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Summary

Two papers by Thorne, Kishino, and Felsenstein in the early 1990s provided a
basis for performing alignment within a statistical framework. Here we review
progress and associated challenges in the investigation of models of insertions
and deletions in biological sequences stemming from this early work. In the last
few years, this approach to sequence analysis has experienced a renaissance,
and recent progress has given this methodology the potential for becoming a
practical research tool. The advantages of a statistical approach to alignment
include the possibility of parameter inference, hypothesis testing, and assess-
ment of uncertainty, none of which are possible using the score-based methods
that currently predominate.

Recent progress in statistical alignment includes better models, the exten-
sion of pairwise alignment algorithms to many sequences, faster algorithms,
and the increased use of MCMC methods to handle practical problems. In this
chapter, we illustrate the statistical approach to multiple sequence alignment
on a series of increasingly large data sets.

14.1 Introduction

Although bioinformatics is perceived as a new discipline, certain aspects have
a long history and could be viewed as classical bioinformatics. For example, the
application of string comparison algorithms to sequence alignment has a his-
tory spanning the last three decades, beginning with the pioneering paper by
Needleman and Wunsch [36]. They used dynamic programming to maximize



376 G. Lunter, A. J. Drummond, I. Miklós, and J. Hein

a similarity score based on a matching score for amino acids and a cost func-
tion for insertions and deletions. Independently, Sankoff and Sellers in 1972
introduced an approach comparing sequence pairs by minimizing a distance
function. Their algorithm is very similar to the algorithm maximizing similar-
ity. Sankoff and Cedergren generalized the distance-minimizing approach to
multiple sequences related by a phylogenetic tree. In the last three decades,
these algorithms have received much attention from computer scientists and
have been generalized and accelerated. Despite knowledge of exact algorithms,
essentially all current multiple alignment programs rely on heuristic approx-
imations to handle practical-sized problems. An example is the very popular
Clustal family of programs. A completely different approach to alignment was
introduced in 1994 by Krogh et al., who used hidden Markov models (HMMs)
to describe a family of homologous proteins. This statistical approach has
proved very successful; however, it was not based on an underlying model of
evolution or phylogeny.

In 1981, Smith and Waterman introduced a local similarity algorithm for
finding homologous DNA subsequences that has so far remained the gold
standard for the local alignment problem. The main use of local alignment
algorithms is to search databases, and in this context the Smith-Waterman
algorithm has proved too slow. A series of computational accelerations have
been proposed, with the BLAST family of programs being the de facto stan-
dard in this context [1].

At the same time that score-based methods were being developed for se-
quence alignment, parsimony methods were being used to solve the problem of
phylogenetic reconstruction. The method of parsimony, which finds the mini-
mum number of evolutionary events that explain the data, can be viewed as a
special case of score-based methods. Over the last two decades, the parsimony
method of phylogenetic reconstruction has been criticized, and it has essen-
tially been replaced by methods based on stochastic modelling of nucleotide,
codon, or amino acid evolution. This probabilistic treatment of evolution-
ary processes is based on explicit models of evolution and thus gives rise to
meaningful parameters. In addition, these parameters can be estimated by
maximum likelihood or Bayesian techniques, and the uncertainty in these es-
timates can be readily assessed. This is in contrast with score-based methods,
where the weight or cost parameters cannot be easily estimated or necessarily
even interpreted. Because this probabilistic treatment of phylogenetic evolu-
tion is based on explicit models, it also allows for hypothesis testing and model
comparison.

Despite the increased statistical awareness of the biological community in
the case of phylogenetic inference, which is now fundamentally viewed as a
statistical inference problem [9], the corresponding problem of alignment has
not undergone the same transformation, and score-based methods still pre-
dominate in this field. However, recent theoretical advances have opened up
the possibility of a similar statistical treatment of the alignment inference
problem. A pioneering paper by Thorne, Kishino, and Felsenstein from 1991
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proposed a time-reversible Markov model for insertions and deletions (termed
the TKF91 model) that allowed a proper statistical analysis for two sequences.
This model provides methods for obtaining pairwise maximum likelihood se-
quence alignments and estimates of the evolutionary distance between two
sequences. The model can also be used to define a test of homology that is
not predicated on a particular alignment of the sequences. At present, this is
a test of global similarity, and although analogues of local alignment methods
are possible, they have not yet been developed in the statistical alignment
framework.

The recent extension of the TKF91 model to multiple sequences, and al-
gorithmic improvements to the analysis of this model, have considerably in-
creased the practical applicability of the model. Along with the evolutionary
processes of insertion, deletion, and mutation, analyzing multiple sequences
additionally requires the consideration of their phylogeny. Most current align-
ment programs treat alignment and phylogeny separately, whereas in fact they
are interdependent. A more principled approach is to estimate both simulta-
neously (see, e.g., [11, 45]). In this chapter, we show some preliminary results
on the co-estimation of phylogeny and alignment under the TKF models of
evolution. For up to about four sequences, a full probabilistic treatment is
feasible (see Section 14.4). For larger data sets, it is necessary to use approx-
imative methods such as MCMC (see Section 14.5).

In conclusion, the statistical alignment framework enables a coherent prob-
abilistic treatment of both the sequence alignment and phylogenetic inference
problems. However, challenges still remain, especially with respect to the com-
putational problems inherent in using larger data sets and the biological re-
alism of the evolutionary models. In this chapter, we shall review the basic
model in some detail and sketch out some recent developments and current
directions of research.

14.2 The Basic Model

The pioneering paper by Thorne, Kishino, and Felsenstein [42] proposed a
continuous-time evolutionary model (TKF91) for sequence insertions and dele-
tions, as well as substitutions, that allowed a proper statistical analysis of the
alignment of two sequences. This model treats insertions and deletions (indels)
as single-nucleotide events and is arguably the simplest possible continuous-
time model for sequence evolution in the presence of nucleotide insertions and
deletions. A major advantage of the model is that it can be treated analyti-
cally, and in fact it can be reformulated as a hidden Markov model (HMM).
This leads to alignment procedures that, using the standard HMM algorithms,
are as fast as score-based approaches.

In this section, we describe the TKF91 model and sketch the derivation
of the transition probabilities. We introduce the extension of TKF91, termed
TKF92 [43], which is able to deal with arbitrary-length nonoverlapping indels
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(a) ∼T∼A∼T∼A∼A∼A∼A∼A∼G∼G∼G∼ (b) − A T − − A A C
G A T C C − − G

Fig. 14.1. (a) In the TKF91 model, a sequence is viewed as nucleotides separated
by links (∼). Deletions originate from nucleotides, while insertions originate from
links. The leftmost link is never deleted and is called the immortal link. (b) Example
of a five-nucleotide sequence that evolved into a six-nucleotide sequence through a
series of indel and substitution events. The evolutionary outcome is summarized
by an alignment showing that three of the ancestral nucleotides (top line) share
homology with descendant nucleotides, while other nucleotides have been either
deleted or inserted.

and can be viewed as the statistical analogue of “affine gap penalties” in the
score-based setting. Finally, we introduce the “long indel” model, a stochastic
indel process that allows for overlapping indels of arbitrary length, and discuss
some approaches that approximate this process.

14.2.1 The TKF91 Model

In the TKF91 model, a nucleotide sequence is modelled as a finite string of
nucleotides, or letters, separated by links. The string both starts and ends with
a link, so that there is always one more link than there are nucleotides; see
Figure 14.1(a). The insertion and deletion events are modelled as continuous-
time Markov processes. Insertions of single letters originate from links and
occur at a rate of λ per unit of time and per link. Deletions, also of a single
letter at a time, originate from the letters and occur at a rate µ per unit of
time per letter. Models like these are known as birth-death processes. We may
view the sequence as consisting of a single link followed by letter-link pairs
that get inserted and deleted as little modules. In this view, the leftmost link
is never deleted and is called the immortal link. This immortal link ensures
that the empty sequence is not a sink for the process.

Parallel to this birth-death process, the individual nucleotides are subject
to a continuous-time substitution process. The original paper used Felsen-
stein’s one-parameter model [8], but this can be generalized to other models
without difficulty. Similarly, in case alignments of proteins are desired, a sub-
stitution model on the amino acid alphabet is used.

Birth-death processes in which only singlet births and deaths occur, of
which the TKF91 model is an example, are automatically time-reversible by
virtue of the state graph’s linear topology. This fact considerably simplifies
calculations. Saying that a model is time-reversible is equivalent to saying
that the detailed balance condition holds, and this can be used to work out
the equilibrium length distribution. Suppose that, at equilibrium, the prob-
ability of observing a sequence of length k is qk. The transition rate from a
length-k sequence to one of length k −1 is µk since each individual nucleotide



14 Statistical Alignment 379

contributes a deletion rate µ. Since a sequence of length k − 1 has k links,
the transition rate in the other direction is similarly λk. Detailed balance now
requires that

µkqk = λkqk−1 ⇔ qk

qk−1
=

λ

µ
. (14.1)

Since the qk are probabilities,
∑∞

k=0 qk = 1, and we have

qk =
(

1 − λ

µ

)(
λ

µ

)k

. (14.2)

This means that λ < µ is a requirement to have an equilibrium length dis-
tribution. This is not surprising since otherwise the birth rate of a length-k
sequence, λ(k + 1) (there are k + 1 links), always exceeds the death rate µk,
so that sequences would tend to grow indefinitely.

Now suppose we let the TKF91 process act on a given initial sequence.
After time t, the process will have resulted in a descendant sequence through
a series of insertion, deletion, and substitution events (see Figure 14.2). Some
nucleotides will have survived (though they may have undergone substitu-
tions), and others will have been deleted or inserted. The latter will not be
homologous to any nucleotide in the other sequence. This outcome can be sum-
marized by an alignment of the ancestral and descendant sequences, where the
homologous nucleotides are aligned in columns (see Figure 14.1(b)).

Because all nucleotides evolve independently, the probability of a partic-
ular outcome at time t, conditioned on the ancestral sequence, can be calcu-
lated by simply multiplying the probabilities of the outcomes of the individual
nucleotides. For a given nucleotide, there are two sets of possible outcomes
we want to distinguish, namely those where the ancestral nucleotide survives
and those where it is deleted. To complete the description, we also need the
probabilities for births emanating from the immortal link:

Outcome: Probability:
# − · · · −
# # · · · # (Homologous nucleotide survives, with n − 1 new ones) pH

n (t) (n = 1, 2, . . .)

# − · · · −
− # · · · # (Ancestor was deleted, leaving n new nucleotides) pN

n (t) (n = 0, 1, . . .)

� − · · · −
� # · · · # (Immortal link gives rise to n new nucleotides) pI

n(t) (n = 0, 1, . . .)

Here # denotes a nucleotide, and we adopt the usual convention that nu-
cleotides appearing in a column are homologous, with the ancestor appearing
above the descendant. We do not explicitly write the links, except the im-
mortal link, which is denoted by a �. It is now possible to set up differential
equations, known as Kolmogorov’s forward equations, for the time-dependent
outcome probabilities by considering the rate at which a state is populated
from other states and the rate at which it populates other states. For instance,
the equations for pI

n(t) are



380 G. Lunter, A. J. Drummond, I. Miklós, and J. Hein

Fig. 14.2. One possible evolution of a sequence under the TKF91 model, resulting
in the outcome represented in Figure 14.3(a), and summarized by the alignment of
Figure 14.3(b). In this example, the immortal link (�) gave birth to a new nucleotide
that survived, its neighboring ancestral nucleotide gave rise to a new nucleotide
that did not survive, and so on. Note that this detailed evolution contains far more
information than the outcome as depicted in Figure 14.3(a) (and far more than
we can observe). The associated outcome probability includes contributions of all
possible evolutions compatible with the outcome.

d
dt

pI
n(t) = (n + 1)µpI

n+1 + nλpI
n−1 − [nµ + (n + 1)λ] pI

n(t), (14.3)

pI
n(0) = 1 for n = 0, 0 otherwise, (14.4)

where pI
−1 is defined to be 0. These equations for a classic birth-death process

are solved by

pI
n(t) = (1 − λβ(t)) [λβ(t)]n, where β(t) =

1 − e(λ−µ)t

µ − λe(λ−µ)t . (14.5)

The differential equations for the other probabilities are more involved but
can also be solved analytically [42]. In terms of the following abbreviations,

Bτ = λβ(τ), Eτ = µβ(τ),

Nτ = (1 − e−µτ − µβ(τ))(1 − λβ(τ)), Hτ = e−µτ (1 − λβ(τ)),
Iτ = 1 − λβ(τ), (14.6)

the solutions are
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(a)
t = 0 : � − # # − # # − #
t = τ : � # # # # − − # #
Probability: Iτ Bτ Hτ Hτ Bτ Eτ Nτ Hτ

(b)
− # # − − # # #
# # # # # − − #

(c)

t = −∞ : � # # #

t = 0 : � # # # # # − − −
· · ·

Probability: I∞ B∞ B∞ B∞ B∞ B∞ E∞ E∞ E∞ · · ·

Fig. 14.3. Example of an evolutionary history for two sequences, and the associated
probability according to the TKF91 model. (a) Example history for five nucleotides
evolving into a length-6 sequence. Note that the event Nτ , where a nucleotide dies
but not before giving birth to a new, nonhomologous nucleotide, is represented by
two columns in an alignment. Conditional on the ancestral sequence, the probability
for this history is IτB2

τH2
τ NτEτ . (b) The alignment resulting from this history. Since

alignments summarize only the homology relationships between sequences, certain
columns can be swapped without altering the meaning of the alignment (and differ-
ent evolutionary histories may give rise to the same alignment). (c) Summary of the
probabilities for a length-5 sequence at equilibrium (that is, after an infinitely long
time). The last columns are added for illustration; the ancestral sequence at t = −∞
is unknown, but this makes no difference since E∞ = 1 (the probability of a nu-
cleotide being deleted tends to 1 if we wait long enough). Therefore, the probability
of observing a length-5 sequence at equilibrium is I∞B5

∞ = (1 − λ/µ) (λ/µ)5 = q5.

pN
0 (t) = Eτ , (14.7)

pN
n (t) = NτBn−1

τ , (n > 0) , (14.8)
pH

n (t) = HτBn−1
τ , (n > 0) , (14.9)

pI
n(t) = IτBn

τ . (14.10)

See Figure 14.3 for an example of how to calculate the probability of a par-
ticular evolutionary history.

14.2.2 The TKF92 Model

The most obvious drawback of the TKF91 model, as already noted in the
original paper, is that insertions and deletions occur one letter at a time.
In reality, many indel events involve more than a single nucleotide. In 1992,
Thorne, Kishino, and Felsenstein introduced an improved version of their
model, designed to model indel events of more than a single letter [43]. This
model, referred to as TKF92, differs from the TKF91 model by acting on
sequence fragments instead of single nucleotides. The fragments themselves
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are not observed, and their length is randomly distributed according to a
geometric distribution with parameter ρ. This approach leads to a model that
can still be treated analytically and is a reasonably good approximation of
the actual observed indel length distribution.

The approximation that is made in the model, and that makes it possible
to analytically compute the probabilities, is that the fragments (and their
sizes) are supposed to stay fixed over the entire evolutionary history of the
sequence. This assumption, made for technical reasons, is clearly not realistic.
However, things are not as bad as they might seem. In the same way that the
TKF91 model sums over all possible alignments, the TKF92 model also sums
over all possible fragment assignments. Effectively, this means that indels of
any length may occur at any position in the sequence, but such indels may not,
in the course of evolutionary history, overlap. See Figure 14.8 for an alignment
under the TKF91 and TKF92 models.

14.2.3 Parameters of the TKF Models

Although the TKF91 model has two parameters, λ and µ, their ratio is in
practice fixed by the sequence length. Indeed, if we maximize the likelihood

qL =
(

1 − λ

µ

)(
λ

µ

)L

(14.11)

in terms of λ/µ, for a fixed sequence length L, we find that the maximum is
obtained for

λ

µ
=

L

L + 1
. (14.12)

For maximum likelihood parameter estimates, it is therefore not meaningful
to estimate λ and µ independently but rather to fix their ratio based on the
average of the sequence lengths that are to be aligned and estimate just one
free parameter.

The TKF92 model has one extra parameter, ρ, parameterizing the geo-
metric fragment length distribution. Fragments drawn from this distribution
have an expected length of 1

1−ρ . In the TKF92 model, the parameters λ and
µ refer to the indel rate per fragment. To allow a meaningful comparison, it
is useful to introduce new parameters λ′ and µ′ that specify the average indel
rates per site and are related to the parameters λ and µ by

λ = (1 − ρ)λ′, µ = (1 − ρ)µ′. (14.13)

Note that TKF91 is a special case of TKF92, obtained by setting ρ = 0. This
corresponds to a degenerate fragment length distribution where all fragments
have length 1 (see, e.g., Figure 14.4). For an example of how to calculate the
likelihood given a fragmentation, see Figure 14.5.
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Fig. 14.4. The most likely pairwise alignment of human α and β hemoglobins,
according to the TKF91 model. The vertical bars indicate posterior column
probabilities (i.e., the proportion of alignments that include that particular column,
weighted according to the posterior probability under the model). See Section 14.3.3
for the algorithms used to calculate the alignment and posterior probabilities. The
log-likelihood of observing this alignment under the TKF91 model, using maximum
likelihood parameters for these sequences (λ = 0.03718, µ = 0.03744, t = 0.91618,
see [14]), is −735.859. This low likelihood reflects the relatively high sequence di-
vergence and the fact that it is very unlikely for the ancestor of these sequences
to have evolved by chance; however, the log-likelihood of observing both sequences
by chance independently is far smaller still, −401.372 − 418.764 = −820.136, giving
strong support to the hypothesis that these sequences are homologous.

(a)

t = 0 : � # # # − − − − # # # # # #
t = τ : � # # # # # # # # # # # # #
Probability: Iτ Hτρ2(1 − ρ) Bτρ3(1 − ρ) Hτρ3(1 − ρ) Hτρ(1 − ρ)

(b)

# # # − − − − # # # # # #
# # # # # # # # # # # # #

Fig. 14.5. An evolutionary history according to the TKF92 model. (a) One possible
fragmentation into fragments of sizes 3, 4, 4, and 2, respectively, and the associated
probability for this evolutionary history. (b) The alignment resulting from this his-
tory. Many different fragmentations contribute to this alignment.

14.2.4 The “Long Indel” Model

The TKF92 model is a substantial improvement over the TKF91 model, as it
allows indel events involving more than one nucleotide. The main assumptions
that go into the model are (1) that indel events do not overlap and (2) that
the indel lengths are geometrically distributed. A natural, more general evo-
lutionary model would relax these two assumptions, specifically by allowing
indel events to overlap and by allowing an arbitrary indel length distribu-
tion. Here we focus on relaxing the former assumption, although the proper
modelling of the actual indel length distribution (see, e.g., [38]) is probably at
least as important for alignment accuracy. We refer to the more general model
as the “long indel” model. In its general form, no closed-form solution of the
outcome probabilities is known, even for a geometric indel length distribution.
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The main difficulty is that by allowing overlapping indel events, the fates of
neighboring nucleotides become entangled over time, so that the probability
of the total outcome does not factorize into individual nucleotide outcome
probabilities, as is the case for the TKF models.

To arrive at a tractable implementation of this model, some kind of approx-
imation is necessary. Knudsen and Miyamoto [21] develop an approximation
that is analytically no more complex than the TKF models: their pairwise
alignment algorithm takes O(L2) time, where L is the sequence length. In
fact, their model is formulated as an HMM with the same topology as that
in which TKF models are commonly formulated, and differs only in the tran-
sition probabilities. It is satisfying that, in contrast with TKF92, this indel
model is derived from first principles, but given its similar structure, it is
unclear how much it improves upon TKF92.

If one is willing to use computationally more demanding algorithms, then
an even more realistic approximation to the long indel model is possible. In
[32] an approximation is used that allows each indel event to overlap with up
to two others, and allows an arbitrary indel length distribution to be used.
The corresponding pairwise alignment algorithm has time complexity O(L4),
making the algorithm unsuitable for large database searches, for example.
However, single pairwise alignments can still be computed relatively quickly,
and on a set of trusted alignments based on known 3D protein structure, this
model outperformed TKF92. See [32] for more details.

14.3 Pairwise Alignment

In this section, we describe how the TKF models are used in practical pair-
wise sequence alignment algorithms. First, we describe an intuitive dynamic
programming recursion, which, however, has a high computational complex-
ity. More efficient recursions exist, and we describe in detail one that is based
on the formulation of the TKF models in terms of hidden Markov models.
The additional structure makes it easier to describe the various algorithms
that are based on it and paves the way for the multiple alignment algorithms
later on.

14.3.1 Recursions for the Likelihood of Two Homologous
Sequences

Let us now turn to the task of calculating the likelihood of homology; that
is, the likelihood that two sequences have evolved from a common ancestor.
Because of the time-reversibility of the TKF91 model, this is equivalent to
the likelihood that one sequence evolved into the other in twice the time that
separates the ancestor from the two descendants (referred to as τ below). This
likelihood is, by definition, the total probability corresponding to all evolu-
tionary histories that are consistent with the observed sequences. Obviously,
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there are extremely many of these evolutionary histories, so a direct evalua-
tion of this sum is impractical. However, a dynamic programming approach
is possible that computes this sum in reasonable time.

In the following, P (i, j) is the likelihood of the length-i prefix of the an-
cestral sequence evolving into the length-j prefix of the descendant sequence.
For instance, P (0, 0) = I∞Iτ since the probability of observing the empty an-
cestral sequence is I∞, while the probability of the empty sequence evolving,
in time τ , into the empty sequence again is Iτ . The dynamic programming
solution now consists of computing P (i, j) in terms of previously computed
P (i′, j′). By filling a table, all values can then be computed in reasonable
time.

As we saw in Section 14.2.1, each ancestral nucleotide evolves indepen-
dently of the others, and a single ancestral nucleotide can evolve into 0, 1, 2, . . .
descendant nucleotides (which may or may not be homologous to the ances-
tor). For the recursion, this means that we can express P (i, j) in terms of
P (i − 1, j − k) with k = 0, 1, . . . , j (corresponding to outcomes with k de-
scendant nucleotides) multiplied by the probability of a particular evolution
of the last ancestral nucleotide. The contribution of the indel process to these
probabilities is given in Section 14.2.1. This must be multiplied by (1) the
probability B∞ of observing one additional ancestral nucleotide; (2) the equi-
librium probability of the particular nucleotide observed; (3) the probability
of that nucleotide evolving into the descendant nucleotide (in case of a homol-
ogous descendant nucleotide); and (4) the nucleotide equilibrium probabilities
of any nonhomologous descendant nucleotides. The resulting algorithm is il-
lustrated in Figure 14.6.

As the algorithm is formulated here, its running time is cubic in the se-
quence length. However, due to the geometric tails of the outcome probabilities
pN

n , pH
n , and pI

n as functions of n, the recursion may be reformulated so that
it only uses a bounded lookback, resulting in an algorithm that has quadratic
time complexity [42]. In this context, this is just an algebraic trick and is remi-
niscent of the method used by Gotoh in 1982 for reducing the time complexity
of a score-based sequence alignment algorithm with affine gap penalties (see
[10]). However, there is a more meaningful and conceptual way to look at
this. It turns out that the TFK91 model can be viewed as an instance of what
is known as a hidden Markov model (HMM). From that point of view, the
algorithm derived using the algebraic trick becomes the well-known forward
algorithm for HMMs, and more algorithms are immediately applicable, such
as the Viterbi algorithm for determining the most likely path through the
chain, corresponding to the most likely alignment supported by the model. In
the next section, we will develop this point of view in more detail.
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Fig. 14.6. A graphical illustration of a dynamic programming recursion for the
TKF91 likelihoods. The left-hand side is the likelihood P (i, j) defined in the text;
horizontal black bars represent sequences, and the grey area represents “evolution.”
Since individual nucleotides evolve independently, the likelihood for the length-i
ancestral prefix to evolve into the length-j descendant prefix factorizes into several
other prefix likelihoods and probabilities of the ith residue to evolve into descendant
subsequences.

14.3.2 A Hidden Markov Model Formulation of TKF models

The outcome probabilities pH
n (t) and pN

n (t) of the TKF91 model are geometric
functions of n. As a result, we can construct a graph, with probabilities on
each of its edges, such that each path through the graph corresponds uniquely
to a particular outcome, and the product of all the probabilities encountered is
precisely the probability of that outcome. The graph shown in Figure 14.7(a)
has all these properties and generates alignments according to the TKF91
model. Such graphs are called Markov models if the outgoing probabilities sum
to 1 for each of the states. This is accomplished in Figure 14.7 by multiplying
and dividing by a factor 1 − Bτ at certain positions in such a way that the
total probability of any closed path from the start state to the end state does
not change. We use this Markov model as a hidden Markov model (HMM)
because we treat only the sequences as known, while the alignment structure
is regarded as unknown. This unknown information is encoded by the path
taken through the Markov chain, while the emitted sequences of nucleotides
are given. We refer to [6] for more information about HMMs.

By manipulating the graph of Figure 14.7(a), the number of states can
be reduced to just three (apart from the Start and End states) see Figure
14.7(b). This reduces the time and memory complexity of the HMM algo-
rithms (especially when more sequences are considered, see below). Because
of the algebraic manipulations, the transition probabilities take a more com-
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Fig. 14.7. Two HMM formulations of the TKF91 model. (a) Direct translation of
TKF91 probabilities into an HMM. A factor 1 − Bτ is needed for three transitions
to make all outgoing transition probabilities add up to 1. (b) Another HMM that
is emission-equivalent to (a). The two states #

− were merged into one and all non-
emitting states removed, leaving a fully connected three-state HMM. Note that the
evolutionary indel model by Knudsen and Myamoto [21] is formulated using an
HMM with exactly the same topology.

plicated form and are listed in Table 14.1. Henceforth, when we refer to the
TKF91 HMM, we are referring to the reduced HMM of Figure 14.7(b).

Starting from this HMM formulation of TKF91, it is straightforward to
transform it into the HMM for TKF92. This is done by adding a self-transition
(with probability ρ) to each state, which accounts for the geometric fragment
length distribution. To compensate, all other transition probabilities (includ-
ing the existing self-transitions) are multiplied by 1 − ρ, making outgoing
probabilities add up to 1 again. See Table 14.1 for the explicit transition
probabilities.

14.3.3 Algorithms

The formulation of the TKF models above in terms of HMMs allows us to use
standard HMM algorithms, such as the forward-backward algorithm, and the
Viterbi algorithm. For a detailed explanation of these algorithms, we refer to
[6]; here we focus on their application.

Applied to the TKF HMMs, the forward (or backward) algorithm cal-
culates the total likelihood of one sequence to have evolved from another. In
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Table 14.1. Transition probabilities in the HMM of Figure 14.7(b) for the TKF91
and TKF92 models. The probabilities for TKF91 are obtained from those of TKF91
by multiplying all transition probabilities by 1 − ρ and adding a self-transition with
probability ρ to every state.

fact, in most cases, we want to calculate the likelihood of an unknown root
sequence having evolved, independently, into two observed modern sequences.
Because of the time-reversibility of the model, the position of the root on the
branch connecting these two sequences does not influence the likelihood, and
therefore these two likelihoods are equal. This symmetry property is known
as Felsenstein’s pulley principle [8].

The forward and backward algorithms compute the total probability of all
paths through the Markov chain that emit the observed sequences. This can be
used for homology testing [12] and to estimate evolutionary parameters [42],
such as the divergence time and the indel rate, by maximum likelihood. The
Viterbi algorithm is the HMM analogue of the Needleman-Wunsch [36] score-
based alignment algorithm and is traditionally the main workhorse for doing
inference in hidden Markov models. The algorithm finds the most probable
(that is, the maximum likelihood) path to emit the given sequences, and this
path codifies the alignment of the sequences.

From the intermediate results from both the forward and backward algo-
rithms, it is possible to compute the posterior probability of passing through
any given state, conditional on emitting the observed sequences. Figures 14.4
and 14.8 show examples of Viterbi alignments and corresponding posterior
state probabilities on the Viterbi paths. For the alignment models, these are
interpreted as the posterior probability of observing an individual column in
the alignment. These posteriors are therefore indicators of the local “reliabil-
ity” of an alignment. They add important information to the simple “best”
answer obtained for example by the Viterbi algorithm and can be seen as the
alignment equivalent of confidence intervals for simple numerical parameter
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Fig. 14.8. Viterbi alignment of human α hemoglobin with human myoglobin un-
der (a) the TKF91 model and (b) the TKF92 model (with parameter ρ = 0.44).
Clearly, the TKF92 model fits the data much better, generally assigning higher
posterior probabilities to the alignment. (Maximum log-likelihoods for TKF91 and
TKF92 are −825.25 and −817.25, respectively.) Note the ≈ 6 aligned columns that
show a sudden decrease in posterior probability in the TKF92 alignment, where the
corresponding TKF91 alignment has two small indels. The TKF92 model is reluc-
tant to include many individual indels, preferring a single large one. Although the
maximum likelihood path is the one without any indels in that region, alignments
with indels contribute significantly to the total likelihood, indicating that the ho-
mology implied by the alignment there should be treated with caution. This is a
good example of what additional information can be obtained from the posterior
column probabilities.

estimates. In practical examples, there are very many alignments that con-
tribute to the total likelihood, and the most likely alignment may contribute
only a very small fraction. This makes a single best answer not very informa-
tive, and the local reliability measure indicates which parts of the alignment
can be trusted and which parts are essentially random, giving a quantitative
underpinning of the notion of “unalignable region” [23].

Although the Viterbi algorithm, computing the maximum likelihood path,
is ubiquitously used for alignment inference, it should here be mentioned that
there is no one-to-one relationship between paths through the Markov chain
and alignments. More than one evolutionary history can give rise to a single
alignment, see Figure 14.3 for an example. Note that for the output of the
Viterbi algorithm, the exact topology of the HMM is important, and, in gen-
eral, two HMMs may be emission-equivalent without being path-equivalent.
An example is provided by the TKF92 versions of the HMMs of Figure 14.7,
which are derived by adding self-transitions with probability ρ to each (emit-
ting) state. Paths through Figure 14.7(a) codify the sequence fragmentation,
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while in Figure 14.7(b) the sequence fragmentation is analytically summed out
and cannot be deduced from the path. Their hidden information differs, but
the observables (the emitted nucleotides) follow exactly the same distribution.
The result is that the forward or backward algorithms give the same answers,
but the Viterbi algorithm is biased toward alignments with more indels if the
HMM of Figure 14.7(a) is used.

Although not much of a problem for pairwise alignment, the nonequiva-
lence of paths and alignments turns up again, and more seriously, in the case
of alignments on trees. One way of dealing with this problem is to explicitly
look for the most probable alignment and keep track of all paths that con-
tribute to it [22]. Unfortunately, the resulting algorithm is very slow. Another
method that recovers a “best” alignment from an HMM, without relying on
path reductions, is posterior decoding [6]. The idea is first to compute poste-
rior probabilities for each possible column that may appear in the alignment
and then find the alignment that maximizes the combined posterior column
probability. This can be done efficiently using dynamic programming, which
is the same strategy that underlies the forward, backward, and Viterbi algo-
rithms. Although there is no guarantee that the alignment obtained in this
way is the most probable one, in practice this method gives very good results.
Another advantage of the method is that it is also applicable in Markov chain
Monte Carlo settings (see Section 14.5), where the Viterbi algorithm cannot
be used but estimates of posterior column probabilities are available.

14.4 Multiple Statistical Alignment

The simultaneous alignment of several sequences can reveal conserved mo-
tifs much more sensitively than a pairwise alignment can. This assists in the
alignment of more distantly related sequences and the detection of functional
sites. Unfortunately, multiple alignment is a computationally hard problem,
and certain particular cases are known to be NP-hard [46]. Furthermore, the
problems of multiple alignment and phylogenetic inference are closely inter-
linked: to properly align a set of homologous sequences, it is necessary to
know their phylogeny, and vice versa [11, 45]. Keeping this interrelatedness
in mind, we will nonetheless focus mostly on alignments. We do not discuss
the various interesting approaches developed for phylogenetic reconstruction
and will return to this topic only at the end of this section, where we discuss
co-estimation of alignment and phylogeny.

In the 1970s, Sankoff introduced the first multiple-alignment algorithm
[39], and since then many other algorithms have been proposed. Most of these
are “score-based” and use a score function that assigns a “goodness” to par-
ticular multiple alignments (and sometimes phylogenies). The algorithms then
find the best alignment by optimizing this score function. Because of the large
number of possible alignments, full optimizations are practically impossible,
and several clever heuristics have been introduced to find reasonable solutions
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in reasonable time. Successful programs include ClustalW [41], PSI-Blast [2],
DiAlign [34], and T-Coffee [37].

A drawback of score-based approaches is that it is hard to justify the para-
meter settings of the score function—or indeed the score function itself. This is
one reason why probabilistic approaches are becoming more popular. Instead
of assigning a score, these methods assign a probability to alignments, making
it easier to train a model on data and find parameters by techniques such as
maximum likelihood. Two popular probabilistic approaches, both based on
HMMs, are HMMER [7] and SAM [20]. Another important advantage of
probabilistic models is that they provide estimates of the uncertainty in the
final answer, such as posterior column probabilities for alignments and confi-
dence intervals for parameter estimates. An example of a probabilistic progres-
sive multiple-alignment method is [25], which has since been extended to in-
clude structure-dependent evolution (Löytynoja and Goldman, pers. comm.).
Another example is by Mitchison [33], who estimates phylogeny and alignment
simultaneously using an MCMC sampler in a probabilistic framework.

However, probabilistic models also have some problems. Such models are
mostly phenomenological, describing the data but not explicitly making state-
ments about the process that generated them. In particular, the evolutionary
relationships between the sequences are often treated heuristically. Parame-
ters of phenomenological models are linked to observables, not to the evolu-
tionary process, making it difficult to interpret parameter values. For correct
modelling, one should ideally reestimate parameters for every data set with
different evolutionary parameters.

An evolutionary approach is based on a model of sequence evolution from
which a probabilistic model for the observed sequences is derived. In this
way, the parameters of the model (such as indel and substitution rates and
divergence time) are meaningful and can be estimated using the same meth-
ods as for probabilistic models. The TKF91 and TKF92 models fit in this
framework. Algorithmically, the approach is not very different from proba-
bilistic or even score-based methods, and it encounters the same problems.
Full-likelihood methods are possible only for a very limited number of se-
quences, after which approximations and heuristics are necessary. One partic-
ularly useful approximation method is Markov chain Monte Carlo (MCMC).
This method generates samples from the posterior distribution of alignments,
thereby disregarding alignments that are very unlikely.

14.4.1 Multiple Alignment and Multiple HMMs

The first step in extending statistical alignment to multiple sequences was
taken by Steel and Hein [40], who provided an algorithm to align sequences
related by a star tree (a tree with a single internal node). This was soon
extended to arbitrary phylogenetic trees [12] with an algorithm with time
complexity O(L2n), where L is the mean sequence length and n the number
of sequences. For star trees, this running time was subsequently reduced to
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O(4nLn) [31]. These results used rather complicated algebraic manipulations
to derive the algorithms, and when it was realized that for two sequences the
TKF91 model can be described as a pair HMM [29, 12, 18], the extension to
multiple sequences became much easier. Holmes and Bruno [18] showed how to
construct a multiple HMM describing the evolution of an ancestral sequence
and its two descendants. Subsequently, Hein, Jensen, and Pedersen showed
how to generate a multiple HMM for TKF91 on an arbitrary phylogenetic
tree [13]. The details concerning the construction of these multiple HMMs are
beyond the scope of this book, but to give a flavor of the techniques involved
we give a single example for three sequences in Figure 14.9.

We can loosely argue that this multiple HMM correctly generates mul-
tiple alignments according to TKF91. First, note that each path from the
start state to the end state corresponds to a multiple alignment. From the
start state, the chain first jumps to a silent state next to the state emitting a
character to all the sequences, which models “births” emanating from the im-
mortal link. Eventually the process reaches the rightmost silent state, where
a decision is made whether there is a new root birth. If there is, a decision
tree with transition probabilities αi and 1−αi decides on which branches this
nucleotide survives, after which subsequent births associated with the surviv-
ing nucleotides are introduced. It can be verified that the path probabilities
equal the probabilities that the TKF91 model assigns to the corresponding
alignments, a task we gladly leave to the reader.

In the same vein, TKF92 can be extended to multiple alignments on trees.
The simplest way to do this is by adding self-transitions to the HMM of Fig-
ure 14.9. This fixes fragmentations over the entire phylogenetic tree, so that
indels cannot overlap even if they occur on separate branches, clearly creating
undesirable correlations between independent subtrees. A better behavior is
obtained if the three-state TKF92 HMM is used as a building block on each
of the branches and communicates sequences (not fragmentations) at internal
nodes. Holmes introduced the concept of transducers, or conditionally nor-
malized pair HMMs describing the evolution along a branch, which provides
an algorithmic way to construct multiple HMMs on a tree [17]. This leads
to an HMM with the same number of states as before, but one that allows
overlapping indels as long as they occur on separate branches.

As an aside, note that, in contrast with the fixed-fragmentation TKF92
model, likelihoods now depend on the number and position of internal nodes
along a branch. In fact, even introducing a node of degree 2 (i.e., a node with
one incoming and one outgoing branch) changes the model. By increasing
the density of such degree-2 nodes, the model eventually converges to the
long indel model, allowing arbitrary overlapping indels. Unfortunately, the
number of HMM states increases exponentially with the number of nodes, so
that adding such degree-2 nodes is an impractical way of approximating the
long indel model.

A technical problem with the multiple HMMs generated above is that they
may contain silent states that do not emit any characters or emit only into
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Fig. 14.9. Multiple HMM describing the evolution of three sequences related to a
star tree, under the TKF91 model. The following abbreviations are used: αi = e−µti ,
βi = (λ − λe(λ−µ)ti)/(µ − λe(λ−µ)ti), and γi = (1 − αi)−1(1 − e−µti − βi), where ti

is the length of the branch descending to tip i in the phylogenetic tree. Big circles are
states that emit the column shown according to the underlying substitution model;
R, A, B, and C represent characters in the root sequence and the three observed
sequences, respectively. Small ellipses represent silent states, (see [18]).

(unobserved) internal nodes. (An example of a silent state is the R/-/-/- state
in Figure 14.9.) These states create self-references (or loops) in the state graph
and need to be eliminated before the Markov chains can be used in algorithms.
The technique of silent-state elimination is well-known in the HMM literature
[7], and it involves solving a set of linear equations. See [27] for more details.

14.4.2 Algorithms for Multiple Sequence Alignment

After eliminating silent states, we can calculate the joint probability of a set
of sequences related by a phylogeny by the standard forward and backward al-
gorithms, calculate the posterior probability of particular alignment columns,
and can find the most likely alignment with the Viterbi algorithm [6]. An
example is presented in Figures 14.10 and 14.11.

A practical problem that besets algorithms for multiple HMMs is that the
time and memory complexity increase rapidly with the number of sequences.
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Fig. 14.10. Maximum likelihood trees relating human α1 and β hemoglobins, myo-
globin, and bean leghemoglobin for all three topologically distinct trees, total like-
lihood values (L), and insertion rates (λ) under the TKF91 model. The numbers
next to the branches refer to branch lengths in units of expected number of substi-
tutions per site. Dayhoff’s PAM matrix was used as the substitution rate matrix.
As expected, the most likely tree is the one that groups human alpha and beta
hemoglobins together. The other trees are close to degenerate, with only a very
short segment connecting the internal nodes, again suggesting that these phyloge-
nies are incorrect. The tree likelihoods combine all possible alignments of the four
sequences, in contrast with most other methods, which rely on a single alignment,
preventing inaccuracies in a single alignment from biasing the phylogeny inference
(see [27]).

Two factors contribute to this rapid increase: (1) The dimension of the dy-
namic programming (DP) table is equal to the number of sequences n, and
(2) the number of states S of the multiple HMM itself grows exponentially
with the number of sequences. Generally, the basic algorithms have time and
memory complexities of O(S2Ln) and O(SLn), respectively. For TKF91 and
TKF92, the number of states S is of the order

√
5

n
[27]. One implementation

of the TKF91 model for four sequences uses 47 states and 1293 transitions be-
tween them, so that for sequences of length 150, naive implementations would
require about 2 · 1010 memory positions and 1012 floating point operations.
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Fig. 14.11. The Viterbi alignment of α and β human hemoglobin, human myo-
globin, and leghemoglobin (Lupinus luteum) for the first phylogenetic tree in Fig-
ure 14.10. The log-likelihood of this alignment (one of those included in the tree
likelihood of Figure 14.10) is −1593.223. The column posterior probabilities vary
considerably and clearly point to several highly conserved domains, punctuated by
much less conserved regions. Amino acids that participate in α helices are shown
in uppercase; asterisks denote the four conserved residues that coordinate the heme
group.

The TKF91 model has some surprising symmetries that allow the forward
algorithm based on the three-state pair HMM to be reduced to a one-state
recursion [14]. This algebraic reduction results in a recursion that contains
negative coefficients, so that it cannot be interpreted as a Markov chain any-
more. Nevertheless, similar reductions are possible on trees, also resulting in a
one-state recursion, resulting in an algorithm to compute the total likelihood
using Ln memory positions with a running time of order O(2nLn). See [27]
for details.

The tricks involved in the reduction seem unique to TKF91, and for TKF92
and similar models, we have to resort to general algorithms. In the following
section, we discuss a number of modifications to the original forward-backward
and Viterbi algorithms and some corner-cutting methods that make full like-
lihood methods possible in practice.

Multiple forward-backward algorithm

In practice, memory resources are often the limiting factor, and strategies
to reduce memory usage are therefore of great practical importance. For the
forward and backward algorithms, if only the total likelihood is required, one
can relinquish DP table entries dynamically, resulting in memory requirements
of the order SLn−1, not SLn. To compute posterior column probabilities, the
straightforward algorithm computes the full DP table using both the forward
and backward algorithms and therefore requires order SLn memory. However,
if the posterior probabilities for a particular alignment are required, a more
careful implementation can still compute this using order SLn−1 memory by
relinquishing during the iterations all DP table entries that are not referenced
by either the alignment of interest or new DP table entries [15, 30]. Even
with these leaner implementations, the computational complexity is still very
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high. Further reduction in space can be achieved by heuristic corner-cutting
methods. Such methods are well-known in score-based alignment approaches
[44, 35, 3, 24, 47], and here we describe their counterparts for HMMs.

In practice, only a small region of the DP table is responsible for the
dominant contribution to the total likelihood. This region often consists of a
well-defined “spine” corresponding to the maximum likelihood alignment and
close neighbors. If this “contributing region” were known, the recursion could
be confined to it, resulting in a considerable speedup [14] and a negligible loss
of total likelihood. The problem is clearly circular, however, as the contribut-
ing region can only be determined after the full DP table has been computed.
Having said this, heuristic methods for selecting the contributing region exist
that work very well in practice, for example based on full pairwise alignments.

The likelihood that is computed in this way is, by construction, a lower
bound for the actual likelihood since each time the DP recursion refers out-
side the contributing region, probability 0 is used instead of the true (small
but nonzero) probability. It is possible also to compute an upper bound using
the same contributing region. This sandwiches the actual likelihood between
two bounds and, if these bounds are tight enough, provides an effective a
posteriori proof that the maximum likelihood alignment lies within the con-
tributing region. The method is based on calculating the alignment likelihood
of m known sequences and n − m sequences of unknown composition and
length on an n-leaved phylogenetic tree. A recursion of memory complexity
SLm exists that computes the sum of alignment probabilities over all possible
alignments of these sequences, where for a particular alignment this proba-
bility is maximized over the sequence composition of the unknown sequences.
This obviously gives an upper bound for the total alignment likelihood of the
n sequences, and one that is considerably better than the likelihood of sim-
ply aligning the m known sequences on an m-leaved tree. Moreover, it gives
upper bounds for each of the DP table entries in the n-dimensional table by
projecting to the smaller m-dimensional table. By taking the minimum over
all combinations of m sequences out of the n given ones, good upper bounds
are obtained for the entire DP table. The final upper bound for the alignment
probability is obtained by performing the DP recursion on the contributing
region and using the m-sequence-based upper bound whenever the recursion
refers to an entry outside that region. This approach was used to compute the
alignment likelihoods and maximum likelihood trees depicted in Figure 14.10.

Multiple Viterbi algorithm

The method of “shaving off” a dimension of the DP table in the forward-
backward algorithm cannot be used for the Viterbi algorithm, as it contains
a backtracking loop to find the most likely path, which may visit any part
of the DP table. A clever idea due to Hirschberg [15] reduces the memory
requirements to order SLn−1 in a different way at the cost of an increase in
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time complexity by only a constant factor. The algorithm consists of a stan-
dard Viterbi algorithm that, however, does not retain its DP table and stops
halfway. A “backward” Viterbi algorithm then starts at the other end and
again stops halfway. Using their outputs, the central state of the Viterbi path
is determined, but no backtracking is possible. However, with the central state
known, the Viterbi recursion can be performed again but is now constrained
to two DP tables of size roughly (L/2)n. The same strategy is used again in
the smaller tables until after several recursive divisions the full Viterbi path
is found. The algorithm runs in time proportional to

S2Ln ×
[
1 +
(

1
2

)n−1

+
(

1
2

)2(n−1)

+ · · ·
]

= S2Ln 2n−1

2n−1 − 1
, (14.14)

an increase of at most a factor 2. Unfortunately, Hirschberg’s algorithm does
not perform so well if it is combined with constraints to a contributing re-
gion. Such regions usually lie close to the diagonal of the DP table, and the
Hirschberg halving strategy takes off almost nothing from such an essentially
one-dimensional contributing region. The use of table constraints is highly
desirable, however, as the algorithm otherwise becomes impractical already
for as little as four sequences.

Another strategy, termed “bushy Viterbi,” has the same memory usage
as Hirschberg’s algorithm and the same constant time penalty but can be
combined with the contributing region strategy as well. The idea is to combine
the two stages of the Viterbi algorithm into one and do backtracking on-the-
fly. For this to work, each state requires an additional pointer to the state it
refers to and a reference count. The algorithm keeps optimal paths for each
state in the current n − 1-dimensional DP table slice. Whenever a slice is
completed, all reference counts in the previous slice are decreased by one, and
those that are not referenced by states in the current slice are removed. The
table entries to which these states refer have their reference counts decreased
as well, and when they reach zero, the entries are removed in turn, and so on.
Since the optimal paths for the various states quickly coalesce, the set of all
paths is in practice very tree-like, as most coalescence events occur close to the
tips, and requires not much more memory beyond the Ln−1 DP table entries.
By doing the garbage collection only occasionally, the time complexity is also
not much more than for the ordinary Viterbi algorithm. This algorithm was
used to calculate the Viterbi alignment of Figure 14.11.

14.5 Monte Carlo Approaches

The major difficulty with statistical alignment has been in extending it to
practical problem sizes. Alignments of tens or hundreds of sequences are rou-
tinely required in standard bioinformatics and phylogenetics settings. Exact
techniques for statistical alignment are restricted to four or five sequences [27].
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In this section, we review Monte Carlo approaches that promise to consider-
ably extend the domain of application of statistical alignment.

14.5.1 Statistical Alignment Using MCMC and TKF91

A number of researchers have been motivated to develop MCMC sampling
algorithms to extend the use of the TKF91 model into the realms of prac-
tical multiple-sequence alignment. The first such effort was by Holmes and
Bruno [18], who produced an MCMC approach to statistical alignment under
the TKF91 model conditional on a fixed tree topology and branch lengths.
They used data-augmentation techniques to include paired-sequence align-
ments (henceforth referred to as branch alignment) on each branch of the tree
as well as inferred sequences at internal nodes. The proposal distribution they
used consisted of two Gibbs sampling moves that resampled (1) a branch
alignment conditional on the two adjacent sequences (one of which might
be an inferred sequence) and (2) a sequence at an internal node conditional
on the three adjacent branch alignments (while allowing insertion of charac-
ters unaligned with any of the three neighbors). Both of these moves involve
sampling a subspace of the augmented problem from the exact conditional
probability. This method was followed by another Gibbs sampler [13] that
reduced the state-space by not requiring the branch alignments to be retained
between successive states. This was achieved by using a more computationally
intensive Gibbs move that resampled an internal sequence conditional only on
the three neighboring sequences. The algorithm of Hein et al. is O(L3) in the
length of the sequence, as opposed to the O(L2) move of Holmes and Bruno.
However, Hein et al. demonstrated that their algorithm’s superior mixing
more than made up for the extra computational time. In terms of effectively
independent samples per CPU second, the Hein et al. method appeared to be
an improvement. Both of these methods relied on EM optimization for val-
ues of the rates of substitution, insertion, and deletion. Theoretically, these
parameters could easily be Metropolis sampled as part of the algorithm.

A third group has used MCMC to sample pairs of sequences [29, 28].
This work focuses on including alignment uncertainty into estimates of branch
lengths. While these authors do not address the full problem of multiple align-
ments, they were the first to demonstrate the feasibility of a full Bayesian
approach to co-sampling alignments and evolutionary parameters.

14.5.2 Removing the Requirement for Data Augmentation

One of the reasons that data augmentation was required for the MCMC meth-
ods above was that the likelihood of the whole tree could not be efficiently
calculated without internal sequences. A better solution would be to have an
analogue of the Felsenstein peeling algorithm [8], which would analytically
sum out the sequences and gaps at internal nodes. With such an algorithm,
the state could simply consist of the tree topology together with the homology
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structure (multiple sequence alignment) at the tips. No branch alignments or
internal sequences are then required. Not only would this considerably sim-
plify the extension of the statistical alignment problem to co-estimation (the
tree topology can be sampled without worrying about disturbing augmented
data), but it should also reap computational benefits in the same way that
the Hein et al. method did over the Holmes and Bruno one.

Surprisingly, a peeling method for the TKF91 model on a binary tree is not
only possible, but is also computationally very cheap. We used this method
to include indels as informative events in phylogenetic inference [26], and it is
the basis of the co-estimation method described below.

14.5.3 Example of Co-estimation

Previous methods applying MCMC to statistical alignment problems did not
sample evolutionary trees. The recent development of the TKF91 peeling
method mentioned above removes the requirement for data augmentation,
making tree-change proposals very simple. However, this ease of manipulat-
ing the tree comes with a drawback: without data augmentation, it does not
appear to be possible to perform Gibbs sampling on the alignment. Instead,
other sampling methods are required, and careful design is needed for good
performance. We have developed a partial importance sampler, which has
good mixing properties in terms of estimated sample size (ESS) per CPU
cycle. This method uses a stochastic score-based approach to propose new
alignments. The proposal distribution is reshaped into the posterior distribu-
tion by standard Metropolized importance sampling techniques. We used the
program BEAST written in Java as the MCMC inference engine [4, 5].

In more detail, the method works as follows. Given a multiple alignment,
a random window is selected for modification, and a new subalignment in
this window is proposed by a stochastic version of a score-based progressive
alignment method. In this stochastic alignment method, sequences and pro-
files are progressively aligned using a pairwise algorithm, guided by the tree
of the current MCMC state. In each iteration of the stochastic alignment,
the dynamic programming table is filled as in the deterministic case by using
linear gap penalties and standard similarity matrices. The stochastic element
appears during the traceback phase. At each step during traceback, a random
decision is made, biased toward the highest-scoring alternative. If the three
alternatives have scores a, b, and c, respectively, the algorithm chooses among
the alternatives with probabilities proportional to xa, xb, and xc, respectively,
where x > 1. The stochastic path chosen determines the proposed alignment.
It can be shown that all possible alignments of the subsequences can be pro-
posed in this manner, and the proposal and back-proposal probabilities can
be calculated relatively easily.

To get a reversible Markov chain, all window sizes must be proposed with a
nonzero probability. We used a truncated geometric window-size distribution,
but other distributions can also be used. The parameters that appear in this
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G--LSDQEWQQVLTIWGKVEADIAGHGHEVLMRLFHDHPETLDRFDKFKGLKTPDQMKGSEDLKKHGATVLTQLGKI-----LKQKGNHESELKPLAQTHATK-HKIPVKYLEFISEVIIKVIAEKHAADFGADSQAAMKKALELFRNDMASKYKEFGFQG 
G--LSDDEWHHVLGIWAKVEPDLSAHGQEVIIRLFQVHPETQERFAKFKNLKTIDELRSSEEVKKHGTTVLTALGRI-----LKLKNNHEPELKPLAESHATK-HKIPVKYLEFICEIIVKVIAEKHPSDFGADSQAAMRKALELFRNDMASKYKEFGFQG 
GV-LTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQ--NNPDLQAHAGKVFKLTYEAAIQLQVNGAVASDATLKSLGSVHVSK-GVVDAHF-PVVKEAILKTIKEVVGDKWSEELNTAWTIAYDELAIIIKKEMK---DAA 

Fig. 14.12. The maximum posterior decoding of an alignment of ten globins: alpha
hemoglobin (human, chicken, turtle), beta hemoglobin (human, etc.), myoglobin
(human, etc.), and bean leghemoglobin). Estimates of posterior column probabilities
were obtained by co-sampling phylogenetic trees and alignments through MCMC
using an alignment proposal distribution in windows of varying sizes and a linear-
time likelihood calculator for the TKF91 model in trees. For the MCMC run on
which these results are based, the estimated sample size was about 80. The column
posterior probabilities qualitatively agree with the analytic posterior probabilities
for the maximum likelihood alignment, based on just four of the ten globins (see
Figure 14.11).

stochastic alignment algorithm, such as the average window size, determine
the proposal distribution but do not influence the resulting posterior distrib-
ution. However, they do influence the efficiency of the MCMC sampler. For
example, if the basis of exponentiation, x, is small, the proposal distribution
will be flat, leading to a small acceptance ratio. When x is too large, the pro-
posal distribution will be too narrow, resulting in bad mixing behavior if the
distribution is far from the target distribution. The gap penalty value has a
similar effect: if it is small, many alignments have a similar probability of be-
ing proposed, while a big penalty results in a proposal distribution containing
very few alignments.

Figures 14.12 and 14.13 illustrate the results of this co-estimation method
on a set of ten globin sequences. These pictures were produced from two
MCMC runs with a total chain length of 10,000,000 and a burn-in of 500,000.
The basis of exponentiation x was chosen to be 1.5, and the mean window size
was 40 amino acids. We used the BLOSUM62 matrix and gap penalty −10.
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Fig. 14.13. The maximum posterior tree (black) relating the ten globins of Figure
14.12 and 95% confidence intervals of the node heights (grey boxes). Most of the
tree’s topology is well-determined, with the exception of the myoglobin subtree.
Note that this relatively unresolved topology differs from the more well-defined
topologies down the alpha and beta hemoglobin branches, both of which conform
to the accepted phylogenies of human, chicken, and turtle.

14.6 Discussion

Recent progress in the development of statistical alignment methods, and es-
pecially the emergence of practical algorithms, has made it possible to treat
the problem of sequence alignments as a statistical inference problem, es-
timate evolutionary indel parameters, and quantify alignment uncertainties.
This development shows parallels with the success of statistical methods for
phylogenetic inference since the 1980s.

Several aspects of statistical alignment methods have seen important
progress: methods for pairwise alignment have been generalized to multiple
sequences; more realistic insertion/deletion models have been proposed; hid-
den Markov model theory has conceptually simplified many algorithms; and
MCMC methods have considerably extended the domain of application. These
successes are due to, and resulted in, a growing interest in statistical align-
ment problems [14, 18, 12, 40, 29, 31, 19, 26, 27, 28, 13, 21, 17, 32]. In 2001,
pairwise alignment was just about a feasible task for statistical alignment. At
present, the limit has been pushed up to about ten sequences. Much larger
data sets are routinely of interest, and there is clearly a need for cleverly
designed MCMC algorithms to tackle such problems.

The possibility of assessing the goodness-of-fit of a given statistical align-
ment model is a strength of probabilistic approaches and allows for data-driven
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model improvements. Many such challenges remain, such as the inclusion of
more biological realism in the models, incorporating, for example, indel rate
heterogeneity and variable substitution rates. Although heterogeneity of sub-
stitution processes has been extensively explored in the context of phyloge-
netic inference, it is largely unexplored in the context of sequence alignment.
Perhaps even more importantly, the development of user-friendly software will
be essential to make the methods appeal to a wider audience.

Sequence alignment is often just the first step in any analysis. Most current
methods, such as comparative gene finding and RNA secondary structure pre-
diction, but also phylogenetic inference, assume a prior and fixed alignment.
These methods can be combined with statistical alignment either by a full
co-estimation procedure, simply by using a sample of alignments, or by incor-
porating the column reliabilities as weights. Such a hybrid approach would
reduce the bias introduced by assuming exact knowledge of sequence homol-
ogy and at the same time increase the sensitivity by focussing on reliable data,
and work in this direction is already in progress (see ,e.g., [16]).

The understanding of molecular evolution today owes much to the devel-
opment of adequate evolutionary models. We hope that statistical alignment
will contribute to this fundamental understanding in the coming years.
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