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Summary

The aim of this chapter is to provide an introduction to aspects of population
genetics theory that are relevant to current research in molecular evolution.
We review the roles of mutation rates, natural selection, ancestral polymor-
phism, and linkage among sites in molecular evolution. We also discuss why
it is possible to detect the workings of natural selection from comparing rates
of substitution for different classes of mutations along a branch in the phy-
logeny. The problem of estimating the distribution of selective effects among
newly arising mutations is given considerable treatment, as are neutral, nearly
neutral, and selective population genetics theories of molecular evolution. The
chapter does not aim to be an exhaustive description of the field but rather
a selective guide to the literature and theory of the population genetics of
molecular evolution.

4.1 Introduction

Evolution is the outcome of population-level processes that transform genetic
variation within species into genetic differences among species in time and
space. Two central goals of evolutionary biology are to describe both the
branching order of the history of life (phylogeny) and the evolutionary forces
(selective and nonselective) that explain why species differ from one another.
Since the 1980s there has been an explosion in the number and complexity of
probabilistic models for tackling the first problem, with the motivation that
to understand evolution at any level one needs to get the history right (or at
least integrate over one’s uncertainty in the matter) (for a review, see [113]).
Current Markov chain models of evolution deal with the complexities of DNA
[48, 60, 40, 119]), RNA [69, 92], codon [39, 70], and protein evolution (see
[104] for a review), as well as rate variation among sites [120, 26] and diverse
complex dependencies such as tertiary structure [85] and CpG mutational
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effects [94]. Likewise, there has been tremendous growth in using probabilistic
models for hypothesis testing and model selection. For example, it is currently
possible to exploit rate variation among codons [72, 124] and among lineages
and codons [123] to detect amino acid sites that are likely to be involved in
adaptive evolution assuming silent sites evolve neutrally and codons evolve
independently of one another.

The purpose of this chapter is to introduce population genetics concepts
relevant to the study of molecular evolution, with particular emphasis on
understanding how natural selection affects rates and patterns of molecular
evolution. Some effort is also made to discuss how population genetics models
relate to continuous-time discrete-space Markov chain models of molecular
evolution. For example, if the transformation of genetic variation is mostly
governed by genetic drift acting on evolutionarily neutral mutations that
evolve independently of one another, the outcome will be a Poisson process
with constant rate that is independent of the species size [81, 88, 51]. A Markov
chain model of evolution (perhaps with rate variation among sites) is a quite
appropriate model to capture the dynamics of such a system since the expo-
nential distribution of times among transitions corresponds to an underlying
Poisson process. If mutations are not neutral but sites evolve independently
of one another, the substitution process can remain a Poisson process that
differs among lineages depending on population size and the strength of se-
lection. Under such a model, it is possible to use variation in the rates of
substitution among sites to infer the distribution of selective effects among
new mutations [25, 73, 90]. Alternatively, if mutations are linked and either
slightly deleterious or advantageous (e.g., [81, 77, 78, 79, 59]), or if the fitness
effects of mutations vary randomly with the environment (e.g., [100, 30, 31]),
the observed patterns of molecular evolution can depart greatly from the ex-
pectations of a Poisson process with constant rate [31, 32, 33, 34, 17, 18].

We will begin with a brief historical overview of the population genetics
of molecular evolution (Subsection 4.1.1). In Section 4.2, we discuss some of
the major predictions of neutral and nearly neutral models of molecular evo-
lution. In Section 4.3, we demonstrate how the classical Wright-Fisher models
of population genetics give rise to the neutral theory of molecular evolution.
Next will follow a discussion on how ancestral polymorphism can cause depar-
tures from the expectations of the neutral independence-among-sites model
(Section 4.4). We will then discuss natural selection and demonstrate how
comparing the rate of substitution of a putatively selected class of mutations
to a neutrally evolving class can be used to infer the signature of natural selec-
tion from sequence data (Section 4.5). A discussion will follow on the effects of
a distribution of selection coefficients among new mutations on rates and pat-
terns of molecular evolution. Lastly, we investigate the effects of linkage and
selection on rates of molecular evolution. A definitive and more mathematical
treatment of the subject of theoretical population genetics can be found in
Warren Ewens’ excellent work Mathematical Population Genetics, which has
just been published in a second edition by Springer [23].
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4.1.1 Setting the Stage

To understand the relationship between population genetics and the study
of molecular evolution, one must begin at the point in history where the two
became intertwined. In their seminal paper, Zukerkandl and Pauling [126] pro-
posed that the preferred characteristic for inferring the evolutionary relation-
ships among organisms ought to be similarity at the level of DNA or protein se-
quences. Their paper, while deeply philosophical and contentious, was rooted
in the observation that the rate of amino acid evolution in hemoglobin-α and
cytochrome-c per year was roughly constant for various vertebrate species. If
DNA and protein sequences (“informational macromolecules”) accrued sub-
stitutions at a near constant rate, then the changes along the phylogeny rep-
resented a “molecular clock” that could be used for dating species divergence.
Since these changes are more plentiful and presumably subject to less scrutiny
by natural selection than morphological characters, the authors reasoned that
DNA and protein changes provide better markers for inferring evolutionary
relationships. Their paper provided a simple stochastic model of molecular
evolution whereby each site had equal probability of being substituted and
the number of substitutions that occur along a branch was proportional to
the length.

The theoretical foundation for this model (and thus for the molecular
clock hypothesis and ultimately for modern-day methods) was provided by
the “neutral-mutation drift” theory of molecular evolution, which posited that
the vast majority of molecular evolution was due to the stochastic fixation of
selectively neutral mutations [55, 63, 57, 62]. The theory concerns both vari-
ation within and between species and is summed up most elegantly by the
title of Kimura and Ohta’s seminal paper: “Protein polymorphism as a phase
of molecular evolution” [62]. In other words, the neutral theory arises from
considering the evolutionary implications of genetic drift operating on neu-
tral variation [55, 62, 58]. As we will see, the theory predicts (among other
things) that the rate of molecular evolution ought to be independent of the
population size. In many ways, the true concern of the theory is the distrib-
ution of selective effects among newly arising mutations since everything else
follows from this premise. The neutral theory is predicated upon the notion
that almost all mutations are either highly deleterious or evolutionarily neu-
tral. Highly deleterious mutations contribute little to variation within species
and nothing to the genetic differences among species. Adaptive mutations are
assumed to be very rare and to fix quickly, thus leaving neutral mutations as
the only real source of genetic variation within species that can lead to fixed
differences among species. It is important to note that the mature theory says
little about the proportion of all mutations that are neutral; rather, it states
that most mutations that go on to contribute to differences among species
and variation within species are neutral. In this sense, even very constrained
molecules such as histones can evolve neutrally. Their molecular clock just
ticks at a much lower rate than that of unconstrained molecules such as, per-
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haps, noncoding DNA. Present-day rate-variation models [120, 26] allow this
constraint parameter to vary among sites.

While the neutral theory arises as an extension of population genetics the-
ory, it is not the only population genetics theory of molecular evolution (e.g.,
[81, 100, 79, 30, 59, 82, 35, 89, 90]). In fact, the field of population genetics has
had a long-standing debate over the relative contribution of competing evo-
lutionary forces (mutation, migration, genetic drift, and natural selection) to
patterning genetic differences among species. Much of this debate has focused
on the question of how much genetic variation within species is maintained
by natural selection as well as how much of the molecular differences that we
observe among species are due to adaptive molecular evolution [64, 61, 31].

One of the most important critiques of the neutral theory has been put
forth by John Gillespie in The Causes of Molecular Evolution [31]. He used
two lines of evidence to argue that most amino acid substitutions are adap-
tive. The first is specific examples of adaptive molecular evolution in response
to environmental stress. The second is a thorough analysis of variation in the
index of dispersion (ratio of the variance to the mean) for amino acid substitu-
tions among mammalian and Drosophila species. As mentioned above, a major
prediction of the neutral model is that the pattern of substitutions along dif-
ferent branches in a phylogeny ought to be Poisson-distributed with constant
rate [81]. Gillespie conclusively demonstrated that the index of dispersion is,
on average, much greater than 1 for both sets of species (i.e., it is overdis-
persed) and that the observations cannot easily be accounted for by neutral
or nearly neutral models. He concludes that amino acid evolution occurs due
to natural selection in “response to environmental factors, either external or
internal, that are changing through time/or space.” While the specific model
Gillespie espoused [30] may not explain the overdispersed molecular clock (see
[34, 35, 17, 18]), the data are certainly not consistent with the strict neutral
model.

In fact, recent genome-wide analyses suggest quite an important role for
both adaptive and weak negative natural selection in patterning molecular
evolution in Drosophila (e.g., [91, 24, 90, 75, 98, 5, 8, 90, 38, 93, 6, 84]),
Arabidopsis (e.g., [8, 67, 4, 110, 84]), maize (e.g., [103, 14, 47]), mouse [96],
HIV (e.g., [118, 115, 121, 125, 68, 12, 19]), mammalian mitochondrial genomes
[73, 112], and humans (e.g., [46, 87, 83, 1, 41, 13, 97, 29, 50, 114]). While
many agree selection is important, there is still considerable debate as to
the relative contribution of negative versus positive selection in patterning
molecular evolution. As we will see in Section 4.6, the key to the debate
rests on rates of recombination and the distribution of selective effects among
newly arising mutations. In the next section, we will delve into the specifics of
neutral and nearly neutral models before turning to the underlying population
genetics machinery.
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4.2 The Neutral Theory of Molecular Evolution

It is Darwin [20], of course, who posited that evolution occurs as the result
of natural selection by which heritable differences that alter the probability
of survival and reproduction of organisms are passed on from generation to
generation. Sir Ronald Fisher [27, 28] and Sewall Wright [116] provided the
first mathematical models of “the Darwinian evolution of Mendelian popu-
lations” by treating genetic drift (i.e., fluctuations in allele frequencies at a
given locus due to finite population size) as analogous to the diffusion of heat
along a metal bar. In these works, Wright and Fisher also provided the first
genetic theories of evolution by deriving a formula for the probability that a
mutation subject to natural selection would become fixed in the population (a
result we will derive in Section 4.3). What they showed is that if a mutation
alters the expected number of offspring a haploid individual (chromosome)
contributes to the next generation by a small amount s so that those carrying
the mutation leave on average 1 + s offsprings and those that do not carry
the mutation leave 1 offspring on average, then the probability that a new
mutation eventually becomes fixed in the population is roughly

Pr(fixation) ≈ 2s

1 − e−4Ns
, (4.1)

where N is the effective population size of the species, 2N is the number
of chromosomes in the population, and s is on the order of N−1. If s > 0,
we say the mutation is selectively favored and that there is positive selection
operating on the mutation since as the magnitude of s increases above 0 so
does the probability of fixation (4.1). Likewise, if s < 0, we say the mutation is
selectively disfavored and there is negative selection operating on the mutation
since as s becomes more negative, the probability of eventual fixation becomes
smaller and smaller. In the neutral case (s ≈ 0), we can see by applying
L’Hopital’s rule that the probability of eventual fixation is simply the initial
frequency of the mutation p = 1

2N (the mutation must have occurred in a
heterozygous form).

While Fisher and Wright laid out a great deal of the foundation, it is Motoo
Kimura who built up much of the population genetics theory of molecular
evolution. His neutral theory of molecular evolution [55, 57, 58, 61] arises from
a beautifully simple cancellation of terms: if mutations enter the population
at some rate µ per locus per generation, some fraction f0 are neutral, and
1 − f0 are completely lethal, then the rate of evolution k0 would equal the
neutral mutation rate:

k0 = E(# of neutral mutations entering per generation.) (4.2)
× Pr(neutral mutation becomes fixed)

= 2Nf0µ
1

2N
= f0µ . (4.3)
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Three major predictions or consequences arise from (4.3):

1. Neutral molecular evolution is independent of the population size and
depends only on the per generation rate of input of neutral mutations.

2. Neutral molecular evolution is linear in time, thus providing a “molecular
clock” by which the relative divergence time of different populations can
be dated.

3. Since neutral evolution occurs more rapidly in regions of low selective
constraint (high f0) and more slowly in regions of high selective constraint
(low f0), differences in rates of substitution can be used to infer functional
constraint [63].

Furthermore, it is often assumed that the number of neutral mutations that
fix in some interval of t generations (substitutions) is Poisson-distributed with
rate k0t.

Our goal in Section 4.3 is to understand the population genetics theory
behind equation (4.3) and, more importantly, to understand when this simple
neutral model holds and when it does not hold. For example, the assertion
that the substitution process is a Poisson process only holds if sites evolve
independently of one another [51, 108]. This will be true only if there is free
recombination among sites or if there is a sufficiently low mutation rate that
only 1 or 0 nucleotides vary at a given point in time for a non-recombining
region. High mutation rates and linkage among neutral sites can have a pro-
nounced effect, leading to the fixation of “bursts” of mutations that are ap-
proximately geometrically distributed [108, 109, 32].

It is important to mention at this point that population genetics models
of molecular evolution differ in some regards from discrete-space continuous-
time models [48, 40, 60, 119]. For example, the Poisson assertion above ignores
the possibility of multiple substitutions at the same site. The reason many
population genetics models make such an assumption is that the timescale on
which they operate is relatively short compared with the timescale on which
phylogenetic reconstruction of distantly related species is usually carried out.
Likewise, much of the theory is based on the behavior of single-locus two-allele
models, where the goal is to understand the probability of fixation of a new
mutation under various scenarios. Such a model is not rooted in the actual
A, C, T, and G of DNA but rather on the fact that at a given nucleotide site
the probability of having more than two nucleotides segregating is very low.
Likewise, if the population size and mutation rates are small, there will be few
linked polymorphic sites. Therefore, the independently evolving single-locus
model with two alleles is a reasonable place to start in modeling molecular
evolution.

4.2.1 Nearly Neutral Models of Molecular Evolution

From the beginning, it was evident that the great power of the neutral theory
of molecular evolution lay in its quantitative predictions regarding rates and
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patterns of molecular evolution. In Kimura’s original paper [55], the prob-
lems the neutral theory solved were the inordinately high rate of nucleotide
evolution inferred from patterns of amino acid evolution [126] as well as the
plentiful amounts of amino acid variation within species [43, 65]. According
to Kimura’s calculations, Darwinian evolution would produce too high a ge-
netic load on the population to account for these patterns; therefore, most
of the changes were likely neutral. Likewise, King and Jukes [63] set out to
demonstrate that “most evolutionary change in proteins may be due to neu-
tral mutations and genetic drift” by testing some of the predictions of a neu-
tral molecular evolution theory using almost all of the available data in the
world on protein, RNA, and DNA sequence variation.1 One key prediction of
the neutral theory was that if proteins were more constrained than genomic
DNA, then proteins should evolve at a slower rate. If, on the other hand,
proteins were constantly being refined by positive natural selection, then the
rate of evolution of proteins would be faster than that of genomic DNA. Using
early DNA hybridization experiments coupled with protein sequence informa-
tion, King and Jukes concluded (rightly) that most proteins evolve at a much
slower rate than most regions of genomic DNA. Another key argument they
used was a near Poisson fit to the number of substitutions per site across the
gene trees of various molecules (globins, cytochrome-c, and immunoglobulin-G
light chains).

It was soon pointed out that if the neutral theory of molecular evolution
was strictly true, then the rate of amino acid evolution should be proportional
to generation time and not chronological time. Kimura and Tomoko Ohta [81]
countered with the first “nearly neutral” model of molecular evolution. This
model posits that newly arising nonlethal mutations are not strictly neutral
(s ≈ 0) but rather have selection coefficients drawn from a distribution such
that the mean selective effect is slightly deleterious and most mutations are
in the interval (− 1

N ≤ s ≤ 1
N ).2 Under such a scheme, the evolutionary fate

1King and Jukes had independently proposed a neutral theory of molecular evo-
lution, but their paper was initially rejected by Science. In the interim, Kimura’s
paper appeared, and Kimura’s results were added to the revised King and Jukes
manuscript [99].

2The definition of “nearly neutral” is somewhat of a moving target and context-
dependent. In their original paper, Ohta and Kimura [81, p.22] implicitly considered
nearly neutral those mutations in the interval (− 2

N
≤ s′ ≤ 2

N
), where s′ = 2s.

In Ohta and Kimura’s later work [77, 78, 79, 59], the emphasis was on explaining
how slightly deleterious mutations could be considered an engine for nonadaptive
molecular evolution. Likewise, Gillespie [31] has argued that nearly neutral should
only refer to mutations in the interval (− 1

N
≤ s′ < 0) since slightly advantageous

mutations are helped along by selection. Ohta [80] (not surprisingly) has explicitly
reclaimed the “slightly advantageous” as nearly neutral ground by arguing that the
fate of slightly advantageous mutations is very much governed by both selection and
drift. Unless otherwise noted, we will adopt Ohta’s view and consider nearly neutral
mutations as those that are in the interval −2 ≤ γ ≤ 2, where γ = 2Ns.
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of mutations is mostly governed by genetic drift. One implication of near-
neutrality is an inverse relationship between population size N and the rate
of molecular evolution at selected sites ks. Letting fs be the fraction of muta-
tions that are selected, under the assumption that selected mutations evolve
independently of one another, the rate of evolution for a selected mutation ks

is given by

ks = E(# of selected mutations entering per generation.) (4.4)
× Pr(selected mutation becomes fixed)

= 2Nfsµ
2s

1 − e−4Ns

= fsµ
4Ns

1 − e−4Ns
. (4.5)

We see from (4.5) that for a fixed s < 0

lim
N→∞

ks = 0.

The interpretation of this equation is that if mutations are slightly deleterious,
a species with a large population size will evolve at a slower rate than a
species with a small population size. Ohta and Kimura [81] posited that since
population size is roughly inversely proportional to body size and body size is
roughly inversely proportional to generation time (i.e., big animals have long
times between generations but also live at low densities), these two factors
cancel each other out to produce a rate of evolution that is close to linear
in chronological time. Kimura [59] later argued that if −s follows a Gamma
distribution with mean 1 and shape parameter β = 0.5, then the rate of
evolution will be proportional to

√
N .

A very useful way of studying the consequences of natural selection on
rates of molecular evolution is by comparing the relative rate of substitution
for selected mutations (4.5) to neutral mutations (4.3)

ω =
ks

k0
=

fs

f0

2γ

1 − e−2γ

letting γ = 2Ns. We will refer to γ as the scaled selection coefficient, and it will
reappear when we derive (4.5) from an approximation to the Wright-Fisher
process (Section 4.5). We note that ω can be interpreted as the expected
dn/ds ratio assuming silent mutations are neutral, replacement mutations
have the same selective effect, and mutations evolve independently of one
another. Assuming fs = f0, if s = −1 × 10−4 and the population size is small
(N = 1000), the rate of evolution at selected sites is ω = 0.81, the rate of
evolution at neutral sites, which we might refer to as a modest reduction.
On the other hand, if s does not change and the population size is large
(N = 10, 000), then ω = 0.074 and we would observe a large reduction in the
substitution rate. In Figure 4.1, we plot the rate of substitution for selected
mutations as compared with neutrality assuming fs = f0.
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Fig. 4.1. Effect of natural selection on rates of molecular evolution. The x-axis is
the scaled selection coefficient for new mutations, and the y-axis is the relative rate
of substitution as compared with neutrality. Note that the y-axis is on a log-scale.

4.3 Wright-Fisher Model

4.3.1 No Mutation, Migration, or Selection

Consider a diploid population of constant size N (i.e., a population of 2N
chromosomes) with discrete nonoverlapping generation [116, 28]. The popu-
lation in the next generation is produced by randomly pairing gametes from
an infinitely large pool of gametes produced by the current population. Focus
on a neutrally evolving locus A with two alleles A1 and A2, and assume that
there is no mutation between A1 and A2. Let X(t) be the number of chromo-
somes in the population that carry the A1 allele at generation t. The collection
of random variables {X(t)} for t = 0, 1, . . . is a discrete-time discrete-space
Markov chain with state space {0, 1, . . . , 2N}. The transition probability Pij

for going from state i to state j comes from binomial sampling:

Pij ≡ Pr(X(t + 1) = j | X(t) = i) =
(

2N

j

)(
i

2N

)j (
1 − i

2N

)2N−j

. (4.6)

This model is known as the Wright-Fisher model of population genetics, and
the stochastic sampling of gametes from generation to generation is known
as genetic drift. It is easy to verify that X(t) = 0 and X(t) = 2N are ab-
sorbing states (i.e., P0 0 = P2N 2N = 1), corresponding to loss (X(t) = 0)
or fixation (X(t) = 2N) of the A1 allele. It is also relatively easy to show
that all other states (1, 2, . . . , 2N − 1) are transient. This conforms with our
biological intuition that if a population has 0 copies of allele A1 in generation
t0, Pr(X(t) = 0) = 1 for all t > t0.
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An implication of the Wright-Fisher model is that each segregating neutral
mutation in a population is eventually fixed or lost. The stochastic fixation of
neutral mutations (along with the fixation of selected mutations) thus under-
pins molecular evolution. It is then of immediate interest to find the probabil-
ity that a mutation initially at frequency p = X(0)

2N is eventually fixed in the
population. The expected gene frequency in generation t + 1 given the gene
frequency in generation t comes directly from the binomial model for gametic
sampling:

E

(
X(t + 1)

2N
| X(t)

)
=

∑2N
j=0 jPij

2N
=

X(t)
2N

.

Similarly, the variance in gene frequency is

V

(
X(t + 1)

2N
| X(t)

)
=

X(t)(1 − X(t))
2N

.

The first result implies that for the Wright-Fisher model without mutation,
the expected change in allele frequency from generation to generation is zero
(i.e., the X(t) process is a Martingale). We can thus think of the change in
gene frequency as a random walk without bias. As a result, we might intuit
from symmetry alone that the probability of eventually fixing the A1 allele
should equal the initial frequency of the A1 allele in the population (i.e., p).

A more rigorous approach is to set up a set of linear recurrence equations
that the Wright-Fisher process must satisfy [74, p. 15]. Let pj be the proba-
bility that a population that starts with j copies of the A1 allele (X(0) = j)
eventually fixes the A1 allele (i.e., the probability that the process reaches 2N
before it reaches 0). Clearly, p0 = 0 and p2N = 1. By exploiting the Markov
property of the system, we can write down the following set of equations:

pi =
2N∑
j=0

pjPij , for i = 1, . . . , 2N − 1 . (4.7)

The reason our model must satisfy these equations is that once the process
enters state j, it “forgets” that it had previously been in state i and the
process is restarted. The probability of reaching state 2N before state 0 is
pj , and by weighing the pj ’s by the probability of transitioning from state i
into state j, we obtain a set of 2N − 1 equations (4.7) for 2N − 1 unknowns
(p1, p2, . . . , p2N−1). By substituting (4.6) into (4.7), we verify that pj = j

2N
is the non-negative solution to the system of equations. Therefore, the prob-
ability of eventual fixation of a neutral mutation is

p1 =
1

2N
. (4.8)
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4.3.2 Rate of Fixation of Neutral Mutations

Now consider a process whereby in each generation a Poisson number of mu-
tations occurs at a rate θ

2 = 2Nf0µ, where f0µ is the generation neutral
mutation rate per locus. It is assumed that each mutation occurs at a pre-
viously invariant DNA site [58, 107]. We will now consider the rates and
patterns of neutral molecular evolution under two assumptions: (a) complete
independence among sites [58, 21, 22, 89] and (b) complete linkage among
sites [107].

Independence among sites

Following [21, 89], model the mutation process as starting a Poisson number
of new Wright-Fisher processes each generation. Let Xj(t) be the state of the
process (frequency) at site j at time t, where t is measured as the time since
the mutation at site j originated in the population (i.e., Xj(0) = 1

2N for all
j). It is assumed that mutations {i = 1, 2, . . .} evolve independently of one
another so that Xj processes are i.i.d. Considering some absolute interval of
time (0, T ], let Mi for i = 1, 2, . . . , T be the number of mutations that enter
the population in generation i that are destined to be fixed. The time of entry
of mutations that eventually fix in the population is known as the origination
process [33, 88, 51]. Since each mutation has probability p1 = 1

2N of eventually
fixing in the population and the trajectories X1, X2, . . . are independent of
each other, Mi for i = 1, 2, . . . , T are i.i.d. filtered Poisson random variables
with rate

E(Mi) =
θ

2
p1 = 2Nµf0

1
2N

= µf0 .

Furthermore, the total number of mutations K =
∑T

i=1 Mi that enter the
population during (0, T ] and eventually fix is also a Poisson random variable
with rate E(K) = µf0T by the additivity property of independent Poisson
random variables.

It is important to note that K is not the actual number of mutations that
fix during the given interval of T generations (known as the fixation process
[33]) but rather the number of mutations that enter during this interval and
eventually become fixed. In the case of independently evolving sites, the origi-
nation process and the fixation process will have the same distribution as long
as the time intervals are exchangeable. An example of when the time intervals
would not be exchangeable is a difference in mutation rates for different time
intervals.

Complete linkage among sites

Birky and Walsh [7] showed that the expected substitution rate for neutral
mutations is not affected by linkage to neutral, deleterious, or advantageous
mutations. Here we follow Cutler’s discussion of the problem [16] closely to
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show that the distribution of the number of mutations that ultimately fix in
the population remains a filtered Poisson process with rate µf0 [81]. This was
originally shown using reversibility arguments by Sawyer [88] and Kelly [51,
p. 158].

Assume that mutations enter at a Poisson process rate θ
2 = 2Nf0µ, and

write Xj(t) for j = 1, 2, . . . to denote the frequency of the j process at time t
since the origination of mutation j. Assume complete linkage among sites and
write fj(x | t)dt to denote the Pr(Xj(t) = x). Let us introduce an indicator
variable that tracks whether a given mutation becomes fixed in the population:

Ij =

{
1 if mutation j fixes in the population
0 otherwise.

Since the number of neutral mutations on a chromosome does not alter the
probability of fixation, E(Ij) = p1 for all j. Likewise, since the expected change
in frequency from generation to generation is 0, the expected frequency of the
j process is

E(Xj(t)) =
∫ 1

0
xfj(x | t)dx = E(Xj(0)) = p1.

Now consider two mutations, which we arbitrarily label j = 1 and j = 2,
and assume mutation 1 is older than mutation 2. Consider the probability
that both mutations become fixed (E(I1I2)). For this to happen, mutation
2 must occur on a background that contains mutation 1. The probability of
this occurring is the frequency of the first mutation at the time the second
mutation originates, X1(t). The marginal probability that mutation 2 fixes is
simply its initial frequency X2(0) = p1. Therefore, the probability that both
mutation 1 and mutation 2 fix in the population is given by

E(I1I2) = Pr(mutation 2 fixes) Pr(mutation 1 fixes | mutation 2 fixes)
= Pr(mutation 2 fixes) ·

Pr(mutation 2 arose on a chromosone containing mutation 1)

= p1

∫ 1

0
xf1(x | t)dx

= p2
1 .

Since the probability that both mutations fix is shown to be the product of
the probability that each mutation fixes alone, the random variables X1(t)
and X2(t) must be independent. This implies that linkage among neutral
mutations does not affect the neutral rate of evolution. Likewise, since X1 and
X2 are independent, the origination process remains a filtered Poisson process.
The fixation process, on the other hand, does not remain a Poisson process
in the presence of linkage. Informally, one can reason that the time intervals
are no longer exchangeable. As has been discussed by Gillespie [31, 33] and



4 Population Genetics of Molecular Evolution 75

(a) (b)

Fig. 4.2. Population dynamics can influence of molecular evolution. Two popula-
tions are split, evolved for t = 10N generations, and a random chromosome from
each is compared. (a) Distribution of the number of differences between a pair of
random sequence from two populations that separated 10N generations ago and
accrue mutations at rate µ = 1

N
. The solid line is the expected distribution from a

Poisson model. (b) Variation in branch length for the process due to random coa-
lescence in ancestral population for t = 10N . The black line is the expected branch
length (measured along the horizontal axis), and the grey lines are 100 replicates of
the process.

Watterson [108, 109], the fixation process for the neutral infinite-sites model
is a “burst” process whereby a geometric number of mutations fix when a
chromosome reaches frequency 1 in the population. The effect of correlation
in the substitution process is to reduce the efficiency of statistical methods
for phylogenetic reconstruction [45].

4.4 Ancestral Polymorphism and Neutral Molecular
Evolution

The analysis in Section 4.3 is predicated upon being able to follow the history
of the entire population. The purpose of this Section is to derive the mean and
variance of the sampling distribution for the number of nucleotide differences
K between a sample of two DNA sequences drawn from a pair of populations
that diverged t generations in the past. The full distribution for a sample of
size n = 2 can be found in [102].

Measuring time into the past so that 0 is the present day, let

K = K1 + K2 + KA,

where K1 and K2 are the number of mutations that accumulate on the first
and second sequences since time t and KA is the number of fixed differences
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due to ancestral polymorphism. Assuming a molecular clock, K1 and K2 are
Poisson with rate f0µt. Without loss of generality, assume f0 = 1. It will be
shown that KA is a geometrically distributed random variable so that the
sampling distribution of K is not Poisson (see Figure 4.2). We will also see
that the degree to which K will differ from a Poisson random variable with
the same mean will depend on the parameters t and NA, where NA is the
ancestral population size.

We will begin by considering the distribution of the number of differences
for a sample of two chromosomes drawn from a panmictic population. This is
equivalent to deriving the distribution of heterozygosity under an infinite-sites
model and is a well-studied problem in population genetics (e.g., [56, 58, 107]).
We will use the machinery of coalescent theory [44] to address the issue.

4.4.1 Average Pairwise Distance

Consider a sample of size n = 2 chromosomes drawn from a randomly mat-
ing population of size 2N chromosomes. Let S2 be the number of nucleotide
differences between two sequences at our locus of interest.

The probability that a random pair of chromosomes find a common an-
cestor in the previous generation is 1

2N . Therefore, the distribution of the
number of generations M until the two chromosomes find a common ancestor
is a “first success” distribution with mean 2N :

Pr(M = m) =
(

1 − 1
2N

)m−1( 1
2N

)
. (4.9)

If N is large, (4.9) can be approximated using an exponential distribution.
Measuring time in units of 2N generations, the random variable T2 = M

2N
follows the exponential distribution with rate 1,

Pr(M ≤ 2Nx) = Pr(T2 ≤ x) ≈ 1 − e−x.

The random variable T2 is known as the coalescent time for a sample of
size n = 2 and describes the waiting time until two random chromosomes from
a population coalesce (or merge) in a common ancestor. As one follows the
two sequences back in time until the coalescent event, each accrues mutations
independently at a rate θ

2 = 2Nµ per unit of time assuming a Poisson model
of mutation. This assumption implies that the waiting time until a mutation
(TM ) occurs along either chromosome is exponential with rate θ. By the usual
result for competing exponentials

Pr(TM < T2) =
θ

θ + 1
.

Likewise, because of the memoryless property of the exponential distribution,
once a mutation event occurs along either chromosome, the coalescent process
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is restarted. Therefore, the distribution of the number of mutations before a
coalescent event for n = 2 is geometric:

Pr(S2 = k) =
(

θ

θ + 1

)k 1
θ + 1

. (4.10)

The expected value and variance of S2 are easily shown to be

E(S2) = θ, V(S2) = θ2 + θ. (4.11)

Equations (4.10) and (4.11) were first derived by Watterson [107] when he
found the distribution of the number of segregating sites Si in a sample of
size i. Li [66] also derived these results while finding the transient distribution
of S2. For our problem, KA = S2 with N replaced by NA.

Recall that K is the sum of two independent Poisson random variables,
each with mean µt, and a geometric random variable with mean θA = 4NAµ,
where NA is the size of the ancestral population. This implies that

E(K) = 2µ(t + 2NA), V (K) = 2µ(t + 2NA + 8N2
Aµ) . (4.12)

The index of dispersion (the ratio of the variance to the mean) is one way to
assess the concordance between K and a Poisson random variable with the
same mean [81, 31]. For K it is easy to show that

R(K) = 1 +
8N2

Aµ

t + 2NA
= 1 +

θA

1 + τ
,

where τ = t/2NA. Figure 4.2 illustrates that ancestral polymorphism can lead
to deviations from the Poisson expectations. In this figure, we have simulated
10,000 comparisons of n = 2 sequences drawn from a pair of populations
that diverged t = 10NA generations (τ = 5) in the past. Mutations occur
in each daughter population as a Poisson process with rate µ = 1

NA
per

chromosome per generation (θA = 4). Note that the distribution of K has a
much larger variance than expected from the Poisson prediction (E(K) = 24)
with R(K) = 1.666.

4.4.2 Lineage Sorting

Ancestral polymorphism can also lead to the phenomenon of “lineage sort-
ing”, where the genealogical tree for a sample of DNA sequences has a differ-
ent branching order than the tree relating the history of population-splitting
events. That is, if we have a sample of three sequences from three species
{A, B, C} and the tree relating our three populations is ((A, B), C), there
is some probability of recovering discordant gene trees that are of the form
(A, (B, C)) and ((A, C), B). (For an excellent discussion of the problem from
a population genetics perspective, see [86]). The probability of recovering dis-
cordant trees in the three-taxon case is relatively easy to calculate using coa-
lescent theory.
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Assume that the population size N of three species is the same and has
been constant for the history of {A, B, C}. Let t1 be the time in the past in
units of 2N generations when populations A and B split and let t2 be the time
in the past when the ancestral populations of A and B split from C. Write
TAB to denote the coalescent time of the sequence from species A and from
species B and define TAC and TBC analogously. The probability that a gene
tree will be concordant is the probability that A and B coalesce with each
other before either coalesces with C. That is, the probability of concordance
is given by Pr(min(TAB , TAC , TBC)) = TAB .

The first coalescent event in the history of {A, B, C} cannot occur before
t1. Between times t1 and t2, only coalescent events between A and B are
allowed, and after t2 all three lineages are equally likely to coalesce with one
another. Letting t = t2 − t1, we can write

TAB = t1 + X1 ,

TBC = t1 + t + X2 , (4.13)
TAC = t1 + t + X3 ,

where X1, X2, and X3 are i.i.d. exponentially distributed random variables
with rate 1. The justification for (4.13) comes from the results derived above
that for large N the coalescent time for a sample of two sequences is expo-
nential with rate 1. Recalling that the minimum of k independent exponential
random variables is exponentially distributed with the sum of the k rates, we
can also write

min(TBC , TAC) = t1 + t + Y ,

where Y is an exponential random variable with rate 2 that is independent of
X1. Therefore,

Pr(concordance) = Pr(min(t + Y, X1) = X1)
= Pr(min(t + Y, X1) = X1 | X1 ≤ t) × Pr(X1 ≤ t) +

Pr(min(X1, Y ) = X1 | X1 > t) × Pr(X1 > t)

= 1 × (1 − e−t) +
1
3

× e−t

= 1 − 2
3
e−t .

This simple example illustrates that to understand molecular evolutionary
patterns on relatively short timescales, one must model the population genet-
ics dynamics.

The question of estimating ancestral population genetics parameters has
a rich history. Equations (4.12) were first derived by Takahata and Nei [101].
The full distribution of K in the case of one sequence from each of a pair as
well as each of a triplet of species is given in Takahata, Satta, and Klein [102,
eqs. (3), (6)]. As they discuss, these probabilities can be used for maximum
likelihood estimates of the species divergence time and ancestral population
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size from multilocus data. Likewise, Yang [122] and Wall [106] have developed
methods that incorporate rate variation among loci as well as recombination.
The effects of population growth and differences in population size on levels
of variation within and between a pair of species are taken up by Wakeley
and Hey [105]. Likewise, a Bayesian method for distinguishing migration from
isolation using within- and between-species sequence data is presented by
Nielsen and Wakeley [71].

4.5 Natural Selection

The Wright-Fisher machinery can be adapted for modeling other evolution-
ary forces by specifying the joint effects of all forces on the change in gene
frequency per generation. This is usually done in a two-step process. First
an infinite gamete pool is assumed such that the frequency of the A2 allele
changes in the gamete pool deterministically due to mutation, selection, and
other factors from some value p = i

2N to p′. The effect of genetic drift is
modeled using an equation analogous to (4.6), where p′ depends on i and the
evolutionary forces being considered:

Pij ≡ Pr(X(t + 1) = j | X(t) = i) =
(

2N

j

)
(p′)j (1 − p′)2N−j

. (4.14)

In modeling natural selection, one needs to specify the fitness of the three
relevant genotypes. Let the expected relative contribution of the A1A1, A1A2,
and A2A2 genotypes to the next generation be 1, 1 + 2sh, and 1 + 2s. (Note
that h is known as the dominance parameter and summarizes the effect of
selection on the heterozygote fitness.) The effect of natural selection is to bias
the chance of picking an allele A2 at random from the next generation. The
expected proportion of offspring left by each of the three genotypes is

A1A1 :
(1 − p)2

w
, A1A2 :

2p(1 − p)(1 + 2sh)
w

, A2A2 :
(1 + 2s)p2

w
,

where w = (1 − p)2 + 2(1 + 2sh)p(1 − p) + p2(1 + 2s).
Therefore, the frequency of the A2 allele after one round of natural selec-

tion is

pt+1 =
p2

t (1 + 2s) + (1 + 2sh)pt(1 − pt)
w

.

As we will see below, the number of selected mutations that fix in the history
of a population under the assumption of recurrent mutation and selection is
also Poisson and depends on the parameter γ = 2Ns and h.

4.5.1 Diffusion Approximation

To study the Wright-Fisher model with selection (and other complicated popu-
lation genetics models), it is often more convenient to work with a continuous-
time continuous-space approximation to a discrete process. The natural state
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space is the frequency of a mutation (0 ≤ x = X(·)
2N ≤ 1), and the natural time

scaling is in units of 2N generations. Fisher [27] first noted that the action of
genetic drift on a locus could be modeled using the same differential equations
used to model the diffusion of heat. The classical problem of finding the sta-
tionary distribution of allele frequencies visited by a mutation under a variety
of selective, mutation, and demographic models was taken up by Fisher in
The Genetical Theory of Natural Selection [28] as well as by Sewall Wright
[116, 117]. The time-dependent solution of what was later recognized as the
Fokker-Planck or Kolmogorov forward equation was given in [52]. A definitive
treatment of the subject is given in Kimura’s classic paper [54]. We will now
proceed to derive the stationary distribution, omitting many technical details
that can be found by the interested reader in [54, 49, 23].

As discussed in Karlin and Taylor [49, p. 180], as N → ∞, the Wright-
Fisher process has a limiting diffusion that depends on the mean Mδx and
variance Vδx of the change of gene frequency per generation. Mδx will usually
depend on the specifics of the model that produces the change in the gamete
pool (mutation, migration, selection, etc.), while Vδx is almost always given
by the effects of binomial sampling. It is important to note that neither Mδx

nor Vδx depend on time.
Write φ(x | p, t)dx to represent the conditional probability that a mutation

at frequency p goes to frequency x in time t. In this equation, p is fixed and x
is a random variable. When dx = 1

2N is substituted, f(x | p, t) = φ(x | p, t) 1
2N

gives the approximate frequency of mutations in the interval x + dx for 0 <
x < 1 [54]. As discussed in [54], φ(x | p, t) is the solution to the Kolmogorov
forward equation

∂φ(x | p, t)
∂t

=
1
2

∂2

∂x2 {Vδxφ(x | p, t)} − ∂

∂x
{Mδxφ(x | p, t)} . (4.15)

A very useful consequence of (4.15) is that we can solve for the stationary
or time-independent solution (if it exists) of φ(x | p) by setting ∂φ(x|p,t)

∂t = 0,

φ(x) =
C

Vδx
exp
(

−2
∫

Mδx

Vδx

)
, (4.16)

where C is a constant chosen so that
∫

φ(x)dx = 1. The time-independent
solution of (4.15) was first found by Sewall Wright [117].

Example 4.1: Reversible mutation neutral model

Consider a neutral model with reversible mutation so that A1 → A2 at rate µ
and A2 → A1 at rate ν per generation. Let xt represent the frequency of the
A1 allele at time t,

xt+1 = (1 − xt)ν − xtµ ,

implying that Mδx = (1 − x)ν − x(1 + µ). The variance of the change in gene
frequency is
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Vδx =
x(1 − x)

2N
.

Plugging Mδx
and Vδx

into (4.16), it is relatively straightforward to show that

φ(x) = Cx4Nν−1(1 − x)4Nµ−1 .

Recognizing that this is the density of a Beta distribution with parameters
4Nν and 4Nµ, the necessary constant is C = Γ (4Nν+4Nµ)

Γ (4Nν)Γ (4Nµ) .

4.5.2 Probability of Fixation

One of the most useful applications of the diffusion approximation is to cal-
culate the probability of fixation of a mutation given its frequency in the
population. To do so, we will follow [53] and use the Kolmogorov backwards
equation to solve for φ(x | p, t). In this equation, we write the differential
equation with respect to p varying, and the model is equivalent to running
the process backwards in time (i.e., reversing the diffusion from x to p). The
Kolmogorov backwards equation is

∂φ(x | p, t)
∂t

=
Vδp

2
∂2φ(p | x, t)

∂p2 + Mδp
∂φ(x | p, t)

∂p
. (4.17)

If we substitute in x = 1, the solution to equation (4.17) gives us the probabil-
ity of a mutation reaching fixation by time t given an initial frequency p. We
will follow Kimura [54] and refer to this probability as u(p, t). The boundary
conditions for solving (4.17) are u(0, t) = 0 (i.e., probability of reaching 1
before 0 is 0 if p = 0) and u(1, t) = 1.

Again, following [54], by letting t tend towards infinity, we can find the
probability of ultimate fixation:

u(p) = lim
t→∞ u(p, t) .

For the probability of ultimate fixation, u(p), the left-hand side of (4.17) is 0,
and thus the solution satisfies

0 =
Vδp

2
d2u(p)

dp2 + Mδp
du(p)

dp
.

Kimura [53] showed that the solution to this equation is

u(p) =

∫ p

0 G(x)dx∫ 1
0 G(x)dx

,

where

G(x) = exp
(

−2
∫

Mδx

Vδx
dx

)
.
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4.5.3 No Selection

Recall that in the case of no mutation and no selection, Mδx = 0 and Vδx =
x(1−x)

2N . This implies that G(x) = 1 and u(p) = p. This is the exact result we
derived in a different way above, which states that the probability of ultimate
fixation of a neutral mutation is given simply by its frequency.

4.5.4 Genic Selection

In the case of genic selection, h = 0.5 and the fitnesses of the individual
genotypes are {1, 1 + s, 1 + 2s}. Letting x be the frequency of the selected
allele,

Mδx =
x2(1 + 2s) + (1 + s)x(1 − x)

w̄
− x =

sx(1 − x)
1 + 2xs

.

If s is small, Mδx ≈ sx(1 − x), G(x) = exp(−4Nsx), and u(p | s) =
1−exp(−4Nsp)
1−exp(−4Ns) . This implies that the probability of fixation of a new muta-
tion is

u

(
1

2N
| s

)
=

1 − e−2s

1 − e−4Ns
≈ 2s

1 − e−4Ns

using the fact that ex ≈ 1 + x if x is small.
Since the mutation process for both selected and neutral mutations is Pois-

son, their relative substitution rates are given by the ratio of the probabilities
of fixation assuming independence among sites. Let ω equal the ratio of the
probability of fixation of a selected mutation per selected site relative to the
probability of fixation of a neutral mutation per neutral site:

ω =
fsu(p | s �= 0)
f0u(p | s = 0)

=
fs

f0

2s
1−e−4Ns

1
2N

=
fs

f0

2γ

1 − e−2γ
.

As previously mentioned, ω can be interpreted as the expected dn/ds ratio
assuming silent mutations are neutral. We will assume f0 = fs for the remain-
der of the chapter (for coding DNA). As we see from Figures 4.1, 4.3, and 4.5,
even modest amounts of natural selection can have a profoundly strong effect
on rates of substitution. For example, it has been estimated that the historical
effective population size of humans is close to N = 105 (for a review, see [106]).
This implies that sites where a mutation would lower the expected number
of offspring an individual contributes to the next generation by as little as
0.0025% (γ = −5) would not evolve at any appreciable rate (ω < 0.01).

In the case of positive genic selection, as s becomes large, the probability
of ultimate fixation for a new mutation is well-approximated by u ≈ 2s and
the expected ratio of substitution rates for selected to neutral mutations by
ω ≈ 2γ. This implies that if mutations at some class of sites increased the
expected number of offspring by as little as 0.0025% (γ = 5), they would
evolve at 10 times the rate of neutral mutations.
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Fig. 4.3. Effect of dominance and selection on rates of molecular evolution.

4.5.5 Dominance

In the case of general selection, it follows directly from the Wright-Fisher
model that Mδx ≈ s(h + (1 − 2h)x)x(1 − x) if s is small. This implies that
G(x) = exp(−4Nshx + 2Ns(1 − 2h)x2) and

u(p) =

∫ p

0 e−2γshx+γ(1−2h)x2
dx∫ 1

0 e−2γshx+γ(1−2h)x2dx
.

This integral can be evaluated numerically to investigate the effect of het-
erozygous fitness on rates of molecular evolution. As we see from Figure 4.3,
the most profound effects occur when mutations are selectively favored (γ > 0)
and produce heterozygote advantage (h > 1). This condition is known as over-
dominance and such a mutation is said to be subject to balancing selection. In
an infinitely large population, overdominance leads to a stable equilibrium in
gene frequency such that both alleles are maintained in the population indef-
initely. In a finite population, though, higher heterozygote fitness translates
into a higher substitution rate relative to neutrality as well as relative to genic
selection (h = 0.5). The reason for these perplexing results is that having a
high heterozygote fitness decreases the probability that a mutation will be lost
from the population and thus increases the probability that it will ultimately
become fixed in the population.

Another interesting case to consider is that of a mutation whose fitness
relative to the wildtype depends on whether it is in heterozygous or homozy-
gous form (h = −0.50). If the mutation is deleterious in homozygous form but
advantageous in heterozygous form, the mutation will have a slightly higher
rate of fixation relative to the case when the heterozygote has intermediate
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fitness (h = 0.5). Alternatively, a beneficial mutation in homozygous form
that produces heterozygotes that are less fit than either homozygote will have
a lower substitution rate. In interpreting these results, it is important to re-
member that in estimating ω we are assuming independence among sites. As
we will see below, linkage among selected sites can cause interference effects
that will counter the single-site dynamics illustrated in Figure 4.3. This is
particularly true in the case of strong dominance.

4.6 Variation in Selection Among Sites

Understanding how the distribution of selection coefficients among newly aris-
ing mutations affects the rates and patterns of molecular evolution has been
a focus of extensive research in theoretical population genetics. In a series of
papers, Tomoko Ohta (along with Kimura) [81, 76, 77, 78] first investigated
the molecular evolution of “nearly neutral” mutations and found that their
behavior was quite different from that of strictly neutral mutations (γ = 0).
In particular, she showed that if there is a high rate of input of slightly delete-
rious mutations (−2 < γ < 0) into a population, then this class of mutations
can contribute significantly to the overall substitution rate even though these
mutations are slightly less fit than the existing wildtype allele. As discussed in
Section 4.2, Ohta and Kimura also demonstrated that a nearly neutral model
would predict a negative correlation between population size and rate of mole-
cular evolution since natural selection is more efficient in a larger population.

The original work of Ohta and Kimura went on to inspire a plethora of
nearly neutral, nonneutral, and fluctuating-environment population genetics
theories of molecular evolution. For example, Ohta proposed the exponential-
shift model [79], where −s follows an exponential distribution among new
mutations (the term shift is used since s is relative to the wildtype allele and
the distribution must shift after an allele fixes in the population). Likewise,
Kimura [59] suggested a Gamma-shift model that conveniently had sufficient
mass near s = 0 to account for several neutral and nearly neutral predictions
[61, 31]. Ohta and Tachida [82] also proposed a fixed fitness model, where
the distribution of s was Gaussian and independent of parental type (a so-
called house-of-cards model). These models have been used to argue that if
a substantial proportion of slightly deleterious mutations are input into the
population, the rate of fixation contributes significantly to the proportion of
mutations that fix in the population. It is important to note, though, that the
conclusion comes directly from assumptions regarding the functional form of
the distribution of selective effects among sites. Since there is no biological
reason to favor one distribution over another a priori, in practical applications
it is important to be catholic on the matter and consider several potential
candidate distributions.

Recently, two methods have come on the market for estimating the distri-
bution of selective effects among new mutations. Nielsen and Yang [73] have
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developed a likelihood-based method for use with divergence data that consid-
ers ten different models (e.g., constant, normal, Gamma, exponential, normal
+ invariant). (A similar method was suggested by Felsenstein [25] but to our
knowledge not fully implemented.) Nielsen and Yang applied their model to a
data set of eight mtDNA primate genomes and found that of the models con-
sidered, a normal or Gamma-shift model with some sites held invariant was
the best fit to data (and significantly better than an exponential distribution
[79]). Likewise, Stanley Sawyer and colleagues have developed a method for
fitting a normal-shift model to polymorphism and divergence data [90] and
applied it to 56 loci with polymorphism from Drosophila simulans and diver-
gence data relative to a D. melanogaster reference strain. In these models, it
is assumed that selection coefficients at a given site are constant in time and
do not depend on the nucleotide present. Below we present a brief analysis of
the normal-shift model and discuss the findings of Nielsen and Yang [73] and
Sawyer et al. [90] in light of the analysis.

4.6.1 Normal Shift

Assume that we starts a Poisson number of Wright-Fisher processes at rate
2Nµ per generation and that these processes do not interfere with one another.
The number of processes that fix for the selected mutation in some interval
of time t will be Poisson with rate

E(K | γ) = 2Nµtu(s)

= µt
2γ

1 − e−2γ

= µtk(γ).

Likewise, if mutations have a distribution of selection coefficients such that
the probability that a mutation has selection coefficient γ is governed by f(γ),
then the number of mutations that fix will be Poisson with rate

E(K) = µt

∫ ∞

−∞
k(γ)f(γ)dγ . (4.18)

We can now calculate some statistics of interest. For example, the distri-
bution of selection coefficients among fixed mutations (f is for “fixed”) is

pf (γ) =
k(γ)f(γ)dγ∫∞

−∞ k(γ)f(γ)dγ
. (4.19)

This implies that the average selection coefficient of substitutions can be easily
computed as

Ef (γ) =
∫ ∞

−∞
γpf (γ)dγ . (4.20)
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Fig. 4.4. A Gaussian model (“normal shift”) for the distribution of selection co-
efficients among mutations [90]. In this example, the selection coefficient of new
mutations is normally distributed with mean µ = −7 and standard deviation σ = 5.
In this example, 68.9% of substitutions are adaptive (dark grey area), 30.7% are
nearly neutral, and 0.4% are deleterious.

Likewise, the proportion of fixed differences that are nearly neutral (using the
definition of nearly neutral as −2 ≤ γ ≤ 2) is

pf (−2 ≤ γ ≤ 2) =

∫ 2
−2 k(γ)f(γ)dγ∫∞
−∞ k(γ)f(γ)dγ

(4.21)

and the proportion of fixed differences that are positively selected (and not
nearly neutral) is given by the tail probability

pf (γ > 2 | ζ) =

∫∞
2 k(γ)f(γ)dγ∫∞
−∞ k(γ)f(γ)dγ

. (4.22)

In Figures 4.4 and 4.5, we explore the effects of a Gaussian model for the
distribution of selection coefficients among newly arising mutations. In Figure
4.4, mutations are assumed to follow a normal distribution with mean µ = −7
and standard deviation σ = 5. Using (4.21) and (4.22), we can estimate the
proportion of substitutions that are nearly neutral and adaptive via standard
numerical integration (grey areas under the solid curve in Figure 4.4). We note
that in this example the vast majority of mutations are deleterious (> 91%
are below 0), while most of the substitutions (fixed differences) are positively
selected: 92.8% are above γ = 0, and 68.3% have a selection coefficient above
γ = 2. The average selection coefficient of fixed mutations is a (surprisingly)
high γ = 3.49.
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Fig. 4.5. Effect of variance in the distribution of selection coefficients among newly
arising mutations on rates of molecular evolution. In this figure, µ is the mean of
the distribution of selective effects.

Fig. 4.6. Proportion of adaptive substitutions (s > 1
N

) as a function of the mean
of the distribution of selection coefficients for new mutations µ and standard devi-
ation σ. The black point represents the estimated mean and variance for a typical
Drosophila gene [90].

The fact that mutations differ in their selective effects also has a strong
implication for interpreting the ω ratio. In Figure 4.5, we plot the expected ω
ratio for varying levels of selection (where the x-axis is the average selected ef-
fect of the new mutation) and variability among mutations assuming fs = f0,
where σ corresponds to the standard deviation of selection coefficients among
new mutations. In the case of moderate variance σ = 6, as long as the average
selective effect of newly arising mutations is greater than −5, the ω ratio will
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Fig. 4.7. Proportion of nearly neutral substitutions (|s| ≤ 1
N

) as a function of the
mean of the distribution of selection coefficients for new mutations µ and standard
deviation σ. The black point represents the estimated mean and variance for a typical
Drosophila gene [90].

be greater than 1 (even though most mutations are deleterious). This explains
a perplexing phenomenon that is observed in day-to-day analysis of DNA se-
quence evolution: namely, how it is that one can detect positive selection in
the first place if most of the amino acid sites in a protein are rather con-
strained. The answer is that natural selection is extremely efficient at fixing
even slightly favored mutations, so that as long as there is some reasonable
fraction of mutations that are adaptive, the average rate of fixation for se-
lected sites (e.g., amino acid sites) may outstrip the neutral rate of evolution.
In Figure 4.6, we plot the proportion of fixed differences that are adaptive
as a function of both the average selective effect of new mutations (µ) and
standard deviation (σ). We note that as long as the standard deviation among
newly arising mutations is greater than 6, most of the substitutions will be
adaptive even if, on average, mutations are extremely deleterious. The com-
parable contour plot for nearly neutral mutations is given in Figure 4.7. These
simple results bolster the idea that comparing the rate of substitution for dif-
ferent types of sites in protein-coding genes is an effective way of detecting
positively selected sites.

The results of Sawyer et al. [90] bear a strong resemblance to the pattern
we have just described. They estimated the distribution of selective effects
among new mutations in a typical Drosophila gene to have mean µ = −7.31
and σ = 6.79. This implies that close to 97.1% of amino substitutions in a
typical Drosophila nuclear gene are of positively selected mutations (γ > 0),
with 84.7% being clearly adaptive, γ ≥ 2; see (4.22). Furthermore, close to
15.2% of substitutions are of “nearly neutral” mutations (−2 ≤ γ ≤ 2), with
only 2.7% being “slightly deleterious” (−2 ≤ γ ≤ 0) mutations while 12.4% are
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“slightly advantageous” (0 ≤ γ ≤ 2). Lastly, the average selection coefficient
of substituting mutations is 5.67; see (4.20). The black disks in Figures 4.6 and
4.7 correspond to the Sawyer et al. estimate of µ and σ for Drosophila. These
results are consistent with previous findings of adaptive protein evolution in
Drosophila (e.g., [95, 24, 8, 84]).

4.6.2 Linkage

One interpretation of the normal-shift model is that of “Darwin’s wedge” at
a molecular level [90]. As Darwin wrote in The Origin of Species [20, cp. 3]

In looking at Nature, it is most necessary to keep the foregoing con-
siderations always in mind never to forget that every single organic
being around us may be said to be striving to the utmost to increase
in numbers... . The face of Nature may be compared to a yielding sur-
face, with ten thousand sharp wedges packed close together and driven
inwards by incessant blows, sometimes one wedge being struck, and
then another with greater force.

In this passage, Darwin views natural selection as competition for fixed re-
sources leading to rapid turnover of species. That is, one wedge forces another
out in order to fix its claim to a space in a cramped environment. At a mole-
cular level, the metaphor works well: a slightly favored mutation sweeping
through the population acts as a wedge to displace the existing alleles at a
given locus. The efficacy of such a wedging scheme, of course, is predicated
upon the frequency of favored wedges. If there are too many favored muta-
tions competing for fixation at a given locus, they will knock each other out
of competition and the efficacy of selection can be greatly reduced. In many
ways, the fact that one can detect positive selection in the face of interfer-
ence among selected sites is in fact stronger evidence for a selective model of
molecular evolution. That is to say, if one estimates that the average selec-
tion coefficient of fixed mutations is γ = 5.67 in the presence of interference,
the true selection coefficient on the mutation must be higher. There is rela-
tively strong support for the view that linkage can affect rates and patterns
of substitution for selected mutations [7, 42, 15, 36, 37].

For example, Birky and Walsh [7] have shown analytically and via sim-
ulation that linked selected mutation negatively interferes so as to increase
the rate of substitution of deleterious mutations and to decrease the rate of
substitution of advantageous mutations. They attribute this phenomenon to
a reduction in the effective population size through an increase in the vari-
ance of offspring among individuals. As we saw in Section 4.5, if the effective
population size of a species is reduced, genetic drift begins to play a more
prominent role in determining the evolutionary fate of mutations.

The predictions of interference selection hypotheses have gained strong
support in recent years. For example, Comeron and Kreitman used analytical,
simulation, and genomic analyses to demonstrate that interference selection
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can explain patterns of codon usage and intron size in Drosophila [15]. Like-
wise, a prediction of the interference hypothesis is that rates of adaptive evo-
lution should be reduced in regions of low recombination since the tighter the
linkage among favored mutations, the stronger the interference effects. There
is experimental evidence that regions of low recombination in Drosophila do,
in fact, show a reduction in the rate of adaptive evolution [93, 5], as do non-
recombining mitochondria [111, 84]. Likewise, if we consider the analysis of
Nielsen and Yang [73], they estimate a distribution of selective effects among
mutations in primate mtDNA that has mean µ = −1.72 and σ = 0.72. For
such a model, the proportion of substitutions that have a selection coefficient
greater than γ = 0 is a quite small 6%, consistent with the view that linkage
limits the rate of adaptive evolution.

There is also important literature on the impact of linkage on rates of evo-
lution in nearly neutral and fluctuating selection models [32, 33, 34, 35, 17, 18].
Much of it has focused on analytical and simulation work for describing which
population genetics models lead to an overdispersed molecular clock. To sum-
marize all of this work, Gillespie and Cutler have shown that the overdis-
persed molecular clock cannot readily be explained by overdominance, under-
dominance, a rapidly fluctuating environment, or the nearly neutral models
presented above (although certain narrow parameter ranges can lead to an
over-dispersed clock, the models do not, in general, lead to an overdispersed
clock). Gillespie [32] has found that a slowly fluctuating environment can lead
to an over-dispersed clock if the oscillations are on the same order as the mu-
tation rate. Likewise, Cutler [17] has argued that a simple deleterious model
that shifts between a favored and a deleterious allele is sufficient to explain
the overdispersed clock.

Gillespie has also investigated the effects of linkage and selection on the
relationship between population size and the rate of molecular evolution using
extensive simulations. He has identified three domains, which he terms the
Darwin domain (ks ∝ N), the Kimura domain (ks ≈ µf0), and the Ohta
domain (ks ∝ 1

N ). Not surprisingly, he finds that the nearly neutral models
(exponential shift [79], Gamma-shift model [59], and house of cards [82]) all fall
within the Ohta domain where the rate of evolution is inversely proportional
to population size. He also finds that the normal-shift model with mean µ = 0
(Darwin’s wedge) appropriately falls in the Darwin domain, where the rate of
substitution is proportional to the population size. He also notes that the rate
of substitution for the normal-shift model is substantially reduced relative
to the expectation under the independence-among-sites model (4.18) (as one
might predict from [7]). Lastly, he finds, surprisingly, that the fluctuating
selection, neutral, and overdominance models all lead to the Kimura domain,
where the rate of molecular evolution is independent of the population size. A
mechanism that Gillespie has proposed to explain this last observation is the
theory of genetic drift, whereby positive selection on one locus leads to the
reduction of effective population size at linked neutral loci even in an infinitely
large population [36, 37].
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Lastly, Brian Charlesworth and colleagues have also shown that linkage of
neutral mutations to deleterious mutations (“background” selection) [9, 10, 11]
leads to a chronic and pronounced reduction in the local effective population
size of a chromosomal region. Recent experimental work on patterns of varia-
tion within the nonrecombining neo-sex chromosomes of Drosophila miranda
[2, 3] has confirmed some theoretical predictions of the background selection
model. Likewise, Cutler [18] has argued that the background selection hypoth-
esis is consistent with the observed overdispersed molecular clock.
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