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5.1 Introduction

Proteins evolve; the genes encoding them undergo mutation, and the evolu-
tionary fate of the new mutation is determined by random genetic drift as
well as purifying or positive (Darwinian) selection. The ability to analyze this
process was realized in the late 1970s when techniques to measure genetic
variation at the sequence level were developed. The arrival of molecular se-
quence data also intensified the debate concerning the relative importance of
neutral drift and positive selection to the process of molecular evolution [17].
Ever since, there has been considerable interest in documenting cases of mole-
cular adaptation. Despite a spectacular increase in the amount of available
nucleotide sequence data since the 1970s, the number of such well-established
cases is still relatively small [9, 38]. This is largely due to the difficulty in de-
veloping powerful statistical tests for adaptive molecular evolution. Although
several powerful tests for nonneutral evolution have been developed [33], sig-
nificant results under such tests do not necessarily indicate evolution by pos-
itive selection.

A powerful approach to detecting molecular evolution by positive selection
derives from comparison of the relative rates of synonymous and nonsynony-
mous substitutions [22]. Synonymous mutations do not change the amino
acid sequence; hence their substitution rate (dS) is neutral with respect to se-
lective pressure on the protein product of a gene. Nonsynonymous mutations
do change the amino acid sequence, so their substitution rate (dN ) is a func-
tion of selective pressure on the protein. The ratio of these rates (ω = dN/dS)
is a measure of selective pressure. For example, if nonsynonymous mutations
are deleterious, purifying selection will reduce their fixation rate and dN/dS

will be less than 1, whereas if nonsynonymous mutations are advantageous,
they will be fixed at a higher rate than synonymous mutations, and dN/dS

will be greater than 1. A dN/dS ratio equal to one is consistent with neutral
evolution.
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With the advent of genome-scale sequencing projects, we can begin to
study the mechanisms of innovation and divergence in a new dimension. Un-
doubtedly, new examples of adaptive evolution will be uncovered; however, we
will also be able to study the process of molecular adaptation in the context of
the amount and nature of genomic change involved. Statistical tools such as
maximum likelihood estimation of the dN/dS ratio [13, 24] and the likelihood
ratio test for positively selected genes [26, 34] will be valuable assets in this
effort. Hence, the objective of this chapter is to provide an overview of some
recent developments in statistical methods for detecting adaptive evolution as
implemented in the PAML package of computer programs.

5.1.1 The PAML Package of Programs

PAML (for Phylogenetic Analysis by Maximum Likelihood) is a package
of programs for analysis of DNA or protein sequences by using maximum
likelihood methods in a phylogenetic framework [36]. The package, along
with documentation and source codes, is available at the PAML Web site
(http://abacus.gene.ucl.ac.uk/software/paml.html). In this chapter, we illus-
trate selected topics by analysis of example datasets. The sequence align-
ments, phylogenetic trees, and the control files for running the program are
all available at ftp://abacus.gene.ucl.ac.uk/pub/BY2004SMME/. Readers are
encouraged to retrieve and analyze the example datasets themselves as they
proceed through this chapter.

The majority of analytical tools discussed here are implemented in the
codeml program in the PAML package. Data analysis using codeml and the
other programs in the PAML package are controlled by variables listed in a
“control file.” The control file for codeml is called codeml.ctl and is read
and modified by using a text editor. Options that do not apply to a particular
analysis can be deleted from a control file. Detailed descriptions of all of
codeml’s variables are provided in the PAML documentation. Below we list a
sample file showing the important options for codon-based analysis discussed
in this chapter.

seqfile = seqfile.txt * sequence data filename
treefile = tree.txt * tree structure filename
outfile = out.txt
runmode = 0 * 0:user defined tree; -2:pairwise comparison
seqtype = 1 * 1:codon models; 2: amino acid models

CodonFreq = 2 * 0:equal, 1:F1X4, 2:F3X4, 3:F61
model = 0 * 0:one-w for all branches; 2: w’s for branches

NSsites = 0 * 0:one-rtio; 1:neutral; 2:selection; 3:discrete;
* 7:beta; 8:beta&w

icode = 0 * 0:universal code
fix_kappa = 0 * 1:kappa fixed, 0:kappa to be estimated

kappa = 2 * initial or fixed kappa
fix_omega = 0 * 1:omega fixed, 0:omega to be estimated

omega = 5 * initial omega



5 Adaptive Protein Evolution 105

5.2 Maximum Likelihood Estimation of Selective
Pressure for Pairs of Sequences

5.2.1 Markov Model of Codon Evolution

A Markov process is a simple stochastic process in which the probability of
change from one state to another depends on the current state only and not
on past states. Markov models have been used very successfully to describe
changes between nucleotides, codons, or amino acids [10, 18, 13]. Advantages
of a codon model include the ability to model biologically important prop-
erties of protein-coding sequences such as the transition to transversion rate
ratio, the dN/dS ratio, and codon usage frequencies. Since we are interested
in measuring selective pressure by using the dN/dS ratio, we will consider
a Markov process that describes substitutions between the 61 sense codons
within a protein- coding sequence [13]. The three stop codons are excluded
because mutations to stop codons are not tolerated in a functional protein-
coding gene. Independence among the codon sites of a gene is assumed, and
hence the substitution process can be considered one codon site at a time.
For any single codon site, the model describes the instantaneous substitu-
tion rate from codon i to codon j, qij . Because transitional substitutions are
known to occur more often than transversions, the rate is multiplied by the
κ parameter when the change involves a transition; the κ parameter is the
transition/transversion rate ratio. Use of codons within a gene also can be
highly biased, and consequently the rate of change from i to j is multiplied
by the equilibrium frequency of codon j (πj). Selective constraints acting
on substitutions at the amino acid level affect the rate of change when that
change represents a nonsynonymous substitution. To account for this level
of selective pressure, the rate is multiplied by the ω parameter if the change
is nonsynonymous; the ω parameter is the nonsynonymous/synonymous rate
ratio (dN/dS). Note that only selection on the protein product of the gene
influences ω.

The substitution model is specified by the instantaneous rate matrix, Q =
{qij}, where

qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if i and j differ at two or three codon positions,
µπj , if i and j differ by a synonymous transversion,
µκπj , if i and j differ by a synonymous transition,
µωπj , if i and j differ by a nonsynonymous transversion,
µκωπj , if i and j differ by a nonsynonymous transition.

(5.1)

The diagonal elements of the matrix Q are defined by the mathematical
requirement that the row sums be equal to zero. Because separate estimation
of the rate (µ) and time (t) is not possible, the rate (µ) is fixed so that the
expected number of nucleotide substitutions per codon is equal to one. This
scaling allows us to measure time (t) by the expected number of substitutions
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per codon (i.e. genetic distance). The probability that codon i is substituted
by codon j after time t is pij(t), and P (t) = pij(t) = eQt. The above is a de-
scription of the basic codon model of Goldman and Yang [13]. A similar model
of codon substitution was proposed by Muse and Gaut [24] and is implemented
in codeml as well as in the program HyPhy (http://www.hyphy.org/).

5.2.2 Maximum Likelihood Estimation of the dN/dS Ratio

We can estimate ω by maximizing the likelihood function using data of
two aligned sequences. Suppose there are n codon sites in a gene, and a
certain site (h) has codons CCC and CTC. The data at site h, denoted
xh = {CCC, CTC}, are related to an ancestor with codon k by branch lengths
t0 and t1 (Figure 5.1(a)). The probability of site h is

f(xh) =
∑

k

πkpk,CCC(t0)pk,CTC(t1) = πCCCpCCC,CTC(t0 + t1). (5.2)

Fig. 5.1. Rooted (a) and unrooted (b) trees for a pair of sequences. Under reversible
codon models, the root is unidentifiable; hence, only the sum of the branch lengths,
t = t0 + t1, is estimable.

Since the ancestral codon is unknown, the summation is over all 61 possible
codons for k. Furthermore, as the substitution model is time-reversible, the
root of the tree can be moved around, say, to species 1, without changing
the likelihood. Thus t0 and t1 cannot be estimated individually, and only
t0 + t1 = t is estimated (Figure 5.1(b)).

The log-likelihood function is a sum over all codon sites in the sequence

�(t, κ, ω) =
n∑

h=1

log f(xh). (5.3)
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Codon frequencies (πi’s) can usually be estimated by using observed base
or codon frequencies. The ω parameter and parameters κ and t are estimated
by maximizing the log- likelihood function. Since an analytical solution is not
possible, numerical optimization algorithms are used.

5.2.3 Empirical Demonstration: Pairwise Estimation of the dN/dS

Ratio for GstD1

In this section, we use a simple data set and the codeml program to illus-
trate maximum likelihood estimation of ω. The data set is GstD1 genes of
Drosophila melanogaster and D. simulans. The alignment has 600 codons.
Our first objective is to evaluate the likelihood function for a variety of fixed
values for the parameter ω. Codeml uses a hill-climbing algorithm to maxi-
mize the log-likelihood function. In this case, we will let codeml estimate κ
(fix kappa = 0 in the control file codeml.ctl) and the sequence distance
t, but with parameter ω fixed (fix omega = 1). All that remains is to run
codeml several times, each with a different value for omega in the control file;
the data in Figure 5.2 show the results for ten different values of ω. Note
that the maximum likelihood value for ω appears to be roughly 0.06, which is
consistent with purifying selection, and that values greater than 1 have much
lower likelihood scores.

Our second objective is to allow codeml to use the hill-climbing algorithm
to maximize the log-likelihood function with respect to κ, t, and ω. Thus we
use fix omega = 1 and can use any positive value for omega, which is used
only as a starting value for the iteration. Such a run gives the estimate of ω
of 0.067.

Alternatives to maximum likelihood estimates of ω are common [25, 15,
39]. Those methods count the number of sites and differences and then apply
a multiple-hit correction, and they are termed the counting methods. Most of
them make simplistic assumptions about the evolutionary process and apply
ad hoc treatments to the data that can’t be justified [23, 39]. Here we use
the GstD1 sequences to explore the effects of (i) ignoring the transition to
transversion rate ratio (fix kappa = 1; kappa = 1); (ii) ignoring codon us-
age bias (CodonFreq = 0); and (iii) alternative treatments of unequal codon
frequencies (CodonFreq = 2 and CodonFreq = 3). Note that for these data
transitions are occurring at higher rates than transversions, and codon fre-
quencies are very biased, with average base frequencies of 6% (T), 50% (C),
5% (A), and 39% (G) at the third position of the codon. Thus, we expect
estimates that account for both biases will be the most reliable.

Results of our exploratory analyses (Table 5.2.3) indicate that model as-
sumptions are very important for these data. For example, ignoring the transi-
tion to transversion ratio almost always led to underestimation of the number
of synonymous sites (S), overestimation of dS , and underestimation of ω. This
is because transitions at the third codon positions are more likely to be syn-
onymous than are transversions [19]. Similarly, biased codon usage implies
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Fig. 5.2. Log-likelihood as a function of the ω parameter for a pair of GstD1 genes
from Drosophila melanogaster and D. simulans. The maximum likelihood estimate
of ω is the value that maximizes the likelihood function. Since an analytical solution
is not possible, the codeml program uses a numerical hill-climbing algorithm to
maximize l. For these data, the maximum likelihood estimate of ω is 0.067, with a
maximum likelihood of -756.57.

unequal substitution rates between the codons, and ignoring it also leads to
biased estimates of synonymous and nonsynonymous substitution rates. In
real data analysis, codon usage bias was noted to have an even greater impact
than the transition/transversion rate ratio and is opposite to that of ignoring
transition bias. This is clearly indicated by the sensitivity of S to codon bias,
where S in this gene (45.2) is less than one-third the expected value under
the assumption of no codon bias (S = 165.8). The estimates of ω differ by as
much as 4.7-fold (Table 5.2.3). Note that these two sequences differed at just
3% of sites.

For comparison, we included estimates obtained from two counting meth-
ods. The method of Nei and Gojobori [25] is similar to ML ignoring transition
bias and codon bias, whereas the method of Yang and Nielsen [39] is similar to
ML accommodating transition bias and codon bias (F3×4). Note that estima-
tion according to Nei and Gojobori [25] was accomplished by using the codeml
program and according to Yang and Nielsen [39] by using the YN00 program
of PAML. What is clear from these data is that when sequence divergence is
not too great, assumptions appear to matter more than methods, with ML
and the counting methods giving similar results under similar assumptions.
This result is consistent with simulation studies examining the performance of
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Table 5.1. Estimation of dS and dN between Drosophila melanogaster and D.
simulans GstD1 genes.

Method κ S N dS dN ω �

ML methods
Fequal, κ = 1 1 152.9 447.1 0.0776 0.0213 0.274 -927.18
Fequal, κ estimated 1.88 165.8 434.2 0.0221 0.0691 0.320 -926.28
F3×4, κ = 1 1 70.6 529.4 0.1605 0.0189 0.118 -844.51
F3×4, κ estimated 2.71 73.4 526.6 0.1526 0.0193 0.127 -842.21
F61, κ = 1 1 40.5 559.5 0.3198 0.0201 0.063 -758.55
F61, κ estimated 2.53 45.2 554.8 0.3041 0.0204 0.067 -756.57

Counting methods
Nei and Gojobori 1 141.6 458.4 0.0750 0.0220 0.288
Yang and Nielsen (F3×4) 3.28 76.6 523.5 0.1499 0.0190 0.127

different estimation methods [39]. However, as sequence divergence increases,
ad hoc treatment of the data can lead to serious estimation errors [23, 8].

5.3 Phylogenetic Estimation of Selective Pressure

Adaptive evolution is very difficult to detect using the pairwise approach to
estimating the dN/dS ratio. For example, a large-scale database survey identi-
fied less than 1% of genes (17 out of 3595) as evolving under positive selective
pressure [9]. The problem with the pairwise approach is that it averages selec-
tive pressure over the entire evolutionary history separating the two lineages
and over all codon sites in the sequences. In most functional genes, the major-
ity of amino acid sites will be subject to strong purifying selection [31, 6], with
only a small fraction of the sites potentially targeted by adaptive evolution
[11]. In such cases, averaging the dN/dS ratio over all sites will yield values
much less than one, even under strong positive selective pressure at some
sites. Moreover, if a gene evolved under purifying selection for most of that
time, with only brief episodes of adaptive evolution, averaging over the his-
tory of two distantly related sequences would be unlikely to produce a dN/dS

ratio greater than one [4]. Clearly, the pairwise approach has low power to
detect positive selection. Power is improved if selective pressure is allowed to
vary over sites or branches [37, 40]. However, increasing the complexity of the
codon model in this way requires that likelihood be calculated for multiple
sequences on a phylogeny.
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5.3.1 Likelihood Calculation for Multiple Sequences on a
Phylogeny

Likelihood calculation on a phylogeny (Figure 5.3) is an extension of the
calculation for two lineages. As in the case of two sequences, the root cannot
be identified and is fixed at one of the ancestral nodes arbitrarily. For example,
given an unrooted tree with four species and two ancestral codons, k and g,
the probability of observing the data at codon site h, xh = {x1, x2, x3, x4}
(Figure 5.3), is

f(xh) =
∑

k

∑
g

{πkpkx1(t1)pkx2(t2)pkg(t0)pgx3(t3)pgx4(t4)} . (5.4)

Fig. 5.3. An unrooted phylogeny for four sequences. As in the case of two sequences,
the root cannot be identified. For the purpose of likelihood calculation, the root is
fixed at one of the ancestral nodes arbitrarily, and t0, t1, t2, t3, and t4 are estimable
parameters in the model.

The quantity in the brackets is the contribution to the probability of ob-
serving the data by ancestral codons k and g at the two ancestral nodes. For
an unrooted tree of N species, with N − 2 ancestral nodes, the data at each
site will be a sum over 61N−2 possible combinations of ancestral codons. The
log-likelihood function is a sum over all codon sites in the alignment

� =
n∑

h=1

log{f(xh)}. (5.5)

As in the two-species case, numerical optimization is used to maximize
the likelihood function with respect to κ, ω, and the (2N − 3) branch-length
parameters (t’s).

5.3.2 Modelling Variable Selective Pressure among Lineages

Adaptive evolution is most likely to occur in an episodic fashion. For exam-
ple, functional divergence of duplicated genes [43, 29, 5], colonization of a
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host by a parasitic organism [16], or colonization of a new ecological niche
[21] all seem to occur at particular time points in evolutionary history. To
improve detection of episodic adaptive evolution, Yang [37] (see also [24]) im-
plemented models that allow for different ω parameters in different parts of a
phylogeny. The simplest model, described above, assumes the same ω ratio for
all branches in the phylogeny. The most general model, called the “free-ratios
model,” specifies an independent ω ratio for each branch in a phylogeny. In
the codeml program, users can specify an intermediate model, with indepen-
dent ω parameters for different sets of branches. Modelling variable selective
pressure involves a straightforward modification of the likelihood computa-
tion [37]. Consider the example tree of fig. 5.4. Suppose we suspect selective
pressure has changed in one part of this tree, perhaps due to positive selective
pressure. To model this, we specify independent ω ratios (ω0 and ω1) for the
two different sets of branches (Figure 5.4). The transition probabilities for the
two sets of branches are calculated from different rate matrices (Q) generated
by using different ω ratios. Under this model (Figure 5.4), the probability of
observing the data at codon site xh is

f(xh) =
∑

k

∑
g

πkpkx1(t1; ω0)pkx2(t2; ω0)pkg(t0; ω0)pgx3(t3; ω1)pgx4(t4; ω1).

(5.6)
The log-likelihood function remains a sum over all sites but is now max-

imized with respect to ω0 and ω1, as well as branch lengths (t’s) and κ. ω
parameters for user-defined sets of branches are specified by model = 2 in
the control file and by labelling branches in the tree, as described in the
PAML documentation.

Fig. 5.4. Four-taxon phylogeny with variable ω ratios among its branches. The
likelihood of this tree is calculated according to Yang [37], where the two indepen-
dent ω ratios (ω0 and ω1) are used to calculate rate matrices (Q) and transition
probabilities for the different branches.
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5.3.3 Modelling Variable Selective Pressure among Sites

In practice, modelling variable selective pressure among sites appears to pro-
vide much greater gains in power than does modelling variable selective pres-
sure among branches [38]. This is because adaptive evolution is generally
restricted to a small subset of sites [6, 40], and the previous model for varia-
tion over branches effectively averages over all sites. Although differences in
the relative rate of nonsynonymous substitution often can be detected among
branches, averaging over sites means it is unlikely that estimated ω’s will be
greater than one. In fact, implementation of models with variable ω’s among
codon sites [26, 40, 41] has led to the detection of positive selection in many
genes for which it had not previously been observed. For example, Zanotto et
al. [42] used the models of Nielsen and Yang [26] to detect positive selection in
the nef gene of HIV-1, a gene for which earlier studies had found no evidence
for adaptive evolution [28, 7].

There are two approaches to modelling variation in ω among sites: (i) use
a statistical distribution to model the random variation in ω over sites; and
(ii) use a priori knowledge of a protein’s structural and functional domains to
partition sites in the protein and use different ω’s for different partitions. Since
structural and functional information are unknown for most proteins, a sta-
tistical distribution will be the most common approach. Collectively, Nielsen
and Yang [26] and Yang et al. [40] implemented 13 such models, available in
the codeml program. The continuous distributions are approximated by using
discrete categories. In this approach, codon sites are assumed to fall into K
classes, with the ω ratios for the site classes, and their proportions (p), esti-
mated from the data. The number of classes (K) is fixed beforehand, and the
ω’s and p’s are either treated as parameters or functions of parameters of the
ω distribution [40]. We illustrate likelihood calculation by taking the discrete
model (M3) as an example. M3 classifies codon sites into K discrete classes
(i = 0, 1, 2, . . . , K − 1), with dN/dS ratios and proportions given as:

ω0, ω1, ..., ωK−1,
p0, p1, ..., pK−1.

(5.7)

Equation (5.4) is used to compute the conditional probability f(xh|ωi) of
the data at a site, h, for each site class. Since we do not know to which class
site h belongs, we sum over both classes, giving the unconditional probability

f(xh) =
K−1∑
i=0

pif(xh|ωi). (5.8)

In this way, the unconditional probability is an average over the site classes
of the ω distribution. Still, assuming that the substitution process at individ-
ual codon sites is independent, the log-likelihood function is a sum over all
sites in the sequence:
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� =
n∑

h=1

log{f(xh)}. (5.9)

The log-likelihood is now maximized as a function of the parameters of
the ω distribution, branch-lengths (t), and κ.

With the second approach, we used knowledge of a protein’s structural
or functional domains to classify codon sites into different partitions with
different ω’s. Since we assume site independence, the likelihood calculation is
straightforward; the transition probabilities in equation (5.4) are computed
by using the appropriate ω parameter for each codon site. By taking this
approach, we are effectively assuming our knowledge of the protein is without
error; hence, we do not average over site classes for each site [41].

5.4 Detecting Adaptive Evolution in Real Data Sets

Maximum likelihood estimation of selective pressure is only one part of the
problem of detecting adaptive evolution in real data sets. We also need the
tools to rigorously test hypotheses about the nature of selective pressure. For
example, we might want to test whether dN is higher than dS (i.e., ω > 1).
Fortunately, we can combine estimation of selective pressure with a formal
statistical approach to hypothesis testing, the likelihood ratio test (LRT).
Combined with Markov models of codon evolution, the LRT provides a very
general method for testing hypotheses about protein evolution, including: (i) a
test for variation in selective pressure among branches; (ii) a test for variation
in selective pressure among sites; and (iii) a test for a fraction of sites evolving
under positive selective pressure. In the case of a significant LRT for sites
evolving under positive selection, we use Bayes or empirical Bayes methods
to identify positively selected sites in an alignment. In the following section,
we provide an introduction to the LRT and Bayes’ theorem and provide some
empirical demonstrations of their use on real data.

5.4.1 Likelihood Ratio Test (LRT)

The LRT is a general method for testing assumptions (model parameters)
through comparison of two competing hypotheses. For our purposes, we will
only consider comparisons of nested models; that is, where the null hypothesis
(H0) is a restricted version (special case) of the alternative hypothesis (H1).
Note that the LRT only evaluates the differences between a pair of models,
and any inadequacies shared by both models remain untested. Let �0 be the
maximum log-likelihood under H0 with parameters θ0, and let �1 be the max-
imum log-likelihood under H1 with parameters θ1. The log-likelihood statistic
is defined as twice the log likelihood difference between the two models,

2∆� = 2(�1(θ̂1) − �0(θ̂0)). (5.10)
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If the null hypothesis is true, 2∆� will be asymptotically χ2 distributed with
the degree of freedom equal to the difference in the number of parameters
between the two models.

Use of the χ2 approximation to the likelihood ratio statistic requires that
certain conditions be met. First, the hypotheses must be nested. Second, the
sample must be sufficiently large; the χ2 approximation fails when too few data
are used. Third, H1 may not be related to H0 by fixing one or more of its
parameters at the boundary of parameter space. This is called the “boundary”
problem, and the LRT statistic is not expected to follow a χ2 distribution in
this case [30]. When the conditions above are not met, the exact distribution
can be obtained by Monte Carlo simulation [12, 1], although this can be a
computationally costly solution.

5.4.2 Empirical Demonstration: LRT for Variation in Selective
Pressure among Branches in Ldh

The Ldh gene family is an important model system for molecular evolution
of isozyme multigene families [20]. The paralogous copies of lactate dehydro-
genase (Ldh) genes found in mammals originated from a duplication near the
origin of vertebrates (Ldh-A and Ldh-B) and a later duplication near the ori-
gin of mammals (Figure 5.5; Ldh-A and Ldh-C ). Li and Tsoi [20] found that
the rate of evolution had increased in mammalian Ldh-C sometime following
the second duplication event. An unresolved question about this gene family is
whether the increased rate of Ldh-C reflects (i) a burst of positive selection for
functional divergence following the duplication event, (ii) a long-term change
in selective pressure, or (iii) simply an increase in the underlying mutation
rate of Ldh-C. In the following, we use the LRT for variable ω ratios among
branches to test these evolutionary scenarios.

The null hypothesis (H0) is that the rate increase in Ldh-C is simply
due to an underlying increase in the mutation rate. If the selective pressure
was constant and the mutation rate increased, the relative fixation rates of
synonymous and nonsynonymous mutations (ω) would remain constant over
the phylogeny, but the overall rate of evolution would increase in Ldh-C. One
alternative to this scenario is that the rate increase in Ldh-C was due to a
burst of positive selection following gene duplication (H1). A formal test for
variation in selective pressure among sites may be formulated as follows:

H0: ω is identical across all branches of the Ldh phylogeny.
H1: ω is variable, being greater than 1 in branch C0 of Figure 5.5.
Because H1 can be transformed into H0 by restricting ωC0 to be equal

to the ω ratios for the other branches, we can use the LRT. The estimate of
ω under the null hypothesis, as an average over the phylogeny in Figure 5.5,
was 0.14, indicating that evolution of Ldh-A and Ldh-C was dominated by
purifying selection. The LRT suggests that selective pressure in Ldh-C imme-
diately following gene duplication (0.19) was not significantly different from
the average over the other branches (Table 5.2). Hence, we found no evidence
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Fig. 5.5. A phylogenetic tree for the Ldh-A and Ldh-C gene families. The tree
was obtained by a neighbor-joining analysis of a codon sequence alignment under
the HKY85 substitution model [14] combined with a Gamma model of rate vari-
ation among sites [35]. Branch lengths are not to scale. The Gallus (chicken) and
Sceloporus (lizard) Ldh-A sequences are pro-orthologs, as they predate the gene
duplication event. The tree is rooted with the pro-orthologous sequences for conve-
nience; all analyses were conducted by using the unrooted topology. The one ratio
model (H0) assumes uniform selective pressure over all branches. H1 is based on the
notion of a burst of positive selection in Ldh-C following the gene duplication event;
hence the assumption of one ω for branch C0 and another for all other branches.
H2 is based on the notion of increased nonsynonymous substitution in all Ldh-C
lineages following gene duplication; hence the assumption of one ω for the Ldh-C
branches (ωC0 = ωC1) and another for the Ldh-A branches (ωA0 = ωA1). H3 is based
on the notion that selective pressure changed in both Ldh-C and Ldh-A following
gene duplication, as compared with the pro-orthologous sequences; hence, one ω for
the Ldh-C branches (ωC0 = ωC1), one ω for the post-duplication Ldh-A branches
(ωA1), and one ω for the pro-orthologous branches (ωA0).
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for functional divergence of Ldh-A and Ldh-C by positive selection. It should
be noted that if functional divergence of Ldh-A and Ldh-C evolved by positive
selection for just one or a few amino acid changes, we would not observe a
large difference in ω ratios among branches.

Table 5.2. Parameter estimates under models of variable ω ratios among lineages
for the Ldh-A and Ldh-C gene families. (Note: The topology and branch-specific ω
ratios are presented in Figure 5.5. The df is 1 for the comparisons of H0 vs. H1, H0

vs. H2, and H2 vs. H3.)

Models wA0 wA1 wC1 wC0 �

H0 : wA0 = wA1 = wC1 = wC0 0.14 = wA0 = wA0 = wA0 −6018.63
H1 : wA0 = wA1 = wC1 �= wC0 0.13 = wA0 = wA0 0.19 −6017.57
H2 : wA0 = wA1 �= wC1 = wC0 0.07 = wA0 0.24 = wA1 −5985.63
H3 : wA0 �= wA1 �= wC1 = wC0 0.09 0.06 0.24 = wA1 −5984.11

Using the same approach, we tested a second alternative hypothesis, where
the rate increase in Ldh-C was due to an increase in the nonsynonymous
substitution rate over all lineages of the Ldh-C clade (see H2 in Figure 5.5).
In this case, the LRT was highly significant, and the parameter estimates for
the Ldh-C clade indicated an increase in the relative rate of nonsynonymous
substitution by a factor of 3 (Table 5.2). Lastly, we tested the hypothesis that
selective pressure differed in both Ldh-A and Ldh-C following gene duplication
(see H3 in Figure 5.5), and results of this test were not significant (Table
5.2). Collectively, these findings suggest selective pressure and mutation rates
in Ldh-A were relatively unchanged by the duplication event, whereas the
nonsynonymous rate increased in Ldh-C following the duplication event as
compared with Ldh-A.

5.4.3 Empirical Demonstration: Positive Selection in the nef Gene
in the Human HIV-2 Genome

The role of the nef gene in differing phenotypes of HIV-1 infection has been
well-studied, including identification of sites evolving under positive selective
pressure [42]. The nef gene in HIV-2 has received less attention, presumably
because HIV-2 is associated with reduced virulence and pathogenicity relative
to HIV-1. Padua et al. [27] sequenced 44 nef alleles from a study population
of 37 HIV-2-infected people living in Lisbon, Portugal. They found that nu-
cleotide variation in the nef gene, rather than gross structural change, was
potentially correlated with HIV-2 pathogenesis. In order to determine whether
the nef gene might also be evolving under positive selective pressure in HIV-
2, we analyzed those same data here with models of variable ω ratios among
sites [40].
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Following the recommendation of Yang et al. [40] and Anisimova et al. [1],
we consider the following models: M0 (one ratio), M1 (neutral), M2 (selection),
M3 (discrete), M7 (beta), and M8 (beta & ω). Models M0 and M3 were
described above. M1 (neutral) specifies two classes of sites: conserved sites
with ω = 0 and neutral sites with ω = 1. M2 (selection) is an extension of M1
(neutral), adding a third ω class that is free to take a value > 1. Version 3.14
of paml/codeml introduces a slight variation to models M1 (neutral) and M2
(selection) in that ω0 < 1 is estimated from the data rather than being fixed
at 0. Those are referred to as models M1a and M2a, also used here. Under
model M7 (beta), ω varies among sites according to a beta distribution with
parameters p and q. The beta distribution is restricted to the interval (0, 1);
thus, M1 (neutral), M1a (nearly neutral), and M7 (beta) assume no positive
selection. M8 (beta & ω) adds a discrete ω class to the beta distribution that
is free to take a value > 1. Under M8 (beta & ω), a proportion of sites p0
is drawn from a beta distribution, with the remainder (p1 = 1 − p0) having
the ω ratio of the added site class. We specified K = 3 discrete classes of
sites under M3 (discrete), and K = 10 under M7 (beta) and M8 (beta &
ω). We use an LRT comparing M0 (one ratio) with M3 (discrete) to test for
variable selective pressure among sites and three LRTs to test for sites evolving
by positive selection, comparing (i) M1 (neutral) against M2 (selection), (ii)
M1a (nearly neutral) and M2a (positive selection), and (iii) M7 (beta) against
M8 (beta & ω).

Maximum likelihood estimates of parameters and likelihood scores for the
nef gene are presented in Table 5.3. Averaging selective pressure over sites
and branches as in M0 (one ratio) yielded an estimated ω of 0.50, a result
consistent with purifying selection. The LRT comparing M0 (one ratio) against
M3 (discrete) is highly significant (2∆� = 1087.2, df = 4, P < 0.01), indicating
that the selective pressure is highly variable among sites. Estimates of ω under
models that can allow for sites under positive selection (M2, M2a, M3, M8)
indicated a fraction of sites evolving under positive selective pressure (Table
5.3). To formally test for the presence of sites evolving by positive selection,
we conducted LRTs comparing M1 and M2, M1a and M2a, and M7 and
M8. All those LRTs were highly significant; for example, the test statistic for
comparing M1 (neutral) and M2 (selection) is 2∆� = 223.58, with P < 0.01,
df = 2. These findings suggest that about 12% of sites in the nef gene of
HIV-2 are evolving under positive selective pressure, with ω between 2 and
3. It is clear from Table 5.3 that this mode of evolution would not have been
detected if ω were measured simply as an average over all sites of nef.

Models M2 (selection) and M8 (beta & ω) are known being multiple local
optima in some data sets, often with ω2 under M2 or ω under M8 to be < 1 on
one peak and > 1 on another peak. Thus it is important to run these models
multiple times with different starting values (especially different ω’s) and then
select the set of estimates corresponding to the highest peak. Indeed, the nef
dataset illustrates this issue. By using different initial ω’s, both the global and
local optima can be found.
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Table 5.3. Parameter estimates and likelihood scores under models of variable ω
ratios among sites for HIV-2 nef genes. (Note: The number after the model code,
in parentheses, is the number of free parameters in the ω distribution. The dN/dS

ratio is an average over all sites in the HIV-2 nef gene alignment. Parameters in
parentheses are not free parameters and are presented for clarity. PSS is the number
of positive selected sites, inferred at the 50% (95%) posterior probability cutoff.)

Model dN/dS Parameter estimates PSS �

M0: one ratio (1) 0.51 ω = 0.505 none −9775.77
M3: discrete (5) 0.63 p0 = 0.48, p1 = 0.39, (p2 = 0.13) 31 (24) −9232.18

ω0 = 0.03, ω1 = 0.74, ω2 = 2.50
M1: neutral (1) 0.63 p0 = 0.37, (p1 = 0.63) not allowed −9428.75

(ω0 = 0), (ω1 = 1)
M2: selection (3) 0.93 p0 = 0.37, p1 = 0.51, (p2 = 0.12) 30 (22) −9392.96

(ω0 = 0), (ω1 = 1), ω2 = 3.48
M1a: nearly neutral (2) 0.48 p0 = 0.55, (p1 = 0.45) not allowed −9315.53

(ω0 = 0.06), (ω1 = 1)
M2a: positive selection (4) 0.73 p0 = 0.51, p1 = 0.38, (p2 = 0.11) 26 (15) −9241.33

(ω0 = 0.05), (ω1 = 1), ω2 = 3.00
M7: beta (2) 0.42 p = 0.18, q = 0.25 not allowed −9292.53
M8: beta & ω (4) 0.62 p0 = 0.89, (p1 = 0.11) 27 (15) −9224.31

p = 0.20, q = 0.33, ω = 2.62

5.4.4 Bayesian Identification of Sites Evolving under Positive
Darwinian Selection

Under the approach described in this chapter, a gene is considered to have
evolved under positive selective pressure if (i) the LRT is significant and (ii)
at least one of the ML estimates of ω > 1. Given that these conditions are
satisfied, we have evidence for sites under positive selection but no informa-
tion about which sites they are. Hence, the empirical Bayes approach is used
to predict them [26, 40]. To do this, we compute, in turn, the posterior prob-
ability of a site under each ω site class of a model. Sites with high posterior
probabilities under the class with ω > 1 are considered likely to have evolved
under positive selective pressure.

Say we have a model of heterogeneous ω ratios, with K site classes
(i = 0, 1, 2, . . . , K − 1). The ω ratios and proportions are ω0, ω1, ..., ωK−1
and p0, p1, . . . , pK−1, with the proportions pi used as the prior probabilities.
The posterior probability that a site with data xh is from site class i is

P (ω|xh) =
P (xh|ωi)pi

P (xh)
=

P (xh|ωi)pi∑K−1
j=0 P (xh|ωj)pj

. (5.11)

Because the parameters used in the equation above to calculate the pos-
terior probability are estimated by ML (ωi and pi), the approach is called
empirical Bayes. By using the ML parameters in this way, we ignore their
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Fig. 5.6. Posterior probabilities for sites classes under M3 (K = 3) along the HIV-2
nef gene alignment.

sampling errors. The posterior probabilities will be sensitive to these parame-
ter estimates, meaning that the reliability of this approach will be poor when
the parameter estimates are poor, such as in small datasets or when obtained
from a local optimum.

Because the nef dataset above is quite large, the parameter estimates
are expected to be reliable [2]. Consistent with this, ML estimates of the
strength and proportion of positively selected sites in nef are consistent among
M2, M3, and M8 (Table 5.3). Figure 5.6 shows the posterior probabilities for
the K = 3 site classes at each site of nef under model M3. Twenty-four
sites were identified as having very high posterior probability (P > 0.95) of
evolving under positive selection (site class with ω > 1). Interestingly, none
of these sites matched the two variable sites in a proline-rich motif that is
strongly associated with an asymptomatic disease profile [27]. In fact, only
four of the 24 sites were found in regions of nef considered important for
function. Disruption of the important nef regions is associated with reduced
pathogenicity in HIV-2-infected individuals [32, 27]. Our results suggest that
selective pressure at such sites is fundamentally different from selection acting
at the 24 positive selection sites predicted using the Bayes theorem. To be
identified with such high posterior probabilities, the predicted sites must have
been evolving under long-term positive selective pressure, suggesting that they
are more likely subjected to immune-driven diversifying selection at epitopes
[42, 34].

5.5 Power, Accuracy and Robustness

The boundary problem mentioned above applies to the LRT for variable se-
lective pressure among sites and the LRT for positive selection at a fraction of
sites [1]. The problem arises in the former because the null (M0) is equivalent
to M3 (K = 3) with two of the five parameters (p0 and p1) fixed to 0, which
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is at the boundary of parameter space. In comparisons of M1 with M2, M1a
with M2a, and M7 with M8, the null is equivalent to the alternative with a
proportion parameter (p) fixed to 0. Therefore, the χ2 approximation is not
expected to hold. Anisimova et al. [1] used computer simulation to investigate
the effect of the boundary problem on the power and accuracy of the LRT.
Use of the χ2 makes the LRT conservative, meaning that the false positive
rate will be less than predicted by the specified significance level of the test
[1]. Nevertheless, the test was found to be powerful, sometimes reaching 100%
in data sets consisting of 17 sequences. Power was low for highly similar and
highly divergent sequences but was modulated by the length of the sequence
and the strength of positive selection. Note that simulation studies, both with
and without the boundary problem, indicate that the sample size require-
ments for the χ2 approximation are met with relatively short sequences in
some cases as few as 50 codons [1].

Bayesian prediction of sites evolving under positive selection is a more
difficult task than ML parameter estimation or likelihood ratio testing. The
difficulty arises because the posterior probabilities depend on the (i) informa-
tion contained at just a single site in the data set and (ii) the quality of the ML
parameter estimates. Hence, a second study was conducted by Anisimova et
al. [2] to examine the power and accuracy of the Bayesian site identification.
The authors made the following generalizations: (i) prediction of positively
selected sites is not practical from just a few highly similar sequences; (ii)
the most effective method of improving accuracy is to increase the number of
lineages; and (iii) site prediction is sensitive to sampling errors in parameter
estimates and to the assumed ω distribution.

Robustness refers to the stability of results to changes in the model as-
sumptions. The LRT for positive selection is generally robust to the assumed
distribution of ω over sites [1]. However, as the LRT of M0 with M3 is a test of
variable selective pressure among sites, caution must be exercised when only
the M0–M3 comparison suggests positive selection. One possibility is to use
M2, which tends to be more conservative than the other models [2]. Another
approach is to select the subset of sites that are robust to the ω distribution
[1, 34]. A third approach is to select sites that are robust to sampling lineages
[34]. We believe that sensitivity analysis is a very important part of detecting
positive selection, and we make the following recommendations: (i) multiple
models should be used, (ii) care should be taken to identify and discard results
obtained from local optima, and (iii) assumptions such as the ω distribution
or the method of correcting for biased codon frequencies should be evalu-
ated relative to their effects on ML parameter estimation and Bayesian site
prediction.

All codon models discussed above ignore the effect of the physicochemical
property of the amino acid being substituted. For example, all amino acid
substitutions at a positively selected site are assumed to be advantageous,
with ω > 1. The assumption appears to be unrealistic; one can imagine that
there might be a set of amino acid substitutions that are forbidden at a site
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because of physicochemical constraints, even though the site is subject to
strong positive selection. Another limitation is that these methods are very
conservative, only indicating positive selection when the estimate of ω is > 1.
In cases where only one or a few amino acid substitutions result in a substan-
tial change in phenotype, the methods will have little or no power because ω
will be < 1. Another important limitation is the assumption of a single under-
lying phylogeny. When recombination has occurred, no single phylogeny will
fit all sites of the data. A recent simulation study [3] found that the LRT is
robust to low levels of recombination but can have a seriously high type I er-
ror rate when recombination is frequent. Interestingly, Bayesian prediction of
positively selected sites was less affected by recombination than was the LRT.
In summary, no matter how robust the results, they must be interpreted with
these limitations in mind.
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