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3.1 Introduction

Markov chain Monte Carlo (MCMC) is a general computational technique for
evaluating sums and integrals, especially those that arise as probabilities or ex-
pectations under complex probability distributions. Monte Carlo implies that
the method is based on using chance (in the form of a pseudo-random num-
ber generator). Markov chain indicates a dependent sampling scheme with the
probability distribution of each sampled point depending on the value of the
previous one. Due to this dependence, MCMC samplers typically require sam-
ple sizes that are substantially larger than the sizes of independent samples
produced by Monte Carlo integration methods to be able to achieve simi-
lar accuracy. However, independent sampling methods often require detailed
knowledge of characteristics of the function being integrated, as their compu-
tational efficiency relies upon having a close approximation of this function.
MCMC has proved to be highly useful because of its great flexibility and its
success at solving many high-dimensional integration problems where other
methods are computationally prohibitive.

3.1.1 A Brief History of MCMC Methods

The primary ideas behind MCMC were created by physicist Nicholas Metropo-
lis and colleagues over fifty years ago at Los Alamos National Laboratory in
the years after the Manhattan Project as part of a solution to a problem in
statistical physics [22]. Hastings provided an important generalization to this
pioneering work [12]. Hastings’ foundational paper was ahead of its time in
the statistics literature, and it took more than a decade (and the start of a
personal computing revolution) before MCMC methods attracted additional
attention in the statistics community. Their first use was in the form of the
Gibbs sampler applied to image analysis [8]. Interest in MCMC exploded in
the 1990s as it proved to be a powerful and flexible technique for solving a va-
riety of previously unsolvable computational problems, especially those arising
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in Bayesian analyses. Refinement and extension of MCMC methods and their
application to new problems continues to be an area of active research. MCMC
methodology has completely transformed the Bayesian approach to statistics
and its application to large-scale complicated modeling problems. For a more
extensive description of the historical development of MCMC methods, please
see the article by Hitchcock [13].

MCMC approaches in molecular evolution

MCMC approaches to problems in molecular evolution first appeared in the
mid-1990s as several authors developed various methods to calculate poste-
rior probabilities of phylogenies on the basis of aligned DNA sequence data
[27, 20, 21, 17, 18]. Bayesian approaches using MCMC have since been applied
to a growing number of problems in molecular evolution [16, 6]. This volume
includes several applications of MCMC, including relaxation of the molecu-
lar clock assumption, the detection of positive selection, Bayesian analysis of
aligned molecular sequences, models of protein evolution, evolution by genome
rearrangement, and the calculation of predictive distributions and posterior
mappings [25, 1, 14, 4, 5, 2]. The remainder of this chapter describes the the-
ory behind MCMC methodology and illustrates the methods using examples
in molecular evolution.

3.2 Bayesian Inference

The Bayesian approach to statistical inference in molecular evolution most of-
ten fits into the following general framework. (In what follows, I use p to stand
for a generic probability density and let the arguments distinguish them.) A
likelihood function p(D | θ) describes the probability (or probability density)
of data D given the values of parameters θ. The prior distribution p(θ) ex-
presses the uncertainty in the parameters prior to observation of the data.
Bayes’ theorem provides the form of the posterior distribution p(θ |D), the
probability distribution that describes uncertainty in the parameters after
observing the data and the object of all Bayesian inference

p(θ |D) =
p(D | θ)p(θ)

p(D)
. (3.1)

The denominator p(D) is the marginal probability of the data, averaged over
all possible parameter values weighted by their prior distribution. Formally,
we can write

p(D) =
∫

Θ
p(D | θ)p(θ) dθ, (3.2)

where Θ is the parameter space for θ. In almost all problems of practical inter-
est, it is not tractable to compute p(D) directly, the normalizing constant of
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the posterior distribution. MCMC offers a means to make Bayesian inferences
without the need to compute this normalizing constant.

In a typical application in Bayesian inference in molecular evolution, the
parameter θ contains both discrete and continuous components. For example,
θ might include the discrete tree topology and the continuous branch lengths
and nucleotide substitution model parameters. The single integral in (3.2)
represents a multiple sum over discrete parameters and a multiple integral
over continuous parameters.

Calculating expected values

Usually, the posterior distribution p(θ |D) is a complicated function over a
large parameter space that cannot be described adequately in full. We typi-
cally are interested in various summaries of the posterior distribution, all of
which are posterior expectations of some function of the parameters. For ex-
ample, the posterior probability of a tree topology is the expected value of
the indicator variable for that tree topology, and the posterior density of a
branch length can be summarized in part by its mean.

To simplify notation by eliminating the explicit dependence on the ob-
served data, define the unnormalized posterior distribution to be h(θ) ≡
p(D | θ)p(θ). With this notation, the posterior expected value of a function
of the parameter space is defined to be

E[g(θ)] =

∫
Θ g(θ)h(θ) dθ∫

Θ h(θ) dθ
. (3.3)

The idea behind MCMC is to take a (dependent) random sample of points
{θi} from the unnormalized target function h(θ) by simulating a Markov chain
whose stationary distribution is proportional to h(θ). We can then approxi-
mate expectations with simple arithmetic averages,

E[g(θ)] ≈ 1
n

n∑
i=1

g(θi) . (3.4)

We note that while most applications of MCMC to problems in molecu-
lar evolution have been part of Bayesian analyses, computations in the form
of (3.4) can arise in non-Bayesian approaches as well. MCMC is a general-
purpose tool.

3.3 The Metropolis-Hastings Algorithm

The most common form of MCMC is the Metropolis-Hastings algorithm. The
idea is to create a proposal distribution q on the parameter space Θ. Instead
of using q to generate a sequence of points sampled from Θ, we use q to
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generate a candidate for the next sampled point that is either accepted or
rejected with some probability. If the candidate is rejected, the current point
is sampled again. The random acceptance of proposals effectively changes the
transition probabilities. A clever choice of acceptance probabilities results in
a “metropolized” Markov transition matrix q′ whose stationary distribution
is proportional to the unnormalized target distribution h. Remarkably, the
choice of q is nearly arbitrary. It suffices for q to be irreducible–from any
points x, y ∈ Θ, it should be possible to get from x to y through a finite
number of transitions under q.

The initial sample point θ0 may be arbitrary. If the current state is θi = x,
the Metropolis-Hastings algorithm generates candidate y from the distribution
q(· |x). The acceptance probability is

r(y |x) = min
{

1,
h(y)q(x | y)
h(x)q(y |x)

}
. (3.5)

With probability r(y |x), we set θi+1 = y; otherwise θi+1 = x. In the special
case where q(x | y) = q(y |x) for each x and y, the proposal density drops
out of (3.5). The original method in Metropolis et al. [22] assumed this sym-
metry, and Hastings [12] made the generalization that allowed nonsymmetric
proposal distributions. Notice as well that the target distribution only needs
to be known up to a normalizing constant, as it is only necessary to be able
to compute the ratio of the target distribution evaluated at any two points.
The ratio q(x | y)/q(y |x) is known as the Hastings ratio or the proposal ratio.
The target ratio h(y)/h(x) is the posterior ratio in a Bayesian setting where
it is the product of a likelihood ratio and a prior ratio.

3.3.1 Why Does the Metropolis-Hastings Algorithm Work?

The stationary distribution π of a Markov chain with transition function
q′(y |x) satisfies∫

x∈Θ
π(x)q′(y |x) dx = π(y) for each y ∈ Θ. (3.6)

A stronger condition is for the chain to satisfy detailed balance,

π(x)q′(y |x) = π(y)q′(x | y) for all x, y ∈ Θ. (3.7)

Markov chains that satisfy detailed balance are time-reversible. The rate of
transition from x to y is the same as that from y to x for each x and y, so the
probability of any sequence of transitions would be the same in forward and
backward time. Detailed balance of the target distribution h is easy to check
for the Metropolis-Hastings algorithm. First, notice that the actual transition
probability density is q′(y |x) = q(y |x)r(y |x) for x �= y. Therefore, we have
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h(x)q′(y |x) = h(x)q(y |x) min
{

1,
h(y)q(x | y)
h(x)q(y |x)

}
= min {h(x)q(y |x), h(y)q(x | y)} .

The last expression is symmetric in x and y, which implies that the first
expression must have the same value if x and y are switched, so detailed
balance is satisfied.

The Gibbs sampler

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm
in which the proposal distributions are the full conditional distributions of
some part of the parameter space conditional on the rest. Suppose that the
parameter vector θ = (θ[1], θ[2], . . . , θ[d]) is partitioned into d blocks. The idea
behind the Gibbs sampler is to propose new values of a block of parameters
θ[k] from their full conditional distribution given the current values of all
other parameters, denoted p(· | θ[−k]), where θ[−k] includes all of θ except for
the kth block. The proposed values are always accepted. The systematic-scan
Gibbs sampler updates blocks in a fixed order, cycling through them all. The
random-scan Gibbs sampler randomly picks a block of parameters to estimate
repeatedly.

We can understand why the Gibbs sampler works by checking the Metro-
polis-Hastings acceptance probability for one step of the Gibbs sampler. In
updating the kth block given the current state θ, the candidate is

θ∗ = (θ[1], . . . , θ[k−1], θ
∗
[k], θ[k+1], . . . , θ[d]).

The posterior ratio is h(θ∗)/h(θ) = p(θ∗)/p(θ) and the proposal ratio is
p(θ[k] | θ[−k])/p(θ∗

[k] | θ[−k]). Conditioning on parameters outside the kth block
leads to p(θ∗) = p(θ[−k]∩θ∗

[k]) = p(θ[−k])p(θ∗
[k] | θ[−k]) with a similar expression

for p(θ). The acceptance probability is then

r = min

{
1,

p(θ∗)
p(θ)

×
p(θ[k] | θ[−k])
p(θ∗

[k] | θ[−k])

}

= min

{
1,

p(θ[−k])p(θ∗
[k] | θ[−k])

p(θ[−k])p(θ[k] | θ[−k]))
×

p(θ[k] | θ[−k])
p(θ∗

[k] | θ[−k])

}
= 1.

The advantage of the Gibbs sampler is that proposals are always accepted.
While one might think that this feature would invariably lead to a sampler
that moves through the parameter space rapidly, this is not always the case.
It is well-known that the Gibbs sampler can mix slowly if highly correlated
parameters are in different blocks. The other practical difficulty is that the
flexibility of the Metropolis-Hastings approach in choosing a proposal distrib-
ution is lost. Candidates from the full conditional distributions are often not
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easy to simulate, which can make the problem difficult. In the case where full
conditional distributions are available and easy to simulate, Gibbs sampling
will be a good choice. Experience indicates that the more general Metropolis-
Hastings approaches are often a more practical solution for many statistical
problems in molecular evolution.

3.3.2 An Example in Bayesian Phylogenetic Inference

The Bayesian approach to estimating phylogenies from aligned DNA sequence
data as implemented in the programs BAMBE [24] and MrBayes [15] uses
MCMC to sample from the joint posterior probability distribution of phy-
logenies and nucleotide substitution model parameters. The state space for
the Markov chain takes the form θ = (τ, t, Q), where τ is the tree topology,
t is a vector branch length, and Q is the generator of the continuous-time
nucleotide substitution process. The MCMC samplers used in both BAMBE
and MrBayes are actually hybrid samplers that combine several Metropolis-
Hastings samplers, each of which samples from only part of the parameter
space. BAMBE has a proposal distribution q1 that updates the tree (both τ
and t) while leaving Q fixed and a second proposal q2 that updates Q leaving
the tree fixed. BAMBE cycles back and forth between q1 and q2 proposals.
Effectively, the hybrid sampler in BAMBE is a systematic-scan Gibbs sam-
pler with a Metropolis-Hastings proposal at each step. In contrast, MrBayes
has a collection of proposals to update parts of Q and another collection of
proposals to update the tree. At each stage, one of these proposals is selected
at random. Running only one chain, MrBayes uses a hybrid sampler that is a
random-scan Gibbs sampler with a Metropolis-Hastings update at each step.
Tierney [26] provides further examples and theoretical justifications of the use
of hybrid MCMC samplers.

Description of the Local algorithm

BAMBE and MrBayes both use a local update method first described by
Larget and Simon [17] to update unrooted trees. A description of this algo-
rithm and the associated acceptance probability serves to illustrate the ideas
of this section on an application of MCMC in molecular evolution. The ac-
ceptance probability originally reported in [17] was, in fact, incorrect. I am
extremely grateful to Mark Holder, Paul Lewis, and David Swofford, who
reported this to me quite recently.

The Local algorithm begins by selecting an internal branch of the tree at
random. (Please see Figure 3.1 for a graphical description of this algorithm.)
The nodes at the ends of this branch are each connected to two other branches.
One of each pair is chosen at random. Imagine taking these three selected ad-
jacent edges and stringing them like a clothesline from left to right, where the
direction is also selected at random. The two endpoints of the first branch
selected will each have a subtree hanging like a piece of clothing strung to
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the line. The algorithm proceeds by multiplying the three selected branches
by a common random amount, akin to stretching or shrinking the clothesline.
Finally, the leftmost of the two hanging subtrees is disconnected and reat-
tached to the clothesline at a location selected uniformly at random. This is
the candidate tree.

Fig. 3.1. Local update algorithm. (a) A seven-taxon unrooted tree. (b) A randomly
chosen local neighborhood of the tree. Triangles represent subtrees. (c) A candidate
tree with the same tree topology. (d) A candidate tree with a different tree topology.

Next, we then ask with what probability the candidate should be accepted.
See Figure 3.1 (a), which displays a sample seven-taxon unrooted tree for the
definition of the parameters in the following description. Suppose that we
began by selecting the internal branch with length t8 that separates taxa A
and B from the rest, that we selected branches with lengths t1 and t9 from
each side, and that we oriented these branches as shown in Figure 3.1 (b).
The probability of this part of the proposal is (1/b) × (1/2)3 because there
are b = 4 internal branches and we made three binary choices.

Let m = t1 + t8 + t9 be the current length of the clothesline. We select
the new length to be m∗ = m exp(λ(U1 − 0.5)), where U1 is a Uniform(0, 1)
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random variable independent of everything else. It is straightforward to show
that given m, m∗ has density

q(m∗ |m) =
1

λm∗ for me−λ/2 < m∗ < meλ/2. (3.8)

Suppose as well that u = t1 is the current distance from the left endpoint of
the clothesline to the B subtree. Given m∗, we pick a new distance u∗ = U2m

∗,
where U2 is another independent Uniform(0, 1) random variable. The distance
from the left end point to the EFG subtree changes proportionally from v =
t1+t8 to v∗ = m∗v/m. There are now two cases. If u∗ < v∗ (see Figure 3.1 (c)),
the tree topology does not change and the updated branch lengths are t∗1 = u∗,
t∗8 = v∗−u∗, and t∗9 = m∗−v∗. Otherwise (see Figure 3.1 (d)), v∗ < u∗ and the
tree topology does change. The new branch lengths are t∗1 = v∗, t∗8 = u∗ − v∗,
and t∗9 = m∗ − u∗. The probability density of this part of the proposal is the
density of u∗ given m∗, which is uniform, q(u∗ |m∗) = 1/m∗ on (0, m∗).

The joint proposal density given the local choice of the subtree to update
is

q(u∗, v∗, m∗ |m, u, v) = q(m∗ |m)q(u∗ |m∗)δ{v∗=vm∗/m}

=
δ{v∗=vm∗/m}

λ(m∗)2
, (3.9)

where δ is Dirac’s delta function. If x is the original tree and y is the candidate
tree, the acceptance probability for the Local proposal is

min

⎧⎨⎩1,
h(y)

( 1
b

) ( 1
2

)3 × δ{v=v∗m/m∗}
(λm2)

h(x)
( 1

b

) ( 1
2

)3 × δ{v∗=vm∗/m}
(λ(m∗)2)

⎫⎬⎭ = min

{
1,

h(y)
h(x)

×
(

m∗

m

)3
}

since
δ{v∗m/m∗}

δ{v∗}
=

δ{v∗}/(m/m∗)
δ{v∗}

=
m∗

m

The incorrect acceptance probability published previously [17] had a power of
2 rather than the correct power of 3.

3.4 Reversible Jump MCMC

In all of the examples we have considered to this point, the state space has
had a fixed number of parameters. One can imagine a number of problems
arising in molecular evolution where this need not be the case. For example,
consider a Bayesian approach to phylogeny estimation from aligned DNA
sequence data in which there is a prior distribution on the class of likelihood
model. Specifically, suppose we think, for example, that the HKY85 and TN93
models are equally likely. The HKY85 model has one fewer free parameter than
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the TN93 model. We could define different Metropolis-Hastings samplers to
update the Q matrix separately within each model, but we would also need to
be able to switch between models. In this example, the number of parameters
is itself a parameter of the model. Reversible Jump MCMC describes how to
extend the Metropolis-Hastings approach to allow jumps between subspaces
of different dimensions [11].

A typical situation is that we want a set of proposal distributions between
subspaces Θ1 and Θ2 where the kth subspace has mk parameters and m1 �=
m2. The key idea to make this work is dimension matching. The basic idea
is to supplement each set of parameters with different numbers of random
variables so that the dimensions match and then to transform one set into the
other with a bijection. Let θ1 and θ2 be two states in Θ1 and Θ2, respectively.
Then the vectors φ(1) = (θ1, u1) and φ(2) = (θ2, u2) each have length d =
m1 + n1 = m2 + n2, where uk is an nk-vector and nk are chosen so that the
dimensions match. (It is often the case that nk = 0 for the larger subspace.)
Suppose that T1 is a bijection so that φ(2) = T1(φ(1)) and T−1

1 = T2.
The proposal from θx ∈ Θx to θy ∈ Θy follows this procedure.

1. Generate random vector ux, which has length nx.
2. Let φ(x) = (θx, ux).
3. Evaluate φ(y) = Tx(φ(x)).
4. Project φ(y) = (θy, uy) into first my coordinates to determine θy.

3.4.1 Acceptance probability

The acceptance probability for this proposal includes a Jacobian in addition
to the usual ratios. The Jacobian for the transformation is | det Jx|, where Jx

is a d × d square matrix whose i, j entry is

{Jx}ij =
∂φ

(y)
i

∂φ
(x)
j

.

The acceptance probability is

r(θy | θx) = min
{

1,
h(θy)q(θx | θy)
h(θx)q(θy | θx)

× |det Jx|
}

.

Example

We illustrate these ideas with the example of modeling the nucleotide sub-
stitution process in which we have equal prior probabilities that Q is from
either an HKY85 or a TN93 class of models. Each of these models has three
free parameters for the base composition that do not need to change in mov-
ing between models. HKY85 has a single transition/transversion parameter
κ, while TN93 allows two different transition rates, κ1 for purines and κ2 for
pyrimidines. In a proposal from TN93 to HKY85, assume we set κ to be the
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mean of κ1 and κ2. To attain detailed balance, we need for the proposal den-
sity given κ to have support on all positive (κ1, κ2) such that κ = (κ1 +κ2)/2.
We could do this by letting u |κ be a Uniform(−κ, κ) random variable. We
have this bijection:

T1(κ, u) = (κ − u, κ + u) and T2(κ1, κ2) =
(

κ1 + κ2

2
,
κ2 − κ1

2

)
.

We have

J1 =

⎡⎢⎣ ∂(κ − u)
∂κ

∂(κ − u)
∂u

∂(κ + u)
∂κ

∂(κ + u)
∂u

⎤⎥⎦ =
[

1 −1
1 1

]

so that | det J1| = 2. By a similar calculation, | det J2| = 1/2.
Suppose that the unnormalized posterior distribution is h and we are in-

terested in calculating the acceptance probabilities for a proposal from θ1 = κ
to θ2 = (κ1, κ2). If a1 is the probability that we propose that a TN93 Q ma-
trix given the current model is HKY85 and a2 is the probability of the reverse
situation, the acceptance probability is determined as

r(θ2 | θ1) = min
{

1,
h(θ2)
h(θ1)

× a2

a1/(2κ)
× 2
}

provided that (κ1 + κ2)/2 = κ. The acceptance probability of a proposal in
the other direction is

r(θ1 | θ2) = min
{

1,
h(θ1)
h(θ2)

× a1/(2κ)
a2

× 1
2

}
.

3.5 Assessing Convergence

The theoretical justification of MCMC as a computational tool is that sample
averages converge to their expected values. However, this result is asymptotic
and, in practice, no chain can be run forever. We must therefore address the
following practical questions: How long should a chain be run? Should we
discard the initial portion of a sample? Should we subsample the Markov
chain? How do we assess the accuracy of the MCMC estimates? How can we
compare MCMC samplers? None of these questions has a definitive answer,
and rarely can we have absolute trust in the MCMC calculations. Despite
this, there are steps that will increase confidence in the results.

We will illustrate these ideas in the context of a very simple example.
Suppose that we are interested in estimating a branch length from a two-
taxon tree under the Jukes-Cantor model for a data set in which n1 sites
are unvaried and n2 sites are variable. We will assume an exponential prior
distribution with rate λ. The density is p(t) = λe−λt. The probabilities of the



3 Introduction to MCMC Methods 55

possible site patterns are 1
4

(
1
4 + 3

4e− 4
3 t
)

for unvaried sites and 1
4

(
1
4 − 1

4e− 4
3 t
)

for varied sites. Putting these two probabilities together, the unnormalized
posterior distribution is as follows.

h(t) =
(

1
4

)n1+n2
(

1
4

+
3
4
e− 4

3 t

)n1
(

1
4

− 1
4
e− 4

3 t

)n2 (
λe−λt

)
.

Consider updating the branch length by choosing a new value uniformly at
random from a window of half-width w centered at the current value, reflecting
off the origin when a negative branch length is proposed. Specifically, t∗ = |t+
U |, where U is uniformly distributed between −w and w. It is straightforward
to show that the proposal ratio is one. Acceptance probabilities are then
min{1, h(t∗)/h(t)}.

In a specific numerical example, suppose that n1 = 70, n2 = 30, and λ = 5.
We will compare results for two choices of w, namely w = 0.1 and w = 0.5.
In each case, we will begin with an initial edge length of 5.0 (a poor choice)
and update the edge length 2000 times (much shorter than we might typically
do). Figure 3.2 displays summaries of the MCMC samples.

3.5.1 Burn-in

The initial portion of an MCMC sample is often discarded as burn-in. The
logic behind this practice is that the initial portion of a run will typically be
highly dependent on the starting value of the Markov chain, and if this value
is not likely under the stationary distribution, the sample would be biased
toward the initial point. The estimate

n∑
i=m+1

g(θi)/(n − m),

which discards the first m sample points, is typically a more accurate estimate
of the expectation of g under the target distribution when m is substantially
larger than one in the usual case of an atypical initial state.

3.5.2 Trace Plots

This then begs the question of how one should determine the portion of a
sample to discard. Trace plots of one-dimensional summaries of the state
space are a crude but often effective way of determining burn-in. For Bayesian
MCMC sampling from a posterior distribution of trees, both BAMBE and
MrBayes produce trace plots of the log likelihood. When beginning runs at
random initial trees, it is typical for the log-likelihood to increase dramatically
as the chain rapidly approaches an area of the state space of relatively high
posterior probability before changing behavior dramatically and reaching a
plateau around which the likelihood fluctuates for the remainder of the run.
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Fig. 3.2. Trace plots in the Jukes-Cantor example. (a) Unnormalized posterior
versus index with window size w = 0.1. (b) Unnormalized posterior versus index
with window size w = 0.5. (c) Branch length versus index with window size w = 0.1.
(d) Branch length versus index with window size w = 0.5. (e) Autocorrelation plot
of sampled edge lengths with w = 0.1. (f) Autocorrelation plot of sampled edge
lengths with w = 0.5.
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Trace plots of the log-likelihood are good indicators of minimum values for
burn-in but are insufficient on their own to assess convergence. If the chain
were stuck in a local minimum, the behavior exhibited in the trace plot would
be indistinguishable from the trace plot behavior of a well-mixing chain. Trace
plots of other one-dimensional summaries of the state space, such as parameter
values in the substitution models or the sum of all branch lengths of the tree,
should also be examined for visual evidence that after burn-in the initial
portion of the sample looks similar to the end portion.

The trace plots of h and t displayed in Figure 3.2 for the Jukes-Cantor
example provide a means to informally assess convergence. The trace plots
of the edge length in each run more clearly indicate the necessary time to
convergence. In the run with w = 0.1, we need to discard at least the first 500
sample points, and I would discard a few more to be safe, say at least the first
10% of the sample after apparent convergence. Discarding the first m = 700
points of each run suffices for this example.

For the run with w = 0.1, a 95% credibility region for the edge length
is (0.24, 0.52). The post-burn-in credible region for the run with w = 0.5 is
quite similar, (0.25, 0.52). Had we not discarded the initial part of the run,
the 95% credible region would have been either (0.25, 4.48) or (0.26, 0.62),
with right endpoints substantially too large in both cases. Of course, we could
have lessened the bias due to burn-in by either running the chains for many
more iterations or by using an initial edge length closer to the center of the
posterior distribution.

Figure 3.2 also displays the autocorrelation function of the sampled branch
lengths for both window sizes. Notice that in this example mixing is signifi-
cantly faster using the larger window size. With w = 0.5, the Markov chain
has reached approximate independence after about 40 steps. Dependence de-
creases much more slowly in the case with a smaller window. Acceptance
probabilities can offer a clue about convergence speed. In this example, up-
dates with w = 0.1 were accepted 73% of the time as opposed to only 23%
of the time for w = 0.5. Acceptance probabilities between 0.15 and 0.40 often
indicate chains that mix relatively well. This simple example suffices to show
that adjustment of tuning parameters can have a large effect on mixing prop-
erties; running slowly mixing chains for a long time can compensate. Notice
also in Figure 3.2 as well that the trace plots of the edge lengths are more in-
formative about burn-in than are the trace plots of the posterior distribution.
With larger trees, larger models, and longer sequences, it is highly advisable
to examine trace plots of many posterior summaries and to complete several
very long MCMC simulations.

3.5.3 How Many Chains?

While there is no consensus on how many chains should be run, I advocate
running several long chains from widely disparate starting values. The advan-
tage is that if the post-burn-in summaries of important characteristics of the
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target distribution are similar, there is evidence that the Markov chains are
successfully mixing. In contrast, summaries from independent chains that are
wildly different are a certain indicator that one or more chains has not reached
stationarity or that the chains are mixing so slowly that substantially longer
runs are needed to obtain more accurate calculations. If one has access to sev-
eral processors, the real time to take several long samples is the same as the
time to complete a single run on one machine. The other advantage to having
several independent estimates of posterior characteristics is that simple and
accurate estimates of Monte Carlo error are easily computed. Estimates of
Monte Carlo error from single runs depend on estimates of the dependence in
a single chain. Such estimates can vary considerably with the method used to
estimate the dependence.

3.5.4 How Often Should the Markov Chain Be Subsampled?

From a purely statistical perspective, there is nothing to gain from sub-
sampling–a loss of data represents a potential loss of information. However,
from a practical sense, because chains tend to be highly dependent, regular
subsamples of the Markov chain output will typically be just as accurate as
if the entire post-burn-in sample were saved and summarized. Practical is-
sues involving the ease of the storage and analysis of the output of a long
MCMC run often outweigh the negligible potential loss of information from
subsampling.

3.5.5 How Long Should a Chain Be Run?

There are formal methods to decide upon chain convergence that are based
on running a number of chains in parallel and stopping when variability in the
chains’ estimates of a number of scalar posterior summaries between chains
is small relative to the variability within each chain [7]. A cruder yet effective
approach is to learn from preliminary runs how much time is required to run a
chain a specified number of steps, extrapolate this to the time available (such
as overnight), run several independent chains in parallel in that time, and
calculate the Monte Carlo standard error of each important scalar posterior
characteristic from the estimates in each independent chain. If this Monte
Carlo error estimate is too big for the problem at hand, then it may be that
longer runs are necessary (or that a better proposal distribution is required).

3.6 Metropolis-Coupled MCMC

There are many strategies for improving the sampling properties of MCMC
approaches. One of the most useful is Metropolis-coupled MCMC, or MCM-
CMC [9]. The idea is to run several simultaneous chains on the state space Θ.
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Only one of these chains, the cold chain, needs to have the correct stationary
distribution. The other heated chains are typically selected to have station-
ary distributions that are flatter than the stationary distribution of the cold
target chain. The heated chains are able to move more easily between regions
where the target is relatively high.

After some number of steps of each chain, a move that swaps the states
of two of the chains is proposed and accepted or rejected according to a
Metropolis-Hastings rule. This type of proposal can effectively jump the cold
chain to a different portion of the parameter space. Only the sampled points
from the cold chain are saved as a sample from the target distribution. Suppose
that the chains have unnormalized target distributions {hi} for i = 1, . . . , m. If
the current states in chains i and j are xi and xj , respectively, the probability
of accepting a proposed swap of the two states is

min
{

1,
hi(xj)hj(xi)
hi(xi)hj(xj)

}
.

Generally speaking, running m chains requires m times the computational
effort that running a single chain would require. This trade-off can be worth-
while if the cold chain is very slow-mixing.

Figure 3.3 illustrates these ideas in a small artificial example. The target
function (solid line in Figure 3.3(a)) contains two separate modes of relatively
high probability separated by a region of very low probability. We are using a
proposal chain that proposes new values in a small uniform window extending
one unit below and above the current position. Crossing the valley between
the two peaks in the cold chain requires an unlikely proposal and acceptance
of several consecutive steps through the low region between the modes. The
dashed line is a single heated distribution. The same proposal distribution will
more easily cross between the two modes. In a simulation, both chains began
at the value x = 20, are updated by Metropolis-Hastings individually, and are
then followed by a proposed swap after each set of updates. The chains ran
for 100,000 cycles of updates. Figure 3.3(b) shows a histogram of the sam-
pled values that matches the target quite well. Figure 3.3(c) shows the same
sampled values in a trace plot versus the iteration number. It is clear that
the sampled chain jumped between modes many times during the simulation.
Figure 3.3(d) shows the sampled values from a regular Metropolis-Hastings
MCMC simulation in a trace plot versus iteration number. This particular
realization jumped between modes only once. Simulation-based sample esti-
mates of target characteristics will likely be inaccurate and will be highly
sensitive to the decision on when to stop the chain. A substantially longer
simulation in which the sampled chain crossed the low region several times
would be required for accurate estimation.
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Fig. 3.3. Illustration of MCMCMC. (a) The solid line shows the target function,
h. The dashed line is proportional to h1/3 (rescaled to have a similar normalizing
constant). A heated chain run under the dashed line will have the incorrect stationary
distribution but will move more freely about the region. (b) Histogram of sampled
points from the MCMCMC run. (c) Plot of the sampled points in the MCMCMC
run versus iteration number. (d) Plot of the sampled points in a regular Metropolis-
Hastings run versus iteration number.

3.7 Discussion

MCMC has become an indispensable tool for statistical computing, with spe-
cial importance to the Bayesian approach. MCMC is especially useful for the
high-dimensional calculation problems that arise in statistical models of mole-
cular evolution. As evolutionary biologists address problems in molecular evo-
lution of increasing complexity (larger trees, genome-scale data of varied type,
more realistic and parameter-rich models of molecular evolution, accounting
for additional forms of biological interaction), most of the tools that will be
successful in providing answers to these questions are likely to be based on
MCMC computation.
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3.7.1 Other References about MCMC

MCMC is an important topic that is described in much greater detail in
many other sources and is an area of much continuing active research. Gilks
et al. have written an entire book on the topic of MCMC [10]. The books by
Robert and Cassela and by Liu on Monte Carlo methods each include several
chapters on MCMC [23, 19]. The books on Bayesian statistics by Gelman
et al. and by Carlin and Louis include extensive descriptions of MCMC [7, 3].
Joe Felsenstein’s recent book includes a chapter on Bayesian approaches to
phylogenetic inference using MCMC as well as a chapter on using MCMC to
make likelihood calculations on coalescent trees [6].
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