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Preface

The field of molecular evolution is devoted to elucidating the processes gener-
ating variation within and between species at the molecular level. It addresses
the fundamental question of why all life on Earth looks as it does from the
perspective of molecular and evolutionary biology. Molecular evolution arose
as a scientific field in the 1960s after protein sequences from multiple species
first became available. In the 1970s, the first journal exclusively devoted to
this field arose, and today it molecular evolution dominates the literature on
evolutionary biology. Since the appearance of large-scale genomic data, the
field of molecular evolution has emerged as one of the major scientific pillars
in the analysis of genomic data, especially when it comes to data from multiple
species.

The field of molecular evolution relies heavily on statistical theory. Usu-
ally, researchers only have access to DNA data, or other molecular data, from
extant species. From such data they try to make inferences regarding past
evolutionary processes. This inference problem is fundamentally statistical in
nature, and it is not surprising that a large body of literature on statistical
methods in molecular evolution has emerged. The statistical problems encoun-
tered in molecular evolution are often rather non-standard because the un-
derlying statistical models usually involve superimposing stochastic processes
along the edges of a tree. Several interesting and peculiar algorithmic and sta-
tistical problems arise from these models. While many books contain excellent
coverage of the specialized, but important, area of phylogenetic inference (es-
timation of trees) from molecular data, there are no books that provide an
introduction to the more general area of statistical methods in molecular evo-
lution. With the publication of this book, we hope to rectify this problem.

The first four chapters of the book provide a general introduction to the
area. The first chapter, by Galtier and his colleagues, introduces the models of
DNA sequence change usually applied in molecular evolution. Evolution does
not remember past states except by current form, and Markov models have
therefore been the natural choice for statistical models to describe the evolu-
tion of DNA sequences. The first chapter provides an introduction to these
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models and sets the stage for the subsequent chapters describing how the
models are used for statistical inferences. The second chapter, by Buschbom
and von Haeseler, provides an introduction to the use of the likelihood func-
tion in molecular evolution. In addition to introducing some basic statistical
concepts for the uninitiated biologist, it also provides an introduction to the
computational aspects involved in calculating sampling distributions based
on the Markov models discussed in the first chapter. The third chapter, by
Larget, provides an introduction to the use of Markov chain Monte Carlo
(MCMC) methods in molecular evolution. Methods based on MCMC are re-
ceiving an increasing amount of attention and the third chapter provides an
introduction to this area. Chapter 4, by Bustamante, provides an introduc-
tion to population genetic theory with special emphasis on areas of relevance
for molecular evolution. The classical mathematical theory underlying studies
of molecular evolution is population genetic, and much research in molecular
evolution cannot be fully understood without an appreciation of population
genetic theory.

The second section in the book contains four chapters written by the au-
thors of some of the most important statistical computer packages used in
the study of molecular evolution. These chapters discuss practical statistical
approaches for analyzing DNA sequences and molecular data. Chapter 5, by
Bielawski and Yang, discusses methods for detecting natural Darwinian se-
lection using the program Paml. Paml is possibly the most commonly used
computer program for analyzing models of molecular evolution. Chapter 6, by
Pond and Muse, discusses a recently developed versatile computer package,
HyPhy, for analyzing models of molecular evolution. Readers interested in de-
veloping and analyzing new models of molecular evolution may want to take
advantage of this computer package. Chapter 7, by Huelsenbeck and Ronquist
discusses Bayesian inference in molecular evolution based on the popular com-
puter program MrBayes. The use of Bayesian methods in molecular evolution
is quite new but has already had a tremendous impact on the field, largely
due to the availability of MrBayes. Chapter 8 is written by the authors of the
computer program Multidivtime, Kishino and Thorne, and it discusses statis-
tical issues relating to the molecular clock. The molecular clock assumption
is that the rate of molecular change has been constant through evolutionary
time. This assumption has been used extensively in the literature to date
evolutionary events, but on numerous occasions is has also been shown to be
not invalid. The main focus of Chapter 8 is to discuss methods for dating
evolutionary events when the molecular clock assumption is not met.

The third section introduces other models of molecular evolution beyond
the basic nucleotide-based Markov chain models that were the main focus
of Chapter 1. Chapter 9, by Dimmic, discusses models of protein evolution.
Such models are important not only because they can be used for making
inferences regarding protein evolution and function but also because the sub-
stitution matrices estimated using these models are important in alignment
algorithms. The issue of estimating substitution matrices is revisited in Chap-
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ter 15, and the issue of alignment is dealt with in depth in Chapter 14. In
Chapter 10, Calabrese and Sainudiin discuss models of microsatellite evolu-
tion and statistical inferences based on these models. Microsatellites are small
repeated patterns of DNA and are used extensively in many genetic stud-
ies because they are highly variable. The models used to analyze this type
of data are fundamentally different from most other models used to analyze
DNA sequence data. Chapter 11, by Durrett, discusses methods and models
for analyzing whole-genome evolution incorporating rearrangements such as
inversions and translocations. Although these models are still in their infancy,
they have become highly relevant with the recent availability of large-scale ge-
nomic data. Chapter 12, by Siepel and Haussler, provides an introduction to
the use of Hidden Markov models (HMMSs) in the study of molecular evolution.
Such models are very important when certain properties of the evolutionary
process are thought to vary among positions along the DNA sequence. The
use of HMMs for statistical alignment is also discussed in Chapter 14.

The last section of the book contains five chapters that further detail
methods of inference in molecular evolution. In Chapter 13, McVean relates
the Markov models of molecular evolution discussed in most chapters of this
book to the population genetic models discussed in Chapter 4 in the con-
text of variation of nucleotide composition among species. The frequency of
different nucleotides is known to vary among species. This observation is in-
teresting from the perspective of evolutionary biology, and it is also highly
relevant to our choice of models for analyzing molecular evolution. In Chap-
ter 14 on statistical alignment, Lunter, Drummond, Mikls, and Hein explore
the relationship among evolutionary models, trees and the problem of align-
ing DNA or protein sequences. In Chapter 15, Yap and Speed discuss the
estimation of substitution matrices for use in alignment problems. The last
two chapters, Chapter 16 by Bollback and Chapter 17 by Shimodaira and
Hasegawa, discuss issues related to hypothesis testing and model choice in
molecular evolution. Bayesian methods have recently gained much popularity
in the area of molecular evolution, leading to a debate regarding choice of sta-
tistical methodology not dissimilar to the discussions that have occurred in
many other areas of applied statistics. Chapter 17 argues for the use of certain
frequentist procedures for the tree estimation problem and discusses problems
with Bayesian procedures, while other chapters of the book (e.g., Chapter 7)
provide more optimistic views of the use of Bayesian methods in molecular
evolution. Chapter 16 discusses the use of posterior predictive distributions
for statistical inferences, in addition to providing a review of recent methods
for estimating the history of mutations from DNA sequence data.

This book provides a comprehensive review of the many interesting statis-
tical problems arising in molecular evolution provided by leading researchers
in the field. It is intended for researchers and students from the statistical and
biological sciences alike. For the statistician, the book will provide an intro-
duction to an exciting area of application that often has been overlooked by
statisticians. For the biologist, the book provides an introduction to the theory
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underlying many of the methods they use in their daily research. Several of the
chapters, including the four introductory chapters, are also highly suitable as
texts for advanced undergraduate or graduate-level courses in molecular evo-
lution.

Copenhagen, April 2004 Rasmus Nielsen
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Introduction
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Markov Models in Molecular Evolution

Nicolas Galtier', Olivier Gascuel?, and Alain Jean-Marie?

1 Génome, Populations, Interactions, Adaptation, Université Montpellier,
Montpellier, France, galtier@univ-montp2.fr

2 Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier,
Université Montpellier, Montpellier, France, gascuel@lirmm.fr

3 Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier,
Université Montpellier, Montpellier, France, ajm@lirmm.fr

1.1 Introduction to Markov Models in Molecular
Evolution

Markov chains (or Markov processes) are memoryless stochastic processes.
Formally, a stochastic process is a collection X (¢) of random variables, where ¢
is typically time, and the Markovian property is defined by (for a discrete-time
process):

Pr(X(t+1) =41 | X)) =2, Xt —1) = 24—1,..., X (1) = 21, X(0) = x0)
= Pr(X(t—|— 1) = T¢+4+1 | X(t) = J,‘t)

for all states zg,x1,...,2T¢—1, T, Tep1 of the process and any time ¢. More
intuitively, this means that the future of the process (that is, the various
states possibly reached and their probabilities of occurrence) depends only
on the present state, not on past states (i.e. the pathway followed to reach
the current state). Markov processes can be in discrete time, when states are
assigned to successive “steps,” or “generations,” or in continuous time, when
the time to next event is an exponential random variable. The space of states
can be discrete (finite or infinite) or continuous. Branching processes (discrete
state, discrete time), random walks (continuous state, discrete time), Poisson
processes (discrete state, continuous time), and Brownian motion (continu-
ous state, continuous time) are well-known instances illustrating this variety
of stochastic processes [32]. Markov chains have been widely used in a vari-
ety of scientific fields, including physics, chemistry, networks, and, of course,
evolutionary biology.

The reasons why Markov chains are useful to model biological evolution
are obvious: evolution is very generally memoryless. Some examples of non-
Markovian evolutionary processes can be thought of, however. The future size
of a population of current size N, for instance, depends somewhat on past
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population sizes. This is because population history determines the genetic
diversity of the current population, which might itself influence the growth
rate. It should be noted, however, that the joint evolutionary process of pop-
ulation size and population genetic diversity is Markovian: the future of the
population depends only on current size and genetic resources. The poten-
tially non-Markovian nature of the size process therefore appears to be due
to an incomplete representation of the system rather than true evolutionary
memory.

Markov models are routinely used in several domains of evolutionary biol-
ogy. We have already introduced population dynamics (that is, the evolution
of census population size), a field in which stochastic processes are central.
Branching processes, for example, are used for estimating demographic para-
meters (birth rate, mortality) and extinction risks, with applications in species
management and conservation [14]. In the case of structured populations, in
which individuals are assigned to classes (e.g. age classes) and can switch be-
tween classes, Markov processes are used to predict the proportion of each
class at equilibrium [2]. Markov chains are also widely used for representing
the evolution of quantitative traits (e.g. morphology, behavior, growth rate),
modeled as Brownian motion when neutral (e.g. [17]) or using more complex
continuous-time Markov chains when selected (e.g. [24]). The evolution of ge-
nomic data is also typically modeled as Markov chains, as we now discuss in
more detail.

Genes and genomes are made with DNA, a polymer of four distinct
monomers called adenine (A), cytosine (C), guanine (G), and thymine (T).
DNA sequences are therefore naturally represented as words in the {A,C,G,T}
alphabet, where letters of the alphabet are called “nucleotides” or “bases.”
DNA sequences evolve according to a two-level process: sequence transmission
and sequence change. Genes are transmitted from parents to offspring (at a
short timescale) or from ancestral to descendant species (at a larger timescale),
so that the history of a gene will typically be represented by a tree, called a ge-
nealogy or phylogeny. A gene is lost if not transmitted, resulting in the extinc-
tion of one of the evolving lineages. This is called a birth-death process. A gene,
when transmitted, can undergo a change of its DNA sequence. Many kinds of
changes have been reported, including base replacement, insertion, deletion,
inversion, tandem duplication, translocation, recombination, and gene con-
version. (The last two events involve two sequences.) The process of sequence
change is superimposed on the process of gene transmission: changes occur
along the branches of an underlying genealogy.

A model that would aim at representing the way sequences actually evolve
should therefore incorporate both sequence reproduction and sequence change.
This is achieved by the coalescent model of population genetics, in which the
genealogy of a sample of genes is considered as a random tree whose distri-
bution and characteristics are determined by certain parameters of interest
(e.g. population history). The pattern of sequence variability in the sample is
used to infer the plausible shapes (topology, branch lengths) of the underlying
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unknown genealogy, and assess the likelihood of various hypotheses about the
birth-death process of gene transmission. This is usually done by assuming
that the genealogy is independent of sequence changes, i.e., that the probabil-
ity of gene transmission is the same for any state of the sequence space, (the
neutrality assumption). See [26] for a recent review of the coalescent theory.

Objectives and methods are somewhat different when sequences from dis-
tinct species, rather than from individuals of a single species, are sampled. In
this case, the underlying phylogenetic tree can be known, or can be what we
want to reconstruct. It is generally taken as a parameter or a known quantity,
not a realization of a certain random process. As far as sequence changes are
concerned, most models for between-species data focus on base replacement,
the prevalent process in the long-term evolution of coding sequences. Under
these assumptions, the evolution of a DNA sequence of length n is represented
by n Markov processes running along the branches of a common tree. Each of
these processes takes values on &€ ={A,C,G,T}, the so-called state space. They
will be considered as continuous-time Markov chains. We now recall some of
the major mathematical properties of these models in relationship with the
underlying biological assumptions. Then we examine popular Markov models
of sequence evolution aimed at representing the specificities of sequence evo-
lutionary processes. Finally, we review and discuss the various uses of Markov
chains in phylogenetic analyses.

1.2 Modeling DNA Sequence Evolution: Mathematical
Background

1.2.1 Continuous-Time Transition Rates

Consider a DNA sequence of fixed length n evolving in time by the process of
base replacement. Assume that the processes followed by the n sites (positions)
are Markovian, independent, identically distributed, and constant in time (we
shall discuss these assumptions later). Let

F(t) = t(fA(t)ﬂ fC(t)ﬂ fg(t), fT(t))

be the column vector of the probabilities of states A, C, G, and T, respectively,
for a certain site at time ¢. Let 15, (y # @) be the transition rate from state
x € £ to state y € £, and let p, = Zy;éz Hay- The evolutionary dynamics is
described by the differential equations

Fa(t+dt) = fa(t) = fa(t) padt + Y fo(t) poa dt,
T#A

fo(t+dt) = fo(t) = fo(t) poedt+ > folt) pac dt,
z#C
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fa(t+dt) = fo(t) = fa(t) nadt + Y folt) pac dt,
x#G

Frt+dt) = fr(t) — fr(t) prdt + > fo(t) por dt,
z#£T

where the summations are over £.

The first of the four equations above states that the frequency of A at time
t + dt equals the frequency of A at time ¢ minus the frequency of lost A’s,
plus the frequency of newly arisen A’s. This set of equations has a compact
matrical form

F(t + dt) = F(t) + MF(t)dt

o dF(t)
S =ME(), (1.1)

where M is the 4 x 4 matrix defined as
—HA HCcA HGA HTA
HACc —HC HGC KTC

rAG Hcg —MHG HTG
HAT HCT MHGT —HT

M is called the rate matrix, or generator, of the process. It is such that column
entries sum to zero. Entries of M are expressed in (time unit)~!. They are
homogeneous to the rate of a Poisson process; jt,ydt tends to the probability
of being in state y at time ¢ + dt given state x at time t as dt tends to zero.
The time to next change, given current state x, is exponentially distributed
with rate u,. Given that the process leaves state z, it will enter state y # x
with probability fig, /e

1.2.2 Stationary Distribution

If all pgy rates are positive, so that all states “communicate”, then the Markov
chain has a stationary distribution {m,,x € £}: an equilibrium (or steady
state) is reached when ¢ tends to infinity, at which any state z has a nonzero
probability of occurrence, m,, that does not depend on the initial state of the
process. Such a Markov chain is called ergodic . Stationary frequency m, is the
expected proportion of time spent in state x after the Markov process has run
infinitely long. In the case of DNA, under the assumption of a common process
for every site, the m,’s correspond to the equilibrium base composition (that
is, the proportions of A, C, G, and T) of the evolving sequence. A Markov
process is said to be stationary when its current distribution is the stationary
distribution, (i.e. when F(t) = IT). By definition, the stationary distribution

is such that JII
— = MII =0,
dt

where the first equality follows from equation (1.1). This implies that IT is an
eigenvector of M for eigenvalue zero.
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1.2.3 Time Reversibility

A stationary Markov process is said to be time-reversible if, for every pair
(z,y) of states, we have

Ty oy = Tylyz (1.2)

Reversibility means that in steady state the amount of change from state
x to state y is equal to amount of change from state y to state = (although the
two states need not to be equally frequent). Not every stationary process is
reversible. Reversibility, however, is a convenient, reasonable assumption made
by virtually every model of DNA sequence evolution. Under the reversibility
assumption, transition rates ji,, can be expressed as:

Hay = SzyTy (1.3)

where 55, = sy, is a symmetric term sometimes called “exchangeability” be-
tween z and y. The twelve nondiagonal entries of rate matrix M can therefore
be described by just nine independent parameters under the assumption of
reversibility, namely six exchangeability terms s, and three stationary fre-
quencies 7, (remember that the 7,’s have to sum to one).

1.2.4 Calculating Transition Probabilities

The piece of theory above has to do with the instantaneous dynamics
(equation (1.1)) and the long-run behavior (stationarity, reversibility) of a
continuous-time Markov process. In sequence data analysis, however, we will
typically compare sequences that have diverged during a finite amount of
time. To get some insight about sequence evolutionary processes from Markov
models, we need to address the transient behavior of Markov chains. This is
achieved by solving differential equation (1.1):

F(t) = eM'F(0). (1.4)

Equation (1.4) relates the distribution of the process at time ¢ to its initial
distribution F(0). Let P(t) = eM!. Entry p,,(t) of P(¢) is the probability of
state y after evolution according to process M during time ¢ given initial state
x. The P matrix is defined as the exponential of matrix Mt:

oo

P(t) =M = "(Mt)'/i!

=0

There are numerous ways to calculate the exponential of a matrix [25].
In the case of DNA sequence Markov models, and since we want to calculate
the puy(t)’'s for many ¢t values but constant M (see below), the appropriate
calculation involves diagonalising M. If M = QDQ ! with D diagonal then:
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P(t) — Mt _ e(QDt(271

(QDIQ” /i
Q(D1)'Q™/i!

=Q (Z(Dt)"/i!) Q!

i=0

¢ 10 °

@
I
=)

- QPqQ

which is easily calculated since the exponential of a diagonal matrix is obtained
by replacing its diagonal terms by their exponentials.

1.2.5 Trees and Likelihood

Up to now, we have considered the evolution of a single sequence in a one-
dimensional time space. But biological sequences reproduce and die, as indi-
cated above, so that the process of sequence change should be regarded as
running along the branches of a binary rooted tree, called phylogeny. The
generalization is obtained simply by stating that when the process reaches a
node of the tree, the current state is duplicated, and two independent processes
restart along the two child branches. The generalized process models the evo-
lution of a set of DNA sequences sharing a common ancestor at the root of the
tree. Such a model has three kinds of parameters, namely the tree topology,
branch lengths (that is, the amount of time during which the process runs in
each branch), and entries of the rate matrix.

Molecular phylogeny essentially aims at estimating these parameters from
a data set of extant homologous sequences. This is typically achieved using
the likelihood function. The likelihood L of a certain set of parameter values
f is defined as the probability of the data Y conditional on these parameter
values:

L(6) = Pr(Y | 6). (1.5)

In the case of DNA sequence data, Y corresponds to a set of (aligned)
DNA sequences, each of length n, associated to the tips of the tree. Let Y;
(1 <4 < n) be the ith site of Y, defined as the set of bases at position ¢ in the
various sequences of the data set (ith column of the alignment). Each Y; is the
outcome of a distinct Markov process. Under the assumption of independent
sites, we have

L(O) = Pr(Y | 0) = Hmyw (1.6)

Now the probability of a site Y; given the rate matrix, rooted tree topology,
and branch lengths can be calculated recursively, as shown by Felsenstein [5].
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Let k be an internal node of the tree, and let L¥(z)(z € £) be the partial
conditional likelihood defined as

LE(x) = Pr(Y} | 0,k = ),

where Y* is the restriction of site Y; to the sequences associated to tips de-
scending from node k and where k; = x means that the ancestral state for site
i at node k was z. L¥(z) is the likelihood at site i for the subtree underlying
node k conditional on state x at k. The likelihood at site ¢ can be expressed

r(Y; | 0) = Pr(r; = x)Lj (), (1.7)

zel

where 7 is the root node. The recurrence on L¥(x) is

= Py (LT (1) Y Pas (12) L (92), (1.8)

y1€€ Yy2€E

where k1 and ks are the two child nodes to internal node k, and where t; and ¢,
are the lengths of the (k, k1) and (k, k2) branches, respectively. Equation (1.8)
results from the independence of the processes in the two subtrees underlying
node k. This equation holds if k is an internal node. The recurrence closes at
leaves (terminal nodes) of the tree. Let [ be a leaf

Li(ﬂc)Z{(l) 1fli57;

otherwise,

where the state at node [ is determined by the base observed at position 7 in
the corresponding sequence. This calculation is achieved in a time linear in
the number of sequences and in the number of sites. Usually, the logarithm
of the likelihood is computed rather than the likelihood itself. The product in
equation (1.6) becomes a summation if the log-likelihood is computed.

Note that equation (1.7) requires knowledge of the base composition of the
ancestral sequence, (i.e., the probabilities of states A, C, G, and T at the root
node). Under the stationarity assumption, these probabilities correspond to
the stationary distribution of the process. The calculation above was defined
on a rooted tree. For a reversible process, however, the location of the root
does not matter: the likelihood value is unchanged whatever the position of
the root [5].

The likelihood function is used in the first place for estimation purposes.
The parameters of the model (tree, branch lengths, and rate matrix) can be es-
timated jointly by the maximum-likelihood method: the maximum-likelihood
estimator is defined as the parameter value § that maximizes L(6). Alter-
natively, the likelihood function can be used in the Bayesian framework to
calculate the posterior probabilities of parameters or other unknown quanti-
ties (see Chapters 3 and 7). Likelihood is also useful for comparing alternative
models and testing hypotheses (see section 1.4). See [4] for an introduction to
the likelihood theory and Chapter 2 of the present volume for applications in
molecular evolution.
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1.3 Popular Markov Models of Sequence Evolution

Many different Markov models of sequence evolution embedded in the math-
ematical background above have been proposed in the literature and applied
to sequence data. The reason for this diversity is that genomic evolutionary
processes vary between genomes and between regions of a genome. Different
evolutionary forces apply to coding and noncoding regions or to the mito-
chondrial and nuclear genomes, for example. Models essentially differ in the
parametrization of the rate matrix and in the modeling of rate variations.

1.3.1 Specifying the Rate Matrix

In its more general form, the rate matrix M is described by 12 parameters
2y corresponding to the 12 rates of base change. From a statistical point
of view, 12 parameters can be too many. More economical parametrizations
have been proposed. Inversely, some of the assumptions made by standard
models of sequence evolution (e.g. stationarity, independent sites) were found
inappropriate for specific data sets, leading to the development of more general
models. So far, we have considered evolution at the DNA level. The evolution
of protein-coding sequences, however, can also be modeled at the protein or
codon level, requiring specific state spaces and specific rate matrices. We now
review these various topics.

DNA models

The first proposed Markov model of DNA sequence evolution, called the
Jukes-Cantor model, assumed a constant rate for every possible change [21]:

JC model (one parameter): foy =p  Y(z,y) € EL (1.9)

This is a strong assumption that turned out to fit virtually no sequence
data set. A very general feature of DNA sequence evolutionary processes is
that transitions are more frequent than transversions. Transitions are changes
within the purine {A,G} or pyrimidine {C,T} state subsets, while transver-
sions are changes from purine to pyrimidine or from pyrimidine to purine.
There are four transitions and eight transversions. The latter are more fre-
quent for biochemical reasons: pyrimidines (respectively, purines) share a sim-
ilar molecular structure. A change from C to T, for example, only requires
one methylation and one deamination, while switching from, say, C to A is
a much more complex chemical pathway. Kimura [22] amended Jukes and
Cantor’s model to distinguish these two kinds of changes:

«  for transitions
K2 model (two parameters): Py = { 3 for transversions
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Note that the use of the word transition to define a subset of the possible
changes of state is awkward since transition is usually defined as a synonym
state change (as it is in Section 1.2 of this chapter). This confusion results
from the collision between two bodies of literature (molecular evolution and
stochastic processes) within which the term has an unambiguous meaning.
In this chapter, italicized transition will refer to the specific category of base
changes defined above, while regular transition will be used in its generic
sense.

The JC and K2 models both have a balanced stationary distribution: pro-
portion 0.25 is expected for the four bases at equilibrium under these models.
But many DNA sequence data sets show unbalanced base composition, requir-
ing the introduction of additional parameters. Equation (1.3) suggests the use
of parameter 7, ’s, explicitly controlling the stationary distribution, as in the
HKY model [18]:

for ¢ 273
HKY model (five parameters): Uy = {a Ty 0T TTansiwons

Bm, for transversions.

It should be noted that there are good biological reasons for having the
proportions of C and G (respectively, A and T) in a genome equal. This comes
from the fact that the DNA molecule is double-stranded, and made only with
C:G and A:T pairs. If one assumes that the evolutionary processes followed
by the two strands are identical, then the rate of change from (to) C and from
(to) G (respectively, A and T) in one strand should be equal (because a G in
the plus strand must change as soon as a C in the minus strand changes [23]).
Very similar G and C contents (and A and T contents) are actually observed in
most genomic sequences [23]. This suggests adding the 7¢ = 7 and 74 = 77
assumptions to the HKY model, resulting in the so-called T92 model [34].
The T92 model has three parameters, namely «, 8, and 6 = 7o + 7¢.

The REV or GTR (general time-reversible) model was defined above when
introducing the concept of reversibility. It has nine parameters, namely six
exchangeability terms s,, and three stationary frequencies m,, (equation (1.3)).
The HKY model is a special case of the REV model in which the s,,’s are
constrained: transitions (respectively, transversions) have to share a common
5zy- The T92 model is a special case of HKY in which 7 = n¢c and 74 = mp =
0.5 —7mg. The K2 model is a special case of T92 in which 74 = 7¢ = g = 7.
The JC model is a special case of K2 in which @ = . All these models are
special cases of the most general, twelve-parameter model.

Amino acid models

The evolution of protein-coding genomic sequences can be considered at the
protein, rather than DNA, level. Proteins are made of 20 distinct amino acids,
so that the state space in protein models will have size 20, not 4. The mathe-
matical background introduced in the previous section is still valid apart from
this difference.
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The protein rate matrix has 380 nondiagonal entries (to be compared
with 12 in the DNA case), making the modeling effort more complex. Like
DNA models, most protein models assume reversibility. The 7,’s and s,,’s are
typically defined from the analysis of protein databases, resulting in generic
models of protein evolution subsequently applied to any data set. There is,
indeed, little hope to estimate the many entries of the protein rate matrix
from a single data set. The so-called PAM, JTT, and WAG models are such
database-defined models of protein evolution. See Chapter 9 of this volume
for a detailed description of protein models.

Codon models

Protein-coding genes can also be analyzed at the codon level. A codon is a
triplet of bases encoding for a certain amino acid. The information contained
in codon sequences exceeds that of protein sequences since a given amino acid
can be encoded by more than one codon. There are 61 sense codons, classi-
fied in 20 groups of synonymous codons. Every codon of a group encodes the
same amino acid. The group size ranges from one to six. Codon changes within
groups are called synonymous. Such changes do not modify the sequence of the
encoded protein. They have no (or weak) functional consequences. Between-
group codon changes are called nonsynonymous. Nonsynonymous changes can
affect the function of proteins, and the fitness of organisms: their fate is influ-
enced by natural selection.

The relative rate of synonymous and nonsynonymous change occurring in
a gene therefore provides some information about the selective forces apply-
ing to that gene. Synonymous changes are essentially neutral (or under weak
selection) and accumulate at a rate equal (close) to the mutation rate. Non-
synonymous changes, in contrast, can be strongly selected, either negatively
(if deleterious) or positively (if advantageous). Most genes are undergoing
negative (i.e. purifying) selection, resulting in a synonymous/nonsynonymous
rate ratio lower than one. Neutrally evolving genes (e.g. pseudogenes) have
roughly equal synonymous and nonsynonymous rates. Genes showing a higher
nonsynonymous than synonymous evolutionary rate are of biological interest:
this pattern suggests that they have been recurrently adapting to some envi-
ronmental change.

Goldman and Yang [13] introduced the first codon model in the early
1990s, and all the subsequent developments in the field were based on this
contribution. This model has 63 parameters, namely 60 stationary frequencies
Teyz, Where (xyz) is a codon, one transition rate «, one transversion rate [3,
and the nonsynonymous/synonymous ratio, w. Entries of the 61 x 61 codon
rate matrix are defined by the GY codon model (63 parameters):
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O Ty yoys for synonymous transitions

B Tyiyays for synonymous transversions

H(z1zom = ..
(@12233) (y1.3233) W Ty, yays  fOr MONSynonymous transitions

W B Ty yays fOr nonsynonymous transversions.

The formula above applies if the two codons (z1z2x3) and (y1y2ys) differ by
exactly one base. The instantaneous rate of codon changes involving more
than one base change is assumed to be zero. The probability of occurrence of
such events after a finite amount of time is nonzero, however.

Of the 63 parameters of the GY model, the 60 codon equilibrium frequen-
cies are usually not estimated by the maximum-likelihood method. Rather,
they are estimated a priori as the observed frequency of every codon in the
data set, or from the observed frequencies of bases at each codon position. In
the latter case, the frequency 7., of codon (zyz) is estimated by the myw 73
product, where 7%, is the observed frequency of base w at codon position i in
the data set. This greatly simplifies the likelihood maximization. This trick is

also used for protein and DNA models.

Nonhomogeneous models

One fundamental assumption of the Markov models above is stationarity:
the base (amino acid, codon) composition is assumed to be at equilibrium
throughout the tree. This implies that the base composition is the same in
every sequence of the data set. Some data sets, however, depart from this
assumption. Observing significantly different base compositions between se-
quences implies that distinct evolutionary processes, with distinct stationary
distributions, have been followed in distinct lineages. Simulation studies have
shown that neglecting base composition variation between sequences when
effective leads to biased phylogeny estimates in which sequences of similar
base composition tend to be grouped irrespective of their true phylogenetic
relationship [10].

To accommodate this peculiarity of some data sets, Galtier and Gouy de-
veloped a nonhomogeneous, nonstationary model of DNA sequence evolution
[11]. Under this model, every branch of the tree follows a T92 process (see
above). The « and (8 parameters are shared by all branches (common transi-
tion /transversion ratio), but the 6 parameter is branch-specific: each branch
has its own stationary G+C content. This accounts for variable G+C contents
between sequences at the cost of a large increase in the number of parame-
ters (one @ per branch versus one 6 for the whole tree in the T92 model).
The model is called nonhomogeneous because the rate matrix is not constant
in time, nor between lineages. Yang and Roberts had previously proposed a
nonhomogeneous version of the HKY model [43], but their implementation
appeared to be limited to a small number of sequences.

A remarkable property of nonhomogeneous, nonstationary models is that
ancestral base composition is a free parameter, whereas it is deducible from
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the rate matrix under the stationarity assumption. Past base compositions can
therefore be estimated under these models. Computer simulations showed that
reliable estimates of ancestral base composition can be obtained from data sets
of reasonable size [11]. Also note that the likelihood becomes dependent on
the location of the root under such nonstationary, nonreversible processes.

Nonindependence between sites

The vast majority of Markov models for sequence evolution make the as-
sumption of independence between sites. This has the desirable property of
validating equation (1.6), greatly simplifying the likelihood calculation. This
assumption, however, is quite probably violated by most coding sequence data
sets. This is because sites in a protein (or an RNA) interact to determine
the selected tridimensional structure (and function) of the molecule, and the
evolutionary processes of interacting sites are not independent. Two major
attempts were made to relax the independence assumption.

The first relies on the (plausible) idea that most molecular interactions
involve neighbor (or nearly neighbor) amino acids (bases) in a protein (DNA,
RNA) sequence. Yang, followed by Felsenstein and Churchill, introduced an
autocorrelation parameter measuring how much the evolutionary rate of a
site is correlated with that of neighboring sites ([41], [6]). Goldman and col-
leagues extended this view for the specific case of proteins. They propose that
sites belong to a small number of structural categories (helices, sheets, loops,
turns), neighboring sites having a higher probability than random sites to be
in the same category. Each site category has a distinct rate matrix. The as-
signment of sites to categories is not known but modeled by a hidden Markov
chain running along the sequence ([35], [31]). The likelihood is calculated by
conditioning on possible assignments of sites to categories, the probability of
certain assignment being controlled by the hidden Markov chain. Evolutionary
modes, not rates, are correlated between neighbor sites in this model.

Pollock and co-workers tackled the problem differently, without a relation-
ship to the site neighborhood. Consider the joint evolutionary process of any
two sites of a protein. The state space for the joint process is £ x £. Under
the assumption of independent sites, the rate matrix for the joint process is
deductible from that of the single-site process (assume reversibility),

Paa/yz' = Moy = SayTy,
— !/
l,[,xl‘/,zy/ = Mz/y/ = sx’y’ﬂ-ya (110)

ﬂx;c’,yy’ = 07

for x # y and 2’ # y', where [iz, 4, is the rate of change from z to y at
site 1 and from z’ to y' at site 2 (in £ x &), and where fizy, Szy, and 7w, are
the above-defined transition terms for the single-site process (in £). Modeling
nonindependence between the two sites involves departing from equations
(1.10). This is naturally achieved by amending stationary frequencies. It is
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easy to show that the stationary frequency 7., of state (z,2’) € £ is equal
to the w7, product under the independence assumption. Nonindependence
can be introduced by rewriting the equation above as:

Pz’ yz' = SeyTyz!,
lawm’,ajy’ = S:E’y’ﬁ-:vyH (111)

P’y = 0,

where 7,,/’s are free parameters (possibly some function of 7,’s). This for-
malization accounts for the existence of frequent and infrequent combinations
of states between the two sites, perhaps distinct from the product of mar-
ginal site-specific frequencies. Pollock and co-workers applied this idea (first
introduced by Pagel for quantitative characters [27]) in a simplified, two-state
model of protein evolution, with the aim of detecting pairs of co-evolving
amino acid sites in vertebrate myoglobin [29]. Duret and Galtier somewhat
combined the two approaches to model the evolution of (overlapping) pairs of
successive bases in the human genome [3].

1.3.2 Modeling Variations of Evolutionary Rate

Molecular evolutionary rates are of primary interest because they reflect to
some extent the way natural selection applies to molecules. If one assumes that
the mutation rate (that is, the rate of random occurrence of changes in indi-
viduals of a population) is more or less constant—a reasonable assumption for
many data sets—then only natural selection (that is, the force determining the
chances of eventual fixation of mutations in the population) can explain differ-
ences in evolutionary rates between lineages, molecules, or sites. Functionally
important sequences will evolve at a slower rate (because most changes are
deleterious and therefore eliminated by natural selection) than nonfunctional
DNA. This idea was introduced above (codon models) when defining the syn-
onymous and nonsynonymous evolutionary rates of protein-coding sequences.

Rate variation between lineages

Consider a homogeneous Markov process with constant transition rate p (as-
sume a JC model for simplicity) running along the branches of a phyloge-
netic tree whose lengths ¢; are measured in some time unit. Present-day se-
quences (leaves) are equidistant from the ancestral sequence (root)—such trees
are called ultrametric. A sequence that would evolve this way is said to be
consistent with the so-called molecular clock hypothesis [46]. It is a fact that
many data sets depart from the molecular clock assumption, sometimes spec-
tacularly (e.g. [28]): some lineages evolve faster than others, possibly because
the selective pressure applied to the sequence varies in time and between lin-
eages.
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A simple way to account for a departure from the clock is to fully relax
the homogeneity assumption by letting each branch of the tree have its own
freely varying transition rate p (again in the JC case). Note that an equivalent
model would be reached by assuming a constant p but unconstrained branch
lengths ¢;. The relevant recoverable parameters are the p t; products (i.e.
the amount of evolution between connected nodes). Allowing unconstrained
branch lengths is the most flexible way to represent departure from the clock.
It is the default option of most phylogenetic methods and programs.

Alternatively, one might want to model the way the transition rate varies
over time, maybe with the aim of reconstructing past events of rate change.
This can be achieved by assuming that transition rate p is itself evolving
according to some stochastic process upon which the process of sequence evo-
lution is dependent ([36], [20]). Rate changes are assumed to occur at nodes
of the tree in [36], continuously in [20]. These models are less parameter-rich
than the standard, one-parameter-per-branch model. Full-likelihood calcula-
tion, however, is computationally difficult under these models because sites
are correlated: a putative event of rate change would affect all sites simulta-
neously, making equation (1.6) incorrect. These models have been used in the
Bayesian framework, where the integration over all possible scenarios of rate
change is achieved through Monte Carlo Markov chains.

Rate variation between sites

The distinct sites of a molecule do not evolve at the same rate: functional sites
are mostly conserved, showing little or no variation between sequences, while
unimportant sites are free to evolve. This is a strong determinant of coding
sequence variation patterns, with important implications with respect to the
molecular structure/function link.

Yang first introduced likelihood calculation under the hypothesis of vari-
able rates ([39], [40]). He proposed to model the variation of evolutionary rates
across sites by a Gamma (rather than constant) distribution. The likelihood
for site Y; is therefore integrated over all possible rates,

Pr(Y; [ 6) = [ fr(u) Pr(Y | (4 = ) du, (1.12)

where fr is the probability density of the Gamma distribution and where
Pr(Y; | 7(Y;) = ) is the likelihood for site ¥; conditional on rate u for this site.
The latter term is easily calculated by applying recurrence (1.8) after having
multiplied branch lengths by u. The variance (and shape) of the Gamma
distribution is determined by a parameter that can be estimated from the
data. The continuous Gamma distribution is usually discretized to avoid the
integration of equation (1.12). Equation (1.12) becomes

g

r(Y; | 6) = Z ) Pr(Y; | 7(Y;) = 74,0), (1.13)
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where ¢ is the assumed number of rate classes and Pr(j) the probability
of class j (1/g for an equiprobable discretization). The complexity of the
likelihood calculation under the discrete-Gamma model of rate variation is
therefore g times the complexity of the equal-rate calculation. Waddell et al.
explored other distributions for variable rates among sites [38]. In the case of
codon models, Yang and co-workers used many different distributions to model
the variation between sites in w, the ratio of nonsynonymous to synonymous
substitution rates [42].

Note that sites are not assigned to rate classes in this calculation. Rather,
all possible assignments are considered and the conditional likelihoods aver-
aged. Sites can be assigned to rate classes posterior to the calculation. The
posterior probability of class j for site Y; can be defined as

Pr(j) Pr(Y; | r(Y:) = 1)
Pr(Y,)

Pr(Y;in class j) = ; (1.14)

where the calculation is achieved using the maximum-likelihood estimates of
parameters (tree, branch lengths, rate matrix). This equation does not account

for the uncertainty on unknown parameters, an approximate procedure called
“empirical Bayesian” [45].

“Covarion” models

In models of rate variation between sites, the (relative) rate of a site is constant
in time: a slow site is slow in every lineage of the tree. There are biological
reasons, however, why the specific rate of a site could vary. The rate of a
site essentially reflects its level of structural constraint: sites important for
the tridimensional structure (and therefore the function) of a protein cannot
change much. But tridimensional structures evolve in the long run. The level
of constraint applying to a certain site might therefore vary in time.

The notion that the evolutionary rate of a site can evolve was first in-
troduced by Fitch [8] and subsequently modeled by Tuffley and Steel [37]
and Galtier [9]. This process has been called covarion (for COncomitantly
VARIable codON [8]), heterotachy, or site-specific rate variation. The covar-
ion model is close, in spirit, to models of the relaxed molecular clock [20].
The rate of a site evolves in time according to some continuous-time process.
The process of sequence change is defined conditionally on the outcome of
the rate process. In the covarion model, each site runs its own specific rate
process, so that not all sites are simultaneously rapid or slow, in contrast with
the relaxed-clock model. The covarion model is an instance of the so-called
Markov-modulated Markov chains [7].

Likelihood calculation is tractable under the covarion model. Sites are inde-
pendent, allowing the use of equation (1.6). Recursion (1.8) must be modified
to account for the underlying rate process. This is achieved by considering the
compound process as a single process taking values on £ x G, where G is the
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set of possible rates. The rate matrix of this process is deductible from those
of the rate and base (amino acid, codon) processes (see [9] for details).

It is worth noting that Fitch’s initial definition of covarion implied both
the notions of both site-specific rate change and nonindependent sites. In
Fitch’s model, only a subset of sites can evolve (covary) during a given period
of time, but this set varies in time, the reasons for this variation being in-
teractions between sites. Modern literature has separated “covariation” (that
is, nonindependent sites) and site-specific rate variation. Unfortunately, the
word “covarion” has been misleadingly kept as a synonym for “site-specific
rate variation” so that the modern meaning of covarion has nothing to do
with covariation.

1.4 Use of Markov Models for Phylogenetic Analyses

The many models presented above can be used and combined to represent the
peculiarities of various genomic sequence data sets. This is done in the first
place with the goal of reconstructing the past: testing evolutionary hypotheses,
and estimating evolutionary parameters. This requires fitting the model to
data, typically in the maximume-likelihood framework. Another use of Markov
models in molecular evolution is simulation, which we now examine.

1.4.1 Simulations

Simulating data means running a statistical model on a computer using ar-
bitrary (controlled) parameter values and storing the outcome. In the case
of Markov models for sequence evolution, simulations are typically achieved
by (i) randomly drawing an ancestral sequence at the root of a given tree
(typically from the stationary distribution of the simulated process) and (ii)
making this sequence evolve by recursively drawing states at child nodes from
the pgy(t;) probability distribution, where the recursion stops at leaves. The
number and length of sequences, the tree, branch lengths, and process have to
be chosen prior to simulation either arbitrarily or randomly drawing in some
distribution on the tree space.

Simulations have been used during the 1980s and 1990s to compare the
efficiency of competing tree-building methods: simulate data sets using a cer-
tain model tree 7, and ask how often methods will reconstruct 7 from the
simulated data. Likelihood-based methods are now consensually considered as
optimal. Some of their statistical properties (consistency, accuracy) are known
theoretically or can be derived analytically. Simulations can still be useful to
compare algorithms of likelihood maximization [16] or to assess the robust-
ness of phylogenetic estimates: simulate data under model M; and estimate
parameters using model My to check how problematic it is to use a wrong
model.
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Simulations are also used to calculate confidence intervals around parame-
ter estimates. The procedure is as follows: (i) estimate parameters of a model
from the data by the maximum-likelihood method, (ii) simulate many data
sets using parameter values equal to the ML estimates, (iii) for each simulated
data set, reestimate parameters by ML, and (iv) seek an interval including
95% (or 99%) of these estimates. This is the very definition of a confidence
interval; simulation is often the only way to calculate confidence intervals in
phylogeny. The technique above is often called “parametric bootstrap” [19].

1.4.2 Hypothesis Testing

The likelihood framework provides tools for hypothesis testing, the so-called
likelihood-ratio test (LRT). Let My (po parameters) and My (p1 > po pa-
rameters) be two models, and assume that M, is nested into (i.e., it is a
special case of ) M. For example, M could be the JC model and M; the K2
model. Now fit the two models to some data, call Ly and L; the corresponding
maximum likelihoods, and define the LR statistics as

LR=21In (Ll) (1.15)
Lo

It can be shown that this statistic is asymptotically (that is, for an infinite
amount of data) x? distributed with p; — py degrees of freedom under the
null Mg hypothesis. L; must be higher than (or equal to) Lo since Mg is a
special case of M. The LRT quantifies the expected increase in log-likelihood
obtained by switching from M, to M; if data had been generated under
M. A data set showing an excessive increase in log-likelihood would lead to
rejection of M.

LRT between Markov models has been used for testing various evolution-
ary hypotheses. The molecular clock hypothesis, for instance, can be tested by
comparing clock and relaxed-clock models. This is important for the purpose
of dating events of speciation (i.e., internal nodes of the tree): divergence time
is proportional to sequence divergence if and only if the molecular clock hy-
pothesis holds (see below). LRT has also been used to test selective hypotheses
from codon sequence data. Selective scenarios are modeled by making assump-
tions about the distribution of w (nonsynonymous/synonymous rate ratio)
across sites [42]. The neutral model, for example, assumes a constant w = 1
for all sites. A model involving purifying selection would let one class of sites
have w < 1. Recurrent adaptation at some sites is modeled by incorporating
an additional class with w > 1. LRT is used to compare these competing mod-
els, usually with the goal of detecting adaptation (that is, having a significant
increase in log-likelihood when adding a class of sites with w > 1).

LRT can also be used at the level of the site. Pupko and Galtier, for ex-
ample, proposed an LRT for the detection of covarion-like sites [30] (i.e., sites
having a high substitution rate in certain subtrees but a low rate in the re-
maining part of the tree). This approach is useful to detect functional shifts in



20 N. Galtier, O. Gascuel, and A. Jean-Marie

the history of a molecule, as illustrated by the analysis of primate mitochondr-
ial proteins [30]. Such tests are typically applied to every site of an alignment
so that the statistical problem of multiple testing must be addressed.

1.4.3 Parameter Estimation

If you believe in some model of sequence evolution, you might want to esti-
mate parameters of this model from the data (i.e., recovering the past from
the present). This is achieved by the maximum-likelihood (ML) method: the
ML estimate (MLE) of the parameters is the set of parameter values that
maximizes the likelihood; that is, the probability of the data. Parameters
of interest include the tree topology, branch lengths, parameters of the rate
matrix, and ancestral sequences and base compositions. This is the most vo-
luminous body of literature in the field. Fast and accurate methods are now
available for parameter estimation (e.g., [16]).

Reconstructing trees is a goal pursued by most users of Markov model-
based phylogenetic methods. Trees are useful because they are the basis of
systematics, the field of biology aiming at understanding biological diversity
and its origins. Branch lengths are also of interest, either for dating purposes
and for subsequent links between molecular phylogenies and paleontology or
for understanding the dynamics of molecular evolutionary rates (how they
change and why). With regard to the rate matrix, some parameters are of little
interest (e.g., the transition/transversion ratio), but others have a clear bio-
logical meaning. The w parameter of codon models, for example, measures the
amount and nature of the selective pressure applying to sequences or codons
and is worth estimating (e.g., [44]). Nonstationary models allow estimation of
ancient base composition, as indicated above. For specific genes, base compo-
sition can be related to ecological features (e.g., growth temperature in bac-
teria), and Markov models can be used to infer life-history traits of ancestral
species [12]. Ancestral sequences can also be estimated from Markov models,
such as using the empirical Bayesian approach [43]. This lead two spectacular
studies in which the reconstructed ancestral proteins were synthesized in vitro
and their biochemical properties compared with that of extant proteins [1].

1.4.4 Model Choice

The question of which model to choose for a given data set is an important
one that we did not yet address. We have, however, introduced the LRT, a
technique for comparing nested models. LRT will favor complex model M;
over simpler model My if the increase in log-likelihood yielded by switching
from Mgy to Mj is higher than expected under M. The so-called Akaike
information criterion (AIC) is a related likelihood-based measure of model
appropriateness applicable for nonnested competing models. AIC is defined
as
AIC = —2In(L) + 2p,
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where L and p are the maximum likelihood and number of parameters of the
model considered. The model minimizing AIC will be considered the most
suitable. LRT and AIC are commonly used in current molecular evolution
literature when the problem of choosing a model occurs.

We would argue, however, that this usage of LRT or AIC is a bit too
systematic. Markov models of sequence evolution are built to address a va-
riety of biological questions, as we just discussed. It is unclear that, for a
given data set, these many purposes will require a common model. Of cen-
tral interest is the problem of model choice in molecular phylogeny. That a
certain model is favored by the AIC or LRT techniques does not guaran-
tee that it is optimal for the purpose of estimating the tree. AIC and LRT
favor models optimizing the balance between accuracy (fit) and number of
parameters, something not directly related to the desirable properties of an
estimator, namely small bias and small sampling variance. Empirical results
from distance-based tree-building methods suggest that using a model simpler
(i.e., less parameter-rich) than the true model can improve phylogenetic esti-
mates ([33], [15]). We hope that forthcoming work in this area will clarify the
relationship between the bias/variance and fit/parameter-richness balances
and maybe amend current recommendations about AIC/LRT-based model
choice in molecular phylogeny.

1.5 The Future of Markov Models for Sequence
Evolution

A considerable amount of work has been done on Markov models for sequence
evolution, from the theoretical basis to the use of highly specific models for
inference purposes. One may wonder whether this is a nearly closed body of
literature or whether important advances may be expected in the near future.
We would speculate that the answer is double-faced, again because of the
multiplicity of uses for Markov chains.

As far as the problem of tree reconstruction is concerned, we do not expect
major advances from the Markov chain literature in the future. Building new
models that would fit the data more accurately would not clearly lead to an
improvement of phylogenetic estimators, as discussed above. Perspectives in
this field have more to do with data management (e.g., dealing with conflicting
data sets, that is, detecting the existence of distinct trees for distinct genes)
than with improvements of models of sequence evolution, in our opinion.

Evolutionary genomics (that is, understanding the way genes and genomes
evolve) should, in contrast, benefit from further developments of Markov mod-
els. Models explicitly aiming at representing the various evolutionary forces
applying to genomic sequences, and especially natural selection, have just
started to be built. These include the various codon models, models for non-
independent sites, and the covarion model, for instance. Further refinements
of these models are to be expected, especially in the context of Monte Carlo
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Markov chain (MCMC) Bayesian analysis, a technique that overcomes many
computational limitations induced by complex models (see Chapter 3 of this
volume). Improving Markov models of sequence evolution should help in un-
derstanding the way genomes evolve and how their diversity originated—one
of the big current issues in biology.
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2.1 Introduction

This chapter is about the likelihood function in the context of molecular evo-
lution. We will introduce the concept of likelihood and try to illuminate the
flexibility of the likelihood approach in terms of modeling, inference, and test
statistics.

From its beginning, molecular evolution has dealt with the analysis of
data that are amenable to mathematical description and statistical testing.
Composed of building blocks representing a limited alphabet, molecular data
are—ideally—the product of comparatively simple recurring processes with pre-
dictable outcomes.

Zuckerkandl and Pauling [23] took advantage of this situation by propos-
ing one of the now classical null hypotheses in evolutionary biology. Their
molecular clock hypothesis states that the rate of change for a given protein
is more or less constant over time and in different evolutionary lineages. Upon
publication, this hypothesis created tumult among classical biologists since it
seemed to contradict the traditional view of evolution that some organisms
are evolved “further,” while others might represent relics. Zuckerkandl and
Pauling’s hypothesis, being based on an explicit model of protein substitu-
tion, however, presents the advantage that it can be tested and potentially
rejected. Moreover, the explicit model representing the hypothesis provides
the opportunity to estimate actual values for evolutionary rates and thus gain
further, more detailed information on the underlying processes.

Nowadays molecular evolution is a flourishing field of scientific research
that profits from the advances in molecular biology and statistics and last
but not least from the increasing power of modern computers, so that it is
impossible to cover all the areas where the likelihood function comes into
play. Thus, we will only be able to define the likelihood function and sketch
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upon some central ideas through examples. The fine details of the varying and
wide-ranging applications are left to subsequent chapters.

2.1.1 Terminology

To set the stage, we introduce some terminology that will be used throughout
this chapter. We observe individuals out of a population. Based on these ob-
servations, we ask what the characteristics of the whole population might be;
that is, we want to know the values of variables that describe its characteris-
tics (e. g., genetic composition, demography, historical events, and population
processes). Generally, mathematical models need to be employed to arrive at
values for the characteristics of interest. These models summarize background
information and describe defined interactions among several variables.

If we collected information on all individuals of a population, we would
obtain a census of the population. However, without such a drastic and often
impossible measure, the only chance to obtain information about the pop-
ulation is to draw a random sample and analyze the data contained in the
sample with regard to the variables that interest us. If the sample is repre-
sentative of the whole population, we can use it to infer the characteristics of
the original population. This we will do by specifying evolutionary models for
various questions of interest to a molecular biologist with some knowledge of
statistics.

2.2 The Likelihood

2.2.1 The Likelihood Function

Likelihood has become one of the central concepts in statistical inference [7].
It provides the means through which the information supplied by a sample
can be incorporated into the process of statistical inference; that is, in arriving
at a conclusion about characteristics of the underlying population.

A typical textbook introduces the likelihood as a function L of a hypothesis
H, given a set of observations O and assuming a specific interaction model
or set of model parameters. The likelihood L(H|O) is proportional to the
conditional probability P(O|H) of observing the data given that hypothesis
H applies. More formally,

L(H|O) = C - P(O|H), (2.1)

where C' denotes an arbitrary constant.

To be a bit more formal, we regard the observation O as the realization of
a random variable X = (X1, ..., X,,)T with an unknown probability distribu-
tion (with respect to an appropriate measure) that is defined by a probability
density function p(z) = px (z). Moreover, the unknown density is restricted to
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an appropriate family of distributions. We will consider densities that involve
a finite number of unknown parameters 8 = (6y,...,60;)". Finally, the para-
meter space defines the region of possible values of 8. The notation px(x, 8)
indicates the dependency of the density on 6. In other words, the model func-
tion, px (%, ), describes the model we have in mind. When studying the model
function, one may study the effect on the function on x for each fixed 0 (i.e, on
the probability density determined by ). On the other hand, we may switch
the viewpoint and study the model function as a function of @ for fixed x. For
an x actually observed, we obtain the likelihood function

L(6) = L(x|0) = px(x]6). (2.2)
Sometimes, we will also discuss the random variable
Lx(X|0) = px (X|6). (2.3)

The definitions above were given for arbitrary multidimensional random
variables. In most applications, we will treat the components X;, Xo,..., X,
of X as mutually independent and identically distributed with px (X|6). Then

L(X1,...,X,|0) = Hp(Xi | 6) (2.4)

defines the likelihood function of the sample of size n. In some applications, it
is convenient to study the natural logarithms of the likelihood function, which
will be denoted by

UXy,..., X,|0) = Zlog[p(xi 1 0)]. (2.5)

Example 2.1 Binomial Distributions

Somebody catches a fish from a pond and considers an experiment as success-
ful if a red individual is caught. The color of the fish is noted and the fish is
returned to the pond. Then X is a random variable assuming values “red,”
“not red” with a certain probability 6 € [0,1] (i.e., p(X = red|f) = 6 and
p(X = not red|d) = 1 — ). If n = 10 fish were caught and k were red, then
the likelihood function according to equation (2.4) is defined as

10

L(Xy,...,X10|0) = HP(Xi 1 0) (2.6)
i=1

_ (1;) 6k (1 — )10, 2.7)

the binomial distribution with parameter 6 and ten realizations, where (1,3

denotes a factor that depends on the realization of the data only. Figure 2.1
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Fig. 2.1. Plot of the binomial distribution showing the relationship between prob-
ability and likelihood. The thick line running from “east to west” represents the
continuous version of the binomial distribution with parameter 1/2. The line run-
ning from “south to north” displays the likelihood function when k& = 6 successful
experiments were observed.

displays this example, for all possible realizations of k. Figure 2.1 displays also
the dual way of looking at the model function p(X, €). The thick line running
from left to right represents the probability distribution for a fixed 6, whereas
the highlighted line running from front to back illustrates the probability of
observing k = 6 successful outcomes as a function of 6 (i.e., represents one
realization of L(X|6)).

2.2.2 Maximum Likelihood Estimation

One of the questions we want to address when dealing with likelihoods is the
construction of parameter estimates. That is, we think of estimates as some
plausible values 6. Once we observe some data as in Example 2.1, the likeli-
hood function depends only on 6. For any admissible value of 6, the likelihood
function gives the (a priori) probability of observing what has actually been
observed. This explains the name likelihood. Please notice that the likelihood
function L(0) is not a probability distribution, whereas all values of the likeli-
hood function are probabilities. This interpretation then leads to the concept
of mazimum likelihood estimate (MLE), where we select the value of 8 that
maximizes the likelihood function for a given realization x of the random
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variable X. More formally,
6™ = argmax{L(x|6)|6} (2.8)

is the MLE of the likelihood function.

The MLE ™ provides the best explanation for observing the data X given
the model. This does not mean that 8™ is the value of @ that maximizes the
probability as n increases. E. L. Lehmann and G. Casella showed that under
certain conditions for n independent observations drawn from p(X|6y), the
probability that

n n

[Tp(X:160) > [[p(Xi | 6)

i=1 i=1
approaches 1 as the sample size n tends to infinity, where 6 is the true value
of the parameter. Since, by definition,

L(6™) > L(x]6),

for all 0, the combination of both inequalities suggests that in a large sample
the MLE is close to the true value. This statement is made more precise by
the definition of consistency, which states that as n — oo the series (8™)
tends to the true value 8y (for details see [14]).

Computing the MLE

Equation (2.4) defines the joint distribution of X7, ..., X,,. Again, for a given
realization (z1,...,z,) we consider L(x1,...,2,|0) as a function of 6. The
MLE 6™ is found by differentiation with respect to 6 and using standard
calculus to prove maximality. If differentiation is used, then the equation

AL(Xy,...,Xn|0)
0

=0 (2.9)

must be solved. Equation (2.9) is referred to as the likelihood equation(s).
Sometimes it is easier to work with the natural logarithm of the likelihood
function log[L], the so-called support. Thus, equation (2.9) becomes

0log[L(Xy,...,X,|0)]
00

=0. (2.10)

Obviously, a solution of equation (2.9) or equation (2.10) is not necessarily the
global maximum of the likelihood function. The derivatives in equation (2.10)
are called scores. Global maximality can be difficult to establish. In certain
instances, one can show that the likelihood function is concave, which implies
that the solution to equation (2.9) is indeed the MLE. For the one-dimensional
parameter case, it is sufficient to show that the second derivative is negative
at ™' namely
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0% 1og[L(0)]
20 |,p_gm

If 0 is multidimensional, then it is sometimes possible to show that the
matrix in equation (2.11) is negative definite and thus maximal locally but
not necessarily globally.

Unfortunately, for many complex problems, such as the optimization of
many parameters, analytical solutions cannot be obtained. In this case, nu-
merical iterations are employed to arrive at approximations of the maximum
likelihood estimator. Because these methods cannot guarantee actually find-
ing the global maximum, it is advisable to search the parameter space for all
solutions.

<0. (2.11)

Ezample 2.1 (Continued)

The likelihood function (equation (2.6)) is an instance where the maximum
likelihood estimate can be analytically obtained. To this end, consider the
random variable X that counts the number of successful events in n trials,
where each successful event has probability #. Then the score equals

X n-X

(2.12)

Setting equation (2.12) equal to zero and solving it for 6, we obtain the max-
imum likelihood estimator

X
o == 2.13
~, (213)
which is the global maximum because the second derivative
()
—n——>n 2.14
"92(1—0)? (2.14)

is certainly less than zero at § = ™!,
Example 2.2: MLEs for Multinomial Distributions

In the context of molecular genetics, the method of maximum likelihood is
frequently applied to questions involving the multinomial distribution. We
assume that the random variables X7, ..., X,, count the number of elements
in m distinct cells or categories, where the total number of elements equals n
and the cell probabilities are p1, ..., pm such that p; > 0and p1+...+pm = 1.
The likelihood function for x = (21, ..., 2;,) is then

n L
L(z1,...xm|p1s- -y Pm) = <x1 . )Hpil, (2.15)

i=1

A little calculus then shows that the MLEs are given by
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me — 21 for j—1 2.16
prt=— for j=1,...,m (2.16)

We will later encounter situations where the cell probabilities are functions
of unknown parameters 0; that is, p; = p;(0) for ¢ = 1,...,m. Then the
log-likelihood function of 0 is

0(x]0) = logn! — Zlogmi! + Zmi log p;(0). (2.17)

i=1 i=1

To find the MLE, we need to solve equation (2.10), which reduces to

95(9) _ <~ ri(9)
5 _;z,piw) =0 (2.18)
if we assume that the dimension of 8 equals 1 and p(0) is the derivative with
respect to 6. To find an analytical solution in this case can get quite tedious.

Before we conclude this subsection, it is worthwhile to point out several
features of the maximum likelihood estimate that are relevant for practical
applications.

1. It is not necessary to confine the parameter space to R?. In fact, we will
later consider the branching pattern of a tree as a parameter.

2. Sometimes the MLE does not exist.

3. The MLE need not be unique. However, in most cases the maximum
likelihood exists and is unique.

4. The likelihood function is maximized over the parameter space defined by
the model and not over the set of mathematically admissible values.

5. In most realistic applications in molecular biology, the MLE has no closed-
form expression. Thus, it must be computed numerically for the observed
data X. This leads to interesting numerical approaches. We will give some
examples later.

2.2.3 Large Samples

In the previous section, we outlined approaches to estimate the parameter
0™ that provides the best estimate of the observed data. This so-called point
estimate is thus a good guess about the unobservable parameter 8. In the
following, we simply state some relevant results that give a recipe to estimate
variances of the MLE or confidence intervals.

For the sake of illustration, we assume a one-dimensional parameter 6.
Using the so-called expected information

2

1(0) = —E [ 8602 log L(X|9)} , (2.19)
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one can show that the large sample distribution is approximately normal with
mean 6y and variance 1/(nl(fp)). To indicate that this is only true as n ap-
proaches infinity, we typically say that the MLE is asymptotically unbiased
and that 1/(nl(6y)) is the asymptotic variance of the MLE.

Moreover, one can prove that the distribution of /I(fp))(6™! — 6y) is
approximately equal to the standard normal distribution N(0,1). Replacing
the unknown 1(6y) by I(6™!°), the approximation is still valid and we obtain

gmle 4 jﬁfﬁ(/} ?n)l) (2.20)

as the approximate 100(1 — «)% confidence interval.
Ezample 2.1 (Continued)
We illustrate the procedure on Example 2.1. First, we need to compute the

expected information (equation (2.19)), which becomes according to equa-

tion (2.14)
H(a)_E[ X+"X]

T2 T (1-0)2
_E(X)  EX)-n
2 (1—6)2
_n9 nf —n
“ e T aCeye
01 -0)

By substituting the MLE X/n and applying equation (2.20), we get

X(n—X)

%:I:z(a/?) 3

as the approximate confidence interval for the accuracy of the estimation.

In the example above it was relatively straightforward to compute the ap-
proximate confidence interval. In molecular evolution, matters are more com-
plicated and one must resort to bootstrap estimates for finding approximate
confidence intervals [8].

We explain the bootstrap principle for Example 2.1. Because the true pa-
rameter and the distribution 6™ — 6y are not known, we use the MLE #™le
to generate many samples, B, from a binomial distribution with parameters
n (sample size) and #™'. For each randomly generated sample, we compute
the MLE 92“1, b =1,...,B. The unknown distribution 8™ — 6, is then ap-
proximated by the simulated distribution 6, = 6™ — 6™ b = 1,..., B. This
distribution can then be used to compute the corresponding quantiles.

Such approaches are easily implemented and are widely distributed in the
literature on molecular evolution.
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2.2.4 Efficiency

Besides the MLE, the statistical literature provides a collection of parameter
estimates, such as the sample mean or the method of moments. The question
arises as to which one should be chosen. To aid a decision, statistics introduces
the efficiency of two estimates 6 and 0 as

eff(, §) = nge . (2.21)

~—

~—

If the efficiency is smaller than 1, then 6 has a larger variance than 0.
The Cramer-Rao inequality then states [3] that the variance of an unbi-
ased estimate of the unknown parameter 6 is greater than or equal to
1/(nI(#))(assuming some condition on the distribution). From this inequality
and the fact that the asymptotic variance of the maximum likelihood estimate
is equal to the lower bound, we say that MLEs are asymptotically efficient.
Note that the asymptotic efficiency does not allow a conclusion about the
efficiency for finite sample sizes. Sometimes other estimators may be more
efficient in the sense of equation (2.21).

2.2.5 Hypothesis Testing and Adequacy of Models

We have seen that the likelihood depends on an underlying model. To base our
biological conclusions on solid grounds, it is necessary to have confidence in
the models. We will outline some theoretical aspects to check whether models
or hypotheses are appropriate. However, it is beyond the scope of this chapter
to expound the full theory of testing hypotheses, and we will focus on the
likelihood ratio tests.

General remarks

In the classical hypothesis setting one tests a null hypothesis Hy against an
alternative hypothesis H 4. In the first step, one specifies both hypotheses. This
should be done before the data are actually observed. The statistical literature
distinguishes between simple and composite hypotheses. In the former case,
the numerical values of all unknown parameters in the probability distribution
of interest are specified, whereas in the latter case not all unknown parameters
are declared.

Following Neyman and Pearson, a decision whether or not to reject Hy
is made on the so-called test statistic, which is computed for the observed
data x. The choice of the test statistic is a feat in itself. Based on the test
statistic, one defines the acceptance region (i.e., the set of values of the test
statistic which accept Hy) and the rejection region (i.e., the set of values that
reject Hyp).
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Because we are dealing with a random outcome of an experiment, Hy may
be rejected when it is true. This is the so-called type I error. The probability
for this event is denoted by «. If Hy is simple, then « is called the signifi-
cance level. Not surprisingly, one also deals with a type II error, which is the
probability 3 of accepting Hy when it is false.

In an ideal world, one would like to have a = 8 = 0, but this is almost
always impossible. Thus, a pragmatic procedure is to determine a small sig-
nificance level « in advance and then to construct a test with a small type II
error.

The generalized likelihood ratio test

One important tool for gaining insight into different hypotheses in molecular
evolution is the so-called generalized likelihood ratio test, which applies if the
hypotheses are not simple. In the following, we outline the test statistic and
then show that the null distribution of the appropriately scaled statistics is
approximated by the chi-square distribution.

Assume that the model function px(x|6) is given. To specify the null
hypothesis, we constrain the parameter space to some subset wy where we
assume that the entire parameter space (2 is admissible for the alternative
hypothesis. We then compute the test statistic

max{L(X]|0)|6 € wy}

A= ax{L(X[0)6 € 02} (2.22)

The null hypothesis is rejected if A is small. Now the following theorem holds.
Under certain regularity conditions, the distribution

—2log A (2.23)

is for large sample sizes n approximately chi-square distributed with m =
dim(§2)—dim(wp) degrees of freedom. For the sake of completeness, the density
of the chi-square distribution with m degrees of freedom is

f(w) ! % exp(-y/2) (2.24)

- 2m/2[(m/2
for y > 0. Since wy C {2, the hypotheses are nested. If the test statistic in
equation (2.23) is large for the observed data x, then Hj is rejected. Unfortu-
nately, the chi-square approximation cannot always be used in applications of
molecular evolutionary problems because typically large samples are required,
and more importantly it is sometimes difficult to determine the degrees of free-
dom (see [11]). Sometimes the models are not nested. In such situations, it is
useful to apply statistical tests based on Monte Carlo procedures.
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Ezample 2.2 (Continued)

We consider the multinomial model outlined before. Our null hypothesis states
that the cell probabilities depend on the k-dimensional parameter 6, where
the alternative hypothesis is the full multinomial model. Then the unrestricted
maximum likelihood estimator is given by equation (2.16), while p;(§™!) are
the cell probabilities under Hy. Then

G pi(eml) 2
—2log(A) =2 x;log ) R X (2.25)
i=1 (

is approximately chi-square distributed with m — 1 — k degrees of freedom.

2.2.6 Bayesian Inference

The Bayesian approach to statistics is quite different from the approaches
we have explained. However, in recent years it has become quite popular in
molecular evolution (for a recent review see [2]). So far, we have assumed that
the parameter 0 is an unknown and fixed quantity. From the observed data x,
we obtained some knowledge about @; for example, by computing the MLE.
In the “Bayesian world”, 6 is considered a random variable with a known
probability distribution, the prior distribution, which needs to be specified in
advance, hence the name prior. The prior distribution reflects our subjective
knowledge about the plausibility of certain parameter values or hypotheses.
Once the data have been observed, the prior distribution is “updated” using
the information (i.e., the probability of the sample given the data). Thus the
computation of the “update” probabilities is a simple exercise using the Bayes
formula. Going back to equation (2.1), we compute the posterior probability
of a collection of hypothesis models 8;,7 = 1,...,k given some data x as

L(x]0;)P(0;)
Sk L(x|6;)P(8))

where we require that ) P(0;) = 1. Without entering the discussion about the
theoretical controversies of the Bayesian approach, we simply point out that
the success of the method is due to an enormous increase in computing power.
Before the development of fast computers, it was a major obstacle in the field
to actually compute the posterior probability since explicit formulas were
rarely available. Computers allow via stochastic simulation the computation
of the denominator, which is typically the hard part. Markov chain Monte
Carlo methods especially allow an efficient sampling of huge parameter spaces
(see Chapters 3 and 7).

P(9,lx) = , (2.26)
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2.3 Applications of the Likelihood Function in Molecular
Evolution

The theory outlined in the preceding paragraphs has many applications in
molecular evolution. In the following, we will start with an almost classical
example that illustrates the “easy” application of the likelihood example. The
following examples will get increasingly complicated and can only be solved
by computational approaches.

2.3.1 The Hardy-Weinberg Equilibrium

The Hardy-Weinberg principle states that the gene frequencies in a stationary
population determine the frequencies of the genotypes of a population. The
most simple example deals with a diploid population and a two-allele gene
locus. Let A and a denote the corresponding alleles, and € denote the frequency
of a. Then, in Hardy-Weinberg equilibrium, the frequencies of genotypes AA,
Aa, and aa are specified by

paa(0) = (1-0)?
paal0) = 20(1 - 0), (2.27)
Paa(8) = 6%

With X 44, Xa4, and X,,, we denote the genotype counts of a sample of
size n drawn from a population. One may ask whether the population is in
Hardy-Weinberg equilibrium. To test this, we first compute the MLE ™! and
then apply the likelihood ratio test. Equation (2.27) is an example of the MLE
for the multinomial distribution where the cell probabilities are functions of
the allele frequency 6. The solution of equation (2.18) provides the maximum
likelihood estimator 9Xs 4+ X

e — 73271 2, (2.28)
which agrees with intuition. If we want to test the null hypothesis that the
population is in Hardy-Weinberg equilibrium, we apply the statistic in equa-
tion (2.25), which is approximately chi-square distributed with 1 degree of
freedom. Thus, if —2log(A) exceeds the critical value ¢, for a significance
level «, one rejects the null hypothesis.

This was a simple example. The procedure gets more complicated when
we deal with more than two alleles and when we cannot observe the genotypes
directly.

2.3.2 Models of Sequence Evolution

With the advent of molecular data, models of DNA and amino acid sequence
evolution represent the work horses in analyses of molecular evolution. These
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Fig. 2.2. Relative log-likelihood function (i.e., £(8) — £(6™)) for the Jukes and
Cantor model of sequence evolution. Sequences were 400 base pairs long with 200
identical nucleotide pairs. ™ = 0.824.

substitution models have been widely explored and expanded. In Chapter 1,
models of sequence evolution were described in detail. The simplest such model
was introduced by T. H. Jukes and C. R. Cantor [13], which distinguishes
between two categories for a pair of DNA sequences, the fraction of identical
nucleotide pairs (po(¢)) and the fraction of nonidentical pairs (p1(6)), where
6 = pt is the product of mutation rate p and the appropriately scaled total
amount of time ¢ that elapsed between the two sequences under study.
From the theory outlined in Chapter 1, one readily computes

pi(0) = % (1 — exp (—439» : (2.29)

Let Xy, X1 be the number of identical base pairs and of nonidentical base
pairs, respectively, where X+ X7 = n denotes the total number of nucleotide
pairs. Then, the log-likelihood function is

{(Xo, X1 | 0) = Xolog (1 —p1(0)) + X1 log (p1(0)) (2.30)
and one computes the maximum likelihood estimator as
3 4 X
e = —"log (1 — - ). 2.31
JC 498 ( 3 X, + Xl) (2.31)

Figure 2.2 displays an example for a pair of sequences with 200 identical
nucleotide pairs and 200 nonidentical pairs of nucleotides. We notice that
the maximum likelihood estimate for a pair of sequences is nothing but the
famous Jukes-Cantor [13] correction formula for multiple hits. Thus, #74¢ is the
number of substitutions that occurred between the two sequences. From the
preceding, it follows that if the model (Jukes-Cantor evolution) were correct
and if n were large, then we could infer with high accuracy the number of
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substitutions that actually occurred with an asymptotic large sample variance
[21]
1-— 1
var(g) = 211 = P1) (2.32)

eSS

where p; = X /n is estimated from the data.

As in the Hardy-Weinberg example, this model of sequence evolution is
extremely simple. Biological sequences almost never evolve according to the
Jukes-Cantor model. However, in the likelihood framework outlined here, we
are actually in a position to apply the likelihood ratio test to check the hy-
pothesis whether the Jukes-Cantor model is plausible or not.

Comparing two DNA sequences of length n, we observe the following
counts naa,nac, ... nrr, in the cells AA, AC, ... T'T, that sum up to n. The
Jukes-Cantor model predicts equal counts for the 12 possible cells of different
nucleotide pairs, and equal counts for the cells of identical pairs. Therefore the
alternative hypothesis is defined by the multinomial distribution with m = 16
cells, whereas the Jukes-Cantor model has only one parameter. Thus accord-
ing to equation (2.25) the statistic is chi-square distributed with m—1—1 = 14
degrees of freedom. If the Jukes Cantor model is rejected as too simple, one
can move on to more complicated models (see Chapter 6).

As models of sequence evolution get more complex, the complexity of the
likelihood function grows. For the general reversible [21] model, the likelihood
function depends on six parameters for the substitution process and three
parameters for the stationary base composition. Although the computations
are more involved, it is still possible to do the computations on a computer.

2.3.3 The Likelihood Function in Phylogenetics

When two sequences are compared, the likelihood function can get very com-
plex, as we have outlined in the preceding sections. Now we extend the
complexity by considering n sequences arranged in a multiple alignment
X = (Xy,...,X) consisting of [ aligned sites. Note the X;’s are n-dimensional
words from the alphabet A = {A,C, G, T}. We assume that sequence posi-
tions are evolving independently of one another according to the same model
M. Thus an alignment constitutes a random sample of size [, where each
sample is drawn from the same distribution, in our world, following the same
evolutionary scenario. This scenario will now be made more specific.

Besides the evolutionary model, we introduce the tree that relates the n
sequences as an additional parameter.

A tree T = {V,E} is a cycle-free graph, where V represents the nodes
(vertices) of the tree and E C {{u,v}|u,v, € V,u # v} the branches (edges).
We furthermore specify a length function s : E — R™ that assigns the number
of substitutions to each branch of the tree. s(e),e € F is given by the evolu-
tionary model M. We will call s, = s(e) the branch length. To keep the com-
putation tractable, we assume that the model M is identical for all branches
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Fig. 2.3. An example topology with four leaves (e.g., sampled sequences and two
internal nodes).

and that M belongs to the class of time-homogeneous, time-continuous, and
reversible models (see Chapter 1).

Thus, the parameter @ comprises a tree T', substitutions on the branches
s(e), and an evolutionary model M. Because we think of sequences as being
obtained from contemporary organisms—that is, the leaves (end nodes) of the
tree are labelled with the sequences—for convenience the labels are {1,...,n}.
Therefore, px (X @) specifies for a fixed 0 the probability of observing X € A™.
Thus, an essential point in our model is an alignment that is nothing more
than a sample from a multinomial distribution with 4" categories (the words
of length n), where the probability of observing a category is specified by 6.
Thus the likelihood of observing the alignment X is

l
L(X|0) = L(Xy,...,X,|0) = Hp(xi\e). (2.33)

Computing the likelihood function

According to equation (2.33), it suffices to compute the probability for a single
alignment site. The joint probability of all [ sites is then the probability of
the alignment. Contrary to the examples given so far, an analytical formula
is not available, so we will give a nontrivial example. From this example,
one can readily conclude how to evaluate more complex trees. To this end,
consider the tree in Figure 2.3 for n = 4 sequences 1, 2,3,4. Because M is
assumed to be generally reversible (see Chapter 1), we suppose that evolution
“starts” in node “0” and proceeds along the branches to generate the pattern
x = (21,2, 23,24). If the nucleotides for internal nodes 0 and 5 are known,
(i.e., xg, T5), then

P(x|97 Yo, y5) = Py0951 (31) : Py0932 (82) ' Pyoy5 (85) 'Py5I3 (83) 'Py5$4 (84>7 (234)

where P, . (s) denotes the probability of substituting nucleotide z, with nu-
cleotide z, if s substitutions occurred along the branch leading from u to v.
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Fig. 2.4. Graph showing the relationship between an internal node (7) and its two
offspring nodes (u,v).

Typically, the ancestral states are not known, thus, one sums over all possible
assignments,

P(.’IJ|0) = Z Z ﬂ—yop(m|07y07y5>7 (235)

Yyo€EAyYs€A

where (74, 7o, TG, 7r) is the stationary distribution of the evolutionary model
(see Chapter 1). In the example (Figure 2.3), 16 = 4(number of internal nodes)
assignments are possible, thus equation (2.35) looks like one has to evaluate
a sum with exponentially many summands.

However, Joseph Felsenstein [9] suggested a “dynamic programming” so-
lution that computes the solution in O(nl?) times.

To this end, consider the pattern X = (x1,...,2,) € {A,C,G,T}" as
a realization of evolution, where z; is the nucleotide at sequence i. With
yi,t =n+1,...,2n—2, we denote the assignments of nucleotides to the internal
nodes. We furthermore assume that the tree T is arbitrarily rooted at node
2n — 2 and then each internal node has two offsprings (u,v) (see Figure 2.4).
We define LY = (LY, LE, L, L) as the vector of partial likelihoods for the
subtree descending from node w. The computation of the partial likelihoods
L? for the internal nodes i = n+1,...n — 2 proceeds recursively according to
the already computed partial likelihoods of its offsprings « and v,

L= 2 PRulafz]-| > Ru)Li), (230

2€{A,C,G,T} 2€{A,C,G,T}

with y € {A,C,G, T}.

The partial likelihood vectors are initialized at the end nodes of the tree.
One simply sets L;i = 1, and the remaining components are equal to zero,
more formally

) 1 ifz=ua
Li={" ""T% fni=1,.. n (2.37)
0 otherwise

For the root node 2n — 2 with three offsprings, we modify equation (2.36)
accordingly. The probability of the full model is then
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P(X|0)= > = mIZ (2.38)
2€{A,C,G, T}

The likelihood of the alignment X follows from equation (2.33).

Maximizing the likelihood for a given tree

We have described a computational approach to compute the likelihood of
an alignment for fixed 8. Equation (2.33) shows that the resulting probabil-
ity distribution is very complicated. It involves the branching pattern of the
tree, the number of substitutions on each branch, and a model of sequence
evolution.

We assume for the rest that the model of sequence evolution M is fixed.
Now, x is observed and we want to find ™.

This task is divided into two parts. In the first part, one fixes the branching
pattern of the tree and wants to estimate branch lengths (s¢)ecp to maximize
the likelihood. Even for a fixed tree it is generally not possible to obtain
an analytical estimator. Thus one resorts to numerical optimization methods.
Newton’s method is one instance to find an optimal assignment of the number
of branch lengths. However, often other numerical routines, or simply hill-
climbing techniques, which stop when a local maximum is found, are also
applied. Numerical methods are typically time-consuming, and sometimes the
result depends on the numerical method applied.

In recent years, yet another obstacle has been observed where sequence
alignments were found that generate multiple optima on the same tree. Chor
et al. [4] even found sequence alignments with a continuum of optimal points,
such as the following alignment:

1 AAAACCCAC
2 AAAACCCCA
3 AAAACCACC
4 AAAACCAAA.

(2.39)

Thus, the likelihood surface is more complicated than originally expected.
However, one should note that the alignment in equation (2.39) is not very
tree-like. J. S. Rogers and David L. Swofford [16] asked “Is it generally true
that the trees of highest maximum likelihood for a given data set have only
a single optimum?” Based on intuition and the hill-climbing method imple-
mented in PAUP* [20], they found in each case that the maximum likelihood
point was the unique global optimum. In other words, if data are “close” to a
“true” tree, then it is hard to find multiple maxima. At this point, a final con-
clusion seems impossible, and further work is necessary to detect alignments
(also in real data) that give rise to multiple optimal solutions.

As complicated as the likelihood function can get, in some simple cases it
is possible to get the maximum likelihood estimator as an analytical function.
Yang [22] gave a solution for the simple two-state model and three sequences,



42 J. Buschbom and A. von Haeseler

and Chor et al. [5] extended this result to the case when a molecular clock
holds true. Recently, Chor et al. [6] gave results for four sequences.

Finding the tree topology that maximizes the likelihood

In the previous chapter, we saw that the computation of the maximum like-
lihood assignments of branch lengths to a given tree 7 poses already some
complications. In molecular evolution, however, the branching pattern of the
tree is also unknown, and a typical goal is to find the tree 7** that maximizes
the likelihood function over all trees. This problem, like most of the phyloge-
netic approaches that optimize an objective function (maximum parsimony,
distance-based methods), is even harder. No efficient algorithms are known
that guarantee to pick the best tree(s) from the vast number of possible trees.
The naive method to compute the maximum likelihood for each of the

(2n — 2)!

t’n = am_2/. _av
2n=3(n — 3)!

=1-2-3...(2n—5) (2.40)
possible unrooted, binary, leaf-labelled trees is impossible already for n = 10 or
11 sequences. To overcome this problem, various heuristics are employed and
implemented in, for example, PHYLIP [10], MOLPHY [1], NJ [17], PAUP*
[20], and TREE-PUZZLE [19].

2.4 Outlook

We have tried to give an introduction to the application of the likelihood func-
tion in molecular evolution. Since this chapter has only introductory character,
we could not give a full introduction to the flexibility of a likelihood approach
in molecular evolution.

We have focussed on reconstructing the phylogenetic history of evolution,
which applies to the million-year timescale. The coalescence framework (see
reviews in [12, 15, 18]) provides a powerful approach to investigate genealogical
processes within species. Here, however, the focus shifts from the reconstruc-
tion of a single most likely tree to the estimation of the population parameters
that govern the genealogical process through the integration over all possible
genealogies. In such analyses, the tree is no longer a parameter but a random
variable with a well-defined prior probability specified by the model. In this
field of molecular evolution, Bayesian inference has become popular in recent
years.

With a further increase in computing power, we will be able to refine
our models of evolution and will certainly integrate more realistic aspects of
evolution. Thus, applications of the likelihood function in molecular evolution
are a continuously interesting and flowering field of research.
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3.1 Introduction

Markov chain Monte Carlo (MCMC) is a general computational technique for
evaluating sums and integrals, especially those that arise as probabilities or ex-
pectations under complex probability distributions. Monte Carlo implies that
the method is based on using chance (in the form of a pseudo-random num-
ber generator). Markov chain indicates a dependent sampling scheme with the
probability distribution of each sampled point depending on the value of the
previous one. Due to this dependence, MCMC samplers typically require sam-
ple sizes that are substantially larger than the sizes of independent samples
produced by Monte Carlo integration methods to be able to achieve simi-
lar accuracy. However, independent sampling methods often require detailed
knowledge of characteristics of the function being integrated, as their compu-
tational efficiency relies upon having a close approximation of this function.
MCMC has proved to be highly useful because of its great flexibility and its
success at solving many high-dimensional integration problems where other
methods are computationally prohibitive.

3.1.1 A Brief History of MCMC Methods

The primary ideas behind MCMC were created by physicist Nicholas Metropo-
lis and colleagues over fifty years ago at Los Alamos National Laboratory in
the years after the Manhattan Project as part of a solution to a problem in
statistical physics [22]. Hastings provided an important generalization to this
pioneering work [12]. Hastings’ foundational paper was ahead of its time in
the statistics literature, and it took more than a decade (and the start of a
personal computing revolution) before MCMC methods attracted additional
attention in the statistics community. Their first use was in the form of the
Gibbs sampler applied to image analysis [8]. Interest in MCMC exploded in
the 1990s as it proved to be a powerful and flexible technique for solving a va-
riety of previously unsolvable computational problems, especially those arising
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in Bayesian analyses. Refinement and extension of MCMC methods and their
application to new problems continues to be an area of active research. MCMC
methodology has completely transformed the Bayesian approach to statistics
and its application to large-scale complicated modeling problems. For a more
extensive description of the historical development of MCMC methods, please
see the article by Hitchcock [13].

MCMC approaches in molecular evolution

MCMC approaches to problems in molecular evolution first appeared in the
mid-1990s as several authors developed various methods to calculate poste-
rior probabilities of phylogenies on the basis of aligned DNA sequence data
[27, 20, 21, 17, 18]. Bayesian approaches using MCMC have since been applied
to a growing number of problems in molecular evolution [16, 6]. This volume
includes several applications of MCMC, including relaxation of the molecu-
lar clock assumption, the detection of positive selection, Bayesian analysis of
aligned molecular sequences, models of protein evolution, evolution by genome
rearrangement, and the calculation of predictive distributions and posterior
mappings [25, 1, 14, 4, 5, 2]. The remainder of this chapter describes the the-
ory behind MCMC methodology and illustrates the methods using examples
in molecular evolution.

3.2 Bayesian Inference

The Bayesian approach to statistical inference in molecular evolution most of-
ten fits into the following general framework. (In what follows, I use p to stand
for a generic probability density and let the arguments distinguish them.) A
likelihood function p(D |0) describes the probability (or probability density)
of data D given the values of parameters 6. The prior distribution p(f) ex-
presses the uncertainty in the parameters prior to observation of the data.
Bayes’ theorem provides the form of the posterior distribution p(6| D), the
probability distribution that describes uncertainty in the parameters after
observing the data and the object of all Bayesian inference

p(D[6)p(0)
p(D)
The denominator p(D) is the marginal probability of the data, averaged over

all possible parameter values weighted by their prior distribution. Formally,
we can write

p(@|D) = (3.1)

p(D) = /@ p(D | 6)p(6) do, (3.2)

where O is the parameter space for 6. In almost all problems of practical inter-
est, it is not tractable to compute p(D) directly, the normalizing constant of
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the posterior distribution. MCMC offers a means to make Bayesian inferences
without the need to compute this normalizing constant.

In a typical application in Bayesian inference in molecular evolution, the
parameter 6 contains both discrete and continuous components. For example,
f might include the discrete tree topology and the continuous branch lengths
and nucleotide substitution model parameters. The single integral in (3.2)
represents a multiple sum over discrete parameters and a multiple integral
over continuous parameters.

Calculating expected values

Usually, the posterior distribution p(#|D) is a complicated function over a
large parameter space that cannot be described adequately in full. We typi-
cally are interested in various summaries of the posterior distribution, all of
which are posterior expectations of some function of the parameters. For ex-
ample, the posterior probability of a tree topology is the expected value of
the indicator variable for that tree topology, and the posterior density of a
branch length can be summarized in part by its mean.

To simplify notation by eliminating the explicit dependence on the ob-
served data, define the unnormalized posterior distribution to be h(f) =
p(D|0)p(0). With this notation, the posterior expected value of a function
of the parameter space is defined to be

 Jo9(®)h(6) a8
T[S h(0)dg

The idea behind MCMC is to take a (dependent) random sample of points
{6;} from the unnormalized target function h(6) by simulating a Markov chain
whose stationary distribution is proportional to h(6). We can then approxi-
mate expectations with simple arithmetic averages,

Elg(6)] (3.3)

Blg(0)] ~ Y 9(0) (3.4)

We note that while most applications of MCMC to problems in molecu-
lar evolution have been part of Bayesian analyses, computations in the form
of (3.4) can arise in non-Bayesian approaches as well. MCMC is a general-
purpose tool.

3.3 The Metropolis-Hastings Algorithm

The most common form of MCMC is the Metropolis-Hastings algorithm. The
idea is to create a proposal distribution g on the parameter space ©. Instead
of using ¢ to generate a sequence of points sampled from O, we use ¢ to
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generate a candidate for the next sampled point that is either accepted or
rejected with some probability. If the candidate is rejected, the current point
is sampled again. The random acceptance of proposals effectively changes the
transition probabilities. A clever choice of acceptance probabilities results in
a “metropolized” Markov transition matrix ¢’ whose stationary distribution
is proportional to the unnormalized target distribution h. Remarkably, the
choice of ¢ is nearly arbitrary. It suffices for ¢ to be irreducible—from any
points x,y € O, it should be possible to get from x to y through a finite
number of transitions under q.

The initial sample point 8y may be arbitrary. If the current state is ; = x,
the Metropolis-Hastings algorithm generates candidate y from the distribution
q(- | x). The acceptance probability is

h(y)q(x|y) } . (3.5)

r(y|z) = min {1’ he)ay| @)

With probability r(y|x), we set ;11 = y; otherwise ;1 = x. In the special
case where ¢(x|y) = ¢q(y|x) for each x and y, the proposal density drops
out of (3.5). The original method in Metropolis et al. [22] assumed this sym-
metry, and Hastings [12] made the generalization that allowed nonsymmetric
proposal distributions. Notice as well that the target distribution only needs
to be known up to a normalizing constant, as it is only necessary to be able
to compute the ratio of the target distribution evaluated at any two points.
The ratio ¢(z | y)/q(y | ) is known as the Hastings ratio or the proposal ratio.
The target ratio h(y)/h(x) is the posterior ratio in a Bayesian setting where
it is the product of a likelihood ratio and a prior ratio.

3.3.1 Why Does the Metropolis-Hastings Algorithm Work?

The stationary distribution m of a Markov chain with transition function
¢ (y | x) satisfies

/ n(x)q (y | z)dz = n(y) for each y € ©. (3.6)
€O
A stronger condition is for the chain to satisfy detailed balance,

n(z)q'(ylx) = n(y)q' (x|y)  forall z,y € O. (3.7)

Markov chains that satisfy detailed balance are time-reversible. The rate of
transition from x to y is the same as that from y to x for each x and y, so the
probability of any sequence of transitions would be the same in forward and
backward time. Detailed balance of the target distribution A is easy to check
for the Metropolis-Hastings algorithm. First, notice that the actual transition
probability density is ¢'(y | x) = q(y|x)r(y | z) for & # y. Therefore, we have
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h(z)q'(y|x) = h(z)q(y|z) min {1, W}

= min {h(z)q(y|z), h(y)a(z|y)} .

The last expression is symmetric in x and y, which implies that the first
expression must have the same value if x and y are switched, so detailed
balance is satisfied.

The Gibbs sampler

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm
in which the proposal distributions are the full conditional distributions of
some part of the parameter space conditional on the rest. Suppose that the
parameter vector 6 = (0,02, .. .,0q) is partitioned into d blocks. The idea
behind the Gibbs sampler is to propose new values of a block of parameters
O from their full conditional distribution given the current values of all
other parameters, denoted p(- |0;_y)), where 0;_j includes all of 6 except for
the kth block. The proposed values are always accepted. The systematic-scan
Gibbs sampler updates blocks in a fixed order, cycling through them all. The
random-scan Gibbs sampler randomly picks a block of parameters to estimate
repeatedly.

We can understand why the Gibbs sampler works by checking the Metro-
polis-Hastings acceptance probability for one step of the Gibbs sampler. In
updating the kth block given the current state 6, the candidate is

0" = ()5 - -+, Op—115 Oy Oppetas - - - Opap)-
The posterior ratio is h(6*)/h(0) = p(0*)/p(f) and the proposal ratio is
(O | 0[_k])/p(ﬁrk] | 6/_k)). Conditioning on parameters outside the kth block
leads to p(6*) = p(O_y ﬂ@{k]) = p(01—x) )p(@f‘k] | 0/_1)) with a similar expression
for p(0). The acceptance probability is then

* O | 0,
r = min Lp(@)xp( E(k]| [ k])
p(@) p(G[k] |6[—k])

: PO—k)PO 1 0-11) POy 101—k)
=min« 1, X K
PO )P0 |0-1))) ~ (0} 101-x)

=1.

The advantage of the Gibbs sampler is that proposals are always accepted.
While one might think that this feature would invariably lead to a sampler
that moves through the parameter space rapidly, this is not always the case.
It is well-known that the Gibbs sampler can mix slowly if highly correlated
parameters are in different blocks. The other practical difficulty is that the
flexibility of the Metropolis-Hastings approach in choosing a proposal distrib-
ution is lost. Candidates from the full conditional distributions are often not
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easy to simulate, which can make the problem difficult. In the case where full
conditional distributions are available and easy to simulate, Gibbs sampling
will be a good choice. Experience indicates that the more general Metropolis-
Hastings approaches are often a more practical solution for many statistical
problems in molecular evolution.

3.3.2 An Example in Bayesian Phylogenetic Inference

The Bayesian approach to estimating phylogenies from aligned DNA sequence
data as implemented in the programs BAMBE [24] and MrBayes [15] uses
MCMC to sample from the joint posterior probability distribution of phy-
logenies and nucleotide substitution model parameters. The state space for
the Markov chain takes the form 6 = (7,¢,Q), where 7 is the tree topology,
t is a vector branch length, and () is the generator of the continuous-time
nucleotide substitution process. The MCMC samplers used in both BAMBE
and MrBayes are actually hybrid samplers that combine several Metropolis-
Hastings samplers, each of which samples from only part of the parameter
space. BAMBE has a proposal distribution ¢; that updates the tree (both 7
and t) while leaving @ fixed and a second proposal ¢o that updates @ leaving
the tree fixed. BAMBE cycles back and forth between ¢; and go proposals.
Effectively, the hybrid sampler in BAMBE is a systematic-scan Gibbs sam-
pler with a Metropolis-Hastings proposal at each step. In contrast, MrBayes
has a collection of proposals to update parts of () and another collection of
proposals to update the tree. At each stage, one of these proposals is selected
at random. Running only one chain, MrBayes uses a hybrid sampler that is a
random-scan Gibbs sampler with a Metropolis-Hastings update at each step.
Tierney [26] provides further examples and theoretical justifications of the use
of hybrid MCMC samplers.

Description of the Local algorithm

BAMBE and MrBayes both use a local update method first described by
Larget and Simon [17] to update unrooted trees. A description of this algo-
rithm and the associated acceptance probability serves to illustrate the ideas
of this section on an application of MCMC in molecular evolution. The ac-
ceptance probability originally reported in [17] was, in fact, incorrect. I am
extremely grateful to Mark Holder, Paul Lewis, and David Swofford, who
reported this to me quite recently.

The LocAL algorithm begins by selecting an internal branch of the tree at
random. (Please see Figure 3.1 for a graphical description of this algorithm.)
The nodes at the ends of this branch are each connected to two other branches.
One of each pair is chosen at random. Imagine taking these three selected ad-
jacent edges and stringing them like a clothesline from left to right, where the
direction is also selected at random. The two endpoints of the first branch
selected will each have a subtree hanging like a piece of clothing strung to
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the line. The algorithm proceeds by multiplying the three selected branches
by a common random amount, akin to stretching or shrinking the clothesline.
Finally, the leftmost of the two hanging subtrees is disconnected and reat-
tached to the clothesline at a location selected uniformly at random. This is
the candidate tree.

(€) (d)

Fig. 3.1. Local update algorithm. (a) A seven-taxon unrooted tree. (b) A randomly
chosen local neighborhood of the tree. Triangles represent subtrees. (c) A candidate
tree with the same tree topology. (d) A candidate tree with a different tree topology.

Next, we then ask with what probability the candidate should be accepted.
See Figure 3.1 (a), which displays a sample seven-taxon unrooted tree for the
definition of the parameters in the following description. Suppose that we
began by selecting the internal branch with length tg that separates taxa A
and B from the rest, that we selected branches with lengths ¢; and tg from
each side, and that we oriented these branches as shown in Figure 3.1 (b).
The probability of this part of the proposal is (1/b) x (1/2)3 because there
are b = 4 internal branches and we made three binary choices.

Let m = t; + tg + t9 be the current length of the clothesline. We select
the new length to be m* = mexp(A(U; — 0.5)), where U; is a Uniform(0, 1)
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random variable independent of everything else. It is straightforward to show
that given m, m™* has density

1 N2

gy for me A2

<m* < me™*=. (3.8)

g(m™ [m) =

Suppose as well that u = ¢; is the current distance from the left endpoint of
the clothesline to the B subtree. Given m*, we pick a new distance u* = Uym™,
where U, is another independent Uniform(0, 1) random variable. The distance
from the left end point to the EFG subtree changes proportionally from v =
t1+ts to v* = m*v/m. There are now two cases. If u* < v* (see Figure 3.1 (c)),
the tree topology does not change and the updated branch lengths are t7 = u*,
tE = v*—u*, and t§ = m* —v*. Otherwise (see Figure 3.1 (d)), v* < u* and the
tree topology does change. The new branch lengths are {7 = v*, t§ = u* —v™,
and t§ = m* — u*. The probability density of this part of the proposal is the
density of u* given m*, which is uniform, ¢(u* | m*) = 1/m* on (0, m*).

The joint proposal density given the local choice of the subtree to update
is

Q(U*a U*y m* I m,u, U) = Q(m* | m)Q(U* | m*)é{v*:vm* /m}

_ 6{1}* =vm*/m}

STEOER (3.9)

where § is Dirac’s delta function. If = is the original tree and y is the candidate
tree, the acceptance probability for the LOCAL proposal is

3 4 v=v*m/m*
0 h(y) (3) (3)" x W T H) ) e
min 4§ 1, h 1) (1)3 o Ster=wmr/my [ i ’% m
(I’) (b) (2) X \(m™)2)

since

5{v*m/m*} _ 5{@*}/(m/m*) . mi*

0w} Ofv+} m

The incorrect acceptance probability published previously [17] had a power of
2 rather than the correct power of 3.

3.4 Reversible Jump MCMC

In all of the examples we have considered to this point, the state space has
had a fixed number of parameters. One can imagine a number of problems
arising in molecular evolution where this need not be the case. For example,
consider a Bayesian approach to phylogeny estimation from aligned DNA
sequence data in which there is a prior distribution on the class of likelihood
model. Specifically, suppose we think, for example, that the HKY85 and TN93
models are equally likely. The HK'Y85 model has one fewer free parameter than



3 Introduction to MCMC Methods 53

the TN93 model. We could define different Metropolis-Hastings samplers to
update the ) matrix separately within each model, but we would also need to
be able to switch between models. In this example, the number of parameters
is itself a parameter of the model. Reversible Jump MCMC' describes how to
extend the Metropolis-Hastings approach to allow jumps between subspaces
of different dimensions [11].

A typical situation is that we want a set of proposal distributions between
subspaces ©1 and O5 where the kth subspace has my parameters and m; #
ms. The key idea to make this work is dimension matching. The basic idea
is to supplement each set of parameters with different numbers of random
variables so that the dimensions match and then to transform one set into the
other with a bijection. Let 6; and 6> be two states in ©1 and ©-, respectively.
Then the vectors ¢() = (A1, u;) and ¢® = (6, us) each have length d =
m1 + ni = Mo + ng, where uy is an ny-vector and ny are chosen so that the
dimensions match. (It is often the case that n; = 0 for the larger subspace.)
Suppose that 7} is a bijection so that ¢ = T} (¢™M)) and T, = T.

The proposal from 6, € ©, to 6, € 0, follows this procedure.

. Generate random vector u,, which has length n,,.

. Let ¢ = (0,,u,).

. Evaluate ¢ = T, (o).

. Project ¢) = (6y,u,) into first m,, coordinates to determine 6,,.

=W N

3.4.1 Acceptance probability

The acceptance probability for this proposal includes a Jacobian in addition
to the usual ratios. The Jacobian for the transformation is | det J,|, where J,
is a d X d square matrix whose 7, j entry is

09,"
{Jr}ij = (@)
0¢;
The acceptance probability is
. h(0y)q(0 | 0,)
r(0,0,) = rmn{l7 — YT IS | det J,| p o
v h(02)q(0y | )

Ezxample

We illustrate these ideas with the example of modeling the nucleotide sub-
stitution process in which we have equal prior probabilities that @ is from
either an HKY85 or a TN93 class of models. Each of these models has three
free parameters for the base composition that do not need to change in mov-
ing between models. HKY85 has a single transition/transversion parameter
K, while TN93 allows two different transition rates, x; for purines and ko for
pyrimidines. In a proposal from TN93 to HKY85, assume we set x to be the
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mean of k1 and k. To attain detailed balance, we need for the proposal den-
sity given k to have support on all positive (k1, k2) such that K = (k1 +K2)/2.
We could do this by letting « | be a Uniform(—#, ) random variable. We
have this bijection:

Ty (k,u) = (K — u, £k + u) and Ty(k1, ko) = (Kl—i—@ HQ—H1> .

2 2
We have
Ok —u) Ok —u)
Ok ou 1-1
Ok +u) Ik + u)
Ok Ju

so that | det Ji| = 2. By a similar calculation, | det Jo| = 1/2.

Suppose that the unnormalized posterior distribution is h and we are in-
terested in calculating the acceptance probabilities for a proposal from 6; = k
to 03 = (K1, Kk2). If @y is the probability that we propose that a TN93 @ ma-
trix given the current model is HKY85 and as is the probability of the reverse
situation, the acceptance probability is determined as

h(02) as }

X ————— X 2

h((gl) CL1/(2I€)

provided that (k1 + k2)/2 = k. The acceptance probability of a proposal in
the other direction is

r(02 | 61) = min {1,

r(01 ] 05) min{l, UGYNUVICIINN 1} .

h((gz) a9 2

3.5 Assessing Convergence

The theoretical justification of MCMC as a computational tool is that sample
averages converge to their expected values. However, this result is asymptotic
and, in practice, no chain can be run forever. We must therefore address the
following practical questions: How long should a chain be run? Should we
discard the initial portion of a sample? Should we subsample the Markov
chain? How do we assess the accuracy of the MCMC estimates? How can we
compare MCMC samplers? None of these questions has a definitive answer,
and rarely can we have absolute trust in the MCMC calculations. Despite
this, there are steps that will increase confidence in the results.

We will illustrate these ideas in the context of a very simple example.
Suppose that we are interested in estimating a branch length from a two-
taxon tree under the Jukes-Cantor model for a data set in which n; sites
are unvaried and no sites are variable. We will assume an exponential prior
distribution with rate A. The density is p(t) = Ae~**. The probabilities of the
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possible site patterns are i (% + %e—%t T
for varied sites. Putting these two probabilities together, the unnormalized

posterior distribution is as follows.

N1 03 G\ 1 G\,
h(t): (4) (4+4e 3t) (4—46 3t) ()\e t).

Consider updating the branch length by choosing a new value uniformly at
random from a window of half-width w centered at the current value, reflecting
off the origin when a negative branch length is proposed. Specifically, t* = |t +
Ul, where U is uniformly distributed between —w and w. It is straightforward
to show that the proposal ratio is one. Acceptance probabilities are then
min{1, h(¢t*)/h(t)}.

In a specific numerical example, suppose that n; = 70, ny = 30, and A = 5.
We will compare results for two choices of w, namely w = 0.1 and w = 0.5.
In each case, we will begin with an initial edge length of 5.0 (a poor choice)
and update the edge length 2000 times (much shorter than we might typically
do). Figure 3.2 displays summaries of the MCMC samples.

. . _a
) for unvaried sites and i (l —1le st)

3.5.1 Burn-in

The initial portion of an MCMC sample is often discarded as burn-in. The
logic behind this practice is that the initial portion of a run will typically be
highly dependent on the starting value of the Markov chain, and if this value
is not likely under the stationary distribution, the sample would be biased
toward the initial point. The estimate

n

S g(6)/(n - m),

i=m-+1

which discards the first m sample points, is typically a more accurate estimate
of the expectation of g under the target distribution when m is substantially
larger than one in the usual case of an atypical initial state.

3.5.2 Trace Plots

This then begs the question of how one should determine the portion of a
sample to discard. Trace plots of one-dimensional summaries of the state
space are a crude but often effective way of determining burn-in. For Bayesian
MCMC sampling from a posterior distribution of trees, both BAMBE and
MrBayes produce trace plots of the log likelihood. When beginning runs at
random initial trees, it is typical for the log-likelihood to increase dramatically
as the chain rapidly approaches an area of the state space of relatively high
posterior probability before changing behavior dramatically and reaching a
plateau around which the likelihood fluctuates for the remainder of the run.
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Fig. 3.2. Trace plots in the Jukes-Cantor example. (a) Unnormalized posterior
versus index with window size w = 0.1. (b) Unnormalized posterior versus index
with window size w = 0.5. (¢) Branch length versus index with window size w = 0.1.
(d) Branch length versus index with window size w = 0.5. (e) Autocorrelation plot
of sampled edge lengths with w = 0.1. (f) Autocorrelation plot of sampled edge
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Trace plots of the log-likelihood are good indicators of minimum values for
burn-in but are insufficient on their own to assess convergence. If the chain
were stuck in a local minimum, the behavior exhibited in the trace plot would
be indistinguishable from the trace plot behavior of a well-mixing chain. Trace
plots of other one-dimensional summaries of the state space, such as parameter
values in the substitution models or the sum of all branch lengths of the tree,
should also be examined for visual evidence that after burn-in the initial
portion of the sample looks similar to the end portion.

The trace plots of h and t displayed in Figure 3.2 for the Jukes-Cantor
example provide a means to informally assess convergence. The trace plots
of the edge length in each run more clearly indicate the necessary time to
convergence. In the run with w = 0.1, we need to discard at least the first 500
sample points, and I would discard a few more to be safe, say at least the first
10% of the sample after apparent convergence. Discarding the first m = 700
points of each run suffices for this example.

For the run with w = 0.1, a 95% credibility region for the edge length
is (0.24,0.52). The post-burn-in credible region for the run with w = 0.5 is
quite similar, (0.25,0.52). Had we not discarded the initial part of the run,
the 95% credible region would have been either (0.25,4.48) or (0.26,0.62),
with right endpoints substantially too large in both cases. Of course, we could
have lessened the bias due to burn-in by either running the chains for many
more iterations or by using an initial edge length closer to the center of the
posterior distribution.

Figure 3.2 also displays the autocorrelation function of the sampled branch
lengths for both window sizes. Notice that in this example mixing is signifi-
cantly faster using the larger window size. With w = 0.5, the Markov chain
has reached approximate independence after about 40 steps. Dependence de-
creases much more slowly in the case with a smaller window. Acceptance
probabilities can offer a clue about convergence speed. In this example, up-
dates with w = 0.1 were accepted 73% of the time as opposed to only 23%
of the time for w = 0.5. Acceptance probabilities between 0.15 and 0.40 often
indicate chains that mix relatively well. This simple example suffices to show
that adjustment of tuning parameters can have a large effect on mixing prop-
erties; running slowly mixing chains for a long time can compensate. Notice
also in Figure 3.2 as well that the trace plots of the edge lengths are more in-
formative about burn-in than are the trace plots of the posterior distribution.
With larger trees, larger models, and longer sequences, it is highly advisable
to examine trace plots of many posterior summaries and to complete several
very long MCMC simulations.

3.5.3 How Many Chains?

While there is no consensus on how many chains should be run, I advocate
running several long chains from widely disparate starting values. The advan-
tage is that if the post-burn-in summaries of important characteristics of the
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target distribution are similar, there is evidence that the Markov chains are
successfully mixing. In contrast, summaries from independent chains that are
wildly different are a certain indicator that one or more chains has not reached
stationarity or that the chains are mixing so slowly that substantially longer
runs are needed to obtain more accurate calculations. If one has access to sev-
eral processors, the real time to take several long samples is the same as the
time to complete a single run on one machine. The other advantage to having
several independent estimates of posterior characteristics is that simple and
accurate estimates of Monte Carlo error are easily computed. Estimates of
Monte Carlo error from single runs depend on estimates of the dependence in
a single chain. Such estimates can vary considerably with the method used to
estimate the dependence.

3.5.4 How Often Should the Markov Chain Be Subsampled?

From a purely statistical perspective, there is nothing to gain from sub-
sampling—a loss of data represents a potential loss of information. However,
from a practical sense, because chains tend to be highly dependent, regular
subsamples of the Markov chain output will typically be just as accurate as
if the entire post-burn-in sample were saved and summarized. Practical is-
sues involving the ease of the storage and analysis of the output of a long
MCMC run often outweigh the negligible potential loss of information from
subsampling.

3.5.5 How Long Should a Chain Be Run?

There are formal methods to decide upon chain convergence that are based
on running a number of chains in parallel and stopping when variability in the
chains’ estimates of a number of scalar posterior summaries between chains
is small relative to the variability within each chain [7]. A cruder yet effective
approach is to learn from preliminary runs how much time is required to run a
chain a specified number of steps, extrapolate this to the time available (such
as overnight), run several independent chains in parallel in that time, and
calculate the Monte Carlo standard error of each important scalar posterior
characteristic from the estimates in each independent chain. If this Monte
Carlo error estimate is too big for the problem at hand, then it may be that
longer runs are necessary (or that a better proposal distribution is required).

3.6 Metropolis-Coupled MCMC

There are many strategies for improving the sampling properties of MCMC
approaches. One of the most useful is Metropolis-coupled MCMC, or MCM-
CMC [9]. The idea is to run several simultaneous chains on the state space ©.
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Only one of these chains, the cold chain, needs to have the correct stationary
distribution. The other heated chains are typically selected to have station-
ary distributions that are flatter than the stationary distribution of the cold
target chain. The heated chains are able to move more easily between regions
where the target is relatively high.

After some number of steps of each chain, a move that swaps the states
of two of the chains is proposed and accepted or rejected according to a
Metropolis-Hastings rule. This type of proposal can effectively jump the cold
chain to a different portion of the parameter space. Only the sampled points
from the cold chain are saved as a sample from the target distribution. Suppose
that the chains have unnormalized target distributions {h;} fori =1,...,m.If
the current states in chains ¢ and j are x; and x;, respectively, the probability
of accepting a proposed swap of the two states is

mm{lm} '

Generally speaking, running m chains requires m times the computational
effort that running a single chain would require. This trade-off can be worth-
while if the cold chain is very slow-mixing.

Figure 3.3 illustrates these ideas in a small artificial example. The target
function (solid line in Figure 3.3(a)) contains two separate modes of relatively
high probability separated by a region of very low probability. We are using a
proposal chain that proposes new values in a small uniform window extending
one unit below and above the current position. Crossing the valley between
the two peaks in the cold chain requires an unlikely proposal and acceptance
of several consecutive steps through the low region between the modes. The
dashed line is a single heated distribution. The same proposal distribution will
more easily cross between the two modes. In a simulation, both chains began
at the value x = 20, are updated by Metropolis-Hastings individually, and are
then followed by a proposed swap after each set of updates. The chains ran
for 100,000 cycles of updates. Figure 3.3(b) shows a histogram of the sam-
pled values that matches the target quite well. Figure 3.3(c) shows the same
sampled values in a trace plot versus the iteration number. It is clear that
the sampled chain jumped between modes many times during the simulation.
Figure 3.3(d) shows the sampled values from a regular Metropolis-Hastings
MCMC simulation in a trace plot versus iteration number. This particular
realization jumped between modes only once. Simulation-based sample esti-
mates of target characteristics will likely be inaccurate and will be highly
sensitive to the decision on when to stop the chain. A substantially longer
simulation in which the sampled chain crossed the low region several times
would be required for accurate estimation.
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Fig. 3.3. Illustration of MCMCMC. (a) The solid line shows the target function,
h. The dashed line is proportional to nl/3 (rescaled to have a similar normalizing
constant). A heated chain run under the dashed line will have the incorrect stationary
distribution but will move more freely about the region. (b) Histogram of sampled
points from the MCMCMC run. (¢) Plot of the sampled points in the MCMCMC
run versus iteration number. (d) Plot of the sampled points in a regular Metropolis-
Hastings run versus iteration number.

3.7 Discussion

MCMC has become an indispensable tool for statistical computing, with spe-
cial importance to the Bayesian approach. MCMC is especially useful for the
high-dimensional calculation problems that arise in statistical models of mole-
cular evolution. As evolutionary biologists address problems in molecular evo-
lution of increasing complexity (larger trees, genome-scale data of varied type,
more realistic and parameter-rich models of molecular evolution, accounting
for additional forms of biological interaction), most of the tools that will be
successful in providing answers to these questions are likely to be based on
MCMC computation.
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3.7.1 Other References about MCMC

MCMC is an important topic that is described in much greater detail in
many other sources and is an area of much continuing active research. Gilks
et al. have written an entire book on the topic of MCMC [10]. The books by
Robert and Cassela and by Liu on Monte Carlo methods each include several
chapters on MCMC [23, 19]. The books on Bayesian statistics by Gelman
et al. and by Carlin and Louis include extensive descriptions of MCMC |7, 3].
Joe Felsenstein’s recent book includes a chapter on Bayesian approaches to
phylogenetic inference using MCMC as well as a chapter on using MCMC to
make likelihood calculations on coalescent trees [6].
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Summary

The aim of this chapter is to provide an introduction to aspects of population
genetics theory that are relevant to current research in molecular evolution.
We review the roles of mutation rates, natural selection, ancestral polymor-
phism, and linkage among sites in molecular evolution. We also discuss why
it is possible to detect the workings of natural selection from comparing rates
of substitution for different classes of mutations along a branch in the phy-
logeny. The problem of estimating the distribution of selective effects among
newly arising mutations is given considerable treatment, as are neutral, nearly
neutral, and selective population genetics theories of molecular evolution. The
chapter does not aim to be an exhaustive description of the field but rather
a selective guide to the literature and theory of the population genetics of
molecular evolution.

4.1 Introduction

Evolution is the outcome of population-level processes that transform genetic
variation within species into genetic differences among species in time and
space. Two central goals of evolutionary biology are to describe both the
branching order of the history of life (phylogeny) and the evolutionary forces
(selective and nonselective) that explain why species differ from one another.
Since the 1980s there has been an explosion in the number and complexity of
probabilistic models for tackling the first problem, with the motivation that
to understand evolution at any level one needs to get the history right (or at
least integrate over one’s uncertainty in the matter) (for a review, see [113]).
Current Markov chain models of evolution deal with the complexities of DNA
[48, 60, 40, 119]), RNA [69, 92], codon [39, 70], and protein evolution (see
[104] for a review), as well as rate variation among sites [120, 26] and diverse
complex dependencies such as tertiary structure [85] and CpG mutational
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effects [94]. Likewise, there has been tremendous growth in using probabilistic
models for hypothesis testing and model selection. For example, it is currently
possible to exploit rate variation among codons [72, 124] and among lineages
and codons [123] to detect amino acid sites that are likely to be involved in
adaptive evolution assuming silent sites evolve neutrally and codons evolve
independently of one another.

The purpose of this chapter is to introduce population genetics concepts
relevant to the study of molecular evolution, with particular emphasis on
understanding how natural selection affects rates and patterns of molecular
evolution. Some effort is also made to discuss how population genetics models
relate to continuous-time discrete-space Markov chain models of molecular
evolution. For example, if the transformation of genetic variation is mostly
governed by genetic drift acting on evolutionarily neutral mutations that
evolve independently of one another, the outcome will be a Poisson process
with constant rate that is independent of the species size [81, 88, 51]. A Markov
chain model of evolution (perhaps with rate variation among sites) is a quite
appropriate model to capture the dynamics of such a system since the expo-
nential distribution of times among transitions corresponds to an underlying
Poisson process. If mutations are not neutral but sites evolve independently
of one another, the substitution process can remain a Poisson process that
differs among lineages depending on population size and the strength of se-
lection. Under such a model, it is possible to use variation in the rates of
substitution among sites to infer the distribution of selective effects among
new mutations [25, 73, 90]. Alternatively, if mutations are linked and either
slightly deleterious or advantageous (e.g., [81, 77, 78, 79, 59]), or if the fitness
effects of mutations vary randomly with the environment (e.g., [100, 30, 31]),
the observed patterns of molecular evolution can depart greatly from the ex-
pectations of a Poisson process with constant rate [31, 32, 33, 34, 17, 18].

We will begin with a brief historical overview of the population genetics
of molecular evolution (Subsection 4.1.1). In Section 4.2, we discuss some of
the major predictions of neutral and nearly neutral models of molecular evo-
lution. In Section 4.3, we demonstrate how the classical Wright-Fisher models
of population genetics give rise to the neutral theory of molecular evolution.
Next will follow a discussion on how ancestral polymorphism can cause depar-
tures from the expectations of the neutral independence-among-sites model
(Section 4.4). We will then discuss natural selection and demonstrate how
comparing the rate of substitution of a putatively selected class of mutations
to a neutrally evolving class can be used to infer the signature of natural selec-
tion from sequence data (Section 4.5). A discussion will follow on the effects of
a distribution of selection coefficients among new mutations on rates and pat-
terns of molecular evolution. Lastly, we investigate the effects of linkage and
selection on rates of molecular evolution. A definitive and more mathematical
treatment of the subject of theoretical population genetics can be found in
Warren Ewens’ excellent work Mathematical Population Genetics, which has
just been published in a second edition by Springer [23].
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4.1.1 Setting the Stage

To understand the relationship between population genetics and the study
of molecular evolution, one must begin at the point in history where the two
became intertwined. In their seminal paper, Zukerkandl and Pauling [126] pro-
posed that the preferred characteristic for inferring the evolutionary relation-
ships among organisms ought to be similarity at the level of DNA or protein se-
quences. Their paper, while deeply philosophical and contentious, was rooted
in the observation that the rate of amino acid evolution in hemoglobin-a and
cytochrome-c per year was roughly constant for various vertebrate species. If
DNA and protein sequences (“informational macromolecules”) accrued sub-
stitutions at a near constant rate, then the changes along the phylogeny rep-
resented a “molecular clock” that could be used for dating species divergence.
Since these changes are more plentiful and presumably subject to less scrutiny
by natural selection than morphological characters, the authors reasoned that
DNA and protein changes provide better markers for inferring evolutionary
relationships. Their paper provided a simple stochastic model of molecular
evolution whereby each site had equal probability of being substituted and
the number of substitutions that occur along a branch was proportional to
the length.

The theoretical foundation for this model (and thus for the molecular
clock hypothesis and ultimately for modern-day methods) was provided by
the “neutral-mutation drift” theory of molecular evolution, which posited that
the vast majority of molecular evolution was due to the stochastic fixation of
selectively neutral mutations [55, 63, 57, 62]. The theory concerns both vari-
ation within and between species and is summed up most elegantly by the
title of Kimura and Ohta’s seminal paper: “Protein polymorphism as a phase
of molecular evolution” [62]. In other words, the neutral theory arises from
considering the evolutionary implications of genetic drift operating on neu-
tral variation [55, 62, 58]. As we will see, the theory predicts (among other
things) that the rate of molecular evolution ought to be independent of the
population size. In many ways, the true concern of the theory is the distrib-
ution of selective effects among newly arising mutations since everything else
follows from this premise. The neutral theory is predicated upon the notion
that almost all mutations are either highly deleterious or evolutionarily neu-
tral. Highly deleterious mutations contribute little to variation within species
and nothing to the genetic differences among species. Adaptive mutations are
assumed to be very rare and to fix quickly, thus leaving neutral mutations as
the only real source of genetic variation within species that can lead to fixed
differences among species. It is important to note that the mature theory says
little about the proportion of all mutations that are neutral; rather, it states
that most mutations that go on to contribute to differences among species
and variation within species are neutral. In this sense, even very constrained
molecules such as histones can evolve neutrally. Their molecular clock just
ticks at a much lower rate than that of unconstrained molecules such as, per-
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haps, noncoding DNA. Present-day rate-variation models [120, 26] allow this
constraint parameter to vary among sites.

While the neutral theory arises as an extension of population genetics the-
ory, it is not the only population genetics theory of molecular evolution (e.g.,
[81, 100, 79, 30, 59, 82, 35, 89, 90]). In fact, the field of population genetics has
had a long-standing debate over the relative contribution of competing evo-
lutionary forces (mutation, migration, genetic drift, and natural selection) to
patterning genetic differences among species. Much of this debate has focused
on the question of how much genetic variation within species is maintained
by natural selection as well as how much of the molecular differences that we
observe among species are due to adaptive molecular evolution [64, 61, 31].

One of the most important critiques of the neutral theory has been put
forth by John Gillespie in The Causes of Molecular Evolution [31]. He used
two lines of evidence to argue that most amino acid substitutions are adap-
tive. The first is specific examples of adaptive molecular evolution in response
to environmental stress. The second is a thorough analysis of variation in the
index of dispersion (ratio of the variance to the mean) for amino acid substitu-
tions among mammalian and Drosophila species. As mentioned above, a major
prediction of the neutral model is that the pattern of substitutions along dif-
ferent branches in a phylogeny ought to be Poisson-distributed with constant
rate [81]. Gillespie conclusively demonstrated that the index of dispersion is,
on average, much greater than 1 for both sets of species (i.e., it is overdis-
persed) and that the observations cannot easily be accounted for by neutral
or nearly neutral models. He concludes that amino acid evolution occurs due
to natural selection in “response to environmental factors, either external or
internal, that are changing through time/or space.” While the specific model
Gillespie espoused [30] may not explain the overdispersed molecular clock (see
[34, 35, 17, 18]), the data are certainly not consistent with the strict neutral
model.

In fact, recent genome-wide analyses suggest quite an important role for
both adaptive and weak negative natural selection in patterning molecular
evolution in Drosophila (e.g., [91, 24, 90, 75, 98, 5, 8, 90, 38, 93, 6, 84]),
Arabidopsis (e.g., [8, 67, 4, 110, 84]), maize (e.g., [103, 14, 47]), mouse [96],
HIV (e.g., [118, 115, 121, 125, 68, 12, 19]), mammalian mitochondrial genomes
[73, 112], and humans (e.g., [46, 87, 83, 1, 41, 13, 97, 29, 50, 114]). While
many agree selection is important, there is still considerable debate as to
the relative contribution of negative versus positive selection in patterning
molecular evolution. As we will see in Section 4.6, the key to the debate
rests on rates of recombination and the distribution of selective effects among
newly arising mutations. In the next section, we will delve into the specifics of
neutral and nearly neutral models before turning to the underlying population
genetics machinery.
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4.2 The Neutral Theory of Molecular Evolution

It is Darwin [20], of course, who posited that evolution occurs as the result
of natural selection by which heritable differences that alter the probability
of survival and reproduction of organisms are passed on from generation to
generation. Sir Ronald Fisher [27, 28] and Sewall Wright [116] provided the
first mathematical models of “the Darwinian evolution of Mendelian popu-
lations” by treating genetic drift (i.e., fluctuations in allele frequencies at a
given locus due to finite population size) as analogous to the diffusion of heat
along a metal bar. In these works, Wright and Fisher also provided the first
genetic theories of evolution by deriving a formula for the probability that a
mutation subject to natural selection would become fixed in the population (a
result we will derive in Section 4.3). What they showed is that if a mutation
alters the expected number of offspring a haploid individual (chromosome)
contributes to the next generation by a small amount s so that those carrying
the mutation leave on average 1 + s offsprings and those that do not carry
the mutation leave 1 offspring on average, then the probability that a new
mutation eventually becomes fixed in the population is roughly

2s

Pr(fixation) ~ T o iNs
—e

(4.1)
where N is the effective population size of the species, 2N is the number
of chromosomes in the population, and s is on the order of N=1. If s > 0,
we say the mutation is selectively favored and that there is positive selection
operating on the mutation since as the magnitude of s increases above 0 so
does the probability of fixation (4.1). Likewise, if s < 0, we say the mutation is
selectively disfavored and there is negative selection operating on the mutation
since as s becomes more negative, the probability of eventual fixation becomes
smaller and smaller. In the neutral case (s &~ 0), we can see by applying
L’Hopital’s rule that the probability of eventual fixation is simply the initial
frequency of the mutation p = ﬁ (the mutation must have occurred in a
heterozygous form).

While Fisher and Wright laid out a great deal of the foundation, it is Motoo
Kimura who built up much of the population genetics theory of molecular
evolution. His neutral theory of molecular evolution [55, 57, 58, 61] arises from
a beautifully simple cancellation of terms: if mutations enter the population
at some rate p per locus per generation, some fraction fy are neutral, and
1 — fy are completely lethal, then the rate of evolution ky would equal the
neutral mutation rate:

ko = E(# of neutral mutations entering per generation.) (4.2)

x Pr(neutral mutation becomes fixed)
1
= 2N fop—
forgy
= fou . (4.3)
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Three major predictions or consequences arise from (4.3):

1. Neutral molecular evolution is independent of the population size and
depends only on the per generation rate of input of neutral mutations.

2. Neutral molecular evolution is linear in time, thus providing a “molecular
clock” by which the relative divergence time of different populations can
be dated.

3. Since neutral evolution occurs more rapidly in regions of low selective
constraint (high fy) and more slowly in regions of high selective constraint
(low fo), differences in rates of substitution can be used to infer functional
constraint [63].

Furthermore, it is often assumed that the number of neutral mutations that
fix in some interval of ¢ generations (substitutions) is Poisson-distributed with
rate kot.

Our goal in Section 4.3 is to understand the population genetics theory
behind equation (4.3) and, more importantly, to understand when this simple
neutral model holds and when it does not hold. For example, the assertion
that the substitution process is a Poisson process only holds if sites evolve
independently of one another [51, 108]. This will be true only if there is free
recombination among sites or if there is a sufficiently low mutation rate that
only 1 or 0 nucleotides vary at a given point in time for a non-recombining
region. High mutation rates and linkage among neutral sites can have a pro-
nounced effect, leading to the fixation of “bursts” of mutations that are ap-
proximately geometrically distributed [108, 109, 32].

It is important to mention at this point that population genetics models
of molecular evolution differ in some regards from discrete-space continuous-
time models [48, 40, 60, 119]. For example, the Poisson assertion above ignores
the possibility of multiple substitutions at the same site. The reason many
population genetics models make such an assumption is that the timescale on
which they operate is relatively short compared with the timescale on which
phylogenetic reconstruction of distantly related species is usually carried out.
Likewise, much of the theory is based on the behavior of single-locus two-allele
models, where the goal is to understand the probability of fixation of a new
mutation under various scenarios. Such a model is not rooted in the actual
A, C, T, and G of DNA but rather on the fact that at a given nucleotide site
the probability of having more than two nucleotides segregating is very low.
Likewise, if the population size and mutation rates are small, there will be few
linked polymorphic sites. Therefore, the independently evolving single-locus
model with two alleles is a reasonable place to start in modeling molecular
evolution.

4.2.1 Nearly Neutral Models of Molecular Evolution

From the beginning, it was evident that the great power of the neutral theory
of molecular evolution lay in its quantitative predictions regarding rates and
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patterns of molecular evolution. In Kimura’s original paper [55], the prob-
lems the neutral theory solved were the inordinately high rate of nucleotide
evolution inferred from patterns of amino acid evolution [126] as well as the
plentiful amounts of amino acid variation within species [43, 65]. According
to Kimura’s calculations, Darwinian evolution would produce too high a ge-
netic load on the population to account for these patterns; therefore, most
of the changes were likely neutral. Likewise, King and Jukes [63] set out to
demonstrate that “most evolutionary change in proteins may be due to neu-
tral mutations and genetic drift” by testing some of the predictions of a neu-
tral molecular evolution theory using almost all of the available data in the
world on protein, RNA, and DNA sequence variation.! One key prediction of
the neutral theory was that if proteins were more constrained than genomic
DNA, then proteins should evolve at a slower rate. If, on the other hand,
proteins were constantly being refined by positive natural selection, then the
rate of evolution of proteins would be faster than that of genomic DNA. Using
early DNA hybridization experiments coupled with protein sequence informa-
tion, King and Jukes concluded (rightly) that most proteins evolve at a much
slower rate than most regions of genomic DNA. Another key argument they
used was a near Poisson fit to the number of substitutions per site across the
gene trees of various molecules (globins, cytochrome-c, and immunoglobulin-G
light chains).

It was soon pointed out that if the neutral theory of molecular evolution
was strictly true, then the rate of amino acid evolution should be proportional
to generation time and not chronological time. Kimura and Tomoko Ohta [81]
countered with the first “nearly neutral” model of molecular evolution. This
model posits that newly arising nonlethal mutations are not strictly neutral
(s = 0) but rather have selection coefficients drawn from a distribution such
that the mean selective effect is slightly deleterious and most mutations are
in the interval (—% < s < +).2 Under such a scheme, the evolutionary fate

'King and Jukes had independently proposed a neutral theory of molecular evo-
lution, but their paper was initially rejected by Science. In the interim, Kimura’s
paper appeared, and Kimura’s results were added to the revised King and Jukes
manuscript [99].

2The definition of “nearly neutral” is somewhat of a moving target and context-
dependent. In their original paper, Ohta and Kimura [81, p.22] implicitly considered
nearly neutral those mutations in the interval (—2 < s’ < 2), where s’ = 2s.
In Ohta and Kimura’s later work [77, 78, 79, 59], the emphasis was on explaining
how slightly deleterious mutations could be considered an engine for nonadaptive
molecular evolution. Likewise, Gillespie [31] has argued that nearly neutral should
only refer to mutations in the interval (f% < s’ < 0) since slightly advantageous
mutations are helped along by selection. Ohta [80] (not surprisingly) has explicitly
reclaimed the “slightly advantageous” as nearly neutral ground by arguing that the
fate of slightly advantageous mutations is very much governed by both selection and
drift. Unless otherwise noted, we will adopt Ohta’s view and consider nearly neutral
mutations as those that are in the interval —2 <y < 2, where v = 2Ns.
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of mutations is mostly governed by genetic drift. One implication of near-
neutrality is an inverse relationship between population size N and the rate
of molecular evolution at selected sites ks. Letting f, be the fraction of muta-
tions that are selected, under the assumption that selected mutations evolve
independently of one another, the rate of evolution for a selected mutation kg
is given by

ks = E(# of selected mutations entering per generation.) (4.4)

x Pr(selected mutation becomes fixed)
2s
- 2Nf5u1 — e—4Ns

4Ns
= fs'u’l_e—éle :

We see from (4.5) that for a fixed s < 0
lim ks = 0.

N—00
The interpretation of this equation is that if mutations are slightly deleterious,
a species with a large population size will evolve at a slower rate than a
species with a small population size. Ohta and Kimura [81] posited that since
population size is roughly inversely proportional to body size and body size is
roughly inversely proportional to generation time (i.e., big animals have long
times between generations but also live at low densities), these two factors
cancel each other out to produce a rate of evolution that is close to linear
in chronological time. Kimura [59] later argued that if —s follows a Gamma
distribution with mean 1 and shape parameter § = 0.5, then the rate of
evolution will be proportional to v/N.
A very useful way of studying the consequences of natural selection on
rates of molecular evolution is by comparing the relative rate of substitution
for selected mutations (4.5) to neutral mutations (4.3)

ks fs 29
=
ko fol—e 27

letting v = 2N's. We will refer to 7y as the scaled selection coefficient, and it will
reappear when we derive (4.5) from an approximation to the Wright-Fisher
process (Section 4.5). We note that w can be interpreted as the expected
dn/ds ratio assuming silent mutations are neutral, replacement mutations
have the same selective effect, and mutations evolve independently of one
another. Assuming f, = fo, if s = —1 x 10~* and the population size is small
(N = 1000), the rate of evolution at selected sites is w = 0.81, the rate of
evolution at neutral sites, which we might refer to as a modest reduction.
On the other hand, if s does not change and the population size is large
(N =10,000), then w = 0.074 and we would observe a large reduction in the
substitution rate. In Figure 4.1, we plot the rate of substitution for selected
mutations as compared with neutrality assuming fs = fo.
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Fig. 4.1. Effect of natural selection on rates of molecular evolution. The z-axis is

the scaled selection coefficient for new mutations, and the y-axis is the relative rate
of substitution as compared with neutrality. Note that the y-axis is on a log-scale.

4.3 Wright-Fisher Model

4.3.1 No Mutation, Migration, or Selection

Consider a diploid population of constant size N (i.e., a population of 2N
chromosomes) with discrete nonoverlapping generation [116, 28]. The popu-
lation in the next generation is produced by randomly pairing gametes from
an infinitely large pool of gametes produced by the current population. Focus
on a neutrally evolving locus A with two alleles A; and As, and assume that
there is no mutation between A; and As. Let X (¢) be the number of chromo-
somes in the population that carry the A; allele at generation ¢. The collection
of random variables {X (¢)} for ¢ = 0,1,... is a discrete-time discrete-space
Markov chain with state space {0, 1,...,2N}. The transition probability P;;
for going from state i to state j comes from binomial sampling;:

Py =Pr(X(t+1)=j | X(t) =) = (ij> (2jv>J (1 - ij)w_j . (46)

This model is known as the Wright-Fisher model of population genetics, and
the stochastic sampling of gametes from generation to generation is known
as genetic drift. It is easy to verify that X(¢) = 0 and X(¢) = 2N are ab-
sorbing states (i.e., Poo = Panyan = 1), corresponding to loss (X () = 0)
or fixation (X(t) = 2N) of the A; allele. It is also relatively easy to show
that all other states (1,2,...,2N — 1) are transient. This conforms with our
biological intuition that if a population has 0 copies of allele A; in generation
to, Pr(X(¢t) =0) =1 for all ¢ > ¢,.
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An implication of the Wright-Fisher model is that each segregating neutral
mutation in a population is eventually fixed or lost. The stochastic fixation of
neutral mutations (along with the fixation of selected mutations) thus under-
pins molecular evolution. It is then of immediate interest to find the probabil-
ity that a mutation initially at frequency p = % is eventually fixed in the
population. The expected gene frequency in generation ¢ + 1 given the gene
frequency in generation ¢ comes directly from the binomial model for gametic

sampling:

X(t+1) SNl X ()
E(2N|X(t)> 2(1)\1 TN

Similarly, the variance in gene frequency is

X(t+1) X(t)(1— X (1))
1% <2N | X(t)) = A

The first result implies that for the Wright-Fisher model without mutation,
the expected change in allele frequency from generation to generation is zero
(i.e., the X (t) process is a Martingale). We can thus think of the change in
gene frequency as a random walk without bias. As a result, we might intuit
from symmetry alone that the probability of eventually fixing the A; allele
should equal the initial frequency of the A; allele in the population (i.e., p).

A more rigorous approach is to set up a set of linear recurrence equations
that the Wright-Fisher process must satisfy [74, p. 15]. Let p; be the proba-
bility that a population that starts with j copies of the A; allele (X (0) = j)
eventually fixes the A allele (i.e., the probability that the process reaches 2N
before it reaches 0). Clearly, pg = 0 and pay = 1. By exploiting the Markov
property of the system, we can write down the following set of equations:

2N
b=y fori= N1 (7
j=0

The reason our model must satisfy these equations is that once the process
enters state j, it “forgets” that it had previously been in state i and the
process is restarted. The probability of reaching state 2N before state 0 is
pj, and by weighing the p;’s by the probability of transitioning from state 4
into state 7, we obtain a set of 2N — 1 equations (4.7) for 2N — 1 unknowns
(p1,p2,- .., p2n—1). By substituting (4.6) into (4.7), we verify that p; = ﬁ
is the non-negative solution to the system of equations. Therefore, the prob-
ability of eventual fixation of a neutral mutation is

1

p1= ON (4-8)
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4.3.2 Rate of Fixation of Neutral Mutations

Now consider a process whereby in each generation a Poisson number of mu-
tations occurs at a rate g = 2N fop, where fou is the generation neutral
mutation rate per locus. It is assumed that each mutation occurs at a pre-
viously invariant DNA site [58, 107]. We will now consider the rates and
patterns of neutral molecular evolution under two assumptions: (a) complete
independence among sites [58, 21, 22, 89] and (b) complete linkage among

sites [107].

Independence among sites

Following [21, 89], model the mutation process as starting a Poisson number
of new Wright-Fisher processes each generation. Let X;(t) be the state of the
process (frequency) at site j at time ¢, where ¢ is measured as the time since
the mutation at site j originated in the population (i.e., X;(0) = 5% for all
7). It is assumed that mutations {i = 1,2,...} evolve independently of one
another so that X; processes are i.i.d. Considering some absolute interval of
time (0,77, let M; for i = 1,2,...,T be the number of mutations that enter
the population in generation 7 that are destined to be fixed. The time of entry
of mutations that eventually fix in the population is known as the origination
process [33, 88, 51]. Since each mutation has probability p; = ﬁ of eventually

fixing in the population and the trajectories X7, X5, ... are independent of
each other, M; for i = 1,2,...,T are i.i.d. filtered Poisson random variables
with rate 9 )

(M;) 5P1 wfo 5N wfo

Furthermore, the total number of mutations K = EiT:1 M; that enter the
population during (0,7] and eventually fix is also a Poisson random variable
with rate E(K) = pufoT by the additivity property of independent Poisson
random variables.

It is important to note that K is not the actual number of mutations that
fix during the given interval of T' generations (known as the fization process
[33]) but rather the number of mutations that enter during this interval and
eventually become fixed. In the case of independently evolving sites, the origi-
nation process and the fixation process will have the same distribution as long
as the time intervals are exchangeable. An example of when the time intervals
would not be exchangeable is a difference in mutation rates for different time
intervals.

Complete linkage among sites

Birky and Walsh [7] showed that the expected substitution rate for neutral
mutations is not affected by linkage to neutral, deleterious, or advantageous
mutations. Here we follow Cutler’s discussion of the problem [16] closely to
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show that the distribution of the number of mutations that ultimately fix in
the population remains a filtered Poisson process with rate pfo [81]. This was
originally shown using reversibility arguments by Sawyer [88] and Kelly [51,
p. 158].

Assume that mutations enter at a Poisson process rate g = 2N fou, and
write X, (t) for j =1,2,... to denote the frequency of the j process at time ¢
since the origination of mutation j. Assume complete linkage among sites and
write fj(x | t)dt to denote the Pr(X;(t) = x). Let us introduce an indicator
variable that tracks whether a given mutation becomes fixed in the population:

~J 1 if mutation j fixes in the population
7710 otherwise.

Since the number of neutral mutations on a chromosome does not alter the
probability of fixation, E(I;) = p; for all 5. Likewise, since the expected change
in frequency from generation to generation is 0, the expected frequency of the
J process is

BOGW) = [ afi(e | e = BOG0) = 1.

Now consider two mutations, which we arbitrarily label j = 1 and j = 2,
and assume mutation 1 is older than mutation 2. Consider the probability
that both mutations become fixed (E([;l2)). For this to happen, mutation
2 must occur on a background that contains mutation 1. The probability of
this occurring is the frequency of the first mutation at the time the second
mutation originates, X1 (¢). The marginal probability that mutation 2 fixes is
simply its initial frequency X5(0) = p;. Therefore, the probability that both
mutation 1 and mutation 2 fix in the population is given by

E(I 1) = Pr(mutation 2 fixes) Pr(mutation 1 fixes | mutation 2 fixes)
= Pr(mutation 2 fixes) -

Pr(mutation 2 arose on a chromosone containing mutation 1)
1
:pl/ xfi(z | t)dx
0

Since the probability that both mutations fix is shown to be the product of
the probability that each mutation fixes alone, the random variables X (t)
and X5(t) must be independent. This implies that linkage among neutral
mutations does not affect the neutral rate of evolution. Likewise, since X7 and
X, are independent, the origination process remains a filtered Poisson process.
The fixation process, on the other hand, does not remain a Poisson process
in the presence of linkage. Informally, one can reason that the time intervals
are no longer exchangeable. As has been discussed by Gillespie [31, 33] and
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Fig. 4.2. Population dynamics can influence of molecular evolution. Two popula-
tions are split, evolved for ¢ = 10N generations, and a random chromosome from
each is compared. (a) Distribution of the number of differences between a pair of
random sequence from two populations that separated 10N generations ago and
accrue mutations at rate yu = % The solid line is the expected distribution from a
Poisson model. (b) Variation in branch length for the process due to random coa-
lescence in ancestral population for £ = 10/N. The black line is the expected branch
length (measured along the horizontal axis), and the grey lines are 100 replicates of
the process.

Watterson [108, 109], the fixation process for the neutral infinite-sites model
is a “burst” process whereby a geometric number of mutations fix when a
chromosome reaches frequency 1 in the population. The effect of correlation
in the substitution process is to reduce the efficiency of statistical methods
for phylogenetic reconstruction [45].

4.4 Ancestral Polymorphism and Neutral Molecular
Evolution

The analysis in Section 4.3 is predicated upon being able to follow the history
of the entire population. The purpose of this Section is to derive the mean and
variance of the sampling distribution for the number of nucleotide differences
K between a sample of two DNA sequences drawn from a pair of populations
that diverged t generations in the past. The full distribution for a sample of
size n = 2 can be found in [102].

Measuring time into the past so that 0 is the present day, let

K=K+ Ky+ Ky,

where K7 and K5 are the number of mutations that accumulate on the first
and second sequences since time ¢ and K 4 is the number of fixed differences
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due to ancestral polymorphism. Assuming a molecular clock, K; and Ky are
Poisson with rate fout. Without loss of generality, assume fy = 1. It will be
shown that K4 is a geometrically distributed random variable so that the
sampling distribution of K is not Poisson (see Figure 4.2). We will also see
that the degree to which K will differ from a Poisson random variable with
the same mean will depend on the parameters ¢ and N4, where N4 is the
ancestral population size.

We will begin by considering the distribution of the number of differences
for a sample of two chromosomes drawn from a panmictic population. This is
equivalent to deriving the distribution of heterozygosity under an infinite-sites
model and is a well-studied problem in population genetics (e.g., [56, 58, 107]).
We will use the machinery of coalescent theory [44] to address the issue.

4.4.1 Average Pairwise Distance

Consider a sample of size n = 2 chromosomes drawn from a randomly mat-
ing population of size 2N chromosomes. Let S5 be the number of nucleotide
differences between two sequences at our locus of interest.

The probability that a random pair of chromosomes find a common an-
cestor in the previous generation is ﬁ Therefore, the distribution of the
number of generations M until the two chromosomes find a common ancestor

is a “first success” distribution with mean 2N:

Pr(M =m) = (1 - in)m_l (2}0 . (4.9)

If N is large, (4.9) can be approximated using an exponential distribution.
Measuring time in units of 2N generations, the random variable Tp = %
follows the exponential distribution with rate 1,

Pr(M <2Nz)=Pr(Tx <z)~1-—e "

The random variable T5 is known as the coalescent time for a sample of
size n = 2 and describes the waiting time until two random chromosomes from
a population coalesce (or merge) in a common ancestor. As one follows the
two sequences back in time until the coalescent event, each accrues mutations
independently at a rate g = 2Ny per unit of time assuming a Poisson model
of mutation. This assumption implies that the waiting time until a mutation
(Ta) occurs along either chromosome is exponential with rate 6. By the usual
result for competing exponentials

0

Likewise, because of the memoryless property of the exponential distribution,
once a mutation event occurs along either chromosome, the coalescent process
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is restarted. Therefore, the distribution of the number of mutations before a
coalescent event for n = 2 is geometric:

k
Pr(Sy = k) = (9i1> 9% (4.10)

The expected value and variance of S5 are easily shown to be
E(Sy) =6, V(Sy)=6%+6. (4.11)

Equations (4.10) and (4.11) were first derived by Watterson [107] when he
found the distribution of the number of segregating sites S; in a sample of
size i. Li [66] also derived these results while finding the transient distribution
of S;. For our problem, K4 = Sy with N replaced by N 4.

Recall that K is the sum of two independent Poisson random variables,
each with mean pt, and a geometric random variable with mean 04 = 4N4pu,
where N4 is the size of the ancestral population. This implies that

E(K) =2u(t+2Na), V(K)=2u(t+2Ns+8N3pu) . (4.12)

The index of dispersion (the ratio of the variance to the mean) is one way to
assess the concordance between K and a Poisson random variable with the
same mean [81, 31]. For K it is easy to show that

SN/%M - QA
t+2N4 1+7°

R(K)=1+

where 7 = t/2N 4. Figure 4.2 illustrates that ancestral polymorphism can lead
to deviations from the Poisson expectations. In this figure, we have simulated
10,000 comparisons of n = 2 sequences drawn from a pair of populations
that diverged ¢ = 10N generations (7 = 5) in the past. Mutations occur
in each daughter population as a Poisson process with rate u = NLA per
chromosome per generation (64 = 4). Note that the distribution of K has a
much larger variance than expected from the Poisson prediction (E(K) = 24)
with R(K) = 1.666.

4.4.2 Lineage Sorting

Ancestral polymorphism can also lead to the phenomenon of “lineage sort-
ing”, where the genealogical tree for a sample of DNA sequences has a differ-
ent branching order than the tree relating the history of population-splitting
events. That is, if we have a sample of three sequences from three species
{4, B,C} and the tree relating our three populations is ((A4, B),C), there
is some probability of recovering discordant gene trees that are of the form
(A,(B,C)) and ((A4,C), B). (For an excellent discussion of the problem from
a population genetics perspective, see [86]). The probability of recovering dis-
cordant trees in the three-taxon case is relatively easy to calculate using coa-
lescent theory.
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Assume that the population size N of three species is the same and has
been constant for the history of {A, B,C}. Let ¢; be the time in the past in
units of 2N generations when populations A and B split and let t5 be the time
in the past when the ancestral populations of A and B split from C. Write
Tap to denote the coalescent time of the sequence from species A and from
species B and define Ty and Tpc analogously. The probability that a gene
tree will be concordant is the probability that A and B coalesce with each
other before either coalesces with C. That is, the probability of concordance
is given by Pr(min(Tap,Tac,Tec)) = Tas.

The first coalescent event in the history of {A, B,C} cannot occur before
t1. Between times t; and to, only coalescent events between A and B are
allowed, and after to all three lineages are equally likely to coalesce with one
another. Letting t = to — t1, we can write

Tap =1t + X1,
Tpo =t1 +t+ Xo, (4.13)
Tac =t1 +t+ X3,

where X7, X5, and X3 are i.i.d. exponentially distributed random variables
with rate 1. The justification for (4.13) comes from the results derived above
that for large N the coalescent time for a sample of two sequences is expo-
nential with rate 1. Recalling that the minimum of k independent exponential
random variables is exponentially distributed with the sum of the k rates, we
can also write

min(TBC, TAC) = tl +1+ Y s

where Y is an exponential random variable with rate 2 that is independent of
X1. Therefore,

Pr(concordance) = Pr(min(t + Y, X1) = X1)
= Pr(mm(t +Y, Xl) =X; | X; < t) X PI’(X1 < t) +
Pr(min(X;,Y) = X1 | X1 >t) x Pr(X; > ¢t)

1
:1><(lfe*t)+§><e*t

2
=1 36 .

This simple example illustrates that to understand molecular evolutionary
patterns on relatively short timescales, one must model the population genet-
ics dynamics.

The question of estimating ancestral population genetics parameters has
a rich history. Equations (4.12) were first derived by Takahata and Nei [101].
The full distribution of K in the case of one sequence from each of a pair as
well as each of a triplet of species is given in Takahata, Satta, and Klein [102,
eqs. (3), (6)]. As they discuss, these probabilities can be used for maximum
likelihood estimates of the species divergence time and ancestral population
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size from multilocus data. Likewise, Yang [122] and Wall [106] have developed
methods that incorporate rate variation among loci as well as recombination.
The effects of population growth and differences in population size on levels
of variation within and between a pair of species are taken up by Wakeley
and Hey [105]. Likewise, a Bayesian method for distinguishing migration from
isolation using within- and between-species sequence data is presented by
Nielsen and Wakeley [71].

4.5 Natural Selection

The Wright-Fisher machinery can be adapted for modeling other evolution-
ary forces by specifying the joint effects of all forces on the change in gene
frequency per generation. This is usually done in a two-step process. First
an infinite gamete pool is assumed such that the frequency of the A, allele
changes in the gamete pool deterministically due to mutation, selection, and
other factors from some value p = ﬁ to p’. The effect of genetic drift is
modeled using an equation analogous to (4.6), where p’ depends on ¢ and the
evolutionary forces being considered:

Moy a-mn . a

In modeling natural selection, one needs to specify the fitness of the three
relevant genotypes. Let the expected relative contribution of the A; Ay, Ay As,
and Az As genotypes to the next generation be 1, 1 + 2sh, and 1 4 2s. (Note
that h is known as the dominance parameter and summarizes the effect of
selection on the heterozygote fitness.) The effect of natural selection is to bias
the chance of picking an allele A5 at random from the next generation. The
expected proportion of offspring left by each of the three genotypes is

AjAy 7(1 :p)Q, A1 Ay : 2p(1 —p%l ki 2Sh), A Ay : 7(1 +Es)p2

w w w
where w = (1 — p)? + 2(1 + 2sh)p(1 — p) + p*(1 + 2s).

Therefore, the frequency of the A5 allele after one round of natural selec-
tion is

Py = Pr(X(e+ 1) = X0 =) = (

)

p?(1+2s) + (1 + 2sh)p(1 — py)

= .
As we will see below, the number of selected mutations that fix in the history
of a population under the assumption of recurrent mutation and selection is
also Poisson and depends on the parameter v = 2N's and h.

Pt41 =

4.5.1 Diffusion Approximation

To study the Wright-Fisher model with selection (and other complicated popu-
lation genetics models), it is often more convenient to work with a continuous-
time continuous-space approximation to a discrete process. The natural state
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space is the frequency of a mutation (0 < z = E—J(\,) < 1), and the natural time
scaling is in units of 2N generations. Fisher [27] first noted that the action of
genetic drift on a locus could be modeled using the same differential equations
used to model the diffusion of heat. The classical problem of finding the sta-
tionary distribution of allele frequencies visited by a mutation under a variety
of selective, mutation, and demographic models was taken up by Fisher in
The Genetical Theory of Natural Selection [28] as well as by Sewall Wright
[116, 117]. The time-dependent solution of what was later recognized as the
Fokker-Planck or Kolmogorov forward equation was given in [52]. A definitive
treatment of the subject is given in Kimura’s classic paper [54]. We will now
proceed to derive the stationary distribution, omitting many technical details
that can be found by the interested reader in [54, 49, 23].

As discussed in Karlin and Taylor [49, p. 180], as N — oo, the Wright-
Fisher process has a limiting diffusion that depends on the mean Ms, and
variance Vj, of the change of gene frequency per generation. My, will usually
depend on the specifics of the model that produces the change in the gamete
pool (mutation, migration, selection, etc.), while Vs, is almost always given
by the effects of binomial sampling. It is important to note that neither Mg,
nor Vy, depend on time.

Write ¢(z | p, t)dx to represent the conditional probability that a mutation
at frequency p goes to frequency z in time ¢. In this equation, p is fixed and x
is a random variable. When dz = 5 is substituted, f(z | p,t) = ¢(z | p,t) 55
gives the approximate frequency of mutations in the interval  + dx for 0 <
x < 1 [54]. As discussed in [54], ¢(x | p,t) is the solution to the Kolmogorov
forward equation

0 , 1 92 9
W = iﬁ{v&r(ﬁ(x | p,t)} — %{thﬁ(m | p,t)} . (4.15)

A very useful consequence of (4.15) is that we can solve for the stationary

or time-independent solution (if it exists) of ¢(z | p) by setting W =0

)

b(z) = %exp (—2/%‘5:) , (4.16)

where C' is a constant chosen so that [ ¢(z)dz = 1. The time-independent
solution of (4.15) was first found by Sewall Wright [117].

Ezxample 4.1: Reversible mutation neutral model

Consider a neutral model with reversible mutation so that A; — As at rate p
and A, — A; at rate v per generation. Let x; represent the frequency of the
A allele at time ¢,

Tiy1 = (1 — X))V — Tyfh

implying that Ms, = (1 — x)v — (1 4 u). The variance of the change in gene
frequency is
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~x(l—x)
Vir="on

Plugging Ms, and Vs, into (4.16), it is relatively straightforward to show that
¢(I) — CIANVfl(l o x)4Nu71 .

Recognizing that this is the density of a Beta distribution with parameters
I'(ANv+4Np)

4Nv and 4N, the necessary constant is C' = TUN) TN -

4.5.2 Probability of Fixation

One of the most useful applications of the diffusion approximation is to cal-
culate the probability of fixation of a mutation given its frequency in the
population. To do so, we will follow [53] and use the Kolmogorov backwards
equation to solve for ¢(x | p,t). In this equation, we write the differential
equation with respect to p varying, and the model is equivalent to running
the process backwards in time (i.e., reversing the diffusion from z to p). The
Kolmogorov backwards equation is

0p(x | p,t) _ Vop 0°6(p| 1)

9¢(z | p,t)
ot 2 Op? ’

+ M5p ap

(4.17)

If we substitute in = 1, the solution to equation (4.17) gives us the probabil-
ity of a mutation reaching fixation by time ¢ given an initial frequency p. We
will follow Kimura [54] and refer to this probability as u(p,t). The boundary
conditions for solving (4.17) are u(0,¢) = 0 (i.e., probability of reaching 1
before 0 is 0 if p = 0) and u(1,¢) = 1.

Again, following [54], by letting ¢ tend towards infinity, we can find the
probability of ultimate fixation:

u(p) = tli)rglo u(p,t) .

For the probability of ultimate fixation, u(p), the left-hand side of (4.17) is 0,
and thus the solution satisfies

Kimura [53] showed that the solution to this equation is

ulp) — fop G(x)dz
() = fol G(z)dx ’

G(z) = exp <2 Aé&: d:v) .

where
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4.5.3 No Selection

Recall that in the case of no mutation and no selection, Ms, = 0 and Vy, =
%. This implies that G(z) = 1 and u(p) = p. This is the exact result we
derived in a different way above, which states that the probability of ultimate
fixation of a neutral mutation is given simply by its frequency.

4.5.4 Genic Selection

In the case of genic selection, h = 0.5 and the fitnesses of the individual
genotypes are {1,1 + s,1 + 2s}. Letting = be the frequency of the selected
allele,

w v 1+ 2xs

If s is small, Ms, ~ sz(l — z), G(z) = exp(—4Nsx), and u(p | s) =
1—exp(—4Nsp)
1—exp(—4Ns) ~
tion 1s

M;, — 2%(1 +2s) + (} +s)z(l —x) sz(l —x)

This implies that the probability of fixation of a new muta-

1 1—e 2 2s
u(2N | 8) = ] _o-iNs ° ] _ o—4Ns
using the fact that e* ~ 1 + z if  is small.
Since the mutation process for both selected and neutral mutations is Pois-
son, their relative substitution rates are given by the ratio of the probabilities
of fixation assuming independence among sites. Let w equal the ratio of the

probability of fixation of a selected mutation per selected site relative to the
probability of fixation of a neutral mutation per neutral site:

a0 Lg%
foulp|s=0) fo 5% fol—e27"

As previously mentioned, w can be interpreted as the expected dn/ds ratio
assuming silent mutations are neutral. We will assume fy = f, for the remain-
der of the chapter (for coding DNA). As we see from Figures 4.1, 4.3, and 4.5,
even modest amounts of natural selection can have a profoundly strong effect
on rates of substitution. For example, it has been estimated that the historical
effective population size of humans is close to N = 10° (for a review, see [106]).
This implies that sites where a mutation would lower the expected number
of offspring an individual contributes to the next generation by as little as
0.0025% (v = —5) would not evolve at any appreciable rate (w < 0.01).

In the case of positive genic selection, as s becomes large, the probability
of ultimate fixation for a new mutation is well-approximated by u ~ 2s and
the expected ratio of substitution rates for selected to neutral mutations by
w = 27. This implies that if mutations at some class of sites increased the
expected number of offspring by as little as 0.0025% (y = 5), they would
evolve at 10 times the rate of neutral mutations.
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Fig. 4.3. Effect of dominance and selection on rates of molecular evolution.

4.5.5 Dominance

In the case of general selection, it follows directly from the Wright-Fisher
model that My, =~ s(h + (1 — 2h)x)xz(1 — x) if s is small. This implies that
G(z) = exp(—4Nshx + 2Ns(1 — 2h)2?) and

2
f(;D 672'yshr+'\/(1 —2h)x dx

u(p) o fOl e—2vshz+vy(1-2h)2? .. ’

This integral can be evaluated numerically to investigate the effect of het-
erozygous fitness on rates of molecular evolution. As we see from Figure 4.3,
the most profound effects occur when mutations are selectively favored (v > 0)
and produce heterozygote advantage (h > 1). This condition is known as over-
dominance and such a mutation is said to be subject to balancing selection. In
an infinitely large population, overdominance leads to a stable equilibrium in
gene frequency such that both alleles are maintained in the population indef-
initely. In a finite population, though, higher heterozygote fitness translates
into a higher substitution rate relative to neutrality as well as relative to genic
selection (h = 0.5). The reason for these perplexing results is that having a
high heterozygote fitness decreases the probability that a mutation will be lost
from the population and thus increases the probability that it will ultimately
become fixed in the population.

Another interesting case to consider is that of a mutation whose fitness
relative to the wildtype depends on whether it is in heterozygous or homozy-
gous form (h = —0.50). If the mutation is deleterious in homozygous form but
advantageous in heterozygous form, the mutation will have a slightly higher
rate of fixation relative to the case when the heterozygote has intermediate
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fitness (h = 0.5). Alternatively, a beneficial mutation in homozygous form
that produces heterozygotes that are less fit than either homozygote will have
a lower substitution rate. In interpreting these results, it is important to re-
member that in estimating w we are assuming independence among sites. As
we will see below, linkage among selected sites can cause interference effects
that will counter the single-site dynamics illustrated in Figure 4.3. This is
particularly true in the case of strong dominance.

4.6 Variation in Selection Among Sites

Understanding how the distribution of selection coefficients among newly aris-
ing mutations affects the rates and patterns of molecular evolution has been
a focus of extensive research in theoretical population genetics. In a series of
papers, Tomoko Ohta (along with Kimura) [81, 76, 77, 78] first investigated
the molecular evolution of “nearly neutral” mutations and found that their
behavior was quite different from that of strictly neutral mutations (v = 0).
In particular, she showed that if there is a high rate of input of slightly delete-
rious mutations (—2 < v < 0) into a population, then this class of mutations
can contribute significantly to the overall substitution rate even though these
mutations are slightly less fit than the existing wildtype allele. As discussed in
Section 4.2, Ohta and Kimura also demonstrated that a nearly neutral model
would predict a negative correlation between population size and rate of mole-
cular evolution since natural selection is more efficient in a larger population.

The original work of Ohta and Kimura went on to inspire a plethora of
nearly neutral, nonneutral, and fluctuating-environment population genetics
theories of molecular evolution. For example, Ohta proposed the exponential-
shift model [79], where —s follows an exponential distribution among new
mutations (the term shift is used since s is relative to the wildtype allele and
the distribution must shift after an allele fixes in the population). Likewise,
Kimura [59] suggested a Gamma-shift model that conveniently had sufficient
mass near s = 0 to account for several neutral and nearly neutral predictions
[61, 31]. Ohta and Tachida [82] also proposed a fixed fitness model, where
the distribution of s was Gaussian and independent of parental type (a so-
called house-of-cards model). These models have been used to argue that if
a substantial proportion of slightly deleterious mutations are input into the
population, the rate of fixation contributes significantly to the proportion of
mutations that fix in the population. It is important to note, though, that the
conclusion comes directly from assumptions regarding the functional form of
the distribution of selective effects among sites. Since there is no biological
reason to favor one distribution over another a priori, in practical applications
it is important to be catholic on the matter and consider several potential
candidate distributions.

Recently, two methods have come on the market for estimating the distri-
bution of selective effects among new mutations. Nielsen and Yang [73] have



4 Population Genetics of Molecular Evolution 85

developed a likelihood-based method for use with divergence data that consid-
ers ten different models (e.g., constant, normal, Gamma, exponential, normal
+ invariant). (A similar method was suggested by Felsenstein [25] but to our
knowledge not fully implemented.) Nielsen and Yang applied their model to a
data set of eight mtDNA primate genomes and found that of the models con-
sidered, a normal or Gamma-shift model with some sites held invariant was
the best fit to data (and significantly better than an exponential distribution
[79]). Likewise, Stanley Sawyer and colleagues have developed a method for
fitting a normal-shift model to polymorphism and divergence data [90] and
applied it to 56 loci with polymorphism from Drosophila simulans and diver-
gence data relative to a D. melanogaster reference strain. In these models, it
is assumed that selection coefficients at a given site are constant in time and
do not depend on the nucleotide present. Below we present a brief analysis of
the normal-shift model and discuss the findings of Nielsen and Yang [73] and
Sawyer et al. [90] in light of the analysis.

4.6.1 Normal Shift

Assume that we starts a Poisson number of Wright-Fisher processes at rate
2N i per generation and that these processes do not interfere with one another.
The number of processes that fix for the selected mutation in some interval
of time t will be Poisson with rate

E(K | v) = 2N ptu(s)
2y
- utl —e~2v
= pitk(y).

Likewise, if mutations have a distribution of selection coefficients such that
the probability that a mutation has selection coefficient v is governed by f(7),
then the number of mutations that fix will be Poisson with rate

oo

Emvzm/ k() () d (4.18)

— 00

We can now calculate some statistics of interest. For example, the distri-
bution of selection coefficients among fixed mutations (f is for “fixed”) is

kM) f(v)dy
2 = T e

This implies that the average selection coefficient of substitutions can be easily
computed as

(4.19)

Ef(y) = / h o (y)dy - (4.20)

— 00
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Fig. 4.4. A Gaussian model (“normal shift”) for the distribution of selection co-
efficients among mutations [90]. In this example, the selection coefficient of new
mutations is normally distributed with mean y = —7 and standard deviation o = 5.
In this example, 68.9% of substitutions are adaptive (dark grey area), 30.7% are
nearly neutral, and 0.4% are deleterious.

Likewise, the proportion of fixed differences that are nearly neutral (using the
definition of nearly neutral as —2 <~ < 2) is

:Lﬁgkh&ﬂvﬁh
JZ k(N f(y)dy

and the proportion of fixed differences that are positively selected (and not
nearly neutral) is given by the tail probability

s k() f(y)dy
P =210 = 55 oy

In Figures 4.4 and 4.5, we explore the effects of a Gaussian model for the
distribution of selection coefficients among newly arising mutations. In Figure
4.4, mutations are assumed to follow a normal distribution with mean y = —7
and standard deviation o = 5. Using (4.21) and (4.22), we can estimate the
proportion of substitutions that are nearly neutral and adaptive via standard
numerical integration (grey areas under the solid curve in Figure 4.4). We note
that in this example the vast majority of mutations are deleterious (> 91%
are below 0), while most of the substitutions (fixed differences) are positively
selected: 92.8% are above v = 0, and 68.3% have a selection coefficient above
~ = 2. The average selection coefficient of fixed mutations is a (surprisingly)
high v = 3.49.

pr(=2<y<2) (4.21)

(4.22)
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Fig. 4.5. Effect of variance in the distribution of selection coefficients among newly
arising mutations on rates of molecular evolution. In this figure, p is the mean of
the distribution of selective effects.
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Fig. 4.6. Proportion of adaptive substitutions (s > %) as a function of the mean
of the distribution of selection coefficients for new mutations p and standard devi-
ation o. The black point represents the estimated mean and variance for a typical
Drosophila gene [90].

The fact that mutations differ in their selective effects also has a strong
implication for interpreting the w ratio. In Figure 4.5, we plot the expected w
ratio for varying levels of selection (where the x-axis is the average selected ef-
fect of the new mutation) and variability among mutations assuming fs = fo,
where o corresponds to the standard deviation of selection coefficients among
new mutations. In the case of moderate variance o = 6, as long as the average
selective effect of newly arising mutations is greater than —5, the w ratio will
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Fig. 4.7. Proportion of nearly neutral substitutions (|s| < &) as a function of the
mean of the distribution of selection coefficients for new mutations p and standard
deviation o. The black point represents the estimated mean and variance for a typical
Drosophila gene [90].

be greater than 1 (even though most mutations are deleterious). This explains
a perplexing phenomenon that is observed in day-to-day analysis of DNA se-
quence evolution: namely, how it is that one can detect positive selection in
the first place if most of the amino acid sites in a protein are rather con-
strained. The answer is that natural selection is extremely efficient at fixing
even slightly favored mutations, so that as long as there is some reasonable
fraction of mutations that are adaptive, the average rate of fixation for se-
lected sites (e.g., amino acid sites) may outstrip the neutral rate of evolution.
In Figure 4.6, we plot the proportion of fixed differences that are adaptive
as a function of both the average selective effect of new mutations (u) and
standard deviation (o). We note that as long as the standard deviation among
newly arising mutations is greater than 6, most of the substitutions will be
adaptive even if, on average, mutations are extremely deleterious. The com-
parable contour plot for nearly neutral mutations is given in Figure 4.7. These
simple results bolster the idea that comparing the rate of substitution for dif-
ferent types of sites in protein-coding genes is an effective way of detecting
positively selected sites.

The results of Sawyer et al. [90] bear a strong resemblance to the pattern
we have just described. They estimated the distribution of selective effects
among new mutations in a typical Drosophila gene to have mean y = —7.31
and o = 6.79. This implies that close to 97.1% of amino substitutions in a
typical Drosophila nuclear gene are of positively selected mutations (y > 0),
with 84.7% being clearly adaptive, v > 2; see (4.22). Furthermore, close to
15.2% of substitutions are of “nearly neutral” mutations (—2 < v < 2), with
only 2.7% being “slightly deleterious” (—2 < v < 0) mutations while 12.4% are
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“slightly advantageous” (0 < v < 2). Lastly, the average selection coefficient
of substituting mutations is 5.67; see (4.20). The black disks in Figures 4.6 and
4.7 correspond to the Sawyer et al. estimate of u and o for Drosophila. These
results are consistent with previous findings of adaptive protein evolution in
Drosophila (e.g., [95, 24, 8, 84]).

4.6.2 Linkage

One interpretation of the normal-shift model is that of “Darwin’s wedge” at
a molecular level [90]. As Darwin wrote in The Origin of Species [20, cp. 3]

In looking at Nature, it is most necessary to keep the foregoing con-
siderations always in mind never to forget that every single organic
being around us may be said to be striving to the utmost to increase
in numbers... . The face of Nature may be compared to a yielding sur-
face, with ten thousand sharp wedges packed close together and driven
inwards by incessant blows, sometimes one wedge being struck, and
then another with greater force.

In this passage, Darwin views natural selection as competition for fixed re-
sources leading to rapid turnover of species. That is, one wedge forces another
out in order to fix its claim to a space in a cramped environment. At a mole-
cular level, the metaphor works well: a slightly favored mutation sweeping
through the population acts as a wedge to displace the existing alleles at a
given locus. The efficacy of such a wedging scheme, of course, is predicated
upon the frequency of favored wedges. If there are too many favored muta-
tions competing for fixation at a given locus, they will knock each other out
of competition and the efficacy of selection can be greatly reduced. In many
ways, the fact that one can detect positive selection in the face of interfer-
ence among selected sites is in fact stronger evidence for a selective model of
molecular evolution. That is to say, if one estimates that the average selec-
tion coefficient of fixed mutations is v = 5.67 in the presence of interference,
the true selection coefficient on the mutation must be higher. There is rela-
tively strong support for the view that linkage can affect rates and patterns
of substitution for selected mutations [7, 42, 15, 36, 37].

For example, Birky and Walsh [7] have shown analytically and via sim-
ulation that linked selected mutation negatively interferes so as to increase
the rate of substitution of deleterious mutations and to decrease the rate of
substitution of advantageous mutations. They attribute this phenomenon to
a reduction in the effective population size through an increase in the vari-
ance of offspring among individuals. As we saw in Section 4.5, if the effective
population size of a species is reduced, genetic drift begins to play a more
prominent role in determining the evolutionary fate of mutations.

The predictions of interference selection hypotheses have gained strong
support in recent years. For example, Comeron and Kreitman used analytical,
simulation, and genomic analyses to demonstrate that interference selection



90 C. D. Bustamante

can explain patterns of codon usage and intron size in Drosophila [15]. Like-
wise, a prediction of the interference hypothesis is that rates of adaptive evo-
lution should be reduced in regions of low recombination since the tighter the
linkage among favored mutations, the stronger the interference effects. There
is experimental evidence that regions of low recombination in Drosophila do,
in fact, show a reduction in the rate of adaptive evolution [93, 5], as do non-
recombining mitochondria [111, 84]. Likewise, if we consider the analysis of
Nielsen and Yang [73], they estimate a distribution of selective effects among
mutations in primate mtDNA that has mean pu = —1.72 and ¢ = 0.72. For
such a model, the proportion of substitutions that have a selection coefficient
greater than v = 0 is a quite small 6%, consistent with the view that linkage
limits the rate of adaptive evolution.

There is also important literature on the impact of linkage on rates of evo-
lution in nearly neutral and fluctuating selection models [32, 33, 34, 35, 17, 18].
Much of it has focused on analytical and simulation work for describing which
population genetics models lead to an overdispersed molecular clock. To sum-
marize all of this work, Gillespie and Cutler have shown that the overdis-
persed molecular clock cannot readily be explained by overdominance, under-
dominance, a rapidly fluctuating environment, or the nearly neutral models
presented above (although certain narrow parameter ranges can lead to an
over-dispersed clock, the models do not, in general, lead to an overdispersed
clock). Gillespie [32] has found that a slowly fluctuating environment can lead
to an over-dispersed clock if the oscillations are on the same order as the mu-
tation rate. Likewise, Cutler [17] has argued that a simple deleterious model
that shifts between a favored and a deleterious allele is sufficient to explain
the overdispersed clock.

Gillespie has also investigated the effects of linkage and selection on the
relationship between population size and the rate of molecular evolution using
extensive simulations. He has identified three domains, which he terms the
Darwin domain (ks o N), the Kimura domain (ks ~ pfp), and the Ohta
domain (ks o %) Not surprisingly, he finds that the nearly neutral models
(exponential shift [79], Gamma-shift model [59], and house of cards [82]) all fall
within the Ohta domain where the rate of evolution is inversely proportional
to population size. He also finds that the normal-shift model with mean =0
(Darwin’s wedge) appropriately falls in the Darwin domain, where the rate of
substitution is proportional to the population size. He also notes that the rate
of substitution for the normal-shift model is substantially reduced relative
to the expectation under the independence-among-sites model (4.18) (as one
might predict from [7]). Lastly, he finds, surprisingly, that the fluctuating
selection, neutral, and overdominance models all lead to the Kimura domain,
where the rate of molecular evolution is independent of the population size. A
mechanism that Gillespie has proposed to explain this last observation is the
theory of genetic drift, whereby positive selection on one locus leads to the
reduction of effective population size at linked neutral loci even in an infinitely
large population [36, 37].
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Lastly, Brian Charlesworth and colleagues have also shown that linkage of
neutral mutations to deleterious mutations (“background” selection) [9, 10, 11]
leads to a chronic and pronounced reduction in the local effective population
size of a chromosomal region. Recent experimental work on patterns of varia-
tion within the nonrecombining neo-sex chromosomes of Drosophila miranda
[2, 3] has confirmed some theoretical predictions of the background selection
model. Likewise, Cutler [18] has argued that the background selection hypoth-
esis is consistent with the observed overdispersed molecular clock.
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5.1 Introduction

Proteins evolve; the genes encoding them undergo mutation, and the evolu-
tionary fate of the new mutation is determined by random genetic drift as
well as purifying or positive (Darwinian) selection. The ability to analyze this
process was realized in the late 1970s when techniques to measure genetic
variation at the sequence level were developed. The arrival of molecular se-
quence data also intensified the debate concerning the relative importance of
neutral drift and positive selection to the process of molecular evolution [17].
Ever since, there has been considerable interest in documenting cases of mole-
cular adaptation. Despite a spectacular increase in the amount of available
nucleotide sequence data since the 1970s, the number of such well-established
cases is still relatively small [9, 38]. This is largely due to the difficulty in de-
veloping powerful statistical tests for adaptive molecular evolution. Although
several powerful tests for nonneutral evolution have been developed [33], sig-
nificant results under such tests do not necessarily indicate evolution by pos-
itive selection.

A powerful approach to detecting molecular evolution by positive selection
derives from comparison of the relative rates of synonymous and nonsynony-
mous substitutions [22]. Synonymous mutations do not change the amino
acid sequence; hence their substitution rate (dg) is neutral with respect to se-
lective pressure on the protein product of a gene. Nonsynonymous mutations
do change the amino acid sequence, so their substitution rate (dy) is a func-
tion of selective pressure on the protein. The ratio of these rates (w = dy/dg)
is a measure of selective pressure. For example, if nonsynonymous mutations
are deleterious, purifying selection will reduce their fixation rate and dy/dg
will be less than 1, whereas if nonsynonymous mutations are advantageous,
they will be fixed at a higher rate than synonymous mutations, and dy/dg
will be greater than 1. A dy/dg ratio equal to one is consistent with neutral
evolution.
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With the advent of genome-scale sequencing projects, we can begin to
study the mechanisms of innovation and divergence in a new dimension. Un-
doubtedly, new examples of adaptive evolution will be uncovered; however, we
will also be able to study the process of molecular adaptation in the context of
the amount and nature of genomic change involved. Statistical tools such as
maximum likelihood estimation of the dy/dg ratio [13, 24] and the likelihood
ratio test for positively selected genes [26, 34] will be valuable assets in this
effort. Hence, the objective of this chapter is to provide an overview of some
recent developments in statistical methods for detecting adaptive evolution as
implemented in the PAML package of computer programs.

5.1.1 The PAML Package of Programs

PAML (for Phylogenetic Analysis by Maximum Likelihood) is a package
of programs for analysis of DNA or protein sequences by using maximum
likelihood methods in a phylogenetic framework [36]. The package, along
with documentation and source codes, is available at the PAML Web site
(http://abacus.gene.ucl.ac.uk/software/paml.html). In this chapter, we illus-
trate selected topics by analysis of example datasets. The sequence align-
ments, phylogenetic trees, and the control files for running the program are
all available at ftp://abacus.gene.ucl.ac.uk/pub/BY2004SMME/. Readers are
encouraged to retrieve and analyze the example datasets themselves as they
proceed through this chapter.

The majority of analytical tools discussed here are implemented in the
codeml program in the PAML package. Data analysis using codeml and the
other programs in the PAML package are controlled by variables listed in a
“control file.” The control file for codeml is called codeml.ctl and is read
and modified by using a text editor. Options that do not apply to a particular
analysis can be deleted from a control file. Detailed descriptions of all of
codeml’s variables are provided in the PAML documentation. Below we list a
sample file showing the important options for codon-based analysis discussed
in this chapter.

seqfile = seqfile.txt  * sequence data filename

treefile = tree.txt * tree structure filename
outfile = out.txt
runmode = 0 * O:user defined tree; -2:pairwise comparison
seqtype = 1 * l:codon models; 2: amino acid models
CodonFreq = 2 * O:equal, 1:F1X4, 2:F3X4, 3:F61
model = 0O * 0:one-w for all branches; 2: w’s for branches
NSsites = 0 * O:one-rtio; l:neutral; 2:selection; 3:discrete;
* T7:beta; 8:beta&w
icode = 0 * O0:universal code
fix_kappa = 0 * 1:kappa fixed, O:kappa to be estimated
kappa = 2 * initial or fixed kappa
fix_omega = 0 * 1:omega fixed, O:omega to be estimated
5 * initial omega

omega =
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5.2 Maximum Likelihood Estimation of Selective
Pressure for Pairs of Sequences

5.2.1 Markov Model of Codon Evolution

A Markov process is a simple stochastic process in which the probability of
change from one state to another depends on the current state only and not
on past states. Markov models have been used very successfully to describe
changes between nucleotides, codons, or amino acids [10, 18, 13]. Advantages
of a codon model include the ability to model biologically important prop-
erties of protein-coding sequences such as the transition to transversion rate
ratio, the dy/dg ratio, and codon usage frequencies. Since we are interested
in measuring selective pressure by using the dy/dg ratio, we will consider
a Markov process that describes substitutions between the 61 sense codons
within a protein- coding sequence [13]. The three stop codons are excluded
because mutations to stop codons are not tolerated in a functional protein-
coding gene. Independence among the codon sites of a gene is assumed, and
hence the substitution process can be considered one codon site at a time.
For any single codon site, the model describes the instantaneous substitu-
tion rate from codon ¢ to codon j, ¢;;. Because transitional substitutions are
known to occur more often than transversions, the rate is multiplied by the
k parameter when the change involves a transition; the x parameter is the
transition/transversion rate ratio. Use of codons within a gene also can be
highly biased, and consequently the rate of change from i to j is multiplied
by the equilibrium frequency of codon j (). Selective constraints acting
on substitutions at the amino acid level affect the rate of change when that
change represents a nonsynonymous substitution. To account for this level
of selective pressure, the rate is multiplied by the w parameter if the change
is nonsynonymous; the w parameter is the nonsynonymous/synonymous rate
ratio (dy/dg). Note that only selection on the protein product of the gene
influences w.

The substitution model is specified by the instantaneous rate matrix, ) =
{¢ij}, where

0, if ¢ and j differ at two or three codon positions,
pmj, if ¢ and j differ by a synonymous transversion,
¢ij = § pkmj, if 4 and j differ by a synonymous transition, (5.1)

pwm;, if ¢ and j differ by a nonsynonymous transversion,
prwmy, if ¢ and j differ by a nonsynonymous transition.

The diagonal elements of the matrix @ are defined by the mathematical
requirement that the row sums be equal to zero. Because separate estimation
of the rate (1) and time (¢) is not possible, the rate (u) is fixed so that the
expected number of nucleotide substitutions per codon is equal to one. This
scaling allows us to measure time (¢) by the expected number of substitutions
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per codon (i.e. genetic distance). The probability that codon 7 is substituted
by codon j after time ¢ is p;;(t), and P(t) = p;;(t) = e?*. The above is a de-
scription of the basic codon model of Goldman and Yang [13]. A similar model
of codon substitution was proposed by Muse and Gaut [24] and is implemented
in codeml as well as in the program HyPhy (http://www.hyphy.org/).

5.2.2 Maximum Likelihood Estimation of the dn/ds Ratio

We can estimate w by maximizing the likelihood function using data of
two aligned sequences. Suppose there are n codon sites in a gene, and a
certain site (h) has codons CCC and CTC. The data at site h, denoted
xp = {CCC,CTC}, are related to an ancestor with codon k by branch lengths
to and t; (Figure 5.1(a)). The probability of site h is

flxp) = Z mkp,ccc(to)pe,crc(t) = Tccepcce,cre(to +t1).  (5.2)
%

t= tu+ 4
) 4

X1 X2 X1 X2
(a) (b)

Fig. 5.1. Rooted (a) and unrooted (b) trees for a pair of sequences. Under reversible
codon models, the root is unidentifiable; hence, only the sum of the branch lengths,
t = to + t1, is estimable.

Since the ancestral codon is unknown, the summation is over all 61 possible
codons for k. Furthermore, as the substitution model is time-reversible, the
root of the tree can be moved around, say, to species 1, without changing
the likelihood. Thus ¢y and ¢; cannot be estimated individually, and only
to +t1 =t is estimated (Figure 5.1(b)).

The log-likelihood function is a sum over all codon sites in the sequence

((t, k,w) = log f(n). (5.3)
h=1
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Codon frequencies (m;’s) can usually be estimated by using observed base
or codon frequencies. The w parameter and parameters x and ¢ are estimated
by maximizing the log- likelihood function. Since an analytical solution is not
possible, numerical optimization algorithms are used.

5.2.3 Empirical Demonstration: Pairwise Estimation of the dn/dgs
Ratio for GstD1

In this section, we use a simple data set and the codeml program to illus-
trate maximum likelihood estimation of w. The data set is GstD1 genes of
Drosophila melanogaster and D. simulans. The alignment has 600 codons.
Our first objective is to evaluate the likelihood function for a variety of fixed
values for the parameter w. Codeml uses a hill-climbing algorithm to maxi-
mize the log-likelihood function. In this case, we will let codeml estimate x
(fix_kappa = 0 in the control file codeml.ctl) and the sequence distance
t, but with parameter w fixed (fix_omega = 1). All that remains is to run
codeml several times, each with a different value for omega in the control file;
the data in Figure 5.2 show the results for ten different values of w. Note
that the maximum likelihood value for w appears to be roughly 0.06, which is
consistent with purifying selection, and that values greater than 1 have much
lower likelihood scores.

Our second objective is to allow codeml to use the hill-climbing algorithm
to maximize the log-likelihood function with respect to k, t, and w. Thus we
use fix_omega = 1 and can use any positive value for omega, which is used
only as a starting value for the iteration. Such a run gives the estimate of w
of 0.067.

Alternatives to maximum likelihood estimates of w are common [25, 15,
39]. Those methods count the number of sites and differences and then apply
a multiple-hit correction, and they are termed the counting methods. Most of
them make simplistic assumptions about the evolutionary process and apply
ad hoc treatments to the data that can’t be justified [23, 39]. Here we use
the GstD1 sequences to explore the effects of (i) ignoring the transition to
transversion rate ratio (fix_kappa = 1; kappa = 1); (ii) ignoring codon us-
age bias (CodonFreq = 0); and (iii) alternative treatments of unequal codon
frequencies (CodonFreq = 2 and CodonFreq = 3). Note that for these data
transitions are occurring at higher rates than transversions, and codon fre-
quencies are very biased, with average base frequencies of 6% (T), 50% (C),
5% (A), and 39% (G) at the third position of the codon. Thus, we expect
estimates that account for both biases will be the most reliable.

Results of our exploratory analyses (Table 5.2.3) indicate that model as-
sumptions are very important for these data. For example, ignoring the transi-
tion to transversion ratio almost always led to underestimation of the number
of synonymous sites (.5), overestimation of dg, and underestimation of w. This
is because transitions at the third codon positions are more likely to be syn-
onymous than are transversions [19]. Similarly, biased codon usage implies
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Fig. 5.2. Log-likelihood as a function of the w parameter for a pair of G'stDI genes
from Drosophila melanogaster and D. simulans. The maximum likelihood estimate
of w is the value that maximizes the likelihood function. Since an analytical solution
is not possible, the codeml program uses a numerical hill-climbing algorithm to
maximize 1. For these data, the maximum likelihood estimate of w is 0.067, with a
maximum likelihood of -756.57.

unequal substitution rates between the codons, and ignoring it also leads to
biased estimates of synonymous and nonsynonymous substitution rates. In
real data analysis, codon usage bias was noted to have an even greater impact
than the transition/transversion rate ratio and is opposite to that of ignoring
transition bias. This is clearly indicated by the sensitivity of S to codon bias,
where S in this gene (45.2) is less than one-third the expected value under
the assumption of no codon bias (S = 165.8). The estimates of w differ by as
much as 4.7-fold (Table 5.2.3). Note that these two sequences differed at just
3% of sites.

For comparison, we included estimates obtained from two counting meth-
ods. The method of Nei and Gojobori [25] is similar to ML ignoring transition
bias and codon bias, whereas the method of Yang and Nielsen [39] is similar to
ML accommodating transition bias and codon bias (F3x4). Note that estima-
tion according to Nei and Gojobori [25] was accomplished by using the codeml
program and according to Yang and Nielsen [39] by using the YNOO program
of PAML. What is clear from these data is that when sequence divergence is
not too great, assumptions appear to matter more than methods, with ML
and the counting methods giving similar results under similar assumptions.
This result is consistent with simulation studies examining the performance of
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Table 5.1. Estimation of ds and dx between Drosophila melanogaster and D.
simulans GstD1 genes.

Method K S N ds dn w 14
ML methods

Fequal, k = 1 1 152.9 447.1 0.0776 0.0213 0.274 -927.18
Fequal, x estimated 1.88 165.8 434.2 0.0221 0.0691 0.320 -926.28
F3x4, k=1 1 70.6 529.4 0.1605 0.0189 0.118 -844.51
F3x4, k estimated 2.71 73.4 526.6 0.1526 0.0193 0.127 -842.21
F6l,k =1 1 40.5559.5 0.3198 0.0201 0.063 -758.55
F61, k estimated 2.53 45.2 554.8 0.3041 0.0204 0.067 -756.57

Counting methods
Nei and Gojobori 1 141.6 458.4 0.0750 0.0220 0.288
Yang and Nielsen (F3x4) 3.28 76.6 523.5 0.1499 0.0190 0.127

different estimation methods [39]. However, as sequence divergence increases,
ad hoc treatment of the data can lead to serious estimation errors [23, 8].

5.3 Phylogenetic Estimation of Selective Pressure

Adaptive evolution is very difficult to detect using the pairwise approach to
estimating the d/dg ratio. For example, a large-scale database survey identi-
fied less than 1% of genes (17 out of 3595) as evolving under positive selective
pressure [9]. The problem with the pairwise approach is that it averages selec-
tive pressure over the entire evolutionary history separating the two lineages
and over all codon sites in the sequences. In most functional genes, the major-
ity of amino acid sites will be subject to strong purifying selection [31, 6], with
only a small fraction of the sites potentially targeted by adaptive evolution
[11]. In such cases, averaging the dy/dg ratio over all sites will yield values
much less than one, even under strong positive selective pressure at some
sites. Moreover, if a gene evolved under purifying selection for most of that
time, with only brief episodes of adaptive evolution, averaging over the his-
tory of two distantly related sequences would be unlikely to produce a dy /ds
ratio greater than one [4]. Clearly, the pairwise approach has low power to
detect positive selection. Power is improved if selective pressure is allowed to
vary over sites or branches [37, 40]. However, increasing the complexity of the
codon model in this way requires that likelihood be calculated for multiple
sequences on a phylogeny.
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5.3.1 Likelihood Calculation for Multiple Sequences on a
Phylogeny

Likelihood calculation on a phylogeny (Figure 5.3) is an extension of the
calculation for two lineages. As in the case of two sequences, the root cannot
be identified and is fixed at one of the ancestral nodes arbitrarily. For example,
given an unrooted tree with four species and two ancestral codons, k and g,
the probability of observing the data at codon site h, xp = {x1, 22,23, 24}
(Figure 5.3), is

f(‘rh) = Z Z {ﬂ—kpkan (tl)pkzz (t2)pkg (tO)pgmg (tS)pg:m (t4)} . (54)

k g

X2 X4

Fig. 5.3. An unrooted phylogeny for four sequences. As in the case of two sequences,
the root cannot be identified. For the purpose of likelihood calculation, the root is
fixed at one of the ancestral nodes arbitrarily, and to, t1, t2, t3, and t4 are estimable
parameters in the model.

The quantity in the brackets is the contribution to the probability of ob-
serving the data by ancestral codons k£ and g at the two ancestral nodes. For
an unrooted tree of IV species, with N — 2 ancestral nodes, the data at each
site will be a sum over 6172 possible combinations of ancestral codons. The
log-likelihood function is a sum over all codon sites in the alignment

£=Y log{f(an)). (55)

h=1

As in the two-species case, numerical optimization is used to maximize
the likelihood function with respect to k,w, and the (2N — 3) branch-length
parameters (¢’s).

5.3.2 Modelling Variable Selective Pressure among Lineages

Adaptive evolution is most likely to occur in an episodic fashion. For exam-
ple, functional divergence of duplicated genes [43, 29, 5], colonization of a
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host by a parasitic organism [16], or colonization of a new ecological niche
[21] all seem to occur at particular time points in evolutionary history. To
improve detection of episodic adaptive evolution, Yang [37] (see also [24]) im-
plemented models that allow for different w parameters in different parts of a
phylogeny. The simplest model, described above, assumes the same w ratio for
all branches in the phylogeny. The most general model, called the “free-ratios
model,” specifies an independent w ratio for each branch in a phylogeny. In
the codeml program, users can specify an intermediate model, with indepen-
dent w parameters for different sets of branches. Modelling variable selective
pressure involves a straightforward modification of the likelihood computa-
tion [37]. Consider the example tree of fig. 5.4. Suppose we suspect selective
pressure has changed in one part of this tree, perhaps due to positive selective
pressure. To model this, we specify independent w ratios (wg and wy) for the
two different sets of branches (Figure 5.4). The transition probabilities for the
two sets of branches are calculated from different rate matrices (Q) generated
by using different w ratios. Under this model (Figure 5.4), the probability of
observing the data at codon site xj, is

f(zn) = Z Z TPk (£15 00 ) Pras (t2; W0 ) Phg (f0; W0)Pgars (35 W1)Pgary (F43 w1).
kg

(5.6)

The log-likelihood function remains a sum over all sites but is now max-

imized with respect to wy and wq, as well as branch lengths (¢’s) and s. w

parameters for user-defined sets of branches are specified by model = 2 in

the control file and by labelling branches in the tree, as described in the
PAML documentation.

Fig. 5.4. Four-taxon phylogeny with variable w ratios among its branches. The
likelihood of this tree is calculated according to Yang [37], where the two indepen-
dent w ratios (wo and w1) are used to calculate rate matrices (Q) and transition
probabilities for the different branches.
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5.3.3 Modelling Variable Selective Pressure among Sites

In practice, modelling variable selective pressure among sites appears to pro-
vide much greater gains in power than does modelling variable selective pres-
sure among branches [38]. This is because adaptive evolution is generally
restricted to a small subset of sites [6, 40], and the previous model for varia-
tion over branches effectively averages over all sites. Although differences in
the relative rate of nonsynonymous substitution often can be detected among
branches, averaging over sites means it is unlikely that estimated w’s will be
greater than one. In fact, implementation of models with variable w’s among
codon sites [26, 40, 41] has led to the detection of positive selection in many
genes for which it had not previously been observed. For example, Zanotto et
al. [42] used the models of Nielsen and Yang [26] to detect positive selection in
the nef gene of HIV-1, a gene for which earlier studies had found no evidence
for adaptive evolution [28, 7].

There are two approaches to modelling variation in w among sites: (i) use
a statistical distribution to model the random variation in w over sites; and
(ii) use a priori knowledge of a protein’s structural and functional domains to
partition sites in the protein and use different w’s for different partitions. Since
structural and functional information are unknown for most proteins, a sta-
tistical distribution will be the most common approach. Collectively, Nielsen
and Yang [26] and Yang et al. [40] implemented 13 such models, available in
the codeml program. The continuous distributions are approximated by using
discrete categories. In this approach, codon sites are assumed to fall into K
classes, with the w ratios for the site classes, and their proportions (p), esti-
mated from the data. The number of classes (K) is fixed beforehand, and the
w’s and p’s are either treated as parameters or functions of parameters of the
w distribution [40]. We illustrate likelihood calculation by taking the discrete
model (M3) as an example. M3 classifies codon sites into K discrete classes
(:1=0,1,2,...,K — 1), with dx/dg ratios and proportions given as:

wWo, W1y ey WK —1, (5 7)
Po,P1y -, PK—1-

Equation (5.4) is used to compute the conditional probability f(zp|w;) of
the data at a site, h, for each site class. Since we do not know to which class
site h belongs, we sum over both classes, giving the unconditional probability

K-1
flaen) =Y pif (wnlws). (5.8)
=0

In this way, the unconditional probability is an average over the site classes
of the w distribution. Still, assuming that the substitution process at individ-
ual codon sites is independent, the log-likelihood function is a sum over all
sites in the sequence:
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0= log{f(zn)}. (5.9)
h=1

The log-likelihood is now maximized as a function of the parameters of
the w distribution, branch-lengths (¢), and «.

With the second approach, we used knowledge of a protein’s structural
or functional domains to classify codon sites into different partitions with
different w’s. Since we assume site independence, the likelihood calculation is
straightforward; the transition probabilities in equation (5.4) are computed
by using the appropriate w parameter for each codon site. By taking this
approach, we are effectively assuming our knowledge of the protein is without
error; hence, we do not average over site classes for each site [41].

5.4 Detecting Adaptive Evolution in Real Data Sets

Maximum likelihood estimation of selective pressure is only one part of the
problem of detecting adaptive evolution in real data sets. We also need the
tools to rigorously test hypotheses about the nature of selective pressure. For
example, we might want to test whether dy is higher than dg (i.e., w > 1).
Fortunately, we can combine estimation of selective pressure with a formal
statistical approach to hypothesis testing, the likelihood ratio test (LRT).
Combined with Markov models of codon evolution, the LRT provides a very
general method for testing hypotheses about protein evolution, including: (i) a
test for variation in selective pressure among branches; (ii) a test for variation
in selective pressure among sites; and (iii) a test for a fraction of sites evolving
under positive selective pressure. In the case of a significant LRT for sites
evolving under positive selection, we use Bayes or empirical Bayes methods
to identify positively selected sites in an alignment. In the following section,
we provide an introduction to the LRT and Bayes’ theorem and provide some
empirical demonstrations of their use on real data.

5.4.1 Likelihood Ratio Test (LRT)

The LRT is a general method for testing assumptions (model parameters)
through comparison of two competing hypotheses. For our purposes, we will
only consider comparisons of nested models; that is, where the null hypothesis
(Hp) is a restricted version (special case) of the alternative hypothesis (Hy).
Note that the LRT only evaluates the differences between a pair of models,
and any inadequacies shared by both models remain untested. Let ¢y be the
maximum log-likelihood under Hy with parameters 6y, and let ¢; be the max-
imum log-likelihood under H; with parameters 6. The log-likelihood statistic
is defined as twice the log likelihood difference between the two models,

2AlL = 2(£1(6y) — £o(6p)). (5.10)
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If the null hypothesis is true, 2A¢ will be asymptotically x? distributed with
the degree of freedom equal to the difference in the number of parameters
between the two models.

Use of the x? approximation to the likelihood ratio statistic requires that
certain conditions be met. First, the hypotheses must be nested. Second, the
sample must be sufficiently large; the x? approximation fails when too few data
are used. Third, H; may not be related to Hy by fixing one or more of its
parameters at the boundary of parameter space. This is called the “boundary”
problem, and the LRT statistic is not expected to follow a x? distribution in
this case [30]. When the conditions above are not met, the exact distribution
can be obtained by Monte Carlo simulation [12, 1], although this can be a
computationally costly solution.

5.4.2 Empirical Demonstration: LRT for Variation in Selective
Pressure among Branches in Ldh

The Ldh gene family is an important model system for molecular evolution
of isozyme multigene families [20]. The paralogous copies of lactate dehydro-
genase (Ldh) genes found in mammals originated from a duplication near the
origin of vertebrates (Ldh-A and Ldh-B) and a later duplication near the ori-
gin of mammals (Figure 5.5; Ldh-A and Ldh-C). Li and Tsoi [20] found that
the rate of evolution had increased in mammalian Ldh-C' sometime following
the second duplication event. An unresolved question about this gene family is
whether the increased rate of Ldh-C reflects (i) a burst of positive selection for
functional divergence following the duplication event, (ii) a long-term change
in selective pressure, or (iii) simply an increase in the underlying mutation
rate of Ldh-C. In the following, we use the LRT for variable w ratios among
branches to test these evolutionary scenarios.

The null hypothesis (Hp) is that the rate increase in Ldh-C is simply
due to an underlying increase in the mutation rate. If the selective pressure
was constant and the mutation rate increased, the relative fixation rates of
synonymous and nonsynonymous mutations (w) would remain constant over
the phylogeny, but the overall rate of evolution would increase in Ldh-C. One
alternative to this scenario is that the rate increase in Ldh-C' was due to a
burst of positive selection following gene duplication (H;). A formal test for
variation in selective pressure among sites may be formulated as follows:

Hy: w is identical across all branches of the Ldh phylogeny.

H,: w is variable, being greater than 1 in branch C0 of Figure 5.5.

Because H; can be transformed into Hy by restricting wco to be equal
to the w ratios for the other branches, we can use the LRT. The estimate of
w under the null hypothesis, as an average over the phylogeny in Figure 5.5,
was 0.14, indicating that evolution of Ldh-A and Ldh-C' was dominated by
purifying selection. The LRT suggests that selective pressure in Ldh-C imme-
diately following gene duplication (0.19) was not significantly different from
the average over the other branches (Table 5.2). Hence, we found no evidence
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Fig. 5.5. A phylogenetic tree for the Ldh-A and Ldh-C gene families. The tree
was obtained by a neighbor-joining analysis of a codon sequence alignment under
the HKY85 substitution model [14] combined with a Gamma model of rate vari-
ation among sites [35]. Branch lengths are not to scale. The Gallus (chicken) and
Sceloporus (lizard) Ldh-A sequences are pro-orthologs, as they predate the gene
duplication event. The tree is rooted with the pro-orthologous sequences for conve-
nience; all analyses were conducted by using the unrooted topology. The one ratio
model (Hp) assumes uniform selective pressure over all branches. H; is based on the
notion of a burst of positive selection in Ldh-C' following the gene duplication event;
hence the assumption of one w for branch C'0 and another for all other branches.
H> is based on the notion of increased nonsynonymous substitution in all Ldh-C
lineages following gene duplication; hence the assumption of one w for the Ldh-C
branches (wco = we1) and another for the Ldh-A branches (wao = wai). Hs is based
on the notion that selective pressure changed in both Ldh-C and Ldh-A following
gene duplication, as compared with the pro-orthologous sequences; hence, one w for
the Ldh-C branches (wco = wc1), one w for the post-duplication Ldh-A branches
(wa1), and one w for the pro-orthologous branches (wao).
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for functional divergence of Ldh-A and Ldh-C by positive selection. It should
be noted that if functional divergence of Ldh-A and Ldh-C evolved by positive
selection for just one or a few amino acid changes, we would not observe a
large difference in w ratios among branches.

Table 5.2. Parameter estimates under models of variable w ratios among lineages
for the Ldh-A and Ldh-C gene families. (Note: The topology and branch-specific w
ratios are presented in Figure 5.5. The df is 1 for the comparisons of Hy vs. H1, Ho
VS. H27 and HQ VS. Hg)

Models WA WAL  WC1  WEo 4

Ho:wao = wa1 = we1 = weo 0.14 = wag = wao = wao —6018.63
Hy i wao =wa1 = wer # weo 0.13 =wao =wao 0.19 —6017.57
Hy :wao = wa1 # we1 = weo 0.07 =wao 0.24 = wa1 —5985.63
H3 SWA0 7é WAL 76 we1 = wWeo 0.09 0.06 0.24 = WAL —5984.11

Using the same approach, we tested a second alternative hypothesis, where
the rate increase in Ldh-C' was due to an increase in the nonsynonymous
substitution rate over all lineages of the Ldh-C clade (see Hy in Figure 5.5).
In this case, the LRT was highly significant, and the parameter estimates for
the Ldh-C clade indicated an increase in the relative rate of nonsynonymous
substitution by a factor of 3 (Table 5.2). Lastly, we tested the hypothesis that
selective pressure differed in both Ldh-A and Ldh-C following gene duplication
(see H3 in Figure 5.5), and results of this test were not significant (Table
5.2). Collectively, these findings suggest selective pressure and mutation rates
in Ldh-A were relatively unchanged by the duplication event, whereas the
nonsynonymous rate increased in Ldh-C following the duplication event as
compared with Ldh-A.

5.4.3 Empirical Demonstration: Positive Selection in the nef Gene
in the Human HIV-2 Genome

The role of the nef gene in differing phenotypes of HIV-1 infection has been
well-studied, including identification of sites evolving under positive selective
pressure [42]. The nef gene in HIV-2 has received less attention, presumably
because HIV-2 is associated with reduced virulence and pathogenicity relative
to HIV-1. Padua et al. [27] sequenced 44 nef alleles from a study population
of 37 HIV-2-infected people living in Lisbon, Portugal. They found that nu-
cleotide variation in the nef gene, rather than gross structural change, was
potentially correlated with HIV-2 pathogenesis. In order to determine whether
the nef gene might also be evolving under positive selective pressure in HIV-
2, we analyzed those same data here with models of variable w ratios among
sites [40].
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Following the recommendation of Yang et al. [40] and Anisimova et al. [1],
we consider the following models: MO (one ratio), M1 (neutral), M2 (selection),
M3 (discrete), M7 (beta), and M8 (beta & w). Models MO and M3 were
described above. M1 (neutral) specifies two classes of sites: conserved sites
with w = 0 and neutral sites with w = 1. M2 (selection) is an extension of M1
(neutral), adding a third w class that is free to take a value > 1. Version 3.14
of paml/codeml introduces a slight variation to models M1 (neutral) and M2
(selection) in that wy < 1 is estimated from the data rather than being fixed
at 0. Those are referred to as models M1a and M2a, also used here. Under
model M7 (beta), w varies among sites according to a beta distribution with
parameters p and ¢. The beta distribution is restricted to the interval (0, 1);
thus, M1 (neutral), Mla (nearly neutral), and M7 (beta) assume no positive
selection. M8 (beta & w) adds a discrete w class to the beta distribution that
is free to take a value > 1. Under M8 (beta & w), a proportion of sites pg
is drawn from a beta distribution, with the remainder (p; = 1 — pg) having
the w ratio of the added site class. We specified K = 3 discrete classes of
sites under M3 (discrete), and K = 10 under M7 (beta) and M8 (beta &
w). We use an LRT comparing MO (one ratio) with M3 (discrete) to test for
variable selective pressure among sites and three LRT's to test for sites evolving
by positive selection, comparing (i) M1 (neutral) against M2 (selection), (ii)
MTla (nearly neutral) and M2a (positive selection), and (iii) M7 (beta) against
M8 (beta & w).

Maximum likelihood estimates of parameters and likelihood scores for the
nef gene are presented in Table 5.3. Averaging selective pressure over sites
and branches as in MO (one ratio) yielded an estimated w of 0.50, a result
consistent with purifying selection. The LRT comparing MO (one ratio) against
M3 (discrete) is highly significant (2A¢ = 1087.2, df = 4, P < 0.01), indicating
that the selective pressure is highly variable among sites. Estimates of w under
models that can allow for sites under positive selection (M2, M2a, M3, M8)
indicated a fraction of sites evolving under positive selective pressure (Table
5.3). To formally test for the presence of sites evolving by positive selection,
we conducted LRTs comparing M1 and M2, Mla and M2a, and M7 and
M8. All those LRT's were highly significant; for example, the test statistic for
comparing M1 (neutral) and M2 (selection) is 2A¢ = 223.58, with P < 0.01,
df = 2. These findings suggest that about 12% of sites in the nef gene of
HIV-2 are evolving under positive selective pressure, with w between 2 and
3. It is clear from Table 5.3 that this mode of evolution would not have been
detected if w were measured simply as an average over all sites of nef.

Models M2 (selection) and M8 (beta & w) are known being multiple local
optima in some data sets, often with ws under M2 or w under M8 to be < 1 on
one peak and > 1 on another peak. Thus it is important to run these models
multiple times with different starting values (especially different w’s) and then
select the set of estimates corresponding to the highest peak. Indeed, the nef
dataset illustrates this issue. By using different initial w’s, both the global and
local optima can be found.
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Table 5.3. Parameter estimates and likelihood scores under models of variable w
ratios among sites for HIV-2 nef genes. (Note: The number after the model code,
in parentheses, is the number of free parameters in the w distribution. The dn/ds
ratio is an average over all sites in the HIV-2 nef gene alignment. Parameters in
parentheses are not free parameters and are presented for clarity. PSS is the number
of positive selected sites, inferred at the 50% (95%) posterior probability cutoff.)

Model dn/ds Parameter estimates PSS l
MO: one ratio (1) 0.51 w = 0.505 none —9775.77
Ma3: discrete (5) 0.63 po =0.48,p1 =0.39,(p2 =0.13) 31 (24) —9232.18
wo = 0.03, w1 = 0.74, w2 = 2.50
M1: neutral (1) 0.63 po = 0.37, (p1 = 0.63) not allowed —9428.75
(wo =0), (w1 =1)
M2: selection (3) 0.93 po =0.37,p1 = 0.51,(p2 = 0.12) 30 (22) —9392.96
(wo =0), (w1 =1),w2 = 3.48
M1la: nearly neutral (2) 0.48 po = 0.55, (p1 = 0.45) not allowed —9315.53

(wo = 0.06), (w1 =1)
Mz2a: positive selection (4) 0.73 pg = 0.51,p1 = 0.38, (p2 = 0.11) 26 (15) —9241.33
(wo = 0.05), (OJ1 = 1)., wo = 3.00
MT: beta (2) 0.42 p=0.18,¢ =0.25 not allowed —9292.53
MS8: beta & w (4) 0.62 po = 0.89, (p1 = 0.11) 27 (15)  —9224.31
p=0.20,qg =0.33,w = 2.62

5.4.4 Bayesian Identification of Sites Evolving under Positive
Darwinian Selection

Under the approach described in this chapter, a gene is considered to have
evolved under positive selective pressure if (i) the LRT is significant and (ii)
at least one of the ML estimates of w > 1. Given that these conditions are
satisfied, we have evidence for sites under positive selection but no informa-
tion about which sites they are. Hence, the empirical Bayes approach is used
to predict them [26, 40]. To do this, we compute, in turn, the posterior prob-
ability of a site under each w site class of a model. Sites with high posterior
probabilities under the class with w > 1 are considered likely to have evolved
under positive selective pressure.

Say we have a model of heterogeneous w ratios, with K site classes
(i =0,1,2,...,K — 1). The w ratios and proportions are wg,ws, ..., wWx—1
and pg, p1,-...,PK_1, with the proportions p; used as the prior probabilities.
The posterior probability that a site with data xj is from site class ¢ is

P(xplwi)pi  Plwg|w)p;

Plen) Y15 Planlws)p;

P(wlzp) = (5.11)

Because the parameters used in the equation above to calculate the pos-
terior probability are estimated by ML (w; and p;), the approach is called
empirical Bayes. By using the ML parameters in this way, we ignore their
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Amino acid sites in the HIV-2 nef gene

Fig. 5.6. Posterior probabilities for sites classes under M3 (K = 3) along the HIV-2
nef gene alignment.

sampling errors. The posterior probabilities will be sensitive to these parame-
ter estimates, meaning that the reliability of this approach will be poor when
the parameter estimates are poor, such as in small datasets or when obtained
from a local optimum.

Because the nef dataset above is quite large, the parameter estimates
are expected to be reliable [2]. Consistent with this, ML estimates of the
strength and proportion of positively selected sites in nef are consistent among
M2, M3, and M8 (Table 5.3). Figure 5.6 shows the posterior probabilities for
the K = 3 site classes at each site of nef under model M3. Twenty-four
sites were identified as having very high posterior probability (P > 0.95) of
evolving under positive selection (site class with w > 1). Interestingly, none
of these sites matched the two variable sites in a proline-rich motif that is
strongly associated with an asymptomatic disease profile [27]. In fact, only
four of the 24 sites were found in regions of nef considered important for
function. Disruption of the important nef regions is associated with reduced
pathogenicity in HIV-2-infected individuals [32, 27]. Our results suggest that
selective pressure at such sites is fundamentally different from selection acting
at the 24 positive selection sites predicted using the Bayes theorem. To be
identified with such high posterior probabilities, the predicted sites must have
been evolving under long-term positive selective pressure, suggesting that they
are more likely subjected to immune-driven diversifying selection at epitopes
[42, 34].

5.5 Power, Accuracy and Robustness

The boundary problem mentioned above applies to the LRT for variable se-
lective pressure among sites and the LRT for positive selection at a fraction of
sites [1]. The problem arises in the former because the null (MO0) is equivalent
to M3 (K = 3) with two of the five parameters (py and p1) fixed to 0, which
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is at the boundary of parameter space. In comparisons of M1 with M2, M1a
with M2a, and M7 with M8, the null is equivalent to the alternative with a
proportion parameter (p) fixed to 0. Therefore, the x? approximation is not
expected to hold. Anisimova et al. [1] used computer simulation to investigate
the effect of the boundary problem on the power and accuracy of the LRT.
Use of the x? makes the LRT conservative, meaning that the false positive
rate will be less than predicted by the specified significance level of the test
[1]. Nevertheless, the test was found to be powerful, sometimes reaching 100%
in data sets consisting of 17 sequences. Power was low for highly similar and
highly divergent sequences but was modulated by the length of the sequence
and the strength of positive selection. Note that simulation studies, both with
and without the boundary problem, indicate that the sample size require-
ments for the x? approximation are met with relatively short sequences in
some cases as few as 50 codons [1].

Bayesian prediction of sites evolving under positive selection is a more
difficult task than ML parameter estimation or likelihood ratio testing. The
difficulty arises because the posterior probabilities depend on the (i) informa-
tion contained at just a single site in the data set and (ii) the quality of the ML
parameter estimates. Hence, a second study was conducted by Anisimova et
al. [2] to examine the power and accuracy of the Bayesian site identification.
The authors made the following generalizations: (i) prediction of positively
selected sites is not practical from just a few highly similar sequences; (ii)
the most effective method of improving accuracy is to increase the number of
lineages; and (iii) site prediction is sensitive to sampling errors in parameter
estimates and to the assumed w distribution.

Robustness refers to the stability of results to changes in the model as-
sumptions. The LRT for positive selection is generally robust to the assumed
distribution of w over sites [1]. However, as the LRT of M0 with M3 is a test of
variable selective pressure among sites, caution must be exercised when only
the MO-M3 comparison suggests positive selection. One possibility is to use
M2, which tends to be more conservative than the other models [2]. Another
approach is to select the subset of sites that are robust to the w distribution
[1, 34]. A third approach is to select sites that are robust to sampling lineages
[34]. We believe that sensitivity analysis is a very important part of detecting
positive selection, and we make the following recommendations: (i) multiple
models should be used, (ii) care should be taken to identify and discard results
obtained from local optima, and (iii) assumptions such as the w distribution
or the method of correcting for biased codon frequencies should be evalu-
ated relative to their effects on ML parameter estimation and Bayesian site
prediction.

All codon models discussed above ignore the effect of the physicochemical
property of the amino acid being substituted. For example, all amino acid
substitutions at a positively selected site are assumed to be advantageous,
with w > 1. The assumption appears to be unrealistic; one can imagine that
there might be a set of amino acid substitutions that are forbidden at a site
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because of physicochemical constraints, even though the site is subject to
strong positive selection. Another limitation is that these methods are very
conservative, only indicating positive selection when the estimate of w is > 1.
In cases where only one or a few amino acid substitutions result in a substan-
tial change in phenotype, the methods will have little or no power because w
will be < 1. Another important limitation is the assumption of a single under-
lying phylogeny. When recombination has occurred, no single phylogeny will
fit all sites of the data. A recent simulation study [3] found that the LRT is
robust to low levels of recombination but can have a seriously high type I er-
ror rate when recombination is frequent. Interestingly, Bayesian prediction of
positively selected sites was less affected by recombination than was the LRT.
In summary, no matter how robust the results, they must be interpreted with
these limitations in mind.
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6.1 Introduction

The field of molecular evolution, though wide-reaching in its breadth, can be
split into two types of investigations: studies of phylogeny and studies of the
molecular evolutionary process. Of course, each of these two categories en-
compasses many different types of questions, and many investigations require
studies of both phylogeny and evolutionary process, but the proposed binary
classification is a useful construct. Software for molecular evolution is focused
disproportionately on problems relating to phylogenetic reconstruction, with a
number of outstanding comprehensive packages from which to choose. On the
other hand, software for addressing questions of the molecular evolutionary
process tends to be found in stand-alone programs that answer only one or
two quite specific problems. The HyPhy system, available for download from
www. hyphy.org, was designed to provide a unified platform for carrying out
likelihood-based analyses on molecular evolutionary data sets, the emphasis
of analyses being the molecular evolutionary process; that is, studies of rates
and patterns of the evolution of molecular sequences.

HyPhy consists of three major components: a high-level programming lan-
guage designed to facilitate the rapid implementation of new statistical meth-
ods for molecular evolutionary analysis; a collection of prewritten analyses
for carrying out widely used molecular evolutionary methods; and a graphical
user interface that allows users to quickly and interactively analyze data sets
of aligned sequences using evolutionary models and statistical methods that
they design using the software system. This chapter is intended to provide
an overview of the key elements of each of the three system components, in-
cluding both specific details of the basic functionality as well as a conceptual
description of the potential uses of the software. The nature of the package
prevents the creation of an exhaustive “cookbook” of available methods. In-
stead, we hope to provide a collection of fundamental tools and concepts that
allow users to begin using HyPhy to carry out both existing and new methods
of data analysis.
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6.1.1 Standard Analyses

The second of the three enumerated HyPhy components was a collection of
prewritten “standard” analyses. Since this section of the software is essen-
tially just a collection of prepackaged analyses, we will not devote much time
to a detailed discussion of it. However, we choose to describe it first in this
chapter to illustrate the types of analyses that HyPhy has been designed to
address. In Figure 6.1, we show the initial Standard Analyses menu invoked
by ANALYSES:STANDARD ANALYSES... (note the use of SMALL CAPS to indi-
cate menu items, with submenus or selections separated by a colon). Each of
the nine major headings includes a collection of routines that can be selected
by the user. For example, the POSITIVE SELECTION menu item expands to
offer five different analyses relating to the task of identifying nucleotide sites
undergoing positive selection. A total of 35 batch files are included in the col-
lection, and most of these files include a variety of options enabling users to
select items such as evolutionary models or topology search methods. Topics
include molecular clock tests, positive selection analyses, phylogenetic recon-
struction, and model comparison procedures. The authors frequently add new
standard analyses to the package. HyPhy includes the ability to perform Web
updates, which ensures that the distribution is kept up-to-date.

Select a standard analysis to run
Basic Analyses
Data File Tools
Miscellaneous
Model Comparison
Molecular Clock
Phylogeny Reconstruction
Positive Selection
Relative Rate
Relative Ratio

v T TV VWV VY VW

—Item Description
Perform codon-based positive selection tests.

oK Cancel

Fig. 6.1. HyPhy Standard Analyses menu (Mac OS X).
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6.2 Using the HyPhy Graphical User Interface

6.2.1 Basic Analysis

The fundamental component of likelihood analyses of molecular evolutionary
data is to fit a given phylogenetic tree with a specified model of evolution to an
alignment and obtain maximum likelihood estimates (MLE) of all independent
model parameters, which commonly include branch-length parameters and
character substitution rates [3]. Before we demonstrate how to use HyPhy for
simple model fitting, we will introduce the fundamental components required
of virtually every HyPhy data analysis.

1. Data Set. A data set is a multiple-sequence alignment. HyPhy is able
to read a variety of sequence formats, including NEXUS, PHYLIP, and
FASTA.

2. Data Filter. A data filter specifies a part (or parts) of a data set. HyPhy
provides powerful tools to select sites and sequences from a data set to
analyze. The simplest data filter specifies the entire data set. Examples of
nontrivial filters include every first and second position in a codon, exon-
intron-exon arrangements, or alignment sites matching a particular motif,
such as glycosylation sites. We will often refer to data filters as partitions.

3. Substitution Models. We also need to provide stochastic models describing
how character substitutions occur along branches in a phylogenetic tree.
HyPhy includes a multitude of standard “named” models and provides
unparalleled flexibility for users to define their own models. A substitu-
tion model is specified by its instantaneous rate matriz and the vector
of equilibrium character frequencies. For instance, one of the most com-
monly used nucleotide substitution models is the HKY85 model [5],whose
instantaneous rate matrix is given by

A C G T

A * KT Tg KT
0 - C| kma * KkWg 7T
T G| ma ke *  kmr |’

T \kma 7Tc KTg *

where k denotes the ratio of transversion and transition rates and 7; is
the base frequency of nucleotide i, i = A, C, G, T. We use x as a notation
to indicate that the diagonal elements of rate matrices are defined so that
the sum of each row in the rate matrix is 0. This condition ensures that
the transition probability matrix,

P(t) = e,

defines a proper transition probability function (i.e., the sum of each row
in Pis1).
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4. Tree. A phylogenetic tree specifies the evolutionary history of extant se-
quences represented in the data set. It can either be given or can be
inferred from the data/model combination. While most other software
packages force the evolutionary process to follow the same model along
every branch, in HyPhy the user can have multiple models, with different
rate matrices at each branch. Therefore the notion of the tree in HyPhy
is not just the evolutionary relationships but rather the combination of
a tree topology and substitution models attached to tree branches. The
distinction in HyPhy between a tree and a topology is an important one,
as we will illustrate through later examples.

5. Likelihood Function. A combination of a data filter and a tree (which
includes both topology and model information) is sufficient to define the
probability of the observed data given model parameter values (i.e., the
likelihood function). The likelihood function object in HyPhy is a con-
venient way to combine multiple data filter/tree objects (with shared or
distinct model parameters) into a single likelihood function, which can
then be maximized to obtain MLEs of all model parameters.

Ezxample 6.1 Basic analysis

We are now conceptually prepared to set up the simplest nucleotide sequence
analysis with the help of the HyPhy graphical user interface. Our example
data set is the p51 subunit of the reverse transcriptase gene of HIV-1, ob-
tained as one of the reference alignments from the Los Alamos HIV database,
hiv-web.lanl.gov. This data set is included as an example file with HyPhy
distribution.

Preparing the data

First we must load the sequence alignment. We accomplish this by starting
HyPhy and selecting the FILE:OPEN:OPEN DATA FILE menu command from
the HyPhy console window. The file we wish to open is named p51.nex and
can be found in the data directory of the HyPhy standard installation. Alter-
natively, all example alignments used in this chapter can be downloaded from
www . hyphy . org/pubs/HyphyBookChapter. tgz.

HyPhy will load the sequences and open a data Panel (fig. 6.2) We will
explore some features of the data panel interface in later examples. For now,
we wish to define a data filter (partition); in this case, the filter will sim-
ply be the entire alignment. Select all sites in the alignment by using the
EDIT:SELECT ALL menu command, and then create a new partition by choos-
ing DATA:SELECTION—PARTITION. The program creates a data filter with
all the sites selected in the sequence viewer, assigns a default name and
color to the partition, updates the navigation bar, and selects the newly
created partition. One can edit the name and color of a partition by dou-
ble clicking on the partition row in the “Analysis Setup” area or choosing
DATA:PARTITION PROPERTIES, with the partition row selected. Rename the
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Fig. 6.2. HyPhy data panel (Mac OS X).
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Fig. 6.4. Analysis Setup.

partition “RT_Gene” (for technical reasons, HyPhy doesn’t allow spaces in the
names of partitions) as shown in Figure 6.3.

Specifying the model

Once the data have been filtered, we may assign a tree topology and a model
to the partition by clicking on the pulldown arrows in the appropriate columns
of the “Analysis Setup” table (Figure 6.4). The data file p51.nex already in-
cluded a tree topology, automatically loaded by HyPhy and made available in
the “Tree Topology” pulldown list. For the model, let us choose substitution
matrix HKY85, with global parameters (in this case meaning that there is a
single transversion/transition ratio  for every branch in the tree) and equilib-
rium frequencies gathered from the partition, so that entries of the frequency
vector 7 are simply the frequencies of characters observed in the data. Once
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all the necessary analysis components have been successfully assigned to at
least one data partition (RT_Gene in this case), the status light in the bottom
left corner of the window will change from red to yellow, indicating that we
are now ready to create a likelihood function.

Likelihood function

We will denote the likelihood function of the model parameters @, given a
data set D and a tree T, by
L(e|D,T).

HyPhy is then able to obtain maximum likelihood parameter estimates 6 by
maximizing L(O|D, T) over the possible values of 6.

Let us now create and optimize the likelihood function. First, we select
LIKELIHOOD:BUILD FUNCTION. HyPhy creates the likelihood function as re-
quested and prints out some diagnostic messages to the console:

Created likelihood function ‘p51_LF’ with

1 partition,

1 shared parameters,

13 local parameters,

0 constrained parameters.

Pruning efficiency 764 vs 1534 (50.1956 %, savings)

The number of local parameters refers to the branch-length parameters, t. An
unrooted binary tree on n sequences will have a total of 2N — 3 branches. In
our case, N = 8 and thus there are 13 branch-length parameters to estimate.
Pruning efficiency numbers show the computational savings that HyPhy was
able to realize using the column-sorting ideas of [6]. Now, choose LIKELI-
HOOD:OPTIMIZE to instruct HyPhy to proceed with fitting selected models to
the data and obtaining parameter MLEs.

Results

We are now ready to examine model-fitting results. For this example, HyPhy
produces maximum likelihood estimates of 14 model parameters by numerical
optimization of the likelihood function. The program reports a text summary
to the console and also opens a graphical parameter table display, as shown in
Figure 6.5. The status bar of the parameter table displays a one-line snapshot
of the likelihood analysis: the maximum log-likelihood for our RT data set
was —3327.25, and 14 parameters were estimated. Knowledge of these two
quantities is sufficient to evaluate various information-theoretic criteria for
relative goodness of fit, such as the Akaike information criterion [1], or to
perform likelihood ratio tests for nested models.

Notice how HyPhy groups items in the parameter table by class: trees,
global parameters (shared by all tree branches), and local parameters (those
that affect a single branch); each item is labeled both by name and with an
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Fig. 6.5. Graphical parameter display.

appropriate icon. The single global parameter is the transversion:transition
ratio, k, of the HKY85 model and is labeled as RT_Gene_Shared TVTS. By
default, each shared parameter is prefixed with the name of the data partition
to which it is attached (RT_Gene in this case). While at first the names of
local parameters may appear confusing, HyPhy uses a uniform naming scheme
for all local model parameters: tree name.branch name.parameter name. For
instance, pb1l_tree.B_LFR_83_HXB2.t refers to a local parameter ¢ along the
branch ending in B_.FR_83_HXB2 in the tree p51_tree. Leaf names in the tree
correspond to sequence names in the data file, while Node N, where N is an
integer, are default names given to unlabeled internal nodes in the tree. (Users
can give internal nodes custom names as well.) Parameter estimates can be
exported in a variety of formats by invoking FILE:SAVE.

Let us now open a tree window to visualize the evolutionary distances
between HIV-1 sequences in the example by double clicking on the tree row
in the parameter table. HyPhy will open a tree viewer panel, as shown in
Figure 6.6. A common measure used to assess evolutionary distances is the
expected number of substitutions per site, F,;, along a particular branch,
equal to the weighted trace of the rate matrix:

Esub = *tzﬂijj' (61)
J
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The HyPhy tree viewer automatically scales branches on FEjg, although the
scaling may be changed by the user.
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A+ |®
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Fig. 6.6. HyPhy Tree Viewer for p51.nex, scaled on the expected number of sub-
stitutions per site inferred using the HKY85 model, with an example of a tooltip
branch-length reporter.

Confidence intervals

All parameter estimates will be affected by sampling variations of various mag-
nitudes. For instance, substitution-bias parameters often have large variances
relative to those of branch-length estimates. HyPhy allows the user to ob-
tain confidence intervals using the asymptotic normality of MLEs. Likelihood
theory states that MLEs of model parameters are distributed asymptotically
as multivariate normal around the true parameter values, and the covariance
matrix of the normal distribution can be estimated by inverting the observed
Fisher information matrix
() (Zisien) )
iV =6
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The Fisher information matrix measures the curvature of the log-likelihood
surface. Flat surfaces around the maximum do not inspire high confidence in
estimated parameter values, while steep surfaces lead to sharp estimates.

HyPhy can be instructed to construct the covariance matrix as well as the
confidence intervals for each parameter based on the estimated variance of
the normal distribution, either for every parameter or for selected parameters
(conditioned on the values of others). Select all the parameters in the table by
choosing EDIT:SELECT ALL and then LIKELIHOOD: COVARIANCE AND CI,
and set “Estimation Method” to “Asymptotic Normal[finer]” in the ensuing
dialog box. “Crude” and “Finer” estimates differ in how HyPhy computes
the Fisher Information Matrix (which must be done numerically because an-
alytical derivatives of the likelihood function are not available in general).
HyPhy will open two chart windows—the 95% confidence interval window for
all selected parameters and the covariance matrix.

X1 Asymptotic Normal §5% C1 For pS1_LF ‘8086 Likelihoad Profile €I For g5 1UF [chi2 level 0.95]
L Pien 105 T Laft Bound [1) H Lin Picn 555 Ieden o Left Beuna (1] o

oz bebe| g

Fig. 6.7. HyPhy confidence interval estimates using (A) asymptotic normality of
MLEs and (B) Profile plots using 95% levels of x3.

Likelihood profile

Confidence intervals based on asymptotic normality rely upon many assump-
tions that may be violated for short alignments or parameter-rich models. For
example, such confidence intervals are always symmetric about the maximum
likelihood estimate, and if the likelihood surface is skewed around the MLE,
such intervals may be a poor representation of the real variance of parameter
estimates. A second approach to determining statistical support for a parame-
ter value estimate is to employ likelihood profile confidence intervals, obtained
by inverting a likelihood ratio test.

Suppose we wish to compute a confidence interval C'I of level a for a
single model parameter #;. A common method is first to fix all other model
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parameters 0;/,i # i at their maximum likelihood estimates. We can now
think of the likelihood function as a function of a single parameter 6. Thus,
a restricted version of the full likelihood function is

Clearly, the maximum likelihood estimate for 6; using the restricted likelihood
is the same as that given by the full likelihood function: 0;.

Consider two hypotheses: Hg : 0; = x versus H 4 : 0; # x. These hypothe-
ses can be tested using the restricted likelihood function and a one degree of
freedom likelihood ratio test (assuming that 6/ is not on the boundary of the
parameter space)

2[log L(6;) — log L(x)] ~ x7.

If éj is on the boundary, then the asymptotic distribution changes to

U Xitxd
7

Using this observation, a confidence region can be defined as all those
values x for which we fail to reject Hy (i.e., all those x for which the likelihood
ratio statistic is less than the « percentile of the corresponding x? or mixture
distribution). If we also assume that the likelihood function is monotone (has
no local maxima), then we find the boundaries of the confidence interval by
tracing the log-likelihood function plot until the desired difference from the
maximum is obtained in both directions (see Figure 6.8).

There are a couple of issues with this approach: (i) we assume sufficient
data for the asymptotic likelihood distributions to be applicable, which may
fail for short alignments or models that are too parameter-rich; and (ii) we
are obtaining the confidence intervals for one parameter at a time rather
than a confidence region for all parameters (which is mostly due to technical
difficulties with finding such a region when there are many model parameters),
thus ignoring covariation among parameter estimates.

The first issue may be resolved, to an extent, by accepting or rejecting Hy
using a non-LRT criterion, such as AIC [1]. The procedure is exactly the same,
but the cutoff level is no longer determined by the asymptotic x? distribution
but rather by an information-theoretic parameter addition penalty. For AIC,
2[log L(6;) — log L(z)] < 2 would place z in the confidence interval.

Also, to see how reasonable the asymptotic normality assumption is, one
could check whether a quadratic approximation to the log-likelihood holds
well. The quadratic approximation for the log restricted likelihood around the
maximum likelihood estimate 6; can be derived from a Taylor series expansion:

(«-6)"

Because 6; maximizes the likelihood function, the first derivative term van-
ishes, and we have the desired quadratic approximation:

2[log L(6;) — log L()]

N (:r - él) + Czl:?logL(Gi)

D tog Z(6:)

log L(z) ~ log L(0;
og L(z) ~ log L( )+d9i

0;
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(a4

0;

2
log L(z) — log L(6;) ~ % log L(;)

By plotting the likelihood profile and the quadratic approximation on the
same graph, one can see how well the x? approximation to the likelihood
ratio test will work. HyPhy offers each of the confidence interval estima-
tion techniques above via LIKELIHOOD:COVARIANCE AND CI and LIKELI-
HOOD:PROFILE PLOT from the parameter table window.

L_Max-L

0.14 0.15
Likelihood Profile

-2 LY ‘\
3 //’ \

// Quadratic Approximation \
4

RT_Gene_Shared _TVTS

Fig. 6.8. Likelihood profile plot, with a quadratic approximation and a 95% x?
cutoff level.

Saving the analysis

HyPhy can store all the information needed to recreate the analysis we just
performed in a single NEXUS file. This feature can be invoked by switching
back to the data panel, selecting FILE:SAVE, and choosing the format option
to include the data in the file. Let us save this simple analysis as p51_HKY85 . bf
in the “Saves” directory of the HyPhy installation.

6.2.2 Local Branch Parameters

Almost all treatments of likelihood analysis of molecular sequence data as-
sume that there is only one parameter per branch in the phylogenetic tree—
branch-length—and that other model parameters are shared by all branches.
However, it may be often be desirable to relax this assumption. For example,
to test whether a group of branches (such as a single lineage or a clade) have
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different substitution process parameters than the rest of the tree, it is neces-
sary to compare likelihoods of constrained and unconstrained models. HyPhy
provides a general mechanism for defining an arbitrary number of branch-
specific and shared model parameters. Consider the HKY85 model discussed
in the previous section. Rewrite the rate matrix as

A C G T

A * ﬂ’lrc anmg 671’7“

_C| Bra *  fBrg anr

Q= G| ara Brg * Brr
T \pra ame Prc *

This may seem like a different matrix altogether, but if one sets ¢ = a and
Kk = B/a, we return to the previous parameterization if § > 0. In fact, this
new parameterization allows the transition rate (a) to be 0 and transversion
rate () to be nonzero, whereas the first (more common) parameterization
does not. Even more importantly, we can now let each branch have a separate
« and [, which is equivalent to allowing every branch to have its own transi-
tion/transversion ratio. We declare such a model to be fully local, as opposed
to the fully global model of the previous section. Obviously, there is a range of
intermediate models where some of the branches share transition/transversion
ratios while others are free to vary.

To specify the fully local HKY85 model in HyPhy for our example data
set, all that must be done differently is to select “Local” in place of “Global”
in the “Parameters” column of the analysis setup table in Figure 6.4. You can
either start a new analysis from scratch or continue from where we left off
in the global analysis of the previous section. In the latter scenario, HyPhy
will display a warning message because changing substitution models causes
a fundamental change in the likelihood function (i.e., a different set of para-
meters and rate matrices). Next, invoke LIKELIHOOD:BUILD FUNCTION and
observe that the resulting likelihood function has 26 local parameters (two
per branch, as requested). Upon selecting LIKELIHOOD:OPTIMIZE, a para-
meter table is once again shown, and we observe that the log-likelihood has
improved to —3320.84. A quick glance at the likelihood score improvement
of seven units for 12 additional parameters suggests that there is insufficient
evidence favoring the fully local model over the fully global model.

The rate parameter names in the parameter table for this analysis end
with “trst” and “trsv,” which hopefully mean “transition” and “transversion.”
HyPhy allows one to look at the rate matrix and map parameter names to
what they actually stand for in case parameter names are less descriptive.
To see how that is done, let us open the “Object Inspector” window (use
WINDOW:OBJECT INSPECTOR on the Mac and FILE:OBJECT INSPECTOR in
Windows). In the newly opened window (Figure 6.9(a)), select “Models” from
the pulldown option list, and scroll through the rather long list of models until
you find one in bold (meaning that this model is currently used in an active
likelihood function) named “RT_Gene HKYS85_local.” Again, the name of the
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data partition is incorporated in the model identifier for easy reference. Double
click on that model and examine the rate matrix as shown in Figure 6.9b. The
equilibrium frequencies for this model () are the actual proportions of A, C,
G, and T in the RT gene alignment, and “trst” are indeed the rates for A <> G
and C' <> T substitutions, while “trsv” are the rates for all other substitutions.
By default, HyPhy will automatically multiply rate matrix entries by the
appropriate 7, and hence there is no need to include them in the rate matrix
explicitly.

z 8e0e Object Inspector 2
B e0e Model untitied

Gbjeri > trst Em User Defined Vector 5

ATy r Equilibruim Fregs. A c [ T
£ A |0.404451 L] trav trat trav
w C |o.1eezes trav " trav trat
o 5 _|e.zevmee trst frav = trsy
MGS4_HICYES Sk 1Bin Discrete_Universal T _|e.219097 trav trat trav -
1 MG_HEY_xé_Gere WikSym

VRN

Fig. 6.9. (a) Models in the “Object Inspector”; (b) HKY85 local model for the RT
gene.

Let us now open the tree window for the local model (Figure 6.10(a)).
Recall that branch lengths are given by (6.1). The tree looks very similar to
the global HKY85 tree from Figure 6.6. However, a more interesting com-
parison would be to see if the transition and transversion ratios vary from
branch to branch. HyPhy allows scaling of the tree display on any local model
parameter— “trst” and “trsv” in this instance.

Double click on the tree name in the parameter table once again to open
another instance of the tree window—very useful for side-by-side compari-
son. Scale one of the trees on “trst” and another on “trsv” (Figure 6.10(b,c)).
Notice that while the shapes are still similar, branch lengths are not quite pro-
portional between trees, as they would be if all branch transition/transversion
ratios were the same.

As a matter of fact, the HyPhy tree viewer allows scaling on any function
of model parameters. Let us define the transversion/transition ratio parame-
ter. For every branch, it is simply ratio = trsv/trst. To define this scaling
parameter, switch to a tree window, select all branches (EDIT:SELECT ALL),
and choose TREE:EDIT PROPERTIES. The dialog box that appears shows all
available local branch parameters. Click on the “Add User Expression” button
(the + icon), type in the formula for the expression, rename it “ratio,” and
select “OK” (Figure 6.11). HyPhy has added “ratio” to the list of local para-
meters (not estimable parameters but rather functions of other parameters).
You can view the value of each branch ratio in the parameter table and scale
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Fig. 6.10. RT gene tree under HK'Y85 local model scaled on (a) expected number
of substitutions per site, (b) transition rates, (c) transversion rates, (d) transver-
sion/transition ratios.

the tree on the transversion/transition ratio (Figure 6.10(d)). The differences
in branch-to-branch ratios are quite striking.

The HyPhy tree viewer can automatically label each branch of the tree
with any function of branch-model parameters. As an example, we will label
each branch with the number of transitions F; and transversions F, per site,
expected to occur along that branch. For the HKY85 local model,

E; =20t(mang + monr), E, =2at[(ra + 7e)(mc + 71)].

Note that E; and E, add up to the total branch length and are linear functions
of the rates. Substituting the actual values of 7 for our data set (Figure 6.9(b)),
we get

E; = 0.2425836t, E, = 0.474001at.

Employ the same process we did for adding the ratio parameter, and define
E;, = 0.242583 % trst and E, = 0.474001 * trsv. Now use TREE:BRANCH
LABELS:ABOVE BRANCHES and TREE:BRANCH LABELS:BELOW BRANCHES
to label each branch with E; and E,, adjust fonts and alignments to your
liking, and check “Scale tree by resizing window” in the dialog opened with
TREE: TREE DIsPLAY OPTIONS. The final display should look like Figure 6.12.
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Parameter ID Type Value
trst Parameter Miulnple Values
trsv Parameter Miltple Values

Formula: trsv/trsd
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Fig. 6.11. New scaling parameter dialog.
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Fig. 6.12. RT tree scaled on expected number of substitutions per site and labeled
with the expected number of transitions and transversions per site (above and below,
respectively).

6.2.3 Multiple Partitions and Hypothesis Testing

Early attempts to model molecular evolution of protein-coding sequences used
the observation that the evolution in the first and second positions of a codon
differed markedly from that at the third position. Indeed, for the universal
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genetic code, every substitution in the second codon position is nonsynony-
mous (i.e., it changes the protein encoded by the codon). For the first position,
all but eight possible (sense) substitutions are nonsynonymous. In contrast,
at the third position, 126 out of 176 substitutions are synonymous. Because
random nonsynonymous substitutions are likely to be deleterious, it is often
observed that the substitution rate for the third position is different (typically
much higher) than those in the first and second positions. Our next task is
to define a HyPhy analysis that treats the first and second codon positions
as one data partition and the third codon position as another, and then fit a
collection of models to the data. We will continue using the HIV-1 p51 subunit
of the RT gene data set from p51.nex.

First, open the data panel with p51.nex and select all the sites in the
alignment. Next, invoke one of the numerous data-filtering tools in HyPhy-
—the combing tool—by clicking on the comb tool button in the data panel
(Figure 6.13). To select the first two positions in every codon, we need a comb
of size 3 with first and second sites selected and the third omitted. In the
combing dialog, set the size of the comb to 3 and check the boxes next to
positions 1 and 2. Repeat the process to define the partition with every third
codon position (make sure that the first partition is not highlighted in the
analysis setup table while you are applying the second comb; otherwise HyPhy
will comb the partition again, effectively selecting every third column in the
data partition of the first and second positions we have just created). Rename
the partitions to “First_Second” and “Third”, respectively. Assign the same
tree topology to both data partitions, the HKY85 model, global parameter
options, and equilibrium frequencies collected separately from each partition.
In the end, the data panel should resemble the one in Figure 6.13.

8oce DataSet p51

1) Nucleotide Data. 1320 sites (118 distinet patterns), & species. Current Selection:1-1320

Fig. 6.13. Data panel with two data partitions and a comb filter dialog.

When we build the likelihood function, HyPhy prints out a message

Tree topology pb5l_tree was cloned for partition Third.
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Fig. 6.14. HIV-1 RT scaled on the expected number of substitutions per site for
(a) first and second codon positions and (b) third codon position.

It is important to understand that while both partitions share the tree topol-
ogy, for HyPhy a tree means both topology and models/parameters. The
two partitions need to have two trees with independent branch lengths and
transversion/transition ratio parameters, k12 and k3, assigned the names
First_Second_Shared_TVTS and Third_Shared_-TVTS by HyPhy.

After the models are fit to the data, we observe that both the shapes of
the trees (Figure 6.14) and the transversion/transition ratios (0.198 versus
0.067) differ quite a lot between the partitions.

A careful reader might correctly point out that the analysis we have just
performed could have been done by fitting HKYS85 to each of the partitions
separately. However, we will now illustrate what the joint likelihood function
of both partitions can offer in terms of hypothesis testing.

Simple hypothesis testing

Consider the null hypothesis Hy : k12 = k3 versus the full-model alternative
Hy @ k12 # k3. The analysis we just performed was for the full model, and
before proceeding with the definition of the constraint in Hy, the MLEs for
H 4 must be saved. To do so, click on the pulldown menu in the parameter
table (Figure 6.4) and choose SAVE LF STATE. A collection of parameter
MLEs and constraints constitute a state (i.e., a hypothesis). Name the state
“Full Model,” and choose SELECT AS ALTERNATIVE from the same pulldown
menu.

Now, the constraint for the null hypothesis must be defined, and a new set
of MLEs for all independent model parameters must be calculated. To define
the constraint, select both transversion/transition ratio parameters (shift-click
to select multiple rows) and click on the constraint (second) button. Note
that the parameter table updated to reflect that one of the ratios is no longer
independent of the remaining parameters. Next, we calculate a new set of
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parameter MLEs by optimizing the likelihood function anew. Not surprisingly,
Hy : k12 = k3 = 0.11, which is between the independently estimated values.

Save the set of MLEs for Hy as “Constrained” and then choose SELECT
AS NULL, which instructs HyPhy to treat “Constrained” as the null hypoth-
esis. With all the components of a hypothesis test in place, choose LRT
from the same pulldown menu. HyPhy computes the likelihood ratio statistic
2 (log L4 — log Lo) and a p-value based on the asymptotic x? distribution with
(in this case) one degree of freedom:

Likelihood Ratio Test
2xLR = 12.5286
DF = 1
P-Value = 0.000400774

The likelihood ratio test strongly rejects the null hypothesis of equal transver-
sion/transition ratios between partitions.

Parametric bootstrap

The x? distribution is the asymptotic distribution for the LRT statistic, and
one would be well-advised to realize that it may not always apply directly.
However, one can always verify or replace the results of a x2 test by the para-
metric bootstrap [2, 4]. HyPhy has a very general way of simulating sequence
alignments parametrically — it can do so transparently for any likelihood func-
tion using current parameter values. For the purposes of this example, HyPhy
simulates 1000 8-sequence alignments with 1320 sites each, using the model
in the null hypothesis (i.e., constrained ratios). HyPhy then fits the models
in Hy and H 4 to every simulated data set and tabulates the likelihood ratio
test statistic. The resulting LRT distribution may then be used for obtaining
significance values for the original LRT value or for verifying how well the
LRT statistic follows the asymptotic x? distribution.

The parametric bootstrap function can be accessed via the same pulldown
menu in the parameter table window. Enter the number of data replicates to
be simulated and choose whether or not HyPhy should save data and para-
meter estimates for every replicate. For the current data set, 1000 replicates
should take 20 — 30 minutes on a typical desktop computer. HyPhy opens a
summary bootstrap table and adds simulated LRT statistic values as they
become available, as well as keeping tabs on the current p-value. Replicates
with larger values of the LRT than the original test are highlighted in bold.
After bootstrapping has finished, you may open a histogram or cumulative
distribution function plot for the LRT statistic, as shown in Figure 6.15. Your
simulation results will differ from run to run, but you should still obtain a p-
value very close to the asymptotic x? p-value and an LRT histogram mirroring
the shape of a x? distribution with a single degree of freedom.
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Fig. 6.15. (a) Simulated density for the likelihood ratio statistic and (b) bootstrap-
ping window example.

Relative ratio test

It is clear from Figure 6.14 that the trees on the first and second positions 712
have much shorter branch lengths than the tree for the third position 73, which
is to be expected. However, apart from a few internal branches, the overall
shapes of the trees remain somewhat similar, suggesting that perhaps the only
fundamental difference between nucleotide level substitution processes is the
amount of change for the entire tree, while relative branch lengths Fg,;(b;)
are the same for both trees. Mathematically, this constraint can be expressed
as

Eoup(bi|Ti2) = RrEsup(b;|Ts), for all branches b;,

where the parameter Rp is the relative ratio. As we saw earlier, branch lengths
for HKYS85 are linear functions of the branch-length parameter t; thus it is
sufficient to constrain ¢ parameters to be proportional.

HyPhy has a built-in tool for easy specification of relative ratio con-
straints [13, 8] on trees or subtrees. To carry out the relative ratio test, select
two trees (or two branches that root the subtrees; see below) and click on the
relative ratio button (second from the right in the toolbar) in the parameter
table. Name the ratio parameter, and then reoptimize the parameters. Use the
technique from the previous example to save the full and constrained models
and to carry out the likelihood ratio test using either the asymptotic distribu-
tion or the parametric bootstrap. The result from the chi-squared distribution
is:

Likelihood Ratio Test
2xLR = 24.0092
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DF = 12
P-Value = 0.0202825

The relative ratio hypothesis can therefore be rejected at the 0.05 level but not
at the 0.01 level. Application of the parametric bootstrap yields a comparable
p-value.

Saving a complete analysis.

HyPhy is capable of saving an analysis and every hypothesis in a single file.
Invoke FILE:SAVE from the data panel, and choose the format that includes
sequence data in the resulting file dialog. If you later open the saved file by
selecting FILE:OPEN:OPEN BATCH FILE, the analysis and all the hypotheses
you have defined will be available.

6.2.4 Codon Models

The natural unit of evolution for stochastic models of protein-coding sequences
is a codon. By modeling the substitutions on the level of codons rather than
nucleotides, inherently different processes of synonymous and nonsynonymous
substitutions can be handled adequately. By expanding the state space for
the substitution process from four nucleotides to 61 nonstop codons in the
universal genetic code, the computational cost increases dramatically, both
when evaluating transition probability matrices and calculating the likelihood
function itself. Modern computers can handle the added burden quite easily,
though.

Consider a codon-based extension to the HKY85 model, which is similar
to the model in [7]. We dub it MG94xHKY85_3x4. The 61 x 61 rate matrix
for this model, which gives the probability of substituting codon x with codon
y in infinitesimal time, is

am,, T —y l-step synonymous transition,
KTy, , £ — y l-step synonymous transversion,

Quy(a,B,k) = Bmn,, x— y l-step nonsynonymous transition, (6.2)
pkTp,, © — y l-step nonsynonymous transversion,
0, otherwise.

As before, & is the transversion/transition ratio. The parameter o denotes the
synonymous substitution rate, while 8 provides the nonsynonymous substi-
tution rate. The ratio of these two values, w = 3/a, can be used to measure
the amount of selective pressure along a specific branch. The value m, is
the frequency of the “target nucleotide” for the substitution observed in the
appropriate codon position in the data set. For instance, if + = ATC and
y = AGC, then m,  would be the frequency of nucleotide G observed at sec-
ond codon positions in the alignment. The model only allows for one instan-
taneous nucleotide substitution between codons. For instance, ATC — AGG
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is not allowed to happen by two concurrent nucleotide substitutions because
such events have negligibly small probabilities. However, such changes are al-
lowed via multiple substitutions, as evidenced by the fact that all transition
probabilities (entries in the matrix e®*) are nonzero for ¢ > 0.

The specification of the model is completed by providing the equilibrium
frequencies of the 61 codons. For a codon composed of three nucleotides i, j, k

1.2._3
7T,L<7Tj’/Tk

1.2_3 1.2.3 1.2,.3°
1 — mpmamy — MpmyTE — TpTETy

Tijk = (6.3)
where 7% denotes the observed frequency of nucleotide n at codon position k.
The normalizing term accounts for the absence of stop codons TAA, TAG,
and TGA from the state space and the model. Note that this model mixes
local (« and ) and global (k) parameters.

MG94xHKY85_3x4 applied to HIV-1 integrase gene

Following are the steps needed to apply a codon model to integrase _BDA.nex,
found in the Examples directory of HyPhy standard distribution. This data
file contains the integrase gene of six Ugandan subtype D, three Kenyan sub-
type A, and two subtype B (Bolivia and Argentina) HIV-1 sequences sampled
in 1999. The integrase gene is relatively conserved and is appropriate for com-
parison between subtypes.

1. Open the data file via FILE:OPEN:OPEN DATA FILE.

2. Select all the data and define a partition—it will be created as a nucleotide
partition at first.

3. Switch the partition type to “Codon.” HyPhy will display a partition prop-
erties box. Rename the partition “Integrase,” but keep all other default
settings.

4. Assign “Integrase_BDA _tree” topology, “MG94x HKY85_3x4” model, and
“Local” parameters option.

5. Build (LIKELIHOOD:BUILD FUNCTION) the likelihood function. Note that
38 local parameters (o and [ for each of the 19 branches) and one global
parameter (transversion/transition ratio) have been created.

6. Optimize (LIKELIHOOD:OPTIMIZE) the likelihood function. It should take
a minute or so on a desktop computer. Open two tree displays, and scale
one on synonymous rates and the other on nonsynonymous rates. Notice
the radical differences between the trees, both in lengths and shapes, as
shown in Figure 6.16.

Molecular clock tests

When reversible models of evolution are used, the rate parameters cannot be
identified separately from the time parameters because only their products are
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Fig. 6.16. HIV-1 integrase tree scaled on (a) synonymous rates a and (b) nonsyn-
onymous rates 3.

estimable. A set of sequences is said to have evolved under a molecular clock
if the expected amount of evolution (measured in expected numbers of sub-
stitutions) from the most recent common ancestor to each of the descendent
sequences is the same. Mathematically, we constrain the length of the paths
between each sequence and the most recent common ancestor in the phylo-
genetic tree to be the same. For the tree in Figure 6.17, a molecular clock
would be imposed by the following two constraints: to = t; and t3 = t1 + t4.
Note that imposing a molecular clock typically requires a rooted tree. Thus,
it is desirable to have a separate outgroup sequence (or groups of sequences)
that can be used to establish the root of a tree. For instance, in the HIV-1
integrase example (Figure 6.16), subtype A sequences form an outgroup to
both B and D subtype clades.

t
t, 1
t
>
L 3

Fig. 6.17. Example of a molecular clock constraint.

For coding sequences, it is often useful to impose molecular clocks on
synonymous substitutions only. Synonymous substitutions are assumed to be
relatively free of selective constraints, whereas nonsynonymous substitutions
will be heavily influenced by purifying and positive selection. HyPhy provides
an easy way to impose molecular clock constraints on a subtree using some
or all model parameters. For MG94x HKY85_3x4, it can be shown that the
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expected number of substitutions per site on a branch has the form

Esup = ta[fi(m) + £ fa(m)] + 1691 (7) + rga(m)],

where f1, fa2, g1, and go are functions determined by the nucleotide compo-
sition of the alignment. The first term in the sum corresponds to the con-
tribution of synonymous substitutions and the second to the contribution of
nonsynonymous substitutions. Since each is a multiple of the corresponding
substitution parameter (« or 3), imposing additive constraints on «a and (3
will result in additivity of the corresponding expected substitution quanti-
ties. Note again that the time parameter ¢ is not estimable alone, and the
parameters actually being estimated (and constrained) are ot and [t.

Thus, three types of molecular clocks may be tested for local codon models:
(i) synonymous only, (ii) nonsynonymous only, and (iii) full (both synonymous
and nonsynonymous) rates.

Local clock tests on HIV-1 integrase

We now address the question of which, if any, of the three types of mole-
cular clocks are supported for the D-subtype clade. We assume that the
MG94xHKY85 model has been fit to the data as described above.

1. Save the likelihood function state as “Full Model.” Select it to be the
alternative hypothesis for our tests.

2. Select the branch that is the most recent common ancestor of the D clade
in the tree viewer. Invoke TREE:SHOW PARAMETERS IN TABLE. This
action will locate two rows in the parameter table, with the parameters
attached to that branch—“Node9.” This method is a general way for
locating branch-specific model parameters in the table quickly—it also
works for a multiple-branch selection. Highlight one of the two identified
TOWS.

3. Click on the molecular clock button (fifth from the left) in the toolbar of
the parameter table. A pulldown menu will appear with the parameters
available for the molecular clock constraints. Choose to constrain “syn-
Rate” for the synonymous rate clock.

4. Optimize the likelihood function, save the new likelihood function state
as “Synonymous Clock,” and set it to be the null hypothesis. Perform
the likelihood ratio test. The test will report the likelihood ratio statistic
of 9.52, which yields the p-value of 0.09 using the asymptotic x> with 5
degrees of freedom. This value is reasonably close to rejecting the molecu-
lar clock hypothesis, so a bootstrap p-value verification may be desirable.
For codon data, bootstrapping is a time-consuming process, so you may
only choose to do 100 replicates. Our simulation yielded a p-value of 0.14,
failing to reject the molecular clock.

5. Select “Full Model” from the pulldown menu in the toolbar of the parame-
ter table, and then go back to step 3 and repeat steps 3 and 4, constraining
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nonsynonymous rates first and then both rates. Likelihood ratio tests fail
to reject either of the clocks.
6. Save the analysis from the data panel.

6.2.5 More General Hypothesis Testing

The hypotheses of the previous section are all examples of nested hypothe-
ses, which can be obtained by constraining some of the model parameters in
the more general hypothesis to reduce it to a particular case, the null hy-
pothesis. Often, interesting biological questions cannot be framed as nested
hypotheses. For example, the question of whether a particular phylogeny with
certain taxa constrained to be monophyletic is significantly different from the
unconstrained phylogeny is a nonnested question. Another example would be
determining which of two competing models better explains the data when
the models are nonnested. HyPhy includes a rather general mechanism for
nonnested hypothesis testing based on the parametric bootstrap [2, 4]. All
one needs to do is to define competing models (by models, we mean more
than just the substitution matrices) on the same alignment and then test by
parametric bootstrapping.

Consider the example data set of the p51 subunit of HIV-1 reverse tran-
scriptase from the previous sections. As an illustration of testing nonnested
hypotheses, we will consider whether there is enough evidence to suggest that
the JTT model describes the data better than the Dayhoff model of amino
acid evolution.

First, we must convert a codon alignment found in p51.nex into amino
acids.

1. Open the data file p51.nex, select all alignment columns, and create a
nucleotide partition.

2. Change the data type of the partition to “Codon,” obeying the universal
genetic code.

3. Select DATA:ADDITIONAL INFO: AMINO ACID TRANSLATION. Choose “All”
in the ensuing dialog box. HyPhy will translate all the sequences in the
codon partitions into amino acids, create a new data set, and open a new
data panel displaying all the newly created amino acid sequences.

4. Let us now save the amino acid alignment to a separate data file. In the
newly opened data panel with the amino acid alignment, create a par-
tition with all the alignment sites and, with the partition row selected,
click on the “Save Partition To Disk” button. Choose the “NEXUS Se-
quential[Labels]” format in the file save dialog, and save the file as p51.aa
in the “data” directory of the HyPhy distribution.

Second, we evaluate the likelihood under the null hypothesis Hy: Dayhoff
model:

1. Open the amino acid alignment p51.aa, select all alignment columns, and
create a protein partition named “p51.”
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2. Assign the included p51 tree topology and the “Dayhoff” substitution
model to the “p51” partition.
3. Build and optimize the likelihood function.

The null model has 13 estimable parameters and yields a log-likelihood of
—2027.28.
Next, we set up the alternative hypothesis, H4: JTT model:

1. Open the amino acid alignment p51.aa, while the previous analysis is still
open. We need to keep both analyses in memory at the same time. Note
how HyPhy renamed the new data panel “p512” to avoid a naming conflict
with an already open window.

2. Assign the tree topology found in the data file and the “Jones” substitu-
tion model to the data partition.

3. Build and optimize the likelihood function.

The alternative model also has 13 adjustable parameters and yields a log-
likelihood of —1981.61.

The JTT model provides a higher likelihood value, but since the models are
not nested, we cannot simply compare the likelihoods to determine whether
the difference is statistically significant. We can, however, use the parametric
bootstrap to find a p-value for the test without relying on any asymptotic
distributional properties.

1. Switch to either of the data panels, and invoke LIKELIHOOD:GENERAL
BoorsTrAP. HyPhy will display a bootstrap setup window, which is very
similar to the window we have seen in nested bootstrap examples.

2. Set the appropriate null and alternative hypotheses by choosing the name
of the data panel (“p51” should be the null, and “p512” should refer to
the alternative, if you have followed the steps closely).

3. Click on the “Start Bootstrapping” button, select PARAMETRIC BOOT-
STRAP from the pulldown, and enter 100 for the number of iterates.

4. HyPhy will perform the requested number of iterates (it should take five
or ten minutes on a desktop computer), and report the p-value. In our
simulation, we obtained a p-value of 0, suggesting that the data are better
described by the JTT model.

6.2.6 Spatial Rate Heterogeneity: Selective Pressure and
Functional Constraints

It is a well-documented fact that evolutionary rates in sequences vary from
site to site. Good substitution models should be able to include such rate
variation and offer ways to infer the rates at individual sites. Consider again
the MG94x HKY85_3x4 codon model, but let us modify it to allow each codon
s to have its own synonymous () and nonsynonymous ([s) rates. The rate
matrix for codon s must be modified as follows:
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QsTp,, 2« — Yy l-step synonymous transition,
QsKTy,, T — y l-step synonymous transversion,

Quz.y = § BsTn,, 2 — y l-step nonsynonymous transition,
BskTn,, * — y l-step nonsynonymous transversion,
0, otherwise.

The most general estimation approach would be to estimate ag and [,
separately for every codon, but that would require too many parameters and
result in estimability issues. Another idea, first proposed in [11], is to treat the
rate at a particular site as a random variable drawn from a specified distribu-
tion. Most work of this sort has considered only a single variable rate for each
site, and the distribution of those rates has usually been assumed to follow a
gamma distribution. We now extend the MG94xHKY85_3x4 model to have
synonymous and nonsynonymous rates at codon s described by the bivariate
distribution Fy, (e, 8s) whose parameters n are either given or estimated. The
likelihood for an alignment with S sites, tree T, and the vector @ of all model
parameters can be written as

S
LO|T,D) = [[ E[L(OIT, Dy, 05 = a, B = b)].

s=1

The expectation is computed using the distribution specified by Fy (o, 5).
Site likelihoods, conditioned on the values of a; and (s, may be evaluated
using Felsenstein’s pruning algorithm [3]. Unless F},(as, O5) specifies a discrete
distribution with a small number of classes, the expectation is computationally
intractable. However, the approach of discretizing the continuous distribution
of rates to obtain a computationally tractable formulation was introduced in
[12].

If codon s in the alignment is following neutral evolution, then we expect
to infer s & a. For sites subject to functional constraints, nonsynonymous
mutations are almost certain to be highly deleterious or lethal, leading to
purifying selection and s < as. If 85 > ag, the site s is likely to be evolving
under positive selective pressure or undergoing adaptive evolution.

In contrast to existing methods that simply have sites varying according
to their rates, HyPhy allows the user to identify multiple parameters that are
free to vary over sites. In the following example, we allow both synonymous
and nonsynonymous rates to be variable across sites, leading to the possibility,
for instance, that a particular site might have a fast nonsynonymous rate but
a slow synonymous rate. We will consider the case of MG94xHKYS85_3x4
applied to a codon data set with a, and 3 sampled independently from two
separate distributions. Because only products of evolutionary rates and times
can be estimated, we set the mean of the distribution of o, to one. Widely
used models of Nielsen and Yang [9] assume that o = 1 for every site s; thus
our approach is a natural extension. For our example, we choose to sample a
from a gamma distribution 7(cs; pto) with mean 1 and shape parameter g,
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discretized into four rate classes by the method of [11]. The nonsynonymous
rates s are assumed to come from a mixture of a general  distribution and
a point mass at 0 to allow for invariable sites (REF). The density of this
distribution is

Bs ~ R [Pléo(ﬁs) + (1 - PI)’Y(ﬁs;:U’ﬁ)] ) (64)

where Py is the proportion of (nonsynonymous) invariable sites, and R is the
mean of the distribution and is the ratio of the means of the nonsynonymous
and synonymous distribution (similar to dN/dS). The density of the unit mean
gamma distribution with shape parameter pg is (s, 11g). The gamma portion
of the distribution is discretized into three rates, and, with the invariant rate
class, the total number of nonsynonymous rate categories is four.

To perform a maximum likelihood fit of this model in HyPhy we follow
these steps:

1. Open the data file p51.nex.

2. Select all data, create a single partition, and change its data type to codon
and its name to RT_Gene.

3. Assign the tree and the model “MG94xHKY85x3_4x2_Rates” with “Rate
Het” model parameters and four (per parameter) rate categories. The
model we selected implements the extension to the MG94x HKY85_3x4
model we have just discussed.

4. Build the likelihood function and optimize it. Depending on the speed of
your computer, this may take up to an hour.

Parameter estimates returned by the analysis are as follows:

RT_Gene_Shape_alpha = 1.637
RT_Gene_Shape_beta_Inv = 0.708
RT_Gene_Shape_beta =1.174
RT_Gene_Shared_DNDS = 0.527

HyPhy can also display the discretized distributions along with their con-
tinuous originals. This feature can be accessed via the pulldown in menu
category variable rows in the parameter table (Figure 6.19). Density plots
show the continuous density curve, the table of discrete rate classes, and their
visual representations. Dotted lines depict the bounds for the intervals that
each rate class (a solid vertical line) represents.

It is immediately clear that synonymous rates are not constant across
sites. Indeed, the coefficient of variation for «g, which is equal to 1/ VH,, 18
estimated to be 0.61, whereas we would expect a much smaller value were the
synonymous rates equal among sites.

An especially interesting task is to determine which sites are conserved and
which are evolving under selective pressure. An approach proposed in [14] is
to employ the empirical Bayes technique. To do so, we fix all model parame-
ter estimates (more on the validity of that later) and compute the posterior
probability pf ; of observing rates a; and b; at site s. HyPhy can compute
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Fig. 6.18. Synonymous and nonsynonymous distributions for the analysis of the
HIV-1 RT gene

the conditional likelihoods for every site (choose LIKELIHOOD:CATEGORIES
PROCESSOR from the parameter table; see Figure 6.19) given that the rates
come from the category i, j:

lf,j = L(9|7-7 Dsuas — ai,,Bs = bj)
Application of the Bayes rule yields

lijPr{as = ai765 = b]}
Zm,n ZTSn,n

Consider two events at site s: positive selection, PSy = {a, < (s}, and neg-
ative or purifying selection, NSy, = {as > O5}. For any event, one can define
the Bayes factor, which is simply the ratio of posterior and prior odds of an
event. If the Bayes factor of an event is significantly greater than 1, then the
data support the event.

Having opened the categories processor (Figure 6.20), we proceed to per-
form the posterior Bayes analysis as follows:

pf,j = Pr{as = a’iM@S = bJ|D5} =

1. Create a new random variable 8, — a,. To do so, invoke CATEGORIES:
DEFINE NEW VARIABLE and enter the expression (try to use the pulldown
menu for quick access to category variables) 0.527RT_Gene_Categ_beta —
RT _Gene_Categ-alpha. We multiply by the value of R (= 0.527) since in
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Category Yorisbles Claaa 2 Claza 3 Claaz 4 Claza 5 Clasa & Clazs 7
% RT_Gene_Categ_alpha 2.805496-05 | 1.570084-05 | 5.955866-06 | 7.159466-05 | 5.566548-05 | 3.11
00147323 0.00843288 | 000225548 |0.01S5176 00121754 0.006'
b ) 1.573290-05 [7.41110-06 | 1.51907e-06 | 5.1299%-05 |3.6803%-05 |1.719
0.605843 (pr =0.250000) 0.00589534 |0.00329062 |0.000626205 [0.00594012 |0.00461849 |0.002
1057337 (pr =0.2:50000) 00147323 0.00843288 | 000225548 |0.01S5176 00121754 0.006
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~ RT_Gene_Categ_beta
= L 00267265 |00163531 |00051144  [0.0272804  |0.0220374 [0.013
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Fig. 6.19. Conditional site likelihoods module of HyPhy.
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Fig. 6.20. (a) Bayes factor for the event of positive selection at a site. (b) Log of
the Bayes factor for the event of negative selection at a site.

the HyPhy parameterization RT_Gene_Categ_beta refers to the expression
inside the brackets in (6.4)—you can check that by opening the model
display in “Object Inspector.”

2. Expand the view for the new difference variable by clicking on the arrow
next to it, and choose (shift-click or drag select) the event for positive
selection: all positive values of the difference variable.

3. Perform empirical Bayes analysis by selecting CATEGORIES:EVENT POs-
TERIORS. In the window that opens, select a type of “Bar Chart” and Y
of “Bayes Factor.” This display gives an easy overview of sites with large
support for positive selection, say, with Bayes factor over 20.

4. Instruct HyPhy to find all the sites with the Bayes factor over 20. For this
task, select the Bayes factor column (click on the column header), and
choose CHART:DATA PROCESSING:SELECT CELLS BY VALUE. HyPhy will
prompt for the selection criterion: type in “cell_value>20.” The results are
shown in Figure 6.21. According to this criterion, there are 12 positively
selected codons: 35,178,179, 200, 211, 243, 272, 282, 329, 376, 377, and 403.
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Fig. 6.21. Sites found to be under positive selection and supporting Bayes factors
in the HIV-1 RT gene.

The weakness of empirical Bayes

It has been argued that maximum likelihood empirical Bayes methods for de-
tecting rates at sites may yield many false positives. Alternatively, if very few
sites in the alignment are under selective pressure, it is possible that the prior
(and hence posterior) distributions will place zero probability on any site being
positively selected, resulting in low power. The main shortcoming of empirical
Bayes approaches is that parameter estimates are treated as correct values,
and the uncertainties in estimation procedures are discounted altogether. If
one were to compute 95% confidence intervals based on likelihood profiles with
HyPhy, one would discover that

fie € (0.759,10.175), 5 € (0.589, 3.467),

Py € (0.642,0.779), R € (0.405, 0.688).

That is quite a range of variation, and a change in any of those parame-
ters would affect the conclusions of empirical Bayes methods. For instance,
the most conservative (in terms of limiting false positives but also reducing
power) estimates can be obtained by choosing the maximum possible values
for piq, 118, and Pr and the minimum possible value for R. For this choice of
parameters, the maximum Bayes factor at any site is a mere 17.914 and by
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our old criteria no sites are found to be under selective pressure. One should
always realize that uncertainties in parameter estimates can greatly influence
the conclusions of an empirical Bayes analysis, and it helps to compare various
scenarios to assess inference reliability.

Further pointers

HyPhy can run analyses like the one just described in parallel on distributed
systems using Message Passing Interface (MPI). For instance, if 16 proces-
sors are available, computations of [ ; for each of the 16 possible rate class
combinations (7, j) are placed automatically on separate processors, achieving
speeds similar to those of a single rate analysis on a single CPU system and
making analyses with hundreds of sequences in an alignment feasible. Refer
to www.hyphy.org for more details.

HyPhy also implements an ever-expanding collection of rapid positive/
negative selection analyses for data exploration loosely based on the counting
method of [10], as well as site-by-site (and/or lineage-specific) likelihood ratio
testing. It is accessible via standard analyses, and more details can be found
in the HyPhy documentation.

6.2.7 Mixed Data Analyses

As more and more organisms are being fully sequenced, methods and tools for
analyzing multigene sequence alignments and, ultimately, genome-wide data
sets are becoming increasingly relevant. In the small example that follows, we
will show how one can use HyPhy to begin to address such analytic needs.

We consider a sequence alignment of five sequences, each consisting of
two introns and an exon, which can be found in intronexon.nex within the
Examples directory. We must partition the data into introns and exons. As a
first pass, it is appropriate to consider two partitions: coding and noncoding.
For more complex data sets, one can easily define a separate partition for
every gene, and so on. First, create a partition that includes all of the data
(EDIT:SELECT ALL, followed by DATA:SELECTION->PARTITION).

The exon spans nucleotide positions 90 through 275. One of the ways to
create the partition for the exon is to locate alignment column 90 in the
data panel and select it, and then scroll to column 275 and shift-click on it
(this selects the whole range). Note that the status line of the data panel
was updated to reflect your current selection. Make sure it shows “Current
Selection: 90-275.” An alternative approach is to start at column 90 and then
click-drag to column 275. Yet another possibility is to choose DATA:INPUT
PARTITION and enter 89-274 (indices are 0-based).

Once the range has been selected, invoke DATA:SELECTION->PARTITION.
We now have two partitions, overlapping over columns 90-275, as shown in
the Navigation Bar. The final step is to “subtract” the partitions to create
a new partition for the introns. To do this, we select both partition rows
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in the data panel table (shift-click selects multiple rows). Next, click on the
“Subtract 2 Overlapping Partitions” button. Select the appropriate operation
in the resulting pulldown menu. We have now specified two nonoverlapping
partitions. Note that the intron partition is not contiguous. Rename the intron
partition to “Introns” and the exon partition to “Exon.” One could achieve
this same partitioning scheme by defining three partitions, 1-89, 90-275, 276—
552, and joining the first one and the third one.

There is one more filtering step left to do before we can begin analyzing
the data. As often happens with smaller subsets extracted from larger align-
ments, there are several alignment columns consisting entirely of deletions.
Such columns do not contribute informational content to likelihood analyses
and should be removed. Select the “Exon” row in the partition table, click
on the “Data Operations” button, and select SITES WITH ALL DELETIONS.
HyPhy will locate all such sites inside the selected partition only and select
them. Create a partition with those sites, subtract it from the exon partition
as discussed above, and delete the partition with uninformative sites (select
its row and click on the “Delete Partition” button).

Since introns are not subject to the functional constraints of coding se-
quences, it makes sense to model their evolution with a nucleotide model
(HKY85 with global options). For the exon partition, a codon model is
appropriate. Change the data type of “Exon” to “Codon” and apply the
MG94xHKY85%x3_4 model with local options. The end result should look
like Figure 6.22 (a).

Next, build and optimize the likelihood function and open the parameter
table. Our analysis includes two trees with the same topology (one for introns
and the other for exons). The model for the intron tree has a single para-
meter per branch (branch length) and a shared transversion/transition ratio
(Exon_Shared TVTS = 0.308), whereas the model for the exon tree has two
parameters per branch, synonymous and nonsynonymous rates, and a shared
transversion/transition ratio (Introns_Shared TVTS = 0.612). (Note that
we could use previously discussed methods for testing hypotheses to decide
whether the two transversion/transition ratios are different.)

One of the common assumptions made for analyses of molecular sequence
data is that differences between coding and noncoding sequences can be ex-
plained by functional constraints and selective pressures on coding sequences,
namely by changes in rates of nonsynonymous substitutions. In other words,
synonymous substitutions in coding regions and nucleotide substitutions in
neighboring noncoding stretches should have comparable relative rates. This
assumption may be violated if mutation rates vary along the sequence or if
there is selection operating in noncoding regions. We will now test this hy-
pothesis of a relative ratio between the introns and the exon in our example
data sets. In other words, we want to see if the exon tree scaled by synony-
mous rates has the same pattern of relative branch lengths as the intron tree.
Mathematically, the set of relative ratio constraints is
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Fig. 6.22. Exon-intron mixed analysis. (a) Data panel setup and (b) parameter
table with the relative ratio constraint.

exonTree.branch.synRate = R X intronTree.branch.t,

where R is the (global) relative ratio, and the constraint is applied to every
branch. For a small tree like ours, it is easy to use the proportional constraint
tool in the parameter table interface module to define the constraints one at a
time; however, this could become very tedious for larger trees. Luckily, HyPhy
includes a command designed to traverse given trees and apply the same
constraint to every branch. As you will learn from the next section, at the core
HyPhy is a programming language (HBL), and all of the interface features
we have discussed previously use HBL behind the scenes. If the interface does
not include a built-in tool for a specific constraint, the user may tap directly
into HBL to carry out the task at hand. We will do just that for our example.
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Open the parameter table for the intron-exon analysis we have just set up
(making sure none of the parameters are constrained). Invoke LIKELIHOOD:
ENTER COMMAND. HyPhy will take any input from the dialog box that ap-
pears, parse the commands contained therein, and execute them. We need to
invoke ReplicateConstraint, which is a powerful but somewhat complicated
command. If we were to impose the constraints by hand at every branch, we
would begin with

IntronExon_tree2. HK L5.synRate = R X IntronExon_tree. HK L5.t

and repeat applying the same constraint, replacing “HKL5” with other
branches in the tree. A single call using Replicate Constraint will accomplish
the same task:

global R = 1;
ReplicateConstraint("thisl.?.synRate:=R*this2.7.t",
IntronExon_tree2,IntronExon_tree);

The expression in quotation marks is the constraint template; “thisl” is
replaced with the first argument (IntronExon_tree2), “this2” with the second,
and so on. The “?” is a wildcard meaning match any branch name. Repli-
cateConstraint is a very handy command to know, and we refer the reader to
examples contained in the HyPhy distribution. The “global R=1" command
is needed to declare R as a shared parameter and initialize it (further details
are provided in the next section). Enter the commands above into the dialog
box, and, if all went well, the parameter table will update and should look like
Figure 6.22 (b). Optimize the likelihood function, define the null hypothesis,
and perform the likelihood ratio test. The asymptotic p-value of the test is
0.023, rejecting the hypothesis of relative ratio. Since our data set is rather
small, we would be wise to verify this result using the parametric bootstrap.
We obtained a bootstrap p-value of 0.003 with 1000 replicates.

6.3 The HyPhy Batch Language

Underlying the HyPhy graphical user interface is a powerful interpreted pro-
gramming language, HBL (HyPhy Batch Language). The authors originally
developed HBL as a research tool to allow rapid development of molecular
evolutionary analyses. The addition of the graphical interface is a more re-
cent development and provides access to many common types of analyses.
However, the underlying programming language is considerably more power-
ful and flexible (albeit with a steeper learning curve). The goal of this section
is to provide readers with a basic understanding of the fundamentals of HBL
programming and an appreciation of the power of the language. In doing so,
we shall make use of a series of HyPhy batch files, which are available for
download at www.hyphy.org/pubs/HyphyBookChapter.tgz. Complete docu-
mentation of the batch language is available in the Batch Language Command
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Reference at www.hyphy.org and can also be accessed via the built-in com-
mand reference in the HyPhy console.

6.3.1 Fundamental Batch File Elements: basics.bf

The basic task shared by most HyPhy batch files is the optimization of a like-
lihood function for a given alignment/model/phylogeny combination. There-
fore, almost every batch file will perform the following elementary tasks:

1. Input alignment data.

Describe an evolutionary model of sequence change.

Input or describe a phylogenetic tree.

Define a likelihood function based on the alignment, phylogeny, and model.
Maximize the likelihood function.

Print the results to the screen and/or an output file.

A e

The simple batch file basics.bf, reproduced in its entirety below, illustrates
the HBL code necessary to fit the F81 model of sequence evolution to an
alignment of four sequences.

DataSet myData = ReadDataFile ("data/four.seq");
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix =

{{* ,mu,mu,mu}

{mu,* ,mu,mu}

{mu,mu,* ,mu}

{mu,mu,mu,* }};
Model F81 = (F81RateMatrix, obsFregs);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (MLEs, theLikFun);
fprintf (stdout, theLikFun);

Let us now explain how these nine statements accomplish the six key tasks
enumerated above.

Input alignment data

The task of preparing data for analysis in HyPhy consists of two steps. First,
the data must simply be read from a data file. After the data are read, they
must be “filtered.” The process of filtering involves selecting the precise taxa
and alignment positions to be analyzed and identifying the “type” of the
data (e.g., nucleotide, codon, dinucleotide).

DataSet myData = ReadDataFile ("data/four.seq");
DataSetFilter myFilter = CreateFilter (myData,1);
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The first statement simply reads a sequence alignment into memory and names
it myData. The HBL function automatically detects the sequence type (DNA)
and the input format and then saves the data into a data structure of type
DataSet, a predefined HBL data type. The second statement is the simplest
version of the CreateFilter function. In this case, the function takes the align-
ment stored in myData and by default includes all of it in a structure named
myFilter. The argument “1” indicates that the data should be treated as sim-
ple nucleotide data. Had we wanted the data to be interpreted as codons, the
argument “3” would have been used instead. The CreateFilter command is
quite powerful, and we will illustrate the use of some of its optional arguments
in later examples. Multiple data filters may be created from the same data
set.

Describe an evolutionary model of sequence change

The next task in our simple analysis is the definition of a model of sequence
change. One of the unique strengths of HyPhy is its ability to implement
any special case of a general time-reversible model (and, more generally, any
continuous-time Markov chain model, not necessarily time-reversible), regard-
less of the dimensions of the character set. We rely on the fact that any special
case of the general reversible model can be written in a form where entries in
the substitution matrix are products of substitution parameters and character
frequencies. Thus, we have adopted a convention of describing time-reversible
models with two elements: a matrix consisting of substitution rate parameters,
and a vector of equilibrium character frequencies.

F81RateMatrix =
{{* ,mu,mu,mu}
{mu,* ,mu,mu}
{mu,mu,* ,mu}
{mu,mu,mu,* }};
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
Model F81 = (F81RateMatrix, obsFregs);

In our present example, the substitution parameter matrix of the F81 model
is defined and named in an obvious fashion (the HyPhy matrix placeholder
* is defined as “the negative sum of all nondiagonal entries on the row”).
Next, the built-in function HarvestFrequencies tabulates the frequencies in
myFilter and stores them in the newly created vector obsFregs. The functions
of the numerical arguments can be found in the Batch Language Command
Reference. Finally, the matrix and frequencies are combined to form a valid
substitution model using the Model statement.

For the F81 model, the instantaneous rate matrix is traditionally denoted
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Observe the similarity between this matrix and the HyPhy syntax. By default,
the Model statement multiplies each element of the rate matrix by the equilib-
rium frequency of an appropriate character, and hence the HyPhy declaration
of F81 does not include the multiplication by elements of 7. This behavior
can be overridden by passing a third argument of 0 to the model statement
(as is done, for example, for the original MG94 codon model).

Input or describe a phylogenetic tree

HyPhy uses standard (Newick) tree definitions. Thus, the statement
Tree myTree = ((a,b),c,d);

defines a tree named myTree with four OTUs, or taxa, named a, b, ¢, and
d, corresponding to the names in the HyPhy data file. HyPhy will accept
either rooted or unrooted trees; however, for most purposes, rooted trees are
automatically unrooted by HyPhy because likelihood values for unrooted trees
are the same as those for rooted trees.

The Tree data structure is much more complex than simply describing
a tree topology. The Tree variable includes both topology information and
evolutionary model information. The default behavior of a Tree statement is
to attach the most recently defined Model to all branches in the tree. Thus, it
is often critical that the Model statement appear before the Tree statement.
We will discuss more advanced uses of the Tree statement later.

Define a likelihood function based on the alignment, phylogeny,
and model

The likelihood function for phylogenetic trees depends on the data set, tree
topology, and the substitution model (and its parameters). To define a likeli-
hood function, we use a statement such as

LikelihoodFunction theLikFun = (myFilter,myTree);

We name the likelihood function theLikFun, and it uses the data in myFilter
along with the tree topology and substitution model stored in myTree. Recall
that the Tree structure myTree inherited the Model F81 by default.
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Maximize the likelihood function

Asking HyPhy to maximize the likelihood function is simple. The statement
Optimize (MLEs, theLikFun);

finds maximum likelihood estimates of all independent parameters and stores
the results in the matrix named MLFEs.

Print the results to the screen and/or an output file

The simplest way to display the results of a likelihood maximization step is
simply to print the likelihood function:

fprintf (stdout,thelLikFun) ;

This C-like command prints the structure theLikFun to the default output
device stdout (stdout is typically the screen). The results of this statement
are the following:

Log Likelihood = -616.592813234418;
Tree myTree=((a:0.0136035,b:0.0613344)Nodel1:0.0126329,
c:0.070388,d:0.0512889) ;

When asked to print a likelihood function, HyPhy first reports the value of the
log-likelihood. It follows with a modified version of the Newick tree description
as shown in the output above. Each of the branches in the unrooted phylogeny
has an associated branch length, measured in units of expected number of
nucleotide substitutions per site. Those values appear after the colon following
the label for each branch. For example, the estimated branch length leading
to the tip “b” is 0.0613344. Note that the internal node in the tree has been
automatically named “Nodel” by HyPhy, and its associated branch length is
0.0126329. Values of the estimated substitution parameters or base frequencies
could be displayed by printing MLFEs or obsFreqs. HyPhy also allows for more
detailed user control of printed output using a C-like fprintf syntax. Later
examples will illustrate this functionality.

6.3.2 A Tour of Batch Files
Defining substitution models
Simple nucleotide models: modeldefs.bf

One of the primary objectives of HyPhy is to free users from relying on the
substitution models chosen by authors of software. While a relatively small
set of model choices may be sufficient for performing phylogenetic analyses,
having only a few potential models is often limiting for studies of substitution
rates and patterns. To define a model in HyPhy, one needs only to describe
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the elements in a substitution rate matrix. If the characters being studied
have n states, the rate matrix is n x n. For example, nucleotide models are
4 x 4; models of amino acid change are 20 x 20; codon-based models might be
61x61. HyPhy can work properly with any member of the class of general time-
reversible models, regardless of the number of character states. Instantaneous
rate matrices in this class of models satisfy the condition m;Q;; = 7;Qjs,
where 7; is the equilibrium frequency of character ¢ (for nucleotide data) and
Qi; is the ijth entry in the instantaneous rate matrix. HyPhy comes with
many predefined rate matrices for commonly used substitution models. You
can find examples in the Fxamples and TemplateBatchFiles directories of the
HyPhy distribution.

To illustrate the basics of model definition, we discuss the batch file mod-
eldefs.bf

SetDialogPrompt("Select a nucleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);

F81RateMatrix = {{*,m,m,m}{m,*,m,m}{m,m,*,m}{m,m,m,*}};

Model F81 = (F81RateMatrix, obsFreqs); Tree myTree = ((a,b),c,d);
fprintf (stdout,"\n\n F81 Analysis \n\n");

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun) ;

fprintf (stdout,thelLikFun);

fprintf (stdout,"\n\n HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}r{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFregs);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,thelLikFun) ;

fprintf (stdout,theLikFun);

fprintf (stdout,"\n\n Repeat F81 Analysis \n\n");
UseModel (F81);

Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun) ;

fprintf (stdout,thelLikFun) ;

This batch file illustrates two new concepts. First, and most importantly, the
lines

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFregs);
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illustrate the definition of a new substitution matrix. In this case, we have
defined the model of [5] and named the model HKY85. Those familiar with
the HKY85 model will probably recognize the form of the matrix: transitions
occur with rate a and transversions occur with rate b, with each of those
substitution parameters multiplied by the appropriate nucleotide frequency
to provide the final instantaneous rates. The second important point to note
is that we must associate the model with a tree before we can do anything
useful. In this case, we simply redefined the old tree to use the HKY85 model
instead of the F81 model. (Recall that a tree consists of both the topology and
the substitution matrices attached to its branches.) When the statement Tree
myTree = ((a,b),c,d); isissued, the variable myTree is assigned the topol-
ogy ((a,b),c,d) and the branches are assigned the HKY85 substitution model,
which was the most recently defined Model. If we wanted to preserve the orig-
inal variable myTree, we could simply have defined a new Tree structure using
a command such as Tree myNextTree = ((a,b),c,d);.

Finally, for completeness, we created a new Tree and assigned it the F81
model and reproduced the original F81 analysis. Those final steps illustrate
how predefined Models can be assigned to Trees using the UseModel com-
mand.

Note also the use of

SetDialogPrompt ("Select a nucleotide data file:");
DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

to allow the user to locate the sequence file interactively instead of hard-coding
it into the batch file.

More nucleotide models: models.bf

One of the most general models of nucleotide substitution is the general time
reversible model (REV). The instantaneous rate matrix for the REV model is

A C G T
A * 9071'0 917TG 927TT
C 9071’,4 * 937‘(@ 947TT
G 0171',4 93’/TC * 95’]’(”]1
T 9271',4 9471’C 957TG *

QREV =

It is simple to implement this model in HyPhy. The statements

REVRateMatrix = {{*,a,b,c}{a,*,d,e}{b,d,*,f}{c,e,f,*}};
Model REV = (REVRateMatrix, obsFreq);

do the job.

To illustrate these notions in a more useful context, consider the batch
file models.bf. In that batch file, models named F81, HKYS85, REV, JC69,
and K2P are defined, and each is fit to the same data set and tree topology.
The batch file models.bf also demonstrates a few useful HyPhy features. First,
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notice the definition of a vector of frequencies for use by the equal-frequency
models:

equalFreqgs = {{0.25}{0.25}{0.25}{0.25}};
In a similar manner, we define the string constant myTopology:
myTopology = "((a,b),c,d)";

By changing the topology in the definition of myTopology, the entire analy-
sis can be repeated using the new topology. This single step is faster than
updating the topology for every Tree statement and is particularly useful for
topologies with many taxa. Finally, note the reuse of the three substitution
matrices and the two frequency vectors. The original matrix definitions are
used as templates by the Model statements.

Global versus local parameters: localglobal.bf

Because the primary goal of HyPhy is to provide flexible modeling of the
nucleotide substitution process, HyPhy includes a more general parameteri-
zation scheme than most phylogeny estimation programs. Perhaps the most
important difference for the user to recognize is the distinction between local
and global parameters. In the simplest form, a local parameter is one that is
specific for a single branch on a tree. In contrast, a global parameter is shared
by all branches. To illustrate, consider the output generated by the batch file
localglobal.bf when run using four.seq:

Original (Local) HKY85 Analysis

Log Likelihood = -608.201788537279;
Tree myTree=((a:0.0143364,b:0.061677)Nodel1:0.0108616,
c:0.0716517,d:0.0526854) ;

Global HKY85 Analysis

Log Likelihood = -608.703204177757;
Shared Parameters: S=3.08185

Tree myTree=((a:0.0130548,b:0.0618834)Nodel:0.0126785,
c:0.0717394,d:0.052028) ;

In localglobal.bf, we have moved beyond the default settings of HyPhy, and
the details of the batch file will be discussed below. For now, concentrate on
the results. localglobal.bf performs two analyses of the data in four.seq, each
using the HKY85 model of sequence evolution. The first, labeled “Original
(Local) HKY85 Analysis,” is the same analysis that was performed in the
previous example (models.bf). In this analysis, each branch in the tree was
allowed to have its own transition/transversion ratio.



166 Sergei L. Kosakovsky Pond and Spencer V. Muse

The second analysis performed in localglobal.bf is an example of a global
analysis. In contrast with the previous analysis, the “Global HKY85 Analysis”
invokes a global transition/transversion ratio, S. In other words, all branches
share the same value of S. The estimated global value of S (3.08185) is shown
under the heading of Shared Parameters.

The local and global analysis use different numbers of parameters. The
local analysis uses a transition and transversion rate for each of the five
branches, along with three base frequencies, for a total of 13 parameters.
The global analysis includes a transversion rate for each branch, three base
frequencies, and a single transition/transversion ratio, for a total of nine pa-
rameters. The global analysis is a special case of the local analysis; therefore,
the log-likelihood value for the global analysis (—608.703) is lower than that
of the local analysis (—608.202). The fact that the addition of four parameters
results in such a small difference in model fit suggests that the data harbor
little support for the hypothesis that the transition/transversion rate varies
among these lineages.

The code for localglobal.bf is the following:

SetDialogPrompt ("Please specify a nucleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);

fprintf (stdout,"\n\n Original (Local) HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}t{a,b,*,b}{b,a,b,*}};
Model HKY85 (HKY85RateMatrix, obsFreqs);

Tree myTree ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun) ;

fprintf (stdout,theLikFun);

fprintf (stdout,"\n\n Global HKY85 Analysis \n\n");
global S5=2.0;
GlobalHKY85Matrix

{{*,0,b*S,b}{b,*,b,b*S}
{b*S,b,*,b}{b,b*S,b,*}};

Model GlobalHKY85 = (GlobalHKY85Matrix, obsFreqgs);
Tree myTree = ((a,b),c,d);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,thelLikFun) ;

fprintf (stdout,thelLikFun) ;

The code for the first analysis is identical to that from models.bf. The
global analysis introduces a new statement:

global S5=2.0;
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This statement declares S to be a global variable. By default, the description
of a model (and variables within that model) is used as a template that is
copied for every branch on the tree. An important fact is that we cannot
later redefine S as a local variable. The scope of a variable is determined
at the time of its creation and cannot be altered. In the statement defining
GlobalHK'Y85Matrixz, one observes that b is used as the transversion rate,
while transitions occur at rate b* S.

More complex models

HyPhy has support for an infinite number of substitution models. Any Markov
chain model using any finite sequence alphabet can be used. Models for codon
and amino acid sequences are available through the Standard Analyses menu
selection. We refer users who are interested in writing code for such alphabets
to the files in the Fzamples subdirectory.

Imposing constraints on variables
Simple constraints: relrate.bf

The primary reason for developing HyPhy was to provide a system for per-
forming likelihood analyses on molecular evolutionary data sets. In particular,
we wanted to be able to describe and perform likelihood ratio tests (LRTs)
easily. In order to perform an LRT, it is first necessary to describe a con-
straint, or series of constraints, among parameters in the probability model.
To illustrate the syntax of parameter constraints in HyPhy, examine the code
in relrate.bf:

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix = {{* ,mu,mu,mu}{mu,* ,mu,mu}
{mu,mu,* ,mu}{mu,mu,mu,* }};

Model F81 = (F81RateMatrix, obsFregs);

Tree myTree = (a,b,o0g);

fprintf (stdout,"\n Unconstrained analysis:\n\n");
LikelihoodFunction theLikFun = (myFilter, myTree, obsFreqgs);
Optimize (paramValues, theLikFun);

fprintf (stdout, theLikFun);

1nLA=paramValues[1] [0];

df A=paramValues[1] [1];

fprintf (stdout,"\n\n\n Constrained analysis:\n\n");
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myTree.a.mu := myTree.b.mu;
Optimize (paramValues, theLikFun);
fprintf (stdout, theLikFun);
1nLO=paramValues[1] [0];
dfO=paramValues[1] [1];

LRT=-2% (1nLO-1nLA) ;

Pvalue=1-CChi2(LRT,dfA-dfo0);

fprintf (stdout,"\n\nThe statistic ",LRT," has P-value ",
Pvalue,"\n\n");

The unconstrained analysis is of the simple type we have discussed previ-
ously. In the constrained analysis, however, we impose the constraint of equal
substitution rates between lineages a and b with the command

myTree.a.mu := myTree.b.mu;

The results from this batch file when applied to three.seq are:

Unconstrained analysis:

Log Likelihood = -523.374642786834;
Tree myTree=(a:0.0313488,b:0.00634291,0g:0.11779);

Constrained analysis:

Log Likelihood = -525.013303516343;
Tree myTree=(a:0.018846,b:0.018846,0g:0.116881) ;

The statistic 3.27732 has P-value 0.0702435

Since these models are nested, we can consider the likelihood ratio statistic,
—2(InLy — InL4), to have an asymptotic chi-squared distribution. In this
case, the test statistic has a value of 3.27732. Note in the batch file how the
likelihood values and parameter counts are returned by Optimize and stored
in paramValues. The built-in function CChi2 is the cumulative distribution
function of the chi-squared distribution.

Molecular clocks

Perhaps the most common molecular evolutionary hypothesis tested is that
a set of sequences has evolved according to a molecular clock. It now seems
quite clear that a global molecular clock exists for few, if any, gene sequences.
In contrast, the existence of local molecular clocks among more closely related
species is more probable. HyPhy allows for both types of constraints, including
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the possibility of testing for multiple local clocks for different user-defined
clades in the same tree.

Global clocks: molclock.bf

The batch file molclock.bf is a simple example of testing for a global molec-
ular clock. The code should be familiar, except for the new MolecularClock
statement, which declares that the values of the parameter mu should follow
a molecular clock on the entire tree myTree. An important difference in this
batch file is that the Tree statement defines a rooted tree. Had an unrooted
tree been used, it would have been treated as a rooted tree with a multifurca-
tion at the root. When using time-reversible models, which can’t resolve the
exact placement of the root on the internal rooting branch, a global molecular
clock applied to a rooted tree can be interpreted as: locate the root on the
root branch as to enforce a global molecular clock on the specified rates. The
section of code imposing the molecular clock constraint is:

fprintf (stdout,"\n\n Molecular Clock Analysis: \n");
MolecularClock(myTree,m) ;

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun) ;

Local clocks: localclocks.bf

Particularly when studying data sets consisting of many species spanning a
wide level of taxonomic diversity, it may be of interest to assign local molec-
ular clocks to some clades. For instance, in a study of mammalian molecular
evolution, one might specify that each genus evolves in a clocklike manner
but that different genera evolve at different rates. To allow such analyses, the
MolecularClock command can be applied to any node on a tree. Unlike the
global clock of the previous case, it is not necessary for the MolecularClock
command to be applied to a rooted tree; the placement of the MolecularClock
command “roots” the tree, at least locally. To illustrate this feature, we use
localclocks.bf in conjunction with the file siz.seq. The relevant new sections of
the code are the tree topology definition

myTopology = "(((a,b)nl, (c,(d,e))In2),f)";
and the declaration of two local molecular clocks:

fprintf (stdout,"\n\n Local Molecular Clock Analysis: \n");
ClearConstraints (myTree) ;

MolecularClock(myTree.nl,m);

MolecularClock(myTree.n2,m);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,thelLikFun) ;
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The topology string used in localclocks.bf takes advantage of HyPhy's ex-
tended syntax. Notice how we have named two of the internal nodes n1 and
n2. Those names override HyPhy's default (and rather cryptic) node-naming
convention and allow us to call functions—in this case, MolecularClock—on
the clades they tag. The syntax of the MolecularClock statements is rather
C-like. MolecularClock(myTree.nl,m); imposes a local clock on the clade
rooted at node nl in tree myTree. The parameter with clocklike behavior is
m, the only option for the F81 model being used. The results using the data
file siz.seq are:

UNCONSTRAINED ANALYSIS:

Log Likelihood = -685.473598259084;

Tree myTree=((a:0.0296674,b:0.00831723)n1:0.040811,
(c:0.0147138,(d:0.0142457,e:0.0328603)
Node7:0.0309969)n2:0.0130927,f:0.0517146) ;

GLOBAL MOLECULAR CLOCK ANALYSIS:

Log Likelihood = -690.857603506283;

Tree myTree=((a:0.0181613,b:0.0181613)n1:0.0350919,
(c:0.0385465, (d:0.0195944,e:0.0195944)
Node7:0.0189521)n2:0.0147067,£:0.053838) ;

P-value for Global Molecular Clock Test: 0.0292988

LOCAL MOLECULAR CLOCK ANALYSIS:

Log Likelihood = -690.761234081996;

Tree myTree=((a:0.0190659,b:0.0190659)n1:0.0386549,
(c:0.0370133,(d:0.0189116,e:0.0189116)
Node7:0.0181017)n2:0.0128865,f:0.0537045) ;

P-value for Local Molecular Clock Test: 0.0142589

By examining the output, one finds that under the local clock model the two
subtrees do indeed have clocklike branch lengths, yet the tree as a whole is not
clocklike. However, the likelihood ratio test suggests that neither the global
nor local clock assumption is correct.

Simulation tools

The use of simulation in molecular evolutionary analysis has always been
important. Simulation allows us to test statistical properties of methods, to
assess the validity of theoretical asymptotic distributions of statistics, and to
study the robustness of procedures to underlying model assumptions. More
recently, methods invoking simulation have seen increased use. These tech-
niques include numerical resampling methods for estimating variances or for
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computing confidence intervals, as well as parametric bootstrap procedures
for estimating p-values of test statistics. HyPhy provides both parametric and
nonparametric simulation tools, and examples of both are illustrated in the
following sections.

The bootstrap: bootstrap.bf

The bootstrap provides, among other things, a simple nonparametric approach
for estimating variances of parameter estimates. Consider bootstrap.bf. The
relevant commands from the batch file are as follows. (Some lines of code
have been deleted for clarity.)

Model F81 = (F81RateMatrix, obsFregs);

Tree myTree = (a,b,o0g);

LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (paramValues, theLikFun);

reps = 100;

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1) {
DataSetFilter bsFilter = Bootstrap(myFilter,1);
HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);
Model bsModel = (F81RateMatrix, bsFreqgs);
Tree bsTree = (a,b,o0g);
LikelihoodFunction bsLik = (bsFilter, bsTree);
Optimize (bsParamValues, bsLik);

The first section of code is simply the completion of a typical data analy-
sis, storing and printing results from the analysis of data in myFilter. The for
loop is the heart of the batch file. For each of the reps replicates, we gener-
ate a new DataSetFilter named bsFilter. We do this by creating a bootstrap
replicate from the existing DataSetFilter named bsFilter, which was created
in the normal fashion. bsFilter will contain the same number of columns as
myFilter. Once the new filter has been created, we recreate a Model named
bsModel and a Tree named bsTree, which are then used in an appropriate
LikelihoodFunction command. Optimize is used to find MLEs of the para-
meters. The end result of this batch file is a table consisting of 100 sets of
MLESs, each from a bootstrap sample from the original data. Notice in the
complete batch file (not shown in the code above) how we use the matrix
variable BSRes to tabulate and report the average of all bootstrap replicates.
More complex analyses, such as bootstrap confidence intervals, based on the
bootstrap estimates, can be programmed within the batch file, or the results
can be saved and imported into a spreadsheet for statistical analyses.

The Permute function, with syntax identical to Bootstrap, exists for ap-
plications where the columns in the existing DataSetFilter must appear ex-
actly once in each of the simulated data sets. This feature may be useful for
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comparison of the three codon positions or for studies investigating spatial
correlations or spatial heterogeneity.

The parametric bootstrap: parboot.bf

Another useful simulation tool is the parametric bootstrap. HyPhy provides
the SimulateDataSet command to provide the type of model-based simulation
required. In parboot.bf, we find the following lines of code. Again, some lines
have been deleted for clarity.

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1) {
DataSet bsData = SimulateDataSet (theLikFun);
DataSetFilter bsFilter = CreateFilter (bsData,1);
HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);
Model bsModel = (F81RateMatrix, bsFreqgs);
Tree bsTree = (a,b,o0g);
LikelihoodFunction bsLik = (bsFilter, bsTree);
Optimize (bsParamValues, bsLik);

The end result is analogous to that of bootstrap.bf: we simulate reps data
sets, find MLEs, and tabulate results. The fundamental difference is that
the data sets are formed by simulation using the tree structure, evolutionary
model, and parameters in theLikFun via the function SimulateDataSet. An
important technical difference is that SimulateDataSet generates a DataSet
as opposed to the DataSetFilter created by Bootstrap. Thus, we must use the
CreateFilter command to create an appropriate filter.

Again note the use of BSRes for tabulating results and also the use of
fscanf for acquiring input from the user (see the Batch Language Command
Reference for details).

Putting it all together: positions.bf

As an example of the type of analysis HyPhy was designed to implement,
we now describe the batch file positions.bf. This file illustrates some of the
features of the CreateFilter command by ignoring species C' in four.seq and
by creating separate filters for each of the three codon positions. The HKY85
model is used as the basic substitution model. A global transition:transversion
ratio, R, is created; its value is allowed to be shared by all three positions. In
the “Combined Analysis,” the entire data set is analyzed in the normal way,
treating all sites identically. A second LikelithoodFunction is then created, in
which the data are split into three partitions according to codon position.
Each of the three partitions is allowed to evolve with a separate rate. However,
the transition/transversion ratio is constrained to be the same for all three
codon positions as well as for all lineages. The likelihood ratio test statistic
comparing these two models is computed, and the statistical significance of the
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test is reported using both the chi-squared approximation and nonparametric
bootstrapping.

The file positions.bf is rather complicated, so we will focus only on some
of its key features.

Read and filter the data

It is often the case that molecular data sets have some repeating underlying
structure that we would like to exploit or study. For instance, coding regions
might be described with the repeating structure 123123123 .. . In positions.bf
we create separate DataSetFilters for first, second, and third codon positions.
The command

DataSetFilter myFilterl =
CreateFilter (myData,1,"<100>","0,1,3");

creates a DataSetFilter named MyDatal that includes only the first nucleotide
of each triplet. Likewise, the statement

DataSetFilter myFilter3 =
CreateFilter (myData,1,"<001>","0,1,3");

creates a DataSetFilter named MyData3 that includes only the third nu-
cleotide of every triplet. Had we wished to create a filter consisting of both
first and second positions, we would have used a statement such as

DataSetFilter myFilterl2 =
CreateFilter (myData,1,"<110>","0,1,3");

Define a substitution model for each position

The next portion of positions.bf creates a vector of observed frequencies for
each of the filters using standard syntax.

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);

HarvestFrequencies (obsFreqsl, myFilterl, 1, 1, 1);
HarvestFrequencies (obsFreqs2, myFilter2, 1, 1, 1);
HarvestFrequencies (obsFreqs3, myFilter3, 1, 1, 1);

Next, the basic substitution model is defined. We use the HKY85 model
with transversion parameter b and global transition:transversion ratio R. A
separate Model is created for each partition since each uses different frequen-
cies:

global R;

HKY85RateMatrix =
{{*,b,R*b,b}{b,*,b,R*b}{R*b,b,*,b}{b,R*b,b,*}};

Model HKY85 (HKY85RateMatrix, obsFreqs);

Tree myTree (a,b,d);

Model HKY851 = (HKY85RateMatrix, obsFreqsl);
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Tree myTreel = (a,b,d);
Model HKY852 (HKY85RateMatrix, obsFreqs2);
Tree myTree2 (a,b,d);
Model HKY853 (HKY85RateMatrix, obsFreqs3);
Tree myTree3 = (a,b,d);

Define two likelihood functions

We are now ready to set up LikelihoodFunctions and Optimize them. The
analysis of the combined data set is routine:

LikelihoodFunction theLikFun = (myFilter,myTree);
Optimize (paramValues, theLikFun);

We also store some results for later use:

1nLikO = paramValues[1][0];
npar0 = paramValues[1] [1]+3;
fprintf (stdout, theLikFun, "\n\n");

The statement npar0 = paramValues[1] [1]+3; requires some explanation.
The Optimize function always returns the number of parameters that were
optimized as the [1] [1] element of its returned matrix of results. Typically,
we do not optimize over base frequency values, electing instead to simply use
observed frequencies, which are usually very close to the maximum likelihood
estimates. Since the frequencies are, in fact, estimated from the data, they
need to be included in the parameter count. The value of npar0 therefore
includes the count of independent substitution parameters in the model (the
number of which is returned by Optimize) along with the three independent
base frequencies estimated from the data.

The LikelihoodFunction for the “partitioned” analysis simply uses the ex-
tended form of the LikelihoodFunction command:

LikelihoodFunction theSplitLikFun = (myFilterl,myTreel,
myFilter2,myTree2,
myFilter3,myTree3d);

Optimize (paramValues, theSplitLikFun);

1nLikl = paramValues[1][0];

nparl = paramValues[1] [1]+9;

Note the addition of the nine estimated frequencies to the model’s parameter
count, three for each partition.

Find p-values for hypothesis tests

Finally, we compute the p-value for the test of the combined analysis (null
hypothesis) against the split model (alternative hypothesis). Two approaches
are used. First is the normal chi-squared approximation to the LRT statistic:
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LRT = 2% (1nLik1-1nLik0);
pValueChi2 = 1-CChi2 (LRT, nparl-nparO).

One can also estimate the P-value using the parametric bootstrap. The
statement for simulating a random data set based on theLikFun is

DataSet simData = SimulateDataSet(theLikFun);

The remaining part of the loop is basically a copy of the original analysis,
with variable names adjusted to indicate that they are coming from simulated
data. For each simulated data set, we compute the LRT, named simLRT,
and compare it with the observed LRT. The estimate of the p-value is the
proportion of simulated datasets with an LRT larger than that of the observed
data. We keep track of the number of such events using the variable count:

simLRT = 2*(simlnLik1-simlnLikO0);
if (simLRT > LRT)
{

count = count+1;

}

and report the results:

fprintf (stdout,
"\n\n*** P-value (Parametric BS)= ",count/reps,"\n");

The batch file positions.bf provides a good example of the flexibility of
HyPhy, and many of the same ideas could be used to develop analyses of
multiple genes. Of particular importance for multilocus analysis is the ability
to mix local and global variables. To our knowledge, the type of modeling and
testing flexibility demonstrated in positions.bf is unique.

Site-to-site rate heterogeneity

One of the most important additions to recent models of sequence evolution is
the incorporation of site-to-site rate heterogeneity, which allows the highly de-
sirable property of some positions evolving quickly and some slowly, with oth-
ers having intermediate rates. In the first portion of this chapter, we demon-
strated some of HyPhy's basic functionality with regard to rate heterogeneity.
We now continue this discussion, demonstrating the “traditional” approaches
to modeling rate heterogeneity as well as some novel features unique to Hy-
Phy. We feel that the flexibility in modeling site-to-site rate heterogeneity is
one of the strongest aspects of the software package.

The fundamental elements of incorporating site-to-site rate heterogeneity
are demonstrated in the file ratehet.bf. There one will find an analysis labeled
“Variable Rates Model 1,” which simply uses the F81 nucleotide model with
sites falling into one of four rate classes. The first rate class is an invariant
class (i.e., rate 0), while rates of the remaining three categories have relative
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rates of 1, 2, and 4. The frequencies of the four categories are assumed to be
equal for illustration. The key section of code is the following:

category rateCat = (4, EQUAL, MEAN, , {{0}{1}{2}{4}}, 0, 4);

F81VarRateMatrix = {{*,rateCat*m,rateCat*m,rateCat*m}
{rateCat*m,*,rateCat*m,rateCat*m}
{rateCat*m,rateCat*m,*,rateCat*m}
{rateCat*m,rateCat*m,rateCat*m,*}};

Model F81Var = (F81VarRateMatrix, obsFregs);

The “category” statement defines a discrete probability distribution for the
rates. In this case, there are four possible (relative) rates, 0, 1, 2, and 4, and the
categories occur with equal frequencies. (See the HyPhy documentation and
the examples below for further information on the category statement.) The
second and third statements define a variant of the F81 model of nucleotide
evolution. Had we left out the “rateCat” multiplier in the rate matrix, the
model would be the standard F81 model. With the inclusion of “rateCat,”
which is defined in the first statement to be a category variable, we have a
model declaring that each site evolves according to the F81 model but that
the rates vary from site to site in accordance with the distribution described in
the category statement. Note that in this case the relative rates are specified
by the user, so there is no rate heterogeneity parameter to be estimated from
the data.

In the “Variable Rates Model 2” analysis, we find an implementation of
the slightly more complex (but more well-known) discrete gamma model first
described in [12]. The key element in this analysis is simply a different category
statement:

category rateCat = (4, EQUAL, MEAN,
GammaDist(_x_,alpha,alpha), CGammaDist(_x_,alpha,alpha),
0,1e25,CGammaDist (_x_,alpha+1l,alpha));

We again introduce a discrete distribution with four equiprobable classes,
but this time the relative rates of those classes are provided by the gamma
distribution. In turn, the arguments in the category statement declare

1. Use four rate categories.

2. Assign equal frequencies to the four categories.

3. Use the mean of each discretized interval to represent the rate for the
corresponding class.

4. The density function for the rates is the gamma density (which is a built-
in function. Alternatively, the formula for any desired density could be
entered.)

5. The cumulative density function is provided by the gamma distribution
function. (Again, this is a predefined function, and the cdf for any chosen
density could be substituted.)
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6. The relative rates are limited to the range 0 to 1x 10%° (to make numerical
work simpler).

7. The final argument is optional and specifies a formula for the mean of each
interval. If this argument were not provided, the mean would be evaluated
numerically.

With this model, HyPhy would estimate the branch lengths for each branch
in the tree along with the shape parameter a that is specified in the category
statement.

The third and final example in ratehet.bf allows rates to vary according to
an exponential distribution. The category statement in this case is essentially
the same as for the gamma distribution, but with the density and distribution
functions for the exponential distribution used instead:

category rateCat = (4, EQUAL, MEAN,
alpha*Exp(-alpha*_x_), 1-Exp(-alphax*_x_), 0, 1le25,
-_x_xExp(-alpha*_x) + (1-Exp(-alpha*_x_))/alpha);

This fundamental approach can be used to fit any discretized density to data
by simply writing an appropriate category statement and combining it with
any desired substitution matrix. A number of examples are provided in the
sample files in the HyPhy distribution.

In the file twocats.bf, we demonstrate a new idea in modeling rate hetero-
geneity, the possibility of moving beyond the simple idea of each site having
its own rate. For illustration, we show that it is simple to define a model
that allows each site to have its own transition and transversion rate, but
sites with high transition rates need not also have high transversion rates. We
demonstrated an application of this approach to codon-based models based
on synonymous and nonsynonymous rates in the first half of the chapter.
The basic approach is the same as for the previous examples: we will use the
category statement to define distributions of rate heterogeneity. However, in
this case we will use two category statements, one for transitions and one for
transversions.

The first analysis in twocats is essentially the discrete gamma model found
in ratehet.bf but with 16 categories rather than four. The second analysis
introduces separate distributions for transitions and transversions. Each type
of rate is assumed to come from a (discrete) gamma distribution with four
categories, but each distribution has its own parameters. This model leads to a
model with 4 x 4 = 16 rate categories and thus has computational complexity
equal to the 16-category discrete gamma in the first analysis. The category
statements have the same basic format as the previous examples:

category catTS = (4, EQUAL, MEAN,
GammaDist (_x_,alphaS,alphaS), CGammaDist(_x_,alphaS,alphaS),
0,1e25, CGammaDist(_x_,alphaS+1,alphaS));
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category catTV = (4, EQUAL, MEAN,
GammaDist (_x_,alphaV,beta), CGammaDist(_x_,alphaV,beta),
0,1e25, CGammaDist(_x_,alphaV+1,beta)*alphaV/beta);

An important mathematical fact arises at this point. Traditionally, the gamma
distribution in rate analyses has been described only by its “shape” parame-
ter. The gamma distribution in general is described by a shape parameter and
a scale parameter. The confounding of rates and times allows for the (arbi-
trary) determination of one of the two parameters, and for simplicity the two
parameters have simply been assumed to be equal. When we move to the case
of two gamma distributions, we still have this level of freedom to arbitrarily
assign one parameter. In this example, we have maintained the “traditional”
style for the transition rates (see the category statement for catTS), but we
must use both the shape and scale parameters for the second distribution.
Thus, we end up with three parameters that govern the distributional form
for the transition and transversion rates: alphaS, the shape parameter for the
transition rate distribution, and alphaV and beta, the shape and scale para-
meters for the gamma distribution describing transversion rates.

We must still introduce these category variables into the substitution ma-
trix, and examining the definition of HKY85Two VarRateMatriz, we see that
transition rates are multiplied by catTS, while transversion rates are multi-
plied by catTV.

Analyzing codon data

So far, we have considered only nucleotide alignments and evolutionary models
as examples. Using the example included in the file codon.bf, we will discuss
how to read and filter codon data and define substitution models that operate
at the level of codons.

Defining codon data filters

Codon data sets are nucleotide sequences where the unit of evolution is a
triplet of nucleotides, and some states (stop codons) are disallowed. The task
of making HyPhy interpret a nucleotide alignment as codons is handled by
supplying a few additional parameters in a call to CreateFilter. Consider the
following line in codons.bf:

DataSetFilter codonFilter =
CreateFilter(myData,3,"","","TAA,TAG,TGA") ;

The second argument of 3 instructs HyPhy to consider triplets of characters
in the data set myData as units of evolution. If it had been 2, then the filter
would consist of dinucleotides. The empty third and fourth arguments include
all sequences and sites in the filter. The fifth argument is the comma-separated
list of exclusions (i.e., character states that are not allowed). One can easily
recognize that the list includes the three stop codons for the universal genetic
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code. All sites in the original nucleotide alignment that contained at least one
of the excluded states would be omitted from the filter, and a message would
be written to messages.log, located in the main HyPhy directory.

The filter myFilter consists of data for 4°> — 3 = 61 states (i.e., all sense
codons in the universal genetic code); therefore, any substitution model com-
patible with this filter must describe a process with 61 states and use a 61 x 61
rate matrix. Before we proceed with the definition of this matrix, a crucial
question must be answered: How does HyPhy index codons? For example,
which entry in the rate matrix will describe the change from codon ATC to
codon TTC? HyPhy uses a uniform indexing scheme, which is rather straight-
forward. The default nucleotide alphabet is ordered as ACGT, and each char-
acter is assigned an index in that order: A=0, C=1, G=2, T=3 (note that all
indexing starts at 0, as in the programming language C). In previous exam-
ples, we used this mapping to define nucleotide rate matrices. For example,
the entry in row 2 and column 3 would define the rate of G—T substitutions.
Analogously, all sense codons are ordered alphabetically: AAA, AAC, AAG,
AAT, ACA, ..., TTG, TTT, excluding stop codons, with the corresponding
indexing from 0 to 60. It is easy to check that ATC will have the index of
13, whereas TTC is assigned the index of 58. Consequently, the rate of ATC
to TTC substitutions should be placed in row 13 and column 58 of the rate
matrix.

A 61 x 61 rate matrix has 3721 entries, and defining them one by one
would be a daunting task. We need a way to avoid an explicit enumeration.
Consider the MG94 x HK'Y85 model (6.2) explained in Section 6.2.4. Each sub-
stitution rate can be classified by determining the following four attributes:
(i) is the change one-step or multistep? (ii) Is the change synonymous or non-
synonymous? (iii) Is the change a transition or a transversion? (iv) What is
the equilibrium frequency of the target nucleotide? A compact way to define
the model is to loop through all 3721 possible pairs of codons, answer the
four questions above, and assign the appropriate rate to the matrix cell. Hy-
Phy has no intrinsic knowledge of how codons are translated to amino acids,
and this information is needed to decide whether a nucleotide substitution is
synonymous or nonsynonymous. codons.bf contains such a map for the uni-
versal genetic code in the matrix UniversalGeneticCode. The 64 codons have
21 possible translations (20 amino acids and a “stop”). Each of the 64 cells
of UniversalGeneticCode contains an amino acid (or stop) code from 0 to 20,
whose meaning is explained in the comments in codons.bf. We refer the reader
to the code and comments in codons.bf for implementation details. The imple-
mentation is straightforward but somewhat obtuse. Once the reader becomes
comfortable with referencing codons by their indices and interpreting them,
the code should be clear. The reason for not having a built-in genetic code
translation device is to allow the use of arbitrary (nonuniversal) genetic codes.

The file codons.bf illustrates several other useful concepts:
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e How to define and call user functions. Function BuildCodonFrequencies
is employed to compute codon equilibrium frequencies based on observed
nucleotide proportions, defined in (6.3).

e The use of a built-in variable to reference the tree string present in the
data file (DATAFILE_TREE).

e The use of the double underscore operator to substitute numerical values
of arguments into formula definitions and avoid unwanted dependencies.

Lastly, codons.bf writes out data for further processing with a standard
file from the HyPhy distribution to perform posterior Bayesian analysis, as
discussed in Section 6.2.4.

6.4 Conclusion

This chapter has provided an overview of the basic features and use of the
HyPhy system. With a programming language at its core, users may elect to
write their own likelihood-based molecular evolutionary analyses. A graphical
user interface offers much of the power of the batch language, allowing users
to fit complex, customizable models to sequence alignments. The user inter-
face also provides access to the parametric bootstrap features of HyPhy for
carrying out tests of both nested and nonnested hypotheses. Many features of
the package, of course, could not be described in this chapter. For instance,
HyPhy includes a model editor for describing new stochastic models to be used
in analyses, and the graphical user interface provides a mechanism to define
arbitrary constraints among parameters for construction of likelihood ratio
tests. Its authors continue to develop HyPhy, with a goal of providing a flex-
ible, portable, and powerful system for carrying out cutting-edge molecular
evolutionary analyses.
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7.1 Introduction

Stochastic models of evolution play a prominent role in the field of molecular
evolution; they are used in applications as far-ranging as phylogeny estima-
tion, uncovering the pattern of DNA substitution, identifying amino acids
under directional selection, and in inferring the history of a population using
models such as the coalescence. The models used in molecular evolution have
become quite sophisticated over time. In the late 1960s one of the first stochas-
tic models applied to molecular evolution was introduced by Jukes and Cantor
[38] to describe how substitutions might occur in a DNA sequence. This model
was quite simple, really having only one parameter—the amount of change
between two sequences—and assumed that all of the different substitution
types had an equal probability of occurring. A familiar story, and one of the
greatest successes of molecular evolution, has been the gradual improvement
of models to describe new observations as they were made. For example, the
observation that transitions (substitutions between the nucleotides A < G
and C <> T') occur more frequently than transversions (changes between the
nucleotides A «+ C, A & T, C + G, G + T) spurred the development of
DNA substitution models that allow the transition rate to differ from the
transversion rate [40, 24, 23]. Similarly, the identification of widespread vari-
ation in rates across sites led to the development of models of rate variation
[72] and also to more sophisticated models that incorporate constraints on
amino acid replacement [21, 50]. More recently, rates have been allowed to
change on the tree (the covarion-like models of Tuffley and Steel [70]) and can
explain patterns such as many substitutions at a site in one clade and few if
any substitutions at the same position in another clade of roughly the same
age.

The fundamental importance of stochastic models in molecular evolution
is this: they contain parameters, and if specific values can be assigned to these
parameters based on observations, such as an alignment of DNA sequences,
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then biologists can learn something about how molecular evolution has oc-
curred. This point is very basic but important. It implies that in addition to
careful consideration of the development of models, one needs to be able to
efficiently estimate the parameters of the model. By efficient we mean the abil-
ity to accurately estimate the parameters of an evolutionary model based on
as little data as possible. There are only a handful of methods that have been
used to estimate parameters of evolutionary models. These include the parsi-
mony, distance, maximum likelihood, and Bayesian methods. In this chapter,
we will concentrate on Bayesian estimation of evolutionary parameters. More
specifically, we will show how the program MrBayes [35, 59] can be used to
investigate several important questions in molecular evolution in a Bayesian
framework.

7.2 Maximum Likelihood and Bayesian Estimation

Unlike the parsimony and distance methods, maximum likelihood and Bayes-
ian inference take full advantage of the information contained in an alignment
of DNA sequences when estimating parameters of an evolutionary model. Both
maximum likelihood and Bayesian estimation rely on the likelihood function.
The likelihood is proportional to the probability of observing the data, con-
ditioned on the parameters of the model

{(Parameter) = Constant x Prob[Data|Parameter],

where the constant is arbitrary. The probability of observing the data con-
ditioned on specific parameter values is calculated using stochastic models.
Details about how the likelihood can be calculated for an alignment of DNA
or protein sequences can be found elsewhere [14]. Here, we have written the
likelihood function with only one parameter. However, for the models typically
used in molecular evolution, there are many parameters. We make the nota-
tional change in what follows by denoting parameters with the Greek symbol
f and the data as X so that the likelihood function for multiple-parameter
models is
((91, 927 . ,Hn) =K X f(X|91, 927 PN Qn),

where K is the constant.

In a maximum likelihood analysis, the combination of parameters that
maximizes the likelihood function is the best estimate, called the maximum
likelihood estimate. In a Bayesian analysis, on the other hand, the object
is to calculate the joint posterior probability distribution of the parameters.
This is calculated using Bayes’ theorem as

6(91,02, .. ,Hn) X f(91,92, . ,Hn)

f(917927---70n|x): f(X) )
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where f(01,0s,...,60,]|X) is the posterior probability distribution, ¢(61, 6s, ...,
6,) is the likelihood function, and f(01,0s,...,6,) is the prior probability
distribution for the parameters. The posterior probability distribution of pa-
rameters can then be used to make inferences.

Although both maximum likelihood and Bayesian analyses are based upon
the likelihood function, there are fundamental differences in how the two meth-
ods treat parameters. Many of the parameters of an evolutionary model are
not of direct interest to the biologist. For example, for someone interested in
detecting adaptive evolution at the molecular level, the details of the phy-
logenetic history of the sequences sampled is not of immediate interest; the
focus is on other aspects of the model. The parameters that are not of direct
interest but that are needed to complete the model are called nuisance pa-
rameters (see [20], for a more thorough discussion of nuisance parameters in
phylogenetic inference). There are a few standard ways of dealing with nui-
sance parameters. One is to maximize the likelihood with respect to them. It
is understood, then, that inferences about the parameters of interest depend
upon the nuisance parameters taking fixed values. This is the approach usually
taken in maximum likelihood analyses and also in empirical Bayes analyses.
The other approach assigns a prior probability distribution to the nuisance
parameters. The maximum likelihood or posterior probabilities are calculated
by integrating over all possible values of the nuisance parameters, weighting
each by its (prior) probability. This approach is rarely taken in maximum like-
lihood analyses (where it is called the integrated likelihood approach [6]) but
is the standard method of accounting for nuisance parameters in a Bayesian
analysis, where all of the parameters of the model are assigned a prior proba-
bility distribution. The advantage of marginalization is that inferences about
the parameters of interest do not depend upon any particular value for the
nuisance parameters. The disadvantage, of course, is that it may be difficult
to specify a reasonable prior model for the parameters.

Maximum likelihood and Bayesian analyses also differ in how they inter-
pret parameters of the model. Maximum likelihood does not treat the para-
meters of the model as random variables (variables that can take their value
by chance), whereas in a Bayesian analysis, everything—the data and the
parameters—is treated as random variables. This is not to say that a Bayesian
does not think that there is only one actual value for a parameter (such as a
phylogenetic tree) but rather that his or her uncertainty about the parame-
ter is described by the posterior probability distribution. In some ways, the
treatment of all of the variables as random quantities simplifies a Bayesian
analysis. First, one is always dealing with probability distributions. If one
is interested in only the phylogeny of a group of organisms, say, then one
would base inferences on the marginal posterior probability distribution of
phylogeny. The marginal posterior probability of a parameter is calculated by
integrating over all possible values of the other parameters, weighting each by
its probability. This means that an inference of phylogeny does not critically
depend upon another parameter taking a specific value. Another simplifica-
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tion in a Bayesian analysis is that uncertainty in a parameter can be easily
described. After all, the probability distribution of the parameter is avail-
able, so specifics about the mean, variance, and a range that contains most of
the posterior probability for the parameter can be directly calculated from the
marginal posterior probability distribution for that parameter. In a maximum
likelihood analysis, on the other hand, the parameters of the model are not
treated as random variables, so probabilities cannot be directly assigned to the
parameters. If one wants to describe the uncertainty in an estimate obtained
using maximum likelihood, one has to go through the thought experiment of
collecting many data sets of the same size as the original, with parameters set
to the maximum likelihood values. One then asks what the range of maximum
likelihood estimates would be for the parameter of interest on the imaginary
data.

In practice, many studies in molecular evolution apply a hybrid approach
that combines ideas from maximum likelihood and Bayesian analysis. For ex-
ample, in what is now a classic study, Nielsen and Yang [54] identified amino
acid positions in a protein-coding DNA sequence under the influence of pos-
itive selection using Bayesian methods; the posterior probability that each
amino acid position is under directional selection was calculated. However,
they used maximum likelihood to estimate all of the parameters of the model.
This approach can be called an empirical Bayes approach because of its re-
liance on Bayesian reasoning for the parameter of interest (the probability
a site is under positive selection) and maximum likelihood for the nuisance
parameters.

In the following section, we describe three uses of Bayesian methods in
molecular evolution: phylogeny estimation, analysis of complex data, and es-
timating divergence times. We hope to show the ease with which parameters
can be estimated, the uncertainty in the parameters can be described, and
uncertainty about important parameters can be incorporated into a study in
a Bayesian framework.

7.3 Applications of Bayesian Estimation in Molecular
Evolution

7.3.1 A Brief Introduction to Models of Molecular Evolution

Before delving into specific examples of the application of Bayesian inference
in molecular evolution, the reader needs some background on the modeling as-
sumptions made in a Bayesian analysis. Many of these assumptions are shared
by maximum likelihood and distance-based methods. Typically, the models
used in molecular evolution have three components. First, they assume a tree
relating the samples. Here, the samples might be DNA sequences collected
from different species or different individuals within a population. In either
case, a basic assumption is that the samples are related to one another through
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an (unknown) tree. This would be a species tree for sequences sampled from
different species, or perhaps a coalescence tree for sequences sampled from in-
dividuals from within a population. Second, they assume that the branches of
the tree have an (unknown) length. Ideally, the length of a branch on a tree is
in terms of time. However, in practice it is difficult to determine the duration
of a branch on a tree in terms of time. Instead, the lengths of the branches on
the tree are in terms of expected change per character. Figure 7.1 shows some
examples of trees with branch lengths. The main points the reader should re-
member are: (1) Trees can be rooted or unrooted. Rooted trees have a time
direction, whereas unrooted trees do not. Most methods of phylogenetic infer-
ence, including most implementations of maximum likelihood and Bayesian
analysis, are based on time-reversible models of evolution that produce un-
rooted trees, which must be rooted using some other criterion, such as the
outgroup criterion (using distantly related reference sequences to locate the

root). (2) The space of possible trees is huge. The number of possible unrooted
(2n—5)!
T3 (n=3)!

small problem of only n = 50 species, there are about B(50) = 2.838 x 10™
possible unrooted trees that can explain the phylogenetic relationships of the
species.

The third component of a model of molecular evolution is a process that de-
scribes how the characters change on the phylogeny. All model-based methods
of phylogenetic inference, including maximum likelihood and Bayesian estima-
tion of phylogeny, currently assume that character change occurs according
to a continuous-time Markov chain. At the heart of any continuous-time
Markov chain is a matrix of rates specifying the rate of change from one state
to another. For example, the instantaneous rate of change under the model
described by Hasegawa et al. ([24, 23]; hereafter called the HK'Y85 model) is

trees for n species is B(n) = [61]. This means that for a relatively

— TC KRTq TT
TA — TG KRTT
RTTA TC — T
TA KT TG -

Q={gj} =

This matrix specifies the rate of change from one nucleotide to another; the
rows and columns of the matrix are ordered A,C,G,T, so that the rate of
change C' — G is qcg = 7g. Similarly, the rates of change C — T, G —
A, and T — C are qor = K71, qca = kT4, and grg = 7g, respectively.
The diagonals of the rate matrix, denoted with the dash, are specified such
that each row sums to zero. Finally, the rate matrix is rescaled such that
the mean rate of substitution is one. This can be accomplished by setting
w= -1/ Zie{A)C)GT} miq;;- This rescaling of the rate matrix such that the
mean rate is one allows the branch lengths on the phylogenetic tree to be
interpreted as the expected number of nucleotide substitutions per site.

We will make a few important points about the rate matrix. First, the
rate matrix may have free parameters. For example, the HKY85 model has
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Fig. 7.1. Example of unrooted and rooted trees. An unrooted tree of four species
(center) with the branch lengths drawn proportional to their length in terms of
expected number of substitutions per site. The five trees surrounding the central,
unrooted tree show the five possible rooted trees that result from the unrooted tree.

the parameters k, ma, 7o, mg, and wp. The parameter x is the transi-
tion/transversion rate bias when x = 1 transitions occur at the same rate
as transversions. Typically, the transition/transversion rate ratio, estimated
using maximum likelihood or Bayesian inference, is greater than one and tran-
sitions occur at a higher rate than transversions. The other parameters—m 4,
To, Ta, and mp—are the base frequencies and have a biological interpreta-
tion as the frequency of the different nucleotides and are also, incidentally,
the stationary probabilities of the process (more on stationary probabilities
later). Second, the rate matrix, Q, can be used to calculate the transition
probabilities and the stationary distribution of the substitution process. The
transition probabilities and stationary distribution play a key role in calculat-
ing the likelihood, and we will spend more time here developing an intuitive
understanding of these concepts.

Transition probabilities

Let us consider a specific example of a rate matrix with all of the parameters
of the model taking specific values. For example, if we use the HKY85 model
and fix the parameters to k =5, 74 = 0.4, 71c = 0.3, 71¢ = 0.2, and 7p = 0.1,
we get the following matrix of instantaneous rates
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~0.886 0.190 0.633 0.063
B [ 0253-0696 0127 0.316
Q=1{ai} = | 1966 0190 -1.519 0.063

0.253 0.949 0.127 —1.329

Note that these numbers are not special in any particular way. That is to say,
they are not based upon any observations from a real data set but are rather
arbitrarily picked to illustrate a point. The point is that one can interpret
the rate matrix in the physical sense of specifying how changes occur on
a phylogenetic tree. Consider the very simple case of a single branch on a
phylogenetic tree. Let’s assume that the branch is v = 0.5 in length and
that the ancestor of the branch is the nucleotide G. The situation we have is
something like that shown in Figure 7.2(a). How can we simulate the evolution
of the site starting from the G at the ancestor? The rate matrix tells us how
to do this. First of all, because the current state of the process is G, the only
relevant row of the rate matrix is the third one:

Q =12} = | 1 966 0.190 —1.519 0.063

The overall rate of change away from nucleotide G is gga+9cc+q9aT = 1.266+
0.190 + 0.063 = 1.519. Equivalently, the rate of change away from nucleotide
G is simply —gag = 1.519. In a continuous-time Markov model, the waiting
time between substitutions is exponentially distributed. The exact shape of
the exponential distribution is determined by its rate, which is the same as
the rate of the corresponding process in the Q matrix. For instance, if we are
in state GG, we wait an exponentially distributed amount of time with rate
1.519 until the next substitution occurs. One can easily construct exponential
random variables from uniform random variables using the equation

_ !

t
A

loge(u)7

where ) is the rate and w is a uniform(0,1) random number. For example, our
calculator has a uniform(0,1) random number generator. The first number it
generated is u = 0.794. This means that the next time at which a substitution
occurs is 0.152 up from the root of the tree (using A = 1.519; Figure 7.2(b)).
The rate matrix also specifies the probabilities of a change from G to the
nucleotides A, C, and T'. These probabilities are

. 1.266 __ . 0.190 __ . 0.063 __

To determine the nucleotide to which the process changes, we would generate
another uniform(0,1) random number (again called u). If v is between 0 and
0.833, we will say that we had a change from G to A. If the random number
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Fig. 7.2. Simulation under the HKY85 substitution process. A single realization of
the substitution process under the HKY85 model when x =5, 74 = 0.4, ¢ = 0.3,
e = 0.2, and 7 = 0.1. The length of the branch is v = 0.5 and the starting
nucleotide is G (light gray). (a) The process starts in nucleotide G. (b) The first
change is 0.152 units up the branch. (c¢) The change is from G to A (dark gray).
The time at which the next change occurs exceeds the total branch length, so the
process ends in state C.

is between 0.833 and 0.958, we will say that we had a change from G to C.
Finally, if the random number u is between 0.958 and 1.000, we will say we
had a change from G to T'. The next number generated on our calculator was
u = 0.102, which means the change was from G to A. The process is now in a
different state (the nucleotide A), and the relevant row of the rate matrix is

—0.886 0.190 0.633 0.063
Q={q}= . .

We wait an exponentially distributed amount of time with parameter A =
0.886 until the next substitution occurs. When the substitution occurs, it is to
a C, G, or T with probabilities 430 = 0.214, 5323 = 0.714, and §:333 = 0.072,
respectively. This process of generating random and exponentially distributed
times until the next substitution occurs and then determining (randomly)
which nucleotide has changed is repeated until the process exceeds the length
of the branch. The state of the process when it passes the end of the branch
is recorded. In the example of Figure 7.2, the process started in state G and
ended in state A. (The next uniform random variable generated on our cal-
culator was u = 0.371, which means that the next substitution would occur
1.119 units above the substitution G — A. The process was in the state A
when it passed the end of the branch.) The only nonrandom part of the entire
procedure was the initial decision to start the process in state G. All other
aspects of the simulation used a uniform random number generator and our
knowledge of the rate matrix to simulate a single realization of the HKY85
process of DNA substitution.
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This Monte Carlo procedure for simulating the HKY85 process of DNA
substitution can be repeated. The following table summarizes the results of
100 simulations, each of which started with the nucleotide G:

Starting  Ending Number of
Nucleotide Nucleotide Replicates

G A 27
G C 10
G G 59
G T 4

This table can be interpreted as a Monte Carlo approximation of the tran-
sition probabilities from nucleotide G to nucleotide ¢ € (A, C,G,T). Specifi-
cally, the Monte Carlo approximations are pga(0.5) ~ 0.27, pcc(0.5) ~ 0.10,
pca(0.5) ~ 0.59, and per(0.5) &~ 0.04. These approximate probabilities are
all conditioned on the starting nucleotide being G and the branch length
being v = 0.5. We performed additional simulations in which the starting
nucleotide was A, C, or T'. Together with the earlier Monte Carlo simulation
that started with the nucleotide GG, these additional simulations allow us to
fill out the following table with the approximate transition probabilities:

Ending
Nucleotide
A C G T
A10.67 0.13 0.20 0.00
Starting C]0.13 0.70 0.07 0.10
Nucleotide G |0.27 0.10 0.59 0.04
T10.12 0.30 0.08 0.50

Clearly, these numbers are only crude approximations to the true transition
probabilities; after all, each row in the table is based on only 100 Monte Carlo
simulations. However, they do illustrate the meaning of the transition proba-
bilities; the transition probability p;;(v) is the probability that the substitution
process ends in nucleotide j conditioned on it having started in nucleotide
after an evolutionary amount of time v. The table of approximate transition
probabilities above can be interpreted as a matrix of probabilities, usually
denoted P(v). Fortunately, we do not need to rely on Monte Carlo simulation
to approximate the transition probability matrix. Instead, we can calculate
the transition probability matrix exactly using matrix exponentiation:

P(v) = eQ".

For the case we have been simulating, the exact transition probabilities (to
four decimal places) are

0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
P(0.5) = {pi;(0.5)} = 0.3670 0.0813 0.5244 0.0271
0.1085 0.2985 0.0542 0.5387
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The transition probability matrix accounts for all the possible ways the process
could end up in nucleotide j after starting in nucleotide . In fact, each of
the infinite possibilities is weighted by its probability under the substitution
model.

Stationary distribution

The transition probabilities provide the probability of ending in a particular
nucleotide after some specific amount of time (or opportunity for substitu-
tion, v). These transition probabilities are conditioned on starting in a par-
ticular nucleotide. What do the transition probability matrices look like as
v increases? The following transition probability matrices show the effect of
increasing branch length:

1.000 0.000 0.000 0.000 0.991 0.002 0.006 0.001
0.000 1.000 0.000 0.000 0.003 0.993 0.001 0.003
P(0.00) = 0.000 0.000 1.000 0.000 |’ P(0.01) = 0.013 0.002 0.985 0.001
0.000 0.000 0.000 1.000 0.003 0.009 0.001 0.987
0.919 0.018 0.056 0.006 0.708 0.081 0.184 0.027
0.024 0.934 0.012 0.029 0.106 0.738 0.054 0.100
P(0.10) = 0.113 0.018 0.863 0.006 |’ P(0.50) = 0.367 0.081 0.524 0.027
0.025 0.086 0.012 0.877 0.109 0.299 0.054 0.539
0.580 0.141 0.232 0.047 0.411 0.287 0.206 0.096
0.188 0.587 0.094 0.131 0.383 0.319 0.192 0.106
P(1.00) = 0.464 0.141 0.348 0.047 |’ P(5.00) = 0.411 0.287 0.206 0.096
0.188 0.394 0.094 0.324 0.383 0.319 0.192 0.107
0.401 0.299 0.200 0.099 0.400 0.300 0.200 0.100
0.399 0.301 0.199 0.100 0.400 0.300 0.200 0.100
P(10.0) = 0.401 0.299 0.200 0.099 |’ P(100) = 0.400 0.300 0.200 0.100
0.399 0.301 0.199 0.100 0.400 0.300 0.200 0.100

(Each matrix was calculated under the HKY85 model with k = 5, 74 = 0.4,
mc = 0.3, 7¢ = 0.2, and 7 = 0.1.) Note that as the length of a branch, v,
increases, the probability of ending up in a particular nucleotide converges to
a single number, regardless of the starting state. For example, the probability
of ending up in C is about 0.300 when the branch length is v = 100. This is
true regardless of whether the process startsin A, C, G, or T'. The substitution
process has in a sense “forgotten” its starting state.

The stationary distribution is the probability of observing a particular
state when the branch length increases without limit (v — o0). The station-
ary probabilities of the four nucleotides are 74 = 0.4, 71¢ = 0.3, 7¢ = 0.2, and
mp = 0.1 for the example discussed above. The models typically used in phy-
logenetic analyses have the stationary probabilities built into the rate matrix,
Q. You will notice that the rate matrix for the HKY85 model has parameters
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Ta, Tc, Ta, and mp and that the stationary frequencies of the four nucleotides
for our example match the input values for our simulations. Building the sta-
tionary frequency of the process into the rate matrix, while somewhat unusual,
makes calculating the likelihood function easier. For one, specifying the sta-
tionary distribution saves the time of identifying the stationary distribution
(which involves solving the equation 7Q = 0, which simply says that if we
start with the nucleotide frequencies reflecting the stationary distribution,
the process will have no effect on the nucleotide frequencies). For another,
it allows one to more easily specify a time-reversible substitution model. (A
time-reversible substitution model has the property that m;q;; = m;q;; for all
i,j € (A,C,G,T), i # j.) Practically speaking, time reversibility means that
we can work with unrooted trees instead of rooted trees (assuming that the
molecular clock is not enforced).

Calculating the likelihood

The transition probabilities and stationary distribution are used when cal-
culating the likelihood. For example, consider the following alignment of se-
quences for five species’:

Species 1 ~ TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC
Species 2  TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC
Species 3 ~ CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC
Species 4  CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC
Species 5  TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC

This is clearly a rather small alignment of sequences to use for estimating
phylogeny, but it will illustrate how likelihoods are calculated. The likelihood
is the probability of the alignment of sequences, conditioned on a tree with
branch lengths. The basic procedure is to calculate the probability of each
site (column) in the matrix. Assuming that the substitutions are independent
across sites, the probability of the entire alignment is simply the product of
the probabilities of the individual sites.

How is the likelihood at a single site calculated? Figure 7.3 shows the
observations at the first site (T, T, C, C, and T) at the tips of one of the
possible phylogenetic trees for five species. The tree in Figure 7.3 is unusual in
that we will assume that the nucleotide states at the interior nodes of the tree
are also known. This is clearly a bad assumption because we cannot directly
observe the nucleotides that occurred at any point on the tree in the distant
past. For now, however, ignore this fact and bear with us. The probability of
observing the configuration of nucleotides at the tips and interior nodes of the
tree in Figure 7.3 is

! This alignment was simulated on the tree of Figure 7.3 under the HKY85 model
of DNA substitution. Parameter values for the simulation can be found in the caption
of Table 7.1.
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Fig. 7.3. A tree with states assigned to the tips. One of the possible (rooted) trees
describing the evolutionary history of the five species. The states at the first site in
the alignment of the text are shown at the tips of the tree. The states at the interior

nodes of the tree are also shown, though in reality these states are not observed.
The length of the ith branch is denoted v;.

Pr(TTCCT, ATCG|r,v,0) =

G paA(v3) par (v1) par (v2) pac(vs) por(ve) por(vr) Pre(va) pro(vs).

Here we show the probability of the observations (TTCCT) and the states
at the interior nodes of the tree (ATCG) conditioned on the tree (7), branch
lengths (v), and other model parameters (#). Note that to calculate the prob-
ability of the states at the tips of the tree, we used the stationary probability
of the process (7) and also the transition probabilities [p;;(v)]. The stationary
probability of the substitution process was used to calculate the probability
of the nucleotide at the root of the tree. In this case, we are assuming that
the substitution process was running for a very long time before it reached
the root of our five-species tree. We then use the transition probabilities to
calculate the probabilities of observing the states at each end of the branches.
When taking the product of the transition probabilities, we are making the
additional assumption that the substitutions on each branch of the tree are
independent of one another. This is probably a reasonable assumption for real
data sets.

The probability of observing the states at the tips of the tree, described
above, was conditioned on the interior nodes of the tree taking specific values
(in this case ATCG). To calculate the unconditional probability of the ob-
served states at the tips of the tree, we sum over all possible combinations of
nucleotide states that can be assigned to the interior nodes of the tree,

Pr(TTCCT|1,v,0) = Z Z Z Z Pr(TTCCT, wxyz|T,v,0),
w Ty oz
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where w,x,y,z € (A,C,G,T). Averaging the probabilities over all combina-
tions of states at the interior nodes of the tree accomplishes two things. First,
we remove the assumption that the states at the interior nodes take specific
values. Second, because the transition probabilities account for all of the pos-
sible ways we could have state ¢ at one end of a branch and state j at the
other, the probability of the site is also averaged over all possible character
histories. Here, we think of a character history as one realization of changes
on the tree that is consistent with the observations at the tips of the tree. For
example, the parsimony method, besides calculating the minimum number of
changes on the tree, also provides a character history; the character history fa-
vored by parsimony is the one that minimizes the number of changes required
to explain the data. In the case of likelihood-based methods, the likelihood
accounts for all possible character histories, with each history weighted by
its probability under the substitution model. Nielsen [53] described a method
for sampling character histories in proportion to their probability that relies
on the interpretation of the rate matrix as specifying waiting times between
substitutions. His method provides a means to reconstruct the history of a
character that does not inherit the flaws of the parsimony method. Namely,
Nielsen’s method allows multiple changes on a single branch and also allows
for nonparsimonious reconstructions of a character’s history. In Chapter 16,
Bollback describes how character histories can be mapped onto trees under
continuous-time Markov models using the program SIMMAP.

Before moving on to some applications of Bayesian estimation in molecular
evolution, we will make two final points. First, in practice, no computer pro-
gram actually evaluates all combinations of nucleotides that can be assigned
to the interior nodes of a tree when calculating the probability of observing
the data at a site. There are simply too many combinations for trees of even
small size. For example, for a tree of 100 species, there are 99 interior nodes

Table 7.1. Probabilities of individual sites. The probabilities of the 50 sites for the
example alignment from the text. The likelihoods are calculated assuming the tree
of Figure 7.3 with the branch lengths being v1 = 0.1, v2 = 0.1, v3 = 0.2, v4 = 0.1,
vs = 0.1, v¢ = 0.1, vy = 0.2, and vg = 0.1. The substitution model parameters were
also fixed, with k =5, 14 = 0.4, 1¢ = 0.3, 7¢ = 0.2, and 77 = 0.1.

Site Prob. Site Prob. Site Prob. Site Prob. Site Prob.
0.004025 11 0.029483 21 0.179392 31 0.179392 41 0.003755
0.001171 12 0.006853 22 0.001003 32 0.154924 42 0.005373
0.008008 13 0.024885 23 0.154924 33 0.007647 43 0.016449
0.002041 14 0.154924 24 0.179392 34 0.000936 44 0.029483
0.005885 15 0.007647 25 0.005719 35 0.024885 45 0.154924
0.000397 16 0.024124 26 0.001676 36 0.000403 46 0.047678
0.002802 17 0.154924 27 0.000161 37 0.024124 47 0.010442
0.179392 18 0.004000 28 0.154924 38 0.154924 48 0.179392
0.024124 19 0.154924 29 0.001171 39 0.011088 49 0.002186
0.024885 20 0.004025 30 0.047678 40 0.000161 50 0.154924
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and 4.02 x 10°° combinations of nucleotides at the ancestral nodes on the tree.
Instead, Felsenstein’s [14] pruning algorithm is used to calculate the likelihood
at a site. Felsenstein’s method is mathematically equivalent to the summation
shown above but can evaluate the likelihood at a site in a fraction of the time
it would take to plow through all combinations of ancestral states. Second, the
overall likelihood of a character matrix is the product of the site likelihoods.
If we assume that the tree of Figure 7.3 is correct (with all of the parameters
taking the values specified in the caption of Table 7.1), then the probability
of observing the data is

0.004025 x 0.001171 x 0.008008 x ... x 0.154924 = 1.2316 x 10~%4,

where there are fifty factors, each factor representing the probability of an
individual site (column) in the alignment. Table 7.1 shows the probabilities
of all fifty sites for the tree of Figure 7.3. Note that the overall probabil-
ity of observing the data is a very small number (~ 107%%). This is typical
of phylogenetic problems and results from the simple fact that many num-
bers between 0 and 1 are multiplied together. Computers cannot accurately
hold very small numbers in memory. Programmers avoid this problem of com-
puter “underflow” by using the log probability of observing the data. The log
probability of observing the sample alignment of sequences presented earlier
is log, ¢ = log,(1.2316 x 1079%) = —216.234734. The log-likelihood can be
accurately stored in computer memory.

7.3.2 Phylogeny Estimation
Frequentist and Bayesian perspectives on phylogeny estimation

The phylogenetic model described in the preceding section has numerous pa-
rameters. Minimally, the parameters include the topology of the tree and
the lengths of the branches on the tree. In the following, we imagine that
every possible tree is labeled: 71,72,...,7p(»). Each tree has its own set of
branches, and each branch has a length in terms of expected number of sub-
stitutions per site. The lengths of the branches on the ith tree are denoted
v; = (v1,v2,...,V2,_3). In addition, there may be parameters associated with
the substitution model. The parameters of the substitution model will be de-
noted 6. For the HKY85 model, the parameters are 6 = (k, 74, 7c, TG, TT),
but other substitution models may have more or fewer parameters than the
HKY85 model. When all of the parameters are specified, one can calculate the
likelihood function using the general ideas described in the previous section.
The likelihood will be denoted £(7;, v;,60) and is proportional to the probabil-
ity of observing the data conditioned on the model parameters taking specific
values (¢(7,v;,0) < Pr[X|7;, v;,0]; the alignment of sequences is X).

Which of the possible trees best explains the alignment of DNA sequences?
This is among the most basic questions asked in many molecular evolution
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studies. In a maximum likelihood analysis, the answer is straightforward: the
best estimate of phylogeny is the tree that maximizes the likelihood. This is
equivalent to finding the tree that makes the observations most probable. For
the toy alignment of sequences given in the previous section, the likelihood is
maximized when the tree of Figure 7.3 is used. The 14 other possible trees had
a lower likelihood. (This is not surprising because the sequences were simu-
lated on the tree of Figure 7.3.) How was the maximum likelihood tree found?
In this case, the program PAUP* [64] visited each of the 15 possible trees.
For each tree, it found the combination of parameters that maximized the
likelihood. In this analysis, we assumed the HKY85 model, so the parameters
included the transition/transversion rate ratio and the nucleotide frequencies.
After maximizing the likelihood for each tree, the program picked that tree
with the largest likelihood as the best estimate of phylogeny. The approach
was described earlier in this chapter; the nuisance parameters (here all of the
parameters except for the topology of the tree) are dealt with by maximizing
the likelihood with respect to them. The tree of Figure 7.3 has a maximum
likelihood score of —211.25187. The parameter estimates on this tree are:
01 = 0.182, v, = 0.124, 03,8 = 0.226, v, = 0.162, v5 = 0.018, v = 0.159,
U7 = 0.199, & = 5.73, 74 = 0.329, 7 = 0.329, 7¢ = 0.253, and 7 = 0.089.
The method of maximum likelihood is described in more detail in Chapter
2. Importantly, there are many computational shortcuts that can be taken to
speed up calculation of the maximum likelihood tree.

In a Bayesian analysis, inferences are based upon the posterior probabil-
ity distribution of the parameters. The joint posterior probability of all the
parameters is calculated using Bayes’ theorem as

Pr[X|7;, v4, 0] x Pr[r;, v;, 0]

Pr(r;, v;,0|X] = PriX]

and was only recently applied to the phylogeny problem [44, 45, 57, 46, 74,
41, 47, 52]. The posterior probability is equal to the likelihood (Pr[X|7;, v, 6])
times the prior probability of the parameters (Pr[r;, v;,0]) divided by a nor-
malizing constant (Pr[X]). The normalizing constant involves a summation
over all possible trees and, for each tree, integration over all possible combi-
nations of branch lengths and parameter values. Clearly, the Bayesian method
is similar to the method of maximum likelihood; after all, both methods make
the same assumptions about the evolutionary process and use the same like-
lihood function. However, the Bayesian method treats all of the parameters
as random variables (note that the posterior probability is the probability
of the parameters), and the method also incorporates any prior information
the biologist might have about the parameters through their prior probability
distribution.

Unfortunately, one cannot calculate the posterior probability distribution
of trees analytically. Instead, one resorts to a heuristic algorithm to approx-
imate posterior probabilities of trees. The program MrBayes [35, 59] uses
Markov chain Monte Carlo (MCMC; [48, 25]) to approximate posterior prob-
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abilities of phylogenetic trees (and the posterior probability density of the
model parameters). Briefly, a Markov chain is constructed that has as its
state space the parameter values of the model and a stationary distribution
that is the posterior probability of the parameters. Samples drawn from this
Markov chain while at stationarity are valid, albeit dependent, samples from
the posterior probability distribution of the parameters [69]. If one is inter-
ested in the posterior probability of a particular phylogenetic tree, one simply
notes the fraction of the time the Markov chain visited that tree; the propor-
tion of the time the chain visits the tree is an approximation of that tree’s
posterior probability. A thorough discussion of MCMC is beyond the scope
of this chapter. However, an excellent description of MCMC and its applica-
tions in molecular evolution can be found in Chapter 3. We will make only
one comment on MCMC as applied to phylogenetics: although MCMC is a
wonderful technology that can in many instances practically solve problems
that cannot be solved any other way, it is dangerous to apply the method
uncritically. It is important when running programs that implement MCMC,
such as MrBayes, to critically examine the output from several independent
chains for convergence.

We performed a Bayesian analysis on the simulated data set discussed
above under the HKY85 model. (We describe how to do the Bayesian analy-
ses performed in this chapter in Appendix 2.) This is an ideal situation because
the example data were simulated on the tree of Figure 7.3 under the HKY85
model; the model assumed in the Bayesian analysis is not misspecified. We
ran a Markov chain for 1,000,000 cycles using the program MrBayes. The
Markov chain visited the tree shown in Figure 7.3 about 99% of the time;
the MCMC approximation of the posterior probability of the tree in Fig-
ure 7.3 then is about 0.99. This can be considered strong evidence in favor of
that tree. The posterior probabilities of phylogenetic trees were calculated by
integrating over uncertainty in the other model parameters (such as branch
lengths, the transition/tranversion rate ratio, and base frequencies). However,
we can turn the study around and ask questions about the parameters of the
substitution model. Table 7.2 shows information on the posterior probability
density distribution of the substitution model parameters. The table shows
the mean, median, and variance of the marginal posterior probability dis-
tribution for the tree length (V'), transition/transversion rate ratio (), and
base frequencies (74, ¢, ma, mr). The table also shows the upper and lower
limits of an interval that contains 95% of the posterior probability for each
parameter. The table shows, for example, that with probability 0.95 the tran-
sition/transversion rate ratio is in the interval (2.611, 10.635). In reality, the
transition/transversion rate ratio was in that interval. (The data matrix was
simulated with x = 5.) The mean of the posterior probability distribution
for k was 5.576 (which is fairly close to the true value). The interval we con-
structed that contains the true value of the parameter with 0.95 probability
is called a 95% credible interval. One can construct a credible set of trees
in a similar manner; simply order the trees from highest to lowest posterior
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probability and put the trees into a set (starting from the tree with highest
probability) until the cumulative probability of trees in the set is 0.95 [13].

One of the great strengths of the Bayesian approach is the ease with which
the results of an analysis can be summarized and interpreted. The posterior
probability of a tree has a very simple and direct interpretation: the posterior
probability of a tree is the probability that the tree is correct, assuming that
the substitution model is correct. It is worth considering how uncertainty
in parameter estimates is evaluated in a more traditional phylogenetic ap-
proach. Because the tree is not considered a random quantity in other types
of analyses, such as a maximum likelihood phylogenetic analysis, one can-
not directly assign a probability to the tree. Instead, one has to resort to a
rather complicated thought experiment. The thought experiment goes some-
thing like this. Assuming that the phylogenetic model is correct and that
the parameter estimates take the maximum likelihood values (or better yet,
their true values), what would the parameter estimates look like on simulated
data sets of the same size as the original data matrix? The distribution of
parameter estimates that would be generated in such a study represents the
sampling distribution of the parameter. One could construct an interval from
the sampling distribution that contains 95% of the parameter estimates from
the simulated replicates, and this would be called a confidence interval. A
95% confidence interval is a random interval containing the true value of the
parameter with probability 0.95. Very few people have constructed confidence
intervals/sets of phylogenetic trees using simulation. The simulation approach
we just described is referred to as the parametric bootstrap. A related ap-
proach, called the nonparametric bootstrap, generates data matrices of the
same size as the original by randomly sampling columns (sites) of the original
data matrix with replacement. Each matrix generated using the bootstrap
procedure is then analyzed using maximum likelihood under the same model
as in the original analysis. The nonparametric bootstrap [16] is widely used
in phylogenetic analysis.

Table 7.2. Summary statistics for the marginal posterior probability density dis-
tributions of the substitution parameters. The mean, median, variance, and 95%
credible interval of the marginal posterior probability density distribution of the
substitution parameters of the HKY85 model. The parameters are discussed in the
text.

95% Cred. Interval
Parameter Mean Variance Lower ~ Upper  Median
Vv 0.990 0.025 0.711 1.333 0.980
K 5.576 4.326 2.611 10.635 5.219
TA 0.323 0.002 0.235 0.418 0.323
TC 0.331 0.002 0.238 0.433 0.329
TG 0.252  0.002 0.176 0.340 0.250
T 0.092 0.001 0.047 0.152 0.090
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Interpreting posterior probabilities on trees

Trees are rather complex parameters, and it is common to break them into
smaller components and analyze these separately. Any tree can be divided
into a set of statements about the grouping of taxa. For instance, a rooted
tree for four taxa—A, B, C, and D—might contain the groupings (AB) and
(ABC). These groupings are called clades, or sometimes taxon bipartitions.
In a Bayesian analysis, we can summarize a sample from the posterior distri-
bution of trees in terms of the frequency (posterior probability) of individual
clades. This provides an efficient summary of the common characteristics of a
possibly large sample of different trees. One of the concerns in Bayesian phylo-
genetic analysis is the interpretation of the posterior probabilities on trees, or
the probabilities of individual clades on trees. The posterior probabilities are
usually compared with the nonparametric bootstrap proportions, and many
workers have reached the conclusion that the posterior probabilities on clades
are too high or that the posterior probabilities do not have an easy interpre-
tation [63]. We find this concern somewhat frustrating, mostly because the
implicit assumption is that the nonparametric bootstrap proportions are in
some way the correct number that should be assigned to a tree and that any
method that gives a different number is in some way suspect. However, it is not
clear that the nonparametric bootstrap values on phylogenetic trees should be
the gold standard. Indeed, it has been known for at least a decade now that
the interpretation of nonparametric bootstrap values on phylogenetic trees is
problematic [27]; the bootstrap proportions on trees are better interpreted as
a measure of robustness rather than as a confidence interval [28].

What does the posterior probability of a phylogenetic tree represent?
Huelsenbeck and Rannala [34] performed a small simulation study that did two
things. First, it pointed out that the technique many people used to evaluate
the meaning of posterior probabilities was incorrect if the intention was to in-
vestigate the best-case scenario for the method (i.e., the situation in which the
Bayesian method does not misspecify the model). Second, it pointed out that
the common interpretation of the posterior probability of a phylogenetic tree
is correct; the posterior probability of a phylogenetic tree is the probability
that the tree is correct. The catch is that this is true only when the assump-
tions of the analysis are correct. Figure 7.4 summarizes the salient points of
the Huelsenbeck and Rannala [34] study. The experimental design was as fol-
lows. They first randomly sampled a tree, branch lengths, and substitution
model parameters from the prior probability distribution of the parameters.
(The tree was a small one, with only six species.) This is the main difference
between their analysis and all others; they treated the prior model seriously
and generated samples from it instead of considering the parameters of the
model as fixed when doing the simulations. For each sample from the prior
distribution they simulated a data matrix of 100 sites. They then analyzed
the simulated data matrix under the correct analysis. Figure 7.4 summarizes
the results of 10,000 such simulations for each model. They simulated data
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Fig. 7.4. The meaning of posterior probabilities under the model. The relationship
between the posterior probability of a phylogenetic tree and the probability that the
tree is correct when all of the assumptions of the analysis are satisfied.

under a very simple model (the JC69 model, in which the base frequencies
are all equal and the rates of substitution between states are the same) and a
complicated model (the GTR+I" model, in which the nucleotide frequencies
are free to vary, the rates of substitution between states are allowed to differ,
and the rates across sites are Gamma-distributed). In both cases, the rela-
tionship between posterior probabilities and the probability that the tree is
correct is linear; the posterior probability of a tree is the probability that the
tree is correct, at least when the assumptions of the phylogenetic analysis are
satisfied. Importantly, to our knowledge, posterior probabilities are the only
measure of support that have this simple interpretation.

Of course, to some extent the simulation results shown in Figure 7.4 are
superfluous; the posterior probabilities have always been known to have this
interpretation, and the simulations merely confirm the analytical expectation
(and incidentally are additional evidence that the program MrBayes is gener-
ating valid draws from the posterior probability distribution of trees, at least
for simple problems). The more interesting case is when the assumptions of
the analysis are incorrect. Suzuki et al. [63] attempted to do such an analy-
sis. Unfortunately, they violated the assumptions of the analysis in a very
peculiar way; they simulated data sets in which the underlying phylogeny
differed from one gene region to another. This scenario is not a universal con-
cern in phylogenetic analysis (though it can be a problem in the analysis of
closely related species, in bacterial phylogenetics, or in population studies).
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Fig. 7.5. The meaning of posterior probabilities when the model is incorrect. The
relationship between the posterior probability of a phylogenetic tree and the prob-
ability that the tree is correct when all of the assumptions of the analysis are not
met.

The common worry is that the substitution model is incorrect. Huelsenbeck
and Rannala [34] performed a few simulations when the assumptions of the
analysis are incorrect (Figure 7.5). The top panel in Figure 7.5 shows the case
when the evolutionary model is not incorporating some important parameters
(the model is underspecified). In this case, the relationship between posterior
probabilities and the probability that the tree is correct is not linear. Instead,
the method places too much posterior probability on incorrect trees. The situ-
ation is not so dire when the evolutionary model has unnecessary parameters
(bottom panel in Figure 7.5). These simulation results are consistent with
empirical observations of decreasing clade probabilities when the same data
are analyzed under increasingly complex models [55].

Bayesian model choice

It appears that Bayesian analysis can be sensitive to model misspecification. It
is important to note that the best tree selected under the Bayesian criterion
is unlikely to differ significantly from the maximum likelihood tree, mostly
because the prior should have a small effect on phylogeny choice when the
data set is reasonably large. It is also important to note that it is not really a
problem with the Bayesian method but rather with the models used to analyze
the data. In a sense, biologists have a method in hand that, in principle, has
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some very desirable properties: it is fast, allows analysis of complex models in a
timely way, and has a correct and simple interpretation when the assumptions
of the analysis are satisfied.

The simulation studies summarized in the previous section, along with
many simulation studies that examine the performance of phylogenetic meth-
ods [29, 30], suggest that it is important to analyze sequence data under as
realistic a model as possible. Unfortunately, even the most complicated mod-
els currently used in phylogenetic analysis are quite simple and fail to capture
important evolutionary processes that generated the sequence data. Phylo-
genetic models need to be improved to capture evolutionary processes most
likely to influence phylogeny estimation. It is impossible to know with cer-
tainty what advances will be made in improving phylogenetic models, but we
can speculate on what the future might hold. For one thing, it seems impor-
tant to relax the assumption that the substitution process is homogeneous
over the entire phylogenetic history of the organisms under study. This as-
sumption might be relaxed in a number of ways. For example, Foster [17] has
relaxed the assumption that nucleotide frequencies are constant over time, and
Galtier and Gouy [18] and Galtier et al. [19] relaxed the assumption that the
GC content is a constant over a phylogenetic tree. Other such improvements
are undoubtedly in store, and Bayesian methods are likely to play an impor-
tant role in evaluating such models. We can also imagine upper bounds on
how many parameters can be added to a phylogenetic model while still main-
taining the ability to estimate them from sequence data. It is not clear how
close we currently are to that situation. We know that maximum likelihood is
consistent for the models typically used in phylogenetic analysis [9, 58], but
we do not know whether consistency will be maintained for nonhomogeneous
models or other models that account for other evolutionary processes.

We can be certain that analysis of more parameter-rich models will be quite
complicated and may require a different perspective on model choice than the
one that is widespread in phylogenetics today. Currently, selecting the best
model for a particular alignment of DNA sequences is a straightforward affair.
For example, the substitution models implemented in the program PAUP* are
all a special case of the general time-reversible (GTR) model. The GTR model
has instantaneous rate matrix

—  TACTC TAGTG TATTT
- _ | racma — TeGgTG ToTTT
Q= {a;} = _ I
TAGTA TCGTC ror7TrT
TATTA TCTTC TGTTG -

[67]. Other commonly used models of phylogenetic analysis are all special
cases of the GTR model with constraints on its parameters. For example, the
HKY85 model constrains the transitions to be one rate (rag = ror) and the
transversions to have another, potentially different rate (rac = rar = reg =
rar). The Felsenstein (F81, [14]) model further constrains the transitions and
transversions to have the same rate (’I“AC =TAG =TAT =TCG = rCT:rGT).
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These models are nested one within the other. The F81 model is a special
case of the HK'Y85 model, and the HKY85 model is a special case of the GTR
model. In the programs PAUP* and MrBayes, these different models are set
using the “nst” option: nst can be set to 1, 2, or 6 for the F81, HKYS85, or
GTR models, respectively. Because the models are nested, one can choose
an appropriate model using likelihood ratio tests. The likelihood ratio for a
comparison of the F81 and HKY85 models is

~ max[((F81)]
~ max[((HKYS85)]’

Because the models are nested, 4 < 1 and —2log, A asymptotically follows
a x? distribution with one degree of freedom under the null hypothesis. This
type of test can be applied to a number of nested models in order to choose
the best of them. This approach is easy to perform by hand using a program
such as PAUP* but has also been automated in the program Modeltest [56].

The current machinery for model choice appears to work quite well when
the universe of candidate models is limited (as is the current case in phylo-
genetics). But what happens when we reach that happy situation in which
the universe of candidate models (pool of models to choose among) is large
and the relationship among the models is not nested? There are a number of
alternative ways model choice can be performed in this situation. One could
use information criteria, such as the Akaike information criterion (AIC), to
choose among a pool of candidate models [3]. One could also use the Cox test
[10], which uses the likelihood ratio as the test statistic but simulates the null
distribution. One might also use Bayes factors to choose among models. Here
we will describe how Bayes factors, calculated using MCMC, can be used to
choose among a potentially large set of candidate models.

The Bayes factor for a comparison of two models, M7 and My, is

Pr[X|M]

BFjp= ——— 1.
T PrX|Ms]

A Bayes factor greater than one is support for M7, whereas the opposite is true
for Bayes factors less than one. Note that the Bayes factor is simply the ratio
of the marginal likelihoods of the two models. The Bayes factor integrates
over uncertainty in the parameters. The likelihood ratio, on the other hand,
maximizes the likelihood with respect to the parameters of the model. Jeffreys
[36] provided a table for the interpretation of Bayes factors. In general, the
Bayes factor describes the degree by which you change your opinion about
rival hypotheses after observing data.

Here we will describe how Bayes factors can be used to choose among
substitution models ([32]; also see [62]). First, we will note that the universe
of possible time-reversible substitution models is much larger than typically
implemented in phylogenetic programs. Appendix 1 shows all of the possible
time-reversible substitution models. There are 203 of them, though only a few
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of them have been named (formally described in a paper). (For the reader
interested in the combinatorics, the number of substitution models is given
by the Bell [5] numbers.) We use a special notation to describe each of these
models. We assign index values to each of the six substitution rates in the order
AC,AG,AT,CG,CT,GT. If amodel has the constraint that r; = r;, then the
index value for those two rates is the same. Moreover, the index number for
the first rate is always 1, and indices are labeled sequentially. So, for example,
“111111” denotes the Jukes and Cantor [38] or Felsenstein [14] model and
“121121” denotes the Kimura [40], Hasegawa et al. [24, 23], or Felsenstein [15]
model. The simplest model is “111111” and the most complex is the GTR
model, “123456.” The program PAUP* can implement all of these models
through a little-used option. (The command “Iset nst=6 rmatrix=estimate
rclass=(abbcba)” implements one of the unnamed models, constraining r 4o =
regr and rag = rar = ror, with rog having another independent rate.)
The interested reader can contact J.P.H. for a file that instructs the program
PAUP* to maximize the likelihood for each of the 203 possible substitution
models. This would allow one to choose among substitution models using AIC
or related information criteria.

To calculate the Bayes factors for the different substitution models, we first
need to calculate the posterior probability for each of the possible models. We
do this using MCMC. Here, the goal is to construct a Markov chain that visits
substitution models in proportion to their posterior probability. We could not
use the normal theory for constructing a Markov chain for MCMC analysis
because the dimensionality of the problem changes from model to model; the
203 models often differ in the number of substitution rates. Instead, we con-
structed a Markov chain using reversible jump to visit candidate substitution
models [22]. Reversible jump MCMC is described in more detail by Larget
(Chapter 3). The program we wrote uses two proposal mechanisms to move
among models. One proposal mechanism takes a group of substitution rates
that are constrained to be the same and splits them into two groups with
potentially different rates. The other mechanism takes two groups of substi-
tution rates, each of which has substitutions constrained to be the same, and
merges the two groups into one.

To begin, let’s examine the simple data matrix that we have been using
throughout this chapter: the five-species matrix of 50 sites simulated under the
HKY85 model on the tree of Figure 7.3. Up to now, we have been performing
all of our analyses—maximum likelihood and Bayesian—under the HKY85
model of DNA substitution (the true model) for this alignment. However,
which model is selected as best using the Bayesian reversible jump MCMC
approach? Is the true model, or at least one similar to the true model, chosen as
the best? We ran the reversible jump MCMC program for a total of 10,000,000
cycles on the small simulated data set. The true model (M5, 121121) was
visited with the highest frequency; this model was visited 14.2% of the time,
which means the posterior probability of this model is about 0.142. What is
the Bayes factor for a comparison of M5 with all of the other models (M&)?
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As described above, the Bayes factor is the ratio of the marginal likelihoods.
It also can be calculated, however, as the ratio of the posterior odds to the
prior odds of the two hypotheses of interest:

Pr[M;|X]

BF,o — PI‘[X'Ml] _ Pr[]VIQ‘X]

2T Pr[X([My] T Bl
PI‘[MQ]

The posterior probability of M5 is Pr[Mj5|X] = 0.142, and the posterior
probability of all of the other models against which we are comparing M5 is
just Pr[M&|X] = 1 —Pr[M;5|X] = 1—0.142 = 0.858. We also know the prior
probabilities of the hypotheses. We assumed a uniform prior distribution on
all of the possible models, so the prior probability of any specific model is
1/203 = 0.0049. The Bayes factor for a comparison of M5 with the other

models is then
Pr[M15 ‘X]

e X 0.142

_ FriMqgyy . 0.858 __

Bl = PiMs]  — 1/203 — 33.4.
Pr[M& 202/203

This means that we change our mind about the relative tenability of the two
hypotheses by a factor of about 33 after observing the small data matrix. A
Bayes factor of 33 would be considered strong evidence in favor of the model
[36]. We can also construct a 95% credible set of models. This is a set of mod-
els that has a cumulative posterior probability of 0.95. The 95% credible set
included 41 models, which in order were 121121, 121131, 123123, 121321,
121341, 123143, 121323, 123321, 121343, 123121, 123341, 121123, 123323,
123141, 121134, 123343, 121331, 121345, 123423, 123421, 123451, 123453,
123145, 121324, 123124, 123324, 123424, 123454, 123345, 123456, 121133,
123441, 121334, 121333, 123443, 123425, 123313, 121111, 123131, 121344, and
123331. Note that the best of these models (the first 16, in fact, which have
a cumulative posterior probability of 0.72) do not constrain a transition to
have the same rate as a transversion. One can see that the second-best model
(Mo, 121131) has this property. The second best-model also happens to be a
named one (it is the model described by Tamura and Nei, [66]). The third-best
model, however, is not a named one.

Huelsenbeck et al. [32] examined 16 data sets using the approach described
here. The details about the data sets can be found in that paper. Table 7.3
summarizes the results. In most cases, the posterior probability was spread
across a handful of models. The Bayes factors ranged from 52.3 to about
500, suggesting that all of the alignments contained considerable information
about which models are preferred. Also, one can see that for 14 of the 16
data matrices, the 95% credible set contains models that do not constrain
transitions to have the same rate as transversions. The best models are usually
variants of the model first proposed by Kimura [40]. The exceptions are the
HIV-env and vertebrate g-globin alignments. The Bayesian approach helped
us find these unusual models, which would not usually be considered in a more
traditional approach to model choice.
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Practicing biologists already favor “automated” approaches to choosing
among models. The program Modeltest [56] is very popular for this reason;
even though the universe of models of interest to the biologist (i.e., imple-
mented in a computer program) is of only moderate size, it is convenient to
have a program that automatically considers each of these models and re-
turns the best of them. The program Modeltest, for example, typically looks
at seven of the 203 possible time-reversible substitution models, considering
only nested models that are implemented in most phylogeny packages. One
could reasonably argue that the number of models currently implemented is
small enough that one could perform model choice by hand, with the corre-
sponding advantage that it promotes a more intimate exploration of the data
by the biologist, promotes understanding of the models, and keeps the ba-
sic scientific responsibility of choosing which hypotheses to investigate in the
biologist’s hands. However, as models become more complicated and the num-
ber of possible models increases, it becomes more difficult to perform model
choice by hand. In such cases, an approach like the one described here might
be useful.

Table 7.3. The best models for 16 data sets using Bayes factors. PP, the model
with the highest posterior probability, with its corresponding probability; BF, the
Bayes factor for the best model.

Name PP BF  95% Credible Set of Models

Angiosperms 189 (0.41) 142.7 (189, 103, 125, 147, 203)

Archaea 198 (0.70) 472.1 (198, 168, 203)

Bats 112 (0.32)  95.0 (112, 50, 162, 147, 125, 152, 90, 183, 157, 122
15, 189)

Butterflies 136 (0.32)  93.7 (136, 162, 112, 90, 168, 40, 125, 191, 201, 183
198, 152, 189)

Crocodiles 40 (0.27)  74.2 (40, 125, 166, 134, 168, 189, 191, 162, 193)

Gophers 112 (0.28)  77.5 (112,162, 15, 50, 40, 189, 125, 147, 95, 90
138, 201, 183, 136, 117, 152, 122, 191)

HIV-1 (env) 25 (0.29) 83.0 (25, 60, 50, 64, 100, 125, 102, 97, 164, 169, 152
159, 173, 157, 175, 147, 171, 191, 193, 189, 140

117)

HIV-1 (pol) 50 (0.62) 335.2 (50, 125, 157, 152, 147, 193)

Lice 15 (0.56) 260.0 (15, 40, 117, 90, 50, 122, 136, 95, 166, 112
125)

Lizards 193 (0.70) 481.1 (193, 138, 200, 203)

Mammals 193 (0.64) 364.3 (193, 203)

Parrotfish 162 (0.56) 258.0 (162, 189, 201)

Primates 15 (0.31)  91.0 (15, 40, 112, 95, 138, 162, 90, 136, 50, 125, 168,
122, 166, 117, 134)

Vertebrates 125 (0.21)  52.3 (125, 40, 168, 64, 134, 189, 166, 193, 191, 162,
136, 171, 198, 138, 50, 175, 173)

Water snakes 166 (0.55) 242.9 (166, 191, 117, 152, 134, 200, 198, 177)

Whales 15 (0.60) 300.1 (15, 40, 117, 95, 85, 122, 112, 90, 134, 50, 166)
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7.3.3 Inferring Phylogeny under Complex Models

Alignments that contain multiple genes, or data of different types, are becom-
ing much more common. It is now relatively easy to sequence multiple genes
for any particular phylogenetic analysis, leading to data sets that were uncom-
mon just a few years ago. For example, consider the data set collected by Kim
et al. [39], which is fairly typical of those that are now collected for phyloge-
netic problems. They looked at sequences from three different genes sampled
from 27 leaf beetles: the second variable region (D2) of the nuclear rRNA
large subunit (28S) and partial sequences from a nuclear gene (EF-1a) and a
mitochondrial gene (COI). They also had information from 49 morphological
characters. (Although the program MrBayes can analyze morphological data
in combination with molecular data, using the approach described by Lewis
[43], we do not examine the morphological characters of the Kim et al. study
in this chapter. This is a book on molecular evolution, after all. The reader
interested in Bayesian analysis of combined morphological and molecular data
is referred to the paper by Nylander et al. [55].) The molecular characters of
the Kim et al. [39] study were carefully aligned; the ribosomal sequences were
aligned using the secondary structure as a guide, and the protein-coding genes
were aligned first by the translated amino acid sequence. For illustrative pur-
poses, we are going to consider the amino acid sequences from the COI gene
and not the complete DNA sequence. This is probably not the best approach
because there is information in the DNA sequence that is being lost when
only the amino acid sequence of the gene is considered. However, we want to
show how data of different types can be analyzed in MrBayes.

The data from the Kim et al. [39] study that we examine, then, consists of
three parts: the nucleotide sequences from the 285 rRNA gene, the nucleotide
sequences from the EF-1a gene, and the amino acid sequences from the COI
gene. Each of these partitions of the data requires careful consideration. To
begin with, it is clear that the same sort of continuous-time Markov chain
model is not going to be appropriate for each of these gene regions. After all,
the nucleotide part of the alignment has only four states whereas the amino
acid part of the alignment (the COI gene) has 20 potential states. We could
resort to a very simple partitioned analysis, treating all of the nucleotide se-
quences with one model and the amino acid sequences with another. However,
this approach, too, has problems. Is it really reasonable to treat the protein-
coding DNA sequences in the same way as the ribosomal sequences? Moreover,
in this case we have information on the secondary structure of the ribosomal
gene; we know which nucleotides probably form Watson-Crick pairs in the
stem regions of the ribosomal gene. It seems sensible that this information
should be accommodated in the analysis of the sequences.

One of the strengths of likelihood-based approaches in general, and the pro-
gram MrBayes in particular, is that heterogeneous data of the type collected
by Kim et al. [39] can be included in a single analysis, with the peculiarities of
the substitution process in each partition accounted for. Here are the special
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considerations we think each data partition of the Kim et al. [39] study raise:

Stem regions of the 28S rRNA nucleotide sequences. Although the
assumption of independence across sites (invoked when one multiplies the
probabilities of columns in the alignment to get the likelihood) is not neces-
sarily a good one for any data set, it seems especially bad for the stem regions
of ribosomal genes. The secondary structure in ribosomal genes plays an im-
portant functional role. The functional importance of secondary structure in
ribosomal genes causes nonindependence of substitutions in sites participat-
ing in a Watson-Crick pair: specifically, if a mutation occurs in one member
of a base pair in a functionally important stem, natural selection causes the
rate of substitution to be higher for compensatory changes. That is, individ-
uals with a mutation that restores the base pairing have a higher fitness than
individuals that do not carry the mutation, and the mutation may eventually
become fixed in the population. The end result of natural selection acting on
maintenance of stems is a signature of covariation between paired nucleotides.

Schéniger and von Haeseler [60] described a model that accounts for the
nonindependence of substitutions in stem regions of ribosomal genes. They
suggest that instead of modeling the substitution process on a site-by-site
basis using the models described earlier in this chapter, as was then common,
substitutions should be modeled on both of the nucleotides participating in
the stem pair bond—the doublet. Instead of four states, the doublet model
of Schoniger and von Haeseler [60] has 16 states (all possible doublets: AA,
AC, AG, AU,..., UA, UC, UG, UU). The instantaneous rate matrix instead
of being 4 x 4 is now 16 x 16. Each element of the rate matrix, Q, can be
specified as follows:

km; @ transition
Qij = m; : transversion
0 : iand jdiffer at two positions .

Note that this model only allows a single substitution in an instant of time;
substitutions between doublets like AA — CG have an instantaneous rate of
zero. This is not to say that transitions between such doublets are not al-
lowed, only that a minimum of two substitutions is required. Just as there
are different parameterizations of the 4 x 4 models, one can have different
parameterizations of the doublet model. The one described here allows a tran-
sition/transversion rate bias. However, one could construct a doublet model
under any of the models shown in Appendix 1.

Loop regions of the 28S rRNA nucleotide sequences. We will use a
more traditional 4 x 4 model for the loop regions of the ribosomal genes.
Nucleotides in the loop regions presumably do not participate in any strong
interactions with other sites (at least that we can identify beforehand).
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EF-1a nucleotide sequences. Special attention should be paid to the choice
of model for protein-coding genes, where the structure of the codon causes
heterogeneity at the different codon positions, along with potential noninde-
pendence of substitutions within the codon. The rate of substitution is the
most obvious difference at different codon positions. Because of the redun-
dancy of the genetic code, typically second positions are the most conservative
and third codon positions are the least conservative. Often people approach
this problem of rate variation by grouping the nucleotides at the first, sec-
ond, and third codon positions into different partitions and allow the overall
rate of substitution to differ at the different positions. Another approach, and
the one we take here, is to stretch the model of DNA substitution around the
codon [21, 50]. We now have 64 possible states (the triplets AAA, AAC, AAG,
AAT, ACA,..., TTT), and instead of a 4 x 4—or even a 16 X 16—rate matrix,
we have a 64 x 64 instantaneous rate matrix describing the continuous-time
Markov chain. Usually, the stop codons are excluded from the state space,
and the rate matrix, now 61 x 61 for the universal code, is

wKT; @ nonsynonymous transition
wm; : nonsynonymous transversion
Gij = KT; @ synonymous transition
m; : synonymous transversion
0 : i4and jdiffer at more than one position,

where w is the nonsynonymous/synonymous rate ratio, x is the transi-
tion/transversion rate ratio, and m; is the stationary frequency of codon j
[21, 50]. This matrix specifies the rate of change from codon 4 to codon j.
This rate matrix, like the 4 x 4 and 16 x 16 rate matrices, only allows one
substitution at a time.

The traditional codon model, described here, does not allow the nonsyn-
onymous/synonymous rate to vary across sites. This assumption has been
relaxed. Nielsen and Yang [54] allowed the w at a site to be a random vari-
able. Their method allows w to vary across the sequence and also the identi-
fication of amino acid positions under directional, or positive, selection. The
program PAML [73] implements an empirical Bayes approach to identifying
amino acid positions under positive selection. MrBayes uses the same general
idea to identify positive selection but implements a fully Bayesian approach,
integrating over uncertainty in model parameters [31]. Here, we will not allow
the nonsynonymous/synonymous rate to vary across sites.

COI amino acid sequences. In some ways, modeling the amino acid
sequences is more complicated for the nucleotide sequences. Some sort of
continuous-time Markov chain with 20 states seems appropriate. The most
general time-reversible substitution model for amino acids is
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- TARTR TANTN -+ TAWTW TAYTYy TAVTV
TARTA - TRNTN -+ TRWTwW TRYTYy TRVTV
TANTA TRNTR - o TNWTW TNYTy TNVTVY
Q={a}=| : S : L
TAWTA TRWTR TNWTN  ~ - - TwyTy TWvTv
TAYTA TRYTR TNYTN ~ TYWTw - TYyvTv
TAVvTA TRVTR 'NVTN -+ TwWVvTw TYVTy -

(The dots represent rows and columns that are not shown. The entire ma-
trix is too large to be printed nicely on the page.) There are a total of 208
free parameters; 19 of them involve the stationary frequencies of the amino
acids. Knowing 19 of the amino acid frequencies allows you to calculate the
frequency of the 20th, so there are a total of 19 free parameters. Similarly,
there are a total of 20 x 19/2 — 1 = 189 rate parameters. Contrast this with
the codon model. The size of the rate matrix for the codon model is much
larger than the size of the amino acid rate matrix (61 x 61 = 3721 versus
20 x 20 = 400). However, there are fewer free parameters for even the most
general time-reversible codon model (given that it is formulated as specified
above) than there are for the most general time-reversible amino acid model
(66 and 208 for the codon and amino acid matrix, respectively). Of course,
the reason the codon model has so few parameters for its size is that many of
the entries in the matrix are zero.

Molecular evolutionists have come up with a unique solution to the prob-
lem of the large number of potential free parameters in the amino acid matri-
ces. They fix them all to specific values. The parameters are estimated once on
large databases of amino acid sequence alignments. The details of how to do
this are beyond the scope of this chapter. But, the end result is that we have
a number of amino acid rate matrices, each with no free parameters (nothing
to estimate), that are designed for specific types of data. These matrices go
by different names: Poisson [7], Jones [37], Dayhoff [11], Mtrev [1], Mtmam
[8], WAG [71], Rtrev [12], Cprev [2], Blossum [26], and Vt [49]. The amino
acid models are designed for use with different types of data. For example,
WAG was estimated on nuclear genes, Cprev on chloroplast genes, and Rtrev
on viral genes. Which of these models is the appropriate one for the mitochon-
drial COI gene sequences for leaf beetles? It is not clear which one we should
use; nobody has ever designed a mitochondrial amino acid model for insects,
much less leaf beetles. It might make sense to use one of the mitochondrial
matrices, such as the Mtrev or Mtmam models. However, we can do better
than this. Instead of assuming a specific model for the analyses, we can let
the amino acid model be a random variable. We will assume that the ten
amino acid models listed above all have equal prior probability. We will use
MCMC to sum over the uncertainty in the models. This is the same approach
described in the previous section, where we used reversible jump MCMC to
choose among all possible time-reversible nucleotide substitution models. For-
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tunately, we do not need to resort to reversible jump MCMC here because all
of the parameters of the models are fixed. We do not change dimensions when
going from one amino acid model to another.

There are only a few other caveats to consider before we can actually
start our analysis of the leaf beetle data with the complex substitution model.
Many of the parameters of the model for the individual partitions are shared
across partitions. These parameters include the tree, branch lengths, and the
rates of substitution under the GTR model for the nucleotide data. Because
we are mostly interested in estimating phylogeny here, we will assume that
the same tree underlies each of the partitions. That is, we will not allow
one tree for the EF-la gene and another for the loop regions of the 28S
ribosomal gene. This seems like a reasonable choice as we have no a priori
reason to expect the trees for each partition to differ. However, we might
expect the rates of substitution to differ systematically across genes (some
might be more evolutionarily constrained) and also for rates to vary from site
to site within a gene. We do the following to account for rate variation across
and within partitions. Across partitions, we apply a site-specific model by
introducing a single parameter for each partition that increases or decreases
the rate of substitution for all of the sites within the gene. For example, if
the rate multipliers were m; = 0.1, my = 1.0, mg = 2.0, and m4 = 0.9, then
the first and fourth partitions would have, on average, a rate of substitution
lower than the mean rate, and the third partition would have a rate greater
than the mean rate. In this hypothetical example, the second partition has
a rate exactly equal to the mean rate of substitution. Site-specific models
are often denoted in the literature by SS; the GTR model with site-specific
rate variation is denoted GTR+SS. The site-specific model, although it allows
rates to vary systematically from one partition to another, does not account
for rate variation among site within a partition. Here we assume that the
rate at a site is a random variable drawn from a Gamma distribution. This is
commonly assumed in the literature, and Gamma rate variation models are
often denoted with a I'. We are assuming a mixture of rate variation models,
so our models could be denoted something like GTR+SS+I". The modeling
assumptions we are making can be summarized in a table:

Substitution Rate

Partition # States Model Variation
Stem 16 GTR Gamma,
Loop 4 GTR Gamma,
EF-la 61 GTR Equal
COI 20  Mixture Gamma

We will also allow parameters that could potentially be constrained to be equal
across partitions, such as the shape parameters of the Gamma rate variation
model, to be different. The parameters of the model that need to be estimated
include:
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Parameters Notes
T&V Tree and branch lengths, shared across all of the partitions
TAA...Tuu State frequencies for the stem region partition
ma...mr  State frequencies for the loop region partition
maAA ... mrrr Codon frequencies for the EF-1a gene
w4 ... Ty  Amino acid frequencies for the COI gene

a6 ---Tep The GTR rate parameters for the loop region partition
T ---Ter The GTR rate parameters for the stem region partition
Ta¢---Tep The GTR rate parameters for the EF-1a gene

w The nonsynonymous/synonymous rate ratio for the EF-1la gene
a1 The Gamma shape parameter for the loop region partition

Qa2 The Gamma shape parameter for the stem region partition

Qg The Gamma shape parameter for the COI amino acid data

mi The rate multiplier for the loop region partition

ma The rate multiplier for the stem region partition

ms The rate multiplier for the EF-1a gene

un The rate multiplier for the COI gene

S The amino acid model for the COI gene

Note that we are allowing most of the parameters to be estimated indepen-
dently for each gene partition. It is not clear that this is the best strategy.
For example, the data might be consistent with some of the parameters being
constrained to be the same across partitions. This would allow us to be more
parsimonious with our parameters. However, at this time there is no easy way
of deciding which pattern of constraints is the best for partitioned data.

We used MrBayes to analyze the data under the complicated substitution
model. We ran an MCMC algorithm for 3,000,000 update cycles, sampling the
chain every one hundredth cycle. Figure 7.6 shows a majority rule consensus
tree of the trees that were visited during the course of the MCMC analysis.
(The tree is based on samples taken during the last two million cycles of the
chain.) The tree has additional information on it. For one thing, the num-
bers at the interior nodes represent the posterior probability of that clade
being correct (again assuming the model is correct). For another, the branch
lengths on the majority rule tree are proportional to the mean of the posterior
probability of the branch length.

The Bayesian analysis also provided information on the parameters of
the model. Appendix 3 summarizes the marginal posterior probability of
each parameter. There are a few points to note here. First, the nonsynony-
mous/synonymous rate ratio (w) is estimated to be a very small number. This
is consistent with the EF-1a gene being under strong purifying selection. (Sub-
stitutions leading to amino acid changes are strongly selected against.) Second,
the rate multiplier parameters for the site specific model (mq, ma, m3, my) in-
dicate that the rate of substitution is different for the gene regions. The stem
partition of the ribosomal gene is the most conservative. Third, the doublet
stationary frequency parameters (w44 ...7pr) are consistent with a pattern
of higher rates for Watson-Crick doublets; note that the stationary frequency
is highest for the AT, TA, GC, and CG doublets. Finally, in this analysis, we
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Fig. 7.6. Bayesian phylogenetic tree of leaf beetles. A majority rule tree of the
trees sampled during the course of the MCMC analysis. The numbers at the interior
nodes are the marginal posterior probability of the clade being correct.

allowed the stationary frequencies of the states to be random variables and
integrated over their uncertainty. All of the state frequency parameters were
given a flat Dirichlet prior distribution. Although the base frequencies are
commonly estimated via maximum likelihood for simple (4 x 4) models, they
are rarely estimated for codon models. Instead, they are usually estimated by
using the observed frequencies of the nucleotides at the three codon positions
to predict the codon frequencies. In the Bayesian analysis, on the other hand,
estimating these parameters is not too onerous.

The only parameter not shown in Appendix 3 is the amino acid model,
which was treated as unknown in this analysis. The Markov chain proposed
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moves among the ten different amino acid models listed earlier. The chain
visited the Mtrev model almost all of the time, giving it a posterior proba-
bility of 1.0. The results of the Bayesian analysis confirm our guess that the
Mtrev should be the most reasonable of the amino acid models because it was
estimated using a database of mitochondrial sequences. Importantly, we did
not need to rely on our guess of what amino acid model to use and could let
the data inform us about the fit of the alternative models.

7.3.4 Estimating Divergence Times

The molecular clock hypothesis states that substitutions accumulate at roughly
the same rate along different lineages of a phylogenetic tree [75, 76]. Besides
being among the earliest ideas in molecular evolution, the molecular clock
hypothesis is an immensely useful one. If true, it suggests a way to estimate
the divergence times of species with poor fossil records. The idea in its sim-
plest form is shown in Figure 7.7. The figure shows a tree of three species.
The numbers on the branches are the branch lengths in terms of expected
number of substitutions per site. Note that the branch lengths on the tree
satisfy the molecular clock hypothesis; if you sum the lengths of the branches
from the root to each of the tips, you get the same number (0.4). One can
estimate branch lengths under the molecular clock hypothesis by constrain-
ing the branch lengths to have this property. Figure 7.7 shows the second
key assumption that must be made to estimate divergence times. We assume
that the divergence of at least one of the clades on the tree is known. In this
hypothetical example, we assume that species A and B diverged five million
years ago. We have calibrated the molecular clock. The calibration is this: if
five million years have elapsed since the common ancestor of A and B, then
0.1 substitutions is equal to five million years. Together, the assumptions of
a molecular clock and a calibration allow us to infer that the ancestor of the
three species must have diverged 20 million years ago.

There are numerous potential problems with the simple picture we pre-
sented:

e Substitutions may not accumulate at the same rate along different lin-
eages. In fact, it is easy to test the molecular clock hypothesis using, for
example, a likelihood ratio test [14]. The molecular clock hypothesis is
usually rejected for real data sets.

e Fven if the molecular clock is true, we do not know the lengths of the
branches with certainty. In fact, there are potential errors not only in the
branch lengths but also in the tree.

e We do not know the divergence times of any of the species on the tree with
absolute certainty. This uncertainty should in some way be accommodated.

The first problem—that substitutions may not accumulate at a constant rate
along the phylogenetic tree—has received the most attention from biologists.
Many statistical tests have been devised to examine whether rates really are
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Fig. 7.7. Estimating divergence times using the molecular clock. A tree of three
species showing how divergence times can be estimated.

constant over the tree. As already mentioned, applying these tests to real
data usually results in the molecular clock being rejected. However, it is still
possible that divergence times can be estimated even if the clock is not perfect.
Perhaps the tests of the molecular clock are sensitive enough to detect small
amounts of rate variation, but the degree of rate variation does not scupper
our ability to estimate divergence times. Some biologists have attempted to
account for the variation in rates. One approach is to find taxa that are
the worst offenders of the clock and either eliminate them [65] or allow a
different rate just for those taxa. Another approach specifies a parametric
model describing how substitution rates change on the tree. These relaxed
clock models still allow estimation of divergence times but may correct for
limited degrees of rate variation across lineages. To date, two different models
have been proposed for allowing rates to vary across the tree [68, 33] and, in
both cases, a Bayesian MCMC approach was taken to estimate parameters.
In the remainder of this section, we will assume that the molecular clock
is true or at least that if the molecular clock is violated, we can still meaning-
fully estimate divergence times. The point of this section is not to provide a
definitive answer to the divergence time of any particular group but rather to
show how uncertainty in the tree, branch lengths, and calibration times can
be accounted for in a Bayesian analysis. We examine two data sets. The first
data set included complete mitochondrial protein-coding sequences from 23
mammals [4]. We excluded the platypus (Ornithorhynchus anatinus) and the
guinea pig (Cavia porcellus) from our analysis. We analyzed the alignment
of mitochondrial sequences under the GTR4SS model of DNA substitution.
The data were partitioned by codon position, and the rates for the first, sec-
ond, and third positions were estimated. The second data set consists of 104
amino acid sequences sampled from mouse, rat, an artiodactyl, human, and
chicken collated by Nei et al. [51]. Nei et al. [51] were mainly interested in
estimating the divergence times of the rodents and the rodent-human split
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and pointed out the importance of taking a multigene approach to divergence
time estimation. We analyze their data using the partitioned approach de-
scribed in the previous section. We partition the data by gene, resulting in
104 divisions in the data. We allow rates to vary systematically across genes
using the site-specific model. We allow rates to vary within genes by treating
the rate of substitution at an amino acid position as a Gamma-distributed
random variable. We allow different Gamma shape parameters for each parti-
tion. Moreover, we allow a different amino acid model for each partition, with
the actual identity of the amino acid model being unknown. For both data
sets, we constrained the branch lengths to obey the molecular clock hypoth-
esis. MrBayes was used to approximate the joint posterior probability of all
of the parameters of the evolutionary model. For the mammalian mitochon-
drial alignment, we ran the MCMC algorithm for a total of one million cycles
and based inferences on samples taken during the last 900,000 MCMC cycles.
For the amino acid alignments, we ran each of the two independent Markov
chains for a total of three million update cycles. We combined the samples
taken after the five hundred thousandth cycle.

For the mammalian data set, we had a total of 9000 trees with branch
lengths that were sampled from the posterior probability distribution of trees.
Each of the trees obeyed the molecular clock, meaning that if one were to take
a direct path from each tip of the tree to the root and sum the lengths of the
branches on each path, one would obtain the same number. Importantly, the
lengths of the branches and the topology of the tree differed from one sample
to another. The differences reflect the uncertainty in the data about the tree
and branch lengths. The final missing ingredient is a calibration time for some
divergence time on the tree. We used the divergence between the cows and
the whales as the calibration. Our first analysis of these samples will reflect
the typical approach taken when estimating divergence times; we will assume
that the divergence between cows and whales was precisely 56.5 million years
ago. This is a reasonable guess at the divergence time of cows and whales. Fig-
ure 7.8 shows the posterior probability distribution of the divergence time at
the root of the tree, corresponding to the divergence of marsupial and placen-
tal mammals. The top-left panel, marked “Fixed(56.5)”, shows the posterior
probability of the marsupial-placental split when the cows and whales are as-
sumed to diverge precisely 56.5 million years ago. It shows that even when
we assume that the molecular clock is true and the calibration time is known
without error, there is considerable uncertainty about the divergence time.
The 95% credible interval for the divergence of marsupials from placentals is
(115.6, 145.1), a span of about 30 million years in the early Cretaceous period.
In fact, it is easy to calculate the probability that the divergence time was in
any specific time interval; with (posterior) probabilities 0.0, 0.97, 0.03, and
0.0, the divergence was in the late Cretaceous, early Cretaceous, late Juras-
sic, and middle Jurassic periods, respectively. These probabilities account for
the uncertainty in the topology of the tree, branch lengths on the tree, and
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Fig. 7.8. The posterior probability density distribution of the divergence time
of placental and marsupial mammals. The distributions were calculated assum-
ing the divergence time between cows and whales was precisely 56.5 million years
[Fixed(56.5)], uniformly distributed between two times (U), or no less than 56.5
million years, with an exponentially declining prior distribution into the past [56.5
+ Exp(0.2)]. K, J, and Tr are the Cretaceous, Jurassic, and Triassic time periods,
respectively.

parameters of the substitution model but do assume that the calibration time
was perfectly known.

The three other panels in Figure 7.8 show the posterior probability dis-
tribution of the divergence of marsupial and placental mammals when the
calibration is not assumed known with certainty. In two of the analyses, we as-
sumed that the cows and whales diverged at some unknown time, constrained
to lie in an interval. The probability of the divergence at any time in the in-
terval was uniformly distributed. The last analysis, shown in the lower-right
panel of Figure 7.8, assumed that the divergence of cows and whales occurred
no more recently than 56.5 million years and was exponentially distributed
before then (an offset exponential prior distribution). As expected, the effect
of introducing uncertainty in the calibration times is reflected in a posterior
probability distribution that is more spread out. The additional uncertainty
can be neatly summarized by the 95% credible intervals:

Prior Credible Interval Size
Fixed(56.5) (115.6, 145.1) 29.5
U(50, 60) (107.8, 145.8) 38.0
U(50, 70) (110.3, 166.9) 56.6

56.5 + Exp(0.2) (119.8,175.6) 55.8

The column marked “Size” shows the duration of the credible interval in
millions of years. Clearly, introducing uncertainty in the calibration time is
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Fig. 7.9. The distribution of best amino acid models for the 104 amino acid align-
ments. The number of alignments for which each amino acid model was best for the
Nei et al. [51] study.

reflected in the posterior probability distribution, and the credible interval
becomes larger as more uncertainty is introduced into the calibration time.

The results from the analysis of the 104 concatenated amino acid align-
ments was similar to that of the mammalian mitochondrial data. However,
the model for the amino acid data sets was quite complicated. Besides the
tree and branch lengths, there were 104 Gamma shape parameters, 104 rate
multipliers for the site-specific model, and 104 unknown amino acid models
to estimate. We do not attempt to summarize the information for all of these
parameters here. We only show the results for the amino acid models. Fig-
ure 7.9 shows which models were chosen as best for the various amino acid
alignments. In 82 cases, the model of Jones et al. [37] was chosen as best. The
Dayhoff and Wag models [11, 71] were chosen 11 times each. The seven other
amino acid models were never chosen as the best one in any of the 104 align-
ments, though some did receive considerable posterior probability. There was
no uncertainty in the topology of the tree chosen using the Bayesian method
(Figure 7.10).

As a calibration, Nei et al. [51] assumed that the divergence of birds and
mammals occurred exactly 310 million years ago. Table 7.4 summarizes the
results of the divergence times for three clades on the tree, assuming the
calibration time of Nei et al. [51] as well as three other calibrations that allow
for uncertainty in the divergence time of birds and mammals. As might be
expected, the uncertainty is greater for the older divergences. Also, having a
calibration time that is older than the group of interest makes the posterior
probability distribution less vulnerable to errors in the calibration time.

The prior models for the uncertainty in the calibration times we used here
are largely arbitrary and chosen mostly to make the point that errors in cali-
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Table 7.4. Credible intervals for divergence times of the amino acid data. The 95%
credible intervals for the divergence of mouse from rat, human from rodents, and
the time at the root of the tree for four different calibrations of the bird-mammal
split.

Calibration Mouse-Rat Human-Rodent Root

310 (25.9, 33.4) (84.5, 97.5) (448.3, 487.8)
U(288, 310) (25.0, 33.0) (80.6, 97.5) (427.7, 491.8)
288 + Exp(0.1) (24.6, 32.6) (79.8, 96.6) (423.3, 495.1)
288 4+ Exp(0.05) (24.9, 34.9) (80.4, 106.5) (426.4, 551.6)

bration times can be accounted for in a Bayesian analysis and that these errors
can make a difference in the results (at least, these errors can make a differ-
ence in how much one believes the results). Experts in the fossils from these
groups would place very different prior distributions on the calibration times.
For example, Philip Gingerich (pers. comm.) would place a much smaller error
on the divergence times between cows and whales than we did here; the fossil
record for this group is rich, and it is unlikely that cows and whales diverged as
early as 100 million years ago (our offset exponential prior distribution places
some weight on this hypothesis along with divergences that are much earlier).
Lee [42] pointed out that the widely used bird-mammal calibration of 310
million years is poorly chosen. The earliest synapsids (fossils on the lineage
leading to modern-day mammals) are from the upper Pennsylvanian period,
about 288 million years ago. This is much more recent than the calibration of
310 million years used by some to calibrate the molecular clock. The Bayesian
framework makes it possible to explore how different prior distributions affect
the conclusions drawn from a particular data set. When the data are highly
informative about the parameters examined, as is commonly the case, the ex-
act choice of prior distribution is likely to have little influence on the results.
In dating exercises, however, particularly when only one calibration point is
used, the precision of the calibration is likely to affect the dating significantly.

Xenopus

] chicken

— human
|: mouse
rat
Fig. 7.10. The best tree for the 104 amino acid alignments. This tree had a posterior

probability approximated to be 1.0 by the MCMC algorithm. The length of the
branch is the mean of the posterior probability distribution.
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7.4 Conclusions

In this chapter, we have attempted to demonstrate some of the power and
flexibility of the Bayesian approach to the inference of phylogeny and mole-
cular evolution. The most important aspect we want to convey is the effi-
ciency of the Bayesian MCMC methodology in addressing complex models.
Current statistical analyses of molecular evolution are based on very sim-
ple models inspired by the apparent simplicity of molecular sequences. But
beyond the simple sequences of symbols lies tremendous evolutionary com-
plexity. Approaches that ignore this complexity do not utilize the molecular
information efficiently and are prone to produce erroneous inferences. Mod-
eling the complexity of molecular evolution more accurately will be critical
to future progress in statistical analysis of molecular evolution. The Bayesian
MCMC approach provides promising tools for the analysis of these realistic
evolutionary models.
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