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If we view statistics as a discipline in the service of science, and science
as being an attempt to understand (i.e., model) the world around us, then
the ability to reveal sensitivity of conclusions from fixed data to various
model specifications, all of which are scientifically acceptable, is equivalent
to the ability to reveal boundaries of scientific uncertainty. When sharp
conclusions are not possible without obtaining more information, whether
it be more data, new theory, or deeper understanding of existing data and
theory, then it must be scientifically valuable and appropriate to expose
this sensitivity and thereby direct efforts to seek the particular information
needed to sharpen conclusions. (Rubin [38])

16.1 Introduction

Bayesian statistical approaches are becoming increasingly common in the field
of molecular evolution and phylogenetics. Rubin [38] makes an eloquent ar-
gument for the value of Bayesian approaches through the identification of
sensitivity to our assumptions and the potential uncertainty in our conclu-
sions given our data at hand. While many may see Bayesian approaches as
flawed by their dependence on prior distributions and sensitivity to model
specifications, others, as with Rubin, will view this as a beneficial property
of the method—not accounting for uncertainty can lead to overconfidence in
the conclusions. This chapter will review two Bayesian approaches that in the
last few years have seen important developments: posterior mapping of char-
acters and posterior predictive distributions. These methods clearly identify
and accommodate uncertainty while providing valuable solutions to our ques-
tions. It is this author’s opinion that these methods will provide invaluable
contributions to our understanding of molecular evolution and phylogenetics
in the future.
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16.1.1 Character Mapping

The mapping of characters on genealogies has been invaluable in answer-
ing questions in evolutionary biology since the 1970s; studies such as test-
ing for a molecular clock [21], detecting the signature of positive selection
[28], and looking for associations between characters (see [10] for a review)
have all employed character mapping. Traditionally, parsimony has been the
mainstay—although approaches that combine the methods of maximum like-
lihood and parsimony and Bayesian inference and parsimony have been devel-
oped [21, 16]. Parsimony as a method for mapping characters, while straight-
forward in its application, has a number of serious drawbacks. First, it un-
derestimates the number of character transformations, often severely. This
underestimation arises because parsimony does not account for evolutionary
time along branches of a phylogeny: as evolutionary time increases, the num-
ber of inferred changes at a site is either zero or one. Second, parsimony
underestimates the variance in ancestral states, placing all of the support on
one reconstruction when they are not known with certainty. Lastly, parsi-
mony provides no framework for accommodating uncertainty in genealogical
relationships.

The drawbacks inherent in parsimony have long been recognized both by
molecular evolutionists [8] and phylogeneticists [10]. For example, Langley and
Fitch [21], in a study testing the molecular clock hypothesis, employed a mixed
method of parsimony to assign ancestral states and maximum likelihood to
estimate the rates along the branches. While this early approach acknowledged
the underestimation of character changes by parsimony and accommodated
it using maximum likelihood, it still left the problem of uncertainty in the
phylogeny and ancestral states unresolved.

Recently, methods for accommodating uncertainty in the ancestral states
and topology have been devised. For example, one approach to accommodat-
ing uncertainty in ancestral states is to use maximum likelihood to estimate
the probabilities of each possible state and parsimony to reconstruct the char-
acter changes weighted by their probabilities [39, 40, 29, 34]. Uncertainty in
topology has also been addressed in a number of ways. Some authors have
used a set of reasonable trees and evaluated mappings on each of them (e.g.,
[42]). Others have evaluated mappings on trees generated under a stochastic
process, such as birth-death [24, 26], or evaluated mappings on trees weighted
by the probability of the tree being true [25, 33, 16].

While these approaches have made significant advances in accommodat-
ing different sources of uncertainty none of them accommodate all sources of
uncertainty. In addition, due to their reliance on parsimony, none of these
approaches is able to provide detailed information on the timing, order, and
types of multiple changes—if any—occurring along a branch. Nielsen [30, 31]
has developed a stochastic method for mapping characters using a Bayesian
statistical framework. This approach of sampling from the posterior distrib-
ution of character histories (also referred to in this chapter as mappings or
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maps) successfully addresses the drawbacks inherent in parsimony and pro-
vides a statistically valid framework for accommodating uncertainty in the
phylogeny and model parameters. This approach is the topic of the next sec-
tion and will be discussed in detail.

16.1.2 Posterior Predictive Distributions

Posterior predictive distributions evolved from concerns regarding the depen-
dence on the prior distribution in prior predictive distributions. Instead of
integrating out nuisance parameters using the specified prior distribution of
the parameters, the posterior approach integrates with respect to the posterior
distribution of the parameters. The justification for, the particular implemen-
tation of, and other issues surrounding the use of posterior predictive distri-
butions are rather contentious among statisticians, resulting in an active and
healthy research program. Because of this there exists a diversity of different
approaches—prior, posterior, and their use in approximating Bayes’ factors,
to name a few—and opinions regarding these predictive distributions. Much
of the discussion revolves around the appropriate formulation of a p-value.
The discussion here will deal mostly with posterior predictive distributions
and their related p-values. Differences between the approaches and the short-
comings of the posterior method will be highlighted in the relevant places, and
a brief account of the controversy will be discussed at the end of the chapter.

Within evolutionary biology, posterior predictive distributions appeared
simultaneously with those of posterior mapping. While they can be used to
test a variety of hypotheses, their first application was to character histories
[32]. A similarity between posterior mapping and posterior predictive distrib-
utions is their ability to naturally accommodate uncertainty in the phylogeny
and model parameters by treating them as nuisance parameters. (This aspect
of both methods is not unique to them and has been a motivating factor be-
hind many of the Bayesian developments in biology; see [18] for a review.)
Posterior predictive distributions have in the last few years seen application
to hypotheses such as detecting positive selection [32], evaluating substitution
model adequacy [3], testing for nucleotide frequency heterogeneity [18], corre-
lated character change [14], concordance between genes [46], and patterns in
protein evolution.

The use of predictive distributions in Bayesian hypothesis testing in gen-
eral and evolutionary biology in particular is appealing for a number of rea-
sons. First, the generality of the approach makes it applicable to a wide vari-
ety of questions in molecular evolution and phylogenetics. Second, the method
provides a rigorous statistical framework for accommodating uncertainty in
model parameters and genealogical (or phylogenetic) relationships. This alone
may be the strongest argument for the use of predictive distributions over
methods such as the parametric bootstrap. Third, predictive probabilities
(called posterior predictive p-values) are constructed using tail areas of the
predictive distribution and are straightforward in their implementation and
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interpretation. Unlike classical frequency probabilities, posterior predictive
probabilities do not evaluate observed values relative to a fixed set of val-
ues under the null model but averages over probable sets. Lastly, predictive
p-values produce a Type I frequentist error at a given α similar to the ex-
pected α (often lower but never greater than 2α) [27]. While these reasons
make predictive distributions appealing, a number of concerns and potential
drawbacks exist and will be discussed at the end of Section 16.3. Briefly, this
approach requires the description of a probabilistic model (null hypothesis),
specification of a prior distribution for the model, an estimation of the model’s
posterior distribution, and a little ingenuity on the part of the researcher in
determining appropriate test statistics (see [38] for a general review). Each
of these will be dealt with in detail in Section 16.3. Of these requirements,
the last is clearly the most difficult to accomplish: a good test statistic needs
to be a relevant summary of the hypothesis being tested, and each question
will require a different sort of test statistic. The logic behind the posterior
predictive approach is similar to that underlying the parametric bootstrap. In
fact, the parametric bootstrap sampling distribution may be indistinguishable
from the posterior predictive sampling distribution when maximum likelihood
estimates are used and the posterior is concentrated. The fit of a hypothesis
is tested by comparison of the observed test statistic—often referred to as the
realized value—with the distribution of that statistic under the null model.
If our realized value falls within the 95% confidence region of the null dis-
tribution, we are unable to reject the null hypothesis—otherwise, we reject
it.

The remainder of this chapter will explore the underlying methodology of
these two approaches, review a number of their recent applications, demon-
strate how posterior predictive distributions can be used to test hypotheses
about character histories, and discuss how predictive distributions can be used
to address a wealth of different questions in molecular evolution and phyloge-
netics.

16.2 Posterior Mapping

In this section, I will try to answer four questions: (1) What are character
histories?; (2) How do we go about sampling character histories?; (3) How
do we accommodate uncertainty in model parameters and topologies?; and
(4) What types of questions can we address with posterior mapping? The
second and third questions will be answered by introducing the method of
posterior mapping first proposed by Nielsen [30, 31] and then later extended
by Huelsenbeck et al. [14] to morphological characters. The last question will
be answered by briefly reviewing examples from the literature.

First, let us tackle the question of what a character history is by providing
a definition. A character history is a description of the historical pattern of
state occurrences and transformations along a phylogeny. The history is more



16 Posterior Mapping and Posterior Predictive Distributions 443

than just a simple description of the ancestral reconstructions at the internal
nodes of the tree. It includes information about the placement (timing), order
of states, types of character state transformations (e.g., A ⇔ G), and direction
(or bias; e.g., A → G versus G → A) of transformations when the root of the
phylogeny is known (see Figure 16.1d for an example of a character history).
What we would like is to sample possible character histories (individual char-
acter histories will also be referred to as a map) in which they are sampled in
proportion to their posterior probabilities. More often we will be interested
in a function of these sampled histories and not individual histories. For ex-
ample, we may wish to determine the number of radical amino acid changes
relative to conservative changes [32]. In addition, we may be interested not
only in the relative types of changes but also the order and timing of changes.
For example, contingency tests of neutrality rely on being able to determine
types of changes (silent/replacement) and their placement on the tree [30].

But, before we get into the details of the method (questions 2 and 3), we
might wonder why we should not rely on parsimony and what the differences
are. To illustrate these differences, we will explore four different mappings of
a single site for four species shown in Figure 16.1. We will ask: (1) How does
the placement of character transformations along a branch differ?; (2) How
does the number of character transformations along a branch differ?; and (3)
How probable are nonparsimonious mappings? Two of the trees in Figure 16.1
are parsimony mappings (trees a and b) and two are posterior mappings, one
of which is consistent with parsimony (trees c and d).

Fig. 16.1. A comparison between parsimony and two representative realizations
from the posterior distribution of mappings. Trees a and b are parsimony reconstruc-
tions, while c and d are from the posterior distribution of mappings. The inferred
number of changes in tree c is consistent with parsimony. The posterior mappings
were generated with SIMMAP, a program that implements the posterior mapping
method and can be downloaded at http://www.simmap.com.
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The position along a branch at which an inferred change occurs un-
der parsimony is shown directly following a bifurcation. This was done
for convenience—we could have placed the changes equidistant along the
branches. This illustrates the first difference between parsimony and poste-
rior mappings—their placement of transformations along branches. Parsimony
provides no information about the timing of changes along a branch; parsi-
mony simply concludes that a single change has occurred. Posterior mapping,
however, does provide information about placement and order of multiple
changes along a branch. (In addition, the timing of changes between different
sites can be compared. See the discussion on correlated character evolution, in
Subsection 16.3.5 , for an example.) For example, in trees c and d, in Figure
16.1, we can clearly see when the events occurred and the order in the case
of tree d. In many cases, the order of changes is of interest. For example, we
might wish to know whether a burst of amino acid replacements immediately
follows speciation or whether it is evenly distributed after the split.

To illustrate the difference in the number of transformations considered
by each method, let us compare the posterior mapping on tree d in Figure
16.1 with the parsimony mappings (trees a and b). First, we should note
that the map on tree d is not consistent with parsimony; four changes have
been inferred, compared with two changes required by parsimony. Sampling
from the posterior distribution of mappings has produced a map in which two
additional changes have occurred. While, admittedly, I have not shown you
that mappings with two additional changes have a large or small probability,
it does have a probability greater than zero. Under parsimony this is not even
considered plausible, let alone probable, while the posterior method is not
constrained to minimizing the number of changes.

Let’s consider the final difference between parsimony and posterior map-
pings—how probable are nonparsimonious mappings? In this example, we will
compare the probability of parsimonious and nonparsimonious mappings. In
effect, we will be evaluating two assumptions of parsimony: the minimization
of changes and the reduction in variance associated with ancestral state re-
construction at the root. This example should also provide an introduction
to the underlying logic of posterior mapping. To address this difference, we
will first calculate the overall probability of the data and then conditional
probabilities given the branch lengths and the number of character changes
along the trees shown in Figure 16.2.

In this particular example of two species, there is only a single phylogeny
relating the two sites. This is the equivalent of assuming that the tree is
known in cases of more than three species. (Later, it will be shown that the
method allows us to accommodate uncertainty in the phylogeny and model
parameters.) To compare the mappings, we are interested in calculating

Pr(Mi|D) =
Pr(Mi, D)

Pr(D)
, (16.1)
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Fig. 16.2. Comparison of the probabilities associated with parsimonious and non-
parsimonious character histories. TH is the tree height, from the root, in the expected
number of substitutions per site and will be used to evaluate an increase in branch
lengths (0.5, 1.0, and 2.0, respectively; see the text). xi is the state we are changing
from at the root and is dependent on whether we are observing one or two changes;
under one change xi ∈ {C}, while under two changes xi ∈ {G, T }.

where Mi is a character map and D is the observed data. This is the proba-
bility of the map given the data. Calculation of the probability of the data,
Pr(D), requires a model that describes substitution probabilities from one
state to the next. We will assume the Jukes and Cantor [19] model, which is
a time-reversible Markov model. Under the JC69 model, the stationary nu-
cleotide frequencies are πi = 1/4 for all i, and the probability of a change
from nucleotide i to j along a branch of length t is

Pij(t) =
{

1/4 + (3/4)e−(4/3)t if i = j,
1/4 − (1/4)e−(4/3)t if i �= j.

(16.2)

We can now calculate Pr(D) by considering all possible state assignments at
the root i as

Pr(D) =
∑

i∈{A,C,G,T}
πiPiA(t)PiC(t). (16.3)

When TH = 0.5, then Pr(D) = 0.04602 for the data and phylogeny shown.
Next we want to calculate the probability of histories a and b conditional

on the data at the tips of the trees. For the mapping shown on tree a (Ma), we
want to calculate Pr(Ma, D). This can easily be done using the fact that for
the JC69 model and other continuous-time Markov chain models, the num-
ber of changes along a branch is Poisson-distributed. For example, along the
left lineage of tree a, the conditional probability of observing a single change
is 0.5e−0.5 × (1/3). The last term represents the probability of a change be-
tween nucleotides, which is 1/3 under the JC69 model. Therefore, we calculate
Pr(Ma, D) as
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Pr(Ma, D) =
e−0.5 × (0.5e−0.5/3)

4
= 0.0153, (16.4)

where the probability of not observing a change along a branch of length
t = 0.5 is e−0.5 and again the probability of observing a single change along
a branch of this length is 0.5e−0.5 × 1/3 under the JC69 model.

The root state for tree a must be a C, given the states at the tips and a
single change occurring along the branch leading to the state A. However, in
tree b the state of the root is uncertain. An observation of a T or a G at the
root of tree b would be consistent with the mapping shown and the states
at the tips of the tree. Given these possible root states, we can calculate the
probability as

Pr(Mb, D) =
(0.5e−0.5/3)2

4
× (0.5e−0.5/3)2

4
= 0.0051. (16.5)

Using these probabilities and Pr(D), we can calculate the conditional prob-
abilities for the character histories on trees a and b as 0.333 and 0.111, respec-
tively. The parsimony-consistent history is three times as probable. However,
what happens as the time from the root to the tips increases? Table 16.1
shows the probabilities for the trees and mappings in Figure 16.2 given three
different sets of branch lengths.

Table 16.1. A comparison of the probabilities associated with the parsimony con-
sistent mapping in tree a with that of the nonparsimonious mapping of tree b (see
Figure 16.2) and the cumulative probability of mappings greater than two substitu-
tions (Pr(Mi>b|D)).

Tree a Tree b Changes > 2
TH Pr(D) Pr(Ma, D) Pr(Ma|D) Pr(Mb, D) Pr(Mb|D) Pr(Mi>b|D)

0.5 0.046025 0.015328 0.333 0.005109 0.111 0.556
1.0 0.058157 0.011277 0.194 0.007519 0.129 0.677
2.0 0.066239 0.003052 0.034 0.004070 0.045 0.921

A couple of things should be noticed in Table 16.1. First, as the branch
lengths increase, the probability of the mapping consistent with parsimony
(tree a) decreases. Second, the parsimony mapping decreases from a threefold
higher probability to a probability lower than the mapping with two changes
(tree b) as branch lengths increase. As expected, as time increases, the prob-
ability of multiple changes increases, making mappings with one, and even
two, changes much less probable (although they probably have the largest
probabilities). The cumulative probability of more than two changes increases
with increasing time, reaching 0.921 at divergences of 2.0 expected substitu-
tions per site. Hopefully, I have been able o show that even for the simplest
phylogeny, nonparsimonious mappings should be considered.
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16.2.1 Sampling Character Histories

How do we go about sampling character histories using the method of poste-
rior mapping? The following is a description of simulating a map for a site.
Complete gene sequences can be sampled by repeating this approach for each
site. Four steps are involved in sampling a character map: (1) define a sub-
stitution model in which probabilities of state changes can be calculated; (2)
calculate the conditional likelihood for each state at each node of the tree, in-
cluding the root; (3) simulate ancestral states; and (4) simulate a substitution
(mutational) history, conditional on the ancestral states and states at the tips
of the tree. (Often the states at the tips of the tree are unknown or uncertain
(e.g., N, R, etc.). This type of uncertainty can easily be accommodated by
revisiting these nodes after simulating ancestral states for the internal nodes
and repeating step 3 for the tips.)

First, we need to define a model of nucleotide (or morphological) change
(step 1). Any number of continuous-time Markov models are available, that
accommodate a variety of different plausible aspects of sequence evolution.
Available models and their uses have been extensively described elsewhere,
and a detailed treatment is beyond the scope of this chapter [48, 11]. Briefly,
many commonly used models are special cases of the general time-reversible
(GTR) model of sequence evolution [20, 37]. With this model, we can describe
the instantaneous rates of changing from state i to state j using the rate matrix

Q = {qij} =

⎛⎜⎜⎝
− aπC bπG cπT

aπA − dπG eπT

bπA dπC − fπT

cπA eπC fπG −

⎞⎟⎟⎠ , (16.6)

where a–f represent the rates of changing from one nucleotide to the next,
and πi represent the stationary nucleotide frequencies. Using this matrix, we
can easily calculate substitution probabilities for a change from nucleotide i
to j over a branch of length t as P = {pij(t)} = eQt. In many cases, such as
the JC69 model described above, analytical solutions are available. In those
cases in which solutions are not available, standard linear algebra approaches
are available for exponentiating the matrix Q.

With these probabilities, step 2 can be easily accomplished using the prun-
ing algorithm of Felsenstein [4]. Given a tree with branch lengths τ , a set of
observations D at the tips of the tree, and a vector θ containing a set of model
parameters describing sequence evolution, we can calculate the conditional
likelihood for each internal node and the root using a post-order traversal of
the tree.

Next, we simulate a state at the root of the tree (step 3). Let us denote
the root as σ and the simulated observation as d. The new state at the root
will then be denoted dσ. (All s descendant nodes and branches are indexed
as σ − 1, . . . , σ − (2s − 3).) A site can be simulated by sampling from the
posterior distribution
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Pr(dσ = i|D, τ, θ) =
lσ,iπi∑

j∈{A,C,G,T} lσ,jπj
, (16.7)

where lσ,i is the conditional likelihood of being in state i—we are conditioning
on the observations at the tips of the tree, model parameters, and topology.
Now, in a preorder traversal of the tree from the root, we visit a node directly
above, σ − 1, and simulate an ancestral state by sampling from

Pr(dσ−1 = j|dσ = i,D, τ, θ) =
lσ−1,iPij(tσ−1)∑

k∈{A,C,G,T} lσ−1,kPik(tσ−1)
, (16.8)

where j represents the recently simulated state at the ancestral node (in this
case the root) and Pij(tσ−1) is the transition probability from state i to state
j over a length of tσ−1. We proceed with the traversal and simulate ancestral
states for the remaining nodes. As noted above, often we find that a site may
be unknown or uncertain for some sequences. Using this approach, we can
also simulate a tip state. In this way, we treat the uncertainty at the tips
in a fashion identical to that for internal nodes. Now we have sampled and
assigned ancestral states from the posterior distribution for each internal node
of the phylogeny.

The final step is to generate a character history for each branch of the
tree given the previously simulated ancestral states and observed states at
the tips of the tree (step 4). This, perhaps, is the most challenging step, and
Nielsen [31] provides an elegant and computationally efficient solution. We
simulate a realization of a continuous-time Markov chain conditional on the
starting state and ending states along a branch. The waiting times between
substitution events along a branch are drawn from an exponential distribution

λe−λt (16.9)

with the rate λ = −qii. This rate is taken from the diagonal elements of our
Q matrix, which are interpreted as the rate of moving away from a state i.
Waiting times can be obtained from this distribution using the inverse trans-
formation method. If the exponential waiting time is longer than the branch
length t and the states at each end of the branch are the same, then the process
is terminated; no changes have occurred along this branch. If the waiting time
is smaller than the branch length t, then a character transformation is deter-
mined by Prij = qij

−qii
, and the process is continued with the new length, t−t1,

by drawing another exponential waiting time. If the next waiting time is longer
than the remaining time along the branch and the states are the same, the
process ends for that branch. On the other hand, if the states are different,
the process is repeated from the ancestral node, not the previous simulated
transformation. If we were to proceed from the previous transformation, the
waiting times would no longer be exponentially distributed.
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Nielsen [30] has pointed out that this approach is not computationally
efficient when the reconstructed ancestral states are not the same and the
length t is small. Nielsen [30] proposed conditioning the first waiting time on
being less than the length of the branch as

f(t1|t1 < t) =
λe−λt1

1 − e−λt
, 0 ≤ t1 < t, (16.10)

where λ = −qii. Waiting times can also be drawn from this distribution using
the inverse transformation method. This approach enhances the computa-
tional efficiency of the algorithm by reducing the number of realizations that
are rejected. Using this approach, the first draw always produces a waiting
time less than t and thus is consistent with at least one change occurring along
the branch. The next draw uses the unconditional distribution as above. Once
all internal nodes of the tree have been visited, we have successfully simulated
a single realization of a map from Pr(M |D, θ, τ).

16.2.2 Integrating over Topologies and Model Parameters

In general, parameter values of the substitution model θ and the topology τ
are not known with certainty. We would like to evaluate Pr(M |D) and not
Pr(M |D, θ, τ). The Bayesian approach permits a natural way of accommodat-
ing uncertainty in these values. We wish to sample from

Pr(M |D) =
ψ∑

k=1

∫
vk

∫
θ

Pr(M |D, θ, τ)p(τk, vk, θ|D)dvkdθ, (16.11)

where ψ is the set of possible trees and vk are the branch lengths associated
with tree k. While this cannot be solved analytically due to its complexity,
numerical approximations can be obtained using MCMC methods [35, 22, 17]
(see Chapters 3 and 7).

In practice, how do we go about sampling character histories not dependent
on fixed values for these parameters? The answer is quite simple. As described
above, we have a method for sampling a map along a phylogeny. Using a
program such as MrBayes or BAMBE, we can easily obtain an approximation
of p(τk, vk, θ|D). With this distribution in hand, we can simulate a map for
each posterior sample producing a valid approximation of Pr(M |D).

As mentioned previously, what we are most often interested in is some
function of the histories, h(M,D). These functions might evaluate the number
of nonsynonymous substitutions, radical amino acid changes, relative timing
of changes, correlation in the timing of transformations between two sites, or
covariation of states between sites. We now have all the pieces necessary to
evaluate any desired function and its expectation. For example, if we wish to
evaluate the expected number of nonsynonymous changes, nNSY N (M,D), we
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can evaluate the expectation numerically from the distribution of character
histories as

E[nNSY N (M,D)|D] ≈ 1
N

N∑
i=1

nNSY N (Mi, D), (16.12)

where N is the number of simulated character histories and nNSY N (Mi, D)
is the observed number of nonsynonymous changes along map i.

16.2.3 Examples from the Literature

This section is intended to direct the reader to the most recent applications of
posterior mapping in the literature. A brief overview of the specific questions
addressed in the literature should provide a better understanding of the power
of this approach.

The first application of this method in the literature [30] used it to address
a number of questions pertinent to molecular evolution and population genet-
ics. First, the author made inferences regarding the population parameter θ,
which is the product of the population size and mutation rate, to a data set of
63 human mtDNA sequences from the Nuu-chah-Nulth tribe (see [50] in [30])
demonstrating the method’s utility in population genetics. In addition, the
method was applied to estimating the ages of mutations and then specifically
the ages of synonymous and nonsynonymous mutations in a test of neutrality
proposed by Templeton [49].

The method was further used to address how the parsimony method com-
pared with the posterior method in estimating the number of mutations across
two genes: β-globin and influenza hemagglutinin-A [31]. An analysis of the
complete gene sequences found that the parsimony method greatly underesti-
mated the total number of substitutions compared with the posterior method.
Nielsen argued that the large discrepancy was likely due to differences in
lineages; for example, rate heterogeneity among lineages, mutational biases
among lineages, such as a transition/transversion bias, or biases among lin-
eages in synonymous and nonsynonymous evolutionary rates. To address these
questions, he tested for rate homogeneity among lineages, finding that there
appeared to be considerable variance among lineages, particularly in the β-
globin data set.

Finally, this method was extended to mapping morphological characters
[14] using the Mk series of stochastic models [23]. While possibly of little
interest to molecular evolutionists, this represents a major advancement in the
phylogeneticist’s ability to address questions about morphological character
evolution using a statistical approach not relying on parsimony. Not only
does this paper extend the method of stochastic mapping to morphological
characters, using the Nielsen [31] method, but it provides a novel approach to
looking for correlated character evolution using predictive distributions (see
Section 16.3).



16 Posterior Mapping and Posterior Predictive Distributions 451

16.3 Predictive Distributions

Often we are confronted with situations in which the data, or some aspect of
an analysis, do not meet the assumptions of a standard statistical test (e.g.,
the use of improper prior distributions in calculating Bayes factors). In cases
like these in molecular evolution and phylogenetics, we rely on alternative
methods, such as permutation tests (e.g., randomization tests), resampling ap-
proaches (e.g., the nonparametric bootstrap), the parametric bootstrap, and,
in the Bayesian framework, predictive distributions. The latter approach is
operationally analogous to the parametric bootstrap but has a number of dif-
ferences and potential advantages over the traditional parametric bootstrap.
This potential will hopefully become clear in the remainder of the chapter.

16.3.1 Posterior Predictive Simulations

Bayesian approaches to hypothesis testing come in two general forms: Bayes
factors and predictive distributions. While hypothesis tests using Bayes fac-
tors have received a fair amount of attention in the phylogenetics litera-
ture [44, 13, 43, 45], the alternative, predictive distributions, only recently
have been applied to methods in molecular evolution and phylogenetics
[32, 31, 3, 46]. In this section, I will provide background on what predictive
distributions are and how to use them, explore some recent applications from
the literature, and discuss the pros and cons of their use. Predictive distrib-
utions provide a very general and flexible framework for Bayesian hypothesis
testing, making them likely to be applied to a broad array of questions. In
addition, they provide a natural way of accommodating uncertainty in the
substitution model parameters and topology. This being said, the method
isn’t free of problems. The specifics of these issues will be reviewed at the end
of this section. In evaluating a hypothesis, we would like to know how well
it fits the underlying process that generated the data at hand. If a hypothe-
sis is adequate, then it should perform well in predicting the distribution of
data observations or some summary value relevant to the hypothesis being
scrutinized. These distributions of future observations are called predictive
distributions (also called reference distributions or densities). Most often we
are not directly interested in the predictive distribution of the data but a
summary statistic, referred to as a test statistic in this chapter, that captures
relevant features of predictive data and our observed data given the hypothe-
sis. Test statistics are dealt with in Section 16.3.2 but, for the moment let us
assume we have some function, T (·), that summarizes an aspect of our data.

An analogy: parametric bootstrap

Before we get into the details of how to sample from posterior predictive
distributions, I want to develop an operational analogy with the parametric



452 J. P. Bollback

bootstrap. Since many readers are already familiar with the use of the para-
metric bootstrap, it will hopefully serve as a useful heuristic to understanding
predictive methods. The thought experiment will be a test of the molecular
clock. While I don’t advocate the test described below, as it is untested, it does
provide a useful heuristic for understanding the differences between the two
methods. (Note: There are numerous other well-established ways of testing
the molecular clock.)

Let θc be a vector containing our model parameters (which include the
substitution model parameters, topology, and associated node depths) under
the clock hypothesis and θnc be the similar vector of parameters under the
unconstrained hypothesis. Under the parametric bootstrap, these values are
chosen to be the maximum likelihood estimates (MLE) for these quantities.
Since we wish to test the molecular clock, we can generate our reference dis-
tribution using these θ̂c values and simulate n data sets (see Figure 16.3).
These are the predictive outcomes we might expect to observe in future data
collection expeditions, given that the values of θ̂c are true. Next, we need to
summarize the data (observed and predictive) in some relevant way. We can
use the difference in maximum likelihood estimates between the constrained
(clock) and unconstrained branch length hypotheses [4], but for this example
we will take an alternate approach. Let’s assume that we have an outgroup
that establishes the placement of the root and use the standard deviation of
distance of the tips to the root under each hypothesis. The reference distrib-
ution, simulated under the clock, allows us to check the degree to which the
clock would appear violated (magnitude of the standard deviation), given that
the underlying process is truly clock-like. If the observed, or realized, value
falls outside of this distribution, we might be inclined to reject the clock hy-
pothesis or, more precisely, we reject that the observed deviation could have
arisen under our null hypothesis—a molecular clock and the particulars of the
substitution model.

In comparison, how might this be accomplished using posterior predictive
simulations, and what are the possible differences in outcome with the para-
metric bootstrap? The first difference is immediately apparent: values of θ are
not point estimates but averaged over samples from the posterior distribution
of θ (see Figure 16.3) under the clock and unconstrained hypotheses. Samples
from the posterior distribution under the clock model (θc) and unconstrained
model (θnc) can be obtained using a program such as MrBayes [17]. Using
these models, we can evaluate the expectation of our standard deviation test
statistic, under the unconstrained hypothesis. This reveals a–second difference
with the parametric bootstrap: we have accommodated uncertainty in the θnc,
and therefore uncertainty in the value of the realized test statistic, by aver-
aging over values sampled from the posterior distribution. To obtain the null
distribution of the test statistic under the clock hypothesis, we will simulate
data by sampling the posterior distribution of θc under the clock hypothesis
(see Figure 16.3). For each of the predictive data sets sampled, we will need to
perform another round of MCMC to sample from the posterior distributions
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Fig. 16.3. Comparison of the parametric bootstrap and posterior predictive sim-
ulation. Values of θ are used to simulate n new data sets ({y1, y2, . . . , yn}). These
are then evaluated using our chosen test statistic, T (·), giving us the reference dis-
tribution under the hypothesis, which is compared with the realized test statistic,
T (X).

under the unconstrained hypothesis. The null distribution is summarized from
these samples. In this case, the standard deviation for each of these replicates
is the predictive distribution of standard deviations expected under the clock
hypothesis (conditional on the data and chosen model). As with the para-
metric bootstrap, we can compare the expectation of the realized deviation
to the predictive values under the molecular clock. If the realized value falls
outside of the predictive distribution under the clock, then we are tempted to
consider the observed deviations as unexplained by a strict molecular clock.

Now, hopefully, you have a feel for the mechanics of predictive tests and
some of the differences with the parametric bootstrap, and we are ready to
move on and look more closely at the method of posterior predictive simula-
tions.

Sampling from posterior predictive distributions

First, we need a method for generating the predictive distribution of the data
before evaluating some function of it. Let Y = {y1, y2, · · · , yn} be a vec-
tor containing n future observations and X = {x1, x2, · · · , xn} be a vector
containing our current observations. What we would like to sample is the
predictive distribution of Y conditional on the hypothesis H,

p(Y|H,X) =
∫

θ

p(Y|θ)p(θ|X)dθ, (16.13)

where θ is a vector containing model parameters under the hypothesis under
scrutiny, and p(θ|X) is the posterior distribution of these parameters. Un-
fortunately, we can’t analytically determine p(Y|H,X) because the posterior
distribution, p(θ|X), the source of a reasonable set of values for θ under the
hypothesis being scrutinized, is impossible to determine analytically for all but
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the simplest cases in molecular evolution. Furthermore, we can use sampling
methods, such as Markov chain Monte Carlo (MCMC), to sample from this
distribution, providing an approximation of p(θ|X) [35, 22, 17] (see Chapters
3 and 7). With values of θ from the posterior distribution, we can approximate
the predictive distribution by sampling using the following algorithm:

1) Draw a set of parameter values, θi, from the joint posterior distribution
of parameters under the null model being tested. (In practice, this can
be accomplished by sampling the posterior output of a program that
approximates posterior distributions using MCMC, such as MrBayes
[17].)

2) Using the values of θi (which may include values for the parameters of
the substitution process, topology, branch lengths, etc.), simulate data,
yi .

3) Repeat steps one and two N times to create a collection of data sets,
y1,y2, · · · ,yn , corresponding to samples from the posterior distribution
of θ1, θ2, · · · , θn.

4) These simulated data sets are samples from the posterior predictive dis-
tribution shown in (16.13) and can be used to evaluate our hypothesis
of interest.

The precision of the sampling approximation is a function of the number of
draws from the posterior distribution, the precision of our posterior estimate,
and the appropriateness of the underlying prior distributions. Fortunately, we
are guaranteed by the law of large numbers that we will converge on the target
distribution. What exactly is “large” is not clear and is likely to be dependent
on the particular parameters of the distribution.

16.3.2 Test Statistics

By sampling we now have an approximation of the posterior predictive dis-
tribution of the data simulated under the null model being scrutinized. But
we are still left with the following problem: How can we use the posterior
predictive distribution to assess our hypothesis H? As already mentioned, we
are generally not interested in the predictive distribution of the data directly
but some function of it (in our case, a function of the sampling distribution),
or more concisely the predictive distribution of the function of interest. Our
functions will most often be a descriptive test statistic (often referred to as
a summary or discrepancy variable [5]) that quantifies some aspect of the
data. The test statistic is referred to as a realized value when summarizing
the observed data. In principle, an appropriate test statistic can be defined to
measure any aspect of the predictive distribution of the data, but in practice
the issue of defining an appropriate statistic for a given hypothesis may not
be straightforward [6] and is considered contentious [2].
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I follow the general notation T (·), where this is some function of the data.
To emphasize that our interests are in sampling from the predictive distribu-
tion of T (·), equation (16.13) could be rewritten as

p[T (Y)|X] =
∫

θ

p[T (Y)|θ]p(θ|X)dθ, (16.14)

where Y is a set of future or predictive observations of the data, X. Using the
algorithm outlined above, we can sample this distribution with one additional
step; for each simulated data set, we evaluate the function T (Y). (Examples
of different test statistics will be described later.) In this way, we now have
a sampling approximation of the predictive distribution of the test quantity
in which we are directly interested. Importantly, it should be noted that this
distribution is averaged over samples from the posterior distribution, allowing
us to accommodate uncertainty in our parameter estimates. This frees the test
from dependence on any particular set of parameter values by evaluating them
in accordance with their probabilities. Whether this is a benefit of the method
is yet unclear. (The effects of accommodating uncertainty in parameters in
Bayesian molecular evolution studies has not been looked at closely.) This
distribution can then be compared with the realized test statistic, T (X), which
is calculated from the original data, and the predictive probability of the null
hypothesis can then be evaluated.

16.3.3 Predictive p-Values

Recently, much research has been directed at the use, properties, and inter-
pretation of p-values as measures for predictive distributions and we direct the
reader to [2, 36]. Predictive p-values are often denoted pT to indicate their
dependence on the test statistic and have an operational interpretation simi-
lar to classical p-values, as they are both derived from tail area probabilities;
values that lie in the extremes of the null distribution of the test quantity are
considered significant to reject the null hypothesis. Under classical statistics,
the distributions are conditioned on point estimates for model parameters.
Predictive densities, on the other hand, are not because parameter values are
sampled from the posterior distribution in proportion to their probabilities.
This sampling scheme allows them to be treated as nuisance parameters—
values not of direct interest—and to be integrated out. Samples from the
predictive distribution of the test statistic allow us to evaluate the posterior
predictive probability as

pT = Pr[T (yrep) ≥ T (X)|X, θ]. (16.15)

The posterior predictive p-value for the test statistic is calculated as

pT =
1
N

N∑
i=1

I(T (yi)≥T (X)), (16.16)
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where I is an indicator function that takes on the value of 1 when the equality
is satisfied and 0 otherwise, T (yi) is the test statistic for the ith simulated data
set, and T (X) is the realized test statistic. Probabilities less than the critical
threshold, say α = 0.05, suggest that the hypothesis under examination is
inadequate. Predictive p-values are interpreted as the probability that the
hypothesis would produce as extreme a test value as that observed for the
data [6]. This approach evaluates the practical fit of the hypothesis to our
observations and is dependent on the test statistic employed. These p-values
should not be interpreted as frequentist error probabilities or as the probability
of our hypothesis. Sellke, Bayarri, and Berger [41] have suggested that p-values
can be calibrated to allow for a Bayes factor interpretation (i.e., the odds of
H0 to an unspecified alternative H1),

B(p) = −ep log(p), p < e−1, (16.17)

or a frequentist error probability,

α(p) = (1 + [−ep log(p)]−1)
−1

. (16.18)

While an extremely powerful and appealing aspect of predictive distrib-
utions is the ease and flexibility in test statistics that can be employed, not
all test statistics are appropriate. Careful consideration of the hypothesis and
its underlying assumptions, and the test statistic, should be made prior to
decisions about the hypothesis under scrutiny.

16.3.4 Issues Concerning the Use of Predictive Distributions

Practitioners should be aware of a number of issues surrounding the applica-
tion of posterior predictive distributions. First, there is an apparent double use
of the data. The data are used in the estimation of the posterior distribution
during simulation of the predictive distribution and are used again during cal-
culation of the tail area probabilities. A number of general solutions have been
suggested by various authors (see [27, 6, 7]). Second, the results are dependent
on the choice of test statistic. While the ability of the method to accommo-
date many different statistics is a benefit, poorly chosen statistics may lead to
incorrect conclusions and unpredictable behavior. Third, there are concerns
over the properties and interpretation of the different predictive p-values that
are available (see [2, 36]), particularly in situations for which composite null
models are being entertained. Finally, posterior predictive methods may be
highly conservative, resulting in a failure to detect problems with, or devia-
tions from, the null model.

16.3.5 Examples from the Literature

Predictive distributions are a new introduction to studies in molecular evolu-
tion and phylogenetics although they have been extensively discussed in the
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statistical literature (see [38]). Yet they have seen a rapid application to a
diverse array of questions in the last few years. In this section, I will briefly
review a few different applications from the literature. This should give us
some insight into what types of questions have been addressed and can be
addressed in the future.

Substitution model adequacy

While substitution model testing in phylogenetics and molecular evolution has
been an area of extensive research, until recently little had been done within
the Bayesian framework, and many researchers relied on classical approaches,
such as the likelihood-ratio test (for a review, see [15]), parametric bootstrap
[9], or Akaike information criterion [1], to select models for Bayesian analysis.
One drawback to these approaches is that they do not easily accommodate
uncertainty in parameter estimates and the topology used in the test. As we
have seen, predictive distributions provide a natural approach to accommo-
dating uncertainty. (This is not the only Bayesian approach to model testing
that accommodates uncertainty; see the use of Bayes factors in model selec-
tion [44].) This approach has been applied to determining model adequacy
and choice [3], testing for homogeneity of base frequencies among lineages
[18], and testing for lineage rate heterogeneity [31].

Bollback [3] proposed that we could evaluate a substitution model’s ad-
equacy using predictive distributions and that this would naturally lead to
selection through refinement or enhancement of the model to be used in fur-
ther analysis. This approach differed most importantly from likelihood-based
approaches by taking into account uncertainty in topology, branch lengths,
and model parameters. Therefore, model choice has been freed from condi-
tioning on these parameters and has resulted in a more accurate estimate of
model variance. The multinomial test statistic was used to evaluate how well
a model was able to generate data similar to existing data. Further, the study
found that a number of factors affected an increase in the power of the test
statistic: (1) increasing the number of sites; (2) increasing sequence divergence
(expected number of substitutions per site); and (3) the degree of violation of
a model’s assumptions.

In a review of Bayesian inference, Huelsenbeck et al. [18] tested for ho-
mogeneity of nucleotide frequencies among lineages of the Drosophila alcohol
dehydrogenase (Adh) locus. They used the following test statistic to evaluate
the deviation from homogeneity among 58 lineages over time:

χ2 =
58∑

i=1

∑
j∈{A,C,G.T}

(fij − f̄j)2

fj
. (16.19)

The authors were able to strongly reject the null hypothesis of nucleotide
frequency homogeneity among lineages.
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In the final example of evaluating substitution models, Nielsen [31] eval-
uated lineage rate variation for two data sets: β-globin and influenza hemag-
glutinin-A. He used the variance in expected number of substitutions, (Vk), as
the test statistic and tested the null hypothesis of homogeneity of variances
among lineages. By examining the posterior and predictive distributions, he
concluded that, because of their small overlap, the null hypothesis of homo-
geneity could be rejected. This study is important because it used the method
of posterior mapping to obtain estimates of Vk for each lineage and used pre-
dictive distributions to evaluate significance.

Positive selection

A diverse array of methods for detecting positive selection at sites within a
gene is available to molecular evolutionists and phylogeneticists alike, ranging
from parsimony-based methods [47] to likelihood-based methods (see Chapter
5) and Bayesian methods (e.g., [32, 12]). The use of posterior mapping and
predictive distributions to detect positive selection was introduced by Nielsen
[32]. I will focus on this paper because it demonstrates both posterior mapping
and predictive distributions to test the null hypothesis of no selection. The
authors evaluated the number of nonsynonymous substitutions as their test
statistic for an influenza hemagglutinin-A data set. They observed that 11
sites had significant p-values (pT ≤ 0.01), suggesting these sites had an excess
of nonsynonymous substitutions. They concluded that these sites were under
positive selection. To further strengthen their argument, they compared their
results with the results of Yang et al. [51], showing a strong concordance
between the posterior predictive p-values and posterior probabilities according
to the M3 model. None of the 11 sites determined to be under positive selection
showed posterior probabilities lower than 0.975.

Correlated character evolution

In this last section, I will review a recent study in which the authors used pos-
terior mapping and predictive distributions to determine correlation among
evolving characters [14]. Because the paper deals with morphological charac-
ters, it may seem on the surface to have little importance to studies in mole-
cular evolution. But, quite the contrary, it demonstrates how these methods
can be extended to studies of correlated molecular evolution. For example, the
methods could be applied to looking for correlated change among nucleotides,
such as RNA stem partners, or interactions among amino acid sites. Huelsen-
beck et al. [14] analyzed the coincidence of states for two morphological char-
acters: self-incompatibility and flower reproductive structure morphology in
the family Pontederiaceae.

The phylogeny was estimated using molecular data, and then characters
were mapped using the Mk class of models of Lewis [23]. In addition, because
the branch lengths of the topology do not reflect the evolutionary rates of



16 Posterior Mapping and Posterior Predictive Distributions 459

the morphological traits and the bias parameter of the morphology model is
unknown, a variety of prior distributions were explored for these parameters
to reduce dependence on a particular set of values. They used two different
test statistics to evaluate coincidence or correlation among the states of the
two traits. The first evaluated each character individually, while the second
looked for coincidence summed over all state comparisons between the two
characters. The basic form of the statistics is

dij = a
(o)
ij − a

(e)
ij , (16.20)

where a
(o)
ij is the observed coincidence and a

(e)
ij is the expected coincidence.

The authors found that when evaluating overall coincidence among states
they were unable to detect a significant coincidence between the states of
the traits. However, by looking at states individually, there was support for
a strong coincidence between tristylous flowers and self-incompatibility. This
demonstrates an important point about test statistics: a test statistic is only
as good as it is a relevant summary of the data with respect to the hypothesis
being tested. In the case of the overall coincidence measure, it masked the
effect.

16.4 Conclusions

Two recent developments, posterior mapping and predictive distributions,
have been developed and applied to questions on molecular evolution and
phylogenetics. These methods provide a natural way to address and accom-
modate uncertainty in various model parameters by sampling with respect
to the model’s posterior distribution. Posterior mapping provides a powerful
method for addressing questions in which detailed data (e.g., type, timing,
and order) about the history of a character(s) is required. The dependence on
the method of parsimony and its assumptions is no longer necessary. Predic-
tive distributions offer a new approach to hypothesis testing that is general
and flexible. Application of these new methods has just begun and will un-
doubtedly play an ever-increasing role in future studies in molecular evolution
and phylogenetics.

References

[1] H. Akaike. A new look at statistical model identification. IEEE Trans-
actions on Automatic Control, 19:716–723, 1974.

[2] M. J. Bayarri and J. O. Berger. P values for composite null models.
Journal of the American Statistical Association, 95:1127–1142, 2000.

[3] J. P. Bollback. Bayesian model adequacy and choice in phylogenetics.
Molecular Biology and Evolution, 19:1171–1180, 2002.



460 J. P. Bollback

[4] J. Felsenstein. Evolutionary trees from DNA sequences: A maximum
likelihood approach. Journal of Molecular Evolution, 17:368–376, 1981.

[5] D. Gelfand and X. L. Meng. Model checking and model improvement. In
Markov Chain Monte Carlo in Practice, pages 189–198. Chapman and
Hall, London, 1996.

[6] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data
Analysis. Chapman and Hall, London, 1995.

[7] A. Gelman, X. L. Meng, and H. Stern. Posterior predictive assessment
of model fitness via realized discrepancies. Statistica Sinica, 6:733–807,
1996.

[8] J. Gillespie. The Causes of Molecular Evolution. Oxford University Press,
Oxford, 1991.

[9] N. Goldman. Statistical tests of models of DNA substitution. J Mol Evol,
36:182–198, 1993.

[10] P. H. Harvey and M. D. Pagel. The Comparative Method in Evolutionary
Biology. Oxford University Press, 1991.

[11] J. P. Huelsenbeck and J. P. Bollback. Application of the likelihood func-
tion in phylogenetic analysis. In Handbook of Statistical Genetics, pages
415–439. John Wiley and Sons, Inc., New York, 2001.

[12] J. P. Huelsenbeck and K. A. Dyer. Detecting adaptive molecular evolution
when selection changes over time. Genetics, In Press.

[13] J. P. Huelsenbeck and N. S. Imennov. Geographic origin of human mi-
tochondrial DNA: Accommodating phylogenetic uncertainty and model
comparison. Systematic Biology, 51:155–165, 2002.

[14] J. P. Huelsenbeck, R. Nielsen, and J. P. Bollback. Stochastic mapping of
morphological characters. Systematic Biology, 52:131–158, 2003.

[15] J. P. Huelsenbeck and B. Rannala. Phylogenetic methods come of age:
Testing hypotheses in a phylogenetic context. Science, 276:174–180, 1997.

[16] J. P. Huelsenbeck, B. Rannala, and J. P. Masly. Accommodating phy-
logenetic uncertainty in evolutionary studies. Science, 288:2349–2350,
2000.

[17] J. P. Huelsenbeck and F. Ronquist. MRBAYES: Bayesian inference of
phylogenetic trees. Bioinformatics Applications Note, 17:754–755, 2001.

[18] J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback. Bayesian
inference of phylogeny and its impact on evolutionary biology. Science,
294:2310–2314, 2001.

[19] T. Jukes and C. Cantor. Evolution of protein molecules. In Mammalian
Protein Metabolism, pages 21–132. Academic Press, New York, 1969.
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