions and nucleotide substitutions in
neighboring noncoding stretches should have comparable relative rates. This
assumption may be violated if mutation rates vary along the sequence or if
there is selection operating in noncoding regions. We will now test this hy-
pothesis of a relative ratio between the introns and the exon in our example
data sets. In other words, we want to see if the exon tree scaled by synony-
mous rates has the same pattern of relative branch lengths as the intron tree.
Mathematically, the set of relative ratio constraints is
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Fig. 6.22. Exon-intron mixed analysis. (a) Data panel setup and (b) parameter
table with the relative ratio constraint.

exonTree.branch.synRate = R X intronTree.branch.t,

where R is the (global) relative ratio, and the constraint is applied to every
branch. For a small tree like ours, it is easy to use the proportional constraint
tool in the parameter table interface module to define the constraints one at a
time; however, this could become very tedious for larger trees. Luckily, HyPhy
includes a command designed to traverse given trees and apply the same
constraint to every branch. As you will learn from the next section, at the core
HyPhy is a programming language (HBL), and all of the interface features
we have discussed previously use HBL behind the scenes. If the interface does
not include a built-in tool for a specific constraint, the user may tap directly
into HBL to carry out the task at hand. We will do just that for our example.
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Open the parameter table for the intron-exon analysis we have just set up
(making sure none of the parameters are constrained). Invoke LIKELIHOOD:
ENTER COMMAND. HyPhy will take any input from the dialog box that ap-
pears, parse the commands contained therein, and execute them. We need to
invoke ReplicateConstraint, which is a powerful but somewhat complicated
command. If we were to impose the constraints by hand at every branch, we
would begin with

IntronExon_tree2. HK L5.synRate = R X IntronExon_tree. HK L5.t

and repeat applying the same constraint, replacing “HKL5” with other
branches in the tree. A single call using Replicate Constraint will accomplish
the same task:

global R = 1;
ReplicateConstraint("thisl.?.synRate:=R*this2.7.t",
IntronExon_tree2,IntronExon_tree);

The expression in quotation marks is the constraint template; “thisl” is
replaced with the first argument (IntronExon_tree2), “this2” with the second,
and so on. The “?” is a wildcard meaning match any branch name. Repli-
cateConstraint is a very handy command to know, and we refer the reader to
examples contained in the HyPhy distribution. The “global R=1" command
is needed to declare R as a shared parameter and initialize it (further details
are provided in the next section). Enter the commands above into the dialog
box, and, if all went well, the parameter table will update and should look like
Figure 6.22 (b). Optimize the likelihood function, define the null hypothesis,
and perform the likelihood ratio test. The asymptotic p-value of the test is
0.023, rejecting the hypothesis of relative ratio. Since our data set is rather
small, we would be wise to verify this result using the parametric bootstrap.
We obtained a bootstrap p-value of 0.003 with 1000 replicates.

6.3 The HyPhy Batch Language

Underlying the HyPhy graphical user interface is a powerful interpreted pro-
gramming language, HBL (HyPhy Batch Language). The authors originally
developed HBL as a research tool to allow rapid development of molecular
evolutionary analyses. The addition of the graphical interface is a more re-
cent development and provides access to many common types of analyses.
However, the underlying programming language is considerably more power-
ful and flexible (albeit with a steeper learning curve). The goal of this section
is to provide readers with a basic understanding of the fundamentals of HBL
programming and an appreciation of the power of the language. In doing so,
we shall make use of a series of HyPhy batch files, which are available for
download at www.hyphy.org/pubs/HyphyBookChapter.tgz. Complete docu-
mentation of the batch language is available in the Batch Language Command
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Reference at www.hyphy.org and can also be accessed via the built-in com-
mand reference in the HyPhy console.

6.3.1 Fundamental Batch File Elements: basics.bf

The basic task shared by most HyPhy batch files is the optimization of a like-
lihood function for a given alignment/model/phylogeny combination. There-
fore, almost every batch file will perform the following elementary tasks:

1. Input alignment data.

Describe an evolutionary model of sequence change.

Input or describe a phylogenetic tree.

Define a likelihood function based on the alignment, phylogeny, and model.
Maximize the likelihood function.

Print the results to the screen and/or an output file.

A e

The simple batch file basics.bf, reproduced in its entirety below, illustrates
the HBL code necessary to fit the F81 model of sequence evolution to an
alignment of four sequences.

DataSet myData = ReadDataFile ("data/four.seq");
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix =

{{* ,mu,mu,mu}

{mu,* ,mu,mu}

{mu,mu,* ,mu}

{mu,mu,mu,* }};
Model F81 = (F81RateMatrix, obsFregs);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (MLEs, theLikFun);
fprintf (stdout, theLikFun);

Let us now explain how these nine statements accomplish the six key tasks
enumerated above.

Input alignment data

The task of preparing data for analysis in HyPhy consists of two steps. First,
the data must simply be read from a data file. After the data are read, they
must be “filtered.” The process of filtering involves selecting the precise taxa
and alignment positions to be analyzed and identifying the “type” of the
data (e.g., nucleotide, codon, dinucleotide).

DataSet myData = ReadDataFile ("data/four.seq");
DataSetFilter myFilter = CreateFilter (myData,1);
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The first statement simply reads a sequence alignment into memory and names
it myData. The HBL function automatically detects the sequence type (DNA)
and the input format and then saves the data into a data structure of type
DataSet, a predefined HBL data type. The second statement is the simplest
version of the CreateFilter function. In this case, the function takes the align-
ment stored in myData and by default includes all of it in a structure named
myFilter. The argument “1” indicates that the data should be treated as sim-
ple nucleotide data. Had we wanted the data to be interpreted as codons, the
argument “3” would have been used instead. The CreateFilter command is
quite powerful, and we will illustrate the use of some of its optional arguments
in later examples. Multiple data filters may be created from the same data
set.

Describe an evolutionary model of sequence change

The next task in our simple analysis is the definition of a model of sequence
change. One of the unique strengths of HyPhy is its ability to implement
any special case of a general time-reversible model (and, more generally, any
continuous-time Markov chain model, not necessarily time-reversible), regard-
less of the dimensions of the character set. We rely on the fact that any special
case of the general reversible model can be written in a form where entries in
the substitution matrix are products of substitution parameters and character
frequencies. Thus, we have adopted a convention of describing time-reversible
models with two elements: a matrix consisting of substitution rate parameters,
and a vector of equilibrium character frequencies.

F81RateMatrix =
{{* ,mu,mu,mu}
{mu,* ,mu,mu}
{mu,mu,* ,mu}
{mu,mu,mu,* }};
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
Model F81 = (F81RateMatrix, obsFregs);

In our present example, the substitution parameter matrix of the F81 model
is defined and named in an obvious fashion (the HyPhy matrix placeholder
* is defined as “the negative sum of all nondiagonal entries on the row”).
Next, the built-in function HarvestFrequencies tabulates the frequencies in
myFilter and stores them in the newly created vector obsFregs. The functions
of the numerical arguments can be found in the Batch Language Command
Reference. Finally, the matrix and frequencies are combined to form a valid
substitution model using the Model statement.

For the F81 model, the instantaneous rate matrix is traditionally denoted
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Observe the similarity between this matrix and the HyPhy syntax. By default,
the Model statement multiplies each element of the rate matrix by the equilib-
rium frequency of an appropriate character, and hence the HyPhy declaration
of F81 does not include the multiplication by elements of 7. This behavior
can be overridden by passing a third argument of 0 to the model statement
(as is done, for example, for the original MG94 codon model).

Input or describe a phylogenetic tree

HyPhy uses standard (Newick) tree definitions. Thus, the statement
Tree myTree = ((a,b),c,d);

defines a tree named myTree with four OTUs, or taxa, named a, b, ¢, and
d, corresponding to the names in the HyPhy data file. HyPhy will accept
either rooted or unrooted trees; however, for most purposes, rooted trees are
automatically unrooted by HyPhy because likelihood values for unrooted trees
are the same as those for rooted trees.

The Tree data structure is much more complex than simply describing
a tree topology. The Tree variable includes both topology information and
evolutionary model information. The default behavior of a Tree statement is
to attach the most recently defined Model to all branches in the tree. Thus, it
is often critical that the Model statement appear before the Tree statement.
We will discuss more advanced uses of the Tree statement later.

Define a likelihood function based on the alignment, phylogeny,
and model

The likelihood function for phylogenetic trees depends on the data set, tree
topology, and the substitution model (and its parameters). To define a likeli-
hood function, we use a statement such as

LikelihoodFunction theLikFun = (myFilter,myTree);

We name the likelihood function theLikFun, and it uses the data in myFilter
along with the tree topology and substitution model stored in myTree. Recall
that the Tree structure myTree inherited the Model F81 by default.
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Maximize the likelihood function

Asking HyPhy to maximize the likelihood function is simple. The statement
Optimize (MLEs, theLikFun);

finds maximum likelihood estimates of all independent parameters and stores
the results in the matrix named MLFEs.

Print the results to the screen and/or an output file

The simplest way to display the results of a likelihood maximization step is
simply to print the likelihood function:

fprintf (stdout,thelLikFun) ;

This C-like command prints the structure theLikFun to the default output
device stdout (stdout is typically the screen). The results of this statement
are the following:

Log Likelihood = -616.592813234418;
Tree myTree=((a:0.0136035,b:0.0613344)Nodel:0.0126329,
c:0.070388,d:0.0512889) ;

When asked to print a likelihood function, HyPhy first reports the value of the
log-likelihood. It follows with a modified version of the Newick tree description
as shown in the output above. Each of the branches in the unrooted phylogeny
has an associated branch length, measured in units of expected number of
nucleotide substitutions per site. Those values appear after the colon following
the label for each branch. For example, the estimated branch length leading
to the tip “b” is 0.0613344. Note that the internal node in the tree has been
automatically named “Nodel” by HyPhy, and its associated branch length is
0.0126329. Values of the estimated substitution parameters or base frequencies
could be displayed by printing MLFEs or obsFreqs. HyPhy also allows for more
detailed user control of printed output using a C-like fprintf syntax. Later
examples will illustrate this functionality.

6.3.2 A Tour of Batch Files
Defining substitution models
Simple nucleotide models: modeldefs.bf

One of the primary objectives of HyPhy is to free users from relying on the
substitution models chosen by authors of software. While a relatively small
set of model choices may be sufficient for performing phylogenetic analyses,
having only a few potential models is often limiting for studies of substitution
rates and patterns. To define a model in HyPhy, one needs only to describe
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the elements in a substitution rate matrix. If the characters being studied
have n states, the rate matrix is n x n. For example, nucleotide models are
4 x 4; models of amino acid change are 20 x 20; codon-based models might be
61x61. HyPhy can work properly with any member of the class of general time-
reversible models, regardless of the number of character states. Instantaneous
rate matrices in this class of models satisfy the condition m;Q;; = 7;Qjs,
where 7; is the equilibrium frequency of character ¢ (for nucleotide data) and
Qq; is the ijth entry in the instantaneous rate matrix. HyPhy comes with
many predefined rate matrices for commonly used substitution models. You
can find examples in the Fzamples and TemplateBatchFiles directories of the
HyPhy distribution.

To illustrate the basics of model definition, we discuss the batch file mod-
eldefs.bf

SetDialogPrompt("Select a nucleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);

F81RateMatrix = {{*,m,m,m}{m,*,m,m}{m,m,*,m}{m,m,m,*}};

Model F81 = (F81RateMatrix, obsFreqs); Tree myTree = ((a,b),c,d);
fprintf (stdout,"\n\n F81 Analysis \n\n");

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,thelLikFun) ;

fprintf (stdout,thelLikFun);

fprintf (stdout,"\n\n HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFregs);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun) ;

fprintf (stdout,theLikFun);

fprintf (stdout,"\n\n Repeat F81 Analysis \n\n");
UseModel (F81) ;

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);

fprintf (stdout,thelLikFun) ;

This batch file illustrates two new concepts. First, and most importantly, the
lines

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFregs);
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illustrate the definition of a new substitution matrix. In this case, we have
defined the model of [5] and named the model HKY85. Those familiar with
the HKY85 model will probably recognize the form of the matrix: transitions
occur with rate a and transversions occur with rate b, with each of those
substitution parameters multiplied by the appropriate nucleotide frequency
to provide the final instantaneous rates. The second important point to note
is that we must associate the model with a tree before we can do anything
useful. In this case, we simply redefined the old tree to use the HKY85 model
instead of the F81 model. (Recall that a tree consists of both the topology and
the substitution matrices attached to its branches.) When the statement Tree
myTree = ((a,b),c,d); isissued, the variable myTree is assigned the topol-
ogy ((a,b),c,d) and the branches are assigned the HKY85 substitution model,
which was the most recently defined Model. If we wanted to preserve the orig-
inal variable myTree, we could simply have defined a new Tree structure using
a command such as Tree myNextTree = ((a,b),c,d);.

Finally, for completeness, we created a new Tree and assigned it the F81
model and reproduced the original F81 analysis. Those final steps illustrate
how predefined Models can be assigned to Trees using the UseModel com-
mand.

Note also the use of

SetDialogPrompt ("Select a nucleotide data file:");
DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

to allow the user to locate the sequence file interactively instead of hard-coding
it into the batch file.

More nucleotide models: models.bf

One of the most general models of nucleotide substitution is the general time
reversible model (REV). The instantaneous rate matrix for the REV model is

A C G T
A * 9071'0 917TG 927TT
C 9071’,4 * 937‘(@ 947TT
G 0171',4 93’/TC * 95’]’(”]1
T 9271',4 9471’C 957TG *

QREV =

It is simple to implement this model in HyPhy. The statements

REVRateMatrix = {{*,a,b,c}{a,*,d,e}{b,d,*,f}{c,e,f,*x}};
Model REV = (REVRateMatrix, obsFreq);

do the job.

To illustrate these notions in a more useful context, consider the batch
file models.bf. In that batch file, models named F81, HKYS85, REV, JC69,
and K2P are defined, and each is fit to the same data set and tree topology.
The batch file models.bf also demonstrates a few useful HyPhy features. First,
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notice the definition of a vector of frequencies for use by the equal-frequency
models:

equalFreqgs = {{0.25}{0.25}{0.25}{0.25}};
In a similar manner, we define the string constant myTopology:
myTopology = "((a,b),c,d)";

By changing the topology in the definition of myTopology, the entire analy-
sis can be repeated using the new topology. This single step is faster than
updating the topology for every Tree statement and is particularly useful for
topologies with many taxa. Finally, note the reuse of the three substitution
matrices and the two frequency vectors. The original matrix definitions are
used as templates by the Model statements.

Global versus local parameters: localglobal.bf

Because the primary goal of HyPhy is to provide flexible modeling of the
nucleotide substitution process, HyPhy includes a more general parameteri-
zation scheme than most phylogeny estimation programs. Perhaps the most
important difference for the user to recognize is the distinction between local
and global parameters. In the simplest form, a local parameter is one that is
specific for a single branch on a tree. In contrast, a global parameter is shared
by all branches. To illustrate, consider the output generated by the batch file
localglobal.bf when run using four.seq:

Original (Local) HKY85 Analysis

Log Likelihood = -608.201788537279;
Tree myTree=((a:0.0143364,b:0.061677)Nodel1:0.0108616,
c:0.0716517,d:0.0526854) ;

Global HKY85 Analysis

Log Likelihood = -608.703204177757;
Shared Parameters: S=3.08185

Tree myTree=((a:0.0130548,b:0.0618834)Node1:0.0126785,
c:0.0717394,d:0.052028) ;

In localglobal.bf, we have moved beyond the default settings of HyPhy, and
the details of the batch file will be discussed below. For now, concentrate on
the results. localglobal.bf performs two analyses of the data in four.seq, each
using the HKY85 model of sequence evolution. The first, labeled “Original
(Local) HKY85 Analysis,” is the same analysis that was performed in the
previous example (models.bf). In this analysis, each branch in the tree was
allowed to have its own transition/transversion ratio.
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The second analysis performed in localglobal.bf is an example of a global
analysis. In contrast with the previous analysis, the “Global HKY85 Analysis”
invokes a global transition/transversion ratio, S. In other words, all branches
share the same value of S. The estimated global value of S (3.08185) is shown
under the heading of Shared Parameters.

The local and global analysis use different numbers of parameters. The
local analysis uses a transition and transversion rate for each of the five
branches, along with three base frequencies, for a total of 13 parameters.
The global analysis includes a transversion rate for each branch, three base
frequencies, and a single transition/transversion ratio, for a total of nine pa-
rameters. The global analysis is a special case of the local analysis; therefore,
the log-likelihood value for the global analysis (—608.703) is lower than that
of the local analysis (—608.202). The fact that the addition of four parameters
results in such a small difference in model fit suggests that the data harbor
little support for the hypothesis that the transition/transversion rate varies
among these lineages.

The code for localglobal.bf is the following:

SetDialogPrompt ("Please specify a nucleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);

fprintf (stdout,"\n\n Original (Local) HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}t{a,b,*,b}r{b,a,b,*}};
Model HKY85 (HKY85RateMatrix, obsFreqs);

Tree myTree ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun) ;

fprintf (stdout,theLikFun);

fprintf (stdout,"\n\n Global HKY85 Analysis \n\n");
global S5=2.0;
GlobalHKY85Matrix

{{*,0,b*S,b}{b,*,b,b*S}
{b*S,b,*,b}{b,b*S,b,*}};

Model GlobalHKY85 = (GlobalHKY85Matrix, obsFreqgs);
Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,thelLikFun) ;

fprintf (stdout,thelLikFun);

The code for the first analysis is identical to that from models.bf. The
global analysis introduces a new statement:

global S5=2.0;
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This statement declares S to be a global variable. By default, the description
of a model (and variables within that model) is used as a template that is
copied for every branch on the tree. An important fact is that we cannot
later redefine S as a local variable. The scope of a variable is determined
at the time of its creation and cannot be altered. In the statement defining
Global HK'Y85Matrixz, one observes that b is used as the transversion rate,
while transitions occur at rate b* S.

More complex models

HyPhy has support for an infinite number of substitution models. Any Markov
chain model using any finite sequence alphabet can be used. Models for codon
and amino acid sequences are available through the Standard Analyses menu
selection. We refer users who are interested in writing code for such alphabets
to the files in the Fzamples subdirectory.

Imposing constraints on variables
Simple constraints: relrate.bf

The primary reason for developing HyPhy was to provide a system for per-
forming likelihood analyses on molecular evolutionary data sets. In particular,
we wanted to be able to describe and perform likelihood ratio tests (LRTSs)
easily. In order to perform an LRT, it is first necessary to describe a con-
straint, or series of constraints, among parameters in the probability model.
To illustrate the syntax of parameter constraints in HyPhy, examine the code
in relrate.bf:

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix = {{* ,mu,mu,mu}{mu,* ,mu,mu}
{mu,mu,* ,mu}{mu,mu,mu,* }};

Model F81 = (F81RateMatrix, obsFregs);

Tree myTree = (a,b,o0g);

fprintf (stdout,"\n Unconstrained analysis:\n\n");
LikelihoodFunction theLikFun = (myFilter, myTree, obsFregs);
Optimize (paramValues, theLikFun);

fprintf (stdout, theLikFun);

1nLA=paramValues[1] [0];

dfA=paramValues[1] [1];

fprintf (stdout,"\n\n\n Constrained analysis:\n\n");
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myTree.a.mu := myTree.b.mu;
Optimize (paramValues, theLikFun);
fprintf (stdout, theLikFun);
1nLO=paramValues[1] [0];
dfO=paramValues[1] [1];

LRT=-2% (1nLO-1nLA) ;

Pvalue=1-CChi2(LRT,dfA-df0);

fprintf (stdout,"\n\nThe statistic ",LRT," has P-value ",
Pvalue,"\n\n");

The unconstrained analysis is of the simple type we have discussed previ-
ously. In the constrained analysis, however, we impose the constraint of equal
substitution rates between lineages a and b with the command

myTree.a.mu := myTree.b.mu;

The results from this batch file when applied to three.seq are:

Unconstrained analysis:

Log Likelihood = -523.374642786834;
Tree myTree=(a:0.0313488,b:0.00634291,0g:0.11779);

Constrained analysis:

Log Likelihood = -525.013303516343;
Tree myTree=(a:0.018846,b:0.018846,0g:0.116881) ;

The statistic 3.27732 has P-value 0.0702435

Since these models are nested, we can consider the likelihood ratio statistic,
—2(InLy — InL4), to have an asymptotic chi-squared distribution. In this
case, the test statistic has a value of 3.27732. Note in the batch file how the
likelihood values and parameter counts are returned by Optimize and stored
in paramValues. The built-in function CChi2 is the cumulative distribution
function of the chi-squared distribution.

Molecular clocks

Perhaps the most common molecular evolutionary hypothesis tested is that
a set of sequences has evolved according to a molecular clock. It now seems
quite clear that a global molecular clock exists for few, if any, gene sequences.
In contrast, the existence of local molecular clocks among more closely related
species is more probable. HyPhy allows for both types of constraints, including



6 HyPhy 169

the possibility of testing for multiple local clocks for different user-defined
clades in the same tree.

Global clocks: molclock.bf

The batch file molclock.bf is a simple example of testing for a global molec-
ular clock. The code should be familiar, except for the new MolecularClock
statement, which declares that the values of the parameter mu should follow
a molecular clock on the entire tree myTree. An important difference in this
batch file is that the Tree statement defines a rooted tree. Had an unrooted
tree been used, it would have been treated as a rooted tree with a multifurca-
tion at the root. When using time-reversible models, which can’t resolve the
exact placement of the root on the internal rooting branch, a global molecular
clock applied to a rooted tree can be interpreted as: locate the root on the
root branch as to enforce a global molecular clock on the specified rates. The
section of code imposing the molecular clock constraint is:

fprintf (stdout,"\n\n Molecular Clock Analysis: \n");
MolecularClock(myTree,m) ;

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,thelLikFun) ;

Local clocks: localclocks.bf

Particularly when studying data sets consisting of many species spanning a
wide level of taxonomic diversity, it may be of interest to assign local molec-
ular clocks to some clades. For instance, in a study of mammalian molecular
evolution, one might specify that each genus evolves in a clocklike manner
but that different genera evolve at different rates. To allow such analyses, the
MolecularClock command can be applied to any node on a tree. Unlike the
global clock of the previous case, it is not necessary for the MolecularClock
command to be applied to a rooted tree; the placement of the MolecularClock
command “roots” the tree, at least locally. To illustrate this feature, we use
localclocks.bf in conjunction with the file siz.seq. The relevant new sections of
the code are the tree topology definition

myTopology = "(((a,b)nl, (c,(d,e))In2),f)";
and the declaration of two local molecular clocks:

fprintf (stdout,"\n\n Local Molecular Clock Analysis: \n");
ClearConstraints(myTree) ;

MolecularClock(myTree.nl,m);

MolecularClock(myTree.n2,m);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun) ;
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The topology string used in localclocks.bf takes advantage of HyPhy's ex-
tended syntax. Notice how we have named two of the internal nodes n1 and
n2. Those names override HyPhy's default (and rather cryptic) node-naming
convention and allow us to call functions—in this case, MolecularClock—on
the clades they tag. The syntax of the MolecularClock statements is rather
C-like. MolecularClock(myTree.nl,m); imposes a local clock on the clade
rooted at node nl in tree myTree. The parameter with clocklike behavior is
m, the only option for the F81 model being used. The results using the data
file siz.seq are:

UNCONSTRAINED ANALYSIS:

Log Likelihood = -685.473598259084;

Tree myTree=((a:0.0296674,b:0.00831723)n1:0.040811,
(c:0.0147138,(d:0.0142457,e:0.0328603)
Node7:0.0309969)n2:0.0130927,f:0.0517146) ;

GLOBAL MOLECULAR CLOCK ANALYSIS:

Log Likelihood = -690.857603506283;

Tree myTree=((a:0.0181613,b:0.0181613)n1:0.0350919,
(c:0.0385465, (d:0.0195944,e:0.0195944)
Node7:0.0189521)n2:0.0147067,£:0.053838) ;

P-value for Global Molecular Clock Test: 0.0292988

LOCAL MOLECULAR CLOCK ANALYSIS:

Log Likelihood = -690.761234081996;

Tree myTree=((a:0.0190659,b:0.0190659)n1:0.0386549,
(c:0.0370133,(d:0.0189116,e:0.0189116)
Node7:0.0181017)n2:0.0128865,f:0.0537045) ;

P-value for Local Molecular Clock Test: 0.0142589

By examining the output, one finds that under the local clock model the two
subtrees do indeed have clocklike branch lengths, yet the tree as a whole is not
clocklike. However, the likelihood ratio test suggests that neither the global
nor local clock assumption is correct.

Simulation tools

The use of simulation in molecular evolutionary analysis has always been
important. Simulation allows us to test statistical properties of methods, to
assess the validity of theoretical asymptotic distributions of statistics, and to
study the robustness of procedures to underlying model assumptions. More
recently, methods invoking simulation have seen increased use. These tech-
niques include numerical resampling methods for estimating variances or for
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computing confidence intervals, as well as parametric bootstrap procedures
for estimating p-values of test statistics. HyPhy provides both parametric and
nonparametric simulation tools, and examples of both are illustrated in the
following sections.

The bootstrap: bootstrap.bf

The bootstrap provides, among other things, a simple nonparametric approach
for estimating variances of parameter estimates. Consider bootstrap.bf. The
relevant commands from the batch file are as follows. (Some lines of code
have been deleted for clarity.)

Model F81 = (F81RateMatrix, obsFregs);

Tree myTree = (a,b,o0g);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (paramValues, theLikFun);

reps = 100;

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1) {
DataSetFilter bsFilter = Bootstrap(myFilter,1);
HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);
Model bsModel = (F81RateMatrix, bsFreqgs);
Tree bsTree = (a,b,o0g);
LikelihoodFunction bsLik = (bsFilter, bsTree);
Optimize (bsParamValues, bsLik);

The first section of code is simply the completion of a typical data analy-
sis, storing and printing results from the analysis of data in myFilter. The for
loop is the heart of the batch file. For each of the reps replicates, we gener-
ate a new DataSetFilter named bsFilter. We do this by creating a bootstrap
replicate from the existing DataSetFilter named bsFilter, which was created
in the normal fashion. bsFilter will contain the same number of columns as
myFilter. Once the new filter has been created, we recreate a Model named
bsModel and a Tree named bsTree, which are then used in an appropriate
LikelihoodFunction command. Optimize is used to find MLEs of the para-
meters. The end result of this batch file is a table consisting of 100 sets of
MLESs, each from a bootstrap sample from the original data. Notice in the
complete batch file (not shown in the code above) how we use the matrix
variable BSRes to tabulate and report the average of all bootstrap replicates.
More complex analyses, such as bootstrap confidence intervals, based on the
bootstrap estimates, can be programmed within the batch file, or the results
can be saved and imported into a spreadsheet for statistical analyses.

The Permute function, with syntax identical to Bootstrap, exists for ap-
plications where the columns in the existing DataSetFilter must appear ex-
actly once in each of the simulated data sets. This feature may be useful for
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comparison of the three codon positions or for studies investigating spatial
correlations or spatial heterogeneity.

The parametric bootstrap: parboot.bf

Another useful simulation tool is the parametric bootstrap. HyPhy provides
the SimulateDataSet command to provide the type of model-based simulation
required. In parboot.bf, we find the following lines of code. Again, some lines
have been deleted for clarity.

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1) {
DataSet bsData = SimulateDataSet (theLikFun) ;
DataSetFilter bsFilter = CreateFilter (bsData,1);
HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);
Model bsModel = (F81RateMatrix, bsFregs);
Tree bsTree = (a,b,o0g);
LikelihoodFunction bsLik = (bsFilter, bsTree);
Optimize (bsParamValues, bsLik);

The end result is analogous to that of bootstrap.bf: we simulate reps data
sets, find MLEs, and tabulate results. The fundamental difference is that
the data sets are formed by simulation using the tree structure, evolutionary
model, and parameters in theLikFun via the function SimulateDataSet. An
important technical difference is that SimulateDataSet generates a DataSet
as opposed to the DataSetFilter created by Bootstrap. Thus, we must use the
CreateFilter command to create an appropriate filter.

Again note the use of BSRes for tabulating results and also the use of
fscanf for acquiring input from the user (see the Batch Language Command
Reference for details).

Putting it all together: positions.bf

As an example of the type of analysis HyPhy was designed to implement,
we now describe the batch file positions.bf. This file illustrates some of the
features of the CreateFilter command by ignoring species C' in four.seq and
by creating separate filters for each of the three codon positions. The HKY85
model is used as the basic substitution model. A global transition:transversion
ratio, R, is created; its value is allowed to be shared by all three positions. In
the “Combined Analysis,” the entire data set is analyzed in the normal way,
treating all sites identically. A second LikelithoodFunction is then created, in
which the data are split into three partitions according to codon position.
Each of the three partitions is allowed to evolve with a separate rate. However,
the transition/transversion ratio is constrained to be the same for all three
codon positions as well as for all lineages. The likelihood ratio test statistic
comparing these two models is computed, and the statistical significance of the
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test is reported using both the chi-squared approximation and nonparametric
bootstrapping.

The file positions.bf is rather complicated, so we will focus only on some
of its key features.

Read and filter the data

It is often the case that molecular data sets have some repeating underlying
structure that we would like to exploit or study. For instance, coding regions
might be described with the repeating structure 123123123 .. . In positions.bf
we create separate DataSetFilters for first, second, and third codon positions.
The command

DataSetFilter myFilterl =
CreateFilter (myData,1,"<100>","0,1,3");

creates a DataSetFilter named MyDatal that includes only the first nucleotide
of each triplet. Likewise, the statement

DataSetFilter myFilter3 =
CreateFilter (myData,1,"<001>","0,1,3");

creates a DataSetFilter named MyData3 that includes only the third nu-
cleotide of every triplet. Had we wished to create a filter consisting of both
first and second positions, we would have used a statement such as

DataSetFilter myFilterl2 =
CreateFilter (myData,1,"<110>","0,1,3");

Define a substitution model for each position

The next portion of positions.bf creates a vector of observed frequencies for
each of the filters using standard syntax.

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);

HarvestFrequencies (obsFreqsl, myFilterl, 1, 1, 1);
HarvestFrequencies (obsFreqs2, myFilter2, 1, 1, 1);
HarvestFrequencies (obsFreqs3, myFilter3, 1, 1, 1);

Next, the basic substitution model is defined. We use the HKY85 model
with transversion parameter b and global transition:transversion ratio R. A
separate Model is created for each partition since each uses different frequen-
cies:

global R;

HKY85RateMatrix =
{{*,b,R*b,b}{b,*,b,R*b}{R*b,b,*,b}{b,R*b,b,*}};

Model HKY85 (HKY85RateMatrix, obsFreqs);

Tree myTree = (a,b,d);

Model HKY851 = (HKY85RateMatrix, obsFreqsl);
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Tree myTreel = (a,b,d);
Model HKY852 (HKY85RateMatrix, obsFreqgs2);
Tree myTree2 (a,b,d);
Model HKY853 (HKY85RateMatrix, obsFreqs3);
Tree myTree3 = (a,b,d);

Define two likelihood functions

We are now ready to set up LikelihoodFunctions and Optimize them. The
analysis of the combined data set is routine:

LikelihoodFunction theLikFun = (myFilter,myTree);
Optimize (paramValues, theLikFun);

We also store some results for later use:

1nLikO = paramValues[1][0];
npar0 = paramValues[1] [1]+3;
fprintf (stdout, theLikFun, "\n\n");

The statement npar0 = paramValues[1] [1]+3; requires some explanation.
The Optimize function always returns the number of parameters that were
optimized as the [1] [1] element of its returned matrix of results. Typically,
we do not optimize over base frequency values, electing instead to simply use
observed frequencies, which are usually very close to the maximum likelihood
estimates. Since the frequencies are, in fact, estimated from the data, they
need to be included in the parameter count. The value of npar0 therefore
includes the count of independent substitution parameters in the model (the
number of which is returned by Optimize) along with the three independent
base frequencies estimated from the data.

The LikelihoodFunction for the “partitioned” analysis simply uses the ex-
tended form of the LikelihoodFunction command:

LikelihoodFunction theSplitLikFun = (myFilterl,myTreel,
myFilter2,myTree2,
myFilter3,myTree3d);

Optimize (paramValues, theSplitLikFun);

1nLikl = paramValues[1][0];

nparl = paramValues[1] [1]+9;

Note the addition of the nine estimated frequencies to the model’s parameter
count, three for each partition.

Find p-values for hypothesis tests

Finally, we compute the p-value for the test of the combined analysis (null
hypothesis) against the split model (alternative hypothesis). Two approaches
are used. First is the normal chi-squared approximation to the LRT statistic:
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LRT = 2%(1lnLik1-1nLikO);
pValueChi2 = 1-CChi2 (LRT, nparl-nparO).

One can also estimate the P-value using the parametric bootstrap. The
statement for simulating a random data set based on theLikFun is

DataSet simData = SimulateDataSet(theLikFun);

The remaining part of the loop is basically a copy of the original analysis,
with variable names adjusted to indicate that they are coming from simulated
data. For each simulated data set, we compute the LRT, named simLRT,
and compare it with the observed LRT. The estimate of the p-value is the
proportion of simulated datasets with an LRT larger than that of the observed
data. We keep track of the number of such events using the variable count:

simLRT = 2*(simlnLik1-simlnLikO0);
if (simLRT > LRT)
{

count = count+1;

}

and report the results:

fprintf (stdout,
"\n\n*** P-value (Parametric BS)= ",count/reps,"\n");

The batch file positions.bf provides a good example of the flexibility of
HyPhy, and many of the same ideas could be used to develop analyses of
multiple genes. Of particular importance for multilocus analysis is the ability
to mix local and global variables. To our knowledge, the type of modeling and
testing flexibility demonstrated in positions.bf is unique.

Site-to-site rate heterogeneity

One of the most important additions to recent models of sequence evolution is
the incorporation of site-to-site rate heterogeneity, which allows the highly de-
sirable property of some positions evolving quickly and some slowly, with oth-
ers having intermediate rates. In the first portion of this chapter, we demon-
strated some of HyPhy's basic functionality with regard to rate heterogeneity.
We now continue this discussion, demonstrating the “traditional” approaches
to modeling rate heterogeneity as well as some novel features unique to Hy-
Phy. We feel that the flexibility in modeling site-to-site rate heterogeneity is
one of the strongest aspects of the software package.

The fundamental elements of incorporating site-to-site rate heterogeneity
are demonstrated in the file ratehet.bf. There one will find an analysis labeled
“Variable Rates Model 1,” which simply uses the F81 nucleotide model with
sites falling into one of four rate classes. The first rate class is an invariant
class (i.e., rate 0), while rates of the remaining three categories have relative
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rates of 1, 2, and 4. The frequencies of the four categories are assumed to be
equal for illustration. The key section of code is the following:

category rateCat = (4, EQUAL, MEAN, , {{0}{1}{2}{4}}, 0, 4);

F81VarRateMatrix = {{*,rateCat*m,rateCat*m,rateCat*m}
{rateCat*m,*,rateCat*m,rateCat*m}
{rateCat*m,rateCat*m, *,rateCat*m}
{rateCat*m,rateCat*m,rateCat*m,*}};

Model F81Var = (F81VarRateMatrix, obsFregs);

The “category” statement defines a discrete probability distribution for the
rates. In this case, there are four possible (relative) rates, 0, 1, 2, and 4, and the
categories occur with equal frequencies. (See the HyPhy documentation and
the examples below for further information on the category statement.) The
second and third statements define a variant of the F81 model of nucleotide
evolution. Had we left out the “rateCat” multiplier in the rate matrix, the
model would be the standard F81 model. With the inclusion of “rateCat,”
which is defined in the first statement to be a category variable, we have a
model declaring that each site evolves according to the F81 model but that
the rates vary from site to site in accordance with the distribution described in
the category statement. Note that in this case the relative rates are specified
by the user, so there is no rate heterogeneity parameter to be estimated from
the data.

In the “Variable Rates Model 2” analysis, we find an implementation of
the slightly more complex (but more well-known) discrete gamma model first
described in [12]. The key element in this analysis is simply a different category
statement:

category rateCat = (4, EQUAL, MEAN,
GammaDist(_x_,alpha,alpha), CGammaDist(_x_,alpha,alpha),
0,1e25,CGammaDist (_x_,alpha+1,alpha));

We again introduce a discrete distribution with four equiprobable classes,
but this time the relative rates of those classes are provided by the gamma
distribution. In turn, the arguments in the category statement declare

1. Use four rate categories.

2. Assign equal frequencies to the four categories.

3. Use the mean of each discretized interval to represent the rate for the
corresponding class.

4. The density function for the rates is the gamma density (which is a built-
in function. Alternatively, the formula for any desired density could be
entered.)

5. The cumulative density function is provided by the gamma distribution
function. (Again, this is a predefined function, and the cdf for any chosen
density could be substituted.)
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6. The relative rates are limited to the range 0 to 1x 10%° (to make numerical
work simpler).

7. The final argument is optional and specifies a formula for the mean of each
interval. If this argument were not provided, the mean would be evaluated
numerically.

With this model, HyPhy would estimate the branch lengths for each branch
in the tree along with the shape parameter « that is specified in the category
statement.

The third and final example in ratehet.bf allows rates to vary according to
an exponential distribution. The category statement in this case is essentially
the same as for the gamma distribution, but with the density and distribution
functions for the exponential distribution used instead:

category rateCat = (4, EQUAL, MEAN,
alpha*Exp(-alpha*_x_), 1-Exp(-alphax*_x_), 0, 1le25,
-_x_xExp(-alpha*_x) + (1-Exp(-alpha*_x_))/alpha);

This fundamental approach can be used to fit any discretized density to data
by simply writing an appropriate category statement and combining it with
any desired substitution matrix. A number of examples are provided in the
sample files in the HyPhy distribution.

In the file twocats.bf, we demonstrate a new idea in modeling rate hetero-
geneity, the possibility of moving beyond the simple idea of each site having
its own rate. For illustration, we show that it is simple to define a model
that allows each site to have its own transition and transversion rate, but
sites with high transition rates need not also have high transversion rates. We
demonstrated an application of this approach to codon-based models based
on synonymous and nonsynonymous rates in the first half of the chapter.
The basic approach is the same as for the previous examples: we will use the
category statement to define distributions of rate heterogeneity. However, in
this case we will use two category statements, one for transitions and one for
transversions.

The first analysis in twocats is essentially the discrete gamma model found
in ratehet.bf but with 16 categories rather than four. The second analysis
introduces separate distributions for transitions and transversions. Each type
of rate is assumed to come from a (discrete) gamma distribution with four
categories, but each distribution has its own parameters. This model leads to a
model with 4 x 4 = 16 rate categories and thus has computational complexity
equal to the 16-category discrete gamma in the first analysis. The category
statements have the same basic format as the previous examples:

category catTS = (4, EQUAL, MEAN,
GammaDist (_x_,alphaS,alphaS), CGammaDist(_x_,alphaS,alphaS),
0,1e25, CGammaDist(_x_,alphaS+1,alphaS));
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category catTV = (4, EQUAL, MEAN,
GammaDist (_x_,alphaV,beta), CGammaDist(_x_,alphaV,beta),
0,1e25, CGammaDist(_x_,alphaV+1,beta)*alphaV/beta);

An important mathematical fact arises at this point. Traditionally, the gamma
distribution in rate analyses has been described only by its “shape” parame-
ter. The gamma distribution in general is described by a shape parameter and
a scale parameter. The confounding of rates and times allows for the (arbi-
trary) determination of one of the two parameters, and for simplicity the two
parameters have simply been assumed to be equal. When we move to the case
of two gamma distributions, we still have this level of freedom to arbitrarily
assign one parameter. In this example, we have maintained the “traditional”
style for the transition rates (see the category statement for catTS), but we
must use both the shape and scale parameters for the second distribution.
Thus, we end up with three parameters that govern the distributional form
for the transition and transversion rates: alphaS, the shape parameter for the
transition rate distribution, and alphaV and beta, the shape and scale para-
meters for the gamma distribution describing transversion rates.

We must still introduce these category variables into the substitution ma-
trix, and examining the definition of HKY85Two VarRateMatriz, we see that
transition rates are multiplied by catTS, while transversion rates are multi-
plied by catTV.

Analyzing codon data

So far, we have considered only nucleotide alignments and evolutionary models
as examples. Using the example included in the file codon.bf, we will discuss
how to read and filter codon data and define substitution models that operate
at the level of codons.

Defining codon data filters

Codon data sets are nucleotide sequences where the unit of evolution is a
triplet of nucleotides, and some states (stop codons) are disallowed. The task
of making HyPhy interpret a nucleotide alignment as codons is handled by
supplying a few additional parameters in a call to CreateFilter. Consider the
following line in codons.bf:

DataSetFilter codonFilter =
CreateFilter(myData,3,"","","TAA,TAG,TGA") ;

The second argument of 3 instructs HyPhy to consider triplets of characters
in the data set myData as units of evolution. If it had been 2, then the filter
would consist of dinucleotides. The empty third and fourth arguments include
all sequences and sites in the filter. The fifth argument is the comma-separated
list of exclusions (i.e., character states that are not allowed). One can easily
recognize that the list includes the three stop codons for the universal genetic
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code. All sites in the original nucleotide alignment that contained at least one
of the excluded states would be omitted from the filter, and a message would
be written to messages.log, located in the main HyPhy directory.

The filter myFilter consists of data for 4°> — 3 = 61 states (i.e., all sense
codons in the universal genetic code); therefore, any substitution model com-
patible with this filter must describe a process with 61 states and use a 61 x 61
rate matrix. Before we proceed with the definition of this matrix, a crucial
question must be answered: How does HyPhy index codons? For example,
which entry in the rate matrix will describe the change from codon ATC to
codon TTC? HyPhy uses a uniform indexing scheme, which is rather straight-
forward. The default nucleotide alphabet is ordered as ACGT, and each char-
acter is assigned an index in that order: A=0, C=1, G=2, T=3 (note that all
indexing starts at 0, as in the programming language C). In previous exam-
ples, we used this mapping to define nucleotide rate matrices. For example,
the entry in row 2 and column 3 would define the rate of G—T substitutions.
Analogously, all sense codons are ordered alphabetically: AAA, AAC, AAG,
AAT, ACA, ..., TTG, TTT, excluding stop codons, with the corresponding
indexing from 0 to 60. It is easy to check that ATC will have the index of
13, whereas TTC is assigned the index of 58. Consequently, the rate of ATC
to TTC substitutions should be placed in row 13 and column 58 of the rate
matrix.

A 61 x 61 rate matrix has 3721 entries, and defining them one by one
would be a daunting task. We need a way to avoid an explicit enumeration.
Consider the MG94 x HKY85 model (6.2) explained in Section 6.2.4. Each sub-
stitution rate can be classified by determining the following four attributes:
(i) is the change one-step or multistep? (ii) Is the change synonymous or non-
synonymous? (iii) Is the change a transition or a transversion? (iv) What is
the equilibrium frequency of the target nucleotide? A compact way to define
the model is to loop through all 3721 possible pairs of codons, answer the
four questions above, and assign the appropriate rate to the matrix cell. Hy-
Phy has no intrinsic knowledge of how codons are translated to amino acids,
and this information is needed to decide whether a nucleotide substitution is
synonymous or nonsynonymous. codons.bf contains such a map for the uni-
versal genetic code in the matrix UniversalGeneticCode. The 64 codons have
21 possible translations (20 amino acids and a “stop”). Each of the 64 cells
of UniversalGeneticCode contains an amino acid (or stop) code from 0 to 20,
whose meaning is explained in the comments in codons.bf. We refer the reader
to the code and comments in codons.bf for implementation details. The imple-
mentation is straightforward but somewhat obtuse. Once the reader becomes
comfortable with referencing codons by their indices and interpreting them,
the code should be clear. The reason for not having a built-in genetic code
translation device is to allow the use of arbitrary (nonuniversal) genetic codes.

The file codons.bf illustrates several other useful concepts:
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e How to define and call user functions. Function BuildCodonFrequencies
is employed to compute codon equilibrium frequencies based on observed
nucleotide proportions, defined in (6.3).

e The use of a built-in variable to reference the tree string present in the
data file (DATAFILE_TREE).

e The use of the double underscore operator to substitute numerical values
of arguments into formula definitions and avoid unwanted dependencies.

Lastly, codons.bf writes out data for further processing with a standard
file from the HyPhy distribution to perform posterior Bayesian analysis, as
discussed in Section 6.2.4.

6.4 Conclusion

This chapter has provided an overview of the basic features and use of the
HyPhy system. With a programming language at its core, users may elect to
write their own likelihood-based molecular evolutionary analyses. A graphical
user interface offers much of the power of the batch language, allowing users
to fit complex, customizable models to sequence alignments. The user inter-
face also provides access to the parametric bootstrap features of HyPhy for
carrying out tests of both nested and nonnested hypotheses. Many features of
the package, of course, could not be described in this chapter. For instance,
HyPhy includes a model editor for describing new stochastic models to be used
in analyses, and the graphical user interface provides a mechanism to define
arbitrary constraints among parameters for construction of likelihood ratio
tests. Its authors continue to develop HyPhy, with a goal of providing a flex-
ible, portable, and powerful system for carrying out cutting-edge molecular
evolutionary analyses.

References

[1] H. Akaike. A new look at the statistical model identification. IEEE
Transactions on Automatic Control, 119:716-723, 1974.

[2] D. R. Cox. Tests of separate families of hypotheses. In Proceedings
of the 4th Berkeley Symposium, volume 1, pages 105-123. University of
California Press, Los Angeles, CA, 1961.

[3] J. Felsenstein. Evolutionary trees from DNA-sequences — a maximum-
likelihood approach. Journal of Molecular Evolution, 17:368-376, 1981.

[4] N. Goldman. Statistical tests of models of DNA substitution. Journal of
Molecular Evolution., 36:182-198, 1993.

[5] M. Hasegawa, H. Kishino, and T. Yano. Dating of the human-ape split-
ting by a molecular clock of mitochondrial dna. Molecular Biology and
Evolution, 21:160-174, 1985.



[6]

[7]

6 HyPhy 181

S. L. Kosakovsky Pond and S. V Muse. Column sorting: Rapid calculation
of the phylogenetic likelihood function. To appear in Systematic Biology,
2004.

S. V. Muse and B. S. Gaut. A likelihood approach for comparing synony-
mous and nonsynonymous nucleotide substitution rates, with application
to the chloroplast genome. Molecular Biology and Evolution, 11:715-724,
1994.

S. V. Muse and B. S. Gaut. Comparing patterns of nucleotide substitu-
tion rates among chloroplast loci using the relative ratio test. Genetics,
146:393-399, 1997.

R. Nielsen and Z. H. Yang. Likelihood models for detecting positively
selected amino acid sites and applications to the HIV-1 envelope gene.
Genetics, 148:929-936, 1998.

Y. Suzuki and T. Gojobori. A method for detecting positive selection at
single amino acid sites. Molecular Biology and Fvolution, 16:1315-1328,
1999.

Z. Yang. Maximum-likelihood estimation of phylogeny from DNA se-
quences when substitution rates differ over sites. Molecular Biology and
Evolution, 10:1396-1401, 1993.

Z. Yang. Maximum likelihood phylogenetic estimation from DNA se-
quences with variable rates over sites: Approximate methods. Journal of
Molecular Evolution., 39:105-111, 1994.

Z. H. Yang. Among-site rate variation and its impact on phylogenetic
analyses. Trends in Ecology and Evolution, 11:367-372, 1996.

Z. H. Yang, R. Nielsen, N. Goldman, and A. M. K. Pedersen. Codon-
substitution models for heterogeneous selection pressure at amino acid
sites. Genetics, 155:431-449, 2000.





