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Preface

The field of molecular evolution is devoted to elucidating the processes gener-
ating variation within and between species at the molecular level. It addresses
the fundamental question of why all life on Earth looks as it does from the
perspective of molecular and evolutionary biology. Molecular evolution arose
as a scientific field in the 1960s after protein sequences from multiple species
first became available. In the 1970s, the first journal exclusively devoted to
this field arose, and today it molecular evolution dominates the literature on
evolutionary biology. Since the appearance of large-scale genomic data, the
field of molecular evolution has emerged as one of the major scientific pillars
in the analysis of genomic data, especially when it comes to data from multiple
species.

The field of molecular evolution relies heavily on statistical theory. Usu-
ally, researchers only have access to DNA data, or other molecular data, from
extant species. From such data they try to make inferences regarding past
evolutionary processes. This inference problem is fundamentally statistical in
nature, and it is not surprising that a large body of literature on statistical
methods in molecular evolution has emerged. The statistical problems encoun-
tered in molecular evolution are often rather non-standard because the un-
derlying statistical models usually involve superimposing stochastic processes
along the edges of a tree. Several interesting and peculiar algorithmic and sta-
tistical problems arise from these models. While many books contain excellent
coverage of the specialized, but important, area of phylogenetic inference (es-
timation of trees) from molecular data, there are no books that provide an
introduction to the more general area of statistical methods in molecular evo-
lution. With the publication of this book, we hope to rectify this problem.

The first four chapters of the book provide a general introduction to the
area. The first chapter, by Galtier and his colleagues, introduces the models of
DNA sequence change usually applied in molecular evolution. Evolution does
not remember past states except by current form, and Markov models have
therefore been the natural choice for statistical models to describe the evolu-
tion of DNA sequences. The first chapter provides an introduction to these
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models and sets the stage for the subsequent chapters describing how the
models are used for statistical inferences. The second chapter, by Buschbom
and von Haeseler, provides an introduction to the use of the likelihood func-
tion in molecular evolution. In addition to introducing some basic statistical
concepts for the uninitiated biologist, it also provides an introduction to the
computational aspects involved in calculating sampling distributions based
on the Markov models discussed in the first chapter. The third chapter, by
Larget, provides an introduction to the use of Markov chain Monte Carlo
(MCMC) methods in molecular evolution. Methods based on MCMC are re-
ceiving an increasing amount of attention and the third chapter provides an
introduction to this area. Chapter 4, by Bustamante, provides an introduc-
tion to population genetic theory with special emphasis on areas of relevance
for molecular evolution. The classical mathematical theory underlying studies
of molecular evolution is population genetic, and much research in molecular
evolution cannot be fully understood without an appreciation of population
genetic theory.

The second section in the book contains four chapters written by the au-
thors of some of the most important statistical computer packages used in
the study of molecular evolution. These chapters discuss practical statistical
approaches for analyzing DNA sequences and molecular data. Chapter 5, by
Bielawski and Yang, discusses methods for detecting natural Darwinian se-
lection using the program Paml. Paml is possibly the most commonly used
computer program for analyzing models of molecular evolution. Chapter 6, by
Pond and Muse, discusses a recently developed versatile computer package,
HyPhy, for analyzing models of molecular evolution. Readers interested in de-
veloping and analyzing new models of molecular evolution may want to take
advantage of this computer package. Chapter 7, by Huelsenbeck and Ronquist
discusses Bayesian inference in molecular evolution based on the popular com-
puter program MrBayes. The use of Bayesian methods in molecular evolution
is quite new but has already had a tremendous impact on the field, largely
due to the availability of MrBayes. Chapter 8 is written by the authors of the
computer program Multidivtime, Kishino and Thorne, and it discusses statis-
tical issues relating to the molecular clock. The molecular clock assumption
is that the rate of molecular change has been constant through evolutionary
time. This assumption has been used extensively in the literature to date
evolutionary events, but on numerous occasions is has also been shown to be
not invalid. The main focus of Chapter 8 is to discuss methods for dating
evolutionary events when the molecular clock assumption is not met.

The third section introduces other models of molecular evolution beyond
the basic nucleotide-based Markov chain models that were the main focus
of Chapter 1. Chapter 9, by Dimmic, discusses models of protein evolution.
Such models are important not only because they can be used for making
inferences regarding protein evolution and function but also because the sub-
stitution matrices estimated using these models are important in alignment
algorithms. The issue of estimating substitution matrices is revisited in Chap-
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ter 15, and the issue of alignment is dealt with in depth in Chapter 14. In
Chapter 10, Calabrese and Sainudiin discuss models of microsatellite evolu-
tion and statistical inferences based on these models. Microsatellites are small
repeated patterns of DNA and are used extensively in many genetic stud-
ies because they are highly variable. The models used to analyze this type
of data are fundamentally different from most other models used to analyze
DNA sequence data. Chapter 11, by Durrett, discusses methods and models
for analyzing whole-genome evolution incorporating rearrangements such as
inversions and translocations. Although these models are still in their infancy,
they have become highly relevant with the recent availability of large-scale ge-
nomic data. Chapter 12, by Siepel and Haussler, provides an introduction to
the use of Hidden Markov models (HMMs) in the study of molecular evolution.
Such models are very important when certain properties of the evolutionary
process are thought to vary among positions along the DNA sequence. The
use of HMMs for statistical alignment is also discussed in Chapter 14.

The last section of the book contains five chapters that further detail
methods of inference in molecular evolution. In Chapter 13, McVean relates
the Markov models of molecular evolution discussed in most chapters of this
book to the population genetic models discussed in Chapter 4 in the con-
text of variation of nucleotide composition among species. The frequency of
different nucleotides is known to vary among species. This observation is in-
teresting from the perspective of evolutionary biology, and it is also highly
relevant to our choice of models for analyzing molecular evolution. In Chap-
ter 14 on statistical alignment, Lunter, Drummond, Mikls, and Hein explore
the relationship among evolutionary models, trees and the problem of align-
ing DNA or protein sequences. In Chapter 15, Yap and Speed discuss the
estimation of substitution matrices for use in alignment problems. The last
two chapters, Chapter 16 by Bollback and Chapter 17 by Shimodaira and
Hasegawa, discuss issues related to hypothesis testing and model choice in
molecular evolution. Bayesian methods have recently gained much popularity
in the area of molecular evolution, leading to a debate regarding choice of sta-
tistical methodology not dissimilar to the discussions that have occurred in
many other areas of applied statistics. Chapter 17 argues for the use of certain
frequentist procedures for the tree estimation problem and discusses problems
with Bayesian procedures, while other chapters of the book (e.g., Chapter 7)
provide more optimistic views of the use of Bayesian methods in molecular
evolution. Chapter 16 discusses the use of posterior predictive distributions
for statistical inferences, in addition to providing a review of recent methods
for estimating the history of mutations from DNA sequence data.

This book provides a comprehensive review of the many interesting statis-
tical problems arising in molecular evolution provided by leading researchers
in the field. It is intended for researchers and students from the statistical and
biological sciences alike. For the statistician, the book will provide an intro-
duction to an exciting area of application that often has been overlooked by
statisticians. For the biologist, the book provides an introduction to the theory
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underlying many of the methods they use in their daily research. Several of the
chapters, including the four introductory chapters, are also highly suitable as
texts for advanced undergraduate or graduate-level courses in molecular evo-
lution.

Copenhagen, April 2004 Rasmus Nielsen
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Markov Models in Molecular Evolution

Nicolas Galtier1, Olivier Gascuel2, and Alain Jean-Marie3

1 Génome, Populations, Interactions, Adaptation, Université Montpellier,
Montpellier, France, galtier@univ-montp2.fr

2 Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier,
Université Montpellier, Montpellier, France, gascuel@lirmm.fr

3 Laboratoire d’Informatique, Robotique et Microélectronique de Montpellier,
Université Montpellier, Montpellier, France, ajm@lirmm.fr

1.1 Introduction to Markov Models in Molecular
Evolution

Markov chains (or Markov processes) are memoryless stochastic processes.
Formally, a stochastic process is a collection X(t) of random variables, where t
is typically time, and the Markovian property is defined by (for a discrete-time
process):

Pr(X(t + 1) = xt+1 | X(t) = xt, X(t − 1) = xt−1, . . . , X(1) = x1, X(0) = x0)
= Pr(X(t + 1) = xt+1 | X(t) = xt)

for all states x0, x1, . . . , xt−1, xt, xt+1 of the process and any time t. More
intuitively, this means that the future of the process (that is, the various
states possibly reached and their probabilities of occurrence) depends only
on the present state, not on past states (i.e. the pathway followed to reach
the current state). Markov processes can be in discrete time, when states are
assigned to successive “steps,” or “generations,” or in continuous time, when
the time to next event is an exponential random variable. The space of states
can be discrete (finite or infinite) or continuous. Branching processes (discrete
state, discrete time), random walks (continuous state, discrete time), Poisson
processes (discrete state, continuous time), and Brownian motion (continu-
ous state, continuous time) are well-known instances illustrating this variety
of stochastic processes [32]. Markov chains have been widely used in a vari-
ety of scientific fields, including physics, chemistry, networks, and, of course,
evolutionary biology.

The reasons why Markov chains are useful to model biological evolution
are obvious: evolution is very generally memoryless. Some examples of non-
Markovian evolutionary processes can be thought of, however. The future size
of a population of current size N , for instance, depends somewhat on past
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population sizes. This is because population history determines the genetic
diversity of the current population, which might itself influence the growth
rate. It should be noted, however, that the joint evolutionary process of pop-
ulation size and population genetic diversity is Markovian: the future of the
population depends only on current size and genetic resources. The poten-
tially non-Markovian nature of the size process therefore appears to be due
to an incomplete representation of the system rather than true evolutionary
memory.

Markov models are routinely used in several domains of evolutionary biol-
ogy. We have already introduced population dynamics (that is, the evolution
of census population size), a field in which stochastic processes are central.
Branching processes, for example, are used for estimating demographic para-
meters (birth rate, mortality) and extinction risks, with applications in species
management and conservation [14]. In the case of structured populations, in
which individuals are assigned to classes (e.g. age classes) and can switch be-
tween classes, Markov processes are used to predict the proportion of each
class at equilibrium [2]. Markov chains are also widely used for representing
the evolution of quantitative traits (e.g. morphology, behavior, growth rate),
modeled as Brownian motion when neutral (e.g. [17]) or using more complex
continuous-time Markov chains when selected (e.g. [24]). The evolution of ge-
nomic data is also typically modeled as Markov chains, as we now discuss in
more detail.

Genes and genomes are made with DNA, a polymer of four distinct
monomers called adenine (A), cytosine (C), guanine (G), and thymine (T).
DNA sequences are therefore naturally represented as words in the {A,C,G,T}
alphabet, where letters of the alphabet are called “nucleotides” or “bases.”
DNA sequences evolve according to a two-level process: sequence transmission
and sequence change. Genes are transmitted from parents to offspring (at a
short timescale) or from ancestral to descendant species (at a larger timescale),
so that the history of a gene will typically be represented by a tree, called a ge-
nealogy or phylogeny. A gene is lost if not transmitted, resulting in the extinc-
tion of one of the evolving lineages. This is called a birth-death process. A gene,
when transmitted, can undergo a change of its DNA sequence. Many kinds of
changes have been reported, including base replacement, insertion, deletion,
inversion, tandem duplication, translocation, recombination, and gene con-
version. (The last two events involve two sequences.) The process of sequence
change is superimposed on the process of gene transmission: changes occur
along the branches of an underlying genealogy.

A model that would aim at representing the way sequences actually evolve
should therefore incorporate both sequence reproduction and sequence change.
This is achieved by the coalescent model of population genetics, in which the
genealogy of a sample of genes is considered as a random tree whose distri-
bution and characteristics are determined by certain parameters of interest
(e.g. population history). The pattern of sequence variability in the sample is
used to infer the plausible shapes (topology, branch lengths) of the underlying
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unknown genealogy, and assess the likelihood of various hypotheses about the
birth-death process of gene transmission. This is usually done by assuming
that the genealogy is independent of sequence changes, i.e., that the probabil-
ity of gene transmission is the same for any state of the sequence space, (the
neutrality assumption). See [26] for a recent review of the coalescent theory.

Objectives and methods are somewhat different when sequences from dis-
tinct species, rather than from individuals of a single species, are sampled. In
this case, the underlying phylogenetic tree can be known, or can be what we
want to reconstruct. It is generally taken as a parameter or a known quantity,
not a realization of a certain random process. As far as sequence changes are
concerned, most models for between-species data focus on base replacement,
the prevalent process in the long-term evolution of coding sequences. Under
these assumptions, the evolution of a DNA sequence of length n is represented
by n Markov processes running along the branches of a common tree. Each of
these processes takes values on E ={A,C,G,T}, the so-called state space. They
will be considered as continuous-time Markov chains. We now recall some of
the major mathematical properties of these models in relationship with the
underlying biological assumptions. Then we examine popular Markov models
of sequence evolution aimed at representing the specificities of sequence evo-
lutionary processes. Finally, we review and discuss the various uses of Markov
chains in phylogenetic analyses.

1.2 Modeling DNA Sequence Evolution: Mathematical
Background

1.2.1 Continuous-Time Transition Rates

Consider a DNA sequence of fixed length n evolving in time by the process of
base replacement. Assume that the processes followed by the n sites (positions)
are Markovian, independent, identically distributed, and constant in time (we
shall discuss these assumptions later). Let

F(t) = t(fA(t), fC(t), fG(t), fT (t))

be the column vector of the probabilities of states A, C, G, and T, respectively,
for a certain site at time t. Let µxy(y �= x) be the transition rate from state
x ∈ E to state y ∈ E , and let µx =

∑
y �=x µxy. The evolutionary dynamics is

described by the differential equations

fA(t + dt) = fA(t) − fA(t) µAdt +
∑
x�=A

fx(t) µxA dt,

fC(t + dt) = fC(t) − fC(t) µCdt +
∑
x�=C

fx(t) µxC dt,
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fG(t + dt) = fG(t) − fG(t) µGdt +
∑
x�=G

fx(t) µxG dt,

fT (t + dt) = fT (t) − fT (t) µT dt +
∑
x�=T

fx(t) µxT dt,

where the summations are over E .
The first of the four equations above states that the frequency of A at time

t + dt equals the frequency of A at time t minus the frequency of lost A’s,
plus the frequency of newly arisen A’s. This set of equations has a compact
matrical form

F(t + dt) = F(t) + MF(t)dt

or
dF(t)

dt
= MF(t), (1.1)

where M is the 4 × 4 matrix defined as

M =

⎛⎜⎜⎝
−µA µCA µGA µTA

µAC −µC µGC µTC

µAG µCG −µG µTG

µAT µCT µGT −µT

⎞⎟⎟⎠ .

M is called the rate matrix, or generator, of the process. It is such that column
entries sum to zero. Entries of M are expressed in (time unit)−1. They are
homogeneous to the rate of a Poisson process; µxydt tends to the probability
of being in state y at time t + dt given state x at time t as dt tends to zero.
The time to next change, given current state x, is exponentially distributed
with rate µx. Given that the process leaves state x, it will enter state y �= x
with probability µxy/µx.

1.2.2 Stationary Distribution

If all µxy rates are positive, so that all states “communicate”, then the Markov
chain has a stationary distribution {πx, x ∈ E}: an equilibrium (or steady
state) is reached when t tends to infinity, at which any state x has a nonzero
probability of occurrence, πx, that does not depend on the initial state of the
process. Such a Markov chain is called ergodic . Stationary frequency πx is the
expected proportion of time spent in state x after the Markov process has run
infinitely long. In the case of DNA, under the assumption of a common process
for every site, the πx’s correspond to the equilibrium base composition (that
is, the proportions of A, C, G, and T) of the evolving sequence. A Markov
process is said to be stationary when its current distribution is the stationary
distribution, (i.e. when F(t) = Π). By definition, the stationary distribution
is such that

dΠ
dt

= MΠ = 0,

where the first equality follows from equation (1.1). This implies that Π is an
eigenvector of M for eigenvalue zero.
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1.2.3 Time Reversibility

A stationary Markov process is said to be time-reversible if, for every pair
(x, y) of states, we have

πxµxy = πyµyx (1.2)

Reversibility means that in steady state the amount of change from state
x to state y is equal to amount of change from state y to state x (although the
two states need not to be equally frequent). Not every stationary process is
reversible. Reversibility, however, is a convenient, reasonable assumption made
by virtually every model of DNA sequence evolution. Under the reversibility
assumption, transition rates µxy can be expressed as:

µxy = sxyπy (1.3)

where sxy = syx is a symmetric term sometimes called “exchangeability” be-
tween x and y. The twelve nondiagonal entries of rate matrix M can therefore
be described by just nine independent parameters under the assumption of
reversibility, namely six exchangeability terms sxy and three stationary fre-
quencies πx (remember that the πx’s have to sum to one).

1.2.4 Calculating Transition Probabilities

The piece of theory above has to do with the instantaneous dynamics
(equation (1.1)) and the long-run behavior (stationarity, reversibility) of a
continuous-time Markov process. In sequence data analysis, however, we will
typically compare sequences that have diverged during a finite amount of
time. To get some insight about sequence evolutionary processes from Markov
models, we need to address the transient behavior of Markov chains. This is
achieved by solving differential equation (1.1):

F(t) = eMtF(0). (1.4)

Equation (1.4) relates the distribution of the process at time t to its initial
distribution F(0). Let P(t) = eMt. Entry pxy(t) of P(t) is the probability of
state y after evolution according to process M during time t given initial state
x. The P matrix is defined as the exponential of matrix Mt:

P(t) = eMt =
∞∑

i=0

(Mt)i/i! .

There are numerous ways to calculate the exponential of a matrix [25].
In the case of DNA sequence Markov models, and since we want to calculate
the pxy(t)′s for many t values but constant M (see below), the appropriate
calculation involves diagonalising M. If M = QDQ−1 with D diagonal then:
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P(t) = eMt = e(QDtQ−1
)

=
∞∑

i=0

(QDtQ−1)i/i!

=
∞∑

i=0

Q(Dt)iQ−1/i!

= Q

( ∞∑
i=0

(Dt)i/i!

)
Q−1

= QeDtQ−1,

which is easily calculated since the exponential of a diagonal matrix is obtained
by replacing its diagonal terms by their exponentials.

1.2.5 Trees and Likelihood

Up to now, we have considered the evolution of a single sequence in a one-
dimensional time space. But biological sequences reproduce and die, as indi-
cated above, so that the process of sequence change should be regarded as
running along the branches of a binary rooted tree, called phylogeny. The
generalization is obtained simply by stating that when the process reaches a
node of the tree, the current state is duplicated, and two independent processes
restart along the two child branches. The generalized process models the evo-
lution of a set of DNA sequences sharing a common ancestor at the root of the
tree. Such a model has three kinds of parameters, namely the tree topology,
branch lengths (that is, the amount of time during which the process runs in
each branch), and entries of the rate matrix.

Molecular phylogeny essentially aims at estimating these parameters from
a data set of extant homologous sequences. This is typically achieved using
the likelihood function. The likelihood L of a certain set of parameter values
θ is defined as the probability of the data Y conditional on these parameter
values:

L(θ) = Pr(Y | θ). (1.5)

In the case of DNA sequence data, Y corresponds to a set of (aligned)
DNA sequences, each of length n, associated to the tips of the tree. Let Yi

(1 ≤ i ≤ n) be the ith site of Y , defined as the set of bases at position i in the
various sequences of the data set (ith column of the alignment). Each Yi is the
outcome of a distinct Markov process. Under the assumption of independent
sites, we have

L(θ) = Pr(Y | θ) =
n∏

i=1

Pr(Yi | θ). (1.6)

Now the probability of a site Yi given the rate matrix, rooted tree topology,
and branch lengths can be calculated recursively, as shown by Felsenstein [5].
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Let k be an internal node of the tree, and let Lk
i (x)(x ∈ E) be the partial

conditional likelihood defined as

Lk
i (x) = Pr(Y k

i | θ, ki ≡ x),

where Y k
i is the restriction of site Yi to the sequences associated to tips de-

scending from node k and where ki ≡ x means that the ancestral state for site
i at node k was x. Lk

i (x) is the likelihood at site i for the subtree underlying
node k conditional on state x at k. The likelihood at site i can be expressed
as

Pr(Yi | θ) =
∑
x∈E

Pr(ri ≡ x)Lr
i (x), (1.7)

where r is the root node. The recurrence on Lk
i (x) is

Lk
i (x) =

∑
y1∈E

pxy1(t1)L
k1
i (y1)

∑
y2∈E

pxy2(t2)L
k2
i (y2), (1.8)

where k1 and k2 are the two child nodes to internal node k, and where t1 and t2
are the lengths of the (k, k1) and (k, k2) branches, respectively. Equation (1.8)
results from the independence of the processes in the two subtrees underlying
node k. This equation holds if k is an internal node. The recurrence closes at
leaves (terminal nodes) of the tree. Let l be a leaf

Ll
i(x) =

{
1 if li ≡ x
0 otherwise,

where the state at node l is determined by the base observed at position i in
the corresponding sequence. This calculation is achieved in a time linear in
the number of sequences and in the number of sites. Usually, the logarithm
of the likelihood is computed rather than the likelihood itself. The product in
equation (1.6) becomes a summation if the log-likelihood is computed.

Note that equation (1.7) requires knowledge of the base composition of the
ancestral sequence, (i.e., the probabilities of states A, C, G, and T at the root
node). Under the stationarity assumption, these probabilities correspond to
the stationary distribution of the process. The calculation above was defined
on a rooted tree. For a reversible process, however, the location of the root
does not matter: the likelihood value is unchanged whatever the position of
the root [5].

The likelihood function is used in the first place for estimation purposes.
The parameters of the model (tree, branch lengths, and rate matrix) can be es-
timated jointly by the maximum-likelihood method: the maximum-likelihood
estimator is defined as the parameter value θ̂ that maximizes L(θ). Alter-
natively, the likelihood function can be used in the Bayesian framework to
calculate the posterior probabilities of parameters or other unknown quanti-
ties (see Chapters 3 and 7). Likelihood is also useful for comparing alternative
models and testing hypotheses (see section 1.4). See [4] for an introduction to
the likelihood theory and Chapter 2 of the present volume for applications in
molecular evolution.
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1.3 Popular Markov Models of Sequence Evolution

Many different Markov models of sequence evolution embedded in the math-
ematical background above have been proposed in the literature and applied
to sequence data. The reason for this diversity is that genomic evolutionary
processes vary between genomes and between regions of a genome. Different
evolutionary forces apply to coding and noncoding regions or to the mito-
chondrial and nuclear genomes, for example. Models essentially differ in the
parametrization of the rate matrix and in the modeling of rate variations.

1.3.1 Specifying the Rate Matrix

In its more general form, the rate matrix M is described by 12 parameters
µxy corresponding to the 12 rates of base change. From a statistical point
of view, 12 parameters can be too many. More economical parametrizations
have been proposed. Inversely, some of the assumptions made by standard
models of sequence evolution (e.g. stationarity, independent sites) were found
inappropriate for specific data sets, leading to the development of more general
models. So far, we have considered evolution at the DNA level. The evolution
of protein-coding sequences, however, can also be modeled at the protein or
codon level, requiring specific state spaces and specific rate matrices. We now
review these various topics.

DNA models

The first proposed Markov model of DNA sequence evolution, called the
Jukes-Cantor model, assumed a constant rate for every possible change [21]:

JC model (one parameter): µxy = µ ∀(x, y) ∈ E2. (1.9)

This is a strong assumption that turned out to fit virtually no sequence
data set. A very general feature of DNA sequence evolutionary processes is
that transitions are more frequent than transversions. Transitions are changes
within the purine {A,G} or pyrimidine {C,T} state subsets, while transver-
sions are changes from purine to pyrimidine or from pyrimidine to purine.
There are four transitions and eight transversions. The latter are more fre-
quent for biochemical reasons: pyrimidines (respectively, purines) share a sim-
ilar molecular structure. A change from C to T, for example, only requires
one methylation and one deamination, while switching from, say, C to A is
a much more complex chemical pathway. Kimura [22] amended Jukes and
Cantor’s model to distinguish these two kinds of changes:

K2 model (two parameters): µxy =

{
α for transitions
β for transversions.
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Note that the use of the word transition to define a subset of the possible
changes of state is awkward since transition is usually defined as a synonym
state change (as it is in Section 1.2 of this chapter). This confusion results
from the collision between two bodies of literature (molecular evolution and
stochastic processes) within which the term has an unambiguous meaning.
In this chapter, italicized transition will refer to the specific category of base
changes defined above, while regular transition will be used in its generic
sense.

The JC and K2 models both have a balanced stationary distribution: pro-
portion 0.25 is expected for the four bases at equilibrium under these models.
But many DNA sequence data sets show unbalanced base composition, requir-
ing the introduction of additional parameters. Equation (1.3) suggests the use
of parameter πx’s, explicitly controlling the stationary distribution, as in the
HKY model [18]:

HKY model (five parameters): µxy =

{
α πy for transitions
β πy for transversions.

It should be noted that there are good biological reasons for having the
proportions of C and G (respectively, A and T) in a genome equal. This comes
from the fact that the DNA molecule is double-stranded, and made only with
C:G and A:T pairs. If one assumes that the evolutionary processes followed
by the two strands are identical, then the rate of change from (to) C and from
(to) G (respectively, A and T) in one strand should be equal (because a G in
the plus strand must change as soon as a C in the minus strand changes [23]).
Very similar G and C contents (and A and T contents) are actually observed in
most genomic sequences [23]. This suggests adding the πG = πC and πA = πT

assumptions to the HKY model, resulting in the so-called T92 model [34].
The T92 model has three parameters, namely α, β, and θ = πC + πG.

The REV or GTR (general time-reversible) model was defined above when
introducing the concept of reversibility. It has nine parameters, namely six
exchangeability terms sxy and three stationary frequencies πx (equation (1.3)).
The HKY model is a special case of the REV model in which the sxy’s are
constrained: transitions (respectively, transversions) have to share a common
sxy. The T92 model is a special case of HKY in which πG = πC and πA = πT =
0.5−πG. The K2 model is a special case of T92 in which πA = πC = πG = πT .
The JC model is a special case of K2 in which α = β. All these models are
special cases of the most general, twelve-parameter model.

Amino acid models

The evolution of protein-coding genomic sequences can be considered at the
protein, rather than DNA, level. Proteins are made of 20 distinct amino acids,
so that the state space in protein models will have size 20, not 4. The mathe-
matical background introduced in the previous section is still valid apart from
this difference.
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The protein rate matrix has 380 nondiagonal entries (to be compared
with 12 in the DNA case), making the modeling effort more complex. Like
DNA models, most protein models assume reversibility. The πx’s and sxy’s are
typically defined from the analysis of protein databases, resulting in generic
models of protein evolution subsequently applied to any data set. There is,
indeed, little hope to estimate the many entries of the protein rate matrix
from a single data set. The so-called PAM, JTT, and WAG models are such
database-defined models of protein evolution. See Chapter 9 of this volume
for a detailed description of protein models.

Codon models

Protein-coding genes can also be analyzed at the codon level. A codon is a
triplet of bases encoding for a certain amino acid. The information contained
in codon sequences exceeds that of protein sequences since a given amino acid
can be encoded by more than one codon. There are 61 sense codons, classi-
fied in 20 groups of synonymous codons. Every codon of a group encodes the
same amino acid. The group size ranges from one to six. Codon changes within
groups are called synonymous. Such changes do not modify the sequence of the
encoded protein. They have no (or weak) functional consequences. Between-
group codon changes are called nonsynonymous. Nonsynonymous changes can
affect the function of proteins, and the fitness of organisms: their fate is influ-
enced by natural selection.

The relative rate of synonymous and nonsynonymous change occurring in
a gene therefore provides some information about the selective forces apply-
ing to that gene. Synonymous changes are essentially neutral (or under weak
selection) and accumulate at a rate equal (close) to the mutation rate. Non-
synonymous changes, in contrast, can be strongly selected, either negatively
(if deleterious) or positively (if advantageous). Most genes are undergoing
negative (i.e. purifying) selection, resulting in a synonymous/nonsynonymous
rate ratio lower than one. Neutrally evolving genes (e.g. pseudogenes) have
roughly equal synonymous and nonsynonymous rates. Genes showing a higher
nonsynonymous than synonymous evolutionary rate are of biological interest:
this pattern suggests that they have been recurrently adapting to some envi-
ronmental change.

Goldman and Yang [13] introduced the first codon model in the early
1990s, and all the subsequent developments in the field were based on this
contribution. This model has 63 parameters, namely 60 stationary frequencies
πxyz, where (xyz) is a codon, one transition rate α, one transversion rate β,
and the nonsynonymous/synonymous ratio, ω. Entries of the 61 × 61 codon
rate matrix are defined by the GY codon model (63 parameters):
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µ(x1x2x3)(y1y2y3) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α πy1y2y3 for synonymous transitions
β πy1y2y3 for synonymous transversions
ω α πy1y2y3 for nonsynonymous transitions
ω β πy1y2y3 for nonsynonymous transversions.

The formula above applies if the two codons (x1x2x3) and (y1y2y3) differ by
exactly one base. The instantaneous rate of codon changes involving more
than one base change is assumed to be zero. The probability of occurrence of
such events after a finite amount of time is nonzero, however.

Of the 63 parameters of the GY model, the 60 codon equilibrium frequen-
cies are usually not estimated by the maximum-likelihood method. Rather,
they are estimated a priori as the observed frequency of every codon in the
data set, or from the observed frequencies of bases at each codon position. In
the latter case, the frequency πxyz of codon (xyz) is estimated by the π1

xπ2
yπ3

z

product, where πi
w is the observed frequency of base w at codon position i in

the data set. This greatly simplifies the likelihood maximization. This trick is
also used for protein and DNA models.

Nonhomogeneous models

One fundamental assumption of the Markov models above is stationarity:
the base (amino acid, codon) composition is assumed to be at equilibrium
throughout the tree. This implies that the base composition is the same in
every sequence of the data set. Some data sets, however, depart from this
assumption. Observing significantly different base compositions between se-
quences implies that distinct evolutionary processes, with distinct stationary
distributions, have been followed in distinct lineages. Simulation studies have
shown that neglecting base composition variation between sequences when
effective leads to biased phylogeny estimates in which sequences of similar
base composition tend to be grouped irrespective of their true phylogenetic
relationship [10].

To accommodate this peculiarity of some data sets, Galtier and Gouy de-
veloped a nonhomogeneous, nonstationary model of DNA sequence evolution
[11]. Under this model, every branch of the tree follows a T92 process (see
above). The α and β parameters are shared by all branches (common transi-
tion/transversion ratio), but the θ parameter is branch-specific: each branch
has its own stationary G+C content. This accounts for variable G+C contents
between sequences at the cost of a large increase in the number of parame-
ters (one θ per branch versus one θ for the whole tree in the T92 model).
The model is called nonhomogeneous because the rate matrix is not constant
in time, nor between lineages. Yang and Roberts had previously proposed a
nonhomogeneous version of the HKY model [43], but their implementation
appeared to be limited to a small number of sequences.

A remarkable property of nonhomogeneous, nonstationary models is that
ancestral base composition is a free parameter, whereas it is deducible from
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the rate matrix under the stationarity assumption. Past base compositions can
therefore be estimated under these models. Computer simulations showed that
reliable estimates of ancestral base composition can be obtained from data sets
of reasonable size [11]. Also note that the likelihood becomes dependent on
the location of the root under such nonstationary, nonreversible processes.

Nonindependence between sites

The vast majority of Markov models for sequence evolution make the as-
sumption of independence between sites. This has the desirable property of
validating equation (1.6), greatly simplifying the likelihood calculation. This
assumption, however, is quite probably violated by most coding sequence data
sets. This is because sites in a protein (or an RNA) interact to determine
the selected tridimensional structure (and function) of the molecule, and the
evolutionary processes of interacting sites are not independent. Two major
attempts were made to relax the independence assumption.

The first relies on the (plausible) idea that most molecular interactions
involve neighbor (or nearly neighbor) amino acids (bases) in a protein (DNA,
RNA) sequence. Yang, followed by Felsenstein and Churchill, introduced an
autocorrelation parameter measuring how much the evolutionary rate of a
site is correlated with that of neighboring sites ([41], [6]). Goldman and col-
leagues extended this view for the specific case of proteins. They propose that
sites belong to a small number of structural categories (helices, sheets, loops,
turns), neighboring sites having a higher probability than random sites to be
in the same category. Each site category has a distinct rate matrix. The as-
signment of sites to categories is not known but modeled by a hidden Markov
chain running along the sequence ([35], [31]). The likelihood is calculated by
conditioning on possible assignments of sites to categories, the probability of
certain assignment being controlled by the hidden Markov chain. Evolutionary
modes, not rates, are correlated between neighbor sites in this model.

Pollock and co-workers tackled the problem differently, without a relation-
ship to the site neighborhood. Consider the joint evolutionary process of any
two sites of a protein. The state space for the joint process is E × E . Under
the assumption of independent sites, the rate matrix for the joint process is
deductible from that of the single-site process (assume reversibility),

µ̄xx′,yx′ = µxy = sxyπy,

µ̄xx′,xy′ = µx′y′ = sx′y′π′
y, (1.10)

µ̄xx′,yy′ = 0,

for x �= y and x′ �= y′, where µ̄xx′,yy′ is the rate of change from x to y at
site 1 and from x′ to y′ at site 2 (in E × E), and where µxy, sxy, and πy are
the above-defined transition terms for the single-site process (in E). Modeling
nonindependence between the two sites involves departing from equations
(1.10). This is naturally achieved by amending stationary frequencies. It is
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easy to show that the stationary frequency π̄xx′ of state (x, x′) ∈ E is equal
to the πxπ′

x product under the independence assumption. Nonindependence
can be introduced by rewriting the equation above as:

µ̄xx′,yx′ = sxyπ̄yx′ ,

µ̄xx′,xy′ = sx′y′ π̄xy′ , (1.11)
µ̄xx′,yy′ = 0,

where π̄xx′ ’s are free parameters (possibly some function of πx’s). This for-
malization accounts for the existence of frequent and infrequent combinations
of states between the two sites, perhaps distinct from the product of mar-
ginal site-specific frequencies. Pollock and co-workers applied this idea (first
introduced by Pagel for quantitative characters [27]) in a simplified, two-state
model of protein evolution, with the aim of detecting pairs of co-evolving
amino acid sites in vertebrate myoglobin [29]. Duret and Galtier somewhat
combined the two approaches to model the evolution of (overlapping) pairs of
successive bases in the human genome [3].

1.3.2 Modeling Variations of Evolutionary Rate

Molecular evolutionary rates are of primary interest because they reflect to
some extent the way natural selection applies to molecules. If one assumes that
the mutation rate (that is, the rate of random occurrence of changes in indi-
viduals of a population) is more or less constant–a reasonable assumption for
many data sets–then only natural selection (that is, the force determining the
chances of eventual fixation of mutations in the population) can explain differ-
ences in evolutionary rates between lineages, molecules, or sites. Functionally
important sequences will evolve at a slower rate (because most changes are
deleterious and therefore eliminated by natural selection) than nonfunctional
DNA. This idea was introduced above (codon models) when defining the syn-
onymous and nonsynonymous evolutionary rates of protein-coding sequences.

Rate variation between lineages

Consider a homogeneous Markov process with constant transition rate µ (as-
sume a JC model for simplicity) running along the branches of a phyloge-
netic tree whose lengths ti are measured in some time unit. Present-day se-
quences (leaves) are equidistant from the ancestral sequence (root)–such trees
are called ultrametric. A sequence that would evolve this way is said to be
consistent with the so-called molecular clock hypothesis [46]. It is a fact that
many data sets depart from the molecular clock assumption, sometimes spec-
tacularly (e.g. [28]): some lineages evolve faster than others, possibly because
the selective pressure applied to the sequence varies in time and between lin-
eages.
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A simple way to account for a departure from the clock is to fully relax
the homogeneity assumption by letting each branch of the tree have its own
freely varying transition rate µ (again in the JC case). Note that an equivalent
model would be reached by assuming a constant µ but unconstrained branch
lengths ti. The relevant recoverable parameters are the µ ti products (i.e.
the amount of evolution between connected nodes). Allowing unconstrained
branch lengths is the most flexible way to represent departure from the clock.
It is the default option of most phylogenetic methods and programs.

Alternatively, one might want to model the way the transition rate varies
over time, maybe with the aim of reconstructing past events of rate change.
This can be achieved by assuming that transition rate µ is itself evolving
according to some stochastic process upon which the process of sequence evo-
lution is dependent ([36], [20]). Rate changes are assumed to occur at nodes
of the tree in [36], continuously in [20]. These models are less parameter-rich
than the standard, one-parameter-per-branch model. Full-likelihood calcula-
tion, however, is computationally difficult under these models because sites
are correlated: a putative event of rate change would affect all sites simulta-
neously, making equation (1.6) incorrect. These models have been used in the
Bayesian framework, where the integration over all possible scenarios of rate
change is achieved through Monte Carlo Markov chains.

Rate variation between sites

The distinct sites of a molecule do not evolve at the same rate: functional sites
are mostly conserved, showing little or no variation between sequences, while
unimportant sites are free to evolve. This is a strong determinant of coding
sequence variation patterns, with important implications with respect to the
molecular structure/function link.

Yang first introduced likelihood calculation under the hypothesis of vari-
able rates ([39], [40]). He proposed to model the variation of evolutionary rates
across sites by a Gamma (rather than constant) distribution. The likelihood
for site Yi is therefore integrated over all possible rates,

Pr(Yi | θ) =
∫ ∞

0
fΓ (u) Pr(Yi | r(Yi) = u, θ) du, (1.12)

where fΓ is the probability density of the Gamma distribution and where
Pr(Yi | r(Yi) = u) is the likelihood for site Yi conditional on rate u for this site.
The latter term is easily calculated by applying recurrence (1.8) after having
multiplied branch lengths by u. The variance (and shape) of the Gamma
distribution is determined by a parameter that can be estimated from the
data. The continuous Gamma distribution is usually discretized to avoid the
integration of equation (1.12). Equation (1.12) becomes

Pr(Yi | θ) =
g∑

j=1

Pr(j) Pr(Yi | r(Yi) = rj , θ), (1.13)
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where g is the assumed number of rate classes and Pr(j) the probability
of class j (1/g for an equiprobable discretization). The complexity of the
likelihood calculation under the discrete-Gamma model of rate variation is
therefore g times the complexity of the equal-rate calculation. Waddell et al.
explored other distributions for variable rates among sites [38]. In the case of
codon models, Yang and co-workers used many different distributions to model
the variation between sites in ω, the ratio of nonsynonymous to synonymous
substitution rates [42].

Note that sites are not assigned to rate classes in this calculation. Rather,
all possible assignments are considered and the conditional likelihoods aver-
aged. Sites can be assigned to rate classes posterior to the calculation. The
posterior probability of class j for site Yi can be defined as

Pr(Yi in class j) =
Pr(j) Pr(Yi | r(Yi) = rj)

Pr(Yi)
, (1.14)

where the calculation is achieved using the maximum-likelihood estimates of
parameters (tree, branch lengths, rate matrix). This equation does not account
for the uncertainty on unknown parameters, an approximate procedure called
“empirical Bayesian” [45].

“Covarion” models

In models of rate variation between sites, the (relative) rate of a site is constant
in time: a slow site is slow in every lineage of the tree. There are biological
reasons, however, why the specific rate of a site could vary. The rate of a
site essentially reflects its level of structural constraint: sites important for
the tridimensional structure (and therefore the function) of a protein cannot
change much. But tridimensional structures evolve in the long run. The level
of constraint applying to a certain site might therefore vary in time.

The notion that the evolutionary rate of a site can evolve was first in-
troduced by Fitch [8] and subsequently modeled by Tuffley and Steel [37]
and Galtier [9]. This process has been called covarion (for COncomitantly
VARIable codON [8]), heterotachy, or site-specific rate variation. The covar-
ion model is close, in spirit, to models of the relaxed molecular clock [20].
The rate of a site evolves in time according to some continuous-time process.
The process of sequence change is defined conditionally on the outcome of
the rate process. In the covarion model, each site runs its own specific rate
process, so that not all sites are simultaneously rapid or slow, in contrast with
the relaxed-clock model. The covarion model is an instance of the so-called
Markov-modulated Markov chains [7].

Likelihood calculation is tractable under the covarion model. Sites are inde-
pendent, allowing the use of equation (1.6). Recursion (1.8) must be modified
to account for the underlying rate process. This is achieved by considering the
compound process as a single process taking values on E × G, where G is the
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set of possible rates. The rate matrix of this process is deductible from those
of the rate and base (amino acid, codon) processes (see [9] for details).

It is worth noting that Fitch’s initial definition of covarion implied both
the notions of both site-specific rate change and nonindependent sites. In
Fitch’s model, only a subset of sites can evolve (covary) during a given period
of time, but this set varies in time, the reasons for this variation being in-
teractions between sites. Modern literature has separated “covariation” (that
is, nonindependent sites) and site-specific rate variation. Unfortunately, the
word “covarion” has been misleadingly kept as a synonym for “site-specific
rate variation” so that the modern meaning of covarion has nothing to do
with covariation.

1.4 Use of Markov Models for Phylogenetic Analyses

The many models presented above can be used and combined to represent the
peculiarities of various genomic sequence data sets. This is done in the first
place with the goal of reconstructing the past: testing evolutionary hypotheses,
and estimating evolutionary parameters. This requires fitting the model to
data, typically in the maximum-likelihood framework. Another use of Markov
models in molecular evolution is simulation, which we now examine.

1.4.1 Simulations

Simulating data means running a statistical model on a computer using ar-
bitrary (controlled) parameter values and storing the outcome. In the case
of Markov models for sequence evolution, simulations are typically achieved
by (i) randomly drawing an ancestral sequence at the root of a given tree
(typically from the stationary distribution of the simulated process) and (ii)
making this sequence evolve by recursively drawing states at child nodes from
the pxy(ti) probability distribution, where the recursion stops at leaves. The
number and length of sequences, the tree, branch lengths, and process have to
be chosen prior to simulation either arbitrarily or randomly drawing in some
distribution on the tree space.

Simulations have been used during the 1980s and 1990s to compare the
efficiency of competing tree-building methods: simulate data sets using a cer-
tain model tree T , and ask how often methods will reconstruct T from the
simulated data. Likelihood-based methods are now consensually considered as
optimal. Some of their statistical properties (consistency, accuracy) are known
theoretically or can be derived analytically. Simulations can still be useful to
compare algorithms of likelihood maximization [16] or to assess the robust-
ness of phylogenetic estimates: simulate data under model M1 and estimate
parameters using model M2 to check how problematic it is to use a wrong
model.
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Simulations are also used to calculate confidence intervals around parame-
ter estimates. The procedure is as follows: (i) estimate parameters of a model
from the data by the maximum-likelihood method, (ii) simulate many data
sets using parameter values equal to the ML estimates, (iii) for each simulated
data set, reestimate parameters by ML, and (iv) seek an interval including
95% (or 99%) of these estimates. This is the very definition of a confidence
interval; simulation is often the only way to calculate confidence intervals in
phylogeny. The technique above is often called “parametric bootstrap” [19].

1.4.2 Hypothesis Testing

The likelihood framework provides tools for hypothesis testing, the so-called
likelihood-ratio test (LRT). Let M0 (p0 parameters) and M1 (p1 > p0 pa-
rameters) be two models, and assume that M0 is nested into (i.e., it is a
special case of) M1. For example, M0 could be the JC model and M1 the K2
model. Now fit the two models to some data, call L0 and L1 the corresponding
maximum likelihoods, and define the LR statistics as

LR = 2 ln
(

L1

L0

)
. (1.15)

It can be shown that this statistic is asymptotically (that is, for an infinite
amount of data) χ2 distributed with p1 − p0 degrees of freedom under the
null M0 hypothesis. L1 must be higher than (or equal to) L0 since M0 is a
special case of M1. The LRT quantifies the expected increase in log-likelihood
obtained by switching from M0 to M1 if data had been generated under
M0. A data set showing an excessive increase in log-likelihood would lead to
rejection of M0.

LRT between Markov models has been used for testing various evolution-
ary hypotheses. The molecular clock hypothesis, for instance, can be tested by
comparing clock and relaxed-clock models. This is important for the purpose
of dating events of speciation (i.e., internal nodes of the tree): divergence time
is proportional to sequence divergence if and only if the molecular clock hy-
pothesis holds (see below). LRT has also been used to test selective hypotheses
from codon sequence data. Selective scenarios are modeled by making assump-
tions about the distribution of ω (nonsynonymous/synonymous rate ratio)
across sites [42]. The neutral model, for example, assumes a constant ω = 1
for all sites. A model involving purifying selection would let one class of sites
have ω < 1. Recurrent adaptation at some sites is modeled by incorporating
an additional class with ω > 1. LRT is used to compare these competing mod-
els, usually with the goal of detecting adaptation (that is, having a significant
increase in log-likelihood when adding a class of sites with ω > 1).

LRT can also be used at the level of the site. Pupko and Galtier, for ex-
ample, proposed an LRT for the detection of covarion-like sites [30] (i.e., sites
having a high substitution rate in certain subtrees but a low rate in the re-
maining part of the tree). This approach is useful to detect functional shifts in
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the history of a molecule, as illustrated by the analysis of primate mitochondr-
ial proteins [30]. Such tests are typically applied to every site of an alignment
so that the statistical problem of multiple testing must be addressed.

1.4.3 Parameter Estimation

If you believe in some model of sequence evolution, you might want to esti-
mate parameters of this model from the data (i.e., recovering the past from
the present). This is achieved by the maximum-likelihood (ML) method: the
ML estimate (MLE) of the parameters is the set of parameter values that
maximizes the likelihood; that is, the probability of the data. Parameters
of interest include the tree topology, branch lengths, parameters of the rate
matrix, and ancestral sequences and base compositions. This is the most vo-
luminous body of literature in the field. Fast and accurate methods are now
available for parameter estimation (e.g., [16]).

Reconstructing trees is a goal pursued by most users of Markov model-
based phylogenetic methods. Trees are useful because they are the basis of
systematics, the field of biology aiming at understanding biological diversity
and its origins. Branch lengths are also of interest, either for dating purposes
and for subsequent links between molecular phylogenies and paleontology or
for understanding the dynamics of molecular evolutionary rates (how they
change and why). With regard to the rate matrix, some parameters are of little
interest (e.g., the transition/transversion ratio), but others have a clear bio-
logical meaning. The ω parameter of codon models, for example, measures the
amount and nature of the selective pressure applying to sequences or codons
and is worth estimating (e.g., [44]). Nonstationary models allow estimation of
ancient base composition, as indicated above. For specific genes, base compo-
sition can be related to ecological features (e.g., growth temperature in bac-
teria), and Markov models can be used to infer life-history traits of ancestral
species [12]. Ancestral sequences can also be estimated from Markov models,
such as using the empirical Bayesian approach [43]. This lead two spectacular
studies in which the reconstructed ancestral proteins were synthesized in vitro
and their biochemical properties compared with that of extant proteins [1].

1.4.4 Model Choice

The question of which model to choose for a given data set is an important
one that we did not yet address. We have, however, introduced the LRT, a
technique for comparing nested models. LRT will favor complex model M1
over simpler model M0 if the increase in log-likelihood yielded by switching
from M0 to M1 is higher than expected under M0. The so-called Akaike
information criterion (AIC) is a related likelihood-based measure of model
appropriateness applicable for nonnested competing models. AIC is defined
as

AIC = −2 ln(L) + 2p,
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where L and p are the maximum likelihood and number of parameters of the
model considered. The model minimizing AIC will be considered the most
suitable. LRT and AIC are commonly used in current molecular evolution
literature when the problem of choosing a model occurs.

We would argue, however, that this usage of LRT or AIC is a bit too
systematic. Markov models of sequence evolution are built to address a va-
riety of biological questions, as we just discussed. It is unclear that, for a
given data set, these many purposes will require a common model. Of cen-
tral interest is the problem of model choice in molecular phylogeny. That a
certain model is favored by the AIC or LRT techniques does not guaran-
tee that it is optimal for the purpose of estimating the tree. AIC and LRT
favor models optimizing the balance between accuracy (fit) and number of
parameters, something not directly related to the desirable properties of an
estimator, namely small bias and small sampling variance. Empirical results
from distance-based tree-building methods suggest that using a model simpler
(i.e., less parameter-rich) than the true model can improve phylogenetic esti-
mates ([33], [15]). We hope that forthcoming work in this area will clarify the
relationship between the bias/variance and fit/parameter-richness balances
and maybe amend current recommendations about AIC/LRT-based model
choice in molecular phylogeny.

1.5 The Future of Markov Models for Sequence
Evolution

A considerable amount of work has been done on Markov models for sequence
evolution, from the theoretical basis to the use of highly specific models for
inference purposes. One may wonder whether this is a nearly closed body of
literature or whether important advances may be expected in the near future.
We would speculate that the answer is double-faced, again because of the
multiplicity of uses for Markov chains.

As far as the problem of tree reconstruction is concerned, we do not expect
major advances from the Markov chain literature in the future. Building new
models that would fit the data more accurately would not clearly lead to an
improvement of phylogenetic estimators, as discussed above. Perspectives in
this field have more to do with data management (e.g., dealing with conflicting
data sets, that is, detecting the existence of distinct trees for distinct genes)
than with improvements of models of sequence evolution, in our opinion.

Evolutionary genomics (that is, understanding the way genes and genomes
evolve) should, in contrast, benefit from further developments of Markov mod-
els. Models explicitly aiming at representing the various evolutionary forces
applying to genomic sequences, and especially natural selection, have just
started to be built. These include the various codon models, models for non-
independent sites, and the covarion model, for instance. Further refinements
of these models are to be expected, especially in the context of Monte Carlo
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Markov chain (MCMC) Bayesian analysis, a technique that overcomes many
computational limitations induced by complex models (see Chapter 3 of this
volume). Improving Markov models of sequence evolution should help in un-
derstanding the way genomes evolve and how their diversity originated–one
of the big current issues in biology.
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2.1 Introduction

This chapter is about the likelihood function in the context of molecular evo-
lution. We will introduce the concept of likelihood and try to illuminate the
flexibility of the likelihood approach in terms of modeling, inference, and test
statistics.

From its beginning, molecular evolution has dealt with the analysis of
data that are amenable to mathematical description and statistical testing.
Composed of building blocks representing a limited alphabet, molecular data
are–ideally–the product of comparatively simple recurring processes with pre-
dictable outcomes.

Zuckerkandl and Pauling [23] took advantage of this situation by propos-
ing one of the now classical null hypotheses in evolutionary biology. Their
molecular clock hypothesis states that the rate of change for a given protein
is more or less constant over time and in different evolutionary lineages. Upon
publication, this hypothesis created tumult among classical biologists since it
seemed to contradict the traditional view of evolution that some organisms
are evolved “further,” while others might represent relics. Zuckerkandl and
Pauling’s hypothesis, being based on an explicit model of protein substitu-
tion, however, presents the advantage that it can be tested and potentially
rejected. Moreover, the explicit model representing the hypothesis provides
the opportunity to estimate actual values for evolutionary rates and thus gain
further, more detailed information on the underlying processes.

Nowadays molecular evolution is a flourishing field of scientific research
that profits from the advances in molecular biology and statistics and last
but not least from the increasing power of modern computers, so that it is
impossible to cover all the areas where the likelihood function comes into
play. Thus, we will only be able to define the likelihood function and sketch
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upon some central ideas through examples. The fine details of the varying and
wide-ranging applications are left to subsequent chapters.

2.1.1 Terminology

To set the stage, we introduce some terminology that will be used throughout
this chapter. We observe individuals out of a population. Based on these ob-
servations, we ask what the characteristics of the whole population might be;
that is, we want to know the values of variables that describe its characteris-
tics (e. g., genetic composition, demography, historical events, and population
processes). Generally, mathematical models need to be employed to arrive at
values for the characteristics of interest. These models summarize background
information and describe defined interactions among several variables.

If we collected information on all individuals of a population, we would
obtain a census of the population. However, without such a drastic and often
impossible measure, the only chance to obtain information about the pop-
ulation is to draw a random sample and analyze the data contained in the
sample with regard to the variables that interest us. If the sample is repre-
sentative of the whole population, we can use it to infer the characteristics of
the original population. This we will do by specifying evolutionary models for
various questions of interest to a molecular biologist with some knowledge of
statistics.

2.2 The Likelihood

2.2.1 The Likelihood Function

Likelihood has become one of the central concepts in statistical inference [7].
It provides the means through which the information supplied by a sample
can be incorporated into the process of statistical inference; that is, in arriving
at a conclusion about characteristics of the underlying population.

A typical textbook introduces the likelihood as a function L of a hypothesis
H, given a set of observations O and assuming a specific interaction model
or set of model parameters. The likelihood L(H|O) is proportional to the
conditional probability P (O|H) of observing the data given that hypothesis
H applies. More formally,

L(H|O) = C · P (O|H), (2.1)

where C denotes an arbitrary constant.
To be a bit more formal, we regard the observation O as the realization of

a random variable X = (X1, . . . , Xm)T with an unknown probability distribu-
tion (with respect to an appropriate measure) that is defined by a probability
density function p(x) = pX(x). Moreover, the unknown density is restricted to
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an appropriate family of distributions. We will consider densities that involve
a finite number of unknown parameters θ = (θ1, . . . , θk)T . Finally, the para-
meter space defines the region of possible values of θ. The notation pX(x,θ)
indicates the dependency of the density on θ. In other words, the model func-
tion, pX(x,θ), describes the model we have in mind. When studying the model
function, one may study the effect on the function on x for each fixed θ (i.e, on
the probability density determined by θ). On the other hand, we may switch
the viewpoint and study the model function as a function of θ for fixed x. For
an x actually observed, we obtain the likelihood function

L(θ) = L(x|θ) = pX(x|θ). (2.2)

Sometimes, we will also discuss the random variable

LX(X|θ) = pX(X|θ). (2.3)

The definitions above were given for arbitrary multidimensional random
variables. In most applications, we will treat the components X1, X2, . . . , Xn

of X as mutually independent and identically distributed with pX(X|θ). Then

L(X1, . . . , Xn|θ) =
n∏

i=1

p(Xi | θ) (2.4)

defines the likelihood function of the sample of size n. In some applications, it
is convenient to study the natural logarithms of the likelihood function, which
will be denoted by

�(X1, . . . , Xn|θ) =
n∑

i=1

log[p(Xi | θ)]. (2.5)

Example 2.1 Binomial Distributions

Somebody catches a fish from a pond and considers an experiment as success-
ful if a red individual is caught. The color of the fish is noted and the fish is
returned to the pond. Then X is a random variable assuming values “red,”
“not red” with a certain probability θ ∈ [0, 1] (i.e., p(X = red|θ) = θ and
p(X = not red|θ) = 1 − θ). If n = 10 fish were caught and k were red, then
the likelihood function according to equation (2.4) is defined as

L(X1, . . . , X10|θ) =
10∏

i=1

p(Xi | θ) (2.6)

=
(

10
k

)
θk(1 − θ)10−k, (2.7)

the binomial distribution with parameter θ and ten realizations, where
(10

k

)
denotes a factor that depends on the realization of the data only. Figure 2.1
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Fig. 2.1. Plot of the binomial distribution showing the relationship between prob-
ability and likelihood. The thick line running from “east to west” represents the
continuous version of the binomial distribution with parameter 1/2. The line run-
ning from “south to north” displays the likelihood function when k = 6 successful
experiments were observed.

displays this example, for all possible realizations of k. Figure 2.1 displays also
the dual way of looking at the model function p(X,θ). The thick line running
from left to right represents the probability distribution for a fixed θ, whereas
the highlighted line running from front to back illustrates the probability of
observing k = 6 successful outcomes as a function of θ (i.e., represents one
realization of L(X|θ)).

2.2.2 Maximum Likelihood Estimation

One of the questions we want to address when dealing with likelihoods is the
construction of parameter estimates. That is, we think of estimates as some
plausible values θ̂. Once we observe some data as in Example 2.1, the likeli-
hood function depends only on θ. For any admissible value of θ, the likelihood
function gives the (a priori) probability of observing what has actually been
observed. This explains the name likelihood. Please notice that the likelihood
function L(θ) is not a probability distribution, whereas all values of the likeli-
hood function are probabilities. This interpretation then leads to the concept
of maximum likelihood estimate (MLE), where we select the value of θ that
maximizes the likelihood function for a given realization x of the random
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variable X. More formally,

θml = argmax{L(x|θ)|θ} (2.8)

is the MLE of the likelihood function.
The MLE θml provides the best explanation for observing the data X given

the model. This does not mean that θml is the value of θ that maximizes the
probability as n increases. E. L. Lehmann and G. Casella showed that under
certain conditions for n independent observations drawn from p(X|θ0), the
probability that

n∏
i=1

p(Xi | θ0) >

n∏
i=1

p(Xi | θ)

approaches 1 as the sample size n tends to infinity, where θ0 is the true value
of the parameter. Since, by definition,

L(θml) ≥ L(x|θ),

for all θ, the combination of both inequalities suggests that in a large sample
the MLE is close to the true value. This statement is made more precise by
the definition of consistency, which states that as n → ∞ the series (θml

n )
tends to the true value θ0 (for details see [14]).

Computing the MLE

Equation (2.4) defines the joint distribution of X1, . . . , Xn. Again, for a given
realization (x1, . . . , xn) we consider L(x1, . . . , xn|θ) as a function of θ. The
MLE θml is found by differentiation with respect to θ and using standard
calculus to prove maximality. If differentiation is used, then the equation

∂L(X1, . . . , Xn|θ)
∂θ

= 0 (2.9)

must be solved. Equation (2.9) is referred to as the likelihood equation(s).
Sometimes it is easier to work with the natural logarithm of the likelihood

function log[L], the so-called support. Thus, equation (2.9) becomes

∂ log[L(X1, . . . , Xn|θ)]
∂θ

= 0. (2.10)

Obviously, a solution of equation (2.9) or equation (2.10) is not necessarily the
global maximum of the likelihood function. The derivatives in equation (2.10)
are called scores. Global maximality can be difficult to establish. In certain
instances, one can show that the likelihood function is concave, which implies
that the solution to equation (2.9) is indeed the MLE. For the one-dimensional
parameter case, it is sufficient to show that the second derivative is negative
at θml; namely



30 J. Buschbom and A. von Haeseler

∂2 log[L(θ)]
∂2θ

∣∣∣∣
θ=θml

< 0. (2.11)

If θ is multidimensional, then it is sometimes possible to show that the
matrix in equation (2.11) is negative definite and thus maximal locally but
not necessarily globally.

Unfortunately, for many complex problems, such as the optimization of
many parameters, analytical solutions cannot be obtained. In this case, nu-
merical iterations are employed to arrive at approximations of the maximum
likelihood estimator. Because these methods cannot guarantee actually find-
ing the global maximum, it is advisable to search the parameter space for all
solutions.

Example 2.1 (Continued)

The likelihood function (equation (2.6)) is an instance where the maximum
likelihood estimate can be analytically obtained. To this end, consider the
random variable X that counts the number of successful events in n trials,
where each successful event has probability θ. Then the score equals

S(X, θ) =
X

θ
− n − X

1 − θ
. (2.12)

Setting equation (2.12) equal to zero and solving it for θ, we obtain the max-
imum likelihood estimator

θml =
X

n
, (2.13)

which is the global maximum because the second derivative

−n

(
θ2 + X

n

)
θ2(1 − θ)2

(2.14)

is certainly less than zero at θ = θml.

Example 2.2: MLEs for Multinomial Distributions

In the context of molecular genetics, the method of maximum likelihood is
frequently applied to questions involving the multinomial distribution. We
assume that the random variables X1, . . . , Xm count the number of elements
in m distinct cells or categories, where the total number of elements equals n
and the cell probabilities are p1, . . . , pm such that pi > 0 and p1+. . .+pm = 1.
The likelihood function for x = (x1, . . . , xm) is then

L(x1, . . . xm|p1, . . . , pm) =
(

n

x1 . . . xm

) m∏
i=1

pxi
i . (2.15)

A little calculus then shows that the MLEs are given by
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pmle
i =

xj

n
for j = 1, . . . , m. (2.16)

We will later encounter situations where the cell probabilities are functions
of unknown parameters θ; that is, pi = pi(θ) for i = 1, . . . , m. Then the
log-likelihood function of θ is

�(x|θ) = log n! −
m∑

i=1

log xi! +
m∑

i=1

xi log pi(θ). (2.17)

To find the MLE, we need to solve equation (2.10), which reduces to

∂S(θ)
∂θ

=
m∑

i=1

xi
p′

i(θ)
pi(θ)

= 0 (2.18)

if we assume that the dimension of θ equals 1 and p′
i(θ) is the derivative with

respect to θ. To find an analytical solution in this case can get quite tedious.
Before we conclude this subsection, it is worthwhile to point out several

features of the maximum likelihood estimate that are relevant for practical
applications.

1. It is not necessary to confine the parameter space to R
d. In fact, we will

later consider the branching pattern of a tree as a parameter.
2. Sometimes the MLE does not exist.
3. The MLE need not be unique. However, in most cases the maximum

likelihood exists and is unique.
4. The likelihood function is maximized over the parameter space defined by

the model and not over the set of mathematically admissible values.
5. In most realistic applications in molecular biology, the MLE has no closed-

form expression. Thus, it must be computed numerically for the observed
data X. This leads to interesting numerical approaches. We will give some
examples later.

2.2.3 Large Samples

In the previous section, we outlined approaches to estimate the parameter
θml that provides the best estimate of the observed data. This so-called point
estimate is thus a good guess about the unobservable parameter θ0. In the
following, we simply state some relevant results that give a recipe to estimate
variances of the MLE or confidence intervals.

For the sake of illustration, we assume a one-dimensional parameter θ.
Using the so-called expected information

I(θ) = −E

[
∂2

∂θ2 log L(X|θ)
]

, (2.19)
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one can show that the large sample distribution is approximately normal with
mean θ0 and variance 1/(nI(θ0)). To indicate that this is only true as n ap-
proaches infinity, we typically say that the MLE is asymptotically unbiased
and that 1/(nI(θ0)) is the asymptotic variance of the MLE.

Moreover, one can prove that the distribution of
√

I(θ0))(θmle − θ0) is
approximately equal to the standard normal distribution N(0, 1). Replacing
the unknown I(θ0) by I(θmle), the approximation is still valid and we obtain

θmle ± z(α/2)√
nI(θmle)

(2.20)

as the approximate 100(1 − α)% confidence interval.

Example 2.1 (Continued)

We illustrate the procedure on Example 2.1. First, we need to compute the
expected information (equation (2.19)), which becomes according to equa-
tion (2.14)

I(θ) = −E

[
−X

θ2 +
n − X

(1 − θ)2

]
=

E(X)
θ2 +

E(X) − n

(1 − θ)2

=
nθ

θ2 +
nθ − n

(1 − θ)2

=
n

θ(1 − θ)
.

By substituting the MLE X/n and applying equation (2.20), we get

X

n
± z(α/2)

√
X(n − X)

n3

as the approximate confidence interval for the accuracy of the estimation.
In the example above it was relatively straightforward to compute the ap-

proximate confidence interval. In molecular evolution, matters are more com-
plicated and one must resort to bootstrap estimates for finding approximate
confidence intervals [8].

We explain the bootstrap principle for Example 2.1. Because the true pa-
rameter and the distribution θml − θ0 are not known, we use the MLE θmle

to generate many samples, B, from a binomial distribution with parameters
n (sample size) and θml. For each randomly generated sample, we compute
the MLE θml

b , b = 1, . . . , B. The unknown distribution θml − θ0 is then ap-
proximated by the simulated distribution δb = θml

b − θml, b = 1, . . . , B. This
distribution can then be used to compute the corresponding quantiles.

Such approaches are easily implemented and are widely distributed in the
literature on molecular evolution.
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2.2.4 Efficiency

Besides the MLE, the statistical literature provides a collection of parameter
estimates, such as the sample mean or the method of moments. The question
arises as to which one should be chosen. To aid a decision, statistics introduces
the efficiency of two estimates θ̂ and θ̃ as

eff(θ̂, θ̃) =
Var(θ̂)
Var(θ̃)

. (2.21)

If the efficiency is smaller than 1, then θ̃ has a larger variance than θ̂.
The Cramer-Rao inequality then states [3] that the variance of an unbi-
ased estimate of the unknown parameter θ is greater than or equal to
1/(nI(θ))(assuming some condition on the distribution). From this inequality
and the fact that the asymptotic variance of the maximum likelihood estimate
is equal to the lower bound, we say that MLEs are asymptotically efficient.
Note that the asymptotic efficiency does not allow a conclusion about the
efficiency for finite sample sizes. Sometimes other estimators may be more
efficient in the sense of equation (2.21).

2.2.5 Hypothesis Testing and Adequacy of Models

We have seen that the likelihood depends on an underlying model. To base our
biological conclusions on solid grounds, it is necessary to have confidence in
the models. We will outline some theoretical aspects to check whether models
or hypotheses are appropriate. However, it is beyond the scope of this chapter
to expound the full theory of testing hypotheses, and we will focus on the
likelihood ratio tests.

General remarks

In the classical hypothesis setting one tests a null hypothesis H0 against an
alternative hypothesis HA. In the first step, one specifies both hypotheses. This
should be done before the data are actually observed. The statistical literature
distinguishes between simple and composite hypotheses. In the former case,
the numerical values of all unknown parameters in the probability distribution
of interest are specified, whereas in the latter case not all unknown parameters
are declared.

Following Neyman and Pearson, a decision whether or not to reject H0
is made on the so-called test statistic, which is computed for the observed
data x. The choice of the test statistic is a feat in itself. Based on the test
statistic, one defines the acceptance region (i.e., the set of values of the test
statistic which accept H0) and the rejection region (i.e., the set of values that
reject H0).



34 J. Buschbom and A. von Haeseler

Because we are dealing with a random outcome of an experiment, H0 may
be rejected when it is true. This is the so-called type I error. The probability
for this event is denoted by α. If H0 is simple, then α is called the signifi-
cance level. Not surprisingly, one also deals with a type II error, which is the
probability β of accepting H0 when it is false.

In an ideal world, one would like to have α = β = 0, but this is almost
always impossible. Thus, a pragmatic procedure is to determine a small sig-
nificance level α in advance and then to construct a test with a small type II
error.

The generalized likelihood ratio test

One important tool for gaining insight into different hypotheses in molecular
evolution is the so-called generalized likelihood ratio test, which applies if the
hypotheses are not simple. In the following, we outline the test statistic and
then show that the null distribution of the appropriately scaled statistics is
approximated by the chi-square distribution.

Assume that the model function pX(x|θ) is given. To specify the null
hypothesis, we constrain the parameter space to some subset ω0 where we
assume that the entire parameter space Ω is admissible for the alternative
hypothesis. We then compute the test statistic

Λ =
max{L(X|θ)|θ ∈ ω0}
max{L(X|θ)|θ ∈ Ω} . (2.22)

The null hypothesis is rejected if Λ is small. Now the following theorem holds.
Under certain regularity conditions, the distribution

−2 log Λ (2.23)

is for large sample sizes n approximately chi-square distributed with m =
dim(Ω)−dim(ω0) degrees of freedom. For the sake of completeness, the density
of the chi-square distribution with m degrees of freedom is

f(y) =
1

2m/2Γ (m/2)
y

m
2 −1 exp(−y/2) (2.24)

for y ≥ 0. Since ω0 ⊂ Ω, the hypotheses are nested. If the test statistic in
equation (2.23) is large for the observed data x, then H0 is rejected. Unfortu-
nately, the chi-square approximation cannot always be used in applications of
molecular evolutionary problems because typically large samples are required,
and more importantly it is sometimes difficult to determine the degrees of free-
dom (see [11]). Sometimes the models are not nested. In such situations, it is
useful to apply statistical tests based on Monte Carlo procedures.
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Example 2.2 (Continued)

We consider the multinomial model outlined before. Our null hypothesis states
that the cell probabilities depend on the k-dimensional parameter θ, where
the alternative hypothesis is the full multinomial model. Then the unrestricted
maximum likelihood estimator is given by equation (2.16), while pi(θml) are
the cell probabilities under H0. Then

−2 log(Λ) − 2
m∑

i=1

xi log
(

pi(θml)
pml

i

)
≈ χ2

m−1−k (2.25)

is approximately chi-square distributed with m − 1 − k degrees of freedom.

2.2.6 Bayesian Inference

The Bayesian approach to statistics is quite different from the approaches
we have explained. However, in recent years it has become quite popular in
molecular evolution (for a recent review see [2]). So far, we have assumed that
the parameter θ is an unknown and fixed quantity. From the observed data x,
we obtained some knowledge about θ; for example, by computing the MLE.
In the “Bayesian world”, θ is considered a random variable with a known
probability distribution, the prior distribution, which needs to be specified in
advance, hence the name prior. The prior distribution reflects our subjective
knowledge about the plausibility of certain parameter values or hypotheses.
Once the data have been observed, the prior distribution is “updated” using
the information (i.e., the probability of the sample given the data). Thus the
computation of the “update” probabilities is a simple exercise using the Bayes
formula. Going back to equation (2.1), we compute the posterior probability
of a collection of hypothesis models θi, i = 1, . . . , k given some data x as

P (θi|x) =
L(x|θi)P (θi)∑k

j=1 L(x|θj)P (θj)
, (2.26)

where we require that
∑

P (θj) = 1. Without entering the discussion about the
theoretical controversies of the Bayesian approach, we simply point out that
the success of the method is due to an enormous increase in computing power.
Before the development of fast computers, it was a major obstacle in the field
to actually compute the posterior probability since explicit formulas were
rarely available. Computers allow via stochastic simulation the computation
of the denominator, which is typically the hard part. Markov chain Monte
Carlo methods especially allow an efficient sampling of huge parameter spaces
(see Chapters 3 and 7).
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2.3 Applications of the Likelihood Function in Molecular
Evolution

The theory outlined in the preceding paragraphs has many applications in
molecular evolution. In the following, we will start with an almost classical
example that illustrates the “easy” application of the likelihood example. The
following examples will get increasingly complicated and can only be solved
by computational approaches.

2.3.1 The Hardy-Weinberg Equilibrium

The Hardy-Weinberg principle states that the gene frequencies in a stationary
population determine the frequencies of the genotypes of a population. The
most simple example deals with a diploid population and a two-allele gene
locus. Let A and a denote the corresponding alleles, and θ denote the frequency
of a. Then, in Hardy-Weinberg equilibrium, the frequencies of genotypes AA,
Aa, and aa are specified by

pAA(θ) = (1 − θ)2,
pAa(θ) = 2θ(1 − θ), (2.27)
paa(θ) = θ2.

With XAA, XAa, and Xaa, we denote the genotype counts of a sample of
size n drawn from a population. One may ask whether the population is in
Hardy-Weinberg equilibrium. To test this, we first compute the MLE θmle and
then apply the likelihood ratio test. Equation (2.27) is an example of the MLE
for the multinomial distribution where the cell probabilities are functions of
the allele frequency θ. The solution of equation (2.18) provides the maximum
likelihood estimator

θmle
HW =

2X3 + X2

2n
, (2.28)

which agrees with intuition. If we want to test the null hypothesis that the
population is in Hardy-Weinberg equilibrium, we apply the statistic in equa-
tion (2.25), which is approximately chi-square distributed with 1 degree of
freedom. Thus, if −2 log(Λ) exceeds the critical value cα for a significance
level α, one rejects the null hypothesis.

This was a simple example. The procedure gets more complicated when
we deal with more than two alleles and when we cannot observe the genotypes
directly.

2.3.2 Models of Sequence Evolution

With the advent of molecular data, models of DNA and amino acid sequence
evolution represent the work horses in analyses of molecular evolution. These
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Fig. 2.2. Relative log-likelihood function (i.e., �(θ) − �(θml)) for the Jukes and
Cantor model of sequence evolution. Sequences were 400 base pairs long with 200
identical nucleotide pairs. θml = 0.824.

substitution models have been widely explored and expanded. In Chapter 1,
models of sequence evolution were described in detail. The simplest such model
was introduced by T. H. Jukes and C. R. Cantor [13], which distinguishes
between two categories for a pair of DNA sequences, the fraction of identical
nucleotide pairs (p0(θ)) and the fraction of nonidentical pairs (p1(θ)), where
θ = µt is the product of mutation rate µ and the appropriately scaled total
amount of time t that elapsed between the two sequences under study.

From the theory outlined in Chapter 1, one readily computes

p1(θ) =
3
4

(
1 − exp

(
−4θ

3

))
. (2.29)

Let X0, X1 be the number of identical base pairs and of nonidentical base
pairs, respectively, where X0 +X1 = n denotes the total number of nucleotide
pairs. Then, the log-likelihood function is

�(X0, X1 | θ) = X0 log (1 − p1(θ)) + X1 log (p1(θ)) (2.30)

and one computes the maximum likelihood estimator as

θmle
JC = −3

4
log
(

1 − 4
3

X1

X0 + X1

)
. (2.31)

Figure 2.2 displays an example for a pair of sequences with 200 identical
nucleotide pairs and 200 nonidentical pairs of nucleotides. We notice that
the maximum likelihood estimate for a pair of sequences is nothing but the
famous Jukes-Cantor [13] correction formula for multiple hits. Thus, θmle

JC is the
number of substitutions that occurred between the two sequences. From the
preceding, it follows that if the model (Jukes-Cantor evolution) were correct
and if n were large, then we could infer with high accuracy the number of
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substitutions that actually occurred with an asymptotic large sample variance
[21]

var(θ) =
p1(1 − p1)

n

1
(1 − 4p1

3 )2
, (2.32)

where p1 = X1/n is estimated from the data.
As in the Hardy-Weinberg example, this model of sequence evolution is

extremely simple. Biological sequences almost never evolve according to the
Jukes-Cantor model. However, in the likelihood framework outlined here, we
are actually in a position to apply the likelihood ratio test to check the hy-
pothesis whether the Jukes-Cantor model is plausible or not.

Comparing two DNA sequences of length n, we observe the following
counts nAA, nAC, . . . nTT, in the cells AA, AC, . . . TT, that sum up to n. The
Jukes-Cantor model predicts equal counts for the 12 possible cells of different
nucleotide pairs, and equal counts for the cells of identical pairs. Therefore the
alternative hypothesis is defined by the multinomial distribution with m = 16
cells, whereas the Jukes-Cantor model has only one parameter. Thus accord-
ing to equation (2.25) the statistic is chi-square distributed with m−1−1 = 14
degrees of freedom. If the Jukes Cantor model is rejected as too simple, one
can move on to more complicated models (see Chapter 6).

As models of sequence evolution get more complex, the complexity of the
likelihood function grows. For the general reversible [21] model, the likelihood
function depends on six parameters for the substitution process and three
parameters for the stationary base composition. Although the computations
are more involved, it is still possible to do the computations on a computer.

2.3.3 The Likelihood Function in Phylogenetics

When two sequences are compared, the likelihood function can get very com-
plex, as we have outlined in the preceding sections. Now we extend the
complexity by considering n sequences arranged in a multiple alignment
X = (X1, . . . , Xl) consisting of l aligned sites. Note the Xi’s are n-dimensional
words from the alphabet A = {A, C, G, T}. We assume that sequence posi-
tions are evolving independently of one another according to the same model
M . Thus an alignment constitutes a random sample of size l, where each
sample is drawn from the same distribution, in our world, following the same
evolutionary scenario. This scenario will now be made more specific.

Besides the evolutionary model, we introduce the tree that relates the n
sequences as an additional parameter.

A tree T = {V, E} is a cycle-free graph, where V represents the nodes
(vertices) of the tree and E ⊂ {{u, v}|u, v,∈ V, u �= v} the branches (edges).
We furthermore specify a length function s : E → R

+ that assigns the number
of substitutions to each branch of the tree. s(e), e ∈ E is given by the evolu-
tionary model M . We will call se = s(e) the branch length. To keep the com-
putation tractable, we assume that the model M is identical for all branches
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Fig. 2.3. An example topology with four leaves (e.g., sampled sequences and two
internal nodes).

and that M belongs to the class of time-homogeneous, time-continuous, and
reversible models (see Chapter 1).

Thus, the parameter θ comprises a tree T , substitutions on the branches
s(e), and an evolutionary model M . Because we think of sequences as being
obtained from contemporary organisms–that is, the leaves (end nodes) of the
tree are labelled with the sequences–for convenience the labels are {1, . . . , n}.
Therefore, pX(X|θ) specifies for a fixed θ the probability of observing X ∈ An.
Thus, an essential point in our model is an alignment that is nothing more
than a sample from a multinomial distribution with 4n categories (the words
of length n), where the probability of observing a category is specified by θ.
Thus the likelihood of observing the alignment X is

L(X|θ) = L(X1, . . . , Xl|θ) =
l∏

i=1

p(Xi|θ). (2.33)

Computing the likelihood function

According to equation (2.33), it suffices to compute the probability for a single
alignment site. The joint probability of all l sites is then the probability of
the alignment. Contrary to the examples given so far, an analytical formula
is not available, so we will give a nontrivial example. From this example,
one can readily conclude how to evaluate more complex trees. To this end,
consider the tree in Figure 2.3 for n = 4 sequences 1, 2, 3, 4. Because M is
assumed to be generally reversible (see Chapter 1), we suppose that evolution
“starts” in node “0” and proceeds along the branches to generate the pattern
x = (x1, x2, x3, x4). If the nucleotides for internal nodes 0 and 5 are known,
(i.e., x0, x5), then

P (x|θ, y0, y5) = Py0x1(s1) · Py0x2(s2) · Py0y5(s5) · Py5x3(s3) · Py5x4(s4), (2.34)

where Pzuzv
(s) denotes the probability of substituting nucleotide zu with nu-

cleotide zv if s substitutions occurred along the branch leading from u to v.
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Fig. 2.4. Graph showing the relationship between an internal node (i) and its two
offspring nodes (u, v).

Typically, the ancestral states are not known, thus, one sums over all possible
assignments,

P (x|θ) =
∑

y0∈A

∑
y5∈A

πy0P (x|θ, y0, y5), (2.35)

where (πA, πC , πG, πT ) is the stationary distribution of the evolutionary model
(see Chapter 1). In the example (Figure 2.3), 16 = 4(number of internal nodes)

assignments are possible, thus equation (2.35) looks like one has to evaluate
a sum with exponentially many summands.

However, Joseph Felsenstein [9] suggested a “dynamic programming” so-
lution that computes the solution in O(nl2) times.

To this end, consider the pattern X = (x1, . . . , xn) ∈ {A, C, G, T}n as
a realization of evolution, where xi is the nucleotide at sequence i. With
yi, i = n+1, . . . , 2n−2, we denote the assignments of nucleotides to the internal
nodes. We furthermore assume that the tree T is arbitrarily rooted at node
2n − 2 and then each internal node has two offsprings (u, v) (see Figure 2.4).
We define Lw = (Lw

A, Lw
C , Lw

G, Lw
T ) as the vector of partial likelihoods for the

subtree descending from node w. The computation of the partial likelihoods
Li for the internal nodes i = n + 1, . . . n − 2 proceeds recursively according to
the already computed partial likelihoods of its offsprings u and v,

Li
y =

⎛⎝ ∑
z∈{A,C,G,T}

Py,z(su)Lu
z

⎞⎠ ·

⎛⎝ ∑
z∈{A,C,G,T}

Py,z(sv)Lv
z

⎞⎠ , (2.36)

with y ∈ {A, C, G, T}.
The partial likelihood vectors are initialized at the end nodes of the tree.

One simply sets Li
xi

= 1, and the remaining components are equal to zero,
more formally

Li
z =

{
1 if z = xi

0 otherwise
for i = 1, . . . n. (2.37)

For the root node 2n − 2 with three offsprings, we modify equation (2.36)
accordingly. The probability of the full model is then
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P (X|θ) =
∑

z∈{A,C,G,T}
πzL

2n−2
z . (2.38)

The likelihood of the alignment X follows from equation (2.33).

Maximizing the likelihood for a given tree

We have described a computational approach to compute the likelihood of
an alignment for fixed θ. Equation (2.33) shows that the resulting probabil-
ity distribution is very complicated. It involves the branching pattern of the
tree, the number of substitutions on each branch, and a model of sequence
evolution.

We assume for the rest that the model of sequence evolution M is fixed.
Now, x is observed and we want to find θml.

This task is divided into two parts. In the first part, one fixes the branching
pattern of the tree and wants to estimate branch lengths (se)e∈E to maximize
the likelihood. Even for a fixed tree it is generally not possible to obtain
an analytical estimator. Thus one resorts to numerical optimization methods.
Newton’s method is one instance to find an optimal assignment of the number
of branch lengths. However, often other numerical routines, or simply hill-
climbing techniques, which stop when a local maximum is found, are also
applied. Numerical methods are typically time-consuming, and sometimes the
result depends on the numerical method applied.

In recent years, yet another obstacle has been observed where sequence
alignments were found that generate multiple optima on the same tree. Chor
et al. [4] even found sequence alignments with a continuum of optimal points,
such as the following alignment:

1 AAAACCCAC
2 AAAACCCCA
3 AAAACCACC
4 AAAACCAAA.

(2.39)

Thus, the likelihood surface is more complicated than originally expected.
However, one should note that the alignment in equation (2.39) is not very
tree-like. J. S. Rogers and David L. Swofford [16] asked “Is it generally true
that the trees of highest maximum likelihood for a given data set have only
a single optimum?” Based on intuition and the hill-climbing method imple-
mented in PAUP* [20], they found in each case that the maximum likelihood
point was the unique global optimum. In other words, if data are “close” to a
“true” tree, then it is hard to find multiple maxima. At this point, a final con-
clusion seems impossible, and further work is necessary to detect alignments
(also in real data) that give rise to multiple optimal solutions.

As complicated as the likelihood function can get, in some simple cases it
is possible to get the maximum likelihood estimator as an analytical function.
Yang [22] gave a solution for the simple two-state model and three sequences,



42 J. Buschbom and A. von Haeseler

and Chor et al. [5] extended this result to the case when a molecular clock
holds true. Recently, Chor et al. [6] gave results for four sequences.

Finding the tree topology that maximizes the likelihood

In the previous chapter, we saw that the computation of the maximum like-
lihood assignments of branch lengths to a given tree τ poses already some
complications. In molecular evolution, however, the branching pattern of the
tree is also unknown, and a typical goal is to find the tree τmax that maximizes
the likelihood function over all trees. This problem, like most of the phyloge-
netic approaches that optimize an objective function (maximum parsimony,
distance-based methods), is even harder. No efficient algorithms are known
that guarantee to pick the best tree(s) from the vast number of possible trees.
The naive method to compute the maximum likelihood for each of the

tn =
(2n − 2)!

2n−3(n − 3)!
= 1 · 2 · 3 . . . (2n − 5) (2.40)

possible unrooted, binary, leaf-labelled trees is impossible already for n = 10 or
11 sequences. To overcome this problem, various heuristics are employed and
implemented in, for example, PHYLIP [10], MOLPHY [1], NJ [17], PAUP*
[20], and TREE-PUZZLE [19].

2.4 Outlook

We have tried to give an introduction to the application of the likelihood func-
tion in molecular evolution. Since this chapter has only introductory character,
we could not give a full introduction to the flexibility of a likelihood approach
in molecular evolution.

We have focussed on reconstructing the phylogenetic history of evolution,
which applies to the million-year timescale. The coalescence framework (see
reviews in [12, 15, 18]) provides a powerful approach to investigate genealogical
processes within species. Here, however, the focus shifts from the reconstruc-
tion of a single most likely tree to the estimation of the population parameters
that govern the genealogical process through the integration over all possible
genealogies. In such analyses, the tree is no longer a parameter but a random
variable with a well-defined prior probability specified by the model. In this
field of molecular evolution, Bayesian inference has become popular in recent
years.

With a further increase in computing power, we will be able to refine
our models of evolution and will certainly integrate more realistic aspects of
evolution. Thus, applications of the likelihood function in molecular evolution
are a continuously interesting and flowering field of research.
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3.1 Introduction

Markov chain Monte Carlo (MCMC) is a general computational technique for
evaluating sums and integrals, especially those that arise as probabilities or ex-
pectations under complex probability distributions. Monte Carlo implies that
the method is based on using chance (in the form of a pseudo-random num-
ber generator). Markov chain indicates a dependent sampling scheme with the
probability distribution of each sampled point depending on the value of the
previous one. Due to this dependence, MCMC samplers typically require sam-
ple sizes that are substantially larger than the sizes of independent samples
produced by Monte Carlo integration methods to be able to achieve simi-
lar accuracy. However, independent sampling methods often require detailed
knowledge of characteristics of the function being integrated, as their compu-
tational efficiency relies upon having a close approximation of this function.
MCMC has proved to be highly useful because of its great flexibility and its
success at solving many high-dimensional integration problems where other
methods are computationally prohibitive.

3.1.1 A Brief History of MCMC Methods

The primary ideas behind MCMC were created by physicist Nicholas Metropo-
lis and colleagues over fifty years ago at Los Alamos National Laboratory in
the years after the Manhattan Project as part of a solution to a problem in
statistical physics [22]. Hastings provided an important generalization to this
pioneering work [12]. Hastings’ foundational paper was ahead of its time in
the statistics literature, and it took more than a decade (and the start of a
personal computing revolution) before MCMC methods attracted additional
attention in the statistics community. Their first use was in the form of the
Gibbs sampler applied to image analysis [8]. Interest in MCMC exploded in
the 1990s as it proved to be a powerful and flexible technique for solving a va-
riety of previously unsolvable computational problems, especially those arising
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in Bayesian analyses. Refinement and extension of MCMC methods and their
application to new problems continues to be an area of active research. MCMC
methodology has completely transformed the Bayesian approach to statistics
and its application to large-scale complicated modeling problems. For a more
extensive description of the historical development of MCMC methods, please
see the article by Hitchcock [13].

MCMC approaches in molecular evolution

MCMC approaches to problems in molecular evolution first appeared in the
mid-1990s as several authors developed various methods to calculate poste-
rior probabilities of phylogenies on the basis of aligned DNA sequence data
[27, 20, 21, 17, 18]. Bayesian approaches using MCMC have since been applied
to a growing number of problems in molecular evolution [16, 6]. This volume
includes several applications of MCMC, including relaxation of the molecu-
lar clock assumption, the detection of positive selection, Bayesian analysis of
aligned molecular sequences, models of protein evolution, evolution by genome
rearrangement, and the calculation of predictive distributions and posterior
mappings [25, 1, 14, 4, 5, 2]. The remainder of this chapter describes the the-
ory behind MCMC methodology and illustrates the methods using examples
in molecular evolution.

3.2 Bayesian Inference

The Bayesian approach to statistical inference in molecular evolution most of-
ten fits into the following general framework. (In what follows, I use p to stand
for a generic probability density and let the arguments distinguish them.) A
likelihood function p(D | θ) describes the probability (or probability density)
of data D given the values of parameters θ. The prior distribution p(θ) ex-
presses the uncertainty in the parameters prior to observation of the data.
Bayes’ theorem provides the form of the posterior distribution p(θ |D), the
probability distribution that describes uncertainty in the parameters after
observing the data and the object of all Bayesian inference

p(θ |D) =
p(D | θ)p(θ)

p(D)
. (3.1)

The denominator p(D) is the marginal probability of the data, averaged over
all possible parameter values weighted by their prior distribution. Formally,
we can write

p(D) =
∫

Θ
p(D | θ)p(θ) dθ, (3.2)

where Θ is the parameter space for θ. In almost all problems of practical inter-
est, it is not tractable to compute p(D) directly, the normalizing constant of
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the posterior distribution. MCMC offers a means to make Bayesian inferences
without the need to compute this normalizing constant.

In a typical application in Bayesian inference in molecular evolution, the
parameter θ contains both discrete and continuous components. For example,
θ might include the discrete tree topology and the continuous branch lengths
and nucleotide substitution model parameters. The single integral in (3.2)
represents a multiple sum over discrete parameters and a multiple integral
over continuous parameters.

Calculating expected values

Usually, the posterior distribution p(θ |D) is a complicated function over a
large parameter space that cannot be described adequately in full. We typi-
cally are interested in various summaries of the posterior distribution, all of
which are posterior expectations of some function of the parameters. For ex-
ample, the posterior probability of a tree topology is the expected value of
the indicator variable for that tree topology, and the posterior density of a
branch length can be summarized in part by its mean.

To simplify notation by eliminating the explicit dependence on the ob-
served data, define the unnormalized posterior distribution to be h(θ) ≡
p(D | θ)p(θ). With this notation, the posterior expected value of a function
of the parameter space is defined to be

E[g(θ)] =

∫
Θ g(θ)h(θ) dθ∫

Θ h(θ) dθ
. (3.3)

The idea behind MCMC is to take a (dependent) random sample of points
{θi} from the unnormalized target function h(θ) by simulating a Markov chain
whose stationary distribution is proportional to h(θ). We can then approxi-
mate expectations with simple arithmetic averages,

E[g(θ)] ≈ 1
n

n∑
i=1

g(θi) . (3.4)

We note that while most applications of MCMC to problems in molecu-
lar evolution have been part of Bayesian analyses, computations in the form
of (3.4) can arise in non-Bayesian approaches as well. MCMC is a general-
purpose tool.

3.3 The Metropolis-Hastings Algorithm

The most common form of MCMC is the Metropolis-Hastings algorithm. The
idea is to create a proposal distribution q on the parameter space Θ. Instead
of using q to generate a sequence of points sampled from Θ, we use q to
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generate a candidate for the next sampled point that is either accepted or
rejected with some probability. If the candidate is rejected, the current point
is sampled again. The random acceptance of proposals effectively changes the
transition probabilities. A clever choice of acceptance probabilities results in
a “metropolized” Markov transition matrix q′ whose stationary distribution
is proportional to the unnormalized target distribution h. Remarkably, the
choice of q is nearly arbitrary. It suffices for q to be irreducible–from any
points x, y ∈ Θ, it should be possible to get from x to y through a finite
number of transitions under q.

The initial sample point θ0 may be arbitrary. If the current state is θi = x,
the Metropolis-Hastings algorithm generates candidate y from the distribution
q(· |x). The acceptance probability is

r(y |x) = min
{

1,
h(y)q(x | y)
h(x)q(y |x)

}
. (3.5)

With probability r(y |x), we set θi+1 = y; otherwise θi+1 = x. In the special
case where q(x | y) = q(y |x) for each x and y, the proposal density drops
out of (3.5). The original method in Metropolis et al. [22] assumed this sym-
metry, and Hastings [12] made the generalization that allowed nonsymmetric
proposal distributions. Notice as well that the target distribution only needs
to be known up to a normalizing constant, as it is only necessary to be able
to compute the ratio of the target distribution evaluated at any two points.
The ratio q(x | y)/q(y |x) is known as the Hastings ratio or the proposal ratio.
The target ratio h(y)/h(x) is the posterior ratio in a Bayesian setting where
it is the product of a likelihood ratio and a prior ratio.

3.3.1 Why Does the Metropolis-Hastings Algorithm Work?

The stationary distribution π of a Markov chain with transition function
q′(y |x) satisfies∫

x∈Θ
π(x)q′(y |x) dx = π(y) for each y ∈ Θ. (3.6)

A stronger condition is for the chain to satisfy detailed balance,

π(x)q′(y |x) = π(y)q′(x | y) for all x, y ∈ Θ. (3.7)

Markov chains that satisfy detailed balance are time-reversible. The rate of
transition from x to y is the same as that from y to x for each x and y, so the
probability of any sequence of transitions would be the same in forward and
backward time. Detailed balance of the target distribution h is easy to check
for the Metropolis-Hastings algorithm. First, notice that the actual transition
probability density is q′(y |x) = q(y |x)r(y |x) for x �= y. Therefore, we have
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h(x)q′(y |x) = h(x)q(y |x) min
{

1,
h(y)q(x | y)
h(x)q(y |x)

}
= min {h(x)q(y |x), h(y)q(x | y)} .

The last expression is symmetric in x and y, which implies that the first
expression must have the same value if x and y are switched, so detailed
balance is satisfied.

The Gibbs sampler

The Gibbs sampler is a special case of the Metropolis-Hastings algorithm
in which the proposal distributions are the full conditional distributions of
some part of the parameter space conditional on the rest. Suppose that the
parameter vector θ = (θ[1], θ[2], . . . , θ[d]) is partitioned into d blocks. The idea
behind the Gibbs sampler is to propose new values of a block of parameters
θ[k] from their full conditional distribution given the current values of all
other parameters, denoted p(· | θ[−k]), where θ[−k] includes all of θ except for
the kth block. The proposed values are always accepted. The systematic-scan
Gibbs sampler updates blocks in a fixed order, cycling through them all. The
random-scan Gibbs sampler randomly picks a block of parameters to estimate
repeatedly.

We can understand why the Gibbs sampler works by checking the Metro-
polis-Hastings acceptance probability for one step of the Gibbs sampler. In
updating the kth block given the current state θ, the candidate is

θ∗ = (θ[1], . . . , θ[k−1], θ
∗
[k], θ[k+1], . . . , θ[d]).

The posterior ratio is h(θ∗)/h(θ) = p(θ∗)/p(θ) and the proposal ratio is
p(θ[k] | θ[−k])/p(θ∗

[k] | θ[−k]). Conditioning on parameters outside the kth block
leads to p(θ∗) = p(θ[−k]∩θ∗

[k]) = p(θ[−k])p(θ∗
[k] | θ[−k]) with a similar expression

for p(θ). The acceptance probability is then

r = min

{
1,

p(θ∗)
p(θ)

×
p(θ[k] | θ[−k])
p(θ∗

[k] | θ[−k])

}

= min

{
1,

p(θ[−k])p(θ∗
[k] | θ[−k])

p(θ[−k])p(θ[k] | θ[−k]))
×

p(θ[k] | θ[−k])
p(θ∗

[k] | θ[−k])

}
= 1.

The advantage of the Gibbs sampler is that proposals are always accepted.
While one might think that this feature would invariably lead to a sampler
that moves through the parameter space rapidly, this is not always the case.
It is well-known that the Gibbs sampler can mix slowly if highly correlated
parameters are in different blocks. The other practical difficulty is that the
flexibility of the Metropolis-Hastings approach in choosing a proposal distrib-
ution is lost. Candidates from the full conditional distributions are often not
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easy to simulate, which can make the problem difficult. In the case where full
conditional distributions are available and easy to simulate, Gibbs sampling
will be a good choice. Experience indicates that the more general Metropolis-
Hastings approaches are often a more practical solution for many statistical
problems in molecular evolution.

3.3.2 An Example in Bayesian Phylogenetic Inference

The Bayesian approach to estimating phylogenies from aligned DNA sequence
data as implemented in the programs BAMBE [24] and MrBayes [15] uses
MCMC to sample from the joint posterior probability distribution of phy-
logenies and nucleotide substitution model parameters. The state space for
the Markov chain takes the form θ = (τ, t, Q), where τ is the tree topology,
t is a vector branch length, and Q is the generator of the continuous-time
nucleotide substitution process. The MCMC samplers used in both BAMBE
and MrBayes are actually hybrid samplers that combine several Metropolis-
Hastings samplers, each of which samples from only part of the parameter
space. BAMBE has a proposal distribution q1 that updates the tree (both τ
and t) while leaving Q fixed and a second proposal q2 that updates Q leaving
the tree fixed. BAMBE cycles back and forth between q1 and q2 proposals.
Effectively, the hybrid sampler in BAMBE is a systematic-scan Gibbs sam-
pler with a Metropolis-Hastings proposal at each step. In contrast, MrBayes
has a collection of proposals to update parts of Q and another collection of
proposals to update the tree. At each stage, one of these proposals is selected
at random. Running only one chain, MrBayes uses a hybrid sampler that is a
random-scan Gibbs sampler with a Metropolis-Hastings update at each step.
Tierney [26] provides further examples and theoretical justifications of the use
of hybrid MCMC samplers.

Description of the Local algorithm

BAMBE and MrBayes both use a local update method first described by
Larget and Simon [17] to update unrooted trees. A description of this algo-
rithm and the associated acceptance probability serves to illustrate the ideas
of this section on an application of MCMC in molecular evolution. The ac-
ceptance probability originally reported in [17] was, in fact, incorrect. I am
extremely grateful to Mark Holder, Paul Lewis, and David Swofford, who
reported this to me quite recently.

The Local algorithm begins by selecting an internal branch of the tree at
random. (Please see Figure 3.1 for a graphical description of this algorithm.)
The nodes at the ends of this branch are each connected to two other branches.
One of each pair is chosen at random. Imagine taking these three selected ad-
jacent edges and stringing them like a clothesline from left to right, where the
direction is also selected at random. The two endpoints of the first branch
selected will each have a subtree hanging like a piece of clothing strung to
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the line. The algorithm proceeds by multiplying the three selected branches
by a common random amount, akin to stretching or shrinking the clothesline.
Finally, the leftmost of the two hanging subtrees is disconnected and reat-
tached to the clothesline at a location selected uniformly at random. This is
the candidate tree.

Fig. 3.1. Local update algorithm. (a) A seven-taxon unrooted tree. (b) A randomly
chosen local neighborhood of the tree. Triangles represent subtrees. (c) A candidate
tree with the same tree topology. (d) A candidate tree with a different tree topology.

Next, we then ask with what probability the candidate should be accepted.
See Figure 3.1 (a), which displays a sample seven-taxon unrooted tree for the
definition of the parameters in the following description. Suppose that we
began by selecting the internal branch with length t8 that separates taxa A
and B from the rest, that we selected branches with lengths t1 and t9 from
each side, and that we oriented these branches as shown in Figure 3.1 (b).
The probability of this part of the proposal is (1/b) × (1/2)3 because there
are b = 4 internal branches and we made three binary choices.

Let m = t1 + t8 + t9 be the current length of the clothesline. We select
the new length to be m∗ = m exp(λ(U1 − 0.5)), where U1 is a Uniform(0, 1)
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random variable independent of everything else. It is straightforward to show
that given m, m∗ has density

q(m∗ |m) =
1

λm∗ for me−λ/2 < m∗ < meλ/2. (3.8)

Suppose as well that u = t1 is the current distance from the left endpoint of
the clothesline to the B subtree. Given m∗, we pick a new distance u∗ = U2m

∗,
where U2 is another independent Uniform(0, 1) random variable. The distance
from the left end point to the EFG subtree changes proportionally from v =
t1+t8 to v∗ = m∗v/m. There are now two cases. If u∗ < v∗ (see Figure 3.1 (c)),
the tree topology does not change and the updated branch lengths are t∗1 = u∗,
t∗8 = v∗−u∗, and t∗9 = m∗−v∗. Otherwise (see Figure 3.1 (d)), v∗ < u∗ and the
tree topology does change. The new branch lengths are t∗1 = v∗, t∗8 = u∗ − v∗,
and t∗9 = m∗ − u∗. The probability density of this part of the proposal is the
density of u∗ given m∗, which is uniform, q(u∗ |m∗) = 1/m∗ on (0, m∗).

The joint proposal density given the local choice of the subtree to update
is

q(u∗, v∗, m∗ |m, u, v) = q(m∗ |m)q(u∗ |m∗)δ{v∗=vm∗/m}

=
δ{v∗=vm∗/m}

λ(m∗)2
, (3.9)

where δ is Dirac’s delta function. If x is the original tree and y is the candidate
tree, the acceptance probability for the Local proposal is

min

⎧⎨⎩1,
h(y)

( 1
b

) ( 1
2

)3 × δ{v=v∗m/m∗}
(λm2)

h(x)
( 1

b

) ( 1
2

)3 × δ{v∗=vm∗/m}
(λ(m∗)2)

⎫⎬⎭ = min

{
1,

h(y)
h(x)

×
(

m∗

m

)3
}

since
δ{v∗m/m∗}

δ{v∗}
=

δ{v∗}/(m/m∗)
δ{v∗}

=
m∗

m

The incorrect acceptance probability published previously [17] had a power of
2 rather than the correct power of 3.

3.4 Reversible Jump MCMC

In all of the examples we have considered to this point, the state space has
had a fixed number of parameters. One can imagine a number of problems
arising in molecular evolution where this need not be the case. For example,
consider a Bayesian approach to phylogeny estimation from aligned DNA
sequence data in which there is a prior distribution on the class of likelihood
model. Specifically, suppose we think, for example, that the HKY85 and TN93
models are equally likely. The HKY85 model has one fewer free parameter than
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the TN93 model. We could define different Metropolis-Hastings samplers to
update the Q matrix separately within each model, but we would also need to
be able to switch between models. In this example, the number of parameters
is itself a parameter of the model. Reversible Jump MCMC describes how to
extend the Metropolis-Hastings approach to allow jumps between subspaces
of different dimensions [11].

A typical situation is that we want a set of proposal distributions between
subspaces Θ1 and Θ2 where the kth subspace has mk parameters and m1 �=
m2. The key idea to make this work is dimension matching. The basic idea
is to supplement each set of parameters with different numbers of random
variables so that the dimensions match and then to transform one set into the
other with a bijection. Let θ1 and θ2 be two states in Θ1 and Θ2, respectively.
Then the vectors φ(1) = (θ1, u1) and φ(2) = (θ2, u2) each have length d =
m1 + n1 = m2 + n2, where uk is an nk-vector and nk are chosen so that the
dimensions match. (It is often the case that nk = 0 for the larger subspace.)
Suppose that T1 is a bijection so that φ(2) = T1(φ(1)) and T−1

1 = T2.
The proposal from θx ∈ Θx to θy ∈ Θy follows this procedure.

1. Generate random vector ux, which has length nx.
2. Let φ(x) = (θx, ux).
3. Evaluate φ(y) = Tx(φ(x)).
4. Project φ(y) = (θy, uy) into first my coordinates to determine θy.

3.4.1 Acceptance probability

The acceptance probability for this proposal includes a Jacobian in addition
to the usual ratios. The Jacobian for the transformation is | det Jx|, where Jx

is a d × d square matrix whose i, j entry is

{Jx}ij =
∂φ

(y)
i

∂φ
(x)
j

.

The acceptance probability is

r(θy | θx) = min
{

1,
h(θy)q(θx | θy)
h(θx)q(θy | θx)

× |det Jx|
}

.

Example

We illustrate these ideas with the example of modeling the nucleotide sub-
stitution process in which we have equal prior probabilities that Q is from
either an HKY85 or a TN93 class of models. Each of these models has three
free parameters for the base composition that do not need to change in mov-
ing between models. HKY85 has a single transition/transversion parameter
κ, while TN93 allows two different transition rates, κ1 for purines and κ2 for
pyrimidines. In a proposal from TN93 to HKY85, assume we set κ to be the
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mean of κ1 and κ2. To attain detailed balance, we need for the proposal den-
sity given κ to have support on all positive (κ1, κ2) such that κ = (κ1 +κ2)/2.
We could do this by letting u |κ be a Uniform(−κ, κ) random variable. We
have this bijection:

T1(κ, u) = (κ − u, κ + u) and T2(κ1, κ2) =
(

κ1 + κ2

2
,
κ2 − κ1

2

)
.

We have

J1 =

⎡⎢⎣ ∂(κ − u)
∂κ

∂(κ − u)
∂u

∂(κ + u)
∂κ

∂(κ + u)
∂u

⎤⎥⎦ =
[

1 −1
1 1

]

so that | det J1| = 2. By a similar calculation, | det J2| = 1/2.
Suppose that the unnormalized posterior distribution is h and we are in-

terested in calculating the acceptance probabilities for a proposal from θ1 = κ
to θ2 = (κ1, κ2). If a1 is the probability that we propose that a TN93 Q ma-
trix given the current model is HKY85 and a2 is the probability of the reverse
situation, the acceptance probability is determined as

r(θ2 | θ1) = min
{

1,
h(θ2)
h(θ1)

× a2

a1/(2κ)
× 2
}

provided that (κ1 + κ2)/2 = κ. The acceptance probability of a proposal in
the other direction is

r(θ1 | θ2) = min
{

1,
h(θ1)
h(θ2)

× a1/(2κ)
a2

× 1
2

}
.

3.5 Assessing Convergence

The theoretical justification of MCMC as a computational tool is that sample
averages converge to their expected values. However, this result is asymptotic
and, in practice, no chain can be run forever. We must therefore address the
following practical questions: How long should a chain be run? Should we
discard the initial portion of a sample? Should we subsample the Markov
chain? How do we assess the accuracy of the MCMC estimates? How can we
compare MCMC samplers? None of these questions has a definitive answer,
and rarely can we have absolute trust in the MCMC calculations. Despite
this, there are steps that will increase confidence in the results.

We will illustrate these ideas in the context of a very simple example.
Suppose that we are interested in estimating a branch length from a two-
taxon tree under the Jukes-Cantor model for a data set in which n1 sites
are unvaried and n2 sites are variable. We will assume an exponential prior
distribution with rate λ. The density is p(t) = λe−λt. The probabilities of the
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possible site patterns are 1
4

(
1
4 + 3

4e− 4
3 t
)

for unvaried sites and 1
4

(
1
4 − 1

4e− 4
3 t
)

for varied sites. Putting these two probabilities together, the unnormalized
posterior distribution is as follows.

h(t) =
(

1
4

)n1+n2
(

1
4

+
3
4
e− 4

3 t

)n1
(

1
4

− 1
4
e− 4

3 t

)n2 (
λe−λt

)
.

Consider updating the branch length by choosing a new value uniformly at
random from a window of half-width w centered at the current value, reflecting
off the origin when a negative branch length is proposed. Specifically, t∗ = |t+
U |, where U is uniformly distributed between −w and w. It is straightforward
to show that the proposal ratio is one. Acceptance probabilities are then
min{1, h(t∗)/h(t)}.

In a specific numerical example, suppose that n1 = 70, n2 = 30, and λ = 5.
We will compare results for two choices of w, namely w = 0.1 and w = 0.5.
In each case, we will begin with an initial edge length of 5.0 (a poor choice)
and update the edge length 2000 times (much shorter than we might typically
do). Figure 3.2 displays summaries of the MCMC samples.

3.5.1 Burn-in

The initial portion of an MCMC sample is often discarded as burn-in. The
logic behind this practice is that the initial portion of a run will typically be
highly dependent on the starting value of the Markov chain, and if this value
is not likely under the stationary distribution, the sample would be biased
toward the initial point. The estimate

n∑
i=m+1

g(θi)/(n − m),

which discards the first m sample points, is typically a more accurate estimate
of the expectation of g under the target distribution when m is substantially
larger than one in the usual case of an atypical initial state.

3.5.2 Trace Plots

This then begs the question of how one should determine the portion of a
sample to discard. Trace plots of one-dimensional summaries of the state
space are a crude but often effective way of determining burn-in. For Bayesian
MCMC sampling from a posterior distribution of trees, both BAMBE and
MrBayes produce trace plots of the log likelihood. When beginning runs at
random initial trees, it is typical for the log-likelihood to increase dramatically
as the chain rapidly approaches an area of the state space of relatively high
posterior probability before changing behavior dramatically and reaching a
plateau around which the likelihood fluctuates for the remainder of the run.
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Fig. 3.2. Trace plots in the Jukes-Cantor example. (a) Unnormalized posterior
versus index with window size w = 0.1. (b) Unnormalized posterior versus index
with window size w = 0.5. (c) Branch length versus index with window size w = 0.1.
(d) Branch length versus index with window size w = 0.5. (e) Autocorrelation plot
of sampled edge lengths with w = 0.1. (f) Autocorrelation plot of sampled edge
lengths with w = 0.5.
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Trace plots of the log-likelihood are good indicators of minimum values for
burn-in but are insufficient on their own to assess convergence. If the chain
were stuck in a local minimum, the behavior exhibited in the trace plot would
be indistinguishable from the trace plot behavior of a well-mixing chain. Trace
plots of other one-dimensional summaries of the state space, such as parameter
values in the substitution models or the sum of all branch lengths of the tree,
should also be examined for visual evidence that after burn-in the initial
portion of the sample looks similar to the end portion.

The trace plots of h and t displayed in Figure 3.2 for the Jukes-Cantor
example provide a means to informally assess convergence. The trace plots
of the edge length in each run more clearly indicate the necessary time to
convergence. In the run with w = 0.1, we need to discard at least the first 500
sample points, and I would discard a few more to be safe, say at least the first
10% of the sample after apparent convergence. Discarding the first m = 700
points of each run suffices for this example.

For the run with w = 0.1, a 95% credibility region for the edge length
is (0.24, 0.52). The post-burn-in credible region for the run with w = 0.5 is
quite similar, (0.25, 0.52). Had we not discarded the initial part of the run,
the 95% credible region would have been either (0.25, 4.48) or (0.26, 0.62),
with right endpoints substantially too large in both cases. Of course, we could
have lessened the bias due to burn-in by either running the chains for many
more iterations or by using an initial edge length closer to the center of the
posterior distribution.

Figure 3.2 also displays the autocorrelation function of the sampled branch
lengths for both window sizes. Notice that in this example mixing is signifi-
cantly faster using the larger window size. With w = 0.5, the Markov chain
has reached approximate independence after about 40 steps. Dependence de-
creases much more slowly in the case with a smaller window. Acceptance
probabilities can offer a clue about convergence speed. In this example, up-
dates with w = 0.1 were accepted 73% of the time as opposed to only 23%
of the time for w = 0.5. Acceptance probabilities between 0.15 and 0.40 often
indicate chains that mix relatively well. This simple example suffices to show
that adjustment of tuning parameters can have a large effect on mixing prop-
erties; running slowly mixing chains for a long time can compensate. Notice
also in Figure 3.2 as well that the trace plots of the edge lengths are more in-
formative about burn-in than are the trace plots of the posterior distribution.
With larger trees, larger models, and longer sequences, it is highly advisable
to examine trace plots of many posterior summaries and to complete several
very long MCMC simulations.

3.5.3 How Many Chains?

While there is no consensus on how many chains should be run, I advocate
running several long chains from widely disparate starting values. The advan-
tage is that if the post-burn-in summaries of important characteristics of the
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target distribution are similar, there is evidence that the Markov chains are
successfully mixing. In contrast, summaries from independent chains that are
wildly different are a certain indicator that one or more chains has not reached
stationarity or that the chains are mixing so slowly that substantially longer
runs are needed to obtain more accurate calculations. If one has access to sev-
eral processors, the real time to take several long samples is the same as the
time to complete a single run on one machine. The other advantage to having
several independent estimates of posterior characteristics is that simple and
accurate estimates of Monte Carlo error are easily computed. Estimates of
Monte Carlo error from single runs depend on estimates of the dependence in
a single chain. Such estimates can vary considerably with the method used to
estimate the dependence.

3.5.4 How Often Should the Markov Chain Be Subsampled?

From a purely statistical perspective, there is nothing to gain from sub-
sampling–a loss of data represents a potential loss of information. However,
from a practical sense, because chains tend to be highly dependent, regular
subsamples of the Markov chain output will typically be just as accurate as
if the entire post-burn-in sample were saved and summarized. Practical is-
sues involving the ease of the storage and analysis of the output of a long
MCMC run often outweigh the negligible potential loss of information from
subsampling.

3.5.5 How Long Should a Chain Be Run?

There are formal methods to decide upon chain convergence that are based
on running a number of chains in parallel and stopping when variability in the
chains’ estimates of a number of scalar posterior summaries between chains
is small relative to the variability within each chain [7]. A cruder yet effective
approach is to learn from preliminary runs how much time is required to run a
chain a specified number of steps, extrapolate this to the time available (such
as overnight), run several independent chains in parallel in that time, and
calculate the Monte Carlo standard error of each important scalar posterior
characteristic from the estimates in each independent chain. If this Monte
Carlo error estimate is too big for the problem at hand, then it may be that
longer runs are necessary (or that a better proposal distribution is required).

3.6 Metropolis-Coupled MCMC

There are many strategies for improving the sampling properties of MCMC
approaches. One of the most useful is Metropolis-coupled MCMC, or MCM-
CMC [9]. The idea is to run several simultaneous chains on the state space Θ.
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Only one of these chains, the cold chain, needs to have the correct stationary
distribution. The other heated chains are typically selected to have station-
ary distributions that are flatter than the stationary distribution of the cold
target chain. The heated chains are able to move more easily between regions
where the target is relatively high.

After some number of steps of each chain, a move that swaps the states
of two of the chains is proposed and accepted or rejected according to a
Metropolis-Hastings rule. This type of proposal can effectively jump the cold
chain to a different portion of the parameter space. Only the sampled points
from the cold chain are saved as a sample from the target distribution. Suppose
that the chains have unnormalized target distributions {hi} for i = 1, . . . , m. If
the current states in chains i and j are xi and xj , respectively, the probability
of accepting a proposed swap of the two states is

min
{

1,
hi(xj)hj(xi)
hi(xi)hj(xj)

}
.

Generally speaking, running m chains requires m times the computational
effort that running a single chain would require. This trade-off can be worth-
while if the cold chain is very slow-mixing.

Figure 3.3 illustrates these ideas in a small artificial example. The target
function (solid line in Figure 3.3(a)) contains two separate modes of relatively
high probability separated by a region of very low probability. We are using a
proposal chain that proposes new values in a small uniform window extending
one unit below and above the current position. Crossing the valley between
the two peaks in the cold chain requires an unlikely proposal and acceptance
of several consecutive steps through the low region between the modes. The
dashed line is a single heated distribution. The same proposal distribution will
more easily cross between the two modes. In a simulation, both chains began
at the value x = 20, are updated by Metropolis-Hastings individually, and are
then followed by a proposed swap after each set of updates. The chains ran
for 100,000 cycles of updates. Figure 3.3(b) shows a histogram of the sam-
pled values that matches the target quite well. Figure 3.3(c) shows the same
sampled values in a trace plot versus the iteration number. It is clear that
the sampled chain jumped between modes many times during the simulation.
Figure 3.3(d) shows the sampled values from a regular Metropolis-Hastings
MCMC simulation in a trace plot versus iteration number. This particular
realization jumped between modes only once. Simulation-based sample esti-
mates of target characteristics will likely be inaccurate and will be highly
sensitive to the decision on when to stop the chain. A substantially longer
simulation in which the sampled chain crossed the low region several times
would be required for accurate estimation.
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Fig. 3.3. Illustration of MCMCMC. (a) The solid line shows the target function,
h. The dashed line is proportional to h1/3 (rescaled to have a similar normalizing
constant). A heated chain run under the dashed line will have the incorrect stationary
distribution but will move more freely about the region. (b) Histogram of sampled
points from the MCMCMC run. (c) Plot of the sampled points in the MCMCMC
run versus iteration number. (d) Plot of the sampled points in a regular Metropolis-
Hastings run versus iteration number.

3.7 Discussion

MCMC has become an indispensable tool for statistical computing, with spe-
cial importance to the Bayesian approach. MCMC is especially useful for the
high-dimensional calculation problems that arise in statistical models of mole-
cular evolution. As evolutionary biologists address problems in molecular evo-
lution of increasing complexity (larger trees, genome-scale data of varied type,
more realistic and parameter-rich models of molecular evolution, accounting
for additional forms of biological interaction), most of the tools that will be
successful in providing answers to these questions are likely to be based on
MCMC computation.
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3.7.1 Other References about MCMC

MCMC is an important topic that is described in much greater detail in
many other sources and is an area of much continuing active research. Gilks
et al. have written an entire book on the topic of MCMC [10]. The books by
Robert and Cassela and by Liu on Monte Carlo methods each include several
chapters on MCMC [23, 19]. The books on Bayesian statistics by Gelman
et al. and by Carlin and Louis include extensive descriptions of MCMC [7, 3].
Joe Felsenstein’s recent book includes a chapter on Bayesian approaches to
phylogenetic inference using MCMC as well as a chapter on using MCMC to
make likelihood calculations on coalescent trees [6].

References

[1] J. P. Bielawski and Z. Yang. Maximum likelihood methods for detecting
adaptive protein evolution. Chapter 5, this volume.

[2] J. P. Bollback. Posterior mappings and posterior predictive distributions.
Chapter 16, this volume.

[3] B. P. Carlin and T. A. Louis. Bayes and Empirical Bayes Methods for
Data Analysis. Chapman and Hall/CRC, Boca Raton, second edition,
2000.

[4] M. Dimmic. Markov models of protein sequence evolution. Chapter 9,
this volume.

[5] R. Durrett. Genome rearrangement. Chapter 11, this volume.
[6] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunder-

land, MA, 2004.
[7] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin. Bayesian Data

Analysis. Chapman and Hall/CRC, Boca Raton, 1995.
[8] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions,

and the Bayesian restoration of images. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 6:721–741, 1984.

[9] C. J. Geyer. Markov chain Monte Carlo maximum likelihood. In E. M.
Kerimidas, editor, Computing Science and Statistics: Proceedings of the
23rd Symposium on the Interface, pages 156–163. Interface Foundation,
Fairfax Station, VA, 1991.

[10] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, editors. Markov
Chain Monte Carlo in practice. Chapman and Hall/CRC, Boca Raton,
1996.

[11] P. J. Green. Reversible jump MCMC computation and Bayesian model
determination. Biometrika, 82:711–732, 1995.

[12] W. K. Hastings. Monte Carlo sampling methods using Markov chains
and their applications. Biometrika, 57:97–109, 1970.

[13] D. Hitchcock. A history of the Metropolis-Hastings algorithm. The Amer-
ican Statistician, 57:254–257, 2003.



62 B. Larget

[14] J. P. Huelsenbeck and F. Ronquist. Bayesian analysis of molecular evo-
lution using MrBayes. Chapter 8, this volume.

[15] J. P. Huelsenbeck and F. Ronquist. MRBAYES: Bayesian inference of
phylogenetic trees. Bioinformatics, 17:754–755, 2001.

[16] J. P. Huelsenbeck, F. Ronquist, R. Nielsen, and J. P. Bollback. Bayesian
inference of phylogeny and its impact on evolutionary biology. Science,
294:2310–2314, 2001.

[17] B. Larget and D. L. Simon. Markov chain Monte Carlo algorithms for the
Bayesian analysis of phylogenetic trees. Molecular Biology and Evolution,
16:750–759, 1999.

[18] S. Li, H. Doss, and D. Pearl. Phylogenetic tree reconstruction using
Markov chain Monte Carlo. Journal of the American Statistical Society,
95:493–508, 2000.

[19] J. S. Liu. Monte Carlo Strategies in Scientific Computing. Springer, New
York, 2001.

[20] B. Mau and M. A. Newton. Phylogenetic inference for binary data on
dendograms using Markov chain Monte Carlo. Journal of Computational
and Graphical Statistics, 6:122–131, 1997.

[21] B. Mau, M. A. Newton, and B. Larget. Bayesian phylogenetic inference
via Markov chain Monte Carlo methods. Biometrics, 55:1–12, 1999.

[22] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21:1087–1092, 1953.

[23] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer,
New York, 2002.

[24] D. Simon and B. Larget. Bayesian analysis in molecular biology and
evolution (BAMBE). http://www.mathcs.duq.edu/larget/bambe.html,
2001.

[25] J. L. Thorne and H. Kishino. Estimation of divergence times from mole-
cular sequence data. Chapter 9, this volume.

[26] L. Tierney. Markov chains for exploring posterior distributions (with
discussion). Annals of Statistics, 22:1701–1762, 1994.

[27] Z. Yang and B. Rannala. Bayesian phylogenetic inference using DNA
sequences: A Markov chain Monte Carlo method. Molecular Biology and
Evolution, 14:717–724, 1997.



4

Population Genetics of Molecular Evolution

Carlos D. Bustamante

Department of Biological Statistics and Computational Biology, Cornell
University, 422 Warren Hall, Ithaca, NY 14850, USA, cdb28@cornell.edu

Summary

The aim of this chapter is to provide an introduction to aspects of population
genetics theory that are relevant to current research in molecular evolution.
We review the roles of mutation rates, natural selection, ancestral polymor-
phism, and linkage among sites in molecular evolution. We also discuss why
it is possible to detect the workings of natural selection from comparing rates
of substitution for different classes of mutations along a branch in the phy-
logeny. The problem of estimating the distribution of selective effects among
newly arising mutations is given considerable treatment, as are neutral, nearly
neutral, and selective population genetics theories of molecular evolution. The
chapter does not aim to be an exhaustive description of the field but rather
a selective guide to the literature and theory of the population genetics of
molecular evolution.

4.1 Introduction

Evolution is the outcome of population-level processes that transform genetic
variation within species into genetic differences among species in time and
space. Two central goals of evolutionary biology are to describe both the
branching order of the history of life (phylogeny) and the evolutionary forces
(selective and nonselective) that explain why species differ from one another.
Since the 1980s there has been an explosion in the number and complexity of
probabilistic models for tackling the first problem, with the motivation that
to understand evolution at any level one needs to get the history right (or at
least integrate over one’s uncertainty in the matter) (for a review, see [113]).
Current Markov chain models of evolution deal with the complexities of DNA
[48, 60, 40, 119]), RNA [69, 92], codon [39, 70], and protein evolution (see
[104] for a review), as well as rate variation among sites [120, 26] and diverse
complex dependencies such as tertiary structure [85] and CpG mutational
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effects [94]. Likewise, there has been tremendous growth in using probabilistic
models for hypothesis testing and model selection. For example, it is currently
possible to exploit rate variation among codons [72, 124] and among lineages
and codons [123] to detect amino acid sites that are likely to be involved in
adaptive evolution assuming silent sites evolve neutrally and codons evolve
independently of one another.

The purpose of this chapter is to introduce population genetics concepts
relevant to the study of molecular evolution, with particular emphasis on
understanding how natural selection affects rates and patterns of molecular
evolution. Some effort is also made to discuss how population genetics models
relate to continuous-time discrete-space Markov chain models of molecular
evolution. For example, if the transformation of genetic variation is mostly
governed by genetic drift acting on evolutionarily neutral mutations that
evolve independently of one another, the outcome will be a Poisson process
with constant rate that is independent of the species size [81, 88, 51]. A Markov
chain model of evolution (perhaps with rate variation among sites) is a quite
appropriate model to capture the dynamics of such a system since the expo-
nential distribution of times among transitions corresponds to an underlying
Poisson process. If mutations are not neutral but sites evolve independently
of one another, the substitution process can remain a Poisson process that
differs among lineages depending on population size and the strength of se-
lection. Under such a model, it is possible to use variation in the rates of
substitution among sites to infer the distribution of selective effects among
new mutations [25, 73, 90]. Alternatively, if mutations are linked and either
slightly deleterious or advantageous (e.g., [81, 77, 78, 79, 59]), or if the fitness
effects of mutations vary randomly with the environment (e.g., [100, 30, 31]),
the observed patterns of molecular evolution can depart greatly from the ex-
pectations of a Poisson process with constant rate [31, 32, 33, 34, 17, 18].

We will begin with a brief historical overview of the population genetics
of molecular evolution (Subsection 4.1.1). In Section 4.2, we discuss some of
the major predictions of neutral and nearly neutral models of molecular evo-
lution. In Section 4.3, we demonstrate how the classical Wright-Fisher models
of population genetics give rise to the neutral theory of molecular evolution.
Next will follow a discussion on how ancestral polymorphism can cause depar-
tures from the expectations of the neutral independence-among-sites model
(Section 4.4). We will then discuss natural selection and demonstrate how
comparing the rate of substitution of a putatively selected class of mutations
to a neutrally evolving class can be used to infer the signature of natural selec-
tion from sequence data (Section 4.5). A discussion will follow on the effects of
a distribution of selection coefficients among new mutations on rates and pat-
terns of molecular evolution. Lastly, we investigate the effects of linkage and
selection on rates of molecular evolution. A definitive and more mathematical
treatment of the subject of theoretical population genetics can be found in
Warren Ewens’ excellent work Mathematical Population Genetics, which has
just been published in a second edition by Springer [23].
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4.1.1 Setting the Stage

To understand the relationship between population genetics and the study
of molecular evolution, one must begin at the point in history where the two
became intertwined. In their seminal paper, Zukerkandl and Pauling [126] pro-
posed that the preferred characteristic for inferring the evolutionary relation-
ships among organisms ought to be similarity at the level of DNA or protein se-
quences. Their paper, while deeply philosophical and contentious, was rooted
in the observation that the rate of amino acid evolution in hemoglobin-α and
cytochrome-c per year was roughly constant for various vertebrate species. If
DNA and protein sequences (“informational macromolecules”) accrued sub-
stitutions at a near constant rate, then the changes along the phylogeny rep-
resented a “molecular clock” that could be used for dating species divergence.
Since these changes are more plentiful and presumably subject to less scrutiny
by natural selection than morphological characters, the authors reasoned that
DNA and protein changes provide better markers for inferring evolutionary
relationships. Their paper provided a simple stochastic model of molecular
evolution whereby each site had equal probability of being substituted and
the number of substitutions that occur along a branch was proportional to
the length.

The theoretical foundation for this model (and thus for the molecular
clock hypothesis and ultimately for modern-day methods) was provided by
the “neutral-mutation drift” theory of molecular evolution, which posited that
the vast majority of molecular evolution was due to the stochastic fixation of
selectively neutral mutations [55, 63, 57, 62]. The theory concerns both vari-
ation within and between species and is summed up most elegantly by the
title of Kimura and Ohta’s seminal paper: “Protein polymorphism as a phase
of molecular evolution” [62]. In other words, the neutral theory arises from
considering the evolutionary implications of genetic drift operating on neu-
tral variation [55, 62, 58]. As we will see, the theory predicts (among other
things) that the rate of molecular evolution ought to be independent of the
population size. In many ways, the true concern of the theory is the distrib-
ution of selective effects among newly arising mutations since everything else
follows from this premise. The neutral theory is predicated upon the notion
that almost all mutations are either highly deleterious or evolutionarily neu-
tral. Highly deleterious mutations contribute little to variation within species
and nothing to the genetic differences among species. Adaptive mutations are
assumed to be very rare and to fix quickly, thus leaving neutral mutations as
the only real source of genetic variation within species that can lead to fixed
differences among species. It is important to note that the mature theory says
little about the proportion of all mutations that are neutral; rather, it states
that most mutations that go on to contribute to differences among species
and variation within species are neutral. In this sense, even very constrained
molecules such as histones can evolve neutrally. Their molecular clock just
ticks at a much lower rate than that of unconstrained molecules such as, per-
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haps, noncoding DNA. Present-day rate-variation models [120, 26] allow this
constraint parameter to vary among sites.

While the neutral theory arises as an extension of population genetics the-
ory, it is not the only population genetics theory of molecular evolution (e.g.,
[81, 100, 79, 30, 59, 82, 35, 89, 90]). In fact, the field of population genetics has
had a long-standing debate over the relative contribution of competing evo-
lutionary forces (mutation, migration, genetic drift, and natural selection) to
patterning genetic differences among species. Much of this debate has focused
on the question of how much genetic variation within species is maintained
by natural selection as well as how much of the molecular differences that we
observe among species are due to adaptive molecular evolution [64, 61, 31].

One of the most important critiques of the neutral theory has been put
forth by John Gillespie in The Causes of Molecular Evolution [31]. He used
two lines of evidence to argue that most amino acid substitutions are adap-
tive. The first is specific examples of adaptive molecular evolution in response
to environmental stress. The second is a thorough analysis of variation in the
index of dispersion (ratio of the variance to the mean) for amino acid substitu-
tions among mammalian and Drosophila species. As mentioned above, a major
prediction of the neutral model is that the pattern of substitutions along dif-
ferent branches in a phylogeny ought to be Poisson-distributed with constant
rate [81]. Gillespie conclusively demonstrated that the index of dispersion is,
on average, much greater than 1 for both sets of species (i.e., it is overdis-
persed) and that the observations cannot easily be accounted for by neutral
or nearly neutral models. He concludes that amino acid evolution occurs due
to natural selection in “response to environmental factors, either external or
internal, that are changing through time/or space.” While the specific model
Gillespie espoused [30] may not explain the overdispersed molecular clock (see
[34, 35, 17, 18]), the data are certainly not consistent with the strict neutral
model.

In fact, recent genome-wide analyses suggest quite an important role for
both adaptive and weak negative natural selection in patterning molecular
evolution in Drosophila (e.g., [91, 24, 90, 75, 98, 5, 8, 90, 38, 93, 6, 84]),
Arabidopsis (e.g., [8, 67, 4, 110, 84]), maize (e.g., [103, 14, 47]), mouse [96],
HIV (e.g., [118, 115, 121, 125, 68, 12, 19]), mammalian mitochondrial genomes
[73, 112], and humans (e.g., [46, 87, 83, 1, 41, 13, 97, 29, 50, 114]). While
many agree selection is important, there is still considerable debate as to
the relative contribution of negative versus positive selection in patterning
molecular evolution. As we will see in Section 4.6, the key to the debate
rests on rates of recombination and the distribution of selective effects among
newly arising mutations. In the next section, we will delve into the specifics of
neutral and nearly neutral models before turning to the underlying population
genetics machinery.
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4.2 The Neutral Theory of Molecular Evolution

It is Darwin [20], of course, who posited that evolution occurs as the result
of natural selection by which heritable differences that alter the probability
of survival and reproduction of organisms are passed on from generation to
generation. Sir Ronald Fisher [27, 28] and Sewall Wright [116] provided the
first mathematical models of “the Darwinian evolution of Mendelian popu-
lations” by treating genetic drift (i.e., fluctuations in allele frequencies at a
given locus due to finite population size) as analogous to the diffusion of heat
along a metal bar. In these works, Wright and Fisher also provided the first
genetic theories of evolution by deriving a formula for the probability that a
mutation subject to natural selection would become fixed in the population (a
result we will derive in Section 4.3). What they showed is that if a mutation
alters the expected number of offspring a haploid individual (chromosome)
contributes to the next generation by a small amount s so that those carrying
the mutation leave on average 1 + s offsprings and those that do not carry
the mutation leave 1 offspring on average, then the probability that a new
mutation eventually becomes fixed in the population is roughly

Pr(fixation) ≈ 2s

1 − e−4Ns
, (4.1)

where N is the effective population size of the species, 2N is the number
of chromosomes in the population, and s is on the order of N−1. If s > 0,
we say the mutation is selectively favored and that there is positive selection
operating on the mutation since as the magnitude of s increases above 0 so
does the probability of fixation (4.1). Likewise, if s < 0, we say the mutation is
selectively disfavored and there is negative selection operating on the mutation
since as s becomes more negative, the probability of eventual fixation becomes
smaller and smaller. In the neutral case (s ≈ 0), we can see by applying
L’Hopital’s rule that the probability of eventual fixation is simply the initial
frequency of the mutation p = 1

2N (the mutation must have occurred in a
heterozygous form).

While Fisher and Wright laid out a great deal of the foundation, it is Motoo
Kimura who built up much of the population genetics theory of molecular
evolution. His neutral theory of molecular evolution [55, 57, 58, 61] arises from
a beautifully simple cancellation of terms: if mutations enter the population
at some rate µ per locus per generation, some fraction f0 are neutral, and
1 − f0 are completely lethal, then the rate of evolution k0 would equal the
neutral mutation rate:

k0 = E(# of neutral mutations entering per generation.) (4.2)
× Pr(neutral mutation becomes fixed)

= 2Nf0µ
1

2N
= f0µ . (4.3)
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Three major predictions or consequences arise from (4.3):

1. Neutral molecular evolution is independent of the population size and
depends only on the per generation rate of input of neutral mutations.

2. Neutral molecular evolution is linear in time, thus providing a “molecular
clock” by which the relative divergence time of different populations can
be dated.

3. Since neutral evolution occurs more rapidly in regions of low selective
constraint (high f0) and more slowly in regions of high selective constraint
(low f0), differences in rates of substitution can be used to infer functional
constraint [63].

Furthermore, it is often assumed that the number of neutral mutations that
fix in some interval of t generations (substitutions) is Poisson-distributed with
rate k0t.

Our goal in Section 4.3 is to understand the population genetics theory
behind equation (4.3) and, more importantly, to understand when this simple
neutral model holds and when it does not hold. For example, the assertion
that the substitution process is a Poisson process only holds if sites evolve
independently of one another [51, 108]. This will be true only if there is free
recombination among sites or if there is a sufficiently low mutation rate that
only 1 or 0 nucleotides vary at a given point in time for a non-recombining
region. High mutation rates and linkage among neutral sites can have a pro-
nounced effect, leading to the fixation of “bursts” of mutations that are ap-
proximately geometrically distributed [108, 109, 32].

It is important to mention at this point that population genetics models
of molecular evolution differ in some regards from discrete-space continuous-
time models [48, 40, 60, 119]. For example, the Poisson assertion above ignores
the possibility of multiple substitutions at the same site. The reason many
population genetics models make such an assumption is that the timescale on
which they operate is relatively short compared with the timescale on which
phylogenetic reconstruction of distantly related species is usually carried out.
Likewise, much of the theory is based on the behavior of single-locus two-allele
models, where the goal is to understand the probability of fixation of a new
mutation under various scenarios. Such a model is not rooted in the actual
A, C, T, and G of DNA but rather on the fact that at a given nucleotide site
the probability of having more than two nucleotides segregating is very low.
Likewise, if the population size and mutation rates are small, there will be few
linked polymorphic sites. Therefore, the independently evolving single-locus
model with two alleles is a reasonable place to start in modeling molecular
evolution.

4.2.1 Nearly Neutral Models of Molecular Evolution

From the beginning, it was evident that the great power of the neutral theory
of molecular evolution lay in its quantitative predictions regarding rates and
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patterns of molecular evolution. In Kimura’s original paper [55], the prob-
lems the neutral theory solved were the inordinately high rate of nucleotide
evolution inferred from patterns of amino acid evolution [126] as well as the
plentiful amounts of amino acid variation within species [43, 65]. According
to Kimura’s calculations, Darwinian evolution would produce too high a ge-
netic load on the population to account for these patterns; therefore, most
of the changes were likely neutral. Likewise, King and Jukes [63] set out to
demonstrate that “most evolutionary change in proteins may be due to neu-
tral mutations and genetic drift” by testing some of the predictions of a neu-
tral molecular evolution theory using almost all of the available data in the
world on protein, RNA, and DNA sequence variation.1 One key prediction of
the neutral theory was that if proteins were more constrained than genomic
DNA, then proteins should evolve at a slower rate. If, on the other hand,
proteins were constantly being refined by positive natural selection, then the
rate of evolution of proteins would be faster than that of genomic DNA. Using
early DNA hybridization experiments coupled with protein sequence informa-
tion, King and Jukes concluded (rightly) that most proteins evolve at a much
slower rate than most regions of genomic DNA. Another key argument they
used was a near Poisson fit to the number of substitutions per site across the
gene trees of various molecules (globins, cytochrome-c, and immunoglobulin-G
light chains).

It was soon pointed out that if the neutral theory of molecular evolution
was strictly true, then the rate of amino acid evolution should be proportional
to generation time and not chronological time. Kimura and Tomoko Ohta [81]
countered with the first “nearly neutral” model of molecular evolution. This
model posits that newly arising nonlethal mutations are not strictly neutral
(s ≈ 0) but rather have selection coefficients drawn from a distribution such
that the mean selective effect is slightly deleterious and most mutations are
in the interval (− 1

N ≤ s ≤ 1
N ).2 Under such a scheme, the evolutionary fate

1King and Jukes had independently proposed a neutral theory of molecular evo-
lution, but their paper was initially rejected by Science. In the interim, Kimura’s
paper appeared, and Kimura’s results were added to the revised King and Jukes
manuscript [99].

2The definition of “nearly neutral” is somewhat of a moving target and context-
dependent. In their original paper, Ohta and Kimura [81, p.22] implicitly considered
nearly neutral those mutations in the interval (− 2

N
≤ s′ ≤ 2

N
), where s′ = 2s.

In Ohta and Kimura’s later work [77, 78, 79, 59], the emphasis was on explaining
how slightly deleterious mutations could be considered an engine for nonadaptive
molecular evolution. Likewise, Gillespie [31] has argued that nearly neutral should
only refer to mutations in the interval (− 1

N
≤ s′ < 0) since slightly advantageous

mutations are helped along by selection. Ohta [80] (not surprisingly) has explicitly
reclaimed the “slightly advantageous” as nearly neutral ground by arguing that the
fate of slightly advantageous mutations is very much governed by both selection and
drift. Unless otherwise noted, we will adopt Ohta’s view and consider nearly neutral
mutations as those that are in the interval −2 ≤ γ ≤ 2, where γ = 2Ns.



70 C. D. Bustamante

of mutations is mostly governed by genetic drift. One implication of near-
neutrality is an inverse relationship between population size N and the rate
of molecular evolution at selected sites ks. Letting fs be the fraction of muta-
tions that are selected, under the assumption that selected mutations evolve
independently of one another, the rate of evolution for a selected mutation ks

is given by

ks = E(# of selected mutations entering per generation.) (4.4)
× Pr(selected mutation becomes fixed)

= 2Nfsµ
2s

1 − e−4Ns

= fsµ
4Ns

1 − e−4Ns
. (4.5)

We see from (4.5) that for a fixed s < 0

lim
N→∞

ks = 0.

The interpretation of this equation is that if mutations are slightly deleterious,
a species with a large population size will evolve at a slower rate than a
species with a small population size. Ohta and Kimura [81] posited that since
population size is roughly inversely proportional to body size and body size is
roughly inversely proportional to generation time (i.e., big animals have long
times between generations but also live at low densities), these two factors
cancel each other out to produce a rate of evolution that is close to linear
in chronological time. Kimura [59] later argued that if −s follows a Gamma
distribution with mean 1 and shape parameter β = 0.5, then the rate of
evolution will be proportional to

√
N .

A very useful way of studying the consequences of natural selection on
rates of molecular evolution is by comparing the relative rate of substitution
for selected mutations (4.5) to neutral mutations (4.3)

ω =
ks

k0
=

fs

f0

2γ

1 − e−2γ

letting γ = 2Ns. We will refer to γ as the scaled selection coefficient, and it will
reappear when we derive (4.5) from an approximation to the Wright-Fisher
process (Section 4.5). We note that ω can be interpreted as the expected
dn/ds ratio assuming silent mutations are neutral, replacement mutations
have the same selective effect, and mutations evolve independently of one
another. Assuming fs = f0, if s = −1 × 10−4 and the population size is small
(N = 1000), the rate of evolution at selected sites is ω = 0.81, the rate of
evolution at neutral sites, which we might refer to as a modest reduction.
On the other hand, if s does not change and the population size is large
(N = 10, 000), then ω = 0.074 and we would observe a large reduction in the
substitution rate. In Figure 4.1, we plot the rate of substitution for selected
mutations as compared with neutrality assuming fs = f0.
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Fig. 4.1. Effect of natural selection on rates of molecular evolution. The x-axis is
the scaled selection coefficient for new mutations, and the y-axis is the relative rate
of substitution as compared with neutrality. Note that the y-axis is on a log-scale.

4.3 Wright-Fisher Model

4.3.1 No Mutation, Migration, or Selection

Consider a diploid population of constant size N (i.e., a population of 2N
chromosomes) with discrete nonoverlapping generation [116, 28]. The popu-
lation in the next generation is produced by randomly pairing gametes from
an infinitely large pool of gametes produced by the current population. Focus
on a neutrally evolving locus A with two alleles A1 and A2, and assume that
there is no mutation between A1 and A2. Let X(t) be the number of chromo-
somes in the population that carry the A1 allele at generation t. The collection
of random variables {X(t)} for t = 0, 1, . . . is a discrete-time discrete-space
Markov chain with state space {0, 1, . . . , 2N}. The transition probability Pij

for going from state i to state j comes from binomial sampling:

Pij ≡ Pr(X(t + 1) = j | X(t) = i) =
(

2N

j

)(
i

2N

)j (
1 − i

2N

)2N−j

. (4.6)

This model is known as the Wright-Fisher model of population genetics, and
the stochastic sampling of gametes from generation to generation is known
as genetic drift. It is easy to verify that X(t) = 0 and X(t) = 2N are ab-
sorbing states (i.e., P0 0 = P2N 2N = 1), corresponding to loss (X(t) = 0)
or fixation (X(t) = 2N) of the A1 allele. It is also relatively easy to show
that all other states (1, 2, . . . , 2N − 1) are transient. This conforms with our
biological intuition that if a population has 0 copies of allele A1 in generation
t0, Pr(X(t) = 0) = 1 for all t > t0.
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An implication of the Wright-Fisher model is that each segregating neutral
mutation in a population is eventually fixed or lost. The stochastic fixation of
neutral mutations (along with the fixation of selected mutations) thus under-
pins molecular evolution. It is then of immediate interest to find the probabil-
ity that a mutation initially at frequency p = X(0)

2N is eventually fixed in the
population. The expected gene frequency in generation t + 1 given the gene
frequency in generation t comes directly from the binomial model for gametic
sampling:

E

(
X(t + 1)

2N
| X(t)

)
=

∑2N
j=0 jPij

2N
=

X(t)
2N

.

Similarly, the variance in gene frequency is

V

(
X(t + 1)

2N
| X(t)

)
=

X(t)(1 − X(t))
2N

.

The first result implies that for the Wright-Fisher model without mutation,
the expected change in allele frequency from generation to generation is zero
(i.e., the X(t) process is a Martingale). We can thus think of the change in
gene frequency as a random walk without bias. As a result, we might intuit
from symmetry alone that the probability of eventually fixing the A1 allele
should equal the initial frequency of the A1 allele in the population (i.e., p).

A more rigorous approach is to set up a set of linear recurrence equations
that the Wright-Fisher process must satisfy [74, p. 15]. Let pj be the proba-
bility that a population that starts with j copies of the A1 allele (X(0) = j)
eventually fixes the A1 allele (i.e., the probability that the process reaches 2N
before it reaches 0). Clearly, p0 = 0 and p2N = 1. By exploiting the Markov
property of the system, we can write down the following set of equations:

pi =
2N∑
j=0

pjPij , for i = 1, . . . , 2N − 1 . (4.7)

The reason our model must satisfy these equations is that once the process
enters state j, it “forgets” that it had previously been in state i and the
process is restarted. The probability of reaching state 2N before state 0 is
pj , and by weighing the pj ’s by the probability of transitioning from state i
into state j, we obtain a set of 2N − 1 equations (4.7) for 2N − 1 unknowns
(p1, p2, . . . , p2N−1). By substituting (4.6) into (4.7), we verify that pj = j

2N
is the non-negative solution to the system of equations. Therefore, the prob-
ability of eventual fixation of a neutral mutation is

p1 =
1

2N
. (4.8)
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4.3.2 Rate of Fixation of Neutral Mutations

Now consider a process whereby in each generation a Poisson number of mu-
tations occurs at a rate θ

2 = 2Nf0µ, where f0µ is the generation neutral
mutation rate per locus. It is assumed that each mutation occurs at a pre-
viously invariant DNA site [58, 107]. We will now consider the rates and
patterns of neutral molecular evolution under two assumptions: (a) complete
independence among sites [58, 21, 22, 89] and (b) complete linkage among
sites [107].

Independence among sites

Following [21, 89], model the mutation process as starting a Poisson number
of new Wright-Fisher processes each generation. Let Xj(t) be the state of the
process (frequency) at site j at time t, where t is measured as the time since
the mutation at site j originated in the population (i.e., Xj(0) = 1

2N for all
j). It is assumed that mutations {i = 1, 2, . . .} evolve independently of one
another so that Xj processes are i.i.d. Considering some absolute interval of
time (0, T ], let Mi for i = 1, 2, . . . , T be the number of mutations that enter
the population in generation i that are destined to be fixed. The time of entry
of mutations that eventually fix in the population is known as the origination
process [33, 88, 51]. Since each mutation has probability p1 = 1

2N of eventually
fixing in the population and the trajectories X1, X2, . . . are independent of
each other, Mi for i = 1, 2, . . . , T are i.i.d. filtered Poisson random variables
with rate

E(Mi) =
θ

2
p1 = 2Nµf0

1
2N

= µf0 .

Furthermore, the total number of mutations K =
∑T

i=1 Mi that enter the
population during (0, T ] and eventually fix is also a Poisson random variable
with rate E(K) = µf0T by the additivity property of independent Poisson
random variables.

It is important to note that K is not the actual number of mutations that
fix during the given interval of T generations (known as the fixation process
[33]) but rather the number of mutations that enter during this interval and
eventually become fixed. In the case of independently evolving sites, the origi-
nation process and the fixation process will have the same distribution as long
as the time intervals are exchangeable. An example of when the time intervals
would not be exchangeable is a difference in mutation rates for different time
intervals.

Complete linkage among sites

Birky and Walsh [7] showed that the expected substitution rate for neutral
mutations is not affected by linkage to neutral, deleterious, or advantageous
mutations. Here we follow Cutler’s discussion of the problem [16] closely to
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show that the distribution of the number of mutations that ultimately fix in
the population remains a filtered Poisson process with rate µf0 [81]. This was
originally shown using reversibility arguments by Sawyer [88] and Kelly [51,
p. 158].

Assume that mutations enter at a Poisson process rate θ
2 = 2Nf0µ, and

write Xj(t) for j = 1, 2, . . . to denote the frequency of the j process at time t
since the origination of mutation j. Assume complete linkage among sites and
write fj(x | t)dt to denote the Pr(Xj(t) = x). Let us introduce an indicator
variable that tracks whether a given mutation becomes fixed in the population:

Ij =

{
1 if mutation j fixes in the population
0 otherwise.

Since the number of neutral mutations on a chromosome does not alter the
probability of fixation, E(Ij) = p1 for all j. Likewise, since the expected change
in frequency from generation to generation is 0, the expected frequency of the
j process is

E(Xj(t)) =
∫ 1

0
xfj(x | t)dx = E(Xj(0)) = p1.

Now consider two mutations, which we arbitrarily label j = 1 and j = 2,
and assume mutation 1 is older than mutation 2. Consider the probability
that both mutations become fixed (E(I1I2)). For this to happen, mutation
2 must occur on a background that contains mutation 1. The probability of
this occurring is the frequency of the first mutation at the time the second
mutation originates, X1(t). The marginal probability that mutation 2 fixes is
simply its initial frequency X2(0) = p1. Therefore, the probability that both
mutation 1 and mutation 2 fix in the population is given by

E(I1I2) = Pr(mutation 2 fixes) Pr(mutation 1 fixes | mutation 2 fixes)
= Pr(mutation 2 fixes) ·

Pr(mutation 2 arose on a chromosone containing mutation 1)

= p1

∫ 1

0
xf1(x | t)dx

= p2
1 .

Since the probability that both mutations fix is shown to be the product of
the probability that each mutation fixes alone, the random variables X1(t)
and X2(t) must be independent. This implies that linkage among neutral
mutations does not affect the neutral rate of evolution. Likewise, since X1 and
X2 are independent, the origination process remains a filtered Poisson process.
The fixation process, on the other hand, does not remain a Poisson process
in the presence of linkage. Informally, one can reason that the time intervals
are no longer exchangeable. As has been discussed by Gillespie [31, 33] and
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(a) (b)

Fig. 4.2. Population dynamics can influence of molecular evolution. Two popula-
tions are split, evolved for t = 10N generations, and a random chromosome from
each is compared. (a) Distribution of the number of differences between a pair of
random sequence from two populations that separated 10N generations ago and
accrue mutations at rate µ = 1

N
. The solid line is the expected distribution from a

Poisson model. (b) Variation in branch length for the process due to random coa-
lescence in ancestral population for t = 10N . The black line is the expected branch
length (measured along the horizontal axis), and the grey lines are 100 replicates of
the process.

Watterson [108, 109], the fixation process for the neutral infinite-sites model
is a “burst” process whereby a geometric number of mutations fix when a
chromosome reaches frequency 1 in the population. The effect of correlation
in the substitution process is to reduce the efficiency of statistical methods
for phylogenetic reconstruction [45].

4.4 Ancestral Polymorphism and Neutral Molecular
Evolution

The analysis in Section 4.3 is predicated upon being able to follow the history
of the entire population. The purpose of this Section is to derive the mean and
variance of the sampling distribution for the number of nucleotide differences
K between a sample of two DNA sequences drawn from a pair of populations
that diverged t generations in the past. The full distribution for a sample of
size n = 2 can be found in [102].

Measuring time into the past so that 0 is the present day, let

K = K1 + K2 + KA,

where K1 and K2 are the number of mutations that accumulate on the first
and second sequences since time t and KA is the number of fixed differences
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due to ancestral polymorphism. Assuming a molecular clock, K1 and K2 are
Poisson with rate f0µt. Without loss of generality, assume f0 = 1. It will be
shown that KA is a geometrically distributed random variable so that the
sampling distribution of K is not Poisson (see Figure 4.2). We will also see
that the degree to which K will differ from a Poisson random variable with
the same mean will depend on the parameters t and NA, where NA is the
ancestral population size.

We will begin by considering the distribution of the number of differences
for a sample of two chromosomes drawn from a panmictic population. This is
equivalent to deriving the distribution of heterozygosity under an infinite-sites
model and is a well-studied problem in population genetics (e.g., [56, 58, 107]).
We will use the machinery of coalescent theory [44] to address the issue.

4.4.1 Average Pairwise Distance

Consider a sample of size n = 2 chromosomes drawn from a randomly mat-
ing population of size 2N chromosomes. Let S2 be the number of nucleotide
differences between two sequences at our locus of interest.

The probability that a random pair of chromosomes find a common an-
cestor in the previous generation is 1

2N . Therefore, the distribution of the
number of generations M until the two chromosomes find a common ancestor
is a “first success” distribution with mean 2N :

Pr(M = m) =
(

1 − 1
2N

)m−1( 1
2N

)
. (4.9)

If N is large, (4.9) can be approximated using an exponential distribution.
Measuring time in units of 2N generations, the random variable T2 = M

2N
follows the exponential distribution with rate 1,

Pr(M ≤ 2Nx) = Pr(T2 ≤ x) ≈ 1 − e−x.

The random variable T2 is known as the coalescent time for a sample of
size n = 2 and describes the waiting time until two random chromosomes from
a population coalesce (or merge) in a common ancestor. As one follows the
two sequences back in time until the coalescent event, each accrues mutations
independently at a rate θ

2 = 2Nµ per unit of time assuming a Poisson model
of mutation. This assumption implies that the waiting time until a mutation
(TM ) occurs along either chromosome is exponential with rate θ. By the usual
result for competing exponentials

Pr(TM < T2) =
θ

θ + 1
.

Likewise, because of the memoryless property of the exponential distribution,
once a mutation event occurs along either chromosome, the coalescent process
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is restarted. Therefore, the distribution of the number of mutations before a
coalescent event for n = 2 is geometric:

Pr(S2 = k) =
(

θ

θ + 1

)k 1
θ + 1

. (4.10)

The expected value and variance of S2 are easily shown to be

E(S2) = θ, V(S2) = θ2 + θ. (4.11)

Equations (4.10) and (4.11) were first derived by Watterson [107] when he
found the distribution of the number of segregating sites Si in a sample of
size i. Li [66] also derived these results while finding the transient distribution
of S2. For our problem, KA = S2 with N replaced by NA.

Recall that K is the sum of two independent Poisson random variables,
each with mean µt, and a geometric random variable with mean θA = 4NAµ,
where NA is the size of the ancestral population. This implies that

E(K) = 2µ(t + 2NA), V (K) = 2µ(t + 2NA + 8N2
Aµ) . (4.12)

The index of dispersion (the ratio of the variance to the mean) is one way to
assess the concordance between K and a Poisson random variable with the
same mean [81, 31]. For K it is easy to show that

R(K) = 1 +
8N2

Aµ

t + 2NA
= 1 +

θA

1 + τ
,

where τ = t/2NA. Figure 4.2 illustrates that ancestral polymorphism can lead
to deviations from the Poisson expectations. In this figure, we have simulated
10,000 comparisons of n = 2 sequences drawn from a pair of populations
that diverged t = 10NA generations (τ = 5) in the past. Mutations occur
in each daughter population as a Poisson process with rate µ = 1

NA
per

chromosome per generation (θA = 4). Note that the distribution of K has a
much larger variance than expected from the Poisson prediction (E(K) = 24)
with R(K) = 1.666.

4.4.2 Lineage Sorting

Ancestral polymorphism can also lead to the phenomenon of “lineage sort-
ing”, where the genealogical tree for a sample of DNA sequences has a differ-
ent branching order than the tree relating the history of population-splitting
events. That is, if we have a sample of three sequences from three species
{A, B, C} and the tree relating our three populations is ((A, B), C), there
is some probability of recovering discordant gene trees that are of the form
(A, (B, C)) and ((A, C), B). (For an excellent discussion of the problem from
a population genetics perspective, see [86]). The probability of recovering dis-
cordant trees in the three-taxon case is relatively easy to calculate using coa-
lescent theory.
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Assume that the population size N of three species is the same and has
been constant for the history of {A, B, C}. Let t1 be the time in the past in
units of 2N generations when populations A and B split and let t2 be the time
in the past when the ancestral populations of A and B split from C. Write
TAB to denote the coalescent time of the sequence from species A and from
species B and define TAC and TBC analogously. The probability that a gene
tree will be concordant is the probability that A and B coalesce with each
other before either coalesces with C. That is, the probability of concordance
is given by Pr(min(TAB , TAC , TBC)) = TAB .

The first coalescent event in the history of {A, B, C} cannot occur before
t1. Between times t1 and t2, only coalescent events between A and B are
allowed, and after t2 all three lineages are equally likely to coalesce with one
another. Letting t = t2 − t1, we can write

TAB = t1 + X1 ,

TBC = t1 + t + X2 , (4.13)
TAC = t1 + t + X3 ,

where X1, X2, and X3 are i.i.d. exponentially distributed random variables
with rate 1. The justification for (4.13) comes from the results derived above
that for large N the coalescent time for a sample of two sequences is expo-
nential with rate 1. Recalling that the minimum of k independent exponential
random variables is exponentially distributed with the sum of the k rates, we
can also write

min(TBC , TAC) = t1 + t + Y ,

where Y is an exponential random variable with rate 2 that is independent of
X1. Therefore,

Pr(concordance) = Pr(min(t + Y, X1) = X1)
= Pr(min(t + Y, X1) = X1 | X1 ≤ t) × Pr(X1 ≤ t) +

Pr(min(X1, Y ) = X1 | X1 > t) × Pr(X1 > t)

= 1 × (1 − e−t) +
1
3

× e−t

= 1 − 2
3
e−t .

This simple example illustrates that to understand molecular evolutionary
patterns on relatively short timescales, one must model the population genet-
ics dynamics.

The question of estimating ancestral population genetics parameters has
a rich history. Equations (4.12) were first derived by Takahata and Nei [101].
The full distribution of K in the case of one sequence from each of a pair as
well as each of a triplet of species is given in Takahata, Satta, and Klein [102,
eqs. (3), (6)]. As they discuss, these probabilities can be used for maximum
likelihood estimates of the species divergence time and ancestral population
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size from multilocus data. Likewise, Yang [122] and Wall [106] have developed
methods that incorporate rate variation among loci as well as recombination.
The effects of population growth and differences in population size on levels
of variation within and between a pair of species are taken up by Wakeley
and Hey [105]. Likewise, a Bayesian method for distinguishing migration from
isolation using within- and between-species sequence data is presented by
Nielsen and Wakeley [71].

4.5 Natural Selection

The Wright-Fisher machinery can be adapted for modeling other evolution-
ary forces by specifying the joint effects of all forces on the change in gene
frequency per generation. This is usually done in a two-step process. First
an infinite gamete pool is assumed such that the frequency of the A2 allele
changes in the gamete pool deterministically due to mutation, selection, and
other factors from some value p = i

2N to p′. The effect of genetic drift is
modeled using an equation analogous to (4.6), where p′ depends on i and the
evolutionary forces being considered:

Pij ≡ Pr(X(t + 1) = j | X(t) = i) =
(

2N

j

)
(p′)j (1 − p′)2N−j

. (4.14)

In modeling natural selection, one needs to specify the fitness of the three
relevant genotypes. Let the expected relative contribution of the A1A1, A1A2,
and A2A2 genotypes to the next generation be 1, 1 + 2sh, and 1 + 2s. (Note
that h is known as the dominance parameter and summarizes the effect of
selection on the heterozygote fitness.) The effect of natural selection is to bias
the chance of picking an allele A2 at random from the next generation. The
expected proportion of offspring left by each of the three genotypes is

A1A1 :
(1 − p)2

w
, A1A2 :

2p(1 − p)(1 + 2sh)
w

, A2A2 :
(1 + 2s)p2

w
,

where w = (1 − p)2 + 2(1 + 2sh)p(1 − p) + p2(1 + 2s).
Therefore, the frequency of the A2 allele after one round of natural selec-

tion is

pt+1 =
p2

t (1 + 2s) + (1 + 2sh)pt(1 − pt)
w

.

As we will see below, the number of selected mutations that fix in the history
of a population under the assumption of recurrent mutation and selection is
also Poisson and depends on the parameter γ = 2Ns and h.

4.5.1 Diffusion Approximation

To study the Wright-Fisher model with selection (and other complicated popu-
lation genetics models), it is often more convenient to work with a continuous-
time continuous-space approximation to a discrete process. The natural state
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space is the frequency of a mutation (0 ≤ x = X(·)
2N ≤ 1), and the natural time

scaling is in units of 2N generations. Fisher [27] first noted that the action of
genetic drift on a locus could be modeled using the same differential equations
used to model the diffusion of heat. The classical problem of finding the sta-
tionary distribution of allele frequencies visited by a mutation under a variety
of selective, mutation, and demographic models was taken up by Fisher in
The Genetical Theory of Natural Selection [28] as well as by Sewall Wright
[116, 117]. The time-dependent solution of what was later recognized as the
Fokker-Planck or Kolmogorov forward equation was given in [52]. A definitive
treatment of the subject is given in Kimura’s classic paper [54]. We will now
proceed to derive the stationary distribution, omitting many technical details
that can be found by the interested reader in [54, 49, 23].

As discussed in Karlin and Taylor [49, p. 180], as N → ∞, the Wright-
Fisher process has a limiting diffusion that depends on the mean Mδx and
variance Vδx of the change of gene frequency per generation. Mδx will usually
depend on the specifics of the model that produces the change in the gamete
pool (mutation, migration, selection, etc.), while Vδx is almost always given
by the effects of binomial sampling. It is important to note that neither Mδx

nor Vδx depend on time.
Write φ(x | p, t)dx to represent the conditional probability that a mutation

at frequency p goes to frequency x in time t. In this equation, p is fixed and x
is a random variable. When dx = 1

2N is substituted, f(x | p, t) = φ(x | p, t) 1
2N

gives the approximate frequency of mutations in the interval x + dx for 0 <
x < 1 [54]. As discussed in [54], φ(x | p, t) is the solution to the Kolmogorov
forward equation

∂φ(x | p, t)
∂t

=
1
2

∂2

∂x2 {Vδxφ(x | p, t)} − ∂

∂x
{Mδxφ(x | p, t)} . (4.15)

A very useful consequence of (4.15) is that we can solve for the stationary
or time-independent solution (if it exists) of φ(x | p) by setting ∂φ(x|p,t)

∂t = 0,

φ(x) =
C

Vδx
exp
(

−2
∫

Mδx

Vδx

)
, (4.16)

where C is a constant chosen so that
∫

φ(x)dx = 1. The time-independent
solution of (4.15) was first found by Sewall Wright [117].

Example 4.1: Reversible mutation neutral model

Consider a neutral model with reversible mutation so that A1 → A2 at rate µ
and A2 → A1 at rate ν per generation. Let xt represent the frequency of the
A1 allele at time t,

xt+1 = (1 − xt)ν − xtµ ,

implying that Mδx = (1 − x)ν − x(1 + µ). The variance of the change in gene
frequency is
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Vδx =
x(1 − x)

2N
.

Plugging Mδx
and Vδx

into (4.16), it is relatively straightforward to show that

φ(x) = Cx4Nν−1(1 − x)4Nµ−1 .

Recognizing that this is the density of a Beta distribution with parameters
4Nν and 4Nµ, the necessary constant is C = Γ (4Nν+4Nµ)

Γ (4Nν)Γ (4Nµ) .

4.5.2 Probability of Fixation

One of the most useful applications of the diffusion approximation is to cal-
culate the probability of fixation of a mutation given its frequency in the
population. To do so, we will follow [53] and use the Kolmogorov backwards
equation to solve for φ(x | p, t). In this equation, we write the differential
equation with respect to p varying, and the model is equivalent to running
the process backwards in time (i.e., reversing the diffusion from x to p). The
Kolmogorov backwards equation is

∂φ(x | p, t)
∂t

=
Vδp

2
∂2φ(p | x, t)

∂p2 + Mδp
∂φ(x | p, t)

∂p
. (4.17)

If we substitute in x = 1, the solution to equation (4.17) gives us the probabil-
ity of a mutation reaching fixation by time t given an initial frequency p. We
will follow Kimura [54] and refer to this probability as u(p, t). The boundary
conditions for solving (4.17) are u(0, t) = 0 (i.e., probability of reaching 1
before 0 is 0 if p = 0) and u(1, t) = 1.

Again, following [54], by letting t tend towards infinity, we can find the
probability of ultimate fixation:

u(p) = lim
t→∞ u(p, t) .

For the probability of ultimate fixation, u(p), the left-hand side of (4.17) is 0,
and thus the solution satisfies

0 =
Vδp

2
d2u(p)

dp2 + Mδp
du(p)

dp
.

Kimura [53] showed that the solution to this equation is

u(p) =

∫ p

0 G(x)dx∫ 1
0 G(x)dx

,

where

G(x) = exp
(

−2
∫

Mδx

Vδx
dx

)
.
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4.5.3 No Selection

Recall that in the case of no mutation and no selection, Mδx = 0 and Vδx =
x(1−x)

2N . This implies that G(x) = 1 and u(p) = p. This is the exact result we
derived in a different way above, which states that the probability of ultimate
fixation of a neutral mutation is given simply by its frequency.

4.5.4 Genic Selection

In the case of genic selection, h = 0.5 and the fitnesses of the individual
genotypes are {1, 1 + s, 1 + 2s}. Letting x be the frequency of the selected
allele,

Mδx =
x2(1 + 2s) + (1 + s)x(1 − x)

w̄
− x =

sx(1 − x)
1 + 2xs

.

If s is small, Mδx ≈ sx(1 − x), G(x) = exp(−4Nsx), and u(p | s) =
1−exp(−4Nsp)
1−exp(−4Ns) . This implies that the probability of fixation of a new muta-
tion is

u

(
1

2N
| s

)
=

1 − e−2s

1 − e−4Ns
≈ 2s

1 − e−4Ns

using the fact that ex ≈ 1 + x if x is small.
Since the mutation process for both selected and neutral mutations is Pois-

son, their relative substitution rates are given by the ratio of the probabilities
of fixation assuming independence among sites. Let ω equal the ratio of the
probability of fixation of a selected mutation per selected site relative to the
probability of fixation of a neutral mutation per neutral site:

ω =
fsu(p | s �= 0)
f0u(p | s = 0)

=
fs

f0

2s
1−e−4Ns

1
2N

=
fs

f0

2γ

1 − e−2γ
.

As previously mentioned, ω can be interpreted as the expected dn/ds ratio
assuming silent mutations are neutral. We will assume f0 = fs for the remain-
der of the chapter (for coding DNA). As we see from Figures 4.1, 4.3, and 4.5,
even modest amounts of natural selection can have a profoundly strong effect
on rates of substitution. For example, it has been estimated that the historical
effective population size of humans is close to N = 105 (for a review, see [106]).
This implies that sites where a mutation would lower the expected number
of offspring an individual contributes to the next generation by as little as
0.0025% (γ = −5) would not evolve at any appreciable rate (ω < 0.01).

In the case of positive genic selection, as s becomes large, the probability
of ultimate fixation for a new mutation is well-approximated by u ≈ 2s and
the expected ratio of substitution rates for selected to neutral mutations by
ω ≈ 2γ. This implies that if mutations at some class of sites increased the
expected number of offspring by as little as 0.0025% (γ = 5), they would
evolve at 10 times the rate of neutral mutations.
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Fig. 4.3. Effect of dominance and selection on rates of molecular evolution.

4.5.5 Dominance

In the case of general selection, it follows directly from the Wright-Fisher
model that Mδx ≈ s(h + (1 − 2h)x)x(1 − x) if s is small. This implies that
G(x) = exp(−4Nshx + 2Ns(1 − 2h)x2) and

u(p) =

∫ p

0 e−2γshx+γ(1−2h)x2
dx∫ 1

0 e−2γshx+γ(1−2h)x2dx
.

This integral can be evaluated numerically to investigate the effect of het-
erozygous fitness on rates of molecular evolution. As we see from Figure 4.3,
the most profound effects occur when mutations are selectively favored (γ > 0)
and produce heterozygote advantage (h > 1). This condition is known as over-
dominance and such a mutation is said to be subject to balancing selection. In
an infinitely large population, overdominance leads to a stable equilibrium in
gene frequency such that both alleles are maintained in the population indef-
initely. In a finite population, though, higher heterozygote fitness translates
into a higher substitution rate relative to neutrality as well as relative to genic
selection (h = 0.5). The reason for these perplexing results is that having a
high heterozygote fitness decreases the probability that a mutation will be lost
from the population and thus increases the probability that it will ultimately
become fixed in the population.

Another interesting case to consider is that of a mutation whose fitness
relative to the wildtype depends on whether it is in heterozygous or homozy-
gous form (h = −0.50). If the mutation is deleterious in homozygous form but
advantageous in heterozygous form, the mutation will have a slightly higher
rate of fixation relative to the case when the heterozygote has intermediate
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fitness (h = 0.5). Alternatively, a beneficial mutation in homozygous form
that produces heterozygotes that are less fit than either homozygote will have
a lower substitution rate. In interpreting these results, it is important to re-
member that in estimating ω we are assuming independence among sites. As
we will see below, linkage among selected sites can cause interference effects
that will counter the single-site dynamics illustrated in Figure 4.3. This is
particularly true in the case of strong dominance.

4.6 Variation in Selection Among Sites

Understanding how the distribution of selection coefficients among newly aris-
ing mutations affects the rates and patterns of molecular evolution has been
a focus of extensive research in theoretical population genetics. In a series of
papers, Tomoko Ohta (along with Kimura) [81, 76, 77, 78] first investigated
the molecular evolution of “nearly neutral” mutations and found that their
behavior was quite different from that of strictly neutral mutations (γ = 0).
In particular, she showed that if there is a high rate of input of slightly delete-
rious mutations (−2 < γ < 0) into a population, then this class of mutations
can contribute significantly to the overall substitution rate even though these
mutations are slightly less fit than the existing wildtype allele. As discussed in
Section 4.2, Ohta and Kimura also demonstrated that a nearly neutral model
would predict a negative correlation between population size and rate of mole-
cular evolution since natural selection is more efficient in a larger population.

The original work of Ohta and Kimura went on to inspire a plethora of
nearly neutral, nonneutral, and fluctuating-environment population genetics
theories of molecular evolution. For example, Ohta proposed the exponential-
shift model [79], where −s follows an exponential distribution among new
mutations (the term shift is used since s is relative to the wildtype allele and
the distribution must shift after an allele fixes in the population). Likewise,
Kimura [59] suggested a Gamma-shift model that conveniently had sufficient
mass near s = 0 to account for several neutral and nearly neutral predictions
[61, 31]. Ohta and Tachida [82] also proposed a fixed fitness model, where
the distribution of s was Gaussian and independent of parental type (a so-
called house-of-cards model). These models have been used to argue that if
a substantial proportion of slightly deleterious mutations are input into the
population, the rate of fixation contributes significantly to the proportion of
mutations that fix in the population. It is important to note, though, that the
conclusion comes directly from assumptions regarding the functional form of
the distribution of selective effects among sites. Since there is no biological
reason to favor one distribution over another a priori, in practical applications
it is important to be catholic on the matter and consider several potential
candidate distributions.

Recently, two methods have come on the market for estimating the distri-
bution of selective effects among new mutations. Nielsen and Yang [73] have
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developed a likelihood-based method for use with divergence data that consid-
ers ten different models (e.g., constant, normal, Gamma, exponential, normal
+ invariant). (A similar method was suggested by Felsenstein [25] but to our
knowledge not fully implemented.) Nielsen and Yang applied their model to a
data set of eight mtDNA primate genomes and found that of the models con-
sidered, a normal or Gamma-shift model with some sites held invariant was
the best fit to data (and significantly better than an exponential distribution
[79]). Likewise, Stanley Sawyer and colleagues have developed a method for
fitting a normal-shift model to polymorphism and divergence data [90] and
applied it to 56 loci with polymorphism from Drosophila simulans and diver-
gence data relative to a D. melanogaster reference strain. In these models, it
is assumed that selection coefficients at a given site are constant in time and
do not depend on the nucleotide present. Below we present a brief analysis of
the normal-shift model and discuss the findings of Nielsen and Yang [73] and
Sawyer et al. [90] in light of the analysis.

4.6.1 Normal Shift

Assume that we starts a Poisson number of Wright-Fisher processes at rate
2Nµ per generation and that these processes do not interfere with one another.
The number of processes that fix for the selected mutation in some interval
of time t will be Poisson with rate

E(K | γ) = 2Nµtu(s)

= µt
2γ

1 − e−2γ

= µtk(γ).

Likewise, if mutations have a distribution of selection coefficients such that
the probability that a mutation has selection coefficient γ is governed by f(γ),
then the number of mutations that fix will be Poisson with rate

E(K) = µt

∫ ∞

−∞
k(γ)f(γ)dγ . (4.18)

We can now calculate some statistics of interest. For example, the distri-
bution of selection coefficients among fixed mutations (f is for “fixed”) is

pf (γ) =
k(γ)f(γ)dγ∫∞

−∞ k(γ)f(γ)dγ
. (4.19)

This implies that the average selection coefficient of substitutions can be easily
computed as

Ef (γ) =
∫ ∞

−∞
γpf (γ)dγ . (4.20)
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Fig. 4.4. A Gaussian model (“normal shift”) for the distribution of selection co-
efficients among mutations [90]. In this example, the selection coefficient of new
mutations is normally distributed with mean µ = −7 and standard deviation σ = 5.
In this example, 68.9% of substitutions are adaptive (dark grey area), 30.7% are
nearly neutral, and 0.4% are deleterious.

Likewise, the proportion of fixed differences that are nearly neutral (using the
definition of nearly neutral as −2 ≤ γ ≤ 2) is

pf (−2 ≤ γ ≤ 2) =

∫ 2
−2 k(γ)f(γ)dγ∫∞
−∞ k(γ)f(γ)dγ

(4.21)

and the proportion of fixed differences that are positively selected (and not
nearly neutral) is given by the tail probability

pf (γ > 2 | ζ) =

∫∞
2 k(γ)f(γ)dγ∫∞
−∞ k(γ)f(γ)dγ

. (4.22)

In Figures 4.4 and 4.5, we explore the effects of a Gaussian model for the
distribution of selection coefficients among newly arising mutations. In Figure
4.4, mutations are assumed to follow a normal distribution with mean µ = −7
and standard deviation σ = 5. Using (4.21) and (4.22), we can estimate the
proportion of substitutions that are nearly neutral and adaptive via standard
numerical integration (grey areas under the solid curve in Figure 4.4). We note
that in this example the vast majority of mutations are deleterious (> 91%
are below 0), while most of the substitutions (fixed differences) are positively
selected: 92.8% are above γ = 0, and 68.3% have a selection coefficient above
γ = 2. The average selection coefficient of fixed mutations is a (surprisingly)
high γ = 3.49.
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Fig. 4.5. Effect of variance in the distribution of selection coefficients among newly
arising mutations on rates of molecular evolution. In this figure, µ is the mean of
the distribution of selective effects.

Fig. 4.6. Proportion of adaptive substitutions (s > 1
N

) as a function of the mean
of the distribution of selection coefficients for new mutations µ and standard devi-
ation σ. The black point represents the estimated mean and variance for a typical
Drosophila gene [90].

The fact that mutations differ in their selective effects also has a strong
implication for interpreting the ω ratio. In Figure 4.5, we plot the expected ω
ratio for varying levels of selection (where the x-axis is the average selected ef-
fect of the new mutation) and variability among mutations assuming fs = f0,
where σ corresponds to the standard deviation of selection coefficients among
new mutations. In the case of moderate variance σ = 6, as long as the average
selective effect of newly arising mutations is greater than −5, the ω ratio will
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Fig. 4.7. Proportion of nearly neutral substitutions (|s| ≤ 1
N

) as a function of the
mean of the distribution of selection coefficients for new mutations µ and standard
deviation σ. The black point represents the estimated mean and variance for a typical
Drosophila gene [90].

be greater than 1 (even though most mutations are deleterious). This explains
a perplexing phenomenon that is observed in day-to-day analysis of DNA se-
quence evolution: namely, how it is that one can detect positive selection in
the first place if most of the amino acid sites in a protein are rather con-
strained. The answer is that natural selection is extremely efficient at fixing
even slightly favored mutations, so that as long as there is some reasonable
fraction of mutations that are adaptive, the average rate of fixation for se-
lected sites (e.g., amino acid sites) may outstrip the neutral rate of evolution.
In Figure 4.6, we plot the proportion of fixed differences that are adaptive
as a function of both the average selective effect of new mutations (µ) and
standard deviation (σ). We note that as long as the standard deviation among
newly arising mutations is greater than 6, most of the substitutions will be
adaptive even if, on average, mutations are extremely deleterious. The com-
parable contour plot for nearly neutral mutations is given in Figure 4.7. These
simple results bolster the idea that comparing the rate of substitution for dif-
ferent types of sites in protein-coding genes is an effective way of detecting
positively selected sites.

The results of Sawyer et al. [90] bear a strong resemblance to the pattern
we have just described. They estimated the distribution of selective effects
among new mutations in a typical Drosophila gene to have mean µ = −7.31
and σ = 6.79. This implies that close to 97.1% of amino substitutions in a
typical Drosophila nuclear gene are of positively selected mutations (γ > 0),
with 84.7% being clearly adaptive, γ ≥ 2; see (4.22). Furthermore, close to
15.2% of substitutions are of “nearly neutral” mutations (−2 ≤ γ ≤ 2), with
only 2.7% being “slightly deleterious” (−2 ≤ γ ≤ 0) mutations while 12.4% are
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“slightly advantageous” (0 ≤ γ ≤ 2). Lastly, the average selection coefficient
of substituting mutations is 5.67; see (4.20). The black disks in Figures 4.6 and
4.7 correspond to the Sawyer et al. estimate of µ and σ for Drosophila. These
results are consistent with previous findings of adaptive protein evolution in
Drosophila (e.g., [95, 24, 8, 84]).

4.6.2 Linkage

One interpretation of the normal-shift model is that of “Darwin’s wedge” at
a molecular level [90]. As Darwin wrote in The Origin of Species [20, cp. 3]

In looking at Nature, it is most necessary to keep the foregoing con-
siderations always in mind never to forget that every single organic
being around us may be said to be striving to the utmost to increase
in numbers... . The face of Nature may be compared to a yielding sur-
face, with ten thousand sharp wedges packed close together and driven
inwards by incessant blows, sometimes one wedge being struck, and
then another with greater force.

In this passage, Darwin views natural selection as competition for fixed re-
sources leading to rapid turnover of species. That is, one wedge forces another
out in order to fix its claim to a space in a cramped environment. At a mole-
cular level, the metaphor works well: a slightly favored mutation sweeping
through the population acts as a wedge to displace the existing alleles at a
given locus. The efficacy of such a wedging scheme, of course, is predicated
upon the frequency of favored wedges. If there are too many favored muta-
tions competing for fixation at a given locus, they will knock each other out
of competition and the efficacy of selection can be greatly reduced. In many
ways, the fact that one can detect positive selection in the face of interfer-
ence among selected sites is in fact stronger evidence for a selective model of
molecular evolution. That is to say, if one estimates that the average selec-
tion coefficient of fixed mutations is γ = 5.67 in the presence of interference,
the true selection coefficient on the mutation must be higher. There is rela-
tively strong support for the view that linkage can affect rates and patterns
of substitution for selected mutations [7, 42, 15, 36, 37].

For example, Birky and Walsh [7] have shown analytically and via sim-
ulation that linked selected mutation negatively interferes so as to increase
the rate of substitution of deleterious mutations and to decrease the rate of
substitution of advantageous mutations. They attribute this phenomenon to
a reduction in the effective population size through an increase in the vari-
ance of offspring among individuals. As we saw in Section 4.5, if the effective
population size of a species is reduced, genetic drift begins to play a more
prominent role in determining the evolutionary fate of mutations.

The predictions of interference selection hypotheses have gained strong
support in recent years. For example, Comeron and Kreitman used analytical,
simulation, and genomic analyses to demonstrate that interference selection
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can explain patterns of codon usage and intron size in Drosophila [15]. Like-
wise, a prediction of the interference hypothesis is that rates of adaptive evo-
lution should be reduced in regions of low recombination since the tighter the
linkage among favored mutations, the stronger the interference effects. There
is experimental evidence that regions of low recombination in Drosophila do,
in fact, show a reduction in the rate of adaptive evolution [93, 5], as do non-
recombining mitochondria [111, 84]. Likewise, if we consider the analysis of
Nielsen and Yang [73], they estimate a distribution of selective effects among
mutations in primate mtDNA that has mean µ = −1.72 and σ = 0.72. For
such a model, the proportion of substitutions that have a selection coefficient
greater than γ = 0 is a quite small 6%, consistent with the view that linkage
limits the rate of adaptive evolution.

There is also important literature on the impact of linkage on rates of evo-
lution in nearly neutral and fluctuating selection models [32, 33, 34, 35, 17, 18].
Much of it has focused on analytical and simulation work for describing which
population genetics models lead to an overdispersed molecular clock. To sum-
marize all of this work, Gillespie and Cutler have shown that the overdis-
persed molecular clock cannot readily be explained by overdominance, under-
dominance, a rapidly fluctuating environment, or the nearly neutral models
presented above (although certain narrow parameter ranges can lead to an
over-dispersed clock, the models do not, in general, lead to an overdispersed
clock). Gillespie [32] has found that a slowly fluctuating environment can lead
to an over-dispersed clock if the oscillations are on the same order as the mu-
tation rate. Likewise, Cutler [17] has argued that a simple deleterious model
that shifts between a favored and a deleterious allele is sufficient to explain
the overdispersed clock.

Gillespie has also investigated the effects of linkage and selection on the
relationship between population size and the rate of molecular evolution using
extensive simulations. He has identified three domains, which he terms the
Darwin domain (ks ∝ N), the Kimura domain (ks ≈ µf0), and the Ohta
domain (ks ∝ 1

N ). Not surprisingly, he finds that the nearly neutral models
(exponential shift [79], Gamma-shift model [59], and house of cards [82]) all fall
within the Ohta domain where the rate of evolution is inversely proportional
to population size. He also finds that the normal-shift model with mean µ = 0
(Darwin’s wedge) appropriately falls in the Darwin domain, where the rate of
substitution is proportional to the population size. He also notes that the rate
of substitution for the normal-shift model is substantially reduced relative
to the expectation under the independence-among-sites model (4.18) (as one
might predict from [7]). Lastly, he finds, surprisingly, that the fluctuating
selection, neutral, and overdominance models all lead to the Kimura domain,
where the rate of molecular evolution is independent of the population size. A
mechanism that Gillespie has proposed to explain this last observation is the
theory of genetic drift, whereby positive selection on one locus leads to the
reduction of effective population size at linked neutral loci even in an infinitely
large population [36, 37].
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Lastly, Brian Charlesworth and colleagues have also shown that linkage of
neutral mutations to deleterious mutations (“background” selection) [9, 10, 11]
leads to a chronic and pronounced reduction in the local effective population
size of a chromosomal region. Recent experimental work on patterns of varia-
tion within the nonrecombining neo-sex chromosomes of Drosophila miranda
[2, 3] has confirmed some theoretical predictions of the background selection
model. Likewise, Cutler [18] has argued that the background selection hypoth-
esis is consistent with the observed overdispersed molecular clock.
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5.1 Introduction

Proteins evolve; the genes encoding them undergo mutation, and the evolu-
tionary fate of the new mutation is determined by random genetic drift as
well as purifying or positive (Darwinian) selection. The ability to analyze this
process was realized in the late 1970s when techniques to measure genetic
variation at the sequence level were developed. The arrival of molecular se-
quence data also intensified the debate concerning the relative importance of
neutral drift and positive selection to the process of molecular evolution [17].
Ever since, there has been considerable interest in documenting cases of mole-
cular adaptation. Despite a spectacular increase in the amount of available
nucleotide sequence data since the 1970s, the number of such well-established
cases is still relatively small [9, 38]. This is largely due to the difficulty in de-
veloping powerful statistical tests for adaptive molecular evolution. Although
several powerful tests for nonneutral evolution have been developed [33], sig-
nificant results under such tests do not necessarily indicate evolution by pos-
itive selection.

A powerful approach to detecting molecular evolution by positive selection
derives from comparison of the relative rates of synonymous and nonsynony-
mous substitutions [22]. Synonymous mutations do not change the amino
acid sequence; hence their substitution rate (dS) is neutral with respect to se-
lective pressure on the protein product of a gene. Nonsynonymous mutations
do change the amino acid sequence, so their substitution rate (dN ) is a func-
tion of selective pressure on the protein. The ratio of these rates (ω = dN/dS)
is a measure of selective pressure. For example, if nonsynonymous mutations
are deleterious, purifying selection will reduce their fixation rate and dN/dS

will be less than 1, whereas if nonsynonymous mutations are advantageous,
they will be fixed at a higher rate than synonymous mutations, and dN/dS

will be greater than 1. A dN/dS ratio equal to one is consistent with neutral
evolution.
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With the advent of genome-scale sequencing projects, we can begin to
study the mechanisms of innovation and divergence in a new dimension. Un-
doubtedly, new examples of adaptive evolution will be uncovered; however, we
will also be able to study the process of molecular adaptation in the context of
the amount and nature of genomic change involved. Statistical tools such as
maximum likelihood estimation of the dN/dS ratio [13, 24] and the likelihood
ratio test for positively selected genes [26, 34] will be valuable assets in this
effort. Hence, the objective of this chapter is to provide an overview of some
recent developments in statistical methods for detecting adaptive evolution as
implemented in the PAML package of computer programs.

5.1.1 The PAML Package of Programs

PAML (for Phylogenetic Analysis by Maximum Likelihood) is a package
of programs for analysis of DNA or protein sequences by using maximum
likelihood methods in a phylogenetic framework [36]. The package, along
with documentation and source codes, is available at the PAML Web site
(http://abacus.gene.ucl.ac.uk/software/paml.html). In this chapter, we illus-
trate selected topics by analysis of example datasets. The sequence align-
ments, phylogenetic trees, and the control files for running the program are
all available at ftp://abacus.gene.ucl.ac.uk/pub/BY2004SMME/. Readers are
encouraged to retrieve and analyze the example datasets themselves as they
proceed through this chapter.

The majority of analytical tools discussed here are implemented in the
codeml program in the PAML package. Data analysis using codeml and the
other programs in the PAML package are controlled by variables listed in a
“control file.” The control file for codeml is called codeml.ctl and is read
and modified by using a text editor. Options that do not apply to a particular
analysis can be deleted from a control file. Detailed descriptions of all of
codeml’s variables are provided in the PAML documentation. Below we list a
sample file showing the important options for codon-based analysis discussed
in this chapter.

seqfile = seqfile.txt * sequence data filename
treefile = tree.txt * tree structure filename
outfile = out.txt
runmode = 0 * 0:user defined tree; -2:pairwise comparison
seqtype = 1 * 1:codon models; 2: amino acid models

CodonFreq = 2 * 0:equal, 1:F1X4, 2:F3X4, 3:F61
model = 0 * 0:one-w for all branches; 2: w’s for branches

NSsites = 0 * 0:one-rtio; 1:neutral; 2:selection; 3:discrete;
* 7:beta; 8:beta&w

icode = 0 * 0:universal code
fix_kappa = 0 * 1:kappa fixed, 0:kappa to be estimated

kappa = 2 * initial or fixed kappa
fix_omega = 0 * 1:omega fixed, 0:omega to be estimated

omega = 5 * initial omega
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5.2 Maximum Likelihood Estimation of Selective
Pressure for Pairs of Sequences

5.2.1 Markov Model of Codon Evolution

A Markov process is a simple stochastic process in which the probability of
change from one state to another depends on the current state only and not
on past states. Markov models have been used very successfully to describe
changes between nucleotides, codons, or amino acids [10, 18, 13]. Advantages
of a codon model include the ability to model biologically important prop-
erties of protein-coding sequences such as the transition to transversion rate
ratio, the dN/dS ratio, and codon usage frequencies. Since we are interested
in measuring selective pressure by using the dN/dS ratio, we will consider
a Markov process that describes substitutions between the 61 sense codons
within a protein- coding sequence [13]. The three stop codons are excluded
because mutations to stop codons are not tolerated in a functional protein-
coding gene. Independence among the codon sites of a gene is assumed, and
hence the substitution process can be considered one codon site at a time.
For any single codon site, the model describes the instantaneous substitu-
tion rate from codon i to codon j, qij . Because transitional substitutions are
known to occur more often than transversions, the rate is multiplied by the
κ parameter when the change involves a transition; the κ parameter is the
transition/transversion rate ratio. Use of codons within a gene also can be
highly biased, and consequently the rate of change from i to j is multiplied
by the equilibrium frequency of codon j (πj). Selective constraints acting
on substitutions at the amino acid level affect the rate of change when that
change represents a nonsynonymous substitution. To account for this level
of selective pressure, the rate is multiplied by the ω parameter if the change
is nonsynonymous; the ω parameter is the nonsynonymous/synonymous rate
ratio (dN/dS). Note that only selection on the protein product of the gene
influences ω.

The substitution model is specified by the instantaneous rate matrix, Q =
{qij}, where

qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0, if i and j differ at two or three codon positions,
µπj , if i and j differ by a synonymous transversion,
µκπj , if i and j differ by a synonymous transition,
µωπj , if i and j differ by a nonsynonymous transversion,
µκωπj , if i and j differ by a nonsynonymous transition.

(5.1)

The diagonal elements of the matrix Q are defined by the mathematical
requirement that the row sums be equal to zero. Because separate estimation
of the rate (µ) and time (t) is not possible, the rate (µ) is fixed so that the
expected number of nucleotide substitutions per codon is equal to one. This
scaling allows us to measure time (t) by the expected number of substitutions
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per codon (i.e. genetic distance). The probability that codon i is substituted
by codon j after time t is pij(t), and P (t) = pij(t) = eQt. The above is a de-
scription of the basic codon model of Goldman and Yang [13]. A similar model
of codon substitution was proposed by Muse and Gaut [24] and is implemented
in codeml as well as in the program HyPhy (http://www.hyphy.org/).

5.2.2 Maximum Likelihood Estimation of the dN/dS Ratio

We can estimate ω by maximizing the likelihood function using data of
two aligned sequences. Suppose there are n codon sites in a gene, and a
certain site (h) has codons CCC and CTC. The data at site h, denoted
xh = {CCC, CTC}, are related to an ancestor with codon k by branch lengths
t0 and t1 (Figure 5.1(a)). The probability of site h is

f(xh) =
∑

k

πkpk,CCC(t0)pk,CTC(t1) = πCCCpCCC,CTC(t0 + t1). (5.2)

Fig. 5.1. Rooted (a) and unrooted (b) trees for a pair of sequences. Under reversible
codon models, the root is unidentifiable; hence, only the sum of the branch lengths,
t = t0 + t1, is estimable.

Since the ancestral codon is unknown, the summation is over all 61 possible
codons for k. Furthermore, as the substitution model is time-reversible, the
root of the tree can be moved around, say, to species 1, without changing
the likelihood. Thus t0 and t1 cannot be estimated individually, and only
t0 + t1 = t is estimated (Figure 5.1(b)).

The log-likelihood function is a sum over all codon sites in the sequence

�(t, κ, ω) =
n∑

h=1

log f(xh). (5.3)
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Codon frequencies (πi’s) can usually be estimated by using observed base
or codon frequencies. The ω parameter and parameters κ and t are estimated
by maximizing the log- likelihood function. Since an analytical solution is not
possible, numerical optimization algorithms are used.

5.2.3 Empirical Demonstration: Pairwise Estimation of the dN/dS

Ratio for GstD1

In this section, we use a simple data set and the codeml program to illus-
trate maximum likelihood estimation of ω. The data set is GstD1 genes of
Drosophila melanogaster and D. simulans. The alignment has 600 codons.
Our first objective is to evaluate the likelihood function for a variety of fixed
values for the parameter ω. Codeml uses a hill-climbing algorithm to maxi-
mize the log-likelihood function. In this case, we will let codeml estimate κ
(fix kappa = 0 in the control file codeml.ctl) and the sequence distance
t, but with parameter ω fixed (fix omega = 1). All that remains is to run
codeml several times, each with a different value for omega in the control file;
the data in Figure 5.2 show the results for ten different values of ω. Note
that the maximum likelihood value for ω appears to be roughly 0.06, which is
consistent with purifying selection, and that values greater than 1 have much
lower likelihood scores.

Our second objective is to allow codeml to use the hill-climbing algorithm
to maximize the log-likelihood function with respect to κ, t, and ω. Thus we
use fix omega = 1 and can use any positive value for omega, which is used
only as a starting value for the iteration. Such a run gives the estimate of ω
of 0.067.

Alternatives to maximum likelihood estimates of ω are common [25, 15,
39]. Those methods count the number of sites and differences and then apply
a multiple-hit correction, and they are termed the counting methods. Most of
them make simplistic assumptions about the evolutionary process and apply
ad hoc treatments to the data that can’t be justified [23, 39]. Here we use
the GstD1 sequences to explore the effects of (i) ignoring the transition to
transversion rate ratio (fix kappa = 1; kappa = 1); (ii) ignoring codon us-
age bias (CodonFreq = 0); and (iii) alternative treatments of unequal codon
frequencies (CodonFreq = 2 and CodonFreq = 3). Note that for these data
transitions are occurring at higher rates than transversions, and codon fre-
quencies are very biased, with average base frequencies of 6% (T), 50% (C),
5% (A), and 39% (G) at the third position of the codon. Thus, we expect
estimates that account for both biases will be the most reliable.

Results of our exploratory analyses (Table 5.2.3) indicate that model as-
sumptions are very important for these data. For example, ignoring the transi-
tion to transversion ratio almost always led to underestimation of the number
of synonymous sites (S), overestimation of dS , and underestimation of ω. This
is because transitions at the third codon positions are more likely to be syn-
onymous than are transversions [19]. Similarly, biased codon usage implies
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Fig. 5.2. Log-likelihood as a function of the ω parameter for a pair of GstD1 genes
from Drosophila melanogaster and D. simulans. The maximum likelihood estimate
of ω is the value that maximizes the likelihood function. Since an analytical solution
is not possible, the codeml program uses a numerical hill-climbing algorithm to
maximize l. For these data, the maximum likelihood estimate of ω is 0.067, with a
maximum likelihood of -756.57.

unequal substitution rates between the codons, and ignoring it also leads to
biased estimates of synonymous and nonsynonymous substitution rates. In
real data analysis, codon usage bias was noted to have an even greater impact
than the transition/transversion rate ratio and is opposite to that of ignoring
transition bias. This is clearly indicated by the sensitivity of S to codon bias,
where S in this gene (45.2) is less than one-third the expected value under
the assumption of no codon bias (S = 165.8). The estimates of ω differ by as
much as 4.7-fold (Table 5.2.3). Note that these two sequences differed at just
3% of sites.

For comparison, we included estimates obtained from two counting meth-
ods. The method of Nei and Gojobori [25] is similar to ML ignoring transition
bias and codon bias, whereas the method of Yang and Nielsen [39] is similar to
ML accommodating transition bias and codon bias (F3×4). Note that estima-
tion according to Nei and Gojobori [25] was accomplished by using the codeml
program and according to Yang and Nielsen [39] by using the YN00 program
of PAML. What is clear from these data is that when sequence divergence is
not too great, assumptions appear to matter more than methods, with ML
and the counting methods giving similar results under similar assumptions.
This result is consistent with simulation studies examining the performance of
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Table 5.1. Estimation of dS and dN between Drosophila melanogaster and D.
simulans GstD1 genes.

Method κ S N dS dN ω �

ML methods
Fequal, κ = 1 1 152.9 447.1 0.0776 0.0213 0.274 -927.18
Fequal, κ estimated 1.88 165.8 434.2 0.0221 0.0691 0.320 -926.28
F3×4, κ = 1 1 70.6 529.4 0.1605 0.0189 0.118 -844.51
F3×4, κ estimated 2.71 73.4 526.6 0.1526 0.0193 0.127 -842.21
F61, κ = 1 1 40.5 559.5 0.3198 0.0201 0.063 -758.55
F61, κ estimated 2.53 45.2 554.8 0.3041 0.0204 0.067 -756.57

Counting methods
Nei and Gojobori 1 141.6 458.4 0.0750 0.0220 0.288
Yang and Nielsen (F3×4) 3.28 76.6 523.5 0.1499 0.0190 0.127

different estimation methods [39]. However, as sequence divergence increases,
ad hoc treatment of the data can lead to serious estimation errors [23, 8].

5.3 Phylogenetic Estimation of Selective Pressure

Adaptive evolution is very difficult to detect using the pairwise approach to
estimating the dN/dS ratio. For example, a large-scale database survey identi-
fied less than 1% of genes (17 out of 3595) as evolving under positive selective
pressure [9]. The problem with the pairwise approach is that it averages selec-
tive pressure over the entire evolutionary history separating the two lineages
and over all codon sites in the sequences. In most functional genes, the major-
ity of amino acid sites will be subject to strong purifying selection [31, 6], with
only a small fraction of the sites potentially targeted by adaptive evolution
[11]. In such cases, averaging the dN/dS ratio over all sites will yield values
much less than one, even under strong positive selective pressure at some
sites. Moreover, if a gene evolved under purifying selection for most of that
time, with only brief episodes of adaptive evolution, averaging over the his-
tory of two distantly related sequences would be unlikely to produce a dN/dS

ratio greater than one [4]. Clearly, the pairwise approach has low power to
detect positive selection. Power is improved if selective pressure is allowed to
vary over sites or branches [37, 40]. However, increasing the complexity of the
codon model in this way requires that likelihood be calculated for multiple
sequences on a phylogeny.
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5.3.1 Likelihood Calculation for Multiple Sequences on a
Phylogeny

Likelihood calculation on a phylogeny (Figure 5.3) is an extension of the
calculation for two lineages. As in the case of two sequences, the root cannot
be identified and is fixed at one of the ancestral nodes arbitrarily. For example,
given an unrooted tree with four species and two ancestral codons, k and g,
the probability of observing the data at codon site h, xh = {x1, x2, x3, x4}
(Figure 5.3), is

f(xh) =
∑

k

∑
g

{πkpkx1(t1)pkx2(t2)pkg(t0)pgx3(t3)pgx4(t4)} . (5.4)

Fig. 5.3. An unrooted phylogeny for four sequences. As in the case of two sequences,
the root cannot be identified. For the purpose of likelihood calculation, the root is
fixed at one of the ancestral nodes arbitrarily, and t0, t1, t2, t3, and t4 are estimable
parameters in the model.

The quantity in the brackets is the contribution to the probability of ob-
serving the data by ancestral codons k and g at the two ancestral nodes. For
an unrooted tree of N species, with N − 2 ancestral nodes, the data at each
site will be a sum over 61N−2 possible combinations of ancestral codons. The
log-likelihood function is a sum over all codon sites in the alignment

� =
n∑

h=1

log{f(xh)}. (5.5)

As in the two-species case, numerical optimization is used to maximize
the likelihood function with respect to κ, ω, and the (2N − 3) branch-length
parameters (t’s).

5.3.2 Modelling Variable Selective Pressure among Lineages

Adaptive evolution is most likely to occur in an episodic fashion. For exam-
ple, functional divergence of duplicated genes [43, 29, 5], colonization of a
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host by a parasitic organism [16], or colonization of a new ecological niche
[21] all seem to occur at particular time points in evolutionary history. To
improve detection of episodic adaptive evolution, Yang [37] (see also [24]) im-
plemented models that allow for different ω parameters in different parts of a
phylogeny. The simplest model, described above, assumes the same ω ratio for
all branches in the phylogeny. The most general model, called the “free-ratios
model,” specifies an independent ω ratio for each branch in a phylogeny. In
the codeml program, users can specify an intermediate model, with indepen-
dent ω parameters for different sets of branches. Modelling variable selective
pressure involves a straightforward modification of the likelihood computa-
tion [37]. Consider the example tree of fig. 5.4. Suppose we suspect selective
pressure has changed in one part of this tree, perhaps due to positive selective
pressure. To model this, we specify independent ω ratios (ω0 and ω1) for the
two different sets of branches (Figure 5.4). The transition probabilities for the
two sets of branches are calculated from different rate matrices (Q) generated
by using different ω ratios. Under this model (Figure 5.4), the probability of
observing the data at codon site xh is

f(xh) =
∑

k

∑
g

πkpkx1(t1; ω0)pkx2(t2; ω0)pkg(t0; ω0)pgx3(t3; ω1)pgx4(t4; ω1).

(5.6)
The log-likelihood function remains a sum over all sites but is now max-

imized with respect to ω0 and ω1, as well as branch lengths (t’s) and κ. ω
parameters for user-defined sets of branches are specified by model = 2 in
the control file and by labelling branches in the tree, as described in the
PAML documentation.

Fig. 5.4. Four-taxon phylogeny with variable ω ratios among its branches. The
likelihood of this tree is calculated according to Yang [37], where the two indepen-
dent ω ratios (ω0 and ω1) are used to calculate rate matrices (Q) and transition
probabilities for the different branches.
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5.3.3 Modelling Variable Selective Pressure among Sites

In practice, modelling variable selective pressure among sites appears to pro-
vide much greater gains in power than does modelling variable selective pres-
sure among branches [38]. This is because adaptive evolution is generally
restricted to a small subset of sites [6, 40], and the previous model for varia-
tion over branches effectively averages over all sites. Although differences in
the relative rate of nonsynonymous substitution often can be detected among
branches, averaging over sites means it is unlikely that estimated ω’s will be
greater than one. In fact, implementation of models with variable ω’s among
codon sites [26, 40, 41] has led to the detection of positive selection in many
genes for which it had not previously been observed. For example, Zanotto et
al. [42] used the models of Nielsen and Yang [26] to detect positive selection in
the nef gene of HIV-1, a gene for which earlier studies had found no evidence
for adaptive evolution [28, 7].

There are two approaches to modelling variation in ω among sites: (i) use
a statistical distribution to model the random variation in ω over sites; and
(ii) use a priori knowledge of a protein’s structural and functional domains to
partition sites in the protein and use different ω’s for different partitions. Since
structural and functional information are unknown for most proteins, a sta-
tistical distribution will be the most common approach. Collectively, Nielsen
and Yang [26] and Yang et al. [40] implemented 13 such models, available in
the codeml program. The continuous distributions are approximated by using
discrete categories. In this approach, codon sites are assumed to fall into K
classes, with the ω ratios for the site classes, and their proportions (p), esti-
mated from the data. The number of classes (K) is fixed beforehand, and the
ω’s and p’s are either treated as parameters or functions of parameters of the
ω distribution [40]. We illustrate likelihood calculation by taking the discrete
model (M3) as an example. M3 classifies codon sites into K discrete classes
(i = 0, 1, 2, . . . , K − 1), with dN/dS ratios and proportions given as:

ω0, ω1, ..., ωK−1,
p0, p1, ..., pK−1.

(5.7)

Equation (5.4) is used to compute the conditional probability f(xh|ωi) of
the data at a site, h, for each site class. Since we do not know to which class
site h belongs, we sum over both classes, giving the unconditional probability

f(xh) =
K−1∑
i=0

pif(xh|ωi). (5.8)

In this way, the unconditional probability is an average over the site classes
of the ω distribution. Still, assuming that the substitution process at individ-
ual codon sites is independent, the log-likelihood function is a sum over all
sites in the sequence:
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� =
n∑

h=1

log{f(xh)}. (5.9)

The log-likelihood is now maximized as a function of the parameters of
the ω distribution, branch-lengths (t), and κ.

With the second approach, we used knowledge of a protein’s structural
or functional domains to classify codon sites into different partitions with
different ω’s. Since we assume site independence, the likelihood calculation is
straightforward; the transition probabilities in equation (5.4) are computed
by using the appropriate ω parameter for each codon site. By taking this
approach, we are effectively assuming our knowledge of the protein is without
error; hence, we do not average over site classes for each site [41].

5.4 Detecting Adaptive Evolution in Real Data Sets

Maximum likelihood estimation of selective pressure is only one part of the
problem of detecting adaptive evolution in real data sets. We also need the
tools to rigorously test hypotheses about the nature of selective pressure. For
example, we might want to test whether dN is higher than dS (i.e., ω > 1).
Fortunately, we can combine estimation of selective pressure with a formal
statistical approach to hypothesis testing, the likelihood ratio test (LRT).
Combined with Markov models of codon evolution, the LRT provides a very
general method for testing hypotheses about protein evolution, including: (i) a
test for variation in selective pressure among branches; (ii) a test for variation
in selective pressure among sites; and (iii) a test for a fraction of sites evolving
under positive selective pressure. In the case of a significant LRT for sites
evolving under positive selection, we use Bayes or empirical Bayes methods
to identify positively selected sites in an alignment. In the following section,
we provide an introduction to the LRT and Bayes’ theorem and provide some
empirical demonstrations of their use on real data.

5.4.1 Likelihood Ratio Test (LRT)

The LRT is a general method for testing assumptions (model parameters)
through comparison of two competing hypotheses. For our purposes, we will
only consider comparisons of nested models; that is, where the null hypothesis
(H0) is a restricted version (special case) of the alternative hypothesis (H1).
Note that the LRT only evaluates the differences between a pair of models,
and any inadequacies shared by both models remain untested. Let �0 be the
maximum log-likelihood under H0 with parameters θ0, and let �1 be the max-
imum log-likelihood under H1 with parameters θ1. The log-likelihood statistic
is defined as twice the log likelihood difference between the two models,

2∆� = 2(�1(θ̂1) − �0(θ̂0)). (5.10)



114 Joseph P. Bielawski and Ziheng Yang

If the null hypothesis is true, 2∆� will be asymptotically χ2 distributed with
the degree of freedom equal to the difference in the number of parameters
between the two models.

Use of the χ2 approximation to the likelihood ratio statistic requires that
certain conditions be met. First, the hypotheses must be nested. Second, the
sample must be sufficiently large; the χ2 approximation fails when too few data
are used. Third, H1 may not be related to H0 by fixing one or more of its
parameters at the boundary of parameter space. This is called the “boundary”
problem, and the LRT statistic is not expected to follow a χ2 distribution in
this case [30]. When the conditions above are not met, the exact distribution
can be obtained by Monte Carlo simulation [12, 1], although this can be a
computationally costly solution.

5.4.2 Empirical Demonstration: LRT for Variation in Selective
Pressure among Branches in Ldh

The Ldh gene family is an important model system for molecular evolution
of isozyme multigene families [20]. The paralogous copies of lactate dehydro-
genase (Ldh) genes found in mammals originated from a duplication near the
origin of vertebrates (Ldh-A and Ldh-B) and a later duplication near the ori-
gin of mammals (Figure 5.5; Ldh-A and Ldh-C ). Li and Tsoi [20] found that
the rate of evolution had increased in mammalian Ldh-C sometime following
the second duplication event. An unresolved question about this gene family is
whether the increased rate of Ldh-C reflects (i) a burst of positive selection for
functional divergence following the duplication event, (ii) a long-term change
in selective pressure, or (iii) simply an increase in the underlying mutation
rate of Ldh-C. In the following, we use the LRT for variable ω ratios among
branches to test these evolutionary scenarios.

The null hypothesis (H0) is that the rate increase in Ldh-C is simply
due to an underlying increase in the mutation rate. If the selective pressure
was constant and the mutation rate increased, the relative fixation rates of
synonymous and nonsynonymous mutations (ω) would remain constant over
the phylogeny, but the overall rate of evolution would increase in Ldh-C. One
alternative to this scenario is that the rate increase in Ldh-C was due to a
burst of positive selection following gene duplication (H1). A formal test for
variation in selective pressure among sites may be formulated as follows:

H0: ω is identical across all branches of the Ldh phylogeny.
H1: ω is variable, being greater than 1 in branch C0 of Figure 5.5.
Because H1 can be transformed into H0 by restricting ωC0 to be equal

to the ω ratios for the other branches, we can use the LRT. The estimate of
ω under the null hypothesis, as an average over the phylogeny in Figure 5.5,
was 0.14, indicating that evolution of Ldh-A and Ldh-C was dominated by
purifying selection. The LRT suggests that selective pressure in Ldh-C imme-
diately following gene duplication (0.19) was not significantly different from
the average over the other branches (Table 5.2). Hence, we found no evidence
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Fig. 5.5. A phylogenetic tree for the Ldh-A and Ldh-C gene families. The tree
was obtained by a neighbor-joining analysis of a codon sequence alignment under
the HKY85 substitution model [14] combined with a Gamma model of rate vari-
ation among sites [35]. Branch lengths are not to scale. The Gallus (chicken) and
Sceloporus (lizard) Ldh-A sequences are pro-orthologs, as they predate the gene
duplication event. The tree is rooted with the pro-orthologous sequences for conve-
nience; all analyses were conducted by using the unrooted topology. The one ratio
model (H0) assumes uniform selective pressure over all branches. H1 is based on the
notion of a burst of positive selection in Ldh-C following the gene duplication event;
hence the assumption of one ω for branch C0 and another for all other branches.
H2 is based on the notion of increased nonsynonymous substitution in all Ldh-C
lineages following gene duplication; hence the assumption of one ω for the Ldh-C
branches (ωC0 = ωC1) and another for the Ldh-A branches (ωA0 = ωA1). H3 is based
on the notion that selective pressure changed in both Ldh-C and Ldh-A following
gene duplication, as compared with the pro-orthologous sequences; hence, one ω for
the Ldh-C branches (ωC0 = ωC1), one ω for the post-duplication Ldh-A branches
(ωA1), and one ω for the pro-orthologous branches (ωA0).
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for functional divergence of Ldh-A and Ldh-C by positive selection. It should
be noted that if functional divergence of Ldh-A and Ldh-C evolved by positive
selection for just one or a few amino acid changes, we would not observe a
large difference in ω ratios among branches.

Table 5.2. Parameter estimates under models of variable ω ratios among lineages
for the Ldh-A and Ldh-C gene families. (Note: The topology and branch-specific ω
ratios are presented in Figure 5.5. The df is 1 for the comparisons of H0 vs. H1, H0

vs. H2, and H2 vs. H3.)

Models wA0 wA1 wC1 wC0 �

H0 : wA0 = wA1 = wC1 = wC0 0.14 = wA0 = wA0 = wA0 −6018.63
H1 : wA0 = wA1 = wC1 �= wC0 0.13 = wA0 = wA0 0.19 −6017.57
H2 : wA0 = wA1 �= wC1 = wC0 0.07 = wA0 0.24 = wA1 −5985.63
H3 : wA0 �= wA1 �= wC1 = wC0 0.09 0.06 0.24 = wA1 −5984.11

Using the same approach, we tested a second alternative hypothesis, where
the rate increase in Ldh-C was due to an increase in the nonsynonymous
substitution rate over all lineages of the Ldh-C clade (see H2 in Figure 5.5).
In this case, the LRT was highly significant, and the parameter estimates for
the Ldh-C clade indicated an increase in the relative rate of nonsynonymous
substitution by a factor of 3 (Table 5.2). Lastly, we tested the hypothesis that
selective pressure differed in both Ldh-A and Ldh-C following gene duplication
(see H3 in Figure 5.5), and results of this test were not significant (Table
5.2). Collectively, these findings suggest selective pressure and mutation rates
in Ldh-A were relatively unchanged by the duplication event, whereas the
nonsynonymous rate increased in Ldh-C following the duplication event as
compared with Ldh-A.

5.4.3 Empirical Demonstration: Positive Selection in the nef Gene
in the Human HIV-2 Genome

The role of the nef gene in differing phenotypes of HIV-1 infection has been
well-studied, including identification of sites evolving under positive selective
pressure [42]. The nef gene in HIV-2 has received less attention, presumably
because HIV-2 is associated with reduced virulence and pathogenicity relative
to HIV-1. Padua et al. [27] sequenced 44 nef alleles from a study population
of 37 HIV-2-infected people living in Lisbon, Portugal. They found that nu-
cleotide variation in the nef gene, rather than gross structural change, was
potentially correlated with HIV-2 pathogenesis. In order to determine whether
the nef gene might also be evolving under positive selective pressure in HIV-
2, we analyzed those same data here with models of variable ω ratios among
sites [40].
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Following the recommendation of Yang et al. [40] and Anisimova et al. [1],
we consider the following models: M0 (one ratio), M1 (neutral), M2 (selection),
M3 (discrete), M7 (beta), and M8 (beta & ω). Models M0 and M3 were
described above. M1 (neutral) specifies two classes of sites: conserved sites
with ω = 0 and neutral sites with ω = 1. M2 (selection) is an extension of M1
(neutral), adding a third ω class that is free to take a value > 1. Version 3.14
of paml/codeml introduces a slight variation to models M1 (neutral) and M2
(selection) in that ω0 < 1 is estimated from the data rather than being fixed
at 0. Those are referred to as models M1a and M2a, also used here. Under
model M7 (beta), ω varies among sites according to a beta distribution with
parameters p and q. The beta distribution is restricted to the interval (0, 1);
thus, M1 (neutral), M1a (nearly neutral), and M7 (beta) assume no positive
selection. M8 (beta & ω) adds a discrete ω class to the beta distribution that
is free to take a value > 1. Under M8 (beta & ω), a proportion of sites p0
is drawn from a beta distribution, with the remainder (p1 = 1 − p0) having
the ω ratio of the added site class. We specified K = 3 discrete classes of
sites under M3 (discrete), and K = 10 under M7 (beta) and M8 (beta &
ω). We use an LRT comparing M0 (one ratio) with M3 (discrete) to test for
variable selective pressure among sites and three LRTs to test for sites evolving
by positive selection, comparing (i) M1 (neutral) against M2 (selection), (ii)
M1a (nearly neutral) and M2a (positive selection), and (iii) M7 (beta) against
M8 (beta & ω).

Maximum likelihood estimates of parameters and likelihood scores for the
nef gene are presented in Table 5.3. Averaging selective pressure over sites
and branches as in M0 (one ratio) yielded an estimated ω of 0.50, a result
consistent with purifying selection. The LRT comparing M0 (one ratio) against
M3 (discrete) is highly significant (2∆� = 1087.2, df = 4, P < 0.01), indicating
that the selective pressure is highly variable among sites. Estimates of ω under
models that can allow for sites under positive selection (M2, M2a, M3, M8)
indicated a fraction of sites evolving under positive selective pressure (Table
5.3). To formally test for the presence of sites evolving by positive selection,
we conducted LRTs comparing M1 and M2, M1a and M2a, and M7 and
M8. All those LRTs were highly significant; for example, the test statistic for
comparing M1 (neutral) and M2 (selection) is 2∆� = 223.58, with P < 0.01,
df = 2. These findings suggest that about 12% of sites in the nef gene of
HIV-2 are evolving under positive selective pressure, with ω between 2 and
3. It is clear from Table 5.3 that this mode of evolution would not have been
detected if ω were measured simply as an average over all sites of nef.

Models M2 (selection) and M8 (beta & ω) are known being multiple local
optima in some data sets, often with ω2 under M2 or ω under M8 to be < 1 on
one peak and > 1 on another peak. Thus it is important to run these models
multiple times with different starting values (especially different ω’s) and then
select the set of estimates corresponding to the highest peak. Indeed, the nef
dataset illustrates this issue. By using different initial ω’s, both the global and
local optima can be found.
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Table 5.3. Parameter estimates and likelihood scores under models of variable ω
ratios among sites for HIV-2 nef genes. (Note: The number after the model code,
in parentheses, is the number of free parameters in the ω distribution. The dN/dS

ratio is an average over all sites in the HIV-2 nef gene alignment. Parameters in
parentheses are not free parameters and are presented for clarity. PSS is the number
of positive selected sites, inferred at the 50% (95%) posterior probability cutoff.)

Model dN/dS Parameter estimates PSS �

M0: one ratio (1) 0.51 ω = 0.505 none −9775.77
M3: discrete (5) 0.63 p0 = 0.48, p1 = 0.39, (p2 = 0.13) 31 (24) −9232.18

ω0 = 0.03, ω1 = 0.74, ω2 = 2.50
M1: neutral (1) 0.63 p0 = 0.37, (p1 = 0.63) not allowed −9428.75

(ω0 = 0), (ω1 = 1)
M2: selection (3) 0.93 p0 = 0.37, p1 = 0.51, (p2 = 0.12) 30 (22) −9392.96

(ω0 = 0), (ω1 = 1), ω2 = 3.48
M1a: nearly neutral (2) 0.48 p0 = 0.55, (p1 = 0.45) not allowed −9315.53

(ω0 = 0.06), (ω1 = 1)
M2a: positive selection (4) 0.73 p0 = 0.51, p1 = 0.38, (p2 = 0.11) 26 (15) −9241.33

(ω0 = 0.05), (ω1 = 1), ω2 = 3.00
M7: beta (2) 0.42 p = 0.18, q = 0.25 not allowed −9292.53
M8: beta & ω (4) 0.62 p0 = 0.89, (p1 = 0.11) 27 (15) −9224.31

p = 0.20, q = 0.33, ω = 2.62

5.4.4 Bayesian Identification of Sites Evolving under Positive
Darwinian Selection

Under the approach described in this chapter, a gene is considered to have
evolved under positive selective pressure if (i) the LRT is significant and (ii)
at least one of the ML estimates of ω > 1. Given that these conditions are
satisfied, we have evidence for sites under positive selection but no informa-
tion about which sites they are. Hence, the empirical Bayes approach is used
to predict them [26, 40]. To do this, we compute, in turn, the posterior prob-
ability of a site under each ω site class of a model. Sites with high posterior
probabilities under the class with ω > 1 are considered likely to have evolved
under positive selective pressure.

Say we have a model of heterogeneous ω ratios, with K site classes
(i = 0, 1, 2, . . . , K − 1). The ω ratios and proportions are ω0, ω1, ..., ωK−1
and p0, p1, . . . , pK−1, with the proportions pi used as the prior probabilities.
The posterior probability that a site with data xh is from site class i is

P (ω|xh) =
P (xh|ωi)pi

P (xh)
=

P (xh|ωi)pi∑K−1
j=0 P (xh|ωj)pj

. (5.11)

Because the parameters used in the equation above to calculate the pos-
terior probability are estimated by ML (ωi and pi), the approach is called
empirical Bayes. By using the ML parameters in this way, we ignore their
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Fig. 5.6. Posterior probabilities for sites classes under M3 (K = 3) along the HIV-2
nef gene alignment.

sampling errors. The posterior probabilities will be sensitive to these parame-
ter estimates, meaning that the reliability of this approach will be poor when
the parameter estimates are poor, such as in small datasets or when obtained
from a local optimum.

Because the nef dataset above is quite large, the parameter estimates
are expected to be reliable [2]. Consistent with this, ML estimates of the
strength and proportion of positively selected sites in nef are consistent among
M2, M3, and M8 (Table 5.3). Figure 5.6 shows the posterior probabilities for
the K = 3 site classes at each site of nef under model M3. Twenty-four
sites were identified as having very high posterior probability (P > 0.95) of
evolving under positive selection (site class with ω > 1). Interestingly, none
of these sites matched the two variable sites in a proline-rich motif that is
strongly associated with an asymptomatic disease profile [27]. In fact, only
four of the 24 sites were found in regions of nef considered important for
function. Disruption of the important nef regions is associated with reduced
pathogenicity in HIV-2-infected individuals [32, 27]. Our results suggest that
selective pressure at such sites is fundamentally different from selection acting
at the 24 positive selection sites predicted using the Bayes theorem. To be
identified with such high posterior probabilities, the predicted sites must have
been evolving under long-term positive selective pressure, suggesting that they
are more likely subjected to immune-driven diversifying selection at epitopes
[42, 34].

5.5 Power, Accuracy and Robustness

The boundary problem mentioned above applies to the LRT for variable se-
lective pressure among sites and the LRT for positive selection at a fraction of
sites [1]. The problem arises in the former because the null (M0) is equivalent
to M3 (K = 3) with two of the five parameters (p0 and p1) fixed to 0, which
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is at the boundary of parameter space. In comparisons of M1 with M2, M1a
with M2a, and M7 with M8, the null is equivalent to the alternative with a
proportion parameter (p) fixed to 0. Therefore, the χ2 approximation is not
expected to hold. Anisimova et al. [1] used computer simulation to investigate
the effect of the boundary problem on the power and accuracy of the LRT.
Use of the χ2 makes the LRT conservative, meaning that the false positive
rate will be less than predicted by the specified significance level of the test
[1]. Nevertheless, the test was found to be powerful, sometimes reaching 100%
in data sets consisting of 17 sequences. Power was low for highly similar and
highly divergent sequences but was modulated by the length of the sequence
and the strength of positive selection. Note that simulation studies, both with
and without the boundary problem, indicate that the sample size require-
ments for the χ2 approximation are met with relatively short sequences in
some cases as few as 50 codons [1].

Bayesian prediction of sites evolving under positive selection is a more
difficult task than ML parameter estimation or likelihood ratio testing. The
difficulty arises because the posterior probabilities depend on the (i) informa-
tion contained at just a single site in the data set and (ii) the quality of the ML
parameter estimates. Hence, a second study was conducted by Anisimova et
al. [2] to examine the power and accuracy of the Bayesian site identification.
The authors made the following generalizations: (i) prediction of positively
selected sites is not practical from just a few highly similar sequences; (ii)
the most effective method of improving accuracy is to increase the number of
lineages; and (iii) site prediction is sensitive to sampling errors in parameter
estimates and to the assumed ω distribution.

Robustness refers to the stability of results to changes in the model as-
sumptions. The LRT for positive selection is generally robust to the assumed
distribution of ω over sites [1]. However, as the LRT of M0 with M3 is a test of
variable selective pressure among sites, caution must be exercised when only
the M0–M3 comparison suggests positive selection. One possibility is to use
M2, which tends to be more conservative than the other models [2]. Another
approach is to select the subset of sites that are robust to the ω distribution
[1, 34]. A third approach is to select sites that are robust to sampling lineages
[34]. We believe that sensitivity analysis is a very important part of detecting
positive selection, and we make the following recommendations: (i) multiple
models should be used, (ii) care should be taken to identify and discard results
obtained from local optima, and (iii) assumptions such as the ω distribution
or the method of correcting for biased codon frequencies should be evalu-
ated relative to their effects on ML parameter estimation and Bayesian site
prediction.

All codon models discussed above ignore the effect of the physicochemical
property of the amino acid being substituted. For example, all amino acid
substitutions at a positively selected site are assumed to be advantageous,
with ω > 1. The assumption appears to be unrealistic; one can imagine that
there might be a set of amino acid substitutions that are forbidden at a site



5 Adaptive Protein Evolution 121

because of physicochemical constraints, even though the site is subject to
strong positive selection. Another limitation is that these methods are very
conservative, only indicating positive selection when the estimate of ω is > 1.
In cases where only one or a few amino acid substitutions result in a substan-
tial change in phenotype, the methods will have little or no power because ω
will be < 1. Another important limitation is the assumption of a single under-
lying phylogeny. When recombination has occurred, no single phylogeny will
fit all sites of the data. A recent simulation study [3] found that the LRT is
robust to low levels of recombination but can have a seriously high type I er-
ror rate when recombination is frequent. Interestingly, Bayesian prediction of
positively selected sites was less affected by recombination than was the LRT.
In summary, no matter how robust the results, they must be interpreted with
these limitations in mind.
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6.1 Introduction

The field of molecular evolution, though wide-reaching in its breadth, can be
split into two types of investigations: studies of phylogeny and studies of the
molecular evolutionary process. Of course, each of these two categories en-
compasses many different types of questions, and many investigations require
studies of both phylogeny and evolutionary process, but the proposed binary
classification is a useful construct. Software for molecular evolution is focused
disproportionately on problems relating to phylogenetic reconstruction, with a
number of outstanding comprehensive packages from which to choose. On the
other hand, software for addressing questions of the molecular evolutionary
process tends to be found in stand-alone programs that answer only one or
two quite specific problems. The HyPhy system, available for download from
www.hyphy.org, was designed to provide a unified platform for carrying out
likelihood-based analyses on molecular evolutionary data sets, the emphasis
of analyses being the molecular evolutionary process; that is, studies of rates
and patterns of the evolution of molecular sequences.

HyPhy consists of three major components: a high-level programming lan-
guage designed to facilitate the rapid implementation of new statistical meth-
ods for molecular evolutionary analysis; a collection of prewritten analyses
for carrying out widely used molecular evolutionary methods; and a graphical
user interface that allows users to quickly and interactively analyze data sets
of aligned sequences using evolutionary models and statistical methods that
they design using the software system. This chapter is intended to provide
an overview of the key elements of each of the three system components, in-
cluding both specific details of the basic functionality as well as a conceptual
description of the potential uses of the software. The nature of the package
prevents the creation of an exhaustive “cookbook” of available methods. In-
stead, we hope to provide a collection of fundamental tools and concepts that
allow users to begin using HyPhy to carry out both existing and new methods
of data analysis.
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6.1.1 Standard Analyses

The second of the three enumerated HyPhy components was a collection of
prewritten “standard” analyses. Since this section of the software is essen-
tially just a collection of prepackaged analyses, we will not devote much time
to a detailed discussion of it. However, we choose to describe it first in this
chapter to illustrate the types of analyses that HyPhy has been designed to
address. In Figure 6.1, we show the initial Standard Analyses menu invoked
by Analyses:Standard Analyses... (note the use of Small Caps to indi-
cate menu items, with submenus or selections separated by a colon). Each of
the nine major headings includes a collection of routines that can be selected
by the user. For example, the Positive Selection menu item expands to
offer five different analyses relating to the task of identifying nucleotide sites
undergoing positive selection. A total of 35 batch files are included in the col-
lection, and most of these files include a variety of options enabling users to
select items such as evolutionary models or topology search methods. Topics
include molecular clock tests, positive selection analyses, phylogenetic recon-
struction, and model comparison procedures. The authors frequently add new
standard analyses to the package. HyPhy includes the ability to perform Web
updates, which ensures that the distribution is kept up-to-date.

Fig. 6.1. HyPhy Standard Analyses menu (Mac OS X).
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6.2 Using the HyPhy Graphical User Interface

6.2.1 Basic Analysis

The fundamental component of likelihood analyses of molecular evolutionary
data is to fit a given phylogenetic tree with a specified model of evolution to an
alignment and obtain maximum likelihood estimates (MLE) of all independent
model parameters, which commonly include branch-length parameters and
character substitution rates [3]. Before we demonstrate how to use HyPhy for
simple model fitting, we will introduce the fundamental components required
of virtually every HyPhy data analysis.

1. Data Set. A data set is a multiple-sequence alignment. HyPhy is able
to read a variety of sequence formats, including NEXUS, PHYLIP, and
FASTA.

2. Data Filter. A data filter specifies a part (or parts) of a data set. HyPhy
provides powerful tools to select sites and sequences from a data set to
analyze. The simplest data filter specifies the entire data set. Examples of
nontrivial filters include every first and second position in a codon, exon-
intron-exon arrangements, or alignment sites matching a particular motif,
such as glycosylation sites. We will often refer to data filters as partitions.

3. Substitution Models. We also need to provide stochastic models describing
how character substitutions occur along branches in a phylogenetic tree.
HyPhy includes a multitude of standard “named” models and provides
unparalleled flexibility for users to define their own models. A substitu-
tion model is specified by its instantaneous rate matrix and the vector
of equilibrium character frequencies. For instance, one of the most com-
monly used nucleotide substitution models is the HKY85 model [5],whose
instantaneous rate matrix is given by

Q =

⎛⎜⎜⎝
A C G T

A � κπC πG κπT

C κπA � κπG πT

G πA κπG � κπT

T κπA πC κπG �

⎞⎟⎟⎠,

where κ denotes the ratio of transversion and transition rates and πi is
the base frequency of nucleotide i, i = A, C, G, T . We use � as a notation
to indicate that the diagonal elements of rate matrices are defined so that
the sum of each row in the rate matrix is 0. This condition ensures that
the transition probability matrix,

P (t) = eQt,

defines a proper transition probability function (i.e., the sum of each row
in P is 1).
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4. Tree. A phylogenetic tree specifies the evolutionary history of extant se-
quences represented in the data set. It can either be given or can be
inferred from the data/model combination. While most other software
packages force the evolutionary process to follow the same model along
every branch, in HyPhy the user can have multiple models, with different
rate matrices at each branch. Therefore the notion of the tree in HyPhy
is not just the evolutionary relationships but rather the combination of
a tree topology and substitution models attached to tree branches. The
distinction in HyPhy between a tree and a topology is an important one,
as we will illustrate through later examples.

5. Likelihood Function. A combination of a data filter and a tree (which
includes both topology and model information) is sufficient to define the
probability of the observed data given model parameter values (i.e., the
likelihood function). The likelihood function object in HyPhy is a con-
venient way to combine multiple data filter/tree objects (with shared or
distinct model parameters) into a single likelihood function, which can
then be maximized to obtain MLEs of all model parameters.

Example 6.1 Basic analysis

We are now conceptually prepared to set up the simplest nucleotide sequence
analysis with the help of the HyPhy graphical user interface. Our example
data set is the p51 subunit of the reverse transcriptase gene of HIV-1, ob-
tained as one of the reference alignments from the Los Alamos HIV database,
hiv-web.lanl.gov. This data set is included as an example file with HyPhy
distribution.

Preparing the data

First we must load the sequence alignment. We accomplish this by starting
HyPhy and selecting the File:Open:Open Data File menu command from
the HyPhy console window. The file we wish to open is named p51.nex and
can be found in the data directory of the HyPhy standard installation. Alter-
natively, all example alignments used in this chapter can be downloaded from
www.hyphy.org/pubs/HyphyBookChapter.tgz.

HyPhy will load the sequences and open a data Panel (fig. 6.2) We will
explore some features of the data panel interface in later examples. For now,
we wish to define a data filter (partition); in this case, the filter will sim-
ply be the entire alignment. Select all sites in the alignment by using the
Edit:Select All menu command, and then create a new partition by choos-
ing Data:Selection→Partition. The program creates a data filter with
all the sites selected in the sequence viewer, assigns a default name and
color to the partition, updates the navigation bar, and selects the newly
created partition. One can edit the name and color of a partition by dou-
ble clicking on the partition row in the “Analysis Setup” area or choosing
Data:Partition Properties, with the partition row selected. Rename the
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Fig. 6.2. HyPhy data panel (Mac OS X).

Fig. 6.3. Partition properties dialog.

Fig. 6.4. Analysis Setup.

partition “RT Gene” (for technical reasons, HyPhy doesn’t allow spaces in the
names of partitions) as shown in Figure 6.3.

Specifying the model

Once the data have been filtered, we may assign a tree topology and a model
to the partition by clicking on the pulldown arrows in the appropriate columns
of the “Analysis Setup” table (Figure 6.4). The data file p51.nex already in-
cluded a tree topology, automatically loaded by HyPhy and made available in
the “Tree Topology” pulldown list. For the model, let us choose substitution
matrix HKY85, with global parameters (in this case meaning that there is a
single transversion/transition ratio κ for every branch in the tree) and equilib-
rium frequencies gathered from the partition, so that entries of the frequency
vector π are simply the frequencies of characters observed in the data. Once
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all the necessary analysis components have been successfully assigned to at
least one data partition (RT Gene in this case), the status light in the bottom
left corner of the window will change from red to yellow, indicating that we
are now ready to create a likelihood function.

Likelihood function

We will denote the likelihood function of the model parameters Θ, given a
data set D and a tree T , by

L(Θ|D, T ).

HyPhy is then able to obtain maximum likelihood parameter estimates Θ̂ by
maximizing L(Θ|D, T ) over the possible values of Θ.

Let us now create and optimize the likelihood function. First, we select
Likelihood:Build Function. HyPhy creates the likelihood function as re-
quested and prints out some diagnostic messages to the console:

Created likelihood function ‘p51_LF’ with
1 partition,
1 shared parameters,
13 local parameters,
0 constrained parameters.
Pruning efficiency 764 vs 1534 (50.1956 % savings)

The number of local parameters refers to the branch-length parameters, t. An
unrooted binary tree on n sequences will have a total of 2N − 3 branches. In
our case, N = 8 and thus there are 13 branch-length parameters to estimate.
Pruning efficiency numbers show the computational savings that HyPhy was
able to realize using the column-sorting ideas of [6]. Now, choose Likeli-
hood:Optimize to instruct HyPhy to proceed with fitting selected models to
the data and obtaining parameter MLEs.

Results

We are now ready to examine model-fitting results. For this example, HyPhy
produces maximum likelihood estimates of 14 model parameters by numerical
optimization of the likelihood function. The program reports a text summary
to the console and also opens a graphical parameter table display, as shown in
Figure 6.5. The status bar of the parameter table displays a one-line snapshot
of the likelihood analysis: the maximum log-likelihood for our RT data set
was −3327.25, and 14 parameters were estimated. Knowledge of these two
quantities is sufficient to evaluate various information-theoretic criteria for
relative goodness of fit, such as the Akaike information criterion [1], or to
perform likelihood ratio tests for nested models.

Notice how HyPhy groups items in the parameter table by class: trees,
global parameters (shared by all tree branches), and local parameters (those
that affect a single branch); each item is labeled both by name and with an
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Fig. 6.5. Graphical parameter display.

appropriate icon. The single global parameter is the transversion:transition
ratio, κ, of the HKY85 model and is labeled as RT Gene Shared TVTS. By
default, each shared parameter is prefixed with the name of the data partition
to which it is attached (RT Gene in this case). While at first the names of
local parameters may appear confusing, HyPhy uses a uniform naming scheme
for all local model parameters: tree name.branch name.parameter name. For
instance, p51 tree.B FR 83 HXB2.t refers to a local parameter t along the
branch ending in B FR 83 HXB2 in the tree p51 tree. Leaf names in the tree
correspond to sequence names in the data file, while NodeN , where N is an
integer, are default names given to unlabeled internal nodes in the tree. (Users
can give internal nodes custom names as well.) Parameter estimates can be
exported in a variety of formats by invoking File:Save.

Let us now open a tree window to visualize the evolutionary distances
between HIV-1 sequences in the example by double clicking on the tree row
in the parameter table. HyPhy will open a tree viewer panel, as shown in
Figure 6.6. A common measure used to assess evolutionary distances is the
expected number of substitutions per site, Esub, along a particular branch,
equal to the weighted trace of the rate matrix:

Esub = −t
∑

j

πjQjj . (6.1)
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The HyPhy tree viewer automatically scales branches on Es, although the
scaling may be changed by the user.

Fig. 6.6. HyPhy Tree Viewer for p51.nex, scaled on the expected number of sub-
stitutions per site inferred using the HKY85 model, with an example of a tooltip
branch-length reporter.

Confidence intervals

All parameter estimates will be affected by sampling variations of various mag-
nitudes. For instance, substitution-bias parameters often have large variances
relative to those of branch-length estimates. HyPhy allows the user to ob-
tain confidence intervals using the asymptotic normality of MLEs. Likelihood
theory states that MLEs of model parameters are distributed asymptotically
as multivariate normal around the true parameter values, and the covariance
matrix of the normal distribution can be estimated by inverting the observed
Fisher information matrix

Î
(
Θ̂
)

=
(

∂2 log L(Θ|D, T )
∂θi∂θj

∣∣∣∣
Θ=Θ̂

)
.
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The Fisher information matrix measures the curvature of the log-likelihood
surface. Flat surfaces around the maximum do not inspire high confidence in
estimated parameter values, while steep surfaces lead to sharp estimates.

HyPhy can be instructed to construct the covariance matrix as well as the
confidence intervals for each parameter based on the estimated variance of
the normal distribution, either for every parameter or for selected parameters
(conditioned on the values of others). Select all the parameters in the table by
choosing Edit:Select All and then Likelihood: Covariance and CI,
and set “Estimation Method” to “Asymptotic Normal[finer]” in the ensuing
dialog box. “Crude” and “Finer” estimates differ in how HyPhy computes
the Fisher Information Matrix (which must be done numerically because an-
alytical derivatives of the likelihood function are not available in general).
HyPhy will open two chart windows—the 95% confidence interval window for
all selected parameters and the covariance matrix.

A B

Fig. 6.7. HyPhy confidence interval estimates using (A) asymptotic normality of
MLEs and (B) Profile plots using 95% levels of χ2

1.

Likelihood profile

Confidence intervals based on asymptotic normality rely upon many assump-
tions that may be violated for short alignments or parameter-rich models. For
example, such confidence intervals are always symmetric about the maximum
likelihood estimate, and if the likelihood surface is skewed around the MLE,
such intervals may be a poor representation of the real variance of parameter
estimates. A second approach to determining statistical support for a parame-
ter value estimate is to employ likelihood profile confidence intervals, obtained
by inverting a likelihood ratio test.

Suppose we wish to compute a confidence interval CIα
i of level α for a

single model parameter θi. A common method is first to fix all other model
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parameters θi′ , i′ �= i at their maximum likelihood estimates. We can now
think of the likelihood function as a function of a single parameter θi. Thus,
a restricted version of the full likelihood function is

L̄(θi) = L(θi|D, T , θ̂i′).

Clearly, the maximum likelihood estimate for θi using the restricted likelihood
is the same as that given by the full likelihood function: θ̂i.

Consider two hypotheses: H0 : θi = x versus HA : θi �= x. These hypothe-
ses can be tested using the restricted likelihood function and a one degree of
freedom likelihood ratio test (assuming that θ̂i′ is not on the boundary of the
parameter space)

2[log L̄(θ̂i) − log L̄(x)] ∼ χ2
1.

If θ̂j is on the boundary, then the asymptotic distribution changes to

2[log L̄(θ̂i) − log L̄(x)] ∼ χ2
1 + χ2

0

2
.

Using this observation, a confidence region can be defined as all those
values x for which we fail to reject H0 (i.e., all those x for which the likelihood
ratio statistic is less than the α percentile of the corresponding χ2 or mixture
distribution). If we also assume that the likelihood function is monotone (has
no local maxima), then we find the boundaries of the confidence interval by
tracing the log-likelihood function plot until the desired difference from the
maximum is obtained in both directions (see Figure 6.8).

There are a couple of issues with this approach: (i) we assume sufficient
data for the asymptotic likelihood distributions to be applicable, which may
fail for short alignments or models that are too parameter-rich; and (ii) we
are obtaining the confidence intervals for one parameter at a time rather
than a confidence region for all parameters (which is mostly due to technical
difficulties with finding such a region when there are many model parameters),
thus ignoring covariation among parameter estimates.

The first issue may be resolved, to an extent, by accepting or rejecting H0
using a non-LRT criterion, such as AIC [1]. The procedure is exactly the same,
but the cutoff level is no longer determined by the asymptotic χ2 distribution
but rather by an information-theoretic parameter addition penalty. For AIC,
2[log L̄(θ̂i) − log L̄(x)] ≤ 2 would place x in the confidence interval.

Also, to see how reasonable the asymptotic normality assumption is, one
could check whether a quadratic approximation to the log-likelihood holds
well. The quadratic approximation for the log restricted likelihood around the
maximum likelihood estimate θ̂i can be derived from a Taylor series expansion:

log L̄(x) ≈ log L̄(θ̂i) +
d

dθi
log L̄(θi)

∣∣∣∣
θ̂i

(
x − θ̂i

)
+

d2

dθ2
i

log L̄(θi)
∣∣∣∣
θ̂i

(
x − θ̂i

)2
.

Because θ̂i maximizes the likelihood function, the first derivative term van-
ishes, and we have the desired quadratic approximation:
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log L̄(x) − log L̄(θ̂i) ≈ d2

dθ2
i

log L̄(θi)
∣∣∣∣
θ̂i

(
x − θ̂i

)2
.

By plotting the likelihood profile and the quadratic approximation on the
same graph, one can see how well the χ2 approximation to the likelihood
ratio test will work. HyPhy offers each of the confidence interval estima-
tion techniques above via Likelihood:Covariance and CI and Likeli-
hood:Profile Plot from the parameter table window.

Fig. 6.8. Likelihood profile plot, with a quadratic approximation and a 95% χ2
1

cutoff level.

Saving the analysis

HyPhy can store all the information needed to recreate the analysis we just
performed in a single NEXUS file. This feature can be invoked by switching
back to the data panel, selecting File:Save, and choosing the format option
to include the data in the file. Let us save this simple analysis as p51 HKY85.bf
in the “Saves” directory of the HyPhy installation.

6.2.2 Local Branch Parameters

Almost all treatments of likelihood analysis of molecular sequence data as-
sume that there is only one parameter per branch in the phylogenetic tree—
branch-length—and that other model parameters are shared by all branches.
However, it may be often be desirable to relax this assumption. For example,
to test whether a group of branches (such as a single lineage or a clade) have
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different substitution process parameters than the rest of the tree, it is neces-
sary to compare likelihoods of constrained and unconstrained models. HyPhy
provides a general mechanism for defining an arbitrary number of branch-
specific and shared model parameters. Consider the HKY85 model discussed
in the previous section. Rewrite the rate matrix as

Q =

⎛⎜⎜⎝
A C G T

A � βπC απG βπT

C βπA � βπG απT

G απA βπG � βπT

T βπA απC βπG �

⎞⎟⎟⎠.

This may seem like a different matrix altogether, but if one sets t = α and
κ = β/α, we return to the previous parameterization if β > 0. In fact, this
new parameterization allows the transition rate (α) to be 0 and transversion
rate (β) to be nonzero, whereas the first (more common) parameterization
does not. Even more importantly, we can now let each branch have a separate
α and β, which is equivalent to allowing every branch to have its own transi-
tion/transversion ratio. We declare such a model to be fully local, as opposed
to the fully global model of the previous section. Obviously, there is a range of
intermediate models where some of the branches share transition/transversion
ratios while others are free to vary.

To specify the fully local HKY85 model in HyPhy for our example data
set, all that must be done differently is to select “Local” in place of “Global”
in the “Parameters” column of the analysis setup table in Figure 6.4. You can
either start a new analysis from scratch or continue from where we left off
in the global analysis of the previous section. In the latter scenario, HyPhy
will display a warning message because changing substitution models causes
a fundamental change in the likelihood function (i.e., a different set of para-
meters and rate matrices). Next, invoke Likelihood:Build Function and
observe that the resulting likelihood function has 26 local parameters (two
per branch, as requested). Upon selecting Likelihood:Optimize, a para-
meter table is once again shown, and we observe that the log-likelihood has
improved to −3320.84. A quick glance at the likelihood score improvement
of seven units for 12 additional parameters suggests that there is insufficient
evidence favoring the fully local model over the fully global model.

The rate parameter names in the parameter table for this analysis end
with “trst” and “trsv,” which hopefully mean “transition” and “transversion.”
HyPhy allows one to look at the rate matrix and map parameter names to
what they actually stand for in case parameter names are less descriptive.
To see how that is done, let us open the “Object Inspector” window (use
Window:Object Inspector on the Mac and File:Object Inspector in
Windows). In the newly opened window (Figure 6.9(a)), select “Models” from
the pulldown option list, and scroll through the rather long list of models until
you find one in bold (meaning that this model is currently used in an active
likelihood function) named “RT Gene HKY85 local.” Again, the name of the
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data partition is incorporated in the model identifier for easy reference. Double
click on that model and examine the rate matrix as shown in Figure 6.9b. The
equilibrium frequencies for this model (π) are the actual proportions of A, C,
G, and T in the RT gene alignment, and “trst” are indeed the rates for A ↔ G
and C ↔ T substitutions, while “trsv” are the rates for all other substitutions.
By default, HyPhy will automatically multiply rate matrix entries by the
appropriate π, and hence there is no need to include them in the rate matrix
explicitly.

a b

Fig. 6.9. (a) Models in the “Object Inspector”; (b) HKY85 local model for the RT
gene.

Let us now open the tree window for the local model (Figure 6.10(a)).
Recall that branch lengths are given by (6.1). The tree looks very similar to
the global HKY85 tree from Figure 6.6. However, a more interesting com-
parison would be to see if the transition and transversion ratios vary from
branch to branch. HyPhy allows scaling of the tree display on any local model
parameter—“trst” and “trsv” in this instance.

Double click on the tree name in the parameter table once again to open
another instance of the tree window—very useful for side-by-side compari-
son. Scale one of the trees on “trst” and another on “trsv” (Figure 6.10(b,c)).
Notice that while the shapes are still similar, branch lengths are not quite pro-
portional between trees, as they would be if all branch transition/transversion
ratios were the same.

As a matter of fact, the HyPhy tree viewer allows scaling on any function
of model parameters. Let us define the transversion/transition ratio parame-
ter. For every branch, it is simply ratio = trsv/trst. To define this scaling
parameter, switch to a tree window, select all branches (Edit:Select All),
and choose Tree:Edit Properties. The dialog box that appears shows all
available local branch parameters. Click on the “Add User Expression” button
(the + icon), type in the formula for the expression, rename it “ratio,” and
select “OK” (Figure 6.11). HyPhy has added “ratio” to the list of local para-
meters (not estimable parameters but rather functions of other parameters).
You can view the value of each branch ratio in the parameter table and scale
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a b

c d

Fig. 6.10. RT gene tree under HKY85 local model scaled on (a) expected number
of substitutions per site, (b) transition rates, (c) transversion rates, (d) transver-
sion/transition ratios.

the tree on the transversion/transition ratio (Figure 6.10(d)). The differences
in branch-to-branch ratios are quite striking.

The HyPhy tree viewer can automatically label each branch of the tree
with any function of branch-model parameters. As an example, we will label
each branch with the number of transitions Et and transversions Ev per site,
expected to occur along that branch. For the HKY85 local model,

Et = 2βt(πAπG + πCπT ), Ev = 2αt[(πA + πG)(πC + πT )].

Note that Et and Ev add up to the total branch length and are linear functions
of the rates. Substituting the actual values of π for our data set (Figure 6.9(b)),
we get

Et = 0.242583βt, Ev = 0.474001αt.

Employ the same process we did for adding the ratio parameter, and define
Et = 0.242583 ∗ trst and Ev = 0.474001 ∗ trsv. Now use Tree:Branch
Labels:Above Branches and Tree:Branch Labels:Below Branches
to label each branch with Et and Ev, adjust fonts and alignments to your
liking, and check “Scale tree by resizing window” in the dialog opened with
Tree:Tree Display Options. The final display should look like Figure 6.12.
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Fig. 6.11. New scaling parameter dialog.

Fig. 6.12. RT tree scaled on expected number of substitutions per site and labeled
with the expected number of transitions and transversions per site (above and below,
respectively).

6.2.3 Multiple Partitions and Hypothesis Testing

Early attempts to model molecular evolution of protein-coding sequences used
the observation that the evolution in the first and second positions of a codon
differed markedly from that at the third position. Indeed, for the universal
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genetic code, every substitution in the second codon position is nonsynony-
mous (i.e., it changes the protein encoded by the codon). For the first position,
all but eight possible (sense) substitutions are nonsynonymous. In contrast,
at the third position, 126 out of 176 substitutions are synonymous. Because
random nonsynonymous substitutions are likely to be deleterious, it is often
observed that the substitution rate for the third position is different (typically
much higher) than those in the first and second positions. Our next task is
to define a HyPhy analysis that treats the first and second codon positions
as one data partition and the third codon position as another, and then fit a
collection of models to the data. We will continue using the HIV-1 p51 subunit
of the RT gene data set from p51.nex.

First, open the data panel with p51.nex and select all the sites in the
alignment. Next, invoke one of the numerous data-filtering tools in HyPhy-
–the combing tool—by clicking on the comb tool button in the data panel
(Figure 6.13). To select the first two positions in every codon, we need a comb
of size 3 with first and second sites selected and the third omitted. In the
combing dialog, set the size of the comb to 3 and check the boxes next to
positions 1 and 2. Repeat the process to define the partition with every third
codon position (make sure that the first partition is not highlighted in the
analysis setup table while you are applying the second comb; otherwise HyPhy
will comb the partition again, effectively selecting every third column in the
data partition of the first and second positions we have just created). Rename
the partitions to “First Second” and “Third”, respectively. Assign the same
tree topology to both data partitions, the HKY85 model, global parameter
options, and equilibrium frequencies collected separately from each partition.
In the end, the data panel should resemble the one in Figure 6.13.

Fig. 6.13. Data panel with two data partitions and a comb filter dialog.

When we build the likelihood function, HyPhy prints out a message

Tree topology p51_tree was cloned for partition Third.
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a b

Fig. 6.14. HIV-1 RT scaled on the expected number of substitutions per site for
(a) first and second codon positions and (b) third codon position.

It is important to understand that while both partitions share the tree topol-
ogy, for HyPhy a tree means both topology and models/parameters. The
two partitions need to have two trees with independent branch lengths and
transversion/transition ratio parameters, κ12 and κ3, assigned the names
First Second Shared TVTS and Third Shared TVTS by HyPhy.

After the models are fit to the data, we observe that both the shapes of
the trees (Figure 6.14) and the transversion/transition ratios (0.198 versus
0.067) differ quite a lot between the partitions.

A careful reader might correctly point out that the analysis we have just
performed could have been done by fitting HKY85 to each of the partitions
separately. However, we will now illustrate what the joint likelihood function
of both partitions can offer in terms of hypothesis testing.

Simple hypothesis testing

Consider the null hypothesis H0 : κ12 = κ3 versus the full-model alternative
HA : κ12 �= κ3. The analysis we just performed was for the full model, and
before proceeding with the definition of the constraint in H0, the MLEs for
HA must be saved. To do so, click on the pulldown menu in the parameter
table (Figure 6.4) and choose Save LF State. A collection of parameter
MLEs and constraints constitute a state (i.e., a hypothesis). Name the state
“Full Model,” and choose Select as alternative from the same pulldown
menu.

Now, the constraint for the null hypothesis must be defined, and a new set
of MLEs for all independent model parameters must be calculated. To define
the constraint, select both transversion/transition ratio parameters (shift-click
to select multiple rows) and click on the constraint (second) button. Note
that the parameter table updated to reflect that one of the ratios is no longer
independent of the remaining parameters. Next, we calculate a new set of
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parameter MLEs by optimizing the likelihood function anew. Not surprisingly,
H0 : κ12 = κ3 = 0.11, which is between the independently estimated values.

Save the set of MLEs for H0 as “Constrained” and then choose Select
as null, which instructs HyPhy to treat “Constrained” as the null hypoth-
esis. With all the components of a hypothesis test in place, choose LRT
from the same pulldown menu. HyPhy computes the likelihood ratio statistic
2 (log LA − log L0) and a p-value based on the asymptotic χ2 distribution with
(in this case) one degree of freedom:

Likelihood Ratio Test
2*LR = 12.5286
DF = 1
P-Value = 0.000400774

The likelihood ratio test strongly rejects the null hypothesis of equal transver-
sion/transition ratios between partitions.

Parametric bootstrap

The χ2
1 distribution is the asymptotic distribution for the LRT statistic, and

one would be well-advised to realize that it may not always apply directly.
However, one can always verify or replace the results of a χ2 test by the para-
metric bootstrap [2, 4]. HyPhy has a very general way of simulating sequence
alignments parametrically – it can do so transparently for any likelihood func-
tion using current parameter values. For the purposes of this example, HyPhy
simulates 1000 8-sequence alignments with 1320 sites each, using the model
in the null hypothesis (i.e., constrained ratios). HyPhy then fits the models
in H0 and HA to every simulated data set and tabulates the likelihood ratio
test statistic. The resulting LRT distribution may then be used for obtaining
significance values for the original LRT value or for verifying how well the
LRT statistic follows the asymptotic χ2 distribution.

The parametric bootstrap function can be accessed via the same pulldown
menu in the parameter table window. Enter the number of data replicates to
be simulated and choose whether or not HyPhy should save data and para-
meter estimates for every replicate. For the current data set, 1000 replicates
should take 20 − 30 minutes on a typical desktop computer. HyPhy opens a
summary bootstrap table and adds simulated LRT statistic values as they
become available, as well as keeping tabs on the current p-value. Replicates
with larger values of the LRT than the original test are highlighted in bold.
After bootstrapping has finished, you may open a histogram or cumulative
distribution function plot for the LRT statistic, as shown in Figure 6.15. Your
simulation results will differ from run to run, but you should still obtain a p-
value very close to the asymptotic χ2 p-value and an LRT histogram mirroring
the shape of a χ2 distribution with a single degree of freedom.
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a b

Fig. 6.15. (a) Simulated density for the likelihood ratio statistic and (b) bootstrap-
ping window example.

Relative ratio test

It is clear from Figure 6.14 that the trees on the first and second positions T12
have much shorter branch lengths than the tree for the third position T3, which
is to be expected. However, apart from a few internal branches, the overall
shapes of the trees remain somewhat similar, suggesting that perhaps the only
fundamental difference between nucleotide level substitution processes is the
amount of change for the entire tree, while relative branch lengths Esub(bi)
are the same for both trees. Mathematically, this constraint can be expressed
as

Esub(bi|T12) = RREsub(bi|T3), for all branches bi,

where the parameter RR is the relative ratio. As we saw earlier, branch lengths
for HKY85 are linear functions of the branch-length parameter t; thus it is
sufficient to constrain t parameters to be proportional.

HyPhy has a built-in tool for easy specification of relative ratio con-
straints [13, 8] on trees or subtrees. To carry out the relative ratio test, select
two trees (or two branches that root the subtrees; see below) and click on the
relative ratio button (second from the right in the toolbar) in the parameter
table. Name the ratio parameter, and then reoptimize the parameters. Use the
technique from the previous example to save the full and constrained models
and to carry out the likelihood ratio test using either the asymptotic distribu-
tion or the parametric bootstrap. The result from the chi-squared distribution
is:

Likelihood Ratio Test
2*LR = 24.0092
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DF = 12
P-Value = 0.0202825

The relative ratio hypothesis can therefore be rejected at the 0.05 level but not
at the 0.01 level. Application of the parametric bootstrap yields a comparable
p-value.

Saving a complete analysis.

HyPhy is capable of saving an analysis and every hypothesis in a single file.
Invoke File:Save from the data panel, and choose the format that includes
sequence data in the resulting file dialog. If you later open the saved file by
selecting File:Open:Open Batch File, the analysis and all the hypotheses
you have defined will be available.

6.2.4 Codon Models

The natural unit of evolution for stochastic models of protein-coding sequences
is a codon. By modeling the substitutions on the level of codons rather than
nucleotides, inherently different processes of synonymous and nonsynonymous
substitutions can be handled adequately. By expanding the state space for
the substitution process from four nucleotides to 61 nonstop codons in the
universal genetic code, the computational cost increases dramatically, both
when evaluating transition probability matrices and calculating the likelihood
function itself. Modern computers can handle the added burden quite easily,
though.

Consider a codon-based extension to the HKY85 model, which is similar
to the model in [7]. We dub it MG94×HKY85 3×4. The 61 × 61 rate matrix
for this model, which gives the probability of substituting codon x with codon
y in infinitesimal time, is

Qx,y(α, β, κ) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
απny x → y 1-step synonymous transition,
ακπny , x → y 1-step synonymous transversion,
βπny

, x → y 1-step nonsynonymous transition,
βκπny , x → y 1-step nonsynonymous transversion,
0, otherwise.

(6.2)

As before, κ is the transversion/transition ratio. The parameter α denotes the
synonymous substitution rate, while β provides the nonsynonymous substi-
tution rate. The ratio of these two values, ω = β/α, can be used to measure
the amount of selective pressure along a specific branch. The value πny is
the frequency of the “target nucleotide” for the substitution observed in the
appropriate codon position in the data set. For instance, if x = ATC and
y = AGC, then πny would be the frequency of nucleotide G observed at sec-
ond codon positions in the alignment. The model only allows for one instan-
taneous nucleotide substitution between codons. For instance, ATC → AGG
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is not allowed to happen by two concurrent nucleotide substitutions because
such events have negligibly small probabilities. However, such changes are al-
lowed via multiple substitutions, as evidenced by the fact that all transition
probabilities (entries in the matrix eQt) are nonzero for t > 0.

The specification of the model is completed by providing the equilibrium
frequencies of the 61 codons. For a codon composed of three nucleotides i, j, k

πijk =
π1

i π2
j π3

k

1 − π1
T π2

Aπ3
A − π1

T π2
Aπ3

G − π1
T π2

Gπ3
A

, (6.3)

where πk
n denotes the observed frequency of nucleotide n at codon position k.

The normalizing term accounts for the absence of stop codons TAA, TAG,
and TGA from the state space and the model. Note that this model mixes
local (α and β) and global (κ) parameters.

MG94×HKY85 3×4 applied to HIV-1 integrase gene

Following are the steps needed to apply a codon model to integrase BDA.nex,
found in the Examples directory of HyPhy standard distribution. This data
file contains the integrase gene of six Ugandan subtype D, three Kenyan sub-
type A, and two subtype B (Bolivia and Argentina) HIV-1 sequences sampled
in 1999. The integrase gene is relatively conserved and is appropriate for com-
parison between subtypes.

1. Open the data file via File:Open:Open Data File.
2. Select all the data and define a partition—it will be created as a nucleotide

partition at first.
3. Switch the partition type to “Codon.” HyPhy will display a partition prop-

erties box. Rename the partition “Integrase,” but keep all other default
settings.

4. Assign “Integrase BDA tree” topology, “MG94×HKY85 3×4” model, and
“Local” parameters option.

5. Build (Likelihood:Build Function) the likelihood function. Note that
38 local parameters (α and β for each of the 19 branches) and one global
parameter (transversion/transition ratio) have been created.

6. Optimize (Likelihood:Optimize) the likelihood function. It should take
a minute or so on a desktop computer. Open two tree displays, and scale
one on synonymous rates and the other on nonsynonymous rates. Notice
the radical differences between the trees, both in lengths and shapes, as
shown in Figure 6.16.

Molecular clock tests

When reversible models of evolution are used, the rate parameters cannot be
identified separately from the time parameters because only their products are
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a b

Fig. 6.16. HIV-1 integrase tree scaled on (a) synonymous rates α and (b) nonsyn-
onymous rates β.

estimable. A set of sequences is said to have evolved under a molecular clock
if the expected amount of evolution (measured in expected numbers of sub-
stitutions) from the most recent common ancestor to each of the descendent
sequences is the same. Mathematically, we constrain the length of the paths
between each sequence and the most recent common ancestor in the phylo-
genetic tree to be the same. For the tree in Figure 6.17, a molecular clock
would be imposed by the following two constraints: t2 = t1 and t3 = t1 + t4.
Note that imposing a molecular clock typically requires a rooted tree. Thus,
it is desirable to have a separate outgroup sequence (or groups of sequences)
that can be used to establish the root of a tree. For instance, in the HIV-1
integrase example (Figure 6.16), subtype A sequences form an outgroup to
both B and D subtype clades.

Fig. 6.17. Example of a molecular clock constraint.

For coding sequences, it is often useful to impose molecular clocks on
synonymous substitutions only. Synonymous substitutions are assumed to be
relatively free of selective constraints, whereas nonsynonymous substitutions
will be heavily influenced by purifying and positive selection. HyPhy provides
an easy way to impose molecular clock constraints on a subtree using some
or all model parameters. For MG94×HKY85 3×4, it can be shown that the
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expected number of substitutions per site on a branch has the form

Esub = tα[f1(π) + κf2(π)] + tβ[g1(π) + κg2(π)],

where f1, f2, g1, and g2 are functions determined by the nucleotide compo-
sition of the alignment. The first term in the sum corresponds to the con-
tribution of synonymous substitutions and the second to the contribution of
nonsynonymous substitutions. Since each is a multiple of the corresponding
substitution parameter (α or β), imposing additive constraints on α and β
will result in additivity of the corresponding expected substitution quanti-
ties. Note again that the time parameter t is not estimable alone, and the
parameters actually being estimated (and constrained) are αt and βt.

Thus, three types of molecular clocks may be tested for local codon models:
(i) synonymous only, (ii) nonsynonymous only, and (iii) full (both synonymous
and nonsynonymous) rates.

Local clock tests on HIV-1 integrase

We now address the question of which, if any, of the three types of mole-
cular clocks are supported for the D-subtype clade. We assume that the
MG94×HKY85 model has been fit to the data as described above.

1. Save the likelihood function state as “Full Model.” Select it to be the
alternative hypothesis for our tests.

2. Select the branch that is the most recent common ancestor of the D clade
in the tree viewer. Invoke Tree:Show Parameters in Table. This
action will locate two rows in the parameter table, with the parameters
attached to that branch—“Node9.” This method is a general way for
locating branch-specific model parameters in the table quickly—it also
works for a multiple-branch selection. Highlight one of the two identified
rows.

3. Click on the molecular clock button (fifth from the left) in the toolbar of
the parameter table. A pulldown menu will appear with the parameters
available for the molecular clock constraints. Choose to constrain “syn-
Rate” for the synonymous rate clock.

4. Optimize the likelihood function, save the new likelihood function state
as “Synonymous Clock,” and set it to be the null hypothesis. Perform
the likelihood ratio test. The test will report the likelihood ratio statistic
of 9.52, which yields the p-value of 0.09 using the asymptotic χ2 with 5
degrees of freedom. This value is reasonably close to rejecting the molecu-
lar clock hypothesis, so a bootstrap p-value verification may be desirable.
For codon data, bootstrapping is a time-consuming process, so you may
only choose to do 100 replicates. Our simulation yielded a p-value of 0.14,
failing to reject the molecular clock.

5. Select “Full Model” from the pulldown menu in the toolbar of the parame-
ter table, and then go back to step 3 and repeat steps 3 and 4, constraining
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nonsynonymous rates first and then both rates. Likelihood ratio tests fail
to reject either of the clocks.

6. Save the analysis from the data panel.

6.2.5 More General Hypothesis Testing

The hypotheses of the previous section are all examples of nested hypothe-
ses, which can be obtained by constraining some of the model parameters in
the more general hypothesis to reduce it to a particular case, the null hy-
pothesis. Often, interesting biological questions cannot be framed as nested
hypotheses. For example, the question of whether a particular phylogeny with
certain taxa constrained to be monophyletic is significantly different from the
unconstrained phylogeny is a nonnested question. Another example would be
determining which of two competing models better explains the data when
the models are nonnested. HyPhy includes a rather general mechanism for
nonnested hypothesis testing based on the parametric bootstrap [2, 4]. All
one needs to do is to define competing models (by models, we mean more
than just the substitution matrices) on the same alignment and then test by
parametric bootstrapping.

Consider the example data set of the p51 subunit of HIV-1 reverse tran-
scriptase from the previous sections. As an illustration of testing nonnested
hypotheses, we will consider whether there is enough evidence to suggest that
the JTT model describes the data better than the Dayhoff model of amino
acid evolution.

First, we must convert a codon alignment found in p51.nex into amino
acids.

1. Open the data file p51.nex, select all alignment columns, and create a
nucleotide partition.

2. Change the data type of the partition to “Codon,” obeying the universal
genetic code.

3. Select Data:Additional Info:Amino acid Translation. Choose “All”
in the ensuing dialog box. HyPhy will translate all the sequences in the
codon partitions into amino acids, create a new data set, and open a new
data panel displaying all the newly created amino acid sequences.

4. Let us now save the amino acid alignment to a separate data file. In the
newly opened data panel with the amino acid alignment, create a par-
tition with all the alignment sites and, with the partition row selected,
click on the “Save Partition To Disk” button. Choose the “NEXUS Se-
quential[Labels]” format in the file save dialog, and save the file as p51.aa
in the “data” directory of the HyPhy distribution.

Second, we evaluate the likelihood under the null hypothesis H0: Dayhoff
model:

1. Open the amino acid alignment p51.aa, select all alignment columns, and
create a protein partition named “p51.”
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2. Assign the included p51 tree topology and the “Dayhoff” substitution
model to the “p51” partition.

3. Build and optimize the likelihood function.

The null model has 13 estimable parameters and yields a log-likelihood of
−2027.28.

Next, we set up the alternative hypothesis, HA: JTT model:

1. Open the amino acid alignment p51.aa, while the previous analysis is still
open. We need to keep both analyses in memory at the same time. Note
how HyPhy renamed the new data panel “p512” to avoid a naming conflict
with an already open window.

2. Assign the tree topology found in the data file and the “Jones” substitu-
tion model to the data partition.

3. Build and optimize the likelihood function.

The alternative model also has 13 adjustable parameters and yields a log-
likelihood of −1981.61.

The JTT model provides a higher likelihood value, but since the models are
not nested, we cannot simply compare the likelihoods to determine whether
the difference is statistically significant. We can, however, use the parametric
bootstrap to find a p-value for the test without relying on any asymptotic
distributional properties.

1. Switch to either of the data panels, and invoke Likelihood:General
Bootstrap. HyPhy will display a bootstrap setup window, which is very
similar to the window we have seen in nested bootstrap examples.

2. Set the appropriate null and alternative hypotheses by choosing the name
of the data panel (“p51” should be the null, and “p512” should refer to
the alternative, if you have followed the steps closely).

3. Click on the “Start Bootstrapping” button, select Parametric Boot-
strap from the pulldown, and enter 100 for the number of iterates.

4. HyPhy will perform the requested number of iterates (it should take five
or ten minutes on a desktop computer), and report the p-value. In our
simulation, we obtained a p-value of 0, suggesting that the data are better
described by the JTT model.

6.2.6 Spatial Rate Heterogeneity: Selective Pressure and
Functional Constraints

It is a well-documented fact that evolutionary rates in sequences vary from
site to site. Good substitution models should be able to include such rate
variation and offer ways to infer the rates at individual sites. Consider again
the MG94×HKY85 3×4 codon model, but let us modify it to allow each codon
s to have its own synonymous (αs) and nonsynonymous (βs) rates. The rate
matrix for codon s must be modified as follows:
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Qx,y =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
αsπny

, x → y 1-step synonymous transition,
αsκπny

, x → y 1-step synonymous transversion,
βsπny , x → y 1-step nonsynonymous transition,
βsκπny , x → y 1-step nonsynonymous transversion,
0, otherwise.

The most general estimation approach would be to estimate αs and βs

separately for every codon, but that would require too many parameters and
result in estimability issues. Another idea, first proposed in [11], is to treat the
rate at a particular site as a random variable drawn from a specified distribu-
tion. Most work of this sort has considered only a single variable rate for each
site, and the distribution of those rates has usually been assumed to follow a
gamma distribution. We now extend the MG94×HKY85 3×4 model to have
synonymous and nonsynonymous rates at codon s described by the bivariate
distribution Fη(αs, βs) whose parameters η are either given or estimated. The
likelihood for an alignment with S sites, tree T , and the vector Θ of all model
parameters can be written as

L(Θ|T ,D) =
S∏

s=1

E [L(Θ|T ,Ds, αs = a, βs = b)] .

The expectation is computed using the distribution specified by Fη(αs, βs).
Site likelihoods, conditioned on the values of αs and βs, may be evaluated
using Felsenstein’s pruning algorithm [3]. Unless Fη(αs, βs) specifies a discrete
distribution with a small number of classes, the expectation is computationally
intractable. However, the approach of discretizing the continuous distribution
of rates to obtain a computationally tractable formulation was introduced in
[12].

If codon s in the alignment is following neutral evolution, then we expect
to infer βs ≈ αs. For sites subject to functional constraints, nonsynonymous
mutations are almost certain to be highly deleterious or lethal, leading to
purifying selection and βs < αs. If βs > αs, the site s is likely to be evolving
under positive selective pressure or undergoing adaptive evolution.

In contrast to existing methods that simply have sites varying according
to their rates, HyPhy allows the user to identify multiple parameters that are
free to vary over sites. In the following example, we allow both synonymous
and nonsynonymous rates to be variable across sites, leading to the possibility,
for instance, that a particular site might have a fast nonsynonymous rate but
a slow synonymous rate. We will consider the case of MG94×HKY85 3×4
applied to a codon data set with αs and βs sampled independently from two
separate distributions. Because only products of evolutionary rates and times
can be estimated, we set the mean of the distribution of αs to one. Widely
used models of Nielsen and Yang [9] assume that αs = 1 for every site s; thus
our approach is a natural extension. For our example, we choose to sample αs

from a gamma distribution γ(αs; µα) with mean 1 and shape parameter µα
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discretized into four rate classes by the method of [11]. The nonsynonymous
rates βs are assumed to come from a mixture of a general γ distribution and
a point mass at 0 to allow for invariable sites (REF). The density of this
distribution is

βs ∼ R [PIδ0(βs) + (1 − PI)γ(βs; µβ)] , (6.4)

where PI is the proportion of (nonsynonymous) invariable sites, and R is the
mean of the distribution and is the ratio of the means of the nonsynonymous
and synonymous distribution (similar to dN/dS). The density of the unit mean
gamma distribution with shape parameter µβ is γ(βs, µβ). The gamma portion
of the distribution is discretized into three rates, and, with the invariant rate
class, the total number of nonsynonymous rate categories is four.

To perform a maximum likelihood fit of this model in HyPhy we follow
these steps:

1. Open the data file p51.nex.
2. Select all data, create a single partition, and change its data type to codon

and its name to RT Gene.
3. Assign the tree and the model “MG94×HKY85×3 4×2 Rates” with “Rate

Het” model parameters and four (per parameter) rate categories. The
model we selected implements the extension to the MG94×HKY85 3×4
model we have just discussed.

4. Build the likelihood function and optimize it. Depending on the speed of
your computer, this may take up to an hour.

Parameter estimates returned by the analysis are as follows:

RT_Gene_Shape_alpha = 1.637
RT_Gene_Shape_beta_Inv = 0.708
RT_Gene_Shape_beta = 1.174
RT_Gene_Shared_DNDS = 0.527

HyPhy can also display the discretized distributions along with their con-
tinuous originals. This feature can be accessed via the pulldown in menu
category variable rows in the parameter table (Figure 6.19). Density plots
show the continuous density curve, the table of discrete rate classes, and their
visual representations. Dotted lines depict the bounds for the intervals that
each rate class (a solid vertical line) represents.

It is immediately clear that synonymous rates are not constant across
sites. Indeed, the coefficient of variation for αs, which is equal to 1/

√
µ

α
, is

estimated to be 0.61, whereas we would expect a much smaller value were the
synonymous rates equal among sites.

An especially interesting task is to determine which sites are conserved and
which are evolving under selective pressure. An approach proposed in [14] is
to employ the empirical Bayes technique. To do so, we fix all model parame-
ter estimates (more on the validity of that later) and compute the posterior
probability ps

i,j of observing rates ai and bj at site s. HyPhy can compute
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Fig. 6.18. Synonymous and nonsynonymous distributions for the analysis of the
HIV-1 RT gene

the conditional likelihoods for every site (choose Likelihood:Categories
Processor from the parameter table; see Figure 6.19) given that the rates
come from the category i, j:

lsi,j = L(Θ|T ,Ds, αs = ai, βs = bj).

Application of the Bayes rule yields

ps
i,j = Pr{αs = ai, βs = bj |Ds} =

lsi,jPr{αs = ai, βs = bj}∑
m,n lsm,n

.

Consider two events at site s: positive selection, PSs = {αs < βs}, and neg-
ative or purifying selection, NSs = {αs > βs}. For any event, one can define
the Bayes factor, which is simply the ratio of posterior and prior odds of an
event. If the Bayes factor of an event is significantly greater than 1, then the
data support the event.

Having opened the categories processor (Figure 6.20), we proceed to per-
form the posterior Bayes analysis as follows:

1. Create a new random variable βs − αs. To do so, invoke Categories:
Define New Variable and enter the expression (try to use the pulldown
menu for quick access to category variables) 0.527RT Gene Categ beta−
RT Gene Categ alpha. We multiply by the value of R (= 0.527) since in
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Fig. 6.19. Conditional site likelihoods module of HyPhy.

a b

Fig. 6.20. (a) Bayes factor for the event of positive selection at a site. (b) Log of
the Bayes factor for the event of negative selection at a site.

the HyPhy parameterization RT Gene Categ beta refers to the expression
inside the brackets in (6.4)—you can check that by opening the model
display in “Object Inspector.”

2. Expand the view for the new difference variable by clicking on the arrow
next to it, and choose (shift-click or drag select) the event for positive
selection: all positive values of the difference variable.

3. Perform empirical Bayes analysis by selecting Categories:Event Pos-
teriors. In the window that opens, select a type of “Bar Chart” and Y
of “Bayes Factor.” This display gives an easy overview of sites with large
support for positive selection, say, with Bayes factor over 20.

4. Instruct HyPhy to find all the sites with the Bayes factor over 20. For this
task, select the Bayes factor column (click on the column header), and
choose Chart:Data Processing:Select Cells By Value. HyPhy will
prompt for the selection criterion: type in “cell value>20.” The results are
shown in Figure 6.21. According to this criterion, there are 12 positively
selected codons: 35, 178, 179, 200, 211, 243, 272, 282, 329, 376, 377, and 403.
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Fig. 6.21. Sites found to be under positive selection and supporting Bayes factors
in the HIV-1 RT gene.

The weakness of empirical Bayes

It has been argued that maximum likelihood empirical Bayes methods for de-
tecting rates at sites may yield many false positives. Alternatively, if very few
sites in the alignment are under selective pressure, it is possible that the prior
(and hence posterior) distributions will place zero probability on any site being
positively selected, resulting in low power. The main shortcoming of empirical
Bayes approaches is that parameter estimates are treated as correct values,
and the uncertainties in estimation procedures are discounted altogether. If
one were to compute 95% confidence intervals based on likelihood profiles with
HyPhy, one would discover that

µα ∈ (0.759, 10.175), µβ ∈ (0.589, 3.467),

PI ∈ (0.642, 0.779), R ∈ (0.405, 0.688).

That is quite a range of variation, and a change in any of those parame-
ters would affect the conclusions of empirical Bayes methods. For instance,
the most conservative (in terms of limiting false positives but also reducing
power) estimates can be obtained by choosing the maximum possible values
for µα, µβ , and PI and the minimum possible value for R. For this choice of
parameters, the maximum Bayes factor at any site is a mere 17.914 and by
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our old criteria no sites are found to be under selective pressure. One should
always realize that uncertainties in parameter estimates can greatly influence
the conclusions of an empirical Bayes analysis, and it helps to compare various
scenarios to assess inference reliability.

Further pointers

HyPhy can run analyses like the one just described in parallel on distributed
systems using Message Passing Interface (MPI). For instance, if 16 proces-
sors are available, computations of lsi,j for each of the 16 possible rate class
combinations (i, j) are placed automatically on separate processors, achieving
speeds similar to those of a single rate analysis on a single CPU system and
making analyses with hundreds of sequences in an alignment feasible. Refer
to www.hyphy.org for more details.

HyPhy also implements an ever-expanding collection of rapid positive/
negative selection analyses for data exploration loosely based on the counting
method of [10], as well as site-by-site (and/or lineage-specific) likelihood ratio
testing. It is accessible via standard analyses, and more details can be found
in the HyPhy documentation.

6.2.7 Mixed Data Analyses

As more and more organisms are being fully sequenced, methods and tools for
analyzing multigene sequence alignments and, ultimately, genome-wide data
sets are becoming increasingly relevant. In the small example that follows, we
will show how one can use HyPhy to begin to address such analytic needs.

We consider a sequence alignment of five sequences, each consisting of
two introns and an exon, which can be found in intronexon.nex within the
Examples directory. We must partition the data into introns and exons. As a
first pass, it is appropriate to consider two partitions: coding and noncoding.
For more complex data sets, one can easily define a separate partition for
every gene, and so on. First, create a partition that includes all of the data
(Edit:Select All, followed by Data:Selection->Partition).

The exon spans nucleotide positions 90 through 275. One of the ways to
create the partition for the exon is to locate alignment column 90 in the
data panel and select it, and then scroll to column 275 and shift-click on it
(this selects the whole range). Note that the status line of the data panel
was updated to reflect your current selection. Make sure it shows “Current
Selection: 90–275.” An alternative approach is to start at column 90 and then
click-drag to column 275. Yet another possibility is to choose Data:Input
Partition and enter 89–274 (indices are 0-based).

Once the range has been selected, invoke Data:Selection->Partition.
We now have two partitions, overlapping over columns 90–275, as shown in
the Navigation Bar. The final step is to “subtract” the partitions to create
a new partition for the introns. To do this, we select both partition rows
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in the data panel table (shift-click selects multiple rows). Next, click on the
“Subtract 2 Overlapping Partitions” button. Select the appropriate operation
in the resulting pulldown menu. We have now specified two nonoverlapping
partitions. Note that the intron partition is not contiguous. Rename the intron
partition to “Introns” and the exon partition to “Exon.” One could achieve
this same partitioning scheme by defining three partitions, 1–89, 90–275, 276–
552, and joining the first one and the third one.

There is one more filtering step left to do before we can begin analyzing
the data. As often happens with smaller subsets extracted from larger align-
ments, there are several alignment columns consisting entirely of deletions.
Such columns do not contribute informational content to likelihood analyses
and should be removed. Select the “Exon” row in the partition table, click
on the “Data Operations” button, and select Sites with all Deletions.
HyPhy will locate all such sites inside the selected partition only and select
them. Create a partition with those sites, subtract it from the exon partition
as discussed above, and delete the partition with uninformative sites (select
its row and click on the “Delete Partition” button).

Since introns are not subject to the functional constraints of coding se-
quences, it makes sense to model their evolution with a nucleotide model
(HKY85 with global options). For the exon partition, a codon model is
appropriate. Change the data type of “Exon” to “Codon” and apply the
MG94×HKY85×3 4 model with local options. The end result should look
like Figure 6.22 (a).

Next, build and optimize the likelihood function and open the parameter
table. Our analysis includes two trees with the same topology (one for introns
and the other for exons). The model for the intron tree has a single para-
meter per branch (branch length) and a shared transversion/transition ratio
(Exon Shared TV TS = 0.308), whereas the model for the exon tree has two
parameters per branch, synonymous and nonsynonymous rates, and a shared
transversion/transition ratio (Introns Shared TV TS = 0.612). (Note that
we could use previously discussed methods for testing hypotheses to decide
whether the two transversion/transition ratios are different.)

One of the common assumptions made for analyses of molecular sequence
data is that differences between coding and noncoding sequences can be ex-
plained by functional constraints and selective pressures on coding sequences,
namely by changes in rates of nonsynonymous substitutions. In other words,
synonymous substitutions in coding regions and nucleotide substitutions in
neighboring noncoding stretches should have comparable relative rates. This
assumption may be violated if mutation rates vary along the sequence or if
there is selection operating in noncoding regions. We will now test this hy-
pothesis of a relative ratio between the introns and the exon in our example
data sets. In other words, we want to see if the exon tree scaled by synony-
mous rates has the same pattern of relative branch lengths as the intron tree.
Mathematically, the set of relative ratio constraints is
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a.

b.

Fig. 6.22. Exon-intron mixed analysis. (a) Data panel setup and (b) parameter
table with the relative ratio constraint.

exonTree.branch.synRate = R × intronTree.branch.t,

where R is the (global) relative ratio, and the constraint is applied to every
branch. For a small tree like ours, it is easy to use the proportional constraint
tool in the parameter table interface module to define the constraints one at a
time; however, this could become very tedious for larger trees. Luckily, HyPhy
includes a command designed to traverse given trees and apply the same
constraint to every branch. As you will learn from the next section, at the core
HyPhy is a programming language (HBL), and all of the interface features
we have discussed previously use HBL behind the scenes. If the interface does
not include a built-in tool for a specific constraint, the user may tap directly
into HBL to carry out the task at hand. We will do just that for our example.
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Open the parameter table for the intron-exon analysis we have just set up
(making sure none of the parameters are constrained). Invoke Likelihood:
Enter Command. HyPhy will take any input from the dialog box that ap-
pears, parse the commands contained therein, and execute them. We need to
invoke ReplicateConstraint, which is a powerful but somewhat complicated
command. If we were to impose the constraints by hand at every branch, we
would begin with

IntronExon tree2.HKL5.synRate = R × IntronExon tree.HKL5.t

and repeat applying the same constraint, replacing “HKL5” with other
branches in the tree. A single call using ReplicateConstraint will accomplish
the same task:

global R = 1;
ReplicateConstraint("this1.?.synRate:=R*this2.?.t",

IntronExon_tree2,IntronExon_tree);

The expression in quotation marks is the constraint template; “this1” is
replaced with the first argument (IntronExon tree2), “this2” with the second,
and so on. The “?” is a wildcard meaning match any branch name. Repli-
cateConstraint is a very handy command to know, and we refer the reader to
examples contained in the HyPhy distribution. The “global R=1” command
is needed to declare R as a shared parameter and initialize it (further details
are provided in the next section). Enter the commands above into the dialog
box, and, if all went well, the parameter table will update and should look like
Figure 6.22 (b). Optimize the likelihood function, define the null hypothesis,
and perform the likelihood ratio test. The asymptotic p-value of the test is
0.023, rejecting the hypothesis of relative ratio. Since our data set is rather
small, we would be wise to verify this result using the parametric bootstrap.
We obtained a bootstrap p-value of 0.003 with 1000 replicates.

6.3 The HyPhy Batch Language

Underlying the HyPhy graphical user interface is a powerful interpreted pro-
gramming language, HBL (HyPhy Batch Language). The authors originally
developed HBL as a research tool to allow rapid development of molecular
evolutionary analyses. The addition of the graphical interface is a more re-
cent development and provides access to many common types of analyses.
However, the underlying programming language is considerably more power-
ful and flexible (albeit with a steeper learning curve). The goal of this section
is to provide readers with a basic understanding of the fundamentals of HBL
programming and an appreciation of the power of the language. In doing so,
we shall make use of a series of HyPhy batch files, which are available for
download at www.hyphy.org/pubs/HyphyBookChapter.tgz. Complete docu-
mentation of the batch language is available in the Batch Language Command
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Reference at www.hyphy.org and can also be accessed via the built-in com-
mand reference in the HyPhy console.

6.3.1 Fundamental Batch File Elements: basics.bf

The basic task shared by most HyPhy batch files is the optimization of a like-
lihood function for a given alignment/model/phylogeny combination. There-
fore, almost every batch file will perform the following elementary tasks:

1. Input alignment data.
2. Describe an evolutionary model of sequence change.
3. Input or describe a phylogenetic tree.
4. Define a likelihood function based on the alignment, phylogeny, and model.
5. Maximize the likelihood function.
6. Print the results to the screen and/or an output file.

The simple batch file basics.bf, reproduced in its entirety below, illustrates
the HBL code necessary to fit the F81 model of sequence evolution to an
alignment of four sequences.

DataSet myData = ReadDataFile ("data/four.seq");
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix =

{{* ,mu,mu,mu}
{mu,* ,mu,mu}
{mu,mu,* ,mu}
{mu,mu,mu,* }};

Model F81 = (F81RateMatrix, obsFreqs);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (MLEs, theLikFun);
fprintf (stdout, theLikFun);

Let us now explain how these nine statements accomplish the six key tasks
enumerated above.

Input alignment data

The task of preparing data for analysis in HyPhy consists of two steps. First,
the data must simply be read from a data file. After the data are read, they
must be “filtered.” The process of filtering involves selecting the precise taxa
and alignment positions to be analyzed and identifying the “type” of the
data (e.g., nucleotide, codon, dinucleotide).

DataSet myData = ReadDataFile ("data/four.seq");
DataSetFilter myFilter = CreateFilter (myData,1);
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The first statement simply reads a sequence alignment into memory and names
it myData. The HBL function automatically detects the sequence type (DNA)
and the input format and then saves the data into a data structure of type
DataSet, a predefined HBL data type. The second statement is the simplest
version of the CreateFilter function. In this case, the function takes the align-
ment stored in myData and by default includes all of it in a structure named
myFilter. The argument “1” indicates that the data should be treated as sim-
ple nucleotide data. Had we wanted the data to be interpreted as codons, the
argument “3” would have been used instead. The CreateFilter command is
quite powerful, and we will illustrate the use of some of its optional arguments
in later examples. Multiple data filters may be created from the same data
set.

Describe an evolutionary model of sequence change

The next task in our simple analysis is the definition of a model of sequence
change. One of the unique strengths of HyPhy is its ability to implement
any special case of a general time-reversible model (and, more generally, any
continuous-time Markov chain model, not necessarily time-reversible), regard-
less of the dimensions of the character set. We rely on the fact that any special
case of the general reversible model can be written in a form where entries in
the substitution matrix are products of substitution parameters and character
frequencies. Thus, we have adopted a convention of describing time-reversible
models with two elements: a matrix consisting of substitution rate parameters,
and a vector of equilibrium character frequencies.

F81RateMatrix =
{{* ,mu,mu,mu}
{mu,* ,mu,mu}
{mu,mu,* ,mu}
{mu,mu,mu,* }};

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
Model F81 = (F81RateMatrix, obsFreqs);

In our present example, the substitution parameter matrix of the F81 model
is defined and named in an obvious fashion (the HyPhy matrix placeholder
* is defined as “the negative sum of all nondiagonal entries on the row”).
Next, the built-in function HarvestFrequencies tabulates the frequencies in
myFilter and stores them in the newly created vector obsFreqs. The functions
of the numerical arguments can be found in the Batch Language Command
Reference. Finally, the matrix and frequencies are combined to form a valid
substitution model using the Model statement.

For the F81 model, the instantaneous rate matrix is traditionally denoted
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⎛⎜⎜⎝
A C G T

A −µ(1 − πA) µπC µπG µπT

C µπA −µ(1 − πC) µπG µπT

G µπA µπC −µ(1 − πG) µπT

T µπA µπC µπG −µ(1 − πT )

⎞⎟⎟⎠
.

Observe the similarity between this matrix and the HyPhy syntax. By default,
the Model statement multiplies each element of the rate matrix by the equilib-
rium frequency of an appropriate character, and hence the HyPhy declaration
of F81 does not include the multiplication by elements of π. This behavior
can be overridden by passing a third argument of 0 to the model statement
(as is done, for example, for the original MG94 codon model).

Input or describe a phylogenetic tree

HyPhy uses standard (Newick) tree definitions. Thus, the statement

Tree myTree = ((a,b),c,d);

defines a tree named myTree with four OTUs, or taxa, named a, b, c, and
d, corresponding to the names in the HyPhy data file. HyPhy will accept
either rooted or unrooted trees; however, for most purposes, rooted trees are
automatically unrooted by HyPhy because likelihood values for unrooted trees
are the same as those for rooted trees.

The Tree data structure is much more complex than simply describing
a tree topology. The Tree variable includes both topology information and
evolutionary model information. The default behavior of a Tree statement is
to attach the most recently defined Model to all branches in the tree. Thus, it
is often critical that the Model statement appear before the Tree statement.
We will discuss more advanced uses of the Tree statement later.

Define a likelihood function based on the alignment, phylogeny,
and model

The likelihood function for phylogenetic trees depends on the data set, tree
topology, and the substitution model (and its parameters). To define a likeli-
hood function, we use a statement such as

LikelihoodFunction theLikFun = (myFilter,myTree);

We name the likelihood function theLikFun, and it uses the data in myFilter
along with the tree topology and substitution model stored in myTree. Recall
that the Tree structure myTree inherited the Model F81 by default.
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Maximize the likelihood function

Asking HyPhy to maximize the likelihood function is simple. The statement

Optimize (MLEs, theLikFun);

finds maximum likelihood estimates of all independent parameters and stores
the results in the matrix named MLEs.

Print the results to the screen and/or an output file

The simplest way to display the results of a likelihood maximization step is
simply to print the likelihood function:

fprintf(stdout,theLikFun);

This C-like command prints the structure theLikFun to the default output
device stdout (stdout is typically the screen). The results of this statement
are the following:

Log Likelihood = -616.592813234418;
Tree myTree=((a:0.0136035,b:0.0613344)Node1:0.0126329,
c:0.070388,d:0.0512889);

When asked to print a likelihood function, HyPhy first reports the value of the
log-likelihood. It follows with a modified version of the Newick tree description
as shown in the output above. Each of the branches in the unrooted phylogeny
has an associated branch length, measured in units of expected number of
nucleotide substitutions per site. Those values appear after the colon following
the label for each branch. For example, the estimated branch length leading
to the tip “b” is 0.0613344. Note that the internal node in the tree has been
automatically named “Node1” by HyPhy, and its associated branch length is
0.0126329. Values of the estimated substitution parameters or base frequencies
could be displayed by printing MLEs or obsFreqs. HyPhy also allows for more
detailed user control of printed output using a C-like fprintf syntax. Later
examples will illustrate this functionality.

6.3.2 A Tour of Batch Files

Defining substitution models

Simple nucleotide models: modeldefs.bf

One of the primary objectives of HyPhy is to free users from relying on the
substitution models chosen by authors of software. While a relatively small
set of model choices may be sufficient for performing phylogenetic analyses,
having only a few potential models is often limiting for studies of substitution
rates and patterns. To define a model in HyPhy, one needs only to describe
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the elements in a substitution rate matrix. If the characters being studied
have n states, the rate matrix is n × n. For example, nucleotide models are
4× 4; models of amino acid change are 20× 20; codon-based models might be
61×61. HyPhy can work properly with any member of the class of general time-
reversible models, regardless of the number of character states. Instantaneous
rate matrices in this class of models satisfy the condition πiQij = πjQji,
where πi is the equilibrium frequency of character i (for nucleotide data) and
Qij is the ijth entry in the instantaneous rate matrix. HyPhy comes with
many predefined rate matrices for commonly used substitution models. You
can find examples in the Examples and TemplateBatchFiles directories of the
HyPhy distribution.

To illustrate the basics of model definition, we discuss the batch file mod-
eldefs.bf :

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile(PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);
F81RateMatrix = {{*,m,m,m}{m,*,m,m}{m,m,*,m}{m,m,m,*}};
Model F81 = (F81RateMatrix, obsFreqs); Tree myTree = ((a,b),c,d);
fprintf(stdout,"\n\n F81 Analysis \n\n");
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);
fprintf(stdout,theLikFun);

fprintf(stdout,"\n\n HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);
fprintf(stdout,theLikFun);

fprintf(stdout,"\n\n Repeat F81 Analysis \n\n");
UseModel(F81);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);
fprintf(stdout,theLikFun);

This batch file illustrates two new concepts. First, and most importantly, the
lines

HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);
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illustrate the definition of a new substitution matrix. In this case, we have
defined the model of [5] and named the model HKY85. Those familiar with
the HKY85 model will probably recognize the form of the matrix: transitions
occur with rate a and transversions occur with rate b, with each of those
substitution parameters multiplied by the appropriate nucleotide frequency
to provide the final instantaneous rates. The second important point to note
is that we must associate the model with a tree before we can do anything
useful. In this case, we simply redefined the old tree to use the HKY85 model
instead of the F81 model. (Recall that a tree consists of both the topology and
the substitution matrices attached to its branches.) When the statement Tree
myTree = ((a,b),c,d); is issued, the variable myTree is assigned the topol-
ogy ((a,b),c,d) and the branches are assigned the HKY85 substitution model,
which was the most recently defined Model. If we wanted to preserve the orig-
inal variable myTree, we could simply have defined a new Tree structure using
a command such as Tree myNextTree = ((a,b),c,d);.

Finally, for completeness, we created a new Tree and assigned it the F81
model and reproduced the original F81 analysis. Those final steps illustrate
how predefined Models can be assigned to Trees using the UseModel com-
mand.

Note also the use of

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile(PROMPT_FOR_FILE);

to allow the user to locate the sequence file interactively instead of hard-coding
it into the batch file.

More nucleotide models: models.bf

One of the most general models of nucleotide substitution is the general time
reversible model (REV). The instantaneous rate matrix for the REV model is

QREV =

⎛⎜⎜⎝
A C G T

A � θ0πC θ1πG θ2πT

C θ0πA � θ3πG θ4πT

G θ1πA θ3πC � θ5πT

T θ2πA θ4πC θ5πG �

⎞⎟⎟⎠.

It is simple to implement this model in HyPhy. The statements

REVRateMatrix = {{*,a,b,c}{a,*,d,e}{b,d,*,f}{c,e,f,*}};
Model REV = (REVRateMatrix, obsFreq);

do the job.
To illustrate these notions in a more useful context, consider the batch

file models.bf. In that batch file, models named F81, HKY85, REV, JC69,
and K2P are defined, and each is fit to the same data set and tree topology.
The batch file models.bf also demonstrates a few useful HyPhy features. First,
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notice the definition of a vector of frequencies for use by the equal-frequency
models:

equalFreqs = {{0.25}{0.25}{0.25}{0.25}};

In a similar manner, we define the string constant myTopology :

myTopology = "((a,b),c,d)";

By changing the topology in the definition of myTopology, the entire analy-
sis can be repeated using the new topology. This single step is faster than
updating the topology for every Tree statement and is particularly useful for
topologies with many taxa. Finally, note the reuse of the three substitution
matrices and the two frequency vectors. The original matrix definitions are
used as templates by the Model statements.

Global versus local parameters: localglobal.bf

Because the primary goal of HyPhy is to provide flexible modeling of the
nucleotide substitution process, HyPhy includes a more general parameteri-
zation scheme than most phylogeny estimation programs. Perhaps the most
important difference for the user to recognize is the distinction between local
and global parameters. In the simplest form, a local parameter is one that is
specific for a single branch on a tree. In contrast, a global parameter is shared
by all branches. To illustrate, consider the output generated by the batch file
localglobal.bf when run using four.seq :

Original (Local) HKY85 Analysis

Log Likelihood = -608.201788537279;
Tree myTree=((a:0.0143364,b:0.061677)Node1:0.0108616,
c:0.0716517,d:0.0526854);

Global HKY85 Analysis

Log Likelihood = -608.703204177757;
Shared Parameters: S=3.08185

Tree myTree=((a:0.0130548,b:0.0618834)Node1:0.0126785,
c:0.0717394,d:0.052028);

In localglobal.bf, we have moved beyond the default settings of HyPhy, and
the details of the batch file will be discussed below. For now, concentrate on
the results. localglobal.bf performs two analyses of the data in four.seq, each
using the HKY85 model of sequence evolution. The first, labeled “Original
(Local) HKY85 Analysis,” is the same analysis that was performed in the
previous example (models.bf ). In this analysis, each branch in the tree was
allowed to have its own transition/transversion ratio.
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The second analysis performed in localglobal.bf is an example of a global
analysis. In contrast with the previous analysis, the “Global HKY85 Analysis”
invokes a global transition/transversion ratio, S. In other words, all branches
share the same value of S. The estimated global value of S (3.08185) is shown
under the heading of Shared Parameters.

The local and global analysis use different numbers of parameters. The
local analysis uses a transition and transversion rate for each of the five
branches, along with three base frequencies, for a total of 13 parameters.
The global analysis includes a transversion rate for each branch, three base
frequencies, and a single transition/transversion ratio, for a total of nine pa-
rameters. The global analysis is a special case of the local analysis; therefore,
the log-likelihood value for the global analysis (−608.703) is lower than that
of the local analysis (−608.202). The fact that the addition of four parameters
results in such a small difference in model fit suggests that the data harbor
little support for the hypothesis that the transition/transversion rate varies
among these lineages.

The code for localglobal.bf is the following:

SetDialogPrompt ("Please specify a nucleotide data file:");

DataSet myData = ReadDataFile(PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter(myData,1);
HarvestFrequencies(obsFreqs,myFilter,1,1,1);

fprintf(stdout,"\n\n Original (Local) HKY85 Analysis \n\n");
HKY85RateMatrix = {{*,b,a,b}{b,*,b,a}{a,b,*,b}{b,a,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);
fprintf(stdout,theLikFun);

fprintf(stdout,"\n\n Global HKY85 Analysis \n\n");
global S=2.0;
GlobalHKY85Matrix = {{*,b,b*S,b}{b,*,b,b*S}

{b*S,b,*,b}{b,b*S,b,*}};
Model GlobalHKY85 = (GlobalHKY85Matrix, obsFreqs);
Tree myTree = ((a,b),c,d);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);
fprintf(stdout,theLikFun);

The code for the first analysis is identical to that from models.bf. The
global analysis introduces a new statement:

global S=2.0;
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This statement declares S to be a global variable. By default, the description
of a model (and variables within that model) is used as a template that is
copied for every branch on the tree. An important fact is that we cannot
later redefine S as a local variable. The scope of a variable is determined
at the time of its creation and cannot be altered. In the statement defining
GlobalHKY85Matrix, one observes that b is used as the transversion rate,
while transitions occur at rate b ∗ S.

More complex models

HyPhy has support for an infinite number of substitution models. Any Markov
chain model using any finite sequence alphabet can be used. Models for codon
and amino acid sequences are available through the Standard Analyses menu
selection. We refer users who are interested in writing code for such alphabets
to the files in the Examples subdirectory.

Imposing constraints on variables

Simple constraints: relrate.bf

The primary reason for developing HyPhy was to provide a system for per-
forming likelihood analyses on molecular evolutionary data sets. In particular,
we wanted to be able to describe and perform likelihood ratio tests (LRTs)
easily. In order to perform an LRT, it is first necessary to describe a con-
straint, or series of constraints, among parameters in the probability model.
To illustrate the syntax of parameter constraints in HyPhy, examine the code
in relrate.bf :

SetDialogPrompt("Select a nucleotide data file:");
DataSet myData = ReadDataFile (PROMPT_FOR_FILE);
DataSetFilter myFilter = CreateFilter (myData,1);
HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
F81RateMatrix = {{* ,mu,mu,mu}{mu,* ,mu,mu}
{mu,mu,* ,mu}{mu,mu,mu,* }};
Model F81 = (F81RateMatrix, obsFreqs);
Tree myTree = (a,b,og);

fprintf(stdout,"\n Unconstrained analysis:\n\n");
LikelihoodFunction theLikFun = (myFilter, myTree, obsFreqs);
Optimize (paramValues, theLikFun);
fprintf (stdout, theLikFun);
lnLA=paramValues[1][0];
dfA=paramValues[1][1];

fprintf(stdout,"\n\n\n Constrained analysis:\n\n");
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myTree.a.mu := myTree.b.mu;
Optimize (paramValues, theLikFun);
fprintf (stdout, theLikFun);
lnL0=paramValues[1][0];
df0=paramValues[1][1];

LRT=-2*(lnL0-lnLA);
Pvalue=1-CChi2(LRT,dfA-df0);
fprintf(stdout,"\n\nThe statistic ",LRT," has P-value ",
Pvalue,"\n\n");

The unconstrained analysis is of the simple type we have discussed previ-
ously. In the constrained analysis, however, we impose the constraint of equal
substitution rates between lineages a and b with the command

myTree.a.mu := myTree.b.mu;

The results from this batch file when applied to three.seq are:

Unconstrained analysis:

Log Likelihood = -523.374642786834;
Tree myTree=(a:0.0313488,b:0.00634291,og:0.11779);

Constrained analysis:

Log Likelihood = -525.013303516343;
Tree myTree=(a:0.018846,b:0.018846,og:0.116881);

The statistic 3.27732 has P-value 0.0702435

Since these models are nested, we can consider the likelihood ratio statistic,
−2(lnL0 − lnLA), to have an asymptotic chi-squared distribution. In this
case, the test statistic has a value of 3.27732. Note in the batch file how the
likelihood values and parameter counts are returned by Optimize and stored
in paramValues. The built-in function CChi2 is the cumulative distribution
function of the chi-squared distribution.

Molecular clocks

Perhaps the most common molecular evolutionary hypothesis tested is that
a set of sequences has evolved according to a molecular clock. It now seems
quite clear that a global molecular clock exists for few, if any, gene sequences.
In contrast, the existence of local molecular clocks among more closely related
species is more probable. HyPhy allows for both types of constraints, including
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the possibility of testing for multiple local clocks for different user-defined
clades in the same tree.

Global clocks: molclock.bf

The batch file molclock.bf is a simple example of testing for a global molec-
ular clock. The code should be familiar, except for the new MolecularClock
statement, which declares that the values of the parameter mu should follow
a molecular clock on the entire tree myTree. An important difference in this
batch file is that the Tree statement defines a rooted tree. Had an unrooted
tree been used, it would have been treated as a rooted tree with a multifurca-
tion at the root. When using time-reversible models, which can’t resolve the
exact placement of the root on the internal rooting branch, a global molecular
clock applied to a rooted tree can be interpreted as: locate the root on the
root branch as to enforce a global molecular clock on the specified rates. The
section of code imposing the molecular clock constraint is:

fprintf(stdout,"\n\n Molecular Clock Analysis: \n");
MolecularClock(myTree,m);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);

Local clocks: localclocks.bf

Particularly when studying data sets consisting of many species spanning a
wide level of taxonomic diversity, it may be of interest to assign local molec-
ular clocks to some clades. For instance, in a study of mammalian molecular
evolution, one might specify that each genus evolves in a clocklike manner
but that different genera evolve at different rates. To allow such analyses, the
MolecularClock command can be applied to any node on a tree. Unlike the
global clock of the previous case, it is not necessary for the MolecularClock
command to be applied to a rooted tree; the placement of the MolecularClock
command “roots” the tree, at least locally. To illustrate this feature, we use
localclocks.bf in conjunction with the file six.seq. The relevant new sections of
the code are the tree topology definition

myTopology = "(((a,b)n1,(c,(d,e))n2),f)";

and the declaration of two local molecular clocks:

fprintf(stdout,"\n\n Local Molecular Clock Analysis: \n");
ClearConstraints(myTree);
MolecularClock(myTree.n1,m);
MolecularClock(myTree.n2,m);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize(results,theLikFun);
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The topology string used in localclocks.bf takes advantage of HyPhy’s ex-
tended syntax. Notice how we have named two of the internal nodes n1 and
n2. Those names override HyPhy’s default (and rather cryptic) node-naming
convention and allow us to call functions—in this case, MolecularClock—on
the clades they tag. The syntax of the MolecularClock statements is rather
C-like. MolecularClock(myTree.n1,m); imposes a local clock on the clade
rooted at node n1 in tree myTree. The parameter with clocklike behavior is
m, the only option for the F81 model being used. The results using the data
file six.seq are:

UNCONSTRAINED ANALYSIS:
Log Likelihood = -685.473598259084;
Tree myTree=((a:0.0296674,b:0.00831723)n1:0.040811,
(c:0.0147138,(d:0.0142457,e:0.0328603)
Node7:0.0309969)n2:0.0130927,f:0.0517146);

GLOBAL MOLECULAR CLOCK ANALYSIS:
Log Likelihood = -690.857603506283;
Tree myTree=((a:0.0181613,b:0.0181613)n1:0.0350919,
(c:0.0385465,(d:0.0195944,e:0.0195944)
Node7:0.0189521)n2:0.0147067,f:0.053838);

P-value for Global Molecular Clock Test: 0.0292988

LOCAL MOLECULAR CLOCK ANALYSIS:
Log Likelihood = -690.761234081996;
Tree myTree=((a:0.0190659,b:0.0190659)n1:0.0386549,
(c:0.0370133,(d:0.0189116,e:0.0189116)
Node7:0.0181017)n2:0.0128865,f:0.0537045);

P-value for Local Molecular Clock Test: 0.0142589

By examining the output, one finds that under the local clock model the two
subtrees do indeed have clocklike branch lengths, yet the tree as a whole is not
clocklike. However, the likelihood ratio test suggests that neither the global
nor local clock assumption is correct.

Simulation tools

The use of simulation in molecular evolutionary analysis has always been
important. Simulation allows us to test statistical properties of methods, to
assess the validity of theoretical asymptotic distributions of statistics, and to
study the robustness of procedures to underlying model assumptions. More
recently, methods invoking simulation have seen increased use. These tech-
niques include numerical resampling methods for estimating variances or for
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computing confidence intervals, as well as parametric bootstrap procedures
for estimating p-values of test statistics. HyPhy provides both parametric and
nonparametric simulation tools, and examples of both are illustrated in the
following sections.

The bootstrap: bootstrap.bf

The bootstrap provides, among other things, a simple nonparametric approach
for estimating variances of parameter estimates. Consider bootstrap.bf. The
relevant commands from the batch file are as follows. (Some lines of code
have been deleted for clarity.)

Model F81 = (F81RateMatrix, obsFreqs);
Tree myTree = (a,b,og);
LikelihoodFunction theLikFun = (myFilter, myTree);
Optimize (paramValues, theLikFun);

reps = 100;

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1) {
DataSetFilter bsFilter = Bootstrap(myFilter,1);
HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);
Model bsModel = (F81RateMatrix, bsFreqs);
Tree bsTree = (a,b,og);
LikelihoodFunction bsLik = (bsFilter, bsTree);
Optimize (bsParamValues, bsLik);

}

The first section of code is simply the completion of a typical data analy-
sis, storing and printing results from the analysis of data in myFilter. The for
loop is the heart of the batch file. For each of the reps replicates, we gener-
ate a new DataSetFilter named bsFilter. We do this by creating a bootstrap
replicate from the existing DataSetFilter named bsFilter, which was created
in the normal fashion. bsFilter will contain the same number of columns as
myFilter. Once the new filter has been created, we recreate a Model named
bsModel and a Tree named bsTree, which are then used in an appropriate
LikelihoodFunction command. Optimize is used to find MLEs of the para-
meters. The end result of this batch file is a table consisting of 100 sets of
MLEs, each from a bootstrap sample from the original data. Notice in the
complete batch file (not shown in the code above) how we use the matrix
variable BSRes to tabulate and report the average of all bootstrap replicates.
More complex analyses, such as bootstrap confidence intervals, based on the
bootstrap estimates, can be programmed within the batch file, or the results
can be saved and imported into a spreadsheet for statistical analyses.

The Permute function, with syntax identical to Bootstrap, exists for ap-
plications where the columns in the existing DataSetFilter must appear ex-
actly once in each of the simulated data sets. This feature may be useful for
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comparison of the three codon positions or for studies investigating spatial
correlations or spatial heterogeneity.

The parametric bootstrap: parboot.bf

Another useful simulation tool is the parametric bootstrap. HyPhy provides
the SimulateDataSet command to provide the type of model-based simulation
required. In parboot.bf, we find the following lines of code. Again, some lines
have been deleted for clarity.

for (bsCounter = 1; bsCounter<=reps; bsCounter = bsCounter+1) {
DataSet bsData = SimulateDataSet(theLikFun);
DataSetFilter bsFilter = CreateFilter (bsData,1);
HarvestFrequencies (bsFreqs, bsFilter, 1, 1, 1);
Model bsModel = (F81RateMatrix, bsFreqs);
Tree bsTree = (a,b,og);
LikelihoodFunction bsLik = (bsFilter, bsTree);
Optimize (bsParamValues, bsLik);

}

The end result is analogous to that of bootstrap.bf : we simulate reps data
sets, find MLEs, and tabulate results. The fundamental difference is that
the data sets are formed by simulation using the tree structure, evolutionary
model, and parameters in theLikFun via the function SimulateDataSet. An
important technical difference is that SimulateDataSet generates a DataSet
as opposed to the DataSetFilter created by Bootstrap. Thus, we must use the
CreateFilter command to create an appropriate filter.

Again note the use of BSRes for tabulating results and also the use of
fscanf for acquiring input from the user (see the Batch Language Command
Reference for details).

Putting it all together: positions.bf

As an example of the type of analysis HyPhy was designed to implement,
we now describe the batch file positions.bf. This file illustrates some of the
features of the CreateFilter command by ignoring species C in four.seq and
by creating separate filters for each of the three codon positions. The HKY85
model is used as the basic substitution model. A global transition:transversion
ratio, R, is created; its value is allowed to be shared by all three positions. In
the “Combined Analysis,” the entire data set is analyzed in the normal way,
treating all sites identically. A second LikelihoodFunction is then created, in
which the data are split into three partitions according to codon position.
Each of the three partitions is allowed to evolve with a separate rate. However,
the transition/transversion ratio is constrained to be the same for all three
codon positions as well as for all lineages. The likelihood ratio test statistic
comparing these two models is computed, and the statistical significance of the
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test is reported using both the chi-squared approximation and nonparametric
bootstrapping.

The file positions.bf is rather complicated, so we will focus only on some
of its key features.

Read and filter the data

It is often the case that molecular data sets have some repeating underlying
structure that we would like to exploit or study. For instance, coding regions
might be described with the repeating structure 123123123 . . . . In positions.bf
we create separate DataSetFilters for first, second, and third codon positions.
The command

DataSetFilter myFilter1 =
CreateFilter (myData,1,"<100>","0,1,3");

creates a DataSetFilter named MyData1 that includes only the first nucleotide
of each triplet. Likewise, the statement

DataSetFilter myFilter3 =
CreateFilter (myData,1,"<001>","0,1,3");

creates a DataSetFilter named MyData3 that includes only the third nu-
cleotide of every triplet. Had we wished to create a filter consisting of both
first and second positions, we would have used a statement such as

DataSetFilter myFilter12 =
CreateFilter (myData,1,"<110>","0,1,3");

Define a substitution model for each position

The next portion of positions.bf creates a vector of observed frequencies for
each of the filters using standard syntax.

HarvestFrequencies (obsFreqs, myFilter, 1, 1, 1);
HarvestFrequencies (obsFreqs1, myFilter1, 1, 1, 1);
HarvestFrequencies (obsFreqs2, myFilter2, 1, 1, 1);
HarvestFrequencies (obsFreqs3, myFilter3, 1, 1, 1);

Next, the basic substitution model is defined. We use the HKY85 model
with transversion parameter b and global transition:transversion ratio R. A
separate Model is created for each partition since each uses different frequen-
cies:

global R;
HKY85RateMatrix =

{{*,b,R*b,b}{b,*,b,R*b}{R*b,b,*,b}{b,R*b,b,*}};
Model HKY85 = (HKY85RateMatrix, obsFreqs);
Tree myTree = (a,b,d);
Model HKY851 = (HKY85RateMatrix, obsFreqs1);
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Tree myTree1 = (a,b,d);
Model HKY852 = (HKY85RateMatrix, obsFreqs2);
Tree myTree2 = (a,b,d);
Model HKY853 = (HKY85RateMatrix, obsFreqs3);
Tree myTree3 = (a,b,d);

Define two likelihood functions

We are now ready to set up LikelihoodFunctions and Optimize them. The
analysis of the combined data set is routine:

LikelihoodFunction theLikFun = (myFilter,myTree);
Optimize (paramValues, theLikFun);

We also store some results for later use:

lnLik0 = paramValues[1][0];
npar0 = paramValues[1][1]+3;
fprintf (stdout, theLikFun, "\n\n");

The statement npar0 = paramValues[1][1]+3; requires some explanation.
The Optimize function always returns the number of parameters that were
optimized as the [1][1] element of its returned matrix of results. Typically,
we do not optimize over base frequency values, electing instead to simply use
observed frequencies, which are usually very close to the maximum likelihood
estimates. Since the frequencies are, in fact, estimated from the data, they
need to be included in the parameter count. The value of npar0 therefore
includes the count of independent substitution parameters in the model (the
number of which is returned by Optimize) along with the three independent
base frequencies estimated from the data.

The LikelihoodFunction for the “partitioned” analysis simply uses the ex-
tended form of the LikelihoodFunction command:

LikelihoodFunction theSplitLikFun = (myFilter1,myTree1,
myFilter2,myTree2,
myFilter3,myTree3);

Optimize (paramValues, theSplitLikFun);
lnLik1 = paramValues[1][0];
npar1 = paramValues[1][1]+9;

Note the addition of the nine estimated frequencies to the model’s parameter
count, three for each partition.

Find p-values for hypothesis tests

Finally, we compute the p-value for the test of the combined analysis (null
hypothesis) against the split model (alternative hypothesis). Two approaches
are used. First is the normal chi-squared approximation to the LRT statistic:
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LRT = 2*(lnLik1-lnLik0);
pValueChi2 = 1-CChi2 (LRT, npar1-npar0).

One can also estimate the P-value using the parametric bootstrap. The
statement for simulating a random data set based on theLikFun is

DataSet simData = SimulateDataSet(theLikFun);

The remaining part of the loop is basically a copy of the original analysis,
with variable names adjusted to indicate that they are coming from simulated
data. For each simulated data set, we compute the LRT, named simLRT,
and compare it with the observed LRT. The estimate of the p-value is the
proportion of simulated datasets with an LRT larger than that of the observed
data. We keep track of the number of such events using the variable count :

simLRT = 2*(simlnLik1-simlnLik0);
if (simLRT > LRT)
{

count = count+1;
}

and report the results:

fprintf(stdout,
"\n\n*** P-value (Parametric BS)= ",count/reps,"\n");

The batch file positions.bf provides a good example of the flexibility of
HyPhy, and many of the same ideas could be used to develop analyses of
multiple genes. Of particular importance for multilocus analysis is the ability
to mix local and global variables. To our knowledge, the type of modeling and
testing flexibility demonstrated in positions.bf is unique.

Site-to-site rate heterogeneity

One of the most important additions to recent models of sequence evolution is
the incorporation of site-to-site rate heterogeneity, which allows the highly de-
sirable property of some positions evolving quickly and some slowly, with oth-
ers having intermediate rates. In the first portion of this chapter, we demon-
strated some of HyPhy’s basic functionality with regard to rate heterogeneity.
We now continue this discussion, demonstrating the “traditional” approaches
to modeling rate heterogeneity as well as some novel features unique to Hy-
Phy. We feel that the flexibility in modeling site-to-site rate heterogeneity is
one of the strongest aspects of the software package.

The fundamental elements of incorporating site-to-site rate heterogeneity
are demonstrated in the file ratehet.bf. There one will find an analysis labeled
“Variable Rates Model 1,” which simply uses the F81 nucleotide model with
sites falling into one of four rate classes. The first rate class is an invariant
class (i.e., rate 0), while rates of the remaining three categories have relative
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rates of 1, 2, and 4. The frequencies of the four categories are assumed to be
equal for illustration. The key section of code is the following:

category rateCat = (4, EQUAL, MEAN, , {{0}{1}{2}{4}}, 0, 4);

F81VarRateMatrix = {{*,rateCat*m,rateCat*m,rateCat*m}
{rateCat*m,*,rateCat*m,rateCat*m}
{rateCat*m,rateCat*m,*,rateCat*m}
{rateCat*m,rateCat*m,rateCat*m,*}};

Model F81Var = (F81VarRateMatrix, obsFreqs);

The “category” statement defines a discrete probability distribution for the
rates. In this case, there are four possible (relative) rates, 0, 1, 2, and 4, and the
categories occur with equal frequencies. (See the HyPhy documentation and
the examples below for further information on the category statement.) The
second and third statements define a variant of the F81 model of nucleotide
evolution. Had we left out the “rateCat” multiplier in the rate matrix, the
model would be the standard F81 model. With the inclusion of “rateCat,”
which is defined in the first statement to be a category variable, we have a
model declaring that each site evolves according to the F81 model but that
the rates vary from site to site in accordance with the distribution described in
the category statement. Note that in this case the relative rates are specified
by the user, so there is no rate heterogeneity parameter to be estimated from
the data.

In the “Variable Rates Model 2” analysis, we find an implementation of
the slightly more complex (but more well-known) discrete gamma model first
described in [12]. The key element in this analysis is simply a different category
statement:

category rateCat = (4, EQUAL, MEAN,
GammaDist(_x_,alpha,alpha), CGammaDist(_x_,alpha,alpha),
0,1e25,CGammaDist(_x_,alpha+1,alpha));

We again introduce a discrete distribution with four equiprobable classes,
but this time the relative rates of those classes are provided by the gamma
distribution. In turn, the arguments in the category statement declare

1. Use four rate categories.
2. Assign equal frequencies to the four categories.
3. Use the mean of each discretized interval to represent the rate for the

corresponding class.
4. The density function for the rates is the gamma density (which is a built-

in function. Alternatively, the formula for any desired density could be
entered.)

5. The cumulative density function is provided by the gamma distribution
function. (Again, this is a predefined function, and the cdf for any chosen
density could be substituted.)
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6. The relative rates are limited to the range 0 to 1×1025 (to make numerical
work simpler).

7. The final argument is optional and specifies a formula for the mean of each
interval. If this argument were not provided, the mean would be evaluated
numerically.

With this model, HyPhy would estimate the branch lengths for each branch
in the tree along with the shape parameter α that is specified in the category
statement.

The third and final example in ratehet.bf allows rates to vary according to
an exponential distribution. The category statement in this case is essentially
the same as for the gamma distribution, but with the density and distribution
functions for the exponential distribution used instead:

category rateCat = (4, EQUAL, MEAN,
alpha*Exp(-alpha*_x_), 1-Exp(-alpha*_x_), 0, 1e25,
-_x_*Exp(-alpha*_x) + (1-Exp(-alpha*_x_))/alpha);

This fundamental approach can be used to fit any discretized density to data
by simply writing an appropriate category statement and combining it with
any desired substitution matrix. A number of examples are provided in the
sample files in the HyPhy distribution.

In the file twocats.bf, we demonstrate a new idea in modeling rate hetero-
geneity, the possibility of moving beyond the simple idea of each site having
its own rate. For illustration, we show that it is simple to define a model
that allows each site to have its own transition and transversion rate, but
sites with high transition rates need not also have high transversion rates. We
demonstrated an application of this approach to codon-based models based
on synonymous and nonsynonymous rates in the first half of the chapter.
The basic approach is the same as for the previous examples: we will use the
category statement to define distributions of rate heterogeneity. However, in
this case we will use two category statements, one for transitions and one for
transversions.

The first analysis in twocats is essentially the discrete gamma model found
in ratehet.bf but with 16 categories rather than four. The second analysis
introduces separate distributions for transitions and transversions. Each type
of rate is assumed to come from a (discrete) gamma distribution with four
categories, but each distribution has its own parameters. This model leads to a
model with 4×4 = 16 rate categories and thus has computational complexity
equal to the 16-category discrete gamma in the first analysis. The category
statements have the same basic format as the previous examples:

category catTS = (4, EQUAL, MEAN,
GammaDist(_x_,alphaS,alphaS), CGammaDist(_x_,alphaS,alphaS),
0,1e25, CGammaDist(_x_,alphaS+1,alphaS));
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category catTV = (4, EQUAL, MEAN,
GammaDist(_x_,alphaV,beta), CGammaDist(_x_,alphaV,beta),
0,1e25, CGammaDist(_x_,alphaV+1,beta)*alphaV/beta);

An important mathematical fact arises at this point. Traditionally, the gamma
distribution in rate analyses has been described only by its “shape” parame-
ter. The gamma distribution in general is described by a shape parameter and
a scale parameter. The confounding of rates and times allows for the (arbi-
trary) determination of one of the two parameters, and for simplicity the two
parameters have simply been assumed to be equal. When we move to the case
of two gamma distributions, we still have this level of freedom to arbitrarily
assign one parameter. In this example, we have maintained the “traditional”
style for the transition rates (see the category statement for catTS ), but we
must use both the shape and scale parameters for the second distribution.
Thus, we end up with three parameters that govern the distributional form
for the transition and transversion rates: alphaS, the shape parameter for the
transition rate distribution, and alphaV and beta, the shape and scale para-
meters for the gamma distribution describing transversion rates.

We must still introduce these category variables into the substitution ma-
trix, and examining the definition of HKY85TwoVarRateMatrix, we see that
transition rates are multiplied by catTS, while transversion rates are multi-
plied by catTV.

Analyzing codon data

So far, we have considered only nucleotide alignments and evolutionary models
as examples. Using the example included in the file codon.bf, we will discuss
how to read and filter codon data and define substitution models that operate
at the level of codons.

Defining codon data filters

Codon data sets are nucleotide sequences where the unit of evolution is a
triplet of nucleotides, and some states (stop codons) are disallowed. The task
of making HyPhy interpret a nucleotide alignment as codons is handled by
supplying a few additional parameters in a call to CreateFilter. Consider the
following line in codons.bf :

DataSetFilter codonFilter =
CreateFilter(myData,3,"","","TAA,TAG,TGA");

The second argument of 3 instructs HyPhy to consider triplets of characters
in the data set myData as units of evolution. If it had been 2, then the filter
would consist of dinucleotides. The empty third and fourth arguments include
all sequences and sites in the filter. The fifth argument is the comma-separated
list of exclusions (i.e., character states that are not allowed). One can easily
recognize that the list includes the three stop codons for the universal genetic
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code. All sites in the original nucleotide alignment that contained at least one
of the excluded states would be omitted from the filter, and a message would
be written to messages.log, located in the main HyPhy directory.

The filter myFilter consists of data for 43 − 3 = 61 states (i.e., all sense
codons in the universal genetic code); therefore, any substitution model com-
patible with this filter must describe a process with 61 states and use a 61×61
rate matrix. Before we proceed with the definition of this matrix, a crucial
question must be answered: How does HyPhy index codons? For example,
which entry in the rate matrix will describe the change from codon ATC to
codon TTC? HyPhy uses a uniform indexing scheme, which is rather straight-
forward. The default nucleotide alphabet is ordered as ACGT, and each char-
acter is assigned an index in that order: A=0, C=1, G=2, T=3 (note that all
indexing starts at 0, as in the programming language C). In previous exam-
ples, we used this mapping to define nucleotide rate matrices. For example,
the entry in row 2 and column 3 would define the rate of G→T substitutions.
Analogously, all sense codons are ordered alphabetically: AAA, AAC, AAG,
AAT, ACA, ..., TTG, TTT, excluding stop codons, with the corresponding
indexing from 0 to 60. It is easy to check that ATC will have the index of
13, whereas TTC is assigned the index of 58. Consequently, the rate of ATC
to TTC substitutions should be placed in row 13 and column 58 of the rate
matrix.

A 61 × 61 rate matrix has 3721 entries, and defining them one by one
would be a daunting task. We need a way to avoid an explicit enumeration.
Consider the MG94×HKY85 model (6.2) explained in Section 6.2.4. Each sub-
stitution rate can be classified by determining the following four attributes:
(i) is the change one-step or multistep? (ii) Is the change synonymous or non-
synonymous? (iii) Is the change a transition or a transversion? (iv) What is
the equilibrium frequency of the target nucleotide? A compact way to define
the model is to loop through all 3721 possible pairs of codons, answer the
four questions above, and assign the appropriate rate to the matrix cell. Hy-
Phy has no intrinsic knowledge of how codons are translated to amino acids,
and this information is needed to decide whether a nucleotide substitution is
synonymous or nonsynonymous. codons.bf contains such a map for the uni-
versal genetic code in the matrix UniversalGeneticCode. The 64 codons have
21 possible translations (20 amino acids and a “stop”). Each of the 64 cells
of UniversalGeneticCode contains an amino acid (or stop) code from 0 to 20,
whose meaning is explained in the comments in codons.bf. We refer the reader
to the code and comments in codons.bf for implementation details. The imple-
mentation is straightforward but somewhat obtuse. Once the reader becomes
comfortable with referencing codons by their indices and interpreting them,
the code should be clear. The reason for not having a built-in genetic code
translation device is to allow the use of arbitrary (nonuniversal) genetic codes.

The file codons.bf illustrates several other useful concepts:
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• How to define and call user functions. Function BuildCodonFrequencies
is employed to compute codon equilibrium frequencies based on observed
nucleotide proportions, defined in (6.3).

• The use of a built-in variable to reference the tree string present in the
data file (DATAFILE TREE ).

• The use of the double underscore operator to substitute numerical values
of arguments into formula definitions and avoid unwanted dependencies.

Lastly, codons.bf writes out data for further processing with a standard
file from the HyPhy distribution to perform posterior Bayesian analysis, as
discussed in Section 6.2.4.

6.4 Conclusion

This chapter has provided an overview of the basic features and use of the
HyPhy system. With a programming language at its core, users may elect to
write their own likelihood-based molecular evolutionary analyses. A graphical
user interface offers much of the power of the batch language, allowing users
to fit complex, customizable models to sequence alignments. The user inter-
face also provides access to the parametric bootstrap features of HyPhy for
carrying out tests of both nested and nonnested hypotheses. Many features of
the package, of course, could not be described in this chapter. For instance,
HyPhy includes a model editor for describing new stochastic models to be used
in analyses, and the graphical user interface provides a mechanism to define
arbitrary constraints among parameters for construction of likelihood ratio
tests. Its authors continue to develop HyPhy, with a goal of providing a flex-
ible, portable, and powerful system for carrying out cutting-edge molecular
evolutionary analyses.
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7.1 Introduction

Stochastic models of evolution play a prominent role in the field of molecular
evolution; they are used in applications as far-ranging as phylogeny estima-
tion, uncovering the pattern of DNA substitution, identifying amino acids
under directional selection, and in inferring the history of a population using
models such as the coalescence. The models used in molecular evolution have
become quite sophisticated over time. In the late 1960s one of the first stochas-
tic models applied to molecular evolution was introduced by Jukes and Cantor
[38] to describe how substitutions might occur in a DNA sequence. This model
was quite simple, really having only one parameter—the amount of change
between two sequences—and assumed that all of the different substitution
types had an equal probability of occurring. A familiar story, and one of the
greatest successes of molecular evolution, has been the gradual improvement
of models to describe new observations as they were made. For example, the
observation that transitions (substitutions between the nucleotides A ↔ G
and C ↔ T ) occur more frequently than transversions (changes between the
nucleotides A ↔ C, A ↔ T , C ↔ G, G ↔ T ) spurred the development of
DNA substitution models that allow the transition rate to differ from the
transversion rate [40, 24, 23]. Similarly, the identification of widespread vari-
ation in rates across sites led to the development of models of rate variation
[72] and also to more sophisticated models that incorporate constraints on
amino acid replacement [21, 50]. More recently, rates have been allowed to
change on the tree (the covarion-like models of Tuffley and Steel [70]) and can
explain patterns such as many substitutions at a site in one clade and few if
any substitutions at the same position in another clade of roughly the same
age.

The fundamental importance of stochastic models in molecular evolution
is this: they contain parameters, and if specific values can be assigned to these
parameters based on observations, such as an alignment of DNA sequences,
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then biologists can learn something about how molecular evolution has oc-
curred. This point is very basic but important. It implies that in addition to
careful consideration of the development of models, one needs to be able to
efficiently estimate the parameters of the model. By efficient we mean the abil-
ity to accurately estimate the parameters of an evolutionary model based on
as little data as possible. There are only a handful of methods that have been
used to estimate parameters of evolutionary models. These include the parsi-
mony, distance, maximum likelihood, and Bayesian methods. In this chapter,
we will concentrate on Bayesian estimation of evolutionary parameters. More
specifically, we will show how the program MrBayes [35, 59] can be used to
investigate several important questions in molecular evolution in a Bayesian
framework.

7.2 Maximum Likelihood and Bayesian Estimation

Unlike the parsimony and distance methods, maximum likelihood and Bayes-
ian inference take full advantage of the information contained in an alignment
of DNA sequences when estimating parameters of an evolutionary model. Both
maximum likelihood and Bayesian estimation rely on the likelihood function.
The likelihood is proportional to the probability of observing the data, con-
ditioned on the parameters of the model

�(Parameter) = Constant × Prob[Data|Parameter],

where the constant is arbitrary. The probability of observing the data con-
ditioned on specific parameter values is calculated using stochastic models.
Details about how the likelihood can be calculated for an alignment of DNA
or protein sequences can be found elsewhere [14]. Here, we have written the
likelihood function with only one parameter. However, for the models typically
used in molecular evolution, there are many parameters. We make the nota-
tional change in what follows by denoting parameters with the Greek symbol
θ and the data as X so that the likelihood function for multiple-parameter
models is

�(θ1, θ2, . . . , θn) = K × f(X|θ1, θ2, . . . , θn),

where K is the constant.
In a maximum likelihood analysis, the combination of parameters that

maximizes the likelihood function is the best estimate, called the maximum
likelihood estimate. In a Bayesian analysis, on the other hand, the object
is to calculate the joint posterior probability distribution of the parameters.
This is calculated using Bayes’ theorem as

f(θ1, θ2, . . . , θn|X) =
�(θ1, θ2, . . . , θn) × f(θ1, θ2, . . . , θn)

f(X)
,
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where f(θ1, θ2, . . . , θn|X) is the posterior probability distribution, �(θ1, θ2, . . . ,
θn) is the likelihood function, and f(θ1, θ2, . . . , θn) is the prior probability
distribution for the parameters. The posterior probability distribution of pa-
rameters can then be used to make inferences.

Although both maximum likelihood and Bayesian analyses are based upon
the likelihood function, there are fundamental differences in how the two meth-
ods treat parameters. Many of the parameters of an evolutionary model are
not of direct interest to the biologist. For example, for someone interested in
detecting adaptive evolution at the molecular level, the details of the phy-
logenetic history of the sequences sampled is not of immediate interest; the
focus is on other aspects of the model. The parameters that are not of direct
interest but that are needed to complete the model are called nuisance pa-
rameters (see [20], for a more thorough discussion of nuisance parameters in
phylogenetic inference). There are a few standard ways of dealing with nui-
sance parameters. One is to maximize the likelihood with respect to them. It
is understood, then, that inferences about the parameters of interest depend
upon the nuisance parameters taking fixed values. This is the approach usually
taken in maximum likelihood analyses and also in empirical Bayes analyses.
The other approach assigns a prior probability distribution to the nuisance
parameters. The maximum likelihood or posterior probabilities are calculated
by integrating over all possible values of the nuisance parameters, weighting
each by its (prior) probability. This approach is rarely taken in maximum like-
lihood analyses (where it is called the integrated likelihood approach [6]) but
is the standard method of accounting for nuisance parameters in a Bayesian
analysis, where all of the parameters of the model are assigned a prior proba-
bility distribution. The advantage of marginalization is that inferences about
the parameters of interest do not depend upon any particular value for the
nuisance parameters. The disadvantage, of course, is that it may be difficult
to specify a reasonable prior model for the parameters.

Maximum likelihood and Bayesian analyses also differ in how they inter-
pret parameters of the model. Maximum likelihood does not treat the para-
meters of the model as random variables (variables that can take their value
by chance), whereas in a Bayesian analysis, everything—the data and the
parameters—is treated as random variables. This is not to say that a Bayesian
does not think that there is only one actual value for a parameter (such as a
phylogenetic tree) but rather that his or her uncertainty about the parame-
ter is described by the posterior probability distribution. In some ways, the
treatment of all of the variables as random quantities simplifies a Bayesian
analysis. First, one is always dealing with probability distributions. If one
is interested in only the phylogeny of a group of organisms, say, then one
would base inferences on the marginal posterior probability distribution of
phylogeny. The marginal posterior probability of a parameter is calculated by
integrating over all possible values of the other parameters, weighting each by
its probability. This means that an inference of phylogeny does not critically
depend upon another parameter taking a specific value. Another simplifica-
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tion in a Bayesian analysis is that uncertainty in a parameter can be easily
described. After all, the probability distribution of the parameter is avail-
able, so specifics about the mean, variance, and a range that contains most of
the posterior probability for the parameter can be directly calculated from the
marginal posterior probability distribution for that parameter. In a maximum
likelihood analysis, on the other hand, the parameters of the model are not
treated as random variables, so probabilities cannot be directly assigned to the
parameters. If one wants to describe the uncertainty in an estimate obtained
using maximum likelihood, one has to go through the thought experiment of
collecting many data sets of the same size as the original, with parameters set
to the maximum likelihood values. One then asks what the range of maximum
likelihood estimates would be for the parameter of interest on the imaginary
data.

In practice, many studies in molecular evolution apply a hybrid approach
that combines ideas from maximum likelihood and Bayesian analysis. For ex-
ample, in what is now a classic study, Nielsen and Yang [54] identified amino
acid positions in a protein-coding DNA sequence under the influence of pos-
itive selection using Bayesian methods; the posterior probability that each
amino acid position is under directional selection was calculated. However,
they used maximum likelihood to estimate all of the parameters of the model.
This approach can be called an empirical Bayes approach because of its re-
liance on Bayesian reasoning for the parameter of interest (the probability
a site is under positive selection) and maximum likelihood for the nuisance
parameters.

In the following section, we describe three uses of Bayesian methods in
molecular evolution: phylogeny estimation, analysis of complex data, and es-
timating divergence times. We hope to show the ease with which parameters
can be estimated, the uncertainty in the parameters can be described, and
uncertainty about important parameters can be incorporated into a study in
a Bayesian framework.

7.3 Applications of Bayesian Estimation in Molecular
Evolution

7.3.1 A Brief Introduction to Models of Molecular Evolution

Before delving into specific examples of the application of Bayesian inference
in molecular evolution, the reader needs some background on the modeling as-
sumptions made in a Bayesian analysis. Many of these assumptions are shared
by maximum likelihood and distance-based methods. Typically, the models
used in molecular evolution have three components. First, they assume a tree
relating the samples. Here, the samples might be DNA sequences collected
from different species or different individuals within a population. In either
case, a basic assumption is that the samples are related to one another through
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an (unknown) tree. This would be a species tree for sequences sampled from
different species, or perhaps a coalescence tree for sequences sampled from in-
dividuals from within a population. Second, they assume that the branches of
the tree have an (unknown) length. Ideally, the length of a branch on a tree is
in terms of time. However, in practice it is difficult to determine the duration
of a branch on a tree in terms of time. Instead, the lengths of the branches on
the tree are in terms of expected change per character. Figure 7.1 shows some
examples of trees with branch lengths. The main points the reader should re-
member are: (1) Trees can be rooted or unrooted. Rooted trees have a time
direction, whereas unrooted trees do not. Most methods of phylogenetic infer-
ence, including most implementations of maximum likelihood and Bayesian
analysis, are based on time-reversible models of evolution that produce un-
rooted trees, which must be rooted using some other criterion, such as the
outgroup criterion (using distantly related reference sequences to locate the
root). (2) The space of possible trees is huge. The number of possible unrooted
trees for n species is B(n) = (2n−5)!

2n−3(n−3)! [61]. This means that for a relatively
small problem of only n = 50 species, there are about B(50) = 2.838 × 1074

possible unrooted trees that can explain the phylogenetic relationships of the
species.

The third component of a model of molecular evolution is a process that de-
scribes how the characters change on the phylogeny. All model-based methods
of phylogenetic inference, including maximum likelihood and Bayesian estima-
tion of phylogeny, currently assume that character change occurs according
to a continuous-time Markov chain. At the heart of any continuous-time
Markov chain is a matrix of rates specifying the rate of change from one state
to another. For example, the instantaneous rate of change under the model
described by Hasegawa et al. ([24, 23]; hereafter called the HKY85 model) is

Q = {qij} =

⎛⎜⎜⎝
− πC κπG πT

πA − πG κπT

κπA πC − πT

πA κπC πG −

⎞⎟⎟⎠µ.

This matrix specifies the rate of change from one nucleotide to another; the
rows and columns of the matrix are ordered A, C, G, T , so that the rate of
change C → G is qCG = πG. Similarly, the rates of change C → T , G →
A, and T → C are qCT = κπT , qGA = κπA, and qTG = πG, respectively.
The diagonals of the rate matrix, denoted with the dash, are specified such
that each row sums to zero. Finally, the rate matrix is rescaled such that
the mean rate of substitution is one. This can be accomplished by setting
µ = −1/

∑
i∈{A,C,G,T} πiqii. This rescaling of the rate matrix such that the

mean rate is one allows the branch lengths on the phylogenetic tree to be
interpreted as the expected number of nucleotide substitutions per site.

We will make a few important points about the rate matrix. First, the
rate matrix may have free parameters. For example, the HKY85 model has
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Fig. 7.1. Example of unrooted and rooted trees. An unrooted tree of four species
(center) with the branch lengths drawn proportional to their length in terms of
expected number of substitutions per site. The five trees surrounding the central,
unrooted tree show the five possible rooted trees that result from the unrooted tree.

the parameters κ, πA, πC , πG, and πT . The parameter κ is the transi-
tion/transversion rate bias when κ = 1 transitions occur at the same rate
as transversions. Typically, the transition/transversion rate ratio, estimated
using maximum likelihood or Bayesian inference, is greater than one and tran-
sitions occur at a higher rate than transversions. The other parameters—πA,
πC , πG, and πT —are the base frequencies and have a biological interpreta-
tion as the frequency of the different nucleotides and are also, incidentally,
the stationary probabilities of the process (more on stationary probabilities
later). Second, the rate matrix, Q, can be used to calculate the transition
probabilities and the stationary distribution of the substitution process. The
transition probabilities and stationary distribution play a key role in calculat-
ing the likelihood, and we will spend more time here developing an intuitive
understanding of these concepts.

Transition probabilities

Let us consider a specific example of a rate matrix with all of the parameters
of the model taking specific values. For example, if we use the HKY85 model
and fix the parameters to κ = 5, πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1,
we get the following matrix of instantaneous rates
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Q = {qij} =

⎛⎜⎜⎝
−0.886 0.190 0.633 0.063

0.253 −0.696 0.127 0.316
1.266 0.190 −1.519 0.063
0.253 0.949 0.127 −1.329

⎞⎟⎟⎠ .

Note that these numbers are not special in any particular way. That is to say,
they are not based upon any observations from a real data set but are rather
arbitrarily picked to illustrate a point. The point is that one can interpret
the rate matrix in the physical sense of specifying how changes occur on
a phylogenetic tree. Consider the very simple case of a single branch on a
phylogenetic tree. Let’s assume that the branch is v = 0.5 in length and
that the ancestor of the branch is the nucleotide G. The situation we have is
something like that shown in Figure 7.2(a). How can we simulate the evolution
of the site starting from the G at the ancestor? The rate matrix tells us how
to do this. First of all, because the current state of the process is G, the only
relevant row of the rate matrix is the third one:

Q = {qij} =

⎛⎜⎜⎝
· · · ·
· · · ·

1.266 0.190 −1.519 0.063
· · · ·

⎞⎟⎟⎠ .

The overall rate of change away from nucleotide G is qGA+qGC+qGT = 1.266+
0.190 + 0.063 = 1.519. Equivalently, the rate of change away from nucleotide
G is simply −qGG = 1.519. In a continuous-time Markov model, the waiting
time between substitutions is exponentially distributed. The exact shape of
the exponential distribution is determined by its rate, which is the same as
the rate of the corresponding process in the Q matrix. For instance, if we are
in state G, we wait an exponentially distributed amount of time with rate
1.519 until the next substitution occurs. One can easily construct exponential
random variables from uniform random variables using the equation

t = − 1
λ

loge(u),

where λ is the rate and u is a uniform(0,1) random number. For example, our
calculator has a uniform(0,1) random number generator. The first number it
generated is u = 0.794. This means that the next time at which a substitution
occurs is 0.152 up from the root of the tree (using λ = 1.519; Figure 7.2(b)).
The rate matrix also specifies the probabilities of a change from G to the
nucleotides A, C, and T . These probabilities are

G → A : 1.266
1.519 = 0.833, G → C : 0.190

1.519 = 0.125, G → T : 0.063
1.519 = 0.042.

To determine the nucleotide to which the process changes, we would generate
another uniform(0,1) random number (again called u). If u is between 0 and
0.833, we will say that we had a change from G to A. If the random number
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Fig. 7.2. Simulation under the HKY85 substitution process. A single realization of
the substitution process under the HKY85 model when κ = 5, πA = 0.4, πC = 0.3,
πG = 0.2, and πT = 0.1. The length of the branch is v = 0.5 and the starting
nucleotide is G (light gray). (a) The process starts in nucleotide G. (b) The first
change is 0.152 units up the branch. (c) The change is from G to A (dark gray).
The time at which the next change occurs exceeds the total branch length, so the
process ends in state C.

is between 0.833 and 0.958, we will say that we had a change from G to C.
Finally, if the random number u is between 0.958 and 1.000, we will say we
had a change from G to T . The next number generated on our calculator was
u = 0.102, which means the change was from G to A. The process is now in a
different state (the nucleotide A), and the relevant row of the rate matrix is

Q = {qij} =

⎛⎜⎜⎝
−0.886 0.190 0.633 0.063

· · · ·
· · · ·
· · · ·

⎞⎟⎟⎠ .

We wait an exponentially distributed amount of time with parameter λ =
0.886 until the next substitution occurs. When the substitution occurs, it is to
a C, G, or T with probabilities 0.190

0.886 = 0.214, 0.633
0.886 = 0.714, and 0.063

0.886 = 0.072,
respectively. This process of generating random and exponentially distributed
times until the next substitution occurs and then determining (randomly)
which nucleotide has changed is repeated until the process exceeds the length
of the branch. The state of the process when it passes the end of the branch
is recorded. In the example of Figure 7.2, the process started in state G and
ended in state A. (The next uniform random variable generated on our cal-
culator was u = 0.371, which means that the next substitution would occur
1.119 units above the substitution G → A. The process was in the state A
when it passed the end of the branch.) The only nonrandom part of the entire
procedure was the initial decision to start the process in state G. All other
aspects of the simulation used a uniform random number generator and our
knowledge of the rate matrix to simulate a single realization of the HKY85
process of DNA substitution.
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This Monte Carlo procedure for simulating the HKY85 process of DNA
substitution can be repeated. The following table summarizes the results of
100 simulations, each of which started with the nucleotide G:

Starting Ending Number of
Nucleotide Nucleotide Replicates

G A 27
G C 10
G G 59
G T 4

This table can be interpreted as a Monte Carlo approximation of the tran-
sition probabilities from nucleotide G to nucleotide i ∈ (A, C, G, T ). Specifi-
cally, the Monte Carlo approximations are pGA(0.5) ≈ 0.27, pGC(0.5) ≈ 0.10,
pGG(0.5) ≈ 0.59, and pGT (0.5) ≈ 0.04. These approximate probabilities are
all conditioned on the starting nucleotide being G and the branch length
being v = 0.5. We performed additional simulations in which the starting
nucleotide was A, C, or T . Together with the earlier Monte Carlo simulation
that started with the nucleotide G, these additional simulations allow us to
fill out the following table with the approximate transition probabilities:

Ending
Nucleotide

A C G T
A 0.67 0.13 0.20 0.00

Starting C 0.13 0.70 0.07 0.10
Nucleotide G 0.27 0.10 0.59 0.04

T 0.12 0.30 0.08 0.50

Clearly, these numbers are only crude approximations to the true transition
probabilities; after all, each row in the table is based on only 100 Monte Carlo
simulations. However, they do illustrate the meaning of the transition proba-
bilities; the transition probability pij(v) is the probability that the substitution
process ends in nucleotide j conditioned on it having started in nucleotide i
after an evolutionary amount of time v. The table of approximate transition
probabilities above can be interpreted as a matrix of probabilities, usually
denoted P(v). Fortunately, we do not need to rely on Monte Carlo simulation
to approximate the transition probability matrix. Instead, we can calculate
the transition probability matrix exactly using matrix exponentiation:

P(v) = eQv.

For the case we have been simulating, the exact transition probabilities (to
four decimal places) are

P(0.5) = {pij(0.5)} =

⎛⎜⎜⎝
0.7079 0.0813 0.1835 0.0271
0.1085 0.7377 0.0542 0.0995
0.3670 0.0813 0.5244 0.0271
0.1085 0.2985 0.0542 0.5387

⎞⎟⎟⎠ .
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The transition probability matrix accounts for all the possible ways the process
could end up in nucleotide j after starting in nucleotide i. In fact, each of
the infinite possibilities is weighted by its probability under the substitution
model.

Stationary distribution

The transition probabilities provide the probability of ending in a particular
nucleotide after some specific amount of time (or opportunity for substitu-
tion, v). These transition probabilities are conditioned on starting in a par-
ticular nucleotide. What do the transition probability matrices look like as
v increases? The following transition probability matrices show the effect of
increasing branch length:

P(0.00) =

⎛⎜⎜⎝
1.000 0.000 0.000 0.000
0.000 1.000 0.000 0.000
0.000 0.000 1.000 0.000
0.000 0.000 0.000 1.000

⎞⎟⎟⎠, P(0.01) =

⎛⎜⎜⎝
0.991 0.002 0.006 0.001
0.003 0.993 0.001 0.003
0.013 0.002 0.985 0.001
0.003 0.009 0.001 0.987

⎞⎟⎟⎠,

P(0.10) =

⎛⎜⎜⎝
0.919 0.018 0.056 0.006
0.024 0.934 0.012 0.029
0.113 0.018 0.863 0.006
0.025 0.086 0.012 0.877

⎞⎟⎟⎠, P(0.50) =

⎛⎜⎜⎝
0.708 0.081 0.184 0.027
0.106 0.738 0.054 0.100
0.367 0.081 0.524 0.027
0.109 0.299 0.054 0.539

⎞⎟⎟⎠,

P(1.00) =

⎛⎜⎜⎝
0.580 0.141 0.232 0.047
0.188 0.587 0.094 0.131
0.464 0.141 0.348 0.047
0.188 0.394 0.094 0.324

⎞⎟⎟⎠, P(5.00) =

⎛⎜⎜⎝
0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.106
0.411 0.287 0.206 0.096
0.383 0.319 0.192 0.107

⎞⎟⎟⎠,

P(10.0) =

⎛⎜⎜⎝
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100
0.401 0.299 0.200 0.099
0.399 0.301 0.199 0.100

⎞⎟⎟⎠, P(100) =

⎛⎜⎜⎝
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100
0.400 0.300 0.200 0.100

⎞⎟⎟⎠.

(Each matrix was calculated under the HKY85 model with κ = 5, πA = 0.4,
πC = 0.3, πG = 0.2, and πT = 0.1.) Note that as the length of a branch, v,
increases, the probability of ending up in a particular nucleotide converges to
a single number, regardless of the starting state. For example, the probability
of ending up in C is about 0.300 when the branch length is v = 100. This is
true regardless of whether the process starts in A, C, G, or T . The substitution
process has in a sense “forgotten” its starting state.

The stationary distribution is the probability of observing a particular
state when the branch length increases without limit (v → ∞). The station-
ary probabilities of the four nucleotides are πA = 0.4, πC = 0.3, πG = 0.2, and
πT = 0.1 for the example discussed above. The models typically used in phy-
logenetic analyses have the stationary probabilities built into the rate matrix,
Q. You will notice that the rate matrix for the HKY85 model has parameters
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πA, πC , πG, and πT and that the stationary frequencies of the four nucleotides
for our example match the input values for our simulations. Building the sta-
tionary frequency of the process into the rate matrix, while somewhat unusual,
makes calculating the likelihood function easier. For one, specifying the sta-
tionary distribution saves the time of identifying the stationary distribution
(which involves solving the equation πQ = 0, which simply says that if we
start with the nucleotide frequencies reflecting the stationary distribution,
the process will have no effect on the nucleotide frequencies). For another,
it allows one to more easily specify a time-reversible substitution model. (A
time-reversible substitution model has the property that πiqij = πjqji for all
i, j ∈ (A, C, G, T ), i �= j.) Practically speaking, time reversibility means that
we can work with unrooted trees instead of rooted trees (assuming that the
molecular clock is not enforced).

Calculating the likelihood

The transition probabilities and stationary distribution are used when cal-
culating the likelihood. For example, consider the following alignment of se-
quences for five species1:

Species 1 TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC
Species 2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC
Species 3 CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC
Species 4 CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC
Species 5 TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC

This is clearly a rather small alignment of sequences to use for estimating
phylogeny, but it will illustrate how likelihoods are calculated. The likelihood
is the probability of the alignment of sequences, conditioned on a tree with
branch lengths. The basic procedure is to calculate the probability of each
site (column) in the matrix. Assuming that the substitutions are independent
across sites, the probability of the entire alignment is simply the product of
the probabilities of the individual sites.

How is the likelihood at a single site calculated? Figure 7.3 shows the
observations at the first site (T , T , C, C, and T ) at the tips of one of the
possible phylogenetic trees for five species. The tree in Figure 7.3 is unusual in
that we will assume that the nucleotide states at the interior nodes of the tree
are also known. This is clearly a bad assumption because we cannot directly
observe the nucleotides that occurred at any point on the tree in the distant
past. For now, however, ignore this fact and bear with us. The probability of
observing the configuration of nucleotides at the tips and interior nodes of the
tree in Figure 7.3 is

1This alignment was simulated on the tree of Figure 7.3 under the HKY85 model
of DNA substitution. Parameter values for the simulation can be found in the caption
of Table 7.1.
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Fig. 7.3. A tree with states assigned to the tips. One of the possible (rooted) trees
describing the evolutionary history of the five species. The states at the first site in
the alignment of the text are shown at the tips of the tree. The states at the interior
nodes of the tree are also shown, though in reality these states are not observed.
The length of the ith branch is denoted vi.

Pr(TTCCT,ATCG|τ,v, θ) =
πG pGA(v3) pAT (v1) pAT (v2) pGC(v8) pCT (v6) pCT (v7) pTC(v4) pTC(v5).

Here we show the probability of the observations (TTCCT) and the states
at the interior nodes of the tree (ATCG) conditioned on the tree (τ), branch
lengths (v), and other model parameters (θ). Note that to calculate the prob-
ability of the states at the tips of the tree, we used the stationary probability
of the process (π) and also the transition probabilities [pij(v)]. The stationary
probability of the substitution process was used to calculate the probability
of the nucleotide at the root of the tree. In this case, we are assuming that
the substitution process was running for a very long time before it reached
the root of our five-species tree. We then use the transition probabilities to
calculate the probabilities of observing the states at each end of the branches.
When taking the product of the transition probabilities, we are making the
additional assumption that the substitutions on each branch of the tree are
independent of one another. This is probably a reasonable assumption for real
data sets.

The probability of observing the states at the tips of the tree, described
above, was conditioned on the interior nodes of the tree taking specific values
(in this case ATCG). To calculate the unconditional probability of the ob-
served states at the tips of the tree, we sum over all possible combinations of
nucleotide states that can be assigned to the interior nodes of the tree,

Pr(TTCCT |τ,v, θ) =
∑
w

∑
x

∑
y

∑
z

Pr(TTCCT, wxyz|τ,v, θ),
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where w, x, y, z ∈ (A, C, G, T ). Averaging the probabilities over all combina-
tions of states at the interior nodes of the tree accomplishes two things. First,
we remove the assumption that the states at the interior nodes take specific
values. Second, because the transition probabilities account for all of the pos-
sible ways we could have state i at one end of a branch and state j at the
other, the probability of the site is also averaged over all possible character
histories. Here, we think of a character history as one realization of changes
on the tree that is consistent with the observations at the tips of the tree. For
example, the parsimony method, besides calculating the minimum number of
changes on the tree, also provides a character history; the character history fa-
vored by parsimony is the one that minimizes the number of changes required
to explain the data. In the case of likelihood-based methods, the likelihood
accounts for all possible character histories, with each history weighted by
its probability under the substitution model. Nielsen [53] described a method
for sampling character histories in proportion to their probability that relies
on the interpretation of the rate matrix as specifying waiting times between
substitutions. His method provides a means to reconstruct the history of a
character that does not inherit the flaws of the parsimony method. Namely,
Nielsen’s method allows multiple changes on a single branch and also allows
for nonparsimonious reconstructions of a character’s history. In Chapter 16,
Bollback describes how character histories can be mapped onto trees under
continuous-time Markov models using the program SIMMAP.

Before moving on to some applications of Bayesian estimation in molecular
evolution, we will make two final points. First, in practice, no computer pro-
gram actually evaluates all combinations of nucleotides that can be assigned
to the interior nodes of a tree when calculating the probability of observing
the data at a site. There are simply too many combinations for trees of even
small size. For example, for a tree of 100 species, there are 99 interior nodes

Table 7.1. Probabilities of individual sites. The probabilities of the 50 sites for the
example alignment from the text. The likelihoods are calculated assuming the tree
of Figure 7.3 with the branch lengths being v1 = 0.1, v2 = 0.1, v3 = 0.2, v4 = 0.1,
v5 = 0.1, v6 = 0.1, v7 = 0.2, and v8 = 0.1. The substitution model parameters were
also fixed, with κ = 5, πA = 0.4, πC = 0.3, πG = 0.2, and πT = 0.1.

Site Prob. Site Prob. Site Prob. Site Prob. Site Prob.
1 0.004025 11 0.029483 21 0.179392 31 0.179392 41 0.003755
2 0.001171 12 0.006853 22 0.001003 32 0.154924 42 0.005373
3 0.008008 13 0.024885 23 0.154924 33 0.007647 43 0.016449
4 0.002041 14 0.154924 24 0.179392 34 0.000936 44 0.029483
5 0.005885 15 0.007647 25 0.005719 35 0.024885 45 0.154924
6 0.000397 16 0.024124 26 0.001676 36 0.000403 46 0.047678
7 0.002802 17 0.154924 27 0.000161 37 0.024124 47 0.010442
8 0.179392 18 0.004000 28 0.154924 38 0.154924 48 0.179392
9 0.024124 19 0.154924 29 0.001171 39 0.011088 49 0.002186

10 0.024885 20 0.004025 30 0.047678 40 0.000161 50 0.154924
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and 4.02×1059 combinations of nucleotides at the ancestral nodes on the tree.
Instead, Felsenstein’s [14] pruning algorithm is used to calculate the likelihood
at a site. Felsenstein’s method is mathematically equivalent to the summation
shown above but can evaluate the likelihood at a site in a fraction of the time
it would take to plow through all combinations of ancestral states. Second, the
overall likelihood of a character matrix is the product of the site likelihoods.
If we assume that the tree of Figure 7.3 is correct (with all of the parameters
taking the values specified in the caption of Table 7.1), then the probability
of observing the data is

0.004025 × 0.001171 × 0.008008 × . . . × 0.154924 = 1.2316 × 10−94,

where there are fifty factors, each factor representing the probability of an
individual site (column) in the alignment. Table 7.1 shows the probabilities
of all fifty sites for the tree of Figure 7.3. Note that the overall probabil-
ity of observing the data is a very small number (≈ 10−94). This is typical
of phylogenetic problems and results from the simple fact that many num-
bers between 0 and 1 are multiplied together. Computers cannot accurately
hold very small numbers in memory. Programmers avoid this problem of com-
puter “underflow” by using the log probability of observing the data. The log
probability of observing the sample alignment of sequences presented earlier
is loge � = loge(1.2316 × 10−94) = −216.234734. The log-likelihood can be
accurately stored in computer memory.

7.3.2 Phylogeny Estimation

Frequentist and Bayesian perspectives on phylogeny estimation

The phylogenetic model described in the preceding section has numerous pa-
rameters. Minimally, the parameters include the topology of the tree and
the lengths of the branches on the tree. In the following, we imagine that
every possible tree is labeled: τ1, τ2, . . . , τB(n). Each tree has its own set of
branches, and each branch has a length in terms of expected number of sub-
stitutions per site. The lengths of the branches on the ith tree are denoted
vi = (v1, v2, . . . , v2n−3). In addition, there may be parameters associated with
the substitution model. The parameters of the substitution model will be de-
noted θ. For the HKY85 model, the parameters are θ = (κ, πA, πC , πG, πT ),
but other substitution models may have more or fewer parameters than the
HKY85 model. When all of the parameters are specified, one can calculate the
likelihood function using the general ideas described in the previous section.
The likelihood will be denoted �(τi,vi, θ) and is proportional to the probabil-
ity of observing the data conditioned on the model parameters taking specific
values (�(τi,vi, θ) ∝ Pr[X|τi,vi, θ]; the alignment of sequences is X).

Which of the possible trees best explains the alignment of DNA sequences?
This is among the most basic questions asked in many molecular evolution
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studies. In a maximum likelihood analysis, the answer is straightforward: the
best estimate of phylogeny is the tree that maximizes the likelihood. This is
equivalent to finding the tree that makes the observations most probable. For
the toy alignment of sequences given in the previous section, the likelihood is
maximized when the tree of Figure 7.3 is used. The 14 other possible trees had
a lower likelihood. (This is not surprising because the sequences were simu-
lated on the tree of Figure 7.3.) How was the maximum likelihood tree found?
In this case, the program PAUP* [64] visited each of the 15 possible trees.
For each tree, it found the combination of parameters that maximized the
likelihood. In this analysis, we assumed the HKY85 model, so the parameters
included the transition/transversion rate ratio and the nucleotide frequencies.
After maximizing the likelihood for each tree, the program picked that tree
with the largest likelihood as the best estimate of phylogeny. The approach
was described earlier in this chapter; the nuisance parameters (here all of the
parameters except for the topology of the tree) are dealt with by maximizing
the likelihood with respect to them. The tree of Figure 7.3 has a maximum
likelihood score of −211.25187. The parameter estimates on this tree are:
v̂1 = 0.182, v̂2 = 0.124, v̂3+8 = 0.226, v̂4 = 0.162, v̂5 = 0.018, v̂6 = 0.159,
v̂7 = 0.199, κ̂ = 5.73, π̂A = 0.329, π̂C = 0.329, π̂G = 0.253, and π̂T = 0.089.
The method of maximum likelihood is described in more detail in Chapter
2. Importantly, there are many computational shortcuts that can be taken to
speed up calculation of the maximum likelihood tree.

In a Bayesian analysis, inferences are based upon the posterior probabil-
ity distribution of the parameters. The joint posterior probability of all the
parameters is calculated using Bayes’ theorem as

Pr[τi,vi, θ|X] =
Pr[X|τi,vi, θ] × Pr[τi,vi, θ]

Pr[X]

and was only recently applied to the phylogeny problem [44, 45, 57, 46, 74,
41, 47, 52]. The posterior probability is equal to the likelihood (Pr[X|τi,vi, θ])
times the prior probability of the parameters (Pr[τi,vi, θ]) divided by a nor-
malizing constant (Pr[X]). The normalizing constant involves a summation
over all possible trees and, for each tree, integration over all possible combi-
nations of branch lengths and parameter values. Clearly, the Bayesian method
is similar to the method of maximum likelihood; after all, both methods make
the same assumptions about the evolutionary process and use the same like-
lihood function. However, the Bayesian method treats all of the parameters
as random variables (note that the posterior probability is the probability
of the parameters), and the method also incorporates any prior information
the biologist might have about the parameters through their prior probability
distribution.

Unfortunately, one cannot calculate the posterior probability distribution
of trees analytically. Instead, one resorts to a heuristic algorithm to approx-
imate posterior probabilities of trees. The program MrBayes [35, 59] uses
Markov chain Monte Carlo (MCMC; [48, 25]) to approximate posterior prob-
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abilities of phylogenetic trees (and the posterior probability density of the
model parameters). Briefly, a Markov chain is constructed that has as its
state space the parameter values of the model and a stationary distribution
that is the posterior probability of the parameters. Samples drawn from this
Markov chain while at stationarity are valid, albeit dependent, samples from
the posterior probability distribution of the parameters [69]. If one is inter-
ested in the posterior probability of a particular phylogenetic tree, one simply
notes the fraction of the time the Markov chain visited that tree; the propor-
tion of the time the chain visits the tree is an approximation of that tree’s
posterior probability. A thorough discussion of MCMC is beyond the scope
of this chapter. However, an excellent description of MCMC and its applica-
tions in molecular evolution can be found in Chapter 3. We will make only
one comment on MCMC as applied to phylogenetics: although MCMC is a
wonderful technology that can in many instances practically solve problems
that cannot be solved any other way, it is dangerous to apply the method
uncritically. It is important when running programs that implement MCMC,
such as MrBayes, to critically examine the output from several independent
chains for convergence.

We performed a Bayesian analysis on the simulated data set discussed
above under the HKY85 model. (We describe how to do the Bayesian analy-
ses performed in this chapter in Appendix 2.) This is an ideal situation because
the example data were simulated on the tree of Figure 7.3 under the HKY85
model; the model assumed in the Bayesian analysis is not misspecified. We
ran a Markov chain for 1,000,000 cycles using the program MrBayes. The
Markov chain visited the tree shown in Figure 7.3 about 99% of the time;
the MCMC approximation of the posterior probability of the tree in Fig-
ure 7.3 then is about 0.99. This can be considered strong evidence in favor of
that tree. The posterior probabilities of phylogenetic trees were calculated by
integrating over uncertainty in the other model parameters (such as branch
lengths, the transition/tranversion rate ratio, and base frequencies). However,
we can turn the study around and ask questions about the parameters of the
substitution model. Table 7.2 shows information on the posterior probability
density distribution of the substitution model parameters. The table shows
the mean, median, and variance of the marginal posterior probability dis-
tribution for the tree length (V ), transition/transversion rate ratio (κ), and
base frequencies (πA, πC , πG, πT ). The table also shows the upper and lower
limits of an interval that contains 95% of the posterior probability for each
parameter. The table shows, for example, that with probability 0.95 the tran-
sition/transversion rate ratio is in the interval (2.611, 10.635). In reality, the
transition/transversion rate ratio was in that interval. (The data matrix was
simulated with κ = 5.) The mean of the posterior probability distribution
for κ was 5.576 (which is fairly close to the true value). The interval we con-
structed that contains the true value of the parameter with 0.95 probability
is called a 95% credible interval. One can construct a credible set of trees
in a similar manner; simply order the trees from highest to lowest posterior
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probability and put the trees into a set (starting from the tree with highest
probability) until the cumulative probability of trees in the set is 0.95 [13].

One of the great strengths of the Bayesian approach is the ease with which
the results of an analysis can be summarized and interpreted. The posterior
probability of a tree has a very simple and direct interpretation: the posterior
probability of a tree is the probability that the tree is correct, assuming that
the substitution model is correct. It is worth considering how uncertainty
in parameter estimates is evaluated in a more traditional phylogenetic ap-
proach. Because the tree is not considered a random quantity in other types
of analyses, such as a maximum likelihood phylogenetic analysis, one can-
not directly assign a probability to the tree. Instead, one has to resort to a
rather complicated thought experiment. The thought experiment goes some-
thing like this. Assuming that the phylogenetic model is correct and that
the parameter estimates take the maximum likelihood values (or better yet,
their true values), what would the parameter estimates look like on simulated
data sets of the same size as the original data matrix? The distribution of
parameter estimates that would be generated in such a study represents the
sampling distribution of the parameter. One could construct an interval from
the sampling distribution that contains 95% of the parameter estimates from
the simulated replicates, and this would be called a confidence interval. A
95% confidence interval is a random interval containing the true value of the
parameter with probability 0.95. Very few people have constructed confidence
intervals/sets of phylogenetic trees using simulation. The simulation approach
we just described is referred to as the parametric bootstrap. A related ap-
proach, called the nonparametric bootstrap, generates data matrices of the
same size as the original by randomly sampling columns (sites) of the original
data matrix with replacement. Each matrix generated using the bootstrap
procedure is then analyzed using maximum likelihood under the same model
as in the original analysis. The nonparametric bootstrap [16] is widely used
in phylogenetic analysis.

Table 7.2. Summary statistics for the marginal posterior probability density dis-
tributions of the substitution parameters. The mean, median, variance, and 95%
credible interval of the marginal posterior probability density distribution of the
substitution parameters of the HKY85 model. The parameters are discussed in the
text.

95% Cred. Interval
Parameter Mean Variance Lower Upper Median

V 0.990 0.025 0.711 1.333 0.980
κ 5.576 4.326 2.611 10.635 5.219

πA 0.323 0.002 0.235 0.418 0.323
πC 0.331 0.002 0.238 0.433 0.329
πG 0.252 0.002 0.176 0.340 0.250
πT 0.092 0.001 0.047 0.152 0.090
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Interpreting posterior probabilities on trees

Trees are rather complex parameters, and it is common to break them into
smaller components and analyze these separately. Any tree can be divided
into a set of statements about the grouping of taxa. For instance, a rooted
tree for four taxa—A, B, C, and D—might contain the groupings (AB) and
(ABC). These groupings are called clades, or sometimes taxon bipartitions.
In a Bayesian analysis, we can summarize a sample from the posterior distri-
bution of trees in terms of the frequency (posterior probability) of individual
clades. This provides an efficient summary of the common characteristics of a
possibly large sample of different trees. One of the concerns in Bayesian phylo-
genetic analysis is the interpretation of the posterior probabilities on trees, or
the probabilities of individual clades on trees. The posterior probabilities are
usually compared with the nonparametric bootstrap proportions, and many
workers have reached the conclusion that the posterior probabilities on clades
are too high or that the posterior probabilities do not have an easy interpre-
tation [63]. We find this concern somewhat frustrating, mostly because the
implicit assumption is that the nonparametric bootstrap proportions are in
some way the correct number that should be assigned to a tree and that any
method that gives a different number is in some way suspect. However, it is not
clear that the nonparametric bootstrap values on phylogenetic trees should be
the gold standard. Indeed, it has been known for at least a decade now that
the interpretation of nonparametric bootstrap values on phylogenetic trees is
problematic [27]; the bootstrap proportions on trees are better interpreted as
a measure of robustness rather than as a confidence interval [28].

What does the posterior probability of a phylogenetic tree represent?
Huelsenbeck and Rannala [34] performed a small simulation study that did two
things. First, it pointed out that the technique many people used to evaluate
the meaning of posterior probabilities was incorrect if the intention was to in-
vestigate the best-case scenario for the method (i.e., the situation in which the
Bayesian method does not misspecify the model). Second, it pointed out that
the common interpretation of the posterior probability of a phylogenetic tree
is correct; the posterior probability of a phylogenetic tree is the probability
that the tree is correct. The catch is that this is true only when the assump-
tions of the analysis are correct. Figure 7.4 summarizes the salient points of
the Huelsenbeck and Rannala [34] study. The experimental design was as fol-
lows. They first randomly sampled a tree, branch lengths, and substitution
model parameters from the prior probability distribution of the parameters.
(The tree was a small one, with only six species.) This is the main difference
between their analysis and all others; they treated the prior model seriously
and generated samples from it instead of considering the parameters of the
model as fixed when doing the simulations. For each sample from the prior
distribution they simulated a data matrix of 100 sites. They then analyzed
the simulated data matrix under the correct analysis. Figure 7.4 summarizes
the results of 10,000 such simulations for each model. They simulated data
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Fig. 7.4. The meaning of posterior probabilities under the model. The relationship
between the posterior probability of a phylogenetic tree and the probability that the
tree is correct when all of the assumptions of the analysis are satisfied.

under a very simple model (the JC69 model, in which the base frequencies
are all equal and the rates of substitution between states are the same) and a
complicated model (the GTR+Γ model, in which the nucleotide frequencies
are free to vary, the rates of substitution between states are allowed to differ,
and the rates across sites are Gamma-distributed). In both cases, the rela-
tionship between posterior probabilities and the probability that the tree is
correct is linear; the posterior probability of a tree is the probability that the
tree is correct, at least when the assumptions of the phylogenetic analysis are
satisfied. Importantly, to our knowledge, posterior probabilities are the only
measure of support that have this simple interpretation.

Of course, to some extent the simulation results shown in Figure 7.4 are
superfluous; the posterior probabilities have always been known to have this
interpretation, and the simulations merely confirm the analytical expectation
(and incidentally are additional evidence that the program MrBayes is gener-
ating valid draws from the posterior probability distribution of trees, at least
for simple problems). The more interesting case is when the assumptions of
the analysis are incorrect. Suzuki et al. [63] attempted to do such an analy-
sis. Unfortunately, they violated the assumptions of the analysis in a very
peculiar way; they simulated data sets in which the underlying phylogeny
differed from one gene region to another. This scenario is not a universal con-
cern in phylogenetic analysis (though it can be a problem in the analysis of
closely related species, in bacterial phylogenetics, or in population studies).
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Fig. 7.5. The meaning of posterior probabilities when the model is incorrect. The
relationship between the posterior probability of a phylogenetic tree and the prob-
ability that the tree is correct when all of the assumptions of the analysis are not
met.

The common worry is that the substitution model is incorrect. Huelsenbeck
and Rannala [34] performed a few simulations when the assumptions of the
analysis are incorrect (Figure 7.5). The top panel in Figure 7.5 shows the case
when the evolutionary model is not incorporating some important parameters
(the model is underspecified). In this case, the relationship between posterior
probabilities and the probability that the tree is correct is not linear. Instead,
the method places too much posterior probability on incorrect trees. The situ-
ation is not so dire when the evolutionary model has unnecessary parameters
(bottom panel in Figure 7.5). These simulation results are consistent with
empirical observations of decreasing clade probabilities when the same data
are analyzed under increasingly complex models [55].

Bayesian model choice

It appears that Bayesian analysis can be sensitive to model misspecification. It
is important to note that the best tree selected under the Bayesian criterion
is unlikely to differ significantly from the maximum likelihood tree, mostly
because the prior should have a small effect on phylogeny choice when the
data set is reasonably large. It is also important to note that it is not really a
problem with the Bayesian method but rather with the models used to analyze
the data. In a sense, biologists have a method in hand that, in principle, has
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some very desirable properties: it is fast, allows analysis of complex models in a
timely way, and has a correct and simple interpretation when the assumptions
of the analysis are satisfied.

The simulation studies summarized in the previous section, along with
many simulation studies that examine the performance of phylogenetic meth-
ods [29, 30], suggest that it is important to analyze sequence data under as
realistic a model as possible. Unfortunately, even the most complicated mod-
els currently used in phylogenetic analysis are quite simple and fail to capture
important evolutionary processes that generated the sequence data. Phylo-
genetic models need to be improved to capture evolutionary processes most
likely to influence phylogeny estimation. It is impossible to know with cer-
tainty what advances will be made in improving phylogenetic models, but we
can speculate on what the future might hold. For one thing, it seems impor-
tant to relax the assumption that the substitution process is homogeneous
over the entire phylogenetic history of the organisms under study. This as-
sumption might be relaxed in a number of ways. For example, Foster [17] has
relaxed the assumption that nucleotide frequencies are constant over time, and
Galtier and Gouy [18] and Galtier et al. [19] relaxed the assumption that the
GC content is a constant over a phylogenetic tree. Other such improvements
are undoubtedly in store, and Bayesian methods are likely to play an impor-
tant role in evaluating such models. We can also imagine upper bounds on
how many parameters can be added to a phylogenetic model while still main-
taining the ability to estimate them from sequence data. It is not clear how
close we currently are to that situation. We know that maximum likelihood is
consistent for the models typically used in phylogenetic analysis [9, 58], but
we do not know whether consistency will be maintained for nonhomogeneous
models or other models that account for other evolutionary processes.

We can be certain that analysis of more parameter-rich models will be quite
complicated and may require a different perspective on model choice than the
one that is widespread in phylogenetics today. Currently, selecting the best
model for a particular alignment of DNA sequences is a straightforward affair.
For example, the substitution models implemented in the program PAUP* are
all a special case of the general time-reversible (GTR) model. The GTR model
has instantaneous rate matrix

Q = {qij} =

⎛⎜⎜⎝
− rACπC rAGπG rAT πT

rACπA − rCGπG rCT πT

rAGπA rCGπC − rGT πT

rAT πA rCT πC rGT πG −

⎞⎟⎟⎠µ

[67]. Other commonly used models of phylogenetic analysis are all special
cases of the GTR model with constraints on its parameters. For example, the
HKY85 model constrains the transitions to be one rate (rAG = rCT ) and the
transversions to have another, potentially different rate (rAC = rAT = rCG =
rGT ). The Felsenstein (F81, [14]) model further constrains the transitions and
transversions to have the same rate (rAC = rAG = rAT = rCG = rCT=rGT ).
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These models are nested one within the other. The F81 model is a special
case of the HKY85 model, and the HKY85 model is a special case of the GTR
model. In the programs PAUP* and MrBayes, these different models are set
using the “nst” option: nst can be set to 1, 2, or 6 for the F81, HKY85, or
GTR models, respectively. Because the models are nested, one can choose
an appropriate model using likelihood ratio tests. The likelihood ratio for a
comparison of the F81 and HKY85 models is

Λ =
max[�(F81)]

max[�(HKY85)]
.

Because the models are nested, Λ ≤ 1 and −2 loge Λ asymptotically follows
a χ2 distribution with one degree of freedom under the null hypothesis. This
type of test can be applied to a number of nested models in order to choose
the best of them. This approach is easy to perform by hand using a program
such as PAUP* but has also been automated in the program Modeltest [56].

The current machinery for model choice appears to work quite well when
the universe of candidate models is limited (as is the current case in phylo-
genetics). But what happens when we reach that happy situation in which
the universe of candidate models (pool of models to choose among) is large
and the relationship among the models is not nested? There are a number of
alternative ways model choice can be performed in this situation. One could
use information criteria, such as the Akaike information criterion (AIC), to
choose among a pool of candidate models [3]. One could also use the Cox test
[10], which uses the likelihood ratio as the test statistic but simulates the null
distribution. One might also use Bayes factors to choose among models. Here
we will describe how Bayes factors, calculated using MCMC, can be used to
choose among a potentially large set of candidate models.

The Bayes factor for a comparison of two models, M1 and M2, is

BF12 =
Pr[X|M1]
Pr[X|M2]

.

A Bayes factor greater than one is support for M1, whereas the opposite is true
for Bayes factors less than one. Note that the Bayes factor is simply the ratio
of the marginal likelihoods of the two models. The Bayes factor integrates
over uncertainty in the parameters. The likelihood ratio, on the other hand,
maximizes the likelihood with respect to the parameters of the model. Jeffreys
[36] provided a table for the interpretation of Bayes factors. In general, the
Bayes factor describes the degree by which you change your opinion about
rival hypotheses after observing data.

Here we will describe how Bayes factors can be used to choose among
substitution models ([32]; also see [62]). First, we will note that the universe
of possible time-reversible substitution models is much larger than typically
implemented in phylogenetic programs. Appendix 1 shows all of the possible
time-reversible substitution models. There are 203 of them, though only a few
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of them have been named (formally described in a paper). (For the reader
interested in the combinatorics, the number of substitution models is given
by the Bell [5] numbers.) We use a special notation to describe each of these
models. We assign index values to each of the six substitution rates in the order
AC, AG, AT, CG, CT, GT . If a model has the constraint that ri = rj , then the
index value for those two rates is the same. Moreover, the index number for
the first rate is always 1, and indices are labeled sequentially. So, for example,
“111111” denotes the Jukes and Cantor [38] or Felsenstein [14] model and
“121121” denotes the Kimura [40], Hasegawa et al. [24, 23], or Felsenstein [15]
model. The simplest model is “111111” and the most complex is the GTR
model, “123456.” The program PAUP* can implement all of these models
through a little-used option. (The command “lset nst=6 rmatrix=estimate
rclass=(abbcba)” implements one of the unnamed models, constraining rAC =
rGT and rAG = rAT = rCT , with rCG having another independent rate.)
The interested reader can contact J.P.H. for a file that instructs the program
PAUP* to maximize the likelihood for each of the 203 possible substitution
models. This would allow one to choose among substitution models using AIC
or related information criteria.

To calculate the Bayes factors for the different substitution models, we first
need to calculate the posterior probability for each of the possible models. We
do this using MCMC. Here, the goal is to construct a Markov chain that visits
substitution models in proportion to their posterior probability. We could not
use the normal theory for constructing a Markov chain for MCMC analysis
because the dimensionality of the problem changes from model to model; the
203 models often differ in the number of substitution rates. Instead, we con-
structed a Markov chain using reversible jump to visit candidate substitution
models [22]. Reversible jump MCMC is described in more detail by Larget
(Chapter 3). The program we wrote uses two proposal mechanisms to move
among models. One proposal mechanism takes a group of substitution rates
that are constrained to be the same and splits them into two groups with
potentially different rates. The other mechanism takes two groups of substi-
tution rates, each of which has substitutions constrained to be the same, and
merges the two groups into one.

To begin, let’s examine the simple data matrix that we have been using
throughout this chapter: the five-species matrix of 50 sites simulated under the
HKY85 model on the tree of Figure 7.3. Up to now, we have been performing
all of our analyses—maximum likelihood and Bayesian—under the HKY85
model of DNA substitution (the true model) for this alignment. However,
which model is selected as best using the Bayesian reversible jump MCMC
approach? Is the true model, or at least one similar to the true model, chosen as
the best? We ran the reversible jump MCMC program for a total of 10,000,000
cycles on the small simulated data set. The true model (M15, 121121) was
visited with the highest frequency; this model was visited 14.2% of the time,
which means the posterior probability of this model is about 0.142. What is
the Bayes factor for a comparison of M15 with all of the other models (MC

15)?
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As described above, the Bayes factor is the ratio of the marginal likelihoods.
It also can be calculated, however, as the ratio of the posterior odds to the
prior odds of the two hypotheses of interest:

BF12 =
Pr[X|M1]
Pr[X|M2]

=
Pr[M1|X]
Pr[M2|X]
Pr[M1]
Pr[M2]

.

The posterior probability of M15 is Pr[M15|X] = 0.142, and the posterior
probability of all of the other models against which we are comparing M15 is
just Pr[MC

15|X] = 1−Pr[M15|X] = 1− 0.142 = 0.858. We also know the prior
probabilities of the hypotheses. We assumed a uniform prior distribution on
all of the possible models, so the prior probability of any specific model is
1/203 = 0.0049. The Bayes factor for a comparison of M15 with the other
models is then

BF12 =
Pr[M15|X]
Pr[MC

15|X]
Pr[M15]
Pr[MC

15]

=
0.142
0.858
1/203

202/203

= 33.4.

This means that we change our mind about the relative tenability of the two
hypotheses by a factor of about 33 after observing the small data matrix. A
Bayes factor of 33 would be considered strong evidence in favor of the model
[36]. We can also construct a 95% credible set of models. This is a set of mod-
els that has a cumulative posterior probability of 0.95. The 95% credible set
included 41 models, which in order were 121121, 121131, 123123, 121321,
121341, 123143, 121323, 123321, 121343, 123121, 123341, 121123, 123323,
123141, 121134, 123343, 121331, 121345, 123423, 123421, 123451, 123453,
123145, 121324, 123124, 123324, 123424, 123454, 123345, 123456, 121133,
123441, 121334, 121333, 123443, 123425, 123313, 121111, 123131, 121344, and
123331. Note that the best of these models (the first 16, in fact, which have
a cumulative posterior probability of 0.72) do not constrain a transition to
have the same rate as a transversion. One can see that the second-best model
(M40, 121131) has this property. The second best-model also happens to be a
named one (it is the model described by Tamura and Nei, [66]). The third-best
model, however, is not a named one.

Huelsenbeck et al. [32] examined 16 data sets using the approach described
here. The details about the data sets can be found in that paper. Table 7.3
summarizes the results. In most cases, the posterior probability was spread
across a handful of models. The Bayes factors ranged from 52.3 to about
500, suggesting that all of the alignments contained considerable information
about which models are preferred. Also, one can see that for 14 of the 16
data matrices, the 95% credible set contains models that do not constrain
transitions to have the same rate as transversions. The best models are usually
variants of the model first proposed by Kimura [40]. The exceptions are the
HIV-env and vertebrate β-globin alignments. The Bayesian approach helped
us find these unusual models, which would not usually be considered in a more
traditional approach to model choice.
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Practicing biologists already favor “automated” approaches to choosing
among models. The program Modeltest [56] is very popular for this reason;
even though the universe of models of interest to the biologist (i.e., imple-
mented in a computer program) is of only moderate size, it is convenient to
have a program that automatically considers each of these models and re-
turns the best of them. The program Modeltest, for example, typically looks
at seven of the 203 possible time-reversible substitution models, considering
only nested models that are implemented in most phylogeny packages. One
could reasonably argue that the number of models currently implemented is
small enough that one could perform model choice by hand, with the corre-
sponding advantage that it promotes a more intimate exploration of the data
by the biologist, promotes understanding of the models, and keeps the ba-
sic scientific responsibility of choosing which hypotheses to investigate in the
biologist’s hands. However, as models become more complicated and the num-
ber of possible models increases, it becomes more difficult to perform model
choice by hand. In such cases, an approach like the one described here might
be useful.

Table 7.3. The best models for 16 data sets using Bayes factors. PP, the model
with the highest posterior probability, with its corresponding probability; BF, the
Bayes factor for the best model.

Name PP BF 95% Credible Set of Models
Angiosperms 189 (0.41) 142.7 (189, 193, 125, 147, 203)
Archaea 198 (0.70) 472.1 (198, 168, 203)
Bats 112 (0.32) 95.0 (112, 50, 162, 147, 125, 152, 90, 183, 157, 122,

15, 189)
Butterflies 136 (0.32) 93.7 (136, 162, 112, 90, 168, 40, 125, 191, 201, 183,

198, 152, 189)
Crocodiles 40 (0.27) 74.2 (40, 125, 166, 134, 168, 189, 191, 162, 193)
Gophers 112 (0.28) 77.5 (112 ,162, 15, 50, 40, 189, 125, 147, 95, 90,

138, 201, 183, 136, 117, 152, 122, 191)
HIV-1 (env) 25 (0.29) 83.0 (25, 60, 50, 64, 100, 125, 102, 97, 164, 169, 152,

159, 173, 157, 175, 147, 171, 191, 193, 189, 140,
117)

HIV-1 (pol) 50 (0.62) 335.2 (50, 125, 157, 152, 147, 193)
Lice 15 (0.56) 260.0 (15, 40, 117, 90, 50, 122, 136, 95, 166, 112,

125)
Lizards 193 (0.70) 481.1 (193, 138, 200, 203)
Mammals 193 (0.64) 364.3 (193, 203)
Parrotfish 162 (0.56) 258.0 (162, 189, 201)
Primates 15 (0.31) 91.0 (15, 40, 112, 95, 138, 162, 90, 136, 50, 125, 168,

122, 166, 117, 134)
Vertebrates 125 (0.21) 52.3 (125, 40, 168, 64, 134, 189, 166, 193, 191, 162,

136, 171, 198, 138, 50, 175, 173)
Water snakes 166 (0.55) 242.9 (166, 191, 117, 152, 134, 200, 198, 177)
Whales 15 (0.60) 300.1 (15, 40, 117, 95, 85, 122, 112, 90, 134, 50, 166)
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7.3.3 Inferring Phylogeny under Complex Models

Alignments that contain multiple genes, or data of different types, are becom-
ing much more common. It is now relatively easy to sequence multiple genes
for any particular phylogenetic analysis, leading to data sets that were uncom-
mon just a few years ago. For example, consider the data set collected by Kim
et al. [39], which is fairly typical of those that are now collected for phyloge-
netic problems. They looked at sequences from three different genes sampled
from 27 leaf beetles: the second variable region (D2) of the nuclear rRNA
large subunit (28S) and partial sequences from a nuclear gene (EF-1α) and a
mitochondrial gene (COI). They also had information from 49 morphological
characters. (Although the program MrBayes can analyze morphological data
in combination with molecular data, using the approach described by Lewis
[43], we do not examine the morphological characters of the Kim et al. study
in this chapter. This is a book on molecular evolution, after all. The reader
interested in Bayesian analysis of combined morphological and molecular data
is referred to the paper by Nylander et al. [55].) The molecular characters of
the Kim et al. [39] study were carefully aligned; the ribosomal sequences were
aligned using the secondary structure as a guide, and the protein-coding genes
were aligned first by the translated amino acid sequence. For illustrative pur-
poses, we are going to consider the amino acid sequences from the COI gene
and not the complete DNA sequence. This is probably not the best approach
because there is information in the DNA sequence that is being lost when
only the amino acid sequence of the gene is considered. However, we want to
show how data of different types can be analyzed in MrBayes.

The data from the Kim et al. [39] study that we examine, then, consists of
three parts: the nucleotide sequences from the 28S rRNA gene, the nucleotide
sequences from the EF-1α gene, and the amino acid sequences from the COI
gene. Each of these partitions of the data requires careful consideration. To
begin with, it is clear that the same sort of continuous-time Markov chain
model is not going to be appropriate for each of these gene regions. After all,
the nucleotide part of the alignment has only four states whereas the amino
acid part of the alignment (the COI gene) has 20 potential states. We could
resort to a very simple partitioned analysis, treating all of the nucleotide se-
quences with one model and the amino acid sequences with another. However,
this approach, too, has problems. Is it really reasonable to treat the protein-
coding DNA sequences in the same way as the ribosomal sequences? Moreover,
in this case we have information on the secondary structure of the ribosomal
gene; we know which nucleotides probably form Watson-Crick pairs in the
stem regions of the ribosomal gene. It seems sensible that this information
should be accommodated in the analysis of the sequences.

One of the strengths of likelihood-based approaches in general, and the pro-
gram MrBayes in particular, is that heterogeneous data of the type collected
by Kim et al. [39] can be included in a single analysis, with the peculiarities of
the substitution process in each partition accounted for. Here are the special
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considerations we think each data partition of the Kim et al. [39] study raise:

Stem regions of the 28S rRNA nucleotide sequences. Although the
assumption of independence across sites (invoked when one multiplies the
probabilities of columns in the alignment to get the likelihood) is not neces-
sarily a good one for any data set, it seems especially bad for the stem regions
of ribosomal genes. The secondary structure in ribosomal genes plays an im-
portant functional role. The functional importance of secondary structure in
ribosomal genes causes nonindependence of substitutions in sites participat-
ing in a Watson-Crick pair: specifically, if a mutation occurs in one member
of a base pair in a functionally important stem, natural selection causes the
rate of substitution to be higher for compensatory changes. That is, individ-
uals with a mutation that restores the base pairing have a higher fitness than
individuals that do not carry the mutation, and the mutation may eventually
become fixed in the population. The end result of natural selection acting on
maintenance of stems is a signature of covariation between paired nucleotides.

Schöniger and von Haeseler [60] described a model that accounts for the
nonindependence of substitutions in stem regions of ribosomal genes. They
suggest that instead of modeling the substitution process on a site-by-site
basis using the models described earlier in this chapter, as was then common,
substitutions should be modeled on both of the nucleotides participating in
the stem pair bond—the doublet. Instead of four states, the doublet model
of Schöniger and von Haeseler [60] has 16 states (all possible doublets: AA,
AC, AG, AU,. . ., UA, UC, UG, UU). The instantaneous rate matrix instead
of being 4 × 4 is now 16 × 16. Each element of the rate matrix, Q, can be
specified as follows:

qij =

⎧⎨⎩κπj : transition
πj : transversion
0 : i and j differ at two positions .

Note that this model only allows a single substitution in an instant of time;
substitutions between doublets like AA → CG have an instantaneous rate of
zero. This is not to say that transitions between such doublets are not al-
lowed, only that a minimum of two substitutions is required. Just as there
are different parameterizations of the 4 × 4 models, one can have different
parameterizations of the doublet model. The one described here allows a tran-
sition/transversion rate bias. However, one could construct a doublet model
under any of the models shown in Appendix 1.

Loop regions of the 28S rRNA nucleotide sequences. We will use a
more traditional 4 × 4 model for the loop regions of the ribosomal genes.
Nucleotides in the loop regions presumably do not participate in any strong
interactions with other sites (at least that we can identify beforehand).
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EF-1α nucleotide sequences. Special attention should be paid to the choice
of model for protein-coding genes, where the structure of the codon causes
heterogeneity at the different codon positions, along with potential noninde-
pendence of substitutions within the codon. The rate of substitution is the
most obvious difference at different codon positions. Because of the redun-
dancy of the genetic code, typically second positions are the most conservative
and third codon positions are the least conservative. Often people approach
this problem of rate variation by grouping the nucleotides at the first, sec-
ond, and third codon positions into different partitions and allow the overall
rate of substitution to differ at the different positions. Another approach, and
the one we take here, is to stretch the model of DNA substitution around the
codon [21, 50]. We now have 64 possible states (the triplets AAA, AAC, AAG,
AAT, ACA,. . ., TTT), and instead of a 4×4—or even a 16×16—rate matrix,
we have a 64 × 64 instantaneous rate matrix describing the continuous-time
Markov chain. Usually, the stop codons are excluded from the state space,
and the rate matrix, now 61 × 61 for the universal code, is

qij =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ωκπj : nonsynonymous transition
ωπj : nonsynonymous transversion
κπj : synonymous transition
πj : synonymous transversion
0 : i and j differ at more than one position,

where ω is the nonsynonymous/synonymous rate ratio, κ is the transi-
tion/transversion rate ratio, and πj is the stationary frequency of codon j
[21, 50]. This matrix specifies the rate of change from codon i to codon j.
This rate matrix, like the 4 × 4 and 16 × 16 rate matrices, only allows one
substitution at a time.

The traditional codon model, described here, does not allow the nonsyn-
onymous/synonymous rate to vary across sites. This assumption has been
relaxed. Nielsen and Yang [54] allowed the ω at a site to be a random vari-
able. Their method allows ω to vary across the sequence and also the identi-
fication of amino acid positions under directional, or positive, selection. The
program PAML [73] implements an empirical Bayes approach to identifying
amino acid positions under positive selection. MrBayes uses the same general
idea to identify positive selection but implements a fully Bayesian approach,
integrating over uncertainty in model parameters [31]. Here, we will not allow
the nonsynonymous/synonymous rate to vary across sites.

COI amino acid sequences. In some ways, modeling the amino acid
sequences is more complicated for the nucleotide sequences. Some sort of
continuous-time Markov chain with 20 states seems appropriate. The most
general time-reversible substitution model for amino acids is
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Q = {qij} =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− rARπR rANπN · · · rAW πW rAY πY rAV πV

rARπA − rRNπN · · · rRW πW rRY πY rRV πV

rANπA rRNπR − · · · rNW πW rNY πY rNV πV

...
...

...
. . .

...
...

...
rAW πA rRW πR rNW πN · · · − rWY πY rWV πV

rAY πA rRY πR rNY πN · · · rY W πW − rY V πV

rAV πA rRV πR rNV πN · · · rWV πW rY V πY −

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
µ.

(The dots represent rows and columns that are not shown. The entire ma-
trix is too large to be printed nicely on the page.) There are a total of 208
free parameters; 19 of them involve the stationary frequencies of the amino
acids. Knowing 19 of the amino acid frequencies allows you to calculate the
frequency of the 20th, so there are a total of 19 free parameters. Similarly,
there are a total of 20 × 19/2 − 1 = 189 rate parameters. Contrast this with
the codon model. The size of the rate matrix for the codon model is much
larger than the size of the amino acid rate matrix (61 × 61 = 3721 versus
20 × 20 = 400). However, there are fewer free parameters for even the most
general time-reversible codon model (given that it is formulated as specified
above) than there are for the most general time-reversible amino acid model
(66 and 208 for the codon and amino acid matrix, respectively). Of course,
the reason the codon model has so few parameters for its size is that many of
the entries in the matrix are zero.

Molecular evolutionists have come up with a unique solution to the prob-
lem of the large number of potential free parameters in the amino acid matri-
ces. They fix them all to specific values. The parameters are estimated once on
large databases of amino acid sequence alignments. The details of how to do
this are beyond the scope of this chapter. But, the end result is that we have
a number of amino acid rate matrices, each with no free parameters (nothing
to estimate), that are designed for specific types of data. These matrices go
by different names: Poisson [7], Jones [37], Dayhoff [11], Mtrev [1], Mtmam
[8], WAG [71], Rtrev [12], Cprev [2], Blossum [26], and Vt [49]. The amino
acid models are designed for use with different types of data. For example,
WAG was estimated on nuclear genes, Cprev on chloroplast genes, and Rtrev
on viral genes. Which of these models is the appropriate one for the mitochon-
drial COI gene sequences for leaf beetles? It is not clear which one we should
use; nobody has ever designed a mitochondrial amino acid model for insects,
much less leaf beetles. It might make sense to use one of the mitochondrial
matrices, such as the Mtrev or Mtmam models. However, we can do better
than this. Instead of assuming a specific model for the analyses, we can let
the amino acid model be a random variable. We will assume that the ten
amino acid models listed above all have equal prior probability. We will use
MCMC to sum over the uncertainty in the models. This is the same approach
described in the previous section, where we used reversible jump MCMC to
choose among all possible time-reversible nucleotide substitution models. For-
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tunately, we do not need to resort to reversible jump MCMC here because all
of the parameters of the models are fixed. We do not change dimensions when
going from one amino acid model to another.

There are only a few other caveats to consider before we can actually
start our analysis of the leaf beetle data with the complex substitution model.
Many of the parameters of the model for the individual partitions are shared
across partitions. These parameters include the tree, branch lengths, and the
rates of substitution under the GTR model for the nucleotide data. Because
we are mostly interested in estimating phylogeny here, we will assume that
the same tree underlies each of the partitions. That is, we will not allow
one tree for the EF-1α gene and another for the loop regions of the 28S
ribosomal gene. This seems like a reasonable choice as we have no a priori
reason to expect the trees for each partition to differ. However, we might
expect the rates of substitution to differ systematically across genes (some
might be more evolutionarily constrained) and also for rates to vary from site
to site within a gene. We do the following to account for rate variation across
and within partitions. Across partitions, we apply a site-specific model by
introducing a single parameter for each partition that increases or decreases
the rate of substitution for all of the sites within the gene. For example, if
the rate multipliers were m1 = 0.1, m2 = 1.0, m3 = 2.0, and m4 = 0.9, then
the first and fourth partitions would have, on average, a rate of substitution
lower than the mean rate, and the third partition would have a rate greater
than the mean rate. In this hypothetical example, the second partition has
a rate exactly equal to the mean rate of substitution. Site-specific models
are often denoted in the literature by SS; the GTR model with site-specific
rate variation is denoted GTR+SS. The site-specific model, although it allows
rates to vary systematically from one partition to another, does not account
for rate variation among site within a partition. Here we assume that the
rate at a site is a random variable drawn from a Gamma distribution. This is
commonly assumed in the literature, and Gamma rate variation models are
often denoted with a Γ . We are assuming a mixture of rate variation models,
so our models could be denoted something like GTR+SS+Γ . The modeling
assumptions we are making can be summarized in a table:

Substitution Rate
Partition # States Model Variation
Stem 16 GTR Gamma
Loop 4 GTR Gamma
EF-1α 61 GTR Equal
COI 20 Mixture Gamma

We will also allow parameters that could potentially be constrained to be equal
across partitions, such as the shape parameters of the Gamma rate variation
model, to be different. The parameters of the model that need to be estimated
include:
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Parameters Notes
τ & v Tree and branch lengths, shared across all of the partitions

πAA . . . πUU State frequencies for the stem region partition
πA . . . πT State frequencies for the loop region partition

πAAA . . . πTTT Codon frequencies for the EF-1α gene
πA . . . πV Amino acid frequencies for the COI gene

r
(1)
AC . . . r

(1)
GT The GTR rate parameters for the loop region partition

r
(2)
AC . . . r

(2)
GT The GTR rate parameters for the stem region partition

r
(3)
AC . . . r

(3)
GT The GTR rate parameters for the EF-1α gene

ω The nonsynonymous/synonymous rate ratio for the EF-1α gene
α1 The Gamma shape parameter for the loop region partition
α2 The Gamma shape parameter for the stem region partition
α4 The Gamma shape parameter for the COI amino acid data
m1 The rate multiplier for the loop region partition
m2 The rate multiplier for the stem region partition
m3 The rate multiplier for the EF-1α gene
m4 The rate multiplier for the COI gene
S The amino acid model for the COI gene

Note that we are allowing most of the parameters to be estimated indepen-
dently for each gene partition. It is not clear that this is the best strategy.
For example, the data might be consistent with some of the parameters being
constrained to be the same across partitions. This would allow us to be more
parsimonious with our parameters. However, at this time there is no easy way
of deciding which pattern of constraints is the best for partitioned data.

We used MrBayes to analyze the data under the complicated substitution
model. We ran an MCMC algorithm for 3,000,000 update cycles, sampling the
chain every one hundredth cycle. Figure 7.6 shows a majority rule consensus
tree of the trees that were visited during the course of the MCMC analysis.
(The tree is based on samples taken during the last two million cycles of the
chain.) The tree has additional information on it. For one thing, the num-
bers at the interior nodes represent the posterior probability of that clade
being correct (again assuming the model is correct). For another, the branch
lengths on the majority rule tree are proportional to the mean of the posterior
probability of the branch length.

The Bayesian analysis also provided information on the parameters of
the model. Appendix 3 summarizes the marginal posterior probability of
each parameter. There are a few points to note here. First, the nonsynony-
mous/synonymous rate ratio (ω) is estimated to be a very small number. This
is consistent with the EF-1α gene being under strong purifying selection. (Sub-
stitutions leading to amino acid changes are strongly selected against.) Second,
the rate multiplier parameters for the site specific model (m1, m2, m3, m4) in-
dicate that the rate of substitution is different for the gene regions. The stem
partition of the ribosomal gene is the most conservative. Third, the doublet
stationary frequency parameters (πAA . . . πTT ) are consistent with a pattern
of higher rates for Watson-Crick doublets; note that the stationary frequency
is highest for the AT, TA, GC, and CG doublets. Finally, in this analysis, we
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Fig. 7.6. Bayesian phylogenetic tree of leaf beetles. A majority rule tree of the
trees sampled during the course of the MCMC analysis. The numbers at the interior
nodes are the marginal posterior probability of the clade being correct.

allowed the stationary frequencies of the states to be random variables and
integrated over their uncertainty. All of the state frequency parameters were
given a flat Dirichlet prior distribution. Although the base frequencies are
commonly estimated via maximum likelihood for simple (4 × 4) models, they
are rarely estimated for codon models. Instead, they are usually estimated by
using the observed frequencies of the nucleotides at the three codon positions
to predict the codon frequencies. In the Bayesian analysis, on the other hand,
estimating these parameters is not too onerous.

The only parameter not shown in Appendix 3 is the amino acid model,
which was treated as unknown in this analysis. The Markov chain proposed
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moves among the ten different amino acid models listed earlier. The chain
visited the Mtrev model almost all of the time, giving it a posterior proba-
bility of 1.0. The results of the Bayesian analysis confirm our guess that the
Mtrev should be the most reasonable of the amino acid models because it was
estimated using a database of mitochondrial sequences. Importantly, we did
not need to rely on our guess of what amino acid model to use and could let
the data inform us about the fit of the alternative models.

7.3.4 Estimating Divergence Times

The molecular clock hypothesis states that substitutions accumulate at roughly
the same rate along different lineages of a phylogenetic tree [75, 76]. Besides
being among the earliest ideas in molecular evolution, the molecular clock
hypothesis is an immensely useful one. If true, it suggests a way to estimate
the divergence times of species with poor fossil records. The idea in its sim-
plest form is shown in Figure 7.7. The figure shows a tree of three species.
The numbers on the branches are the branch lengths in terms of expected
number of substitutions per site. Note that the branch lengths on the tree
satisfy the molecular clock hypothesis; if you sum the lengths of the branches
from the root to each of the tips, you get the same number (0.4). One can
estimate branch lengths under the molecular clock hypothesis by constrain-
ing the branch lengths to have this property. Figure 7.7 shows the second
key assumption that must be made to estimate divergence times. We assume
that the divergence of at least one of the clades on the tree is known. In this
hypothetical example, we assume that species A and B diverged five million
years ago. We have calibrated the molecular clock. The calibration is this: if
five million years have elapsed since the common ancestor of A and B, then
0.1 substitutions is equal to five million years. Together, the assumptions of
a molecular clock and a calibration allow us to infer that the ancestor of the
three species must have diverged 20 million years ago.

There are numerous potential problems with the simple picture we pre-
sented:

• Substitutions may not accumulate at the same rate along different lin-
eages. In fact, it is easy to test the molecular clock hypothesis using, for
example, a likelihood ratio test [14]. The molecular clock hypothesis is
usually rejected for real data sets.

• Even if the molecular clock is true, we do not know the lengths of the
branches with certainty. In fact, there are potential errors not only in the
branch lengths but also in the tree.

• We do not know the divergence times of any of the species on the tree with
absolute certainty. This uncertainty should in some way be accommodated.

The first problem—that substitutions may not accumulate at a constant rate
along the phylogenetic tree—has received the most attention from biologists.
Many statistical tests have been devised to examine whether rates really are
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We think B and C 
diverged 5 million 
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...which means A, B, and
C must have diverged 20
million years ago.

Fig. 7.7. Estimating divergence times using the molecular clock. A tree of three
species showing how divergence times can be estimated.

constant over the tree. As already mentioned, applying these tests to real
data usually results in the molecular clock being rejected. However, it is still
possible that divergence times can be estimated even if the clock is not perfect.
Perhaps the tests of the molecular clock are sensitive enough to detect small
amounts of rate variation, but the degree of rate variation does not scupper
our ability to estimate divergence times. Some biologists have attempted to
account for the variation in rates. One approach is to find taxa that are
the worst offenders of the clock and either eliminate them [65] or allow a
different rate just for those taxa. Another approach specifies a parametric
model describing how substitution rates change on the tree. These relaxed
clock models still allow estimation of divergence times but may correct for
limited degrees of rate variation across lineages. To date, two different models
have been proposed for allowing rates to vary across the tree [68, 33] and, in
both cases, a Bayesian MCMC approach was taken to estimate parameters.

In the remainder of this section, we will assume that the molecular clock
is true or at least that if the molecular clock is violated, we can still meaning-
fully estimate divergence times. The point of this section is not to provide a
definitive answer to the divergence time of any particular group but rather to
show how uncertainty in the tree, branch lengths, and calibration times can
be accounted for in a Bayesian analysis. We examine two data sets. The first
data set included complete mitochondrial protein-coding sequences from 23
mammals [4]. We excluded the platypus (Ornithorhynchus anatinus) and the
guinea pig (Cavia porcellus) from our analysis. We analyzed the alignment
of mitochondrial sequences under the GTR+SS model of DNA substitution.
The data were partitioned by codon position, and the rates for the first, sec-
ond, and third positions were estimated. The second data set consists of 104
amino acid sequences sampled from mouse, rat, an artiodactyl, human, and
chicken collated by Nei et al. [51]. Nei et al. [51] were mainly interested in
estimating the divergence times of the rodents and the rodent-human split
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and pointed out the importance of taking a multigene approach to divergence
time estimation. We analyze their data using the partitioned approach de-
scribed in the previous section. We partition the data by gene, resulting in
104 divisions in the data. We allow rates to vary systematically across genes
using the site-specific model. We allow rates to vary within genes by treating
the rate of substitution at an amino acid position as a Gamma-distributed
random variable. We allow different Gamma shape parameters for each parti-
tion. Moreover, we allow a different amino acid model for each partition, with
the actual identity of the amino acid model being unknown. For both data
sets, we constrained the branch lengths to obey the molecular clock hypoth-
esis. MrBayes was used to approximate the joint posterior probability of all
of the parameters of the evolutionary model. For the mammalian mitochon-
drial alignment, we ran the MCMC algorithm for a total of one million cycles
and based inferences on samples taken during the last 900,000 MCMC cycles.
For the amino acid alignments, we ran each of the two independent Markov
chains for a total of three million update cycles. We combined the samples
taken after the five hundred thousandth cycle.

For the mammalian data set, we had a total of 9000 trees with branch
lengths that were sampled from the posterior probability distribution of trees.
Each of the trees obeyed the molecular clock, meaning that if one were to take
a direct path from each tip of the tree to the root and sum the lengths of the
branches on each path, one would obtain the same number. Importantly, the
lengths of the branches and the topology of the tree differed from one sample
to another. The differences reflect the uncertainty in the data about the tree
and branch lengths. The final missing ingredient is a calibration time for some
divergence time on the tree. We used the divergence between the cows and
the whales as the calibration. Our first analysis of these samples will reflect
the typical approach taken when estimating divergence times; we will assume
that the divergence between cows and whales was precisely 56.5 million years
ago. This is a reasonable guess at the divergence time of cows and whales. Fig-
ure 7.8 shows the posterior probability distribution of the divergence time at
the root of the tree, corresponding to the divergence of marsupial and placen-
tal mammals. The top-left panel, marked “Fixed(56.5)”, shows the posterior
probability of the marsupial-placental split when the cows and whales are as-
sumed to diverge precisely 56.5 million years ago. It shows that even when
we assume that the molecular clock is true and the calibration time is known
without error, there is considerable uncertainty about the divergence time.
The 95% credible interval for the divergence of marsupials from placentals is
(115.6, 145.1), a span of about 30 million years in the early Cretaceous period.
In fact, it is easy to calculate the probability that the divergence time was in
any specific time interval; with (posterior) probabilities 0.0, 0.97, 0.03, and
0.0, the divergence was in the late Cretaceous, early Cretaceous, late Juras-
sic, and middle Jurassic periods, respectively. These probabilities account for
the uncertainty in the topology of the tree, branch lengths on the tree, and
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Fig. 7.8. The posterior probability density distribution of the divergence time
of placental and marsupial mammals. The distributions were calculated assum-
ing the divergence time between cows and whales was precisely 56.5 million years
[Fixed(56.5)], uniformly distributed between two times (U), or no less than 56.5
million years, with an exponentially declining prior distribution into the past [56.5
+ Exp(0.2)]. K, J, and Tr are the Cretaceous, Jurassic, and Triassic time periods,
respectively.

parameters of the substitution model but do assume that the calibration time
was perfectly known.

The three other panels in Figure 7.8 show the posterior probability dis-
tribution of the divergence of marsupial and placental mammals when the
calibration is not assumed known with certainty. In two of the analyses, we as-
sumed that the cows and whales diverged at some unknown time, constrained
to lie in an interval. The probability of the divergence at any time in the in-
terval was uniformly distributed. The last analysis, shown in the lower-right
panel of Figure 7.8, assumed that the divergence of cows and whales occurred
no more recently than 56.5 million years and was exponentially distributed
before then (an offset exponential prior distribution). As expected, the effect
of introducing uncertainty in the calibration times is reflected in a posterior
probability distribution that is more spread out. The additional uncertainty
can be neatly summarized by the 95% credible intervals:

Prior Credible Interval Size
Fixed(56.5) (115.6, 145.1) 29.5
U(50, 60) (107.8, 145.8) 38.0
U(50, 70) (110.3, 166.9) 56.6
56.5 + Exp(0.2) (119.8, 175.6) 55.8

The column marked “Size” shows the duration of the credible interval in
millions of years. Clearly, introducing uncertainty in the calibration time is
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Fig. 7.9. The distribution of best amino acid models for the 104 amino acid align-
ments. The number of alignments for which each amino acid model was best for the
Nei et al. [51] study.

reflected in the posterior probability distribution, and the credible interval
becomes larger as more uncertainty is introduced into the calibration time.

The results from the analysis of the 104 concatenated amino acid align-
ments was similar to that of the mammalian mitochondrial data. However,
the model for the amino acid data sets was quite complicated. Besides the
tree and branch lengths, there were 104 Gamma shape parameters, 104 rate
multipliers for the site-specific model, and 104 unknown amino acid models
to estimate. We do not attempt to summarize the information for all of these
parameters here. We only show the results for the amino acid models. Fig-
ure 7.9 shows which models were chosen as best for the various amino acid
alignments. In 82 cases, the model of Jones et al. [37] was chosen as best. The
Dayhoff and Wag models [11, 71] were chosen 11 times each. The seven other
amino acid models were never chosen as the best one in any of the 104 align-
ments, though some did receive considerable posterior probability. There was
no uncertainty in the topology of the tree chosen using the Bayesian method
(Figure 7.10).

As a calibration, Nei et al. [51] assumed that the divergence of birds and
mammals occurred exactly 310 million years ago. Table 7.4 summarizes the
results of the divergence times for three clades on the tree, assuming the
calibration time of Nei et al. [51] as well as three other calibrations that allow
for uncertainty in the divergence time of birds and mammals. As might be
expected, the uncertainty is greater for the older divergences. Also, having a
calibration time that is older than the group of interest makes the posterior
probability distribution less vulnerable to errors in the calibration time.

The prior models for the uncertainty in the calibration times we used here
are largely arbitrary and chosen mostly to make the point that errors in cali-
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Table 7.4. Credible intervals for divergence times of the amino acid data. The 95%
credible intervals for the divergence of mouse from rat, human from rodents, and
the time at the root of the tree for four different calibrations of the bird-mammal
split.

Calibration Mouse-Rat Human-Rodent Root
310 (25.9, 33.4) (84.5, 97.5) (448.3, 487.8)
U(288, 310) (25.0, 33.0) (80.6, 97.5) (427.7, 491.8)
288 + Exp(0.1) (24.6, 32.6) (79.8, 96.6) (423.3, 495.1)
288 + Exp(0.05) (24.9, 34.9) (80.4, 106.5) (426.4, 551.6)

bration times can be accounted for in a Bayesian analysis and that these errors
can make a difference in the results (at least, these errors can make a differ-
ence in how much one believes the results). Experts in the fossils from these
groups would place very different prior distributions on the calibration times.
For example, Philip Gingerich (pers. comm.) would place a much smaller error
on the divergence times between cows and whales than we did here; the fossil
record for this group is rich, and it is unlikely that cows and whales diverged as
early as 100 million years ago (our offset exponential prior distribution places
some weight on this hypothesis along with divergences that are much earlier).
Lee [42] pointed out that the widely used bird-mammal calibration of 310
million years is poorly chosen. The earliest synapsids (fossils on the lineage
leading to modern-day mammals) are from the upper Pennsylvanian period,
about 288 million years ago. This is much more recent than the calibration of
310 million years used by some to calibrate the molecular clock. The Bayesian
framework makes it possible to explore how different prior distributions affect
the conclusions drawn from a particular data set. When the data are highly
informative about the parameters examined, as is commonly the case, the ex-
act choice of prior distribution is likely to have little influence on the results.
In dating exercises, however, particularly when only one calibration point is
used, the precision of the calibration is likely to affect the dating significantly.

rat

Xenopus

human

chicken

mouse

Fig. 7.10. The best tree for the 104 amino acid alignments. This tree had a posterior
probability approximated to be 1.0 by the MCMC algorithm. The length of the
branch is the mean of the posterior probability distribution.
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7.4 Conclusions

In this chapter, we have attempted to demonstrate some of the power and
flexibility of the Bayesian approach to the inference of phylogeny and mole-
cular evolution. The most important aspect we want to convey is the effi-
ciency of the Bayesian MCMC methodology in addressing complex models.
Current statistical analyses of molecular evolution are based on very sim-
ple models inspired by the apparent simplicity of molecular sequences. But
beyond the simple sequences of symbols lies tremendous evolutionary com-
plexity. Approaches that ignore this complexity do not utilize the molecular
information efficiently and are prone to produce erroneous inferences. Mod-
eling the complexity of molecular evolution more accurately will be critical
to future progress in statistical analysis of molecular evolution. The Bayesian
MCMC approach provides promising tools for the analysis of these realistic
evolutionary models.
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[67] S. Tavaré. Some probabilistic and statistical problems on the analysis of
DNA sequences. Lectures in Mathematics in the Life Sciences, 17:57–86,
1986.

[68] J. L. Thorne, H. Kishino, and I. S. Painter. Estimating the rate of evolu-
tion of the rate of molecular evolution. Molecular Biology and Evolution,
15:1647–1657, 1998.

[69] L. Tierney. Markov chains for exploring posterior distributions. Annals
of Statistics, 22:1701–1762, 1994.

[70] C. Tuffley and M. Steel. Modeling the covarion hypothesis of nucleotide
substitution. Mathematical Biosciences, 147:63–91, 1998.

[71] S. Whelan and N. Goldman. A general empirical model of protein evolu-
tion derived from multiple protein families using a maximum likelihood
approach. Molecular Biology and Evolution, 18:691–699, 2001.

[72] Z. Yang. Maximum likelihood estimation of phylogeny from DNA se-
quences when substitution rates differ over sites. Molecular Biology and
Evolution, 10:1396–1401, 1993.

[73] Z. Yang. PAML: A program package for phylogenetic analysis by maxi-
mum likelihood. Comptuer Applications in Bioscience, 15:555–556, 1997.

[74] Z. Yang and B. Rannala. Bayesian phylogenetic inference using DNA
sequences: A Markov chain Monte Carlo method. Molecular Biology and
Evolution, 14:717–724, 1997.

[75] E. Zuckerkandl and L. Pauling. Molecular disease, evolution, and ge-
netic heterogeneity. In M. Kasha and B. Pullman, editors, Horizons in
Biochemistry, pages 189–225. Academic Press, New York, 1962.



226 J. P. Huelsenbeck and F. Ronquist

[76] E. Zuckerkandl and L. Pauling. Evolutionary divergence and convergence
in proteins. In V. Bryson and H. J. Vogel, editors, Evolving Genes and
Proteins, pages 97–166. Academic Press, New York, 1965.



7 Bayesian Analysis of Molecular Evolution 227

Appendix 1. All Possible Time-Reversible Models of
DNA Substitution

M1 = 111111 M35 = 122322 M69 = 121322 M103 = 112132 M137 = 121314 M171 = 112343
M2 = 122222 M36 = 122232 M70 = 121232 M104 = 112123 M138 = 121134 M172 = 112334
M3 = 121111 M37 = 122223 M71 = 121223 M105 = 111233 M139 = 112341 M173 = 112342
M4 = 112111 M38 = 123111 M72 = 122312 M106 = 111232 M140 = 112314 M174 = 112324
M5 = 111211 M39 = 121311 M73 = 122321 M107 = 111223 M141 = 112134 M175 = 112234
M6 = 111121 M40 = 121131 M74 = 122132 M108 = 112233 M142 = 111234 M176 = 123412
M7 = 111112 M41 = 121113 M75 = 122123 M109 = 112323 M143 = 123344 M177 = 123421
M8 = 112222 M42 = 112311 M76 = 122231 M110 = 112332 M144 = 123434 M178 = 123142
M9 = 121222 M43 = 112131 M77 = 122213 M111 = 121233 M145 = 123443 M179 = 123124
M10 = 122122 M44 = 112113 M78 = 123311 M112 = 121323 M146 = 123244 M180 = 123241
M11 = 122212 M45 = 111231 M79 = 123131 M113 = 121332 M147 = 123424 M181 = 123214
M12 = 122221 M46 = 111213 M80 = 123113 M114 = 122133 M148 = 123442 M182 = 121342
M13 = 122111 M47 = 111123 M81 = 121331 M115 = 122313 M149 = 122344 M183 = 121324
M14 = 121211 M48 = 122333 M82 = 121313 M116 = 122331 M150 = 122343 M184 = 121234
M15 = 121121 M49 = 123233 M83 = 121133 M117 = 123123 M151 = 122334 M185 = 122341
M16 = 121112 M50 = 123323 M84 = 123211 M118 = 123132 M152 = 123423 M186 = 122314
M17 = 112211 M51 = 123332 M85 = 123121 M119 = 123213 M153 = 123432 M187 = 122134
M18 = 112121 M52 = 123322 M86 = 123112 M120 = 123231 M154 = 123243 M188 = 123455
M19 = 112112 M53 = 123232 M87 = 122311 M121 = 123312 M155 = 123234 M189 = 123454
M20 = 111221 M54 = 123223 M88 = 122131 M122 = 123321 M156 = 123342 M190 = 123445
M21 = 111212 M55 = 122332 M89 = 122113 M123 = 123444 M157 = 123324 M191 = 123453
M22 = 111122 M56 = 122323 M90 = 121321 M124 = 123433 M158 = 123144 M192 = 123435
M23 = 111222 M57 = 122233 M91 = 121312 M125 = 123343 M159 = 123414 M193 = 123345
M24 = 112122 M58 = 121333 M92 = 121231 M126 = 123334 M160 = 123441 M194 = 123452
M25 = 112212 M59 = 123133 M93 = 121213 M127 = 123422 M161 = 121344 M195 = 123425
M26 = 112221 M60 = 123313 M94 = 121132 M128 = 123242 M162 = 121343 M196 = 123245
M27 = 121122 M61 = 123331 M95 = 121123 M129 = 123224 M163 = 121334 M197 = 122345
M28 = 121212 M62 = 112333 M96 = 112331 M130 = 122342 M164 = 123413 M198 = 123451
M29 = 121221 M63 = 112322 M97 = 112313 M131 = 122324 M165 = 123431 M199 = 123415
M30 = 122112 M64 = 112232 M98 = 112133 M132 = 122234 M166 = 123143 M200 = 123145
M31 = 122121 M65 = 112223 M99 = 112321 M133 = 123411 M167 = 123134 M201 = 121345
M32 = 122211 M66 = 123122 M100 = 112312 M134 = 123141 M168 = 123341 M202 = 112345
M33 = 123333 M67 = 123212 M101 = 112231 M135 = 123114 M169 = 123314 M203 = 123456
M34 = 123222 M68 = 123221 M102 = 112213 M136 = 121341 M170 = 112344
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Appendix 2. Using MrBayes 3.0

MrBayes 3.0 [35, 59] is a program distributed free of charge and can be down-
loaded from the web at http://www.mrbayes.net. The program takes as
input an alignment of DNA, RNA, amino acid, or restriction site data. (Matri-
ces of morphological characters can be input, too.) The program uses Markov
chain Monte Carlo methods to approximate the joint posterior probability
distribution of the phylogenetic tree, branch lengths, and substitution model
parameters. The parameter values sampled by the Markov chain are saved to
two files; one file contains the trees that were sampled, whereas the other file
has the parameter values that were sampled. The program also provides some
commands for summarizing the results. The basic steps (and commands) that
need to be executed to perform a Bayesian analysis of phylogeny using Mr-
Bayes include: (1) reading in the data file (“execute [file name]”); (2) setting
the model (using the “lset” and “prset” commands); (3) running the Markov
chain Monte Carlo algorithm (using the “mcmc” command); and (4) summa-
rizing the results (using the “sumt” and “sump” commands). The program
has extensive online help, which can be reached using the “help” command.
We urge the user to explore the available commands and the extensive amount
we have written about each by exploring the “help” option.

Analyzing the “toy” example of simulated data. The data matrix an-
alyzed in numerous places in the text was simulated on the tree of Figure 7.3
under the HKY85 model of DNA substitution. The specific HKY85 parame-
ter values and the branch lengths used for the simulation can be found in the
text. The input file contained the alignment of sequences and the commands:

begin data;
dimensions ntax=5 nchar=50;
format datatype=dna;
matrix
Species_1 TAACTGTAAAGGACAACACTAGCAGGCCAGACGCACACGCACAGCGCACC
Species_2 TGACTTTAAAGGACGACCCTACCAGGGCGGACACAAACGGACAGCGCAGC
Species_3 CAAGTTTAGAAAACGGCACCAACACAACAGACGTATGCAACTGACGCACC
Species_4 CGAGTTCAGAAGACGGCACCAACACAGCGGACGTATGCAGACGACGCACC
Species_5 TGCCCTTAGGAGGCGGCACTAACACCGCGGACGAGTGCGGACAACGTACC
;

end;

begin mrbayes;
lset nst=2 rates=equal;
mcmc ngen=1000000 nchains=1 samplefreq=100 printfreq=100;
sumt burnin=1001;
sump burnin=1001;

end;

The actual alignment is in a NEXUS file format. More accurately, the input
file format is NEXUS(ish) because we do not implement all of the NEXUS
standards in the program, and have extended the format in some (unlawful)
ways. The data are contained in the “data block”, which starts with a “begin
data” command and ends with an “end” command. The next block is specific
to the program and is called a “MrBayes” block. Other programs will simply
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skip this block of commands, just as MrBayes skips over foreign blocks it does
not understand. All of the commands that can be issued to the program via
the command line can also be embedded directly into the file. This facilitates
batch processing of data sets.

The first command sets the model to HKY85 with no rate variation across
sites. The second command runs the MCMC algorithm, and the third and
fourth commands summarize the results of the MCMC analysis, discarding
the first 1001 samples taken by the chain. Inferences then are based on the
last 9000 samples taken from the posterior probability distribution.

Analyzing the leaf beetle data under a complicated model. The fol-
lowing shows the data and MrBayes block used in the analysis of the Kim et al.
[39] alignment of three different genes. We do not show the entire alignment,
though we do show the most relevant portions of the data block. Specifically,
we show that you need to specify the data type as mixed when you perform
a simultaneous Bayesian analysis on different types of data
begin data;

dimensions ntax=27 nchar=1090;
format datatype=mixed(rna:1-516,dna:517-936,protein:937-1090) gap=- missing=?;
matrix
Orsodacne gGGUAAACCUNAGaA [ 1060 other sites ] DPILYQHLFWFFGHP
Chrysomela GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Altica --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Agelastica GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Monolepta GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Phyllobrotica ---------UGANAA [ 1060 other sites ] DPILYQHLFWFFGHP
Allochroma GGGUAAaCcUGAgAA [ 1060 other sites ] DPILYQHLFWFFGHP
Chrysolina GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Aphthona GGGUAACCCUGAGAA [ 1060 other sites ] ???????????????
Chaetocnema --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Systena ---CCGACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Monocesta ----------GAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Disonycha -------------AA [ 1060 other sites ] DPILYQHLFWFFGHP
Blepharida --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Galeruca GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Orthaltica GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Paropsis GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Timarcha -----AACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Zygograma GGGUAAACCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Syneta -----GAACUUACAA [ 1060 other sites ] DPILYQHLFWFFGHP
Dibolia ggguaaaccugagaa [ 1060 other sites ] DPILYQHLFWFFGHP
Sangariola --------------- [ 1060 other sites ] DPILYQHLFWFFGHP
Aulacophora -----------AGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Diabrotica GGGUAAACcUGAgAA [ 1060 other sites ] DPILYQHLFWFFGHP
Diorhabda -----------AGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Schematiza -----????UGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
Oides GGGUAACCCUGAGAA [ 1060 other sites ] DPILYQHLFWFFGHP
;

end;

begin mrbayes;
pairs 22:497, 21:498, 20:499, 19:500, 18:501, 17:502, 16:503, 33:172,

34:171, 35:170, 36:169, 37:168, 38:167, 45:160, 46:159, 47:158,
48:157, 49:156, 50:155, 51:154, 53:153, 54:152, 55:151, 59:150,
60:149, 61:148, 62:147, 63:146, 86:126, 87:125, 88:124, 89:123,
187:484, 186:485, 185:486, 184:487, 183:488, 182:489, 191:295, 192:294,
193:293, 194:292, 195:291, 196:290, 197:289, 198:288, 199:287, 200:286,
201:283, 202:282, 203:281, 204:280, 205:279, 206:278, 213:268, 214:267,
215:266, 216:265, 217:264, 226:259, 227:258, 228:257, 229:256, 230:255,
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231:254, 232:253, 233:252, 304:477, 305:476, 306:475, 307:474, 308:473,
316:335, 317:334, 318:333, 319:332, 336:440, 337:439, 338:438, 339:437,
340:436, 341:435, 343:422, 344:421, 345:420, 346:419, 347:418, 348:417,
349:416, 351:414, 352:413, 353:412, 354:411, 355:408, 356:407, 357:406,
358:405, 359:404, 360:403, 361:402, 369:400, 370:399, 371:398, 372:397,
373:396, 376:394, 377:393, 379:392, 380:391, 381:390;

charset ambiguously_aligned = 92-103 108-122 234-251 320-327 449-468;
charset stems = 22 497 21 498 20 499 19 500 18 501 17 502

16 503 33 172 34 171 35 170 36 169 37 168
38 167 45 160 46 159 47 158 48 157 49 156
50 155 51 154 53 153 54 152 55 151 59 150
60 149 61 148 62 147 63 146 86 126 87 125
88 124 89 123 187 484 186 485 185 486 184 487

183 488 182 489 191 295 192 294 193 293 194 292
195 291 196 290 197 289 198 288 199 287 200 286
201 283 202 282 203 281 204 280 205 279 206 278
213 268 214 267 215 266 216 265 217 264 226 259
227 258 228 257 229 256 230 255 231 254 232 253
233 252 304 477 305 476 306 475 307 474 308 473
316 335 317 334 318 333 319 332 336 440 337 439
338 438 339 437 340 436 341 435 343 422 344 421
345 420 346 419 347 418 348 417 349 416 351 414
352 413 353 412 354 411 355 408 356 407 357 406
358 405 359 404 360 403 361 402 369 400 370 399
371 398 372 397 373 396 376 394 377 393 379 392
380 391 381 390;

charset loops = 1-15 23-32 39-44 52 56-58 64-85 90-122 127-145
161-166 173-181 188-190 207-212 218-225 234-251
260-263 269-277 284 285 296-303 309-315 320-331
342 350 362-368 374 375 378 382-389 395 401 409
410 415 423-434 441-472 478-483 490-496 504-516;

charset rna = 1-516;
charset dna = 517-936;
charset protein = 937-1090;
charset D2 = 1-516;
charset EF1a = 517-936;
charset EF1a1st = 517-936\3;
charset EF1a2nd = 518-936\3;
charset EF1a3rd = 519-936\3;
charset CO1aa = 937-1090;
partition by_gene_and_pos = 5:rna,EF1a1st,EF1a2nd,EF1a3rd,CO1aa;
partition by_gene = 3:rna,EF1a,CO1aa;
partition by_gene_and_struct = 4:stems,loops,EF1a,CO1aa;
exclude ambiguously_aligned;
set partition = by_gene_and_struct;
lset applyto=(1) nucmodel=doublet;
lset applyto=(2) nucmodel=4by4;
lset applyto=(3) nucmodel=codon;
lset applyto=(1,2,4) rates=gamma;
lset nst=6;
prset ratepr=variable aamodelpr=mixed;
unlink shape=(all) revmat=(all);
mcmc ngen=3000000 nchains=1 samplefreq=100 printfreq=100;
sumt burnin=10001;
sump burni=10001;

end;

The commands in the MrBayes block show how to specify a very compli-
cated model. First, we specify which nucleotides pair with one another using
the pairs command. We then specify a number of character sets using the
“charset” command. Specifying character sets saves the hassle of having to
type in a long list of character numbers every time you want to refer to some
division of the data (such as a gene). We then specify three character parti-
tions. A character partition divides the data into groups of characters. Each
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character in the matrix must be assigned to one, and only one, group. For
example, one of the partitions we define (by gene) divides the characters into
three groups. When a data file is executed, it sets up a default partition of
the data that groups characters by data type. We need to tell the program
which of the four partitions to use (where the four partitions are default,
by gene and pos, by gene, and by gene and struct). We do this using the set
command. Finally, we use lset and prset to specify different models for differ-
ent groups of characters. In fact, with the applyto option in lset and prset and
the link and unlink commands, one can specify a very large number of possi-
ble models that currently cannot be implemented with any other phylogeny
program. The last three commands will run the MCMC algorithm and then
summarize the results.

Analyzing the 104 amino acid alignments. The analysis of the data
collated by Nei et al. [51] was conceptually simple, though laborious, to set up.
The data block, as usual, has the alignment, this time in interleaved format.
The MrBayes block has 104 character set definitions, specifies a partition,
grouping positions by gene, sets the partition, and then sets up a model in
which the parameters are estimated independently for each gene and that
enforces the molecular clock. The “outgroup” command can be used to specify
the location of the root in output trees. The trees are simply rooted between
the outgroup and the rest of the taxa. By default, MrBayes uses the first taxon
in the matrix as the outgroup.

begin data;
dimensions ntax=5 nchar=48092;
format datatype=protein interleave=yes;
matrix
[The data for the 104 alignments were here. We do not include
them here for obvious reasons (see the nchar command above).]
;

end;

begin mrbayes;
charset M00007 = 1 - 112;
charset M00008 = 113 - 218;
charset M00037 = 219 - 671;
[There were another 98 character set definitions, which we have deleted here.]
charset N01447 = 45917 - 46694;
charset N01456 = 46695 - 47285;
charset N01479 = 47286 - 48092;
partition by_gene = 104:M00007,M00008,[100 other partitions],N01456,N01479;
set autoclose=yes nowarn=yes;
set partition=by_gene;
outgroup xenopus;
lset rates=gamma;
prset ratepr=variable aamodel=mixed brlenspr=clock:uniform;
unlink shape=(all) aamodel=(all);
mcmcp ngen=30000000 nchains=1 samplefreq=1000 savebrlens=yes;

end;
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Appendix 3. Parameter Estimates for the Leaf Beetle
Data

The numbers are the mean and 95% credible interval of the posterior proba-
bility density distribution for each parameter.

Param. Mean (CI) Param. Mean (CI) Param. Mean (CI)
V 3.495 (3.209, 3.828) πG 0.222 (0.180, 0.267) πGAC 0.012 (0.008, 0.016)
r
(1)
CT 0.428 (0.187, 0.850) πT 0.285 (0.240, 0.332) πGAG 0.007 (0.006, 0.009)

r
(1)
CG 0.616 (0.166, 1.616) πAAA 0.023 (0.020, 0.024) πGAT 0.018 (0.016, 0.019)

r
(1)
AT 2.130 (0.703, 5.436) πAAC 0.006 (0.006, 0.008) πGCA 0.014 (0.012, 0.018)

r
(1)
AG 0.780 (0.340, 1.594) πAAG 0.019 (0.014, 0.023) πGCC 0.023 (0.019, 0.027)

r
(1)
AC 0.828 (0.214, 2.240) πAAT 0.005 (0.004, 0.006) πGCG 0.005 (0.005, 0.005)

r
(2)
CT 3.200 (2.037, 4.915) πACA 0.011 (0.007, 0.013) πGCT 0.036 (0.034, 0.037)

r
(2)
CG 0.335 (0.116, 0.683) πACC 0.021 (0.017, 0.024) πGGA 0.019 (0.014, 0.022)

r
(2)
AT 0.994 (0.522, 1.699) πACG 0.006 (0.004, 0.009) πGGC 0.013 (0.006, 0.015)

r
(2)
AG 2.805 (1.702, 4.447) πACT 0.025 (0.019, 0.027) πGGG 0.004 (0.004, 0.006)

r
(2)
AC 1.051 (0.541, 1.880) πAGA 0.020 (0.013, 0.021) πGGT 0.018 (0.015, 0.019)

r
(3)
CT 2.292 (1.471, 3.555) πAGC 0.016 (0.014, 0.019) πGT A 0.022 (0.017, 0.028)

r
(3)
CG 1.021 (0.400, 2.127) πAGG 0.004 (0.001, 0.007) πGT C 0.014 (0.008, 0.014)

r
(3)
AT 1.320 (0.766, 2.184) πAGT 0.001 (0.001, 0.002) πGT G 0.014 (0.012, 0.016)

r
(3)
AG 2.276 (1.424, 3.621) πAT A 0.003 (0.003, 0.004) πGT T 0.020 (0.016, 0.020)

r
(3)
AC 1.041 (0.575, 1.756) πAT C 0.025 (0.024, 0.029) πT AC 0.033 (0.030, 0.034)

ω 0.010 (0.010, 0.012) πAT G 0.014 (0.009, 0.017) πT AT 0.011 (0.010, 0.016)
πAA 0.001 (0.000, 0.004) πAT T 0.026 (0.016, 0.029) πT CA 0.020 (0.017, 0.026)
πAC 0.004 (0.000, 0.008) πCAA 0.015 (0.011, 0.019) πT CC 0.026 (0.023, 0.033)
πAG 0.006 (0.003, 0.012) πCAC 0.010 (0.009, 0.014) πT CG 0.015 (0.014, 0.016)
πAT 0.122 (0.086, 0.170) πCAG 0.009 (0.006, 0.011) πT CT 0.025 (0.024, 0.037)
πCA 0.003 (0.000, 0.008) πCAT 0.009 (0.005, 0.010) πT GC 0.003 (0.003, 0.005)
πCC 0.005 (0.001, 0.013) πCCA 0.022 (0.021, 0.024) πT GG 0.014 (0.008, 0.016)
πCG 0.257 (0.191, 0.319) πCCC 0.012 (0.011, 0.014) πT GT 0.001 (0.001, 0.003)
πCT 0.002 (0.000, 0.005) πCCG 0.008 (0.003, 0.010) πT T A 0.020 (0.013, 0.025)
πGA 0.001 (0.000, 0.003) πCCT 0.008 (0.007, 0.010) πT T C 0.045 (0.044, 0.049)
πGC 0.284 (0.222, 0.353) πCGA 0.002 (0.001, 0.004) πT T G 0.025 (0.025, 0.026)
πGG 0.003 (0.000, 0.008) πCGC 0.009 (0.009, 0.009) πT T T 0.011 (0.010, 0.011)
πGT 0.078 (0.057, 0.106) πCGG 0.001 (0.000, 0.000) α1 0.422 (0.308, 0.570)
πT A 0.145 (0.103, 0.190) πCGT 0.016 (0.014, 0.016) α2 0.381 (0.296, 0.484)
πT C 0.004 (0.001, 0.008) πCT A 0.005 (0.004, 0.010) α4 0.226 (0.175, 0.288)
πT G 0.073 (0.056, 0.093) πCT C 0.016 (0.015, 0.020) m1 0.708 (0.553, 0.894)
πT T 0.003 (0.001, 0.008) πCT G 0.042 (0.036, 0.046) m2 0.870 (0.732, 1.027)
πA 0.252 (0.209, 0.301) πCT T 0.042 (0.034, 0.048) m3 1.274 (1.171, 1.378)
πC 0.239 (0.199, 0.284) πGAA 0.034 (0.031, 0.044) m4 0.856 (0.651, 1.100)
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8.1 Introduction

On page 143 of his 1959 book The Molecular Basis of Evolution, Christian
B. Anfinsen listed some of the main components of the then-nascent field of
molecular evolution:

A comparison of the structures of homologous proteins (i.e., proteins
with the same kinds of biological activity or function) from different
species is important, therefore, for two reasons. First, the similarities
found give a measure of the minimum structure for biological func-
tion. Second, the differences found may give us important clues to the
rate at which successful mutations have occurred throughout evolu-
tionary time and may also serve as an additional basis for establishing
phylogenetic relationships.

Three years later, Zuckerkandl and Pauling [52] combined paleontological in-
formation with molecular sequence data to fulfill Anfinsen’s prediction that
rates of molecular evolution could be estimated. Zuckerkandl and Pauling ap-
plied their estimate of the chronological rate of hemoglobin evolution to infer
both times since gene duplication and times since speciation events. They
noted that:

It is possible to evaluate very roughly and tentatively the time that
has elapsed since any two of the hemoglobin chains present in given
species and controlled by non-allelic genes diverged from a common
chain ancestor. The figures used in this evaluation are the number of
differences between these chains, the number of differences between
corresponding chains in different animal species, and the geological
age at which the common ancestor of the different species in question
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may be considered to have lived.

(Zuckerkandl and Pauling, pp. 200-201 in [52]).

Based on their finding that vertebrate hemoglobins change at an approxi-
mately constant rate, Zuckerkandl and Pauling ([53], p. 148) later concluded
that there “... may thus exist a molecular clock.” However, these authors ac-
knowledged that the assumption of a constant chronological rate of molecular
evolution was regarded by some investigators as biologically implausible. They
wrote:

Ernst Mayr recalled at this meeting that there are two distinct as-
pects to phylogeny: the splitting of lines, and what happens to the
lines subsequently by divergence. He emphasized that, after splitting,
the resulting lines may evolve at very different rates, and, in particu-
lar, along different lines different individual systems – say, the central
nervous system along one given line – may be modified at a relatively
fast rate, so that proteins involved in the function of that system may
change considerably, while other types of proteins remain nearly un-
changed. How can one then expect a given type of protein to display
constant rates of evolutionary modification along different lines of de-
scent?

(Zuckerkandl and Pauling, p. 138 in [53]).

In the decades that have passed since Anfinsen’s prescient statement and
Zuckerkandl and Pauling’s work, what has changed regarding the estimation
of evolutionary divergence times from molecular sequence data? The most
obvious development is that today there is a much greater availability of
DNA and protein data to analyze. Unfortunately, techniques for analyzing
data have improved at a slower pace than have those for collecting data.

During most of the period following Zuckerkandl and Pauling’s seminal
papers, divergence time estimation from molecular sequence data has centered
on the hypothesis of a constant chronological rate of sequence change. One
set of methods [13] aims to estimate divergence times if this hypothesis of a
constant rate of evolution is true. Another group of methods [22, 9, 48, 27, 42]
aims to test this null hypothesis versus the alternative that rates change over
time.

One extreme perspective is that the developers and users of both groups
of methods have been misguided. This view posits that a constant chronolog-
ical rate of molecular evolution is biologically implausible. Rates of molecular
evolution are the outcome of complex interactions between the features of bi-
ological systems and their environments. Indisputably, biological systems and
their environments change over time. Therefore, rates of molecular evolution
must change.
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For example, rates of molecular evolution are affected by the mutation
rate per generation as well as by the generation length, and both of these
depend intricately on biology. As biological systems evolve, generation lengths
and mutation frequencies will vary. Moreover, the probability of fixation of
mutations that are not selectively neutral depends on population size [28].
Population size itself fluctuates, as do the selective regimes to which genomes
are exposed. The extreme perspective is that evolutionary rates are never
constant and therefore the molecular clock should never be applied to the
estimation of divergence times. Likewise, if the molecular clock hypothesis of
constant chronological rates is always false, there is little value in making this
a null hypothesis and then testing a hypothesis that is already known to be
false.

A more balanced perspective may be that, in many cases, evolutionary
rates are approximately—if not exactly—constant. Because evolutionary rates
are largely determined by the biological systems that they affect, they may be
likely to be nearly identical in two biological systems that are closely related
and therefore highly similar. The molecular clock assumption may always be
formally incorrect but it may sometimes be almost correct. An unsolved ques-
tion is: When do the weaknesses of the molecular clock assumption outweigh
its convenience?

Until recently, all practical approaches for estimating evolutionary diver-
gence times relied upon the molecular clock hypothesis. In [33], Sanderson
introduced a pioneering technique that allowed for the estimation of evolu-
tionary divergence times without the restriction of a constant rate. Soon after,
multiple other approaches were formulated for estimating divergence times
without relying upon a constant rate [45, 15, 34]. Our goal here is to overview
these newer divergence-time estimation methods. In particular, we emphasize
the Bayesian framework that we have been developing [45, 20, 44]. Before
doing this, we highlight the statistical issues that arise even if a constant
chronological rate of molecular evolution could be safely assumed.

8.2 Branch Lengths as Products of Rates and Times

Amounts of evolution are usually expressed as expected numbers of nucleotide
substitutions or amino acid replacements per site. To convert between the
observed percentage of sites that differ between sequences and the expected
number of substitutions or amino acid replacements, probabilistic models of
sequence change can be adopted. These models range in complexity from the
simple process of nucleotide substitution proposed by Jukes and Cantor [18] to
comparatively realistic descriptions. Widely used models of sequence change
are well-summarized elsewhere [41, 11]. We make no attempt to overview them
here, but we do emphasize two points. The first is that models of sequence
evolution are typically phrased in terms of rates, but these are relative rates
rather than rates with chronological time units. Second, a poor model may
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lead to inaccurate divergence times. There may exist no sets of parameter
values for which a particular model is a good description of the evolutionary
process.

The effects on divergence time estimates of poor model choice are con-
ceivably quite large but are generally difficult to assess. One potential impact
of poor model choice is biased branch lengths. Because the bias in a branch-
length estimate is likely to be a nonlinear function of the branch lengths,
flawed evolutionary models can lead to systematic errors in divergence dat-
ing.

When solely DNA or protein sequence data are available, amounts of evo-
lution can be estimated but rates and times are confounded. This confounding
is problematic whether or not the molecular clock hypothesis is correct. For
instance, imagine two homologous DNA sequences that differ by about 0.065
substitutions per site. One possibility is that their common ancestral sequence
existed 6.5 million years ago and that substitutions per site have been accu-
mulating at a rate of approximately 0.01 per million years. One of arbitrarily
many alternative possibilities is that the two sequences had a common ances-
tor 1 million years ago and the substitutions have been accumulating at a rate
of 0.065 per million years. The number of substitutions per site is an amount
of evolution, and the expected amount of evolution is the rate multiplied by
the time duration. In the absence of fossil or other information external to the
sequence data, the rates and times cannot be separated, and only their prod-
uct, the expected amount of evolution, can be estimated. Although infinitely
long sequences could conceivably lead to a perfect estimate of the expected
amount of evolution per site, the confounding of rates and times means that,
even in the ideal situation of infinitely long sequences, neither rates nor times
can be estimated solely from molecular data (see Figure 8.1).

When constant evolutionary rates are assumed, paleontological informa-
tion can disentangle rates and times. Because the expected amount of evolu-
tion is the product of the rate and time, a known time leads to an estimated
rate. With a molecular clock, the resulting rate can then be employed to infer
other divergence times. For a rate of 0.1 substitutions per site per million
years, a branch with an expected 0.065 substitutions per site would have a
time duration of 0.65 million years (Figure 8.2). By mapping available pale-
ontological information to a phylogeny and then calibrating the chronological
rate of molecular change, the molecular clock allows divergence times to be
estimated for phylogenetic groups where fossil data are sparse or absent.

Because the fossil record is very incomplete, there has been great interest
in supplementing it with molecular data via the constant evolutionary rate
assumption. Often, a statistical test of the constant chronological rate assump-
tion is applied prior to divergence time estimation. With the null hypothesis
of a constant rate, the expected amount of difference between a common an-
cestral sequence and its descendants should not vary among descendants. This
reasoning underlies the most widely applied approaches that purport to test
the constant chronological rate assumption.
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Fig. 8.1. Rates and times that yield an expected amount of evolution equal to 0.065
substitutions per site. Because the expected amount of evolution on a branch is equal
to the product of the average evolutionary rate multiplied by the time duration of
the branch, a perfectly estimated amount of sequence evolution would not suffice
to allow rates and times to be disentangled. In this figure as well as in Figures 8.2
through 8.5, the time units are millions of years (Myr) and the rate units are 0.1
expected substitutions per site per million years.
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Fig. 8.2. When the expected amount of sequence evolution on a branch is 0.065
substitutions per site, knowledge that the evolutionary rate is 0.1 substitutions per
million years implies that the time duration of the branch is 0.65 million years.

However, widely used approaches actually correspond to a more general
null hypothesis than a constant chronological rate. When evolutionary rates
do not vary over time, the expected amount of evolution is the product of the
rate and the amount of time during which evolution occurs. If the evolutionary
rate is instead variable over time, the expected amount of evolution b on a
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branch that begins at time 0 and ends at time T would be

b =
∫ T

t=0
r(t)dt,

where r(t) is the rate at time t. We will refer to the path of r(t) between 0
and T as a rate trajectory. Now consider a second branch that begins at the
same node as the branch with length b. If the second branch also has time
duration T , then the length of the second branch will be

b∗ =
∫ T

t=0
r∗(t)dt,

where r∗(t) represents the rate of evolution at time t on the second branch.
There are infinitely many possible trajectories of rates for r(t) and r∗(t) that
yield b∗ = b. Widely applied tests [9, 48, 27, 42] evaluate a more general null
hypothesis than a molecular clock. They do not examine whether the rates of
evolution on different branches of an evolutionary tree are all identical and
invariant. Instead, these tests focus on whether the sum of branch lengths
between a root node and its descendant tips is the same for all tips. One
biologically plausible situation is that the rates on all branches that are extant
at any given instant are identical but that this shared rate itself changes over
time. This “shared-rate” scenario could occur when all evolutionary lineages
belong to a single species that experiences changes in evolutionary rates over
time due to fluctuations in population size or environment [38, 6].

A good fossil record can help to differentiate between the shared-rate sce-
nario and the molecular clock hypothesis, but often it can be challenging to
compare these two possibilities when all sequences in a data set are isolated
at effectively the same time. For RNA viruses and other quickly evolving or-
ganisms, the shared-rate and molecular clock hypotheses can be more easy to
distinguish. A retroviral sequence isolated five years ago may be substantially
more similar to a common ancestral sequence than is a sequence isolated to-
day. By incorporating dates of sequence isolation into procedures for studying
divergence times, the rate of a molecular clock can be inferred even in the
absence of fossil information [24, 23, 21, 30].

Noncontemporaneously isolated (i.e., serially sampled) viral sequence data
sets can be an especially rich source of potential evolutionary information
[7, 37]. With serially sampled data, the “shared-rate” and clock hypotheses can
be distinguished because rates of evolution during different time periods can
be estimated and statistically compared [38, 6]. By exploiting serially sampled
data, Drummond et al. [5] have convincingly demonstrated that rates of viral
evolution can change when the treatment regimen of an infected patient is
modified. The relatively high information content of serially sampled data
is one reason that the study of viral change appears to be among the most
promising avenues for understanding the process of molecular evolution.
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8.3 Beyond the Classical Molecular Clock

8.3.1 The Overdispersed Molecular Clock

When defining branch lengths as the expected amount of change, a fixed
rate trajectory is assumed. The actual number of changes per sequence for a
fixed rate trajectory with independently evolving sequence positions has either
exactly or very nearly a Poisson distribution, depending on the details of the
substitution model [51]. For a Poisson distribution, the mean is equal to the
variance. One focus of classic work in population genetics has been to examine
whether a Poisson distribution accurately summarizes the process of molecular
evolution or whether the process can be characterized as overdispersed because
the variance of the number of changes exceeds the mean [12].

Most existing models of molecular evolution assume independent change
among sites. In reality, however, a change at one site is apt to affect the rate
of change at other sequence positions. Dependent change among positions can
produce overdispersion. When sequence positions evolve in a compensatory
fashion but independent change is modelled, the variance in branch length
estimates may be underestimated. As a result, a hypothesis test based on an
independent change model may be prone to rejecting the null hypothesis of a
constant rate even when that null hypothesis is true.

Cutler [4] developed an innovative procedure for inferring divergence times.
Although this procedure assumes a constant chronological rate of change, it
accounts for the overdispersion of branch-length estimates that can arise when
sites do not change independently. It does this by inflating the variance of
branch-length estimates beyond what is expected with the particular indepen-
dent change model that is used to infer branch-lengths. It might be preferable
to explicitly model the dependence structure among sites, and limited progress
is being made toward evolutionary inference when sequence positions change
in a dependent fashion due to overlapping reading frames [17, 29] or con-
straints imposed by protein tertiary structure [32], but a variance adjustment
such as suggested by Cutler [4] may be the most practical alternative for the
near future.

8.3.2 Local Clocks

With maximum likelihood and a known rooted tree topology, divergence dat-
ing via the molecular clock and a single calibration point is relatively simple.
Let X represent an aligned data set of molecular sequences and T denote the
node times on the tree. With the molecular clock hypothesis, only a single rate
R is needed. A probabilistic model of sequence evolution may include other
parameters (e.g., the transition-transversion rate, and the stationary frequen-
cies of the nucleotide types), but these are minor complications that will be
omitted from our notation and discussion. The likelihood is then p(X|R, T ),
the probability density of the data given the rate and node times. The values of
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R and T fully determine the branch lengths B on the tree. Because rates and
times are confounded with molecular sequence data, p(X|B) = p(X|R, T ).
The branch lengths B̂ that maximize p(X|B) are therefore the maximum
likelihood estimates.

Not all sets of branch lengths B are consistent with the molecular clock
assumption. Specifically, a constant chronological rate means that the sum
of branch lengths from an internal node to a descendant tip will not differ
among descendant tips. The branch lengths are therefore constrained by the
molecular clock, and the maximization that yields B̂ only considers sets of
branch lengths that satisfy these constraints. When the branch lengths B̂ are
obtained, a node that serves as the single calibration time immediately yields
estimates for both the rate R and the node times T .

Because maximum likelihood estimators have so many appealing statistical
properties (see [26]), it is desirable to apply them to the estimation of diver-
gence times without relying upon the unrealistic molecular clock hypothesis.
Conceivably, there could be a separate parameter representing the evolution-
ary rate for each branch and also a parameter representing each node time
on the rooted topology. A difficulty with such a parameter-rich model is that
the molecular sequence data only have information about branch-lengths, and
external evidence is necessary to disentangle rates and times.

Fortunately, maximum likelihood can be salvaged as a divergence-time
estimation technique for models that are intermediate between the single-rate
clock model and the parameter-rich model. One possibility is to construct a
model where each branch is assigned to a category, with the total number
of categories being substantially less than the total number of branches and
with all branches that belong to the same rate category being forced to share
identical rates [50] (see also [19, 46, 31, 49]). This scheme has been referred to
as a local clock model [50] because it has clocklike evolution within prespecified
local regions of a tree but also allows the clock to tick at different rates among
the prespecified regions. With a local clock model, multiple calibration points
can be incorporated so that the rates of branches belonging to individual
categories can be more accurately determined.

Although assignment of branches to rate categories prior to data analysis
is not absolutely necessary for local clock procedures, preassignment is compu-
tationally attractive and has been a feature of previously proposed local clock
techniques. Often, it may not be clear how many categories of rates should be
modelled. Likewise, assignment of branches to individual rate categories can
be somewhat arbitrary. Despite these limitations, local clock models appear
to yield divergence time estimates that are similar to those produced by the
Bayesian methods described below [2, 49].

8.3.3 Penalized Likelihood

A very different strategy for divergence time estimation has been developed
by Sanderson [34, 35]. Underlying this strategy is the biologically plausible
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notion that evolutionary rates will diverge as the lineages that these rates
affect diverge. This node-dating technique allows each branch to have its own
average rate. Rather than have R represent a single rate, we use R here to
denote the set of average rates for the different branches on the tree. Instead
of maximizing the likelihood p(X|B) = p(X|R, T ), Sanderson [34] finds the
combination (R̃, T̃ ) of rates R and times T that obeys any constraints on node
times and that maximizes

log(p(X|R, T )) − λΦ(R),

where Φ(R) is a penalty function and where λ determines the contribution of
this penalty function. There are many possible forms for the penalty function
Φ(R), but the idea is to discourage, though not prevent, rate change. One form
of Φ(R) explored by Sanderson [34] is the sum of two parts. The first part is
the variance among rates for those branches that are directly attached to the
root. The second part involves those branches that are not directly attached
to the root. For each of these branches, the difference between its average rate
and the rate of its ancestral branch is squared, and these squared differences
are then summed. Only positive values of λ are permitted. Small λ values allow
extensive rate variation over time, whereas large values encourage a clocklike
pattern of rates. To select the value of λ, Sanderson [34] has developed a clever
cross-validation strategy which will not be detailed here.

For computational expediency, existing implementations of this penalized
likelihood technique (see [34, 35]) do not fully evaluate log(p(X|R, T )) when
finding R̃ and T̃ . Instead, a two-step procedure is followed. The first step
yields an integer-valued estimate of the number of nucleotide substitutions or
amino acid replacements that have affected the sequence on each branch of
the tree. The second step treats the integer-valued estimate for a branch as if
it were a directly observed realization from a Poisson distribution. The mean
value of the Poisson distribution is determined from R and T by the product
of the average rate and time duration of the branch.

The penalized log-likelihood can be connected to Bayesian inference. The
posterior density of rates and times is

p(R, T |X) =
p(X|R, T )p(R, T )

p(X)
.

Taking the logarithm of both sides,

log(p(R, T |X)) = log(p(X|R, T )) + log(p(R, T )) − log(p(X)).

Because p(X) is only a normalization constant, the rates R and times T that
maximize the posterior density are those values that maximize log(p(X|R, T ))
+ log(p(R, T )). Furthermore, the −λΦ(R) term is analogous to the logarithm
of the prior distribution for rates and times log(p(R, T )), since the penalized
likelihood procedure maximizes log(p(X|R, T )) − λΦ(R). In other words, the
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penalized likelihood procedure is akin to finding the rates and times that
maximize the posterior density p(R, T |X).

There is a subtle but important point about the uncertainty of divergence
times that are inferred by the penalized likelihood procedure. If the branch
lengths B were known, maximizing
log(p(X|R, T )) − λΦ(R) = log(p(X|B)) − λΦ(R) over rates R and times T
would be equivalent to maximizing −Φ(R) over R and T . Although R̃ and T̃
represent the rates and times that optimize the penalized likelihood criterion,
any rates and times are possible in this artificial scenario if they are consis-
tent with both the known branch lengths and the constraints on node times.
Since the branch lengths are being considered known, the penalized likelihood
estimates R̃ and T̃ would not be influenced by the data X. Therefore, this
artificial scenario would yield the same rate and time estimates for any non-
parametric bootstrap replicate data set that is created by sampling sites with
replacement [8, 10]. Because R̃ and T̃ would not be the only possible set of
rates and times that yield the branch lengths B, there must be uncertainty
about the rates and times that the nonparametric bootstrap does not reflect.
The problem is that the nonparametric bootstrap procedure can adequately
summarize uncertainty of branch lengths but cannot adequately reflect the
uncertainty in rates and times conditional upon the branch lengths. Although
this flaw of the nonparametric bootstrap procedure is more apparent when the
branch lengths are considered known, it is also present in the more realistic
situation where the branch lengths are unknown.

A more satisfactory procedure than solely the nonparametric bootstrap for
quantifying rate and time uncertainty with the penalized likelihood approach
would be an attractive goal for future research. In a standard maximum like-
lihood situation, the variances and covariances of parameter estimates can be
approximated by the curvature of the log-likelihood surface around its peak
([40], pp. 675–676). This approximation improves with the amount of data
because, as the amount of data grows, the shape of the log-likelihood surface
near its peak asymptotically approaches (up to a constant of proportionality)
a multivariate normal distribution. This asymptotic behavior is subject to cer-
tain regularity conditions being satisfied. Lack of parameter identifiability due
to times and rates being confounded can lead to variances and covariances of
estimated rates and times being poorly approximated by the curvature of the
log-likelihood surface. Nevertheless, there may be certain penalty functions
Φ(R) that would lead to variances and covariances of rates and times being
well-approximated by the curvature of the penalized log-likelihood surface.

8.4 Bayesian Divergence Time Estimation

Bayesian inference of divergence times can be performed when a chrono-
logically constant rate of molecular evolution is assumed. An advantage of
Bayesian inference with the molecular clock is that prior information about
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rates and times can be better exploited. Consider the time that has elapsed
since a common ancestral gene of human and chimp homologues. Before seeing
or analyzing the sequence data, an expert might believe that there is a high
probability of the elapsed time being within some interval that spans only sev-
eral million years. Likewise, without inspecting the sequence data, the expert
could confidently state that the rate of nucleotide substitution in the human
and chimp lineages is likely to be somewhere in a range encompassing only
a few orders of magnitude. When biological systems are not as well-studied
as the human and chimp cases, the prior distributions of rates and times will
be less concentrated, but even very diffuse prior information can be combined
with sequence data to separate rates and times to some extent.
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Fig. 8.3. A contour plot of the prior distribution for rates and times. Prior densities
are highest for rates and times within the innermost ellipse and are lowest for rates
and times outside the largest ellipse.

Figure 8.1 shows that, in the absence of prior information, even an infi-
nite amount of sequence data cannot separate rates and times. In Figure 8.1,
neither a time of 10 seconds nor a time of 10 million years can be excluded.
Nevertheless, Figure 8.1 reveals that the actual rate and time must be some
point on a one-dimensional slice through the two-dimensional parameter space
of rates and times. The problem is that sequence data are no help in determin-
ing which points on the one-dimensional slice are most reasonable. Figure 8.3
shows a possible prior distribution for rates and times. By combining the prior
distribution summarized in Figure 8.3 with the sequence information summa-
rized in Figure 8.1, the posterior distribution of rates and times in Figure 8.4
is generated. As with Figure 8.1, Figure 8.4 again illustrates that the true
rate and time must be a point on the one-dimensional slice through the two-
dimensional parameter space of rate and time. However, Figure 8.4 indicates
that some rates and times have higher posterior densities than others. The
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Fig. 8.4. Prior information about rates and times combined with a perfectly esti-
mated branch length of 0.065 substitutions per site leads to a posterior distribution
of rates and times. All points of the posterior distribution that have positive density
are found on the line corresponding to the product of rate and time being 0.065
substitutions per site. The points with the highest posterior density are those on
the line with the highest prior density.

relative posterior densities of the points on the slice are determined by the
prior distribution depicted in Figure 8.3. Constraints on times are especially
helpful because they can concentrate the posterior distribution (Figure 8.5).

When rates are not assumed constant, the divergence time estimation
problem becomes more challenging, but Bayesian inference can still be per-
formed. Here, we focus on our techniques for Bayesian dating [45, 20, 44].
Other Bayesian techniques have been introduced [15, 21, 2], but these are
generally similar to our approach and we highlight only the most important
differences.

To allow rates to change, we adopt a stochastic model [20]. We assume the
average rate on a branch is the mean of the rate at the nodes that begin and
end the branch. This assumption is a weakness of our approach and can be
interpreted as forcing rates to change in a linear fashion from the beginning to
ending nodes of a branch. Our alternative interpretation is that the mean of
the beginning and ending rates on a branch hopefully is a good approximation
of the average rate on the branch. A more satisfactory treatment of rates would
not have the average rate on the branch be a deterministic function of the
rates at the nodes. In this sense, the approach of Huelsenbeck et al. [15] is
superior. These investigators had rates change in discrete jumps that were
statistically modelled so that they could occur at any point on any lineage on
the rooted tree.

Because the average rates on branches for our Bayesian procedures are
completely determined by the rates at nodes, we employ a stochastic model
for the node rates. Given the rate at the beginning of a branch, our simple
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Fig. 8.5. The effect on the posterior distribution of constraints on time. The dashed
vertical lines represent the highest and lowest possible values for the time duration of
the branch. When the branch length is known to be 0.065 substitutions per site, the
constraints represented by the vertical lines force the posterior distribution of rates
and times to be confined to relatively small intervals. Due to the prior density and
the constraints, the rates and times with the highest posterior densities are those
combinations where the time duration slightly exceeds the lower bound on time.

model assigns a normal distribution to the logarithm of the rate at the end.
The mean of this normal distribution is set so that the expected rate at the
end of the branch (and not the expected logarithm of the rate) is equal to the
rate at the beginning. The variance of the normal distribution is the product
of a rate variation parameter ν and the time duration of the branch. When
ν = 0, there is a constant chronological rate of sequence change. As the value
of ν increases, the tendency to deviate from a clocklike pattern of evolution
increases.

Because this model describes the probability distribution for the rate at
the node that ends a branch in terms of the beginning node rate and because
the root node on a tree is the only node that does not end a branch, we assign
a prior distribution for the rate at the root node. Letting R now represent the
rates at the nodes on a tree, the prior distribution for the rate at the root and
the model for rate change together specify p(R|T, ν), the probability density
of the rates R given the node times T and the rate change parameter ν.

Aris-Brosou and Yang [2] explored other diverse models for rate change.
They concluded that, while the data may contain enough information for
comparing the adequacy of competing rate change models, the details of the
rate change model have little impact on divergence time estimates as long as
rate change is permitted. The conclusions of Aris-Brosou and Yang [2] coincide
with our experience that divergence time estimates do not seem to be very
sensitive to either the value of ν or its prior distribution.
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In contrast with their comparisons of different rate change models, Aris-
Brosou and Yang [2] found that divergence time estimates were sensitive to
whether rates were allowed to change or whether they were forced to be con-
stant. By comparing analyses performed with a molecular clock (ν = 0) and
without (ν > 0), we find that the similarity between clock and nonclock di-
vergence time estimates varies widely among data sets (pers. obs.). However,
because they account for stochasticity of evolutionary rates, credibility inter-
vals for node times tend to be wider when produced by nonclock analyses
than they do when clocks are enforced [20, 2, 3].

Bayesian procedures also require a prior distribution p(T ) for the node
times T . Unfortunately, it is difficult to appropriately quantify this prior dis-
tribution p(T ). Our implementation specifies p(T ) in two parts. The first com-
ponent of p(T ) is a gamma distribution for the prior distribution of the time
since the root node. For a given root node time, every other interior node time
can be specified by the time between the node and its descendant tips divided
by the time separating the root and the tips. To handle these proportional
times, our implementation invokes a prior distribution that is a generalization
to rooted tree structures of the Dirichlet distribution [20]. The primary advan-
tages of the generalized Dirichlet are its simplicity and its relative flexibility.
A disadvantage is the lack of a biological rationale for its form.

Prior distributions for node times can also be generated via a stochastic
process with explicit descriptions of speciation, extinction, and taxon sam-
pling [2]. Although this latter class of prior distributions has the strong ad-
vantage of being biologically interpretable, it is unclear to us whether these
prior distributions are realistic enough to improve rather than hamper diver-
gence time estimation. Aris-Brosou and Yang [2] showed that the value of a
parameter related to the intensity of taxon sampling in their prior distribution
for divergence times had a substantial influence on the posterior distribution.
Both the prior mean and prior variance of a parameter can affect the poste-
rior distribution. In the absence of strong biological justification for having
divergence-time prior distributions with small variances, we believe a large
prior variance is preferable. It would be interesting to investigate the rela-
tionship between the prior variance for divergence times and the value of the
taxon-sampling parameter of Aris-Brosou and Yang [2].

To incorporate fossil and other evidence about divergence dates that is ex-
ternal to the sequence data, we follow Sanderson [33] by adopting constraints
on node times. We find by simulation that evolutionary dating is greatly aided
if at least one interior node time is bounded by a constraint that forces it to
exceed some age and if at least one node time is bounded by a constraint that
forces it to be less than some age (data not shown). The credibility intervals
on node times in a tree should become narrower as the times become more
severely constrained. The improvements in divergence time estimation that
stem from incorporation of constraints are so large as to suggest to us that
research effort invested in gathering and interpreting fossil data will often be
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more productive for evolutionary dating than is effort invested in collecting
additional sequence data.

We denote the constraints on node times by C. The prior distribution for
divergence times has density p(T ) and is often much different from the dis-
tribution conditional upon the constraints, which has density p(T |C). Even
when the unconditional divergence time distribution can be analytically stud-
ied, formulas for means and variances of node times may be complicated to
express for the distribution with density p(T |C). For example, the prior dis-
tribution for the time of the root node might be a gamma distribution with
mean 80 million years and standard deviation 10 million years. If a constraint
that some interior node time must exceed 100 million years is then added, the
root node time will also have to exceed 100 million years and cannot continue
to have a prior mean of 80 million years.

Rather than deriving explicit formulas for the effects of constraints on the
means and variances of our generalized Dirichlet prior distributions, we usually
summarize the distribution with density p(T |C) in a less elegant manner.
Specifically, we randomly sample times T from the distribution with density
p(T |C). If the sample yields a biologically implausible distribution of node
times, we modify the mean and variance of the distribution with density p(T )
until the distribution with density p(T |C) more adequately reflects our beliefs.
Only after finding a suitable distribution with density p(T |C) will we analyze
the sequence data X [20].

We employ the Metropolis-Hastings algorithm [25, 14] to approximate
p(T, R, ν|X,C), the distribution of the times T , rates R, and rate change
parameter ν conditional upon the sequence data X and the node time con-
straints C. We can do this because p(T, R, ν|X,C) can be written as a ratio
with a denominator that is not a function of the parameters T , R, and ν and
with a numerator that is a product of terms that we can calculate,

p(T, R, ν|X,C) =
p(X,T,R, ν|C)

p(X|C)

=
p(X|T, R, ν, C)p(T, R, ν|C)

p(X|C)

=
p(X|T, R, ν, C)p(R|T, ν, C)p(T |ν, C)p(ν|C)

p(X|C)
.

The structure of our model permits further simplification:

p(T, R, ν|X,C) =
p(X|T, R)p(R|T, ν)p(T |C)p(ν)

p(X|C)

=
p(X|B)p(R|T, ν)p(T |C)p(ν)

p(X|C)
.
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In the numerator of the final expression, p(R|T, ν) is defined by our model for
rate evolution and p(ν) is the prior distribution for the rate change parameter.
The density p(T |C) is identical to the density p(T ) up to a proportionality con-
stant to. The proportionality constant adjusts for the fact that many possible
node times T are inconsistent with the constraints C. Fortunately, this pro-
portionality constant need not be calculated to apply the Metropolis-Hastings
algorithm.

The most problematic term in the numerator of the final expression is
the likelihood p(X|B). For widely used models of sequence evolution that
have independent changes among positions, p(X|B) can be calculated via the
pruning algorithm [9]. Unfortunately, the pruning algorithm is computation-
ally demanding, and the Metropolis-Hastings procedure can require evalua-
tions of p(X|B) for many different sets of branch lengths B. As computing
speeds inevitably improve, the requirement to repeatedly evaluate the like-
lihood p(X|B) will become less onerous. In fact, the pruning algorithm has
been applied to Bayesian data with and without a clock in studies done by
Aris-Brosou and Yang [2, 3]. However, full evaluation of p(X|B) can still be
so onerous as to make statistical inference with some data sets impractical.

Because multivariate normal densities are quick to calculate, we have ap-
proximated p(X|B) up to a constant of proportionality with a multivari-
ate normal distribution centered about the maximum likelihood estimates
of branch lengths B̂ [45]. The covariance matrix of this multivariate nor-
mal distribution is estimated from the curvature of the log-likelihood surface
(i.e., the inverse of the information matrix—[40], pp. 675–676). A defect of
this multivariate normal approximation is that it is likely to be inaccurate
when maximum likelihood branch lengths are zero or are very short. We have
addressed this inaccuracy with ad hoc procedures, but Korber et al. [21] im-
proved upon the approximation by using the gradient of the log-likelihood
surface for branch lengths with maximum likelihood estimates of zero. The
Poisson approximation of p(X|B) by Sanderson [33, 34] may be superior to the
multivariate normal when branch lengths are short. In contrast, when branch
lengths are long, the multivariate normal may be a better approximation than
the Poisson distribution. One unexplored option would be to construct a hy-
brid approximation that uses the Poisson distribution for some short branch
lengths and the multivariate normal distribution for the other branch lengths.

8.5 Discussion

8.5.1 Uncertainties in the Estimated Divergence Times

Model choice is not the only consideration when inferring divergence times
from molecular sequence data. Here, we discuss several other potential sources
of inaccuracy [47]. The effects of some of these sources are straightforward to
quantify, while the effects of others are more difficult to assess.
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With only occasional exceptions, the process of evolution is not amenable
to direct observation. Therefore, the changes that have transformed DNA
sequences over time can only be inferred. This inference can be relatively
accurate when the sequences being analyzed are closely related. When the se-
quences are fairly diverged, the changes may be so numerous as to have altered
individual positions multiple times. In this situation, the estimated number of
changes that occurred on a branch could be substantially different from the ac-
tual number. Some implementations of divergence-dating techniques involve
estimating the number of changes on a branch but then treating the esti-
mates as if they were actual observations [22, 33, 4, 34]. One concern might
be whether these implementations are prone to underestimating the uncer-
tainty in divergence dates because they treat estimated numbers of changes
as if they were actual numbers of changes. Fortunately, this source of un-
certainty is not an important practical problem because it can be reflected
with a nonparametric bootstrap approach that involves sampling sites with
replacement.

Given only a trajectory of rates over time, the expected number of changes
can be determined, but the actual number is a random variable. This ran-
domness increases the uncertainty of divergence dating. Provided the model
is correct, this increased uncertainty is properly reflected with dating tech-
niques that rely upon a probabilistic model of sequence change.

Stochasticity in Rates of Evolution Over Time

One source of overdispersion is dependent change among sequence positions,
but overdispersion can even arise with independently evolving positions. Ear-
lier, we gave an example where two sister branches existed for the same amount
of time but experienced different rate trajectories that led to differing branch
lengths b and b∗. With independently evolving sequence positions, the actual
number of changes occurring on one branch would be exactly or very nearly a
realization from a Poisson distribution with mean b, whereas the actual num-
ber of changes occurring on the other branch would be exactly or very nearly
a sample from a Poisson distribution with mean b∗.

However, rates of evolution can themselves be considered random variables,
and expectations over possible rate trajectories can be taken. Because branch
lengths vary among rate trajectories, the evolutionary process is overdispersed
when there is stochasticity of rate trajectories. Therefore, the stochasticity of
evolutionary rates is yet another factor that can increase the uncertainty of
node timing on a phylogeny. This explains why credibility intervals for node
times are wider when a clock is not assumed than when it is [20].

Fossil Uncertainty

Conventionally, fossil information has been incorporated into molecular clock
analyses in the form of calibration points. Adoption of a calibration point
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implies that fossil evidence can precisely pinpoint the time of an internal node.
Unfortunately, fossil data are not usually so directly informative. Geological
dating of fossils has associated uncertainty. Moreover, the probability is almost
zero that a particular fossil is a remnant of the exact organism that harbored
the ancestral gene corresponding to a specific node on a phylogeny.

Rather than specify calibration points, Sanderson [33] translated fossil ev-
idence into constraints on node times. This treatment has subsequently been
adopted by others [20, 4]. Typically, it is more straightforward to determine
from fossils that a particular node must exceed some age than it is to deter-
mine that a node must be less than some age. Although an improvement over
calibration points, constraints on node ages are still a primitive summary of
fossil data. More sophisticated treatments of fossil evidence have been pro-
posed [16, 43] and could be combined with molecular information in future
divergence time analyses.

Topological Uncertainty

By treating the topology as known, methods for divergence time estimation
that require a prespecified topology are prone to underestimating uncertain-
ties in divergence times. In practice, we believe this topological source of
uncertainty in divergence times should often be small because the parts of
a topology that are the most prone to error are likely to involve branches
with short time duration [50]. Cases where topological error is most relevant
to divergence time estimation may be at two extremes. One extreme is so
much evolution that some branches are saturated for change. With saturated
branches, topological errors may involve branches with long length, and the
wrong topology may substantially impact divergence time estimates. At the
other extreme, some data sets may consist almost exclusively of very closely
related sequences. With these data sets, the topology may be difficult to de-
termine, and each of the few nucleotide substitutions that occur can have a
relatively significant impact on divergence dating.

8.5.2 Multigene Analyses

Variances of branch length estimates that are based upon a single gene may
be substantial. When these variances are large, accurate determination of
divergence dates becomes unlikely. One way to reduce the variance of branch-
length estimates is to collect and then concatenate multiple gene sequences
from each taxon of interest. The concatenated data can then be analyzed as
though they represented a single gene [39].

There is also a less general potential benefit of concatenation than variance
reduction. By virtue of its bigger size, a concatenated multigene data set
should yield more evolutionary changes per sequence than would a data set of
only a single gene. The multivariate normal approximation of the likelihood
surface is apt to be particularly poor when branches are represented by zero or
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no more than a few changes per sequence. This means that shortcomings of the
multivariate normal approximation may be less problematic for concatenated
data sets than for data sets with only a single gene.

Advantages of concatenation depend on the extent of correlation of rate
change over time between genes. Concatenation can reduce variance in diver-
gence time estimates that is generated by branch-length uncertainty, but it
does not reduce the variance in divergence time estimates that stems from the
stochasticity of evolutionary rates. If rate change is mainly gene-specific rather
than lineage-specific, it may be preferable to allow each gene in a multigene
data set to have its own rate trajectory but to assume that all genes share
a common set of divergence times [44, 49]. For determining node times, the
benefit of allowing rate trajectories to differ among genes is potentially large.
However, the process of molecular evolution is poorly characterized, and the
relative contributions of gene-specific versus lineage-specific factors toward
rate variation over time are unclear. To some extent, the relative contributions
of these factors can be assessed by studying the posterior distribution of rates
and times when the prior distribution has genes change rates independently
of one another [44]. Still, it is clear that concatenation would be preferred
if all rate variation over time were exclusively lineage-specific. For multigene
analyses with independent rate trajectories among genes, poorly chosen prior
distributions for rates and rate change can have a substantial and misleading
impact on posterior distributions for rates and times [44]. Future models of
rate change could incorporate both lineage-specific and gene-specific compo-
nents.

The assumption that all loci share a common set of divergence times should
be satisfactory when all taxa are rather distantly related. For closely related
taxa, variations in history among genes should not be ignored and the as-
sumption of a common set of divergence times among loci is unwarranted.
Therefore, we caution against making this assumption for closely related taxa.

8.5.3 Correlated Rate Change

Although the focus of this chapter is divergence times, better tools for infer-
ring node dates are likely to be better tools for characterizing rate variation
over time and could lead to much-needed improvements in the understand-
ing of molecular evolution. These tools could help to identify groups of genes
that have had strongly correlated patterns of rate change over time. Genes
with correlated patterns of rate evolution may have a shared involvement in
generating some phenotype that has been subjected to natural selection. Iden-
tification of genes with correlated patterns of rate change would thereby be a
potential means of functional annotation. A crude test for detecting correlated
rate change among genes has been proposed [44].
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8.5.4 Synonymous and Nonsynonymous Rate Change

Rate variations over time could have different patterns at different sites within
a gene or for different kinds of changes within a gene. For protein-coding genes,
it is natural to distinguish between the synonymous nucleotide substitutions
that do not alter the amino acid sequences of a protein and the nonsynony-
mous nucleotide substitutions that do change the protein sequence. Varia-
tions in synonymous substitution rates over time may be largely explained
by changes in generation time or mutation rate whereas variation in nonsyn-
onymous rates could also be attributable to changes in natural selection or
population size. By comparing patterns of synonymous and nonsynonymous
rate variation over time, the forces affecting sequence change can be better
understood.

With conventional approaches, only amounts of synonymous and nonsyn-
onymous change and their ratio are examined. By using codon-based mod-
els where both synonymous and nonsynonymous rates can change over time,
Bayesian techniques for studying protein-coding gene evolution permit the
estimation of chronological rates of both synonymous and nonsynonymous
change [36]. In addition to providing improved tools for studying the process
of protein-coding gene evolution, a codon-based Bayesian approach potentially
leads to improved estimates of divergence times.

8.6 Conclusion

For more than thirty years following the ground-breaking molecular clock
work by Zuckerkandl and Pauling [52, 53], divergence time estimation from
molecular sequence data was dominated by the constant chronological rate
assumption. A recent burst of activity has led to improved techniques for
separating rates of molecular evolution from divergence times. Just as the
interest in divergence time estimation seems to have grown, we expect that the
ability of newly introduced methods to better determine chronological rates of
sequence change will soon become better appreciated by those who study the
process of molecular evolution. We anticipate that methods for characterizing
evolutionary rates and times will continue to advance at a rapid rate.
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9.1 Introduction

Proteins play a vital role in almost every process of life. There are over
2100 known protein families; many are crucially involved in biochemical
metabolism, cellular signaling and transport, reaction catalysis, cytoskeletal
structure, immune recognition, and sensory input. Because single mutations in
the amino acid sequences can have a drastic effect on the protein’s function–
and potentially on the fitness of the individual–proteins can be considered
the primary unit of phenotypic expression. The complex relationship among
protein chemistry, structure, function, and evolution is therefore a significant
piece of the evolutionary puzzle, and models of protein evolution are used to
test hypotheses about these relationships.

There are several applications where protein evolutionary models have had
particular success. For example:

1. detecting and aligning remote homologs,
2. measuring divergence times between sequences and species,
3. inferring the evolutionary history of related proteins (the phylogenetic

tree), and
4. determining the physicochemical factors that have been important to the

function and evolution of a protein family.

This chapter focuses on models that can be used for the last two applications,
specifically those that treat evolution as a Markov chain with transitions be-
tween amino acid states. When combined with the statistical toolbox of likeli-
hood methods (Chapter 2), Markov models have proven to be a powerful tool
for phylogenetic inference and hypothesis testing. Rather than attempting to
provide an exhaustive description of all available models, this chapter will
highlight a few that illustrate the important distinguishing features of protein
sequence evolution.
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9.2 Basic Features of Protein Sequences

The factors that are important to the evolution of a protein can be complex
and subtle, and the study of protein evolution is a very active field. A detailed
discussion of protein structure and evolution is beyond the scope of this chap-
ter (see, e.g., references [10, 60]), but a few of the most relevant features from
an evolutionary perspective follow.

• Most proteins function natively with the amino acid chain folded
into a stable three-dimensional structure. This structure is called the
tertiary structure and is thought to be determined primarily by the amino
acid chain’s interaction with a solvent and with itself (a proposition known
as the Thermodynamic Hypothesis [4]). While the protein-folding pathway
is still not well-understood for most sequences, some general principles of
protein folding are known. For example, in aqueous solution, a combina-
tion of entropic and enthalpic factors combine to cause hydrophobic (oily)
amino acids to fold into the interior of a protein, exposing charged and po-
lar residues to solvent. These factors also give rise to stable substructures
that occur ubiquitously in protein families (called secondary structure),
such as alpha helices and beta strands. One consequence of this folded
protein structure is that each residue in a protein sequence is exposed to a
different local environment, potentially resulting in different evolutionary
constraints at each site.

• In general, protein structure is more conserved during evolution
than protein sequence. In the SCOP database of protein structure clas-
sification [49], there are over 2100 protein structural families of homologous
sequences, while there are nearly 170,000 amino acid sequences in Pfam [8],
a protein families database. A good rule of thumb is that two sequences
with more than 30% sequence identity are likely to be homologous and
fold into the same tertiary structure or domain, although homology can
sometimes be inferred at a lower identity. The conservation of function
is less clear-cut; sometimes proteins can perform the same function with
less than 15% identity, while in other cases the function can be completely
altered by the mutation of a few key amino acids.

• Protein sequences are generally subject to greater selective con-
straint than noncoding DNA sequences. For a protein to function
properly in an organism, it must be transcribed and transported, fold,
interact with its binding partners or substrate, perform its function effi-
ciently (catalysis, recognition, transport, etc.), and be properly disposed
of when no longer needed. If a mutation in the amino acid sequence affects
any of these steps, it can potentially affect the function of the protein and
therefore the fitness of the organism. The combination of these factors con-
strains the evolution of protein sequences much more than the evolution
of most noncoding DNA sequences, an effect that can be observed as a low
nonsynonymous/synonymous substitution rate ratio. This allows protein
sequences to be used to infer homology among more distant evolutionary
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Fig. 9.1. Some commonly used amino acid properties. For other properties, a variety
of empirically determined scales have been collected in the AAindex database [39].

relatives, but it also complicates phylogenetic inference because the effect
of these constraints can be difficult to predict.

• Amino acids each have unique properties that are utilized in
different contexts within the protein. Figure 9.1 shows several dif-
ferent sets of physicochemical properties; the importance of each property
depends upon the local environment of the amino acid. For example, tyro-
sine is a bulky, aromatic amino acid that is often found in the same context
as other large aromatics such as tryptophan and phenylalanine. But ty-
rosine also has a polar hydroxyl group like serine and threonine, and like
those amino acids it can be involved in hydrogen-bonding interactions as
well. In modeling protein evolution, it is therefore important to take into
account not only the properties of the amino acids but also the context in
which they are used.

9.3 The REV Model

A Markov model of protein evolution must at a minimum provide a substi-
tution probability matrix P(t), where Pij(t) is the probability that an amino
acid substitution i → j will occur in evolutionary time t. In the likelihood
function (see Chapter 2), a different P-matrix is needed for each branch of
the tree. Rather than estimating each matrix separately, typically a single
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instantaneous transition rate matrix1 Q is used for the entire tree, and the
different P-matrices can be calculated using the standard equation for a con-
tinuous Markov process:

Pij(t) =
[
eQt
]
ij

. (9.1)

The challenge for any model of protein evolution is to determine the best
estimate of the transition rates in the Q-matrix given the available data. In
general these rates are not equal; some amino acid substitutions are more
likely than others, and this is directly related to the physical and chemical
characteristics of the amino acids in protein structures.

9.3.1 Counting Methods for Model Estimation

Early models of protein evolution were limited by the computational issues
associated with likelihood inference on phylogenetic trees. To overcome these
limitations, empirical methods were devised to approximate the transition ma-
trix by counting the number of inferred substitutions. The first widely used
model of protein evolution was developed by Margaret Dayhoff and co-workers
in the Atlas of Protein Sequence and Structure [17]. Using sets of closely re-
lated protein sequences (more than 85% similar), they used an assumption of
parsimony to infer the ancestral amino acids at each site in the protein. Once
the amino acid at each node has been determined, the internodal substitu-
tions can be counted, resulting in a 20 × 20 symmetric matrix of amino acid
replacement counts (the A-matrix).

These counts depend on the exposure of each amino acid during the evolu-
tionary process; a rare but mutable amino acid can be indistinguishable from
a common amino acid that rarely changes. To discriminate between these pos-
sibilities, Dayhoff defined the mutability of an amino acid mi as the number
of inferred changes for each amino acid divided by its total number of nodal
appearances on the tree Ni:

mi =

∑
k �=i Aik

Ni
. (9.2)

The mutabilities and the count matrix were then multiplied to calculate M,
the “mutation probability matrix”2,

Mij = λmi
Aij∑

k �=i Aik
for j �= i , (9.3)

1Because “transition” has a formal meaning when dealing with sequence evo-
lution, the Markov transition rate matrix Q is sometimes called a mutation rate
matrix or substitution rate matrix in the biological literature.

2For consistency with standard Markov model notation, the i, j indices have been
reversed from Dayhoff’s original notation.
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where λ is a scaling factor that determines the average probability of a sub-
stitution in a specified unit of evolutionary time. Because this is a probability
matrix, each row must sum to 1, and therefore the diagonals are

Mii = 1 − λmi . (9.4)

When λ is set so that the mean probability of substitution is 0.01, on average
one substitution will be observed per 100 amino acid sites. This is called 1
PAM, or “point accepted mutation,” a commonly used measure of distance
between protein sequences.

The Dayhoff model was originally developed to aid in alignment of distant
homologs and to help determine evolutionary distances between sequences.
To convert it into a continuous-time Markov chain model that can be used
for statistical inference and likelihood calculations [22, 41, 1], the matrix is
commonly converted into a slightly different form, the symmetric “relative
rate matrix” R:

Rij =
Aij

NiNj
. (9.5)

Typically this is estimated empirically from the sequence alignment since in
a stationary process with sufficient data πobs

j → πj . The instantaneous tran-
sition matrix Q is then defined as

Qij = δRijπj/s for j �= i (9.6)

and
Qii = −

∑
k �=i

Qik , (9.7)

where πj is the stationary frequency of amino acid j, δ is the number of
expected substitutions per site in a unit of evolutionary time (typically 0.01),
and s is a normalization constant,

s =
∑

i,j,i �=j

πiπjRij . (9.8)

This R-matrix parameterization is generally called the REV model.3 As
the most general reversible amino acid model, it is analogous in form to the
GTR model for nucleotide substitution. One important difference is that in
contrast with the GTR nucleotide model, the REV matrix values are fixed
and not estimated for each new dataset of interest. Similar empirical counting
methods have been used to update the REV model parameters as more data
have become available. Dayhoff’s matrix represents data from 1572 counted
substitutions; in 1992, Jones et al. updated the matrix parameters using 59,190

3The values of the Dayhoff R-matrix are different from the Dayhoff log-odds
PAM matrix used for sequence alignment (although they use the same underlying
A count matrix), so care should be taken not to confuse the two.
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substitutions from 16,130 protein sequences in what is now commonly called
the JTT model [37]. These sequences were generally globular proteins in an
aqueous solvent; a model has also been tallied for transmembrane proteins and
is called the tmREV matrix [38]. Each of these REV models–Dayhoff, JTT,
and tmREV–differs only in the particular (fixed) values of their R-matrices.

Counting methods are relatively rapid, but they can only utilize the infor-
mation from closely related sequence comparisons. To test the effects of this
assumption, Benner, Cohen, and Gonnet [9] computed a set of matrices from
proteins related by different PAM distances. When comparing these with ex-
trapolated Dayhoff matrices, they found that the Dayhoff parameter values
reflected the structure of the genetic code, while over long timescales the more
accurate matrix values were better correlated with physicochemical properties
of the amino acids. Even with methods that allow more divergent sequences
to be used, the parsimony assumption inherent in the counting methods can
cause bias in parameter estimation [16].

9.3.2 Likelihood Methods for Model Estimation

Maximum likelihood (ML) methods are a natural choice for optimizing mod-
els over divergent datasets [22, 76], as they can account for the probability
of multiple substitutions over long branches and can be tested using a rig-
orous statistical framework. The likelihood equation for a phylogenetic tree
utilizes a continuous-time Markov chain, which determines the probability of
substitution over the evolutionary time t of each branch by exponentiating
the Q-matrix as shown in equation (9.1). This equation can be approximated
as

P(t) = eQt ≈ 1 + Qt + (Qt)2/2 + ... . (9.9)

The higher-order terms in this expansion account for the nonzero probability
of multiple substitutions over long branches. As t increases and/or the off-
diagonal terms in Q increase, the higher-order terms become more significant
and the assumptions of parsimony no longer hold true.

The first use of ML estimation (MLE) methods to optimize REV model pa-
rameters was by Adachi and Hasegawa [1], who were interested in modeling the
evolution of mitochondrial proteins. The Dayhoff and JTT matrices were de-
veloped as an average over many protein families from the nuclear genome, but
mitochondrial proteins evolve under different selective constraints. Translated
using a different genetic code with a different nucleotide compositional bias,
most mitochondrial proteins also function in a lipid membrane rather than
in aqueous solution. To account for these differences, the mtREV model [1]
was developed on a tree of mitochondrial proteins from a diverse set of ver-
tebrate species. Instead of using a counting method to infer the values of the
R-matrix, each of the Rij values was treated as a free parameter of the model
and estimated using maximum likelihood. The MLE REV model was there-
fore estimated with 210 parameters: the 190 values of the symmetric R-matrix
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and the 20 amino acid frequencies. (The model has 208 degrees of freedom,
because the R-matrix values are relative and the amino acid frequencies must
sum to 1.) The resulting mtREV matrix had a significantly higher likelihood
on mitochondrial proteins than the JTT matrix, and some of the known differ-
ences between mitochondrial and nuclear proteins are evident from mtREV’s
parameter values. For example, the Arg↔Lys substitution rate is much lower
in mtREV than in JTT, a difference that is attributed to the fact that it re-
quires two nucleotide mutations in the mitochondrial genetic code while only
requiring one in the universal code. Other MLE REV models developed for
specific datasets include the cpREV model for chloroplast proteins [2] and
the rtREV model for retroviral polymerase proteins [19]. As with the Dayhoff
model, all of these ML-estimated REV models have their R-matrix values
fixed for further analyses; they are not adjusted for each new dataset.

For a general model applicable to many different protein families, the MLE
equivalent of the Dayhoff and JTT matrices is the WAG matrix [74]. To create
this matrix, 3905 protein sequences were divided into 182 protein families. A
neighbor-joining tree was inferred for each family, and then the combined
likelihood was maximized by adjusting the values of the R-matrix. Using the
likelihood ratio test (LRT), the increase in likelihood over the former models
was found to be statistically significant for all families in the analyzed dataset.
In fact, the increase in likelihood from the JTT matrix to the WAG matrix
is even greater than the increase from Dayhoff to JTT, despite the fact that
WAG was optimized using fewer protein sequences than JTT, an indication
of the power of the ML estimation method. Because ML estimation can be
computationally expensive, approximate methods have been developed as a
compromise between accuracy and speed [54].

The selective constraints acting on the amino acid level are reflected in the
parameter values for these REV models. For example, in the universal genetic
code, Ala is fourfold degenerate–represented by the codons GC*–while Trp is
only represented by one codon (UGG). Therefore, there are six possible nu-
cleotide mutations away from Ala and nine mutations away from Trp. If there
were no selection on the amino acid level, one would predict from entropic
principles that Trp would show a greater propensity for substitution than
Ala since there are more “escape routes.” But according to the mutabilities
calculated for example by Jones et al. [37], tryptophan has the lowest muta-
bility, while alanine has a mutability four times larger, an effect due in part
to tryptophan’s unique chemical characteristics. In the mtREV model, Cys is
more mutable than it is in matrices optimized on proteins that function in an
intracellular environment [1], probably because Cys-Cys disulfide bonds are
not thought to be as important to membrane proteins as they are to aqueous
proteins. The importance of such factors can be tested by comparison with
the codon Poisson model [41], which disallows all single-step amino acid sub-
stitutions requiring more than one nucleotide mutation (Rij = 0), while all
other Rij values are set to 1. This simple model is almost always statistically
rejected in favor of models such as the Dayhoff model, an indication that sim-
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ple nucleotide models are inadequate for modeling protein sequences because
they do not account for the different properties of amino acid residues.

The simplicity and generality of the REV model are attractive, and its
similarity in form to nucleotide models has made its implementation in phy-
logenetic software a fairly straightforward task. But this simplicity can be a
limitation when attempting to understand the complex determinants of evolu-
tion at the protein level. Alternative models have concentrated on correcting
some of these limitations, focusing on four features of amino acid sequence
evolution: site heterogeneity, time heterogeneity, site dependence, and the
physicochemical properties of amino acids. The rest of this chapter will be
devoted to a discussion of these features and the models that address them.

9.4 Modeling Heterogeneity Across Sites

The parameter values in the REV models are typically an average over many
amino acid sites from many different proteins. The implicit assumption is that
every site in the protein is subject to the same evolutionary constraints, or
at least that the constraints are evenly distributed about some mean value.
But most proteins fold into an intricate three-dimensional structure, creating a
different chemical environment for each amino acid residue. This heterogeneity
in environments leads to heterogeneity in evolutionary constraints, which can
have a dramatic effect on protein evolution and inference [56] (see Figure 9.2).
The concept of a single transition matrix that can describe the evolutionary
process at every site becomes difficult to justify.

9.4.1 Rate Heterogeneity Across Sites (RHAS)

One useful approximation for modeling site heterogeneity is the use of a dis-
tribution of evolutionary rates, or rate heterogeneity across sites (RHAS).
According to the Neutral Theory [40], functionally important sites are un-
der more stringent evolutionary constraints and will therefore exhibit a lower
overall substitution rate. One of the simplest methods for adding rate hetero-
geneity to a phylogenetic model is to use a Gamma distribution of rates [77].
This is done exactly as with the nucleotide models (see Chapter 1), where
each site is assigned an equal prior probability φk of evolving at rate λk. The
possible values for λk are drawn from a discretized Gamma distribution with
a specified number of categories K. The likelihood function in each column
in the alignment Dn is determined by summing the conditional likelihood for
each possible rate:

L (Dn|θ′) ≡
K∑

k=1

f (Dn|λk, θ′) φk . (9.10)

In this case, θ′ represents the other parameters in the model; for example, the
R-matrix and amino acid frequencies. The shape of the Gamma distribution
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Fig. 9.2. An empirical Bayesian mapping of rates onto sites in the trypsin family.
The darker the residue, the slower the rate of evolution at that site. Residues on the
surface of the protein (left) tend to be less conserved than those seen in a cutaway
view of the interior (right). The posteriors were calculated using CONSURF [63]
and mapped onto the structure using MOLMOL [43].

can be adjusted with a single parameter, while the relative rates of substitution
at any particular site are determined by a REV model. The result is a set of
K rate categories, each related by a common REV model but multiplied by
a different rate constant to determine the P-matrices:

P k
ij(t) =

[
eQλkt

]
ij

. (9.11)

The improvement in likelihood with a rate distribution is almost always
significant relative to a site-homogeneous model even with just a few rate
categories, making the Gamma distribution a commonly used approximation.
This difference is not just a statistical nuance; failure to account for rate
heterogeneity can also cause errors when inferring phylogenies and divergence
times [13]. For this reason, the inclusion of some form of site heterogeneity–
at least a REV+Γ model–is almost always recommended for phylogenetic
analysis.

9.4.2 Pattern Heterogeneity Across Sites (PHAS)

The fact that rate heterogeneity is ubiquitous among protein sequences is ev-
idence of the diversity of selective constraints operating on the amino acid
level. Still, a rate distribution cannot account for variability in the pattern of
evolutionary constraints. It allows a site to evolve more slowly or quickly, but
a simple rate distribution does not, for example, allow a Gly→Ala substitu-
tion rate to be higher than a Gly→Pro substitution at one site but lower at
another. Due to the diversity of amino acid environments in a folded protein,
such differences can be pronounced. For example, glycine and alanine are the
smallest amino acids, while proline (although still small) is bulkier. In the
folded core of the protein, where steric constraints might preclude a bulky
amino acid, the Gly→Pro substitution may be less favorable than the more
conservative Gly→Ala substitution. But glycine and proline are also known



268 M. W. Dimmic

to induce kinks in the protein chain, and these kinks are sometimes neces-
sary for terminating alpha helices and creating turns. In these locations, a
Gly→Pro substitution becomes the “conservative” one, accepted more often
than a Gly→Ala substitution. This can only be modeled by a change in the
relative rates of substitutions, not just the overall rate.

To account for this type of heterogeneity (called here pattern heterogeneity
across sites, or PHAS), matrices have been estimated for specific structural
classes of sites [59, 73, 44, 53]. For example, Koshi and Goldstein [44] divided
sites into four different structural categories–helix (H), turn (T), strand/sheet
(E), and coil (C)–and subdivided those into two accessibility categories: buried
(b) and exposed (e). Then ML estimation was used along with an evolutionary
tree to estimate structure-specific substitution matrices for each category.

The Koshi-Goldstein structure-based matrices were log-odds matrices de-
signed for sequence alignment and structural prediction rather than Markov
substitution matrices. To optimize matrices for phylogenetic use, Goldman
and co-workers used an across-sites hidden Markov model (HMM) called the
PASSML model [29]. PASSML begins with the assumption that any sequence
site is in one of the eight structural categories mentioned above. These cate-
gories are further divided into a total of 38 possible classes by position along
the sequence. For example, there are six each of the possible buried and ex-
posed sheet classes [Ebi, Eei (i ∈ {1, 2, ..., 6})], ten each of the buried and
exposed helix classes, two buried and two exposed turn classes, and one buried
and one exposed coil class. This seemingly complicated division has an empir-
ical basis: if each sequence site were completely independent (with no i, i + 1
dependence) and transitions between structural categories were random, the
length of each structure in a protein would be geometrically distributed with
a mean of 1. This is physically unrealistic; helices and sheets by definition in-
volve more than one amino acid. By adding in site dependence with an HMM,
the PASSML model’s mean structure length better resembles the empirically
observed distribution.

A large training database of over 200 globular protein families with known
structure was used to estimate PASSML’s parameters, with the R-matrix
for each site category estimated using a technique similar to the Dayhoff
counting method. The result was a set of eight Q-matrices and their associated
equilibrium amino acid frequencies (one set for each combination of secondary
structure type and solvent accessibility):

θpassml = {Qk,πk} for k ∈ {1, 2, ..., 8} . (9.12)

To model site dependence, the PASSML model also includes a set of ρkl

parameters, the transition probabilities between the hidden classes that were
estimated by empirical fit to the data. Once the model was estimated on the
training set, all parameter values were then fixed for further analysis.

To apply PASSML to nontraining datasets, it is not necessary to know
the protein’s structure. Because this is an HMM, the true state of a site is
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Fig. 9.3. An example of some allowed transitions within categories (solid lines) and
between categories (dashed lines) in the PASSML model. The structural categories
shown are helix, sheet, and turn (H, E, and T); the accessibility categories are buried
and exposed (b and e). Not all transitions or states are shown. For more details, see
Goldman et al. [29]

considered to be “hidden”, and the likelihood is a sum over the conditional
likelihood of each site class at each site,

L(Sn|T ) =
∑
kn

f(Sn, kn|T ) , (9.13)

where

f(Sn, kn|T ) =
∑
kn−1

f(Dn|kn, T )P(Sn−1, kn−1|T )ρkn−1kn . (9.14)

Here Dn denotes the nth column in the N -column alignment, Sn denotes the
set of columns {Dx}, x ∈ {1, 2, ..., n}, kn is the structural category for site
n, ρkn−1kn is the transition probability from a category at column n − 1 to
a category at column n, and T is the tree topology. The difference between
this equation and an alignment-based HMM approach (see Chapter 14) is in
the likelihood function; in this case f(Dn|kn, T ) is the phylogenetic likelihood
function for site n.

Using likelihood ratio tests on several different protein families, the authors
found that simple models that did not include structural categories were al-
ways rejected in favor of those that did. Even HMMs with just eight site
classes with no site-to-site dependence (all ρkl equal) yielded a much higher
likelihood. (Each site class’s mean rate is also variable, so rate heterogeneity
is an implicit feature of the model.) The inclusion of additional solvent acces-
sibility categories was also found to be significant, but the dependence among
adjacent sites was a less important feature of the model. Using the same tech-
nique but different category designations, the PASSML-TM model [47] and



270 M. W. Dimmic

MT126 model [48] have been optimized for transmembrane and mitochondrial
proteins, respectively.

An interesting twist on structure-based evolutionary modeling uses simu-
lated evolution on a known protein structure to create substitution matrices.
The IS-SCPE method [25] (for Independent Sites–Structurally Constrained
Protein Evolution) requires a representative structure and sequence for the
protein family of interest. The sequence is repeatedly mutated, and the mean
field energies at each site in the structure are computed using prespecified
energy potentials. The structural perturbation of the new sequence from the
reference structure is then calculated, and mutations causing a perturbation
smaller than a specified cutoff are accepted. Finally, the accepted mutations
are tallied in a set of replacement count matrices that are categorized by
structural class (for example, position in an alpha helix).

Matrices created using this method were found to have a significantly
higher likelihood than the JTT+Γ model, another indication that rate het-
erogeneity alone can sometimes be insufficient for modeling and that pattern
heterogeneity also plays a large role. The IS-SCPE method is promising for
proteins of known structure, although its assumptions that energetic stability
and local structural integrity are important evolutionary constraints should
be kept in mind when this method is applied.

9.5 Mechanistic Models

The models discussed in Section 9.4 emphasize structural features that are
often easily observable: alpha helices, beta sheets, solvent accessibility, struc-
tural stability, etc. The ubiquity and strong conservation of such features
favor this assumption, but protein evolution can also be affected by subtleties
that are difficult to ascertain a priori. Transient recognition binding patches,
allosteric regulatory networks, and dynamic hinge regions are just a few ex-
amples of evolutionary constraints that may be crucial but not obvious, even
when the protein structure is available. In fact, there is evidence indicating
that many functional regions of proteins are disordered and do not exist in a
single stable structural state [20].

When little is known about the structural determinants of evolution in a
protein family, ideally one would prefer to estimate the model’s parameters
for each dataset of interest. This is typical when applying nucleotide models
such as the Jukes-Cantor or GTR models, where the ML estimates of the
parameters are jointly estimated while searching for the ML tree topology.
Contrast this with all the amino acid models mentioned thus far, which have
been trained on a set of reference sequences or a reference structure and then
the parameters are fixed for further analysis. The reasons for this are both
theoretical and practical. The GTR model has only six parameters (ten if the
nucleotide frequencies are also estimated), while the full REV model has 190
parameters (or 210 with estimated frequencies). When using a PHAS model,
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this number is multiplied by the number of site classes. A model with eight site
classes, each represented by a REV matrix, can have over 1600 parameters!
Precise estimation with so many degrees of freedom requires an extremely
large dataset. Even when hundreds of sequences are used, the time required
for model estimation can be prohibitive, especially when simultaneously esti-
mating the tree topology and branch lengths.

One way to reduce the number of parameters is to use a mechanistic model.
The parameters of the models discussed previously can all be considered to be
somewhat empirical: substitutions are tallied in parameters that have more
statistical convenience than physical meaning. In reality, these relative rates
are an aggregate measure of the physicochemical characteristics of the amino
acids and their interactions with their local environment. In contrast, mecha-
nistic models explicitly utilize these physicochemical characteristics, facilitat-
ing the testing of hypotheses related to these properties. This reparameteriza-
tion reduces the degrees of freedom, allowing the use of a realistic number of
site classes while estimating mechanistic model parameters for each dataset of
interest. Mechanistic models are frequently used in combination with multiple
site classes; in these cases they are a type of PHAS model.

Several examples of mechanistic models can be summarized as physico-
chemical amino acid fitness models [45, 79]. In these types of models the
Q-matrix for each site class k is divided into a mutation rate λ and an amino
acid substitution function Ωk

ij :

Qk
ij = λΩk

ij(F
k
i , F k

j ) . (9.15)

F k
i and F k

j are amino acid fitnesses,4 parameters that are explicitly depen-
dent upon the physicochemical properties of the amino acids. For example, in
the model of Koshi and Goldstein [45] (called the FIT-PC model here), these
fitnesses are determined as quadratic functions of the amino acid’s hydropho-
bicity (h) and volume (v):

F k
i = ak

(
hi − hk

o

)2
+ bk

(
vi − vk

o

)2
. (9.16)

In this model, ak, bk, hk
o , and vk

o are all parameters of the model and esti-
mated from the data using maximum likelihood. The first two parameters (ak

and bk) determine the strength of the selective pressure from each chemical
characteristic, while hk

o and vk
o determine the optimal value of that charac-

teristic in the site class. The substitution rate for nonsynonymous changes in
the FIT-PC model is determined by a fitness function,

4These parameters have been called fitnesses as an analogy to fitness functions
on an energy landscape rather than as fitnesses in the genetic sense of the term.
Nevertheless, they could be made mathematically equivalent with the proper choice
of fitness function. Also, in a reckless abuse of notation, a superscript k will indicate
that the parameter is particular to that site class, not that k is a numerical exponent.
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Ωk
ij =

{
ωke(F k

j −F k
i ), if F k

j < F k
i ,

ωk, if F k
j ≥ F k

i .
(9.17)

The value of the parameter ωk is estimated using ML, and it can be regarded as
a general selective disadvantage for making any nonsynonymous change (or as
an adaptive advantage if ωk > 1). This type of fitness function is also known
as a Metropolis-Hastings function; its form is chosen for its mathematical
convenience, as it allows the straightforward derivation of the equilibrium
frequencies for each site class as a function of the fitnesses:

πk
i =

eF k
i∑

i′ eF k
i′

. (9.18)

Qualitatively, favorable mutations to “more fit” amino acid are all accepted
at the same rate, while unfavorable mutations are tolerated depending on the
difference between the amino acid properties. The larger the difference, the
lower the substitution probability.

There are several alternatives for calculating λ in equation (9.15). One
possibility is to set λ as an estimated parameter. This can only be done if ωk

is fixed, as they are indistinguishable on the amino acid level (one is actually
estimating {λω}k). Another possibility is to use a Gamma rate distribution
to subdivide each site class into r rate categories,

Qkr
ij = Ωk

ijλ
kr , (9.19)

where each λkr is determined from category r of a discretized Γ(α, ωkα) dis-
tribution that has a mean ωk (see Chapter 5).

A third possibility, suggested by Yang et al. [79], is to specify λ as a
weighted sum of the mutation rates on the codon level, independent of site
class k but dependent on the set of codons u ∈ i and v ∈ j coding for amino
acids i and j, respectively:

λij =
∑
u∈i

∑
v∈j

λuv

(
πu∑

u′∈i πu′

)
. (9.20)

The frequency of codon u, πu, can be estimated empirically from the data.
λuv can itself be set as a function of mechanistic parameters on the nucleotide
level such as the transition/transversion rate ratio κ:

λuv =

⎧⎨⎩0, if the two codons differ at more than one position,
πv, for transversion,
κπv, for transition.

(9.21)

Because these fitness models do not make prior assumptions about which
fitness characteristics best describe each specific site, they must deal with the
issue of how to assign the site classes. For example, a large amino acid may
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be appropriate for some sites in the protein (represented by high values of
vk

o and bk), while a small amino acid might be important at another site.
To avoid any prior assumptions about which sites are represented by which
selective constraints, hidden site classes are used. These are analogous to the
hidden rate classes used by the Gamma distribution and to the hidden Markov
classes of the PASSML model, albeit without site dependence. Rather than
explicitly assigning classes to sites, all sites instead have a prior probability
φk of being modeled by each site class k. The likelihood at each column in the
alignment Dn is the sum of the conditional probabilities weighted by these
prior distributions:

L (Dn|θ) ≡
∑

k

f(Dn|θk, k)φk . (9.22)

Typically the prior distribution are set equal for all classes and all sites (flat
priors), although they can be specified on a site-by-site basis if prior informa-
tion about each site is to be included in the model.

Under the simplifying assumption that λ = 1, the FIT-PC model has just
five parameters per site class (ak, bk, ho, vo, and ωk) compared with over
200 for a REV model. This allows the values of the parameters to be ML-
estimated for each dataset of interest rather than estimated on a training
set and then fixed as with the REV models. The FIT-PC model generally
yields higher likelihoods than site-homogeneous REV models once a moderate
number of site classes is specified (generally five or more) [45, 18]. The fact
that higher likelihoods can be achieved even with such a simplified model is
further evidence of the importance of site heterogeneity in protein modeling.

Other parameterizations of the fitnesses and fitness function have also been
explored [79, 78]. For example, in the DIST-PC model [79], the fitnesses can
more accurately be called distances, where the distance dij between amino
acids is (in their example) based on polarity (p) and volume (v) [52]:

dij =
√

(pi − pj)2/σ2
∆p + (vi − vj)2/σ2

∆v . (9.23)

Here σ2
∆p and σ2

∆v are the standard deviations of |pi − pj | and |vi − vj |, re-
spectively. The substitution rate is an exponential function of this distance:

Ωk
ij = ωke−(bkdij/dmax) . (9.24)

The parameter bk is a measure of the strength of selection upon the particular
physical properties of the amino acid; a larger value of bk indicates that more
radical amino acid changes are less likely to be accepted as substitutions. The
λ parameter can be specified as described above in the FIT-PC model. The
differences between the Ω functions of the two models reflect two distinct
philosophies about the manner in which evolution proceeds. The DIST-PC
function can be thought of as a neutral walk through the fitness landscape;
what matters most is not the direction of changes but whether or not they
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are conservative or radical. Given enough mutational steps, an amino acid
position could change from small to large with little penalty. As a result, the
equilibrium amino acid frequencies for the Ω function are all equal in the
DIST-PC model if reversibility is assumed. By contrast, the FIT-PC model
assumes that the protein site has an optimal set of physicochemical properties,
and the favorability of an amino acid change is measured relative to both the
former amino acid and this ideal value. Favorable mutations are all accepted
at the same rate, while unfavorable ones are tolerated depending on their
distance from the former amino acid’s properties. In reality, the sites in a
protein probably evolve in a mixture of these two regimes, and so a mixture
of site classes or fitness functions can be appropriate [68].

The FIT-PC and DIST-PC models relax assumptions about which pro-
tein structural types are important, but they still require the specification of
particular amino acid characteristics. Hydrophobicity, bulk, and polarity have
been shown to be three of the most dominant [52, 44, 70], but other charac-
teristics are sometimes crucial, such as the turn-inducing properties of glycine
and proline or the delocalized electrons of the aromatic amino acids. To avoid
any assumptions about which characteristics are important, a general fitness
model can be used [18]. FIT-GEN is nested with the FIT-PC model, instead
setting each Fi in equation (9.17) as a free parameter rather than as a function
of physicochemical properties. This yields 21 parameters per site class: the 20
amino acid fitnesses F k

i and the nonsynonymous rate ωk (there are 20 free
parameters because the fitnesses are relative). With adequate data, FIT-GEN
is better able to capture the nuances of evolution than FIT-PC at the cost
of some simplicity, while still using 188 fewer parameters per site class than
a REV model. FIT-GEN can be used in an iterative manner with FIT-PC;
general fitnesses can first be determined, and these can then be correlated
with physicochemical characteristics. The dominant characteristics can then
be utilized in a FIT-PC or DIST-PC model for later analysis on the same
protein family.

The FIT-GEN model still assumes a specific number of site classes; the
most general approach would be to assign one site class per location in the
protein. Bruno [11] used an EM algorithm to obtain site-specific amino acid
frequencies, with one frequency vector per site. The obstacle then becomes a
lack of data; at short evolutionary distances, the inferred substitutions at each
site may be just a fraction of the allowable substitutions, so a large, diverse
sequence set is required. Although the parameters from this method are not
directly applicable to phylogenetic analysis, they can provide a starting point
for further site classifications, such as by principle component analysis [45] or
as initial groupings in a FIT-GEN model.

Part of the power of these types of mechanistic hidden site class models
is that they lend themselves well to empirical Bayesian mapping [58]. In this
technique, the posterior probability of each site class k at each site n can
easily be calculated using the likelihood and the prior distributions:
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Pr(k|Dn, θ) =
f(Dn|θk, k)φk∑
k′ f(Dn|θk, k′)φk′

. (9.25)

These posteriors probabilities can then be mapped onto the sequence align-
ment or protein structure of interest to determine which sites are more likely
to be evolving under the different selective constraints [78, 5, 68, 69]. For ex-
ample, site class 1 could model a fitness function based on polarity, site class
2 on bulk, and so on. When the posterior probabilities are mapped onto the
sequence alignment, sites where bulk has been more important to evolution
than polarity will have a higher posterior probability for site class 2. When
mapped onto the protein structure, these posterior probabilities can reveal
important evolutionary features such as transmembrane regions and dimer-
ization interfaces [69]. Empirical Bayesian mapping is not limited to PHAS
models; it has also been applied to RHAS models to map rate heterogeneity
onto protein structures [63] (see Figure 9.2).

9.6 Modeling Heterogeneity over Time

The phylogenetic models discussed above assume that the rate and pattern
of evolution have remained constant over the entire evolutionary tree, an as-
sumption called homotachy [50]. This assumption can be violated when a
protein is adapting to a new function or structure; according to the Neutral
Theory, sites that are involved in the change in function will appear to evolve
at a different rate. By developing models that allow a change in rate over
time, these types of functional shifts can be detected.

The concept of an explicitly heterotachous model (or RHAT model, for
Rate Heterogeneity Across Time) was first outlined in a maximum parsimony
framework as the covarion model [23]. With this model, only a fraction of
the sites in a protein-coding gene are “on” and can accept mutations: the
concomitantly variable codons. All others are “off”, and no substitutions are
observed; these sites are assumed to be completely functionally constrained. A
site may switch from “on” to “off” (and vice versa) with a certain persistence
time, indicating that the site has acquired (or lost) functional significance.

More recently, covarion-like models for proteins have been cast into a like-
lihood framework, allowing the application of likelihood ratio tests for hypoth-
esis testing. In 1999, Gu developed a time-heterogeneous ML method and ap-
plied it to the detection of functional divergence between gene duplicates [34].
Gene duplication is thought to be a factory for evolutionary diversification;
one copy of the gene can continue to perform its native function, while the
other can be adapted for a distinct task [15]. This adaptation results in dif-
ferent rates of substitution for each of the two paralogous protein families, a
phenomenon dubbed type I divergence.

Consider the subfamilies in Figure 9.4, with two possible states: S0 and
S1. S0 is the null hypothesis that there are no altered functional constraints
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Fig. 9.4. In state S0, both subfamilies are scaled by the same overall rate λ. In state
S1, each family subtree may have a different overall rate. Adapted from Gu [35].

in either subfamily. In this state, the substitution rates for each subfamily are
completely correlated: λX = λY = λ. The other possibility, S1, is that the
function of either or both subfamilies has diverged since the common ancestor,
and therefore λX and λY are treated as independent. The other parameter
requiring estimation is θ12, the probability that the site is in state S1 (also
called the coefficient of type I divergence).

To calculate the likelihoods, it is assumed that the subtrees are statistically
independent, so that f(Xn|λX) and f(Yn|λY ) are the likelihoods at site n for
the unrooted subfamilies X and Y , respectively, conditional upon the rates
for each subfamily. Since it is a difference in rate that is important and not
the absolute rates, the values of λX and λY are not explicitly specified but
integrated out by using a Gamma rate distribution [77],

p(Xn) = E[f(Xn|λ)] =
∑
λ′

f(X|λ′)φ(λ′) , (9.26)

where φ(λ′) is the probability of each λ′ partition from the Gamma distribu-
tion. The joint probabilities conditional on being in either state S0 or S1 can
then be written as

f∗ (Xn, Yn|S0) =
∑
λ′

f(Xn|λ′)f(Yn|λ′)φ(λ′)

= E [f(Xn|λ)f(Yn|λ)] ,

f∗ (Xn, Yn|S1) = p(Xn)p(Yn)
= E [f(Xn|λX)] × E [f(Y |λY )] . (9.27)

Finally, the full joint probability for the two subtrees at this site is
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p∗(Xn, Yn) = (1 − θ12) f∗ (Xn, Yn|S0) + θ12f
∗ (Xn, Yn|S1) , (9.28)

where θ12 is a parameter called the coefficient of divergence. Over the whole
tree, the likelihood is

L(X,Y |data) =
∏
n

p∗(Xn, Yn) . (9.29)

The null hypothesis is that θ12 = 0, while the alternate hypothesis of func-
tional divergence is that θ12 > 0; these can be compared with a likelihood
ratio test.5 As the support for a rate change in the data increases, so should
the θ12 parameter.

This RHAT model has been shown to successfully detect functional di-
vergence on a variety of protein families, including COX enzymes [35] and
tyrosine kinases [33]. It has been extended to the comparison of multiple clus-
ters [35] and for the detection of type II divergence, where the evolutionary
rate immediately after duplication is different from that in either subfamily.
Empirical Bayesian mapping has been applied to detect the specific sites most
likely to be involved in the functional change [35, 42, 28], and a faster approxi-
mate method has been devised that uses the ML estimates of the substitution
counts in each subfamily to test for significance [34].

Note that the RHAT model, like the RHAS model, specifies only the rate
parameter in conjunction with a REV matrix such as JTT and does not
address differences in the pattern of mutations. This could be important if,
for example, a particular site may evolve at the same rate in two subfamilies
but with positively charged residues selected in one subfamily and negatively
charged residues selected in the other. These types of questions have been
addressed for nucleotide models [72, 27, 36] and in qualitative fashion for
proteins [69], but they have not yet been applied in a rigorously testable
“PHAT” context for proteins. As an example, one could set S0 as the null
hypothesis that sites in the subtrees evolve with the same mechanistic site
class (kXn = kYn = k) and evaluate S1 as the alternative hypothesis that kXn

and kYn are independent.
The existence of rate heterogeneity between widely divergent sequences

and between paralogous protein subfamilies is generally well-accepted. But
there is mounting evidence indicating that heterotachy, like site heterogeneity,
may be quite common even within protein families where function is largely
maintained [28]. For example, Lopez and co-workers [50] performed a thorough
analysis of heterotachy on over 3000 sequences of vertebrate cytochrome b,
a protein whose function in the electron transport pathway is generally con-
served throughout vertebrates. They used a modified RHAT model to examine
several evolutionary groupings of cytochrome b, finding significant evidence
of protein heterotachy among birds, mammals, and fish, as well as among

5Since the θ12 parameter is at the boundary of its state space in the null model,
the corrected χ2 test should be used for significance testing [30].
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four different groupings of murids. This significance was not caused by just a
few extremely adaptive locations but was instead seen at a large percentage
of sites. The fact that rates could vary significantly through time within a
protein family with ostensibly conserved function is an indication that het-
erotachy may be an important component of protein models.

9.7 Modeling Correlated Evolution Between Sites

Most models of protein evolution treat sites independently, but this is mainly
a mathematical convenience that helps to keep the likelihood equations
tractable. In reality, a protein sequence does not generally function as an ex-
tended floppy chain, but as a globular structure where the amino acids pack
tightly against one another. Since it is these interactions that determine the
structure and function of a protein, there is significant interest in modeling
correlated evolution between sites.

Correlation between sites can be classified as indirect or direct. Indirect
correlation occurs when sites are in the same structural category and there-
fore subject to the same selective constraints. Their rates and patterns may be
correlated, but a substitution at one site does not necessarily affect the rate
of substitution at another. This type of correlation is the basis for models
such as the PASSML models discussed previously. To measure the strength of
correlation between adjacent sites, Gonnet and co-workers used a 400 × 400
dipeptide matrix [31]. This matrix was created using a parsimony-counting
method similar to the Dayhoff method, but in this case there are 400 charac-
ter states, one representing each two-residue pair. The resulting matrix was
significantly different from matrices created by assuming site independence,
indicating that nearby sites can undergo correlated evolution. For example,
on average, conservation at the first position was likely to be correlated with
conservation in the second, a reflection of the fact that nearby residues tend
to be in the same types of environments.

Direct correlation, or coevolution, occurs when a substitution at one site
alters the fitness landscape at other sites, potentially creating an adaptive
evolutionary regime.6 For example, the salt bridge is one type of stabilizing
interaction in proteins, potentially formed when a positively charged amino
acid residue is in the proximity of a negatively charged residue. If one member
of the salt bridge mutates into an oppositely charged residue, it can destabi-
lize the protein structure or disrupt its function. Assuming the mutation is
accepted as a substitution, the salt bridge can be reestablished by a compen-
satory mutation at the other site, and the substitution rate can temporarily
increase as a result [24]. Other possibilities for compensatory coevolution in-
clude small-large amino acid pairs and a polar-polar to nonpolar-nonpolar
compensation.

6This is sometimes called “covariation,” but that term is avoided here to mini-
mize confusion with the covarion model mentioned in Section 9.6.
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The degree to which such coevolution occurs is still debated. Most evidence
seems to indicate that compensatory substitution does occur but that the
prevalence is low [57, 66, 7, 46, 51, 32]. Some possible explanations for this
weak signal are: (a) the first mutation is generally so deleterious that no
chance for compensatory change is allowed, (b) an unfavorable substitution
can be effectively compensated by subtle shifts in the protein structure, and/or
(c) compensatory substitutions are important but occur at just a few sites in a
particular protein, making them hard to detect among the many comparisons
that must be made. Because of the potential for predicting protein structures
and interactions, there has been significant interest in developing methods
to detect the sites that may be strongly coevolving. Most of these methods
have been primarily based upon detecting mutually informative sites in the
alignment [67, 46, 6, 3, 21], but these types of methods can be misled unless
proper correction due to evolutionary relationships is taken into account [61,
71, 75]. Even in methods that do explicitly utilize the phylogenetic tree, the
tests are generally not based on a particular model of evolution [14, 26].

As an example of a coevolutionary Markov model, the site-independent
fitness models in Section 9.5 are readily applicable to a coevolutionary frame-
work by adding a correlation term:

FAB(a, b) = FA
ind(a) + FB

ind(b) + FAB
dep (a, b) . (9.30)

In this equation, FA
ind(a) is the fitness for amino acid a if site A evolved

independently of site B; for example, the fitness in equation (9.16) can be
used. FAB

dep (a, b) is the coevolution term, an increase or decrease in the fitness
of amino acid a due to the presence of amino acid b at site B. This dependent
fitness function can itself be made mechanistic:

FAB
dep (a, b) = ρABψab . (9.31)

ρAB is the strength of interaction between the site pairs, and Ψ is a symmetric
interaction matrix, where ψab describes the interaction between amino acids
a and b. In the salt-bridge example given above, ψab > 0 when a and b are of
opposite charge, and ψab < 0 when their charge has the same sign. Assuming
ρAB > 0, the overall fitness FAB will be increased when ψab > 0–when the
interaction between a and b is favorable. If a mutation is attempted at site A
to amino acid j, when ψjb > ψib, the result will potentially be an increase in
Ωaj and therefore Qaj , the transition rate (equations (9.17) and (9.15)). When
specifying Ψ using for example empirically determined contact energies, this
model can be nested with the FIT-PC model; the two are equivalent when
ρAB = 0 for a site pair. This model is similar to a codon-based model described
in [64].

While such a coevolutionary fitness model is theoretically attractive, it
is computationally impractical when performing full-likelihood calculations.
One of the barriers to the development of any coevolutionary Markov model
is the size of the state space. Instead of the 20 amino acid states in the site-
independent model, there are 20 × 20 = 400 possible pairs of amino acids,
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leading to a 400 × 400 Q-matrix. Even if the data were available to estimate
the ρAB parameter for each site pair, it is computationally expensive to expo-
nentiate such a matrix and to use it in the phylogenetic likelihood function.
(RNA coevolutionary models, with only 4 × 4 = 16 possible states, have had
more success because they do not suffer from this limitation [55, 65].)

To simplify the state space, Pollock and co-workers [62] created a coevo-
lutionary Markov model by reducing amino acids to two states (designated
A and a or B and b, depending on their position in the pair). For example,
all large amino acids might be designated A and small residues called a, or
the split could be based on amino acid charge (positive or negative). There
are then four possible states at an amino acid site pair—AB, Ab, aB, and
ab—and the transition matrix is

Q =

AB
Ab
aB
ab

⎧⎪⎪⎨⎪⎪⎩
−
∑

AB λBπAb/πA λAπaB/πB 0
λBπAB/πA −

∑
Ab 0 λAπab/πB

λBπAB/πB 0 −
∑

aB λBπab/πa

0 λAπAb/πb λBπaB/πa −
∑

ab

⎫⎪⎪⎬⎪⎪⎭ , (9.32)

where λA and λB are the rates at each site and the π’s are the stationary
frequencies for each possible pair. The independent frequencies πA and πB

are constrained by the pairwise frequencies:

πA = πAB + πAb . (9.33)

The coevolutionary model has six parameters per site pair:

θcoev = {λA, λB , πAB , πAb, πaB , πab} . (9.34)

(Since the π values must sum to 1, one of them is constrained by the others,
and there are five free parameters). This yields one degree of freedom in com-
parison with the site-independent model, which assumes that πxy = πxπy.
The degree of correlation can be examined as a residue disequilibrium value,
RD = πABπab − πAbπaB , where a higher RD value indicates greater corre-
lation. Pollock et al. found that the likelihood ratios did not fit the usual
chi-squared distribution, so they used simulation to determine significance
levels.

When applied to myoglobin, their model indicated the presence of co-
evolution, especially among neighboring sites, but as with most studies, the
signal is weak. For example, they tested 2259 site pairs for coevolution using
a charge metric to determine the character states. Due to Type I error, at
the 5% significance level one would expect to erroneously report 113 pairs as
false positives where no coevolution actually occurred. Pollock et al. found 158
significant pairs, indicating that 43 truly coevolving site pairs are probably
mixed in with those 113. This is an example of the multiple testing problem
that arises when testing all site pairs in a protein: the number of comparisons
increases as the square of the number of sites, threatening to swamp the small
number of true positives with false positives. Therefore, it is often important
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to reduce the number of comparisons either by making some prior assump-
tions about which sites are to be tested, by combining the data from groups
of sites using total likelihood, or by making only relative comparisons.

9.8 Final Notes

Although protein evolutionary models have taken great strides since the for-
mation of the Dayhoff matrix, their development and implementation are
still nascent when compared with nucleotide models. For example, there is
no commonly accepted hierarchy of nested protein models, and most of the
more complex models detailed here have not been incorporated into popular
tree-searching software packages. Therefore, to perform ML tree estimation on
amino acid sequences, REV matrices such as JTT and WAG are generally the
only options in commonly used software. At the very least, it is important to
include rate heterogeneity among sites, such as with the +Γ option, as failure
to do so can cause errors in topology and divergence estimation [13]. Studies
seem to tentatively indicate that the tree topology is fairly robust to model
misspecification, as long as some site heterogeneity is included [12] in either
RHAS or PHAS form. Therefore, it may be an adequate approximation to
choose a credible set of trees using a REV+Γ model and then test more de-
tailed hypotheses with the specialized models. Nevertheless, the full potential
of recent advances in protein modeling will not be realized until these models
are better integrated with tree-searching methods.

Another practical decision is whether to use amino acid or codon models.
Codons contain information about the underlying mutation rate, and this in-
formation can be valuable for detecting selection at a particular site or along
a particular lineage (see Chapter 5). But with this increase in information
comes a decrease in computational speed. The Felsenstein pruning algorithm
for likelihood calculation [22] is O(N3); computational time increases as the
cube of the number of states. Since codon state space is over three times
larger than amino acid state space, computations with amino acid models are
generally about 27 times faster than with codon models. For larger datasets
and/or longer divergence times, amino acid models are often a more pragmatic
choice and may provide more information about the origin of evolutionary con-
straints such as protein structure and amino acid characteristics. For smaller,
more closely related sets of sequences, codon models offer higher fidelity and
may provide more information about the different “directions” of Darwinian
selection (purifying or adaptive) that act upon the evolution of the protein.

One practical constraint on the development of protein phylogenetic mod-
els has been the computational time involved in ML estimation and signifi-
cance testing. Bayesian phylogenetic methods hold great promise for alleviat-
ing these concerns. Bayesian methods can provide estimates of the variance on
the parameters of interest and integrate over the uncertainty in other parame-
ters, allowing models that are more complex than those estimated using ML
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methods. With recent computational strides in this field, it is possible that
Bayesian methods may facilitate the combination of site dependence with rate,
pattern, and time heterogeneity into a unified framework.

References

[1] J. Adachi and M. Hasegawa. Model of amino acid substitution in proteins
encoded by mitochondrial DNA. J Mol Evol, 42(4):459–468, Apr 1996.

[2] J. Adachi, P. J. Waddell, W. Martin, and M. Hasegawa. Plastid genome
phylogeny and a model of amino acid substitution for proteins encoded
by chloroplast DNA. J Mol Evol, 50(4):348–358, Apr 2000.

[3] D. A. Afonnikov, D. Y. Oshchepkov, and N. A. Kolchanov. Detection
of conserved physico-chemical characteristics of proteins by analyzing
clusters of positions with co-ordinated substitutions. Bioinformatics,
17(11):1035–1046, Nov 2001.

[4] C. B. Anfinsen. Principles that govern the folding of protein chains.
Science, 181(96):223–230, Jul 1973.

[5] M. Anisimova, J. P. Bielawski, and Z. Yang. Accuracy and power of
Bayes prediction of amino acid sites under positive selection. Mol Biol
Evol, 19(6):950–958, Jun 2002.

[6] W. R. Atchley, K. R. Wollenberg, W. M. Fitch, W. Terhalle, and A. W.
Dress. Correlations among amino acid sites in bHLH protein domains:
An information theoretic analysis. Mol Biol Evol, 17(1):164–178, Jan
2000.

[7] E. Azarya-Sprinzak, D. Naor, H. J. Wolfson, and R. Nussinov. Inter-
changes of spatially neighbouring residues in structurally conserved en-
vironments. Protein Eng, 10(10):1109–1122, Oct 1997.

[8] A. Bateman, E. Birney, L. Cerruti, R. Durbin, L. Etwiller, S. R. Eddy,
S. Griffiths-Jones, K. L. Howe, M. Marshall, and E. L. L. Sonnhammer.
The Pfam protein families database. Nucleic Acids Res, 30(1):276–280,
Jan 2002.

[9] S. A. Benner, M. A. Cohen, and G. H. Gonnet. Amino acid substitution
during functionally constrained divergent evolution of protein sequences.
Protein Eng, 7(11):1323–1332, Nov 1994.

[10] C. Branden and J. Tooze. Introduction to Protein Structure. Garland
Publishing, New York, 1999.

[11] W. J. Bruno. Modeling residue usage in aligned protein sequences via
maximum likelihood. Mol Biol Evol, 13(10):1368–1374, Dec 1996.

[12] T. R. Buckley. Model misspecification and probabilistic tests of topology:
Evidence from empirical data sets. Syst Biol, 51(3):509–523, Jun 2002.

[13] T. R. Buckley, C. Simon, and G. K. Chambers. Exploring among-site
rate variation models in a maximum likelihood framework using empiri-
cal data: Effects of model assumptions on estimates of topology, branch
lengths, and bootstrap support. Syst Biol, 50(1):67–86, Feb 2001.



9 Markov Models of Protein Sequence Evolution 283

[14] G. Chelvanayagam, A. Eggenschwiler, L. Knecht, G. H. Gonnet, and
S. A. Benner. An analysis of simultaneous variation in protein structures.
Protein Eng, 10(4):307–316, Apr 1997.

[15] C. Chothia, J. Gough, C. Vogel, and S. A. Teichmann. Evolution of the
protein repertoire. Science, 300(5626):1701–1703, Jun 2003.

[16] T. M. Collins, P. H. Wimberger, and G. J. P. Naylor. Compositional bias,
character-state bias, and character-state reconstruction using parsimony.
Sys Biol, 43:482–496, 1994.

[17] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolu-
tionary change in proteins. In M. O. Dayhoff, editor, Atlas of Protein
Sequence and Structure, volume 5, chapter 22, pages 345–352. National
Biomedical Research Foundation, Washington, DC, 1978.

[18] M. W. Dimmic, D. P. Mindell, and R. A. Goldstein. Modeling evolution at
the protein level using an adjustable amino acid fitness model. In Pacific
Symposium on Biocomputing, pages 18–29. World Scientific, Singapore,
2000.

[19] M. W. Dimmic, J. S. Rest, D. P. Mindell, and R. A. Goldstein. rtREV:
an amino acid substitution matrix for inference of retrovirus and reverse
transcriptase phylogeny. J Mol Evol, 55(1):65–73, Jul 2002.

[20] A. K. Dunker, C. J. Brown, J. D. Lawson, L. M. Iakoucheva, and
Z. Obradovic. Intrinsic disorder and protein function. Biochemistry,
41(21):6573–6582, May 2002.

[21] P. Fariselli, O. Olmea, A. Valencia, and R. Casadio. Progress in predicting
inter-residue contacts of proteins with neural networks and correlated
mutations. Proteins, Suppl 5:157–162, 2001. Evaluation Studies.

[22] J. Felsenstein. Evolutionary trees from DNA sequences: a maximum
likelihood approach. J Mol Evol, 17(6):368–376, 1981.

[23] W. M. Fitch and E. Markowitz. An improved method for determining
codon variability in a gene and its application to the rate of fixation of
mutations in evolution. Biochem Genet, 4(5):579–593, Oct 1970.

[24] K. M. Flaherty, D. B. McKay, W. Kabsch, and K. C. Holmes. Simi-
larity of the three-dimensional structures of actin and the ATPase frag-
ment of a 70-kDa heat shock cognate protein. Proc Natl Acad Sci USA,
88(11):5041–5045, Jun 1991.

[25] M. S. Fornasari, G. Parisi, and J. Echave. Site-specific amino acid re-
placement matrices from structurally constrained protein evolution sim-
ulations. Mol Biol Evol, 19(3):352–356, Mar 2002, letter.

[26] K. Fukami-Kobayashi, D. R. Schreiber, and S. A. Benner. Detecting
compensatory covariation signals in protein evolution using reconstructed
ancestral sequences. J Mol Biol, 319(3):729–743, Jun 2002.

[27] N. Galtier. Maximum-likelihood phylogenetic analysis under a covarion-
like model. Mol Biol Evol, 18(5):866–873, May 2001.

[28] E. A. Gaucher, X. Gu, M. M. Miyamoto, and S. A. Benner. Predict-
ing functional divergence in protein evolution by site-specific rate shifts.
Trends Biochem Sci, 27(6):315–321, Jun 2002.



284 M. W. Dimmic

[29] N. Goldman, J. L. Thorne, and D. T. Jones. Assessing the impact of sec-
ondary structure and solvent accessibility on protein evolution. Genetics,
149(1):445–458, May 1998.

[30] N. Goldman and S. Whelan. Statistical tests of gamma-distributed rate
heterogeneity in models of sequence evolution in phylogenetics. Mol Biol
Evol, 17(6):975–978, Jun 2000, letter.

[31] G. H. Gonnet, M. A. Cohen, and S. A. Benner. Analysis of amino acid
substitution during divergent evolution: The 400 by 400 dipeptide sub-
stitution matrix. Biochem Biophys Res Commun, 199(2):489–496, Mar
1994.

[32] S. Govindarajan, J. E. Ness, S. Kim, E. C. Mundorff, J. Minshull, and
C. Gustafsson. Systematic variation of amino acid substitutions for strin-
gent assessment of pairwise covariation. J Mol Biol, 328(5):1061–1069,
May 2003.

[33] J. Gu, Y. Wang, and X. Gu. Evolutionary analysis for functional di-
vergence of Jak protein kinase domains and tissue-specific genes. J Mol
Evol, 54(6):725–733, Jun 2002.

[34] X. Gu. Statistical methods for testing functional divergence after gene
duplication. Mol Biol Evol, 16(12):1664–1674, Dec 1999.

[35] X. Gu. Mathematical modeling for functional divergence after gene du-
plication. J Comput Biol, 8(3):221–234, 2001.

[36] J. P. Huelsenbeck. Testing a covariotide model of DNA substitution. Mol
Biol Evol, 19(5):698–707, May 2002.

[37] D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation
of mutation data matrices from protein sequences. Comput Appl Biosci,
8(3):275–282, Jun 1992.

[38] D. T. Jones, W. R. Taylor, and J. M. Thornton. A mutation data matrix
for transmembrane proteins. FEBS Lett, 339(3):269–275, Feb 1994.

[39] S. Kawashima and M. Kanehisa. AAindex: Amino acid index database.
Nucleic Acids Res, 28(1):374, Jan 2000.

[40] M. Kimura. Population Genetics, Molecular Evolution, and the Neutral
Theory: Selected Papers. University of Chicago Press, Chicago, 1994.

[41] H. Kishino, T. Miyata, and M. Hasegawa. Maximum likelihood inference
of protein phylogeny and the origin of chloroplasts. J Mol Evol, 30:151–
160, 1990.

[42] B. Knudsen and M. M. Miyamoto. A likelihood ratio test for evolutionary
rate shifts and functional divergence among proteins. Proc Natl Acad Sci
USA, 98(25):14512–14517, Dec 2001.

[43] R. Koradi, M. Billeter, and K. Wuthrich. MOLMOL: A program for dis-
play and analysis of macromolecular structures. J Mol Graph, 14(1):51–
55, Feb 1996.

[44] J. M. Koshi and R. A. Goldstein. Context-dependent optimal substitution
matrices. Protein Eng, 8(7):641–645, Jul 1995.

[45] J. M. Koshi and R. A. Goldstein. Models of natural mutations including
site heterogeneity. Proteins, 32(3):289–295, Aug 1998.



9 Markov Models of Protein Sequence Evolution 285

[46] S. M. Larson, A. A. Di Nardo, and A. R. Davidson. Analysis of co-
variation in an SH3 domain sequence alignment: Applications in tertiary
contact prediction and the design of compensating hydrophobic core sub-
stitutions. J Mol Biol, 303(3):433–446, Oct 2000.
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10.1 Introduction

Microsatellites are simple sequence repeats in DNA; for example, the motif
AT repeated twenty-five times in a row. Microsatellites mutate by changing
the number of their repeats; for example, the (AT)25 mentioned in the previ-
ous sentence might become an (AT)24 or (AT)26 in that individual’s offspring.
These length-changing mutations occur at rates several orders of magnitude
higher than point mutations. The reason for microsatellites’ popularity as
genetic markers is that their high mutation rates make them highly polymor-
phic, and they are relatively dense in the genomes of many organisms. For a
review, see the article by Ellegren [16], and for a collection of articles, see the
book edited by Goldstein and Schlötterer [23]. Ellegren [16] succinctly wrote,
“simple repeats do not evolve simply.” In this chapter, then, we will discuss
many different models for microsatellite evolution.

Researchers have exploited microsatellites for many purposes. They are
commonly used in the construction of genome-wide maps, in the search for
disease-causing genes, and in identification for both forensics applications and
paternity tests. As an example, the controversy over whether Thomas Jefferson
fathered a child with his slave Sally Hemings was rekindled by a microsatellite
study [19]. In these applications, two individuals are considered closely related
if a large percentage of the microsatellite markers studied have the same num-
ber of repeats. However, microsatellites in different individuals are not just
the same or different; they can differ by just a few repeat units or by many
repeat units. Because pedigree experiments have shown that most mutations
are a change in one repeat unit (85% in [54], 78% in [50]), some researchers
have used microsatellites as molecular clocks. By studying the average num-
ber of repeat differences in many microsatellite loci, one can infer the time
to the most recent common ancestor of two individuals. Microsatellites have
been used to estimate the age of nonmicrosatellite mutations; for example, the
CCR5−∆32 AIDS-resistance allele [46]. In cancer research, hypermutable mi-
crosatellites with deficient DNA mismatch repair systems have been used to
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reconstruct tumor progression [48]. Microsatellites have been used to infer se-
lective sweeps (for a recent review, see, e.g., [41]), demographic history ([22],
[10], [37], [2]), and population structure ([38], [17]).

The vast majority of microsatellites in higher organisms are believed to
evolve neutrally (i.e., there is no selection pressure on the number of repeats).
Nonetheless, some microsatellites exist in promoter regions and may be sites
for protein binding or be near such sites. In this case, the number of repeats in
these microsatellites has an effect on transcription and the degree of protein
binding [29]. Furthermore, other microsatellites play a direct role in such hu-
man diseases as Fragile X syndrome, myotonic dystrophy, and Huntington’s
disease; these diseases are caused by trinucleotide microsatellites at specific
locations expanding beyond a disease-specific threshold [39].

The predominant mechanism by which microsatellites mutate is believed to
be replication slippage [15]. When DNA replicates, the two strands sometimes
disassociate. In nonrepetitive DNA, the strands reassociate the same way they
were before the slippage event, with matching base pairs on the opposing
strands. But in repetitive DNA, since there are so many possible matching
base pair alignments, sometimes the strands realign differently, forming an un-
matched loop on one of the strands. Then, when the two strands completely
disassociate and begin replication anew, the strand that had the loop will
contain a longer microsatellite than the opposing strand. The microsatellite
on the template strand will always have the same length before and after the
slippage event. If the loop is on the template strand, then the microsatellite
on the replicating strand will be shorter, and if the loop is on the replicating
strand, then the microsatellite on its side will be longer. For a figure of this
process, see [15], p. 38. These primary mutations, which depend exclusively
on the DNA replication machinery, occur at rates several orders of magni-
tude higher than the observed mutation rate and are countered by the DNA
mismatch repair machinery (for a recent review, see [42]). Thus the observed
mutations are those replication slippage events that have escaped repair.

Since longer microsatellites present more opportunity for slippage, we
would expect mutation rates to increase as a function of microsatellite length;
this prediction is experimentally supported [53]. Some microsatellites are in-
terrupted; for example, (AT)12GT(AT)7. Since these interruptions allow fewer
realignments after a possible slippage event, we would expect interrupted mi-
crosatellites to have lower mutation rates, and this is also experimentally
supported [36].

Several other factors are also known to be associated with the heterogene-
ity in mutation rates across microsatellite loci. Dinucleotides have a lower
mutation rate than tetranucleotides (see Table 1 of [16]). Moreover, different
dinucleotide motifs have strikingly different length distributions in the human
genome [7], possibly due to motif-specific differences in the efficacy of mis-
match repair [25]. A significant number of uninterrupted compound repeats
(> 30000) such as (TG)m-(TA)n, with both m and n ≥ 5 repeat units, occur
in the human genome (Sainudiin and Durrett, unpublished results); their evo-
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lutionary dynamics are complex [5] and not well-understood. A further com-
plication to measuring microsatellite variability is that insertions/deletions in
the flanking regions can also affect the PCR fragment length (see, e.g., [24]).

10.2 Models

The oldest model for microsatellite evolution is the stepwise mutation model
originally proposed by Ohta and Kimura [35] for electrophoretic alleles. In
this model, the number of repeat units is equally likely to increase or decrease
by one at a rate independent of the microsatellite’s length, subject to the
constraint that the number of repeat units cannot become smaller than one.
Let X be the length of the microsatellite; then

X → X + 1 at rate γ and
X → X − 1 at rate γ.

(10.1)

This is a symmetric random walk with a lower boundary condition. Numerous
complications to this basic model have been introduced.

The first complication we will discuss is allowing the mutation rate to de-
pend on the microsatellite’s length. For example, Kruglyak et al. [30] proposed
a proportional slippage model where the mutation rate increases linearly with
the microsatellite’s length

X → X + 1 at rate b(X − 1) and
X → X − 1 at rate b(X − 1). (10.2)

Sibly, Whittaker, and Talbot [45] proposed a model with an additional con-
stant term

X → X + 1 at rate b0 + b1(X − 1) and
X → X − 1 at rate b0 + b1(X − 1). (10.3)

This constant term is analogous to the “indel slippage” term in [12]. Calabrese,
Durrett, and Aquadro [8] further extended this model to prevent microsatel-
lites shorter than a threshold κ from mutating:

X → X + 1 at rate b(X − κ)+ and
X → X − 1 at rate b(X − κ)+ (10.4)

(where (X − κ)+ = max(X − κ, 0)). The symmetric random walk models do
not have a stationary distribution on their countable state space [32]. Nauta
and Weissing [33] proposed a finite alleles version of the stepwise mutation
model by imposing range constraints with reflecting boundaries to assure a
uniform stationary distribution (also see [18]).

Most, but not all, observed microsatellite mutations are by one repeat
unit. Therefore, Di Rienzo et al. [11] proposed a model that allows for larger
mutations. With probability p, a mutation is one repeat unit, and with prob-
ability 1 − p, the mutation could be larger. In their formulation, the one-step
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mutations followed the stepwise mutation model, and the larger mutations
were equally likely to be contractions or expansions, with the magnitude of
these mutations following a truncated geometric distribution.

Another complication is to allow the mutation rates to be asymmetric.
Walsh [49] proposed a linear birth-death chain (i.e., a proportional slippage
model where the mutation rate increases linearly with the microsatellite’s
length in the presence of biased contractions,

X → X + 1 at rate bX,
X → X − 1 at rate dX,

(10.5)

for X ∈ {2, 3, . . . ,∞} and 1 → 2 at a much smaller birth rate ν). He showed
that a stationary distribution exists for this model when d/b > 1 (see also
[47]). Fu and Chakraborty [20] proposed a model that allows larger mutations
according to a geometric distribution in the presence of a constant mutational
bias. Calabrese and Durrett [7] generalized the models described earlier to
asymmetric linear and quadratic models: for the linear model

X → X + 1 at rate u0 + u1(X − κ)+ and
X → X − 1 at rate d0 + d1(X − κ)+,

(10.6)

and for the quadratic model

X → X + 1 at rate u0 + u1(X − κ)+ + [u2(X − κ)+]2 and
X → X − 1 at rate d0 + d1(X − κ)+ + [d2(X − κ)+]2. (10.7)

The expansion and contraction rates can take the same parametric form with
distinct parameters as above or take different parametric forms as well. Xu
et al. [54] suggested that the expansion rate be independent of microsatellite
length while the contraction rate increases exponentially with microsatellite
length. Using an approximation to the Ornstein-Uhlenbeck process, Garza,
Slatkin, and Freimer [21] proposed that microsatellites have a focal length in
the sense that microsatellites shorter than this length have a bias upwards,
whereas longer microsatellites have a bias downwards (also see [58]). These
models can also allow larger mutations by specifying the expectation and
variance of the size of mutations and thus nest the stepwise mutation model
and the model due to Di Rienzo et al. [11] within them. While most of the
previously described asymmetric models do not stipulate this focal property a
priori, when these models are fit to data, generally their parameter estimates
do satisfy this property.

Two recent studies attempt to capture several features of microsatellite
evolution just described. Whittaker et al. [52] proposed a class of models with
the following transition rates from microsatellite length X = i to length j:

qij =
{

γueαuie−λu(j−i), i < j ,
γde

αdie−λd(i−j), i > j .
(10.8)

Sainudiin [40] proposed another class of models,
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qij =

{
µ(1 + (i − κ)s)[u − v(i − κ)]10m(1 − m)|i−j|−1, i < j ,

µ(1 + (i − κ)s){1 − [u − v(i − κ)]10}
m(1−m)|i−j|−1

1−(1−m)i−κ , i > j .
(10.9)

In equation (10.9), the notation means

[α]10 =

⎧⎨⎩1 if α > 1 ,
0 if α < 0, and
α otherwise .

(10.10)

Both classes of models allow the mutation rates to increase with microsatellite
length, the bias to change as a function of microsatellite length, and larger
mutations to have a geometrical distribution. However, the parametric forms
of these models differ.

The final model complication we will consider is point mutations. Point
mutations can interrupt a microsatellite, for example transforming (AT)20 into
(AT)12GT(AT)7. Since most researchers measure the length of microsatel-
lites without sequencing, they would not detect this transformation. Bell and
Jurka [3] proposed that such point mutations constrain the growth of mi-
crosatellites. Kruglyak et al. [30] proposed a model with two processes

1. single-step proportional slippage (described above): X → X + 1 at rate
b(X − 1) and X → X − 1 at rate b(X − 1), and

2. point mutations: X → j, where j < X at rate a.

Thus a point mutation is uniformly likely to affect any of the repeat units.
Durrett and Kruglyak [14] showed that this model has a stationary distribu-
tion. Sibly, Whittaker, and Talbot [45] and Calabrese and Durrett [7] followed
this paradigm of considering a slippage process and a point mutation process,
but they considered more general slippage processes. (Now that we are con-
sidering interrupted microsatellites, the state space is more complicated. The
studies referenced above chose counting schemes to limit the state space to
one dimension, but they all chose to do this in different ways, and this has
been the source of some confusion. For every point in the genome, Kruglyak
et al. [30] and Durrett and Kruglyak [14] counted all uninterrupted repeats to
the left. The other studies did not consider every point in the genome: Sibly,
Whittaker, and Talbot [45] counted only the left half of an interrupted repeat,
and Calabrese and Durrett [7] counted only uninterrupted repeats.)

One final caveat is in order. Many microsatellite models have been pro-
posed, and we believe this summary captures most of the important concepts,
but we do not claim to be exhaustive.

10.3 Experiments and Analysis

One of the statistical tools used in this section is the Akaike information
criterion (AIC) [1]. The formula for computing the AIC score for a model is
simple:
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AIC = −2 log(maximum likelihood) + 2(number parameters). (10.11)

Given a list of models, we compute the AIC score for each model and choose
the models with the lowest scores. This scheme has the advantage over the
likelihood ratio test and parametric bootstrap (see, e.g., [4] and [28]) of be-
ing able to select from a large set of models without considering all pairwise
comparisons. The AIC score is intuitive because the best models should have
high likelihoods, and models are penalized for having a large number of pa-
rameters. But this scoring system also has a firm statistical foundation. The
book by Burnham and Anderson [6] discusses the model selection problem in
general and also presents a heuristic justification for the AIC scoring system;
see pp. 239–247.

There are several types of data sets to consider when studying microsatel-
lites. The first is pedigree data. Two of the largest such data sets (both in
humans) were by Xu et al. [54] and Huang et al. [26]. Xu et al. [54] observed
that the rate of expansion is independent of microsatellite “length” but that
the rate of contraction increases exponentially as a function of microsatellite
“length.” Huang et al. [26] found a statistically significant negative relation-
ship between the magnitude and direction of mutation and “length.” In the
two preceding sentences, we have put the word length in quotation marks
because both groups of researchers did not measure the actual length of a
microsatellite but rather the total length of the polymerase chain reaction
(PCR) product that consists of the microsatellite and a variable amount of
flanking sequence. They then applied the inverse of the distribution function of
the observed lengths to obtain a number in [0, 1] that they called the “length.”
This near universal practice of measuring the PCR product length rather than
the actual number of repeat units has complicated modeling efforts.

In another large human pedigree study, Whittaker et al. [52] have taken
the further step of using the human genome sequence and the primer sequence
to infer the number of repeat units from the PCR product length. While this
method cannot tell whether an individual microsatellite has been interrupted
by point mutations, it is an important advance over simply using PCR product
length. They measured 118,866 parent-offspring transmissions of AC repeats
and observed 53 mutations, for a mutation rate of 4.5 × 10−4 per generation.
Approximately 72% of the mutations were of one repeat unit. The mutation
rate clearly increased superlinearly with the repeat length (see Figure 2 in
[52]). They used the AIC scoring system to compare models of the class in
equation (10.8). The cases where mutation rate increases with microsatellite
length (α > 0) were significant improvements over the cases where mutation
rate was independent of microsatellite length (α = 0). The best model in this
class had asymmetric γ and α terms (γu �= γd and αu �= αd), implying a
mutation rate bias, but a symmetric λ term, implying the distribution of the
size of the larger mutations was symmetric. The estimated parameters implied
that microsatellites shorter than 20 repeat units had a bias towards expansions
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and longer microsatellites had a bias towards contractions. However, there
were large confidence intervals for all of the parameter estimates.

Another type of data set is in vitro experiments. During PCR, microsatel-
lites are duplicated and there are opportunities for slippage just as in in vivo
cell division. In single-molecule PCR experiments, Shinde et al. [43] found
that slippage rates increase linearly with microsatellite length, and there is
a threshold of eight base pairs, below which microsatellites do not appear to
slip. For all microsatellite lengths, they found a higher rate for contractions
than expansions (14 times greater for AC microsatellites and five times greater
for poly-A microsatellites). There are thermodynamic reasons to expect this
asymmetry in vitro (see references in [43]). Clearly there are differences, how-
ever, between these in vitro experiments with Taq DNA polymerase and no
mismatch repair system and in vivo cell division. Another set of related ex-
periments studies microsatellite mutations in vivo but in organisms whose
mismatch repair system has been knocked out. For an example in mice, see
[55], and in yeast see [36]. There are many more microsatellite mutations in
individuals with deficient mismatch repair systems, and this is informative
for studying microsatellite models, but in addition to the rate, the pattern of
mutations also appears to be different in these individuals.

In population data, many unrelated individuals are typed at numerous
microsatellite loci. Nielsen [34] suggested using such data sets and likelihood
ideas for model selection. The problem with this approach is that assumptions
must be made about the genealogies of individuals. These assumptions will in
turn affect the evaluation of the models.

Another type of data set is genome data. There are now complete (or nearly
complete) genome sequences available for many species. For each such species,
we thus have the length distribution of all microsatellites in one idealized
individual. If we assume this distribution is at equilibrium and we consider
models that have a stationary distribution, then we can fit these models to
genome data. All the references we will discuss assume that microsatellites
are “born” at some minimum length. Kruglyak et al. [30] fit the proportional
slippage (equation (10.2)) with point mutation model to the then-available
genome sequence of humans, mice, fruit flies, and yeast. They later fit this
model to the complete genome sequence of yeast [31]. Assuming different
microsatellites evolve independently, Sibly, Whittaker, and Talbot [45] then
used likelihood ideas to compare different models of microsatellite evolution.
They considered symmetric slippage models of the form in equation (10.3)
with a point mutation process and found support for the parameters b0 �= 0
and b1 �= 0.

Calabrese and Durrett [7] used genomic data and the AIC scoring sys-
tem to consider many different slippage models, including most of those then
in the literature. They considered general slippage processes with a uniform
point mutation process as described in the previous section. The data they
considered were moderately spaced dinucleotide microsatellites uninterrupted
by point mutations. They found the asymmetric models explained the genome
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data significantly better than the symmetric models. One of the best models
had asymmetric quadratic slippage (equation (10.7)), where the parameters
were such that dinucleotide microsatellites with length longer than 25 re-
peat units had a bias towards contractions. Moreover, for humans (but not
Drosophila), they found that the different dinucleotide motifs had strikingly
different distributions, as shown in Figure 10.1.
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Fig. 10.1. Separated by motif, the natural logarithm of one plus the number of
dinucleotide microsatellites of different lengths in the human genome.

Calabrese and Durrett [7] exploited a connection with queueing theory in
order to calculate the stationary distribution. In the language of continuous-
time Markov chains, each model was specified by a set of exponential hold-
ing times µ(j) for microsatellites of length j and the probabilities p(j, i) a
microsatellite of length j will next mutate to length i. The total number of
microsatellites in the genome was modeled as a network of queues (specifically
M/M/∞ queues, where in the usual queueing theory terminology microsatel-
lites correspond to customers, microsatellite lengths correspond to stations,
and at each length or station there are an infinite number of servers); when a
microsatellite is interrupted by a point mutation, it exits the network. Since
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all microsatellites have a positive probability of leaving the network, there
exists a stationary distribution. Define arrival rates

r(κ) = λ +
∑

i

r(i)p(i, κ) , (10.12)

r(j) =
∑

i

r(i)p(i, j), j > κ , (10.13)

where λ is a scaling parameter that is the rate at which microsatellites are
born at the minimum considered length κ. Then the stationary distribution is
for all j the number of microsatellites with length j that are independent and
Poisson distributed with mean r(j)/µ(j) (see e.g., [13], p. 192). Let l(j) be the
number of microsatellites of length j in the genome, and define the normalizing
constant Z =

∑
j r(j)/µ(j). Since Calabrese and Durrett assumed moderately

spaced microsatellites evolve independently, conditioning on the number of
microsatellites, the likelihood of the data is

∏
j

(
r(j)

Zµ(j)

)l(j)

. (10.14)

For each model, Calabrese and Durrett numerically solved the linear system
of equations (10.12), (10.13) to determine the arrival rates r(j), numerically
maximized the likelihood of the genome (10.14) over the space of model pa-
rameters, and computed the AIC score.

The final type of data set we will consider collects microsatellites from two
closely related populations or species. Since longer microsatellites are more
mutable and hence more useful to experimentalists, when microsatellites are
selected in one species and then compared in another species, there is an ascer-
tainment bias. Two studies that avoid this problem are Cooper, Rubinsztein,
and Amos [9] and Webster, Smith, and Ellegren [51]. Despite accounting for
this ascertainment bias, Cooper, Rubinsztein, and Amos [9] found that human
dinucleotide microsatellites are significantly longer than their chimpanzee or-
thologs. Webster, Smith, and Ellegren [51] considered many more microsatel-
lites and concurred with the findings of Cooper et al. They also found that
human mononucleotide microsatellites are more likely to be shorter than their
chimpanzee counterparts. Webster, Smith, and Ellegren [51] selected an unbi-
ased sample of AC dinucleotide microsatellites from a region of genomic DNA
and compared the orthologs in humans and chimpanzees.

Sainudiin [40] followed this strategy and used the AIC scoring system to
compare slippage models of the form in equation (10.9). Sainudiin initially
assumed that the same microsatellite model and parameters applied both to
the human and chimpanzee lineages, and concluded s �= 0, so longer mi-
crosatellites are more mutable, and v �= 0, so there is a bias term that de-
pends linearly on the microsatellite’s length. The estimated parameters imply
microsatellites shorter than 18 repeat units have a bias towards expansion,
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while longer microsatellites have a bias towards contraction. When Sainudiin
relaxed the assumption that the same model parameters applied in both the
human and chimpanzee lineages, it was found that this focal length increased
to 21 repeats in humans while remaining at 18 repeats in chimpanzees, further
confirming the findings in [9] and [51].

Sainudiin [40] considered three Markov chains, one each on the ancestral,
human, and chimpanzee lineages. These three Markov chains had rate matri-
ces Q(a), Q(h), and Q(c), specified by equation (10.9), possibly with different
parameters. Let λh and λc be the branch lengths of the human and chimpanzee
lineages, respectively. Then the transition probability matrices P(h)(λh) and
P(c)(λc) were obtained by matrix exponentiation of the product of the corre-
sponding rate matrix and branch length (e.g., P(h)(λh) = exp{Q(h)λh}). The
stationary distribution of the ancestral Markov chain X(a) was denoted by
π(a). The data considered were N homologous microsatellite lengths (Hi, Ci)
in the human and chimpanzee genomes. Then the likelihood of the data is∏

i

∑
j

π
(a)
j P

(c)
j,Ci

(λc) P
(h)
j,Hi

(λh). (10.15)

Since the ancestral state is unknown, the likelihood can be thought of as a
weighted sum over all possible ancestral states, where the weights come from
the stationary distribution of the ancestral chain. The product term comes
from the assumption of independence among the N loci. For each model,
Sainudiin [40] numerically optimized the likelihood (10.15) over the space of
model parameters, and computed the AIC score.

10.4 Discussion

We have discussed numerous microsatellite models. There is evidence from a
number of different sources that the best models have the following properties

1. long microsatellites are more likely to mutate, and
2. long microsatellites have a bias towards contraction, while
3. short microsatellites have a bias towards expansion.

For dinucleotide repeats in humans, this focal length appears to be around 20
repeat units. Moreover, all the model parameters depend on both the length
and composition of the repeat motif. In our opinion, the parametric form of
the “best” model is still unclear.

We believe that the best type of data set to determine this model is pedi-
gree data, where the actual number of repeat units has been inferred (rather
than just using the PCR fragment length) as in Whittaker et al. [52]. It would
be interesting to infer the number of repeat units and reanalyze the data sets
in Xu et al. [54] and Huang et al. [26]. The main advantage of using genome
data is that it is plentiful. The disadvantage is that we do not observe mu-
tations but rather the stationary distribution; and distinct models may have
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very similar stationary distributions. For example, this makes it difficult to de-
termine the percentage of large mutations using genome data. Further, Sibly
et al. [44] specifically investigated the distribution of interrupted repeats and
found the existing slippage/point mutation models inadequate to explain the
data.

One question is whether the choice of model matters. For example, let us
consider using the statistic (δµ)2 to measure the time to the most recent com-
mon ancestor of two individuals. Let Xi and Yi be the microsatellite lengths
at the ith locus in the two individuals; define the statistic

(δµ)2 =
I∑

i=1

(Xi − Yi)2/I

as the average over I loci. Goldstein et al. [22] showed that for the stepwise
mutation model E(δµ)2(t) = 2γt, where t is the time to the most recent
common ancestor and γ is the mutation rate. For the more complicated models
that we have discussed, it is unlikely that there is such a simple formula, but
we can simulate these models.

Let us compare the mutation model in equation (10.8) and the stepwise
mutation model. One difficulty with length-dependent mutation models that
we do not encounter with the stepwise mutation model is that we have to make
additional assumptions about the length of the ancestor. Since the model in
equation (10.8) has a stationary distribution, let us assume that the common
ancestor, has a length chosen randomly from this stationary distribution. Fur-
thermore we can use this stationary distribution to find the average mutation
rate for a microsatellite chosen randomly from this distribution. In order to
fairly compare models, let us set the mutation parameter in the stepwise mu-
tation model equal to this average. For the model parameters estimated in
[52], this average mutation rate is γ1 = 1 × 10−4. This rate is smaller than
both the observed rate in [52] (4.5 × 10−4) and that in other dinucleotide
studies (e.g. 5.6 × 10−4 in [22]). Consequently, we also consider the model
in equation (10.8) where the γ parameters have been increased to match the
average mutation rate γ2 = 5× 10−4. When we increase the γ parameters, we
preserve the estimated ratio γu/γd and the α and λ parameters; these new γ
parameters are still well within the confidence intervals estimated from the
data. Likewise, we consider the stepwise mutation model with elevated rate
γ2 = 5 × 10−4.

Figure 10.2 shows the mean of (δµ)2 for these two models as a function
of time. The left-hand plot has average mutation rate γ1 = 1 × 10−4, and the
right-hand plot is a rescaling with average mutation rate γ2 = 5×10−4. For the
left-hand plot at times less than 25000 generations, the two models are in good
agreement. For greater times, the two models diverge; this is because under the
stepwise mutation model, the (δµ)2 statistic continues to grow linearly, while
for the models with a stationary distribution, this statistic eventually plateaus.
For the right-hand plot, since the mutation rate is five times greater, the two
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models start to diverge about five times earlier, at around 5000 generations. If
we are interested in short divergence times, then the stepwise mutation model
seems a reasonable approximation. If we are interested in divergence times
that are too long and we believe the true microsatellite mutation model has
a stationary distribution, then microsatellites will not be useful because any
divergence statistic will eventually plateau due to this stationarity.
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Fig. 10.2. The mean of the (δµ)2 statistic as a function of time in generations.
The linear curve is for the stepwise mutation model; the nonlinear curve is for the
slippage model in equation (10.8). The left-hand plot has average mutation rate
γ1 = 1 × 10−4, and the right-hand plot is a rescaling with average mutation rate
γ2 = 5 × 10−4. Since the right-hand plot has a mutation rate five times greater, the
two models start to diverge five times earlier.

The times for which the models diverge are germane to the study of hu-
man populations. If we model the genealogy of unrelated individuals with the
neutral coalescent (see, e.g., [27]) and assume the commonly used estimate
of 10000 for the effective population size of humans, then the average time
to the most recent common ancestor of two individuals is 20000 generations,
and the average time to the most recent common ancestor of a large sample is
40000 generations. Assuming the stepwise mutation model, various statistics
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of microsatellite lengths have been used to infer aspects of demographic his-
tory (e.g., [57], [10], [37], [56]). We have simulated the coalescent process with
effective population size 10000 and sample size 50, and alternately used the
stepwise mutation model and the model in equation (10.8) with the two pa-
rameter sets discussed in the previous paragraphs. In Table 10.1, we show the
median (5% quantile, 95% quantile) for several summary statistics. We can
see that such statistics and related tests will be dependent on the mutation
model used.

Table 10.1. The median (5% quantile, 95% quantile) of the sample variance, ho-
mozygosity, and number of alleles for the stepwise mutation model (SMM) and the
model in equation (10.8) (WHB) at two average mutation rates. These values were
simulated using the coalescent with effective population size 10000, and sample size
50.

γ1 = 1 × 10−4 γ2 = 5 × 10−4

Model sam.var. homo. num.all. sam.var. homo. num.all.
SMM 1.2 (0.3, 5.9) 0.3 (0.2, 0.6) 5 (3, 7) 6.2 (1.8, 29) 0.2 (0.1, 0.3) 9 (6,13)
WHB 1.9 (0.2, 11) 0.4 (0.2, 1.0) 5 (2, 10) 7.0 (1.0, 20) 0.2 (0.1, 0.5) 10 (4, 14)
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Genomes evolve by chromosomal fissions and fusions, reciprocal translocations
between chromosomes, and inversions that change gene order within chromo-
somes. For more than a decade, biologists and computer scientists have studied
these processes by parsimony methods, asking what is the minimum number
of events needed to turn one genome into another. We have recently begun
to develop a stochastic approach to this and related questions that has the
advantage of producing confidence intervals for estimates and allowing tests
of hypotheses concerning mechanisms.

11.1 Inversions

We begin with the simplest problem of the comparison of two chromosomes
where the genetic material differs only due to a number of inversions that
have reversed the order of chromosomal segments. This occurs for mitochon-
drial DNA, mammalian X chromosomes, and chromosome arms in some insect
species (e.g., Drosophila and Anopheles). To explain the problem, we begin
with an example. The relationship between the human and mouse X chromo-
somes may be given by a signed permutation (see Figure 2 in [19])

1 −7 6 −10 9 −8 2 −11 −3 5 4

In words, if we look at the positions of genes, then in the first segment of each
chromosome, the genes appear in the same order. The genes in the second
segment of the mouse X chromosome are the same as those in the seventh
segment of the human X chromosome but the order is reversed, and so on.

Hannenhalli and Pevzner [11] developed a polynomial algorithm for com-
puting the inversion distance between chromosomes (i.e., the smallest number
of inversions needed to transform one chromosome into another). The first
step in preparing to use the HP algorithm is to double the markers. When
segment i is doubled, we replace it by two consecutive numbers 2i − 1 and
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2i (e.g., 6 becomes 11 and 12). A reversed segment −i is replaced by 2i and
2i − 1 (e.g., −7 is replaced by 14 and 13). The doubled markers use up the
integers 1 to 22. To these we add a 0 at the front and a 23 at the end. Using
commas to separate the ends of the markers, we can write the two genomes
as follows:

mouse 0, 1 2, 14 13, 11 12, 20 19, 17 18, 16 15,

3 4, 22 21, 6 5, 9 10, 7 8, 23
human 0, 1 2, 3 4, 5 6, 7 8, 9 10, 11 12, 13 14,

15 16, 17 18, 19 20, 21 22, 23

The next step is to construct the breakpoint graph that results when the
commas are replaced by edges that connect vertices with the corresponding
numbers. In Figure 11.1, we write the vertices in their order in the mouse
genome. Commas in the mouse order become thick lines (black edges), while
those in the human genome are thin lines (gray edges).

0 1 2 14 13 11 12 20 19 17 18 16 15 3 4 22 21 6 5 9 10 7 8 23

Fig. 11.1. Breakpoint graph for human-mouse X chromosome comparison.

Each vertex has one black and one gray edge, so its connected components
are easy to find: start with a vertex and followed the connections in either
direction until you come back to where you started. In this example, there are
five cycles:

0 − 1 − 0 2 − 14 − 15 − 3 − 2 4 − 22 − 23 − 8 − 9 − 5 − 4
19 − 17 − 16 − 18 − 19 13 − 11 − 10 − 7 − 6 − 21 − 20 − 12 − 13

To compute a lower bound for the distance, we first count the number of
commas seen when we write out one genome. In this example, that is 1 plus
the number of segments (n = 11). We then subtract the number of connected
components, c(n), in the breakpoint graph. This is a lower bound on the
distance since any inversion can at most reduce this quantity by 1, and it is 0
when the two genomes are the same. In symbols,

d(π) ≥ n + 1 − c(π) = 12 − 5 = 7 .

In general, the distance between genomes can be larger than the lower bound
from the breakpoint graph. There can be obstructions, called hurdles, that
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can prevent us from decreasing the distance, and hurdles can be intertwined
in a fortress of hurdles that takes an extra move to break (see [11]). If π is
the signed permutation that represents the relative order and orientation of
segments in the two genomes, then

d(π) = n + 1 − c(π) + h(π) + f(π) ,

where h(π) is the number of hurdles, f(π) is the indicator of the event, and
π is a fortress of hurdles.

Fortunately, the complexities associated with hurdles rarely arise in bi-
ological data sets. Bafna and Pevzner [1] considered the inversion distance
problem for 11 chloroplast and mitochondrial data sets, and in all cases they
found that the distance was equal to the lower bound. We can verify that 7
is the minimum distance for the human-mouse comparison by constructing a
sequence of seven moves that transforms the mouse X chromosome into the
human order. There are thousands of solutions, so we leave this as an exercise
for the reader. Here are some hints: (i) To do this, it suffices to choose at each
step an inversion that increases the number of cycles by 1. (ii) This never
occurs if the two chosen black edges are in different cycles. (iii) If the two
black edges are in the same cycle and are (a, b) and (c, d) as we read from
left to right, this will occur unless in the cycle minus these two edges a is
connected to d and b to c, in which case the number of cycles will not change.
For example, in Figure 11.1, an inversion that breaks black edges 19-17 and
18-16 will increase the number of cycles, but the one that breaks 2-14 and
15-3 will not. See Section 5.2 of [7] or Chapter 10 of [18] for more details.

Ranz, Segarra, and Ruiz [21] did a comparative study of chromosome 2 of
Drosophila repleta and chromosome arm 3R of D. melanogaster. If we number
the 26 genes that they studied according to their order on the D. repleta
chromosome, then their order on D. melanogaster is given by

12 7 4 2 3 21 20 18 1 13 9 16 6 14 26 25 24 15 10 11 8 5 23 22 19 17

where we have used italics to indicate adjacencies that have been preserved.
Since the divergence of these two species, this chromosome region has been
subjected to many inversions. Our first question is: How many inversions have
occurred? To answer this question, we need to formulate and analyze a model.
Before we do this, the reader should note that in contrast with the human-
mouse comparison, here we do not have enough markers to determine the
relative orientation of the segments, so we have an unsigned permutation.

11.1.1 n-inversion Chain

Consider n markers on a chromosome, which we label with 1, 2, . . . n, and
that can be in any of the n! possible orders. To these markers we add two
others: one called 0 at the beginning and one called n + 1 at the end. Finally,
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for convenience of description, we connect adjacent markers by edges. For
example, when n = 7, the state of the chromosome might be

0 − 5 − 3 − 4 − 1 − 7 − 2 − 6 − 8

In biological applications, the probability of an inversion in a given gen-
eration is small, so we will formulate the dynamics in continuous time. The
labels 0 and n + 1 never move. To shuffle the others, at times of a rate one
Poisson process, we pick two of the n+1 edges at random and invert the order
of the markers in between. For example, if we pick the edges 5 − 3 and 7 − 2,
the result is

0 − 5 − 7 − 1 − 4 − 3 − 2 − 6 − 8

If we pick 3 − 4 and 4 − 1 in the first arrangement, there is no visible change.
However, allowing this move will simplify the mathematical analysis and only
amounts to a small time change of the dynamics in which one picks two
markers 1 ≤ i < j ≤ n at random and reverses the segment with those
endpoints.

It is clear that if the chromosome is shuffled repeatedly, then in the limit
all of the n! orders for the interior markers will have equal probability. The
first question is how long it takes for the marker order to be randomized. To
explain the answer, we recall that the total variation distance between two
distributions µ and ν is supA |µ(A) − ν(A)|.

Theorem 11.1. Consider the state of the system at time t = cn lnn starting
with all markers in order. If c < 1/2, then the total variation distance to the
uniform distribution ν goes to 1 as n → ∞. If c > 2, then the total variation
distance goes to 0.

For a proof, see [8]. There is a gap between the upper bound and the lower
bound, but on the basis of other results it is natural to guess that the lower
bound is right (i.e., convergence to equilibrium takes about (n lnn)/2 shuf-
fles). When n = 26, this is 42.3. Consequently, when the number of inversions
is large (in the example, more than 40), the final arrangement is almost in-
dependent of the initial one and we do not expect to be able to accurately
estimate the actual number of inversions.

While Theorem 11.1 may be interesting for card-shuffling algorithms, its
conclusion does not tell us much about the number of inversions that occurred
in our data set. To begin to investigate this question, we note that there are six
conserved adjacencies. This means that at least 27 − 6 = 21 edges have been
disturbed, so at least 11 inversions have occurred. Biologists often use this
easy-to-compute estimate, which is called the breakpoint distance. However,
this lower bound is usually not sharp. In this example, it can be shown that
at least 14 inversions are needed to put the markers in order.

The maximum parsimony solution is 14, but there is no guarantee that
nature took the shortest path between the two genomes. York, Durrett, and
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Nielsen [22] have introduced a Bayesian approach to the problem of inferring
the history of inversions separating two chromosomes. They assume that the
differences between the gene arrangements in two species come from running
the n-inversion chain for some unknown time λ. Given a number of inversions
�, let π0, π1, . . . , π� be the proposed evolutionary sequence that connects the
two genomes, with each πk differing from the previous one by one inversion.
Let Ω be the set of all such sequences (of any length) and X be a generic
member of Ω.

Let D (for data) be the marker order in the two sampled genomes. The
Markov chain Monte Carlo method of York, Durrett, and Nielsen [22] consists
of defining a Markov chain on Ω × [0,∞) with stationary density P (X,λ|D).
They alternate updating λ and X. First, a new λ is chosen according to
P (λ|X,D), then a new path is produced by choosing a segment to cut out of
the current path, and then the two endpoints are reconnected. In generating
the new path, they use the graph distance n + 1 − c(π) as a guide and prefer
steps that reduce the distance. We refer the reader to the cited paper for
more details. Figure 11.2 shows a picture of the posterior distribution of the
number of inversions for the Ranz, Segarra, and Ruiz [21] data set. Note that
this density assigns a small probability to the shortest path (with length 14)
and has a mode at 19.

0 10 20 30 40 505 15 25 35 45

Fig. 11.2. Posterior distribution of inversions for Drosophila data.

An alternative and simpler approach to our question comes from consid-
ering φ(η) = the number of conserved edges minus 2. Subtracting 2 makes φ
orthogonal to the constant eigenfunction. A simple calculation shows that φ
is an eigenfunction of the chain with eigenvalue (n − 1)/(n + 1). In our case,
n = 26 and φ = 4, so solving

27
(

25
27

)m

= 4 gives m =
ln(4/27)
ln(25/27)

= 24.8 ,
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which gives a moment estimate of the number of inversions that seems con-
sistent with the distribution in Figure 11.2.

Ranz, Casals, and, Ruiz [20] enriched the comparative map so that 79
markers can be located in both species. Again numbering the markers on the
D. repleta chromosome by their order on D. melanogaster, we have:

36 37 17 40 16 15 14 63 10 9 55 28
13 51 22 79 39 70 66 5 6 7 35 64
33 32 60 61 18 65 62 12 1 11 23 20
4 52 68 29 48 3 21 53 8 43 72 58

57 56 19 49 34 59 30 77 31 67 44 2
27 38 50 26 25 76 69 41 24 75 71 78
73 47 54 45 74 42 46

The number of conserved adjacencies (again indicated with italics) is 11, so
our moment estimate is

m =
ln(9/80)
ln(78/80)

= 86.3 .

This agrees with the Bayesian analysis in [22], where the mode of the posterior
distribution is 87. However, these two numbers differ drastically from the
parsimony analyses. The breakpoint distance is (80 − 11)/2 = 35, while the
parsimony distance is 54. This lies outside the 95% credible interval of [65, 120]
that comes from the Bayesian estimate. Indeed the posterior probability of 54
is so small that this value was never seen in the 258 million MCMC updates
in the simulation run.

11.2 Distances

In the last two examples, we saw that the breakpoint distance was likely to
be an underestimate of the true distance. This brings up the question of when
the parsimony estimate is reliable. Bourque and Pevzner [3] have approached
this question by taking 100 markers in order, performing k randomly chosen
inversions, computing Dk, the minimum number of inversions needed to return
to the identity, and then plotting the average value of Dk − k ≤ 0 (the circles
in Figure 11.3). They concluded based on this and other simulations that the
parsimony distance based on n markers was good as long as the number of
inversions was at most 0.4n. The smooth curve, which we will describe in
Theorem 11.2 below, gives the limiting behavior of (Dcn − cn)/n.

The first step is to consider the analogous but simpler problem for . In
that case, the distance from the identity can be easily computed: it is the
number of markers n minus the number of cycles in the permutation. For an
example, consider the following permutation of 14 objects written in its cyclic
decomposition:
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Fig. 11.3. Bourque-Pevzner simulation results vs. Theorem 11.2.

(1 7 4) (2) (3 12) (5 13 9 11 6) (8 10 14)

which indicates that 1 → 7, 7 → 4, 4 → 1, 2 → 2, 3 → 12, 12 → 3, and so on.
There are five cycles, so the distance from the identity is 9. If we perform a
transposition that includes markers from two different cycles (e.g., 7 and 9),
the two cycles merge into one, while if we pick two in the same cycle (e.g., 13
and 11), it splits into two.

The situation is similar but slightly more complicated for inversions. There,
if we ignore the complexity of hurdles, the distance is n+1 minus the number
of components in the breakpoint graph. An inversion that involves edges in
two different components merges them into one, but an inversion that involves
two edges of the same cycle may or may not increase the number of cycles.
To have a cleaner mathematical problem, we will consider the biologically less
relevant case of random transpositions and ask a question that in terms of
the rate 1 continuous-time random walk on the permutation group is: How
far from the identity are we at time cn?

The first step in attacking this problem is to notice that by our description
the cycle structure evolves according to a coagulation-fragmentation process.
Suppose that for the moment we ignore fragmentation and draw an edge
from i to j whenever we transpose i and j. In this case, the cycles are the
components of the resulting random graph. There are n(n − 1)/2 potential
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edges, so results of Erdös and Renyi imply that when c < 1/2 there are no
very large components and we can ignore fragmentations. In this phase, the
distance will typically increase by 1 on each step, or in the notation of Bourque
and Pevzner [3], Dk − k ≈ 0. When n = 100, this phase lasts until there have
been about 50 inversions.

When c > 1/2, a giant component emerges in the percolation model, and
its behavior is much different from the large cycles in the permutation that
experience a number of fragmentations and coagulations. The dynamics of the
large components are quite complicated but (i) there can never be more than√

n of size
√

n or larger and (ii) an easy argument shows that the number
of fragmentations occurring to clusters of size ≤

√
n is O(

√
n). These two

observations plus results from the theory of random graphs (see Theorem 12
in Section V.2 of [2]) imply the following theorem.

Theorem 11.2. The number of cycles at time cn/2 is g(c)n + O(
√

n), where

g(c) =
∞∑

k=1

1
k

pk(c) and pk(c) =
1
c

kk−1

k!
(ce−c)k .

Using Stirling’s formula k! ∼ kke−k
√

2πk, it is easy to see that g′ is continuous
but g′′(1) does not exist. It is somewhat remarkable that g(c) = 1 − c/2 for
c < 1. Thus there is a phase transition in the behavior of the distance of the
random transposition random walk from the identity at time n/2.

As stated, the result only applies to transpositions. However, the same
exact conclusion applies to inversions. To show this, we note that the only
difference between the two systems is that picking the same cycle twice may
or may not increase the number of cycles in the breakpoint graph, and our
proof has shown that fragmentations can be ignored.

To explain the strange function g(c) that appears in the answer, we begin
with Cayley’s result that there are kk−2 trees with k labeled vertices. At time
cn, each edge is present with probability ≈ (cn/2)/

(
n
2

)
≈ c/n, so the expected

number of trees present of size k is(
n

k

)
kk−2

( c

n

)k−1 (
1 − c

n

)k(n−k)+(k
2)−(k−1)

since each of the k − 1 edges need to be present and there can be no edges
connecting the k point set to its complement (k(n − k) edges) or any other
edges connecting the k points (

(
k
2

)
− (k − 1) edges). For fixed k,

(
n
k

)
≈ nk/k!,

so the equation above is

≈ n
kk−2

k!
(2c)k−1

(
1 − 2c

n

)kn

,

from which the result follows easily. We have written the conclusion in the
form given above so that pk(c) is the probability in an Erdös-Renyi graph
with edge occupancy probability c/n that 1 belongs to a component of size k.
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Having found laws of large numbers for the distance, it is natural to ask
about fluctuations. This project is being carried out as part of the Ph.D. thesis
of Nathaniel Berestycki. Since these results are only exact for transpositions
and are merely a lower bound for inversions, we will only state the first two
results. The subcritical regime (cn/2 with c < 1) is easy. Let Ft be the number
of fragmentations at time t in a system in which transpositions occur at rate
one. The continuous time setting is more convenient since it leads to a random
graph with independent edges. If Nt is the number of transpositions at time
t, then Dt − Nt = −2Ft, so we study the latter quantity.

Theorem 11.3 Suppose 0 ≤ c < 1. As n → ∞, Fcn/2 converges in distribution
to a Poisson random variable with mean (− ln(1 − c) − c)/2.

Since a Poisson random variable with large mean rescales to approximate a
normal, it should not be surprising that if we change the time to make the
variance linear, the result is a Brownian motion.

Theorem 11.4. Let cn(r) = 1 − n−r/3 for 0 ≤ r ≤ 1. As n → ∞,

Xn(r) = (Fcn(r)n/2 − (r/6) log n)/((1/6) log n)1/2

converges to a standard Brownian motion.

Expected value estimates (see [15]) imply that the number of fragmentations
in [1 − n−1/3, 1] is O(1) and hence can be ignored. It follows from this that

(Fn/2 − (1/6) log n)/((1/6) log n)1/2

has an approximately normal distribution. To connect this with the simula-
tions of Bourque and Pevnzer, we note that this implies EF50 ≈ (1/6) log 50 =
0.767, which seems consistent with the data in Figure 11.3, even though all
we know from the comparison is that this is an upper bound on the difference
between Nt and the distance.

11.3 Genomic Distance

In general, genomes evolve not only by inversions within chromosomes but also
due to translocations between chromosomes and due to fissions and fusions
that change the number of chromosomes. To reduce the number of events con-
sidered from four to two, we note that a translocation splits two chromosomes
(into, say, a − b and c − d) and then recombines the pieces (to make a − d
and b − c, say). A fission is the special case in which the segments c and d
are empty, and a fusion is when b and c are empty. To illustrate the problem,
we will consider part of the data of Doganlar et al. [6], who constructed a
comparative genetic linkage map of eggplant (Solanum melongena) with 233
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markers based on tomato cDNA, genomic DNA, and ESTs. Using the first
letter of the common name to denote the species, they found that the marker
order on T1 and E1 and on T8 and E8 were identical, while in four other cases
(T2 vs. E2, T6 vs. E6, T7 vs. E7, T9 vs. E9) the collections of markers were
the same and the order became the same after a small number of inversions
were performed (3, 1, 2, and 1, respectively).

In our example, we will compare the remaining six chromosomes from the
two species. The first step is to divide the chromosomes into conserved seg-
ments where the adjacency of markers has been preserved between the two
species, allowing for the possibility of the overall order being reversed. When
such segments have two or more markers, we can determine the relative orien-
tation. However, as the HP algorithm assumes one knows the relative orien-
tation of segments, we will have to assign orientations to conserved segments
consisting of single markers in order to minimize the distance. In the case of
the tomato-eggplant comparison, there are only five singleton segments, so
one can easily consider all 25 = 32 possibilities. The next table shows the two
genomes with an assignment of signs to the singleton markers that minimizes
the distance.

Eggplant Tomato
1 2 3 4 5 6 1 −5 2 6
7 8 21 −22 −20 8
9 10 −4 14 11 −15 3 9
11 12 13 14 15 16 17 18 7 16 −18 17
19 20 21 22 −19 24 −26 27 25
23 24 25 26 27 −12 23 13 10

As in the inversion distance problem, our first step is to double the mark-
ers. The second step is to add ends to the chromosomes and enough empty
chromosomes to make the number of chromosomes equal. In this example,
no empty chromosomes are needed. We have labeled the ends in the first
genome by 1000 to 1011 and in the second genome by 2000 to 2011. The next
table shows the result of the first two preparatory steps. Commas indicate
separations between two segments or between a segment and an end.

Eggplant
1000, 1 2 , 3 4 , 5 6 , 7 8 , 9 10 , 11 12 , 1001
1002, 13 14 , 15 16 , 1003
1004, 17 18 , 19 20 , 1005
1006, 21 22 , 23 24 , 25 26 , 27 28 , 29 30 , 31 32 , 33 34 , 35 36 , 1007
1008, 37 38 , 39 40 , 41 42 , 43 44 , 1009
1010, 45 46 , 47 48 , 49 50 , 51 52 , 53 54 , 1011

Tomato
2000, 1 2 , 10 9 , 3 4 , 11 12 , 2001
2002, 41 42 , 44 43 , 40 39 , 15 16 , 2003
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2004, 8 7 , 27 28 , 21 22 , 30 29 , 5 6 , 17 18 , 2005
2006, 13 14 , 31 32 , 36 35 , 33 34 , 2007
2008, 38 37 , 47 48 , 52 51 , 53 54 , 49 50 , 2009
2010, 24 23 , 45 46 , 25 26 , 19 20 , 2011

As before, the next step is to construct the breakpoint graph that results
when the commas are replaced by edges that connect vertices with the corre-
sponding numbers. We did not draw the graph since to compute the distance
we only need to know the connected components of the graph. Since each ver-
tex has degree two, these are easy to find: start with a vertex and follow the
connections. The resulting component will either be a path that connects two
ends or a cycle that consists of markers and no ends. In our example there are
five paths of length three: 1000−1−2000, 1001−12−2001, 1002−13−2006,
1003 − 16 − 2003, and 1005 − 20 − 2011. These paths tell us that end 1000 in
genome 1 corresponds to end 2000 in genome 2, and so forth. The other cor-
respondences between ends will be determined after we compute the distance.
The remaining components in the breakpoint graph are listed below.

1004 17 6 7 27 26 19 18 2005
1006 21 28 29 5 4 11 10 2 3 9 8 2004
1007 36 32 33 35 34 2007
1008 37 47 46 25 24 2010
1009 44 42 43 40 41 2002
1010 45 23 22 30 31 14 15 39 38 2008
1011 54 49 48 52 53 51 50 2009

To compute a lower bound for the distance, we start with the number of
commas seen when we write out one genome. In this example, that is 33. We
subtract the number of connected components in the breakpoint graph. In this
example, that is 5 + 7 = 12, and then we add the number of paths that begin
and end in the same genome, which in this case is 0. The result, which is 21 in
this case, is a lower bound on the distance since any inversion or translocation
can at most reduce this quantity by 1, and it is 0 when the two genomes are
the same. As before, this is only a lower bound. For the genomic distance
problem, the full answer is quite complicated and involves seven quantities
associated with the genome. (For more details, see [12] or [18].)

At least in this example, nature is simpler than the mathematically worst
possible case. It is easy to produce a path of length 21 to show that the
lower bound is achieved. For a solution, see [9]. That paper extends the meth-
ods of [22] to develop a Bayesian estimate of the number of inversions and
translocations separating the two genomes. As we have just calculated, the
parsimony solution for the comparison of all 12 chromosomes is 21 + 7 = 28.
The Bayesian analysis produces 95% credible intervals of [5, 7], [21, 31], and
[28, 37] for the number of translocations and inversions and the total num-
ber of events (respectively) separating tomato and eggplant. The mode of the
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posterior joint distribution of the number of translocations and inversions oc-
curs at (6.6, 25.9). Thus even in the case of these two closely related genomes,
the most likely numbers of inversions and translocations are somewhat higher
than their parsimony estimates.

When distances between the markers are known in one genome, there is
another method due to Nadeau and Taylor [17], that can be used to estimate
the number of inversions and translocations that have occurred. The basic data
for the process is the set of lengths of conserved segments (i.e., two or more
consecutive markers in one genome that are adjacent, possibly in the reverse
order, in the other). The actual conserved segment in the genome is larger
than the distance r between the two markers at the ends of the conserved
interval. Thinking about what happens when we put n points at random in
the unit interval, which produces n + 1 segments with n − 1 between the
leftmost and the rightmost points, we estimate the length of the conserved
segment containing these markers by r̂ = r(n + 1)/(n − 1), where n is the
number of markers in the segment.

Let D be the density of markers (i.e., the total number divided by the
size of the genome). If the average length of conserved segments is L and we
assume that their lengths are exponentially distributed, then since we only
detect segments with two markers, the distribution of their lengths is

(1 − e−Dx − Dxe−Dx)
1
L

e−x/L

normalized to be a probability density. A little calculus shows that the mean
of this distribution is (L2D + 3L)/(LD + 1).

Historically, the first application of this technique was to a human-mouse
comparative map with a total of 56 markers. Based on this limited amount
of data, it was estimated that there were 178 ± 39 conserved segments. For
more than fifteen years, this estimate held up remarkably well as the den-
sity of the comparative map increased, see [16]. However, the completion of
the sequencing of the mouse genome ([5]; see Figure 11.3) has revealed 342
conserved segments of size > 300 kb (kilobases).

To illustrate the Nadeau and Taylor computation, we will use a compar-
ative map of the human and cattle autosomes (nonsex chromosomes) (see
Figure 11.4) constructed by Band et al. [10]. Using resources on the NCBI
home page, we were able to determine the location in the human genome
of 422 genes in the map. These defined 125 conserved segments of actual
average length 7.188 Mb (megabases), giving rise to an adjusted average
length of 14.501 Mb. Assuming 3200 Mb for the size of the human genome,
the marker density was D = 1.32 × 10−4 or one every 7.582 Mb. Setting
14.501 = (L2D+3L)/(LD+1) and solving the quadratic equation for L gives
an estimate L̂ = 7.144 Mb, which translates into approximately 448 segments.
Subtracting 22 chromosome ends, we infer that there were 424 breakpoints,
which leads to an estimate of 212 inversions and translocations. As a check
on the assumptions of the Nadeau and Taylor computation, we note that if
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Fig. 11.4. Comparison of cattle and human autosomes.

markers and segment endpoints are distributed randomly, then the number
of markers in a conserved segment would have a geometric distribution. The
next table compares the observed counts with what was expected.

markers observed expected
0 − 222.9
1 85 108.1
2 76 52.5
3 29 25.4
4 10 12.3
5 5 6.0
6 3 2.9
7 1 1.4
8 1 0.7

To get an idea of the number of translocations that have occurred, we will
look at the human-cattle correspondence through the eyes of FISH (fluores-
cent in situ hybridization) data of Hayes [14] and Chowdhary et al. [4]. In
this technique, one takes individual human chromosomes, labels them with
fluorescent chemicals, and then determines where they hybridize to cattle
chromosomes. To visualize the relationship between the genomes it is useful
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to draw the bipartite graph with vertices being the chromosome numbers in
the two genomes and an edge from Ci to Hj if part of cattle chromosome
i is homologous to part of human chromosome j. We call this the Oxford
graph since the adjacency matrix of this graph is what biologists would call
an Oxford grid.

Parsimony analysis reveals that a minimum of 155 moves (20 transloca-
tions and 135 inversions) are needed to rearrange the cattle genome to match
the chromosomes of the human genome. Durrett, Nielsen, and York [9] have
applied their Bayesian methods to this example but experienced convergence
problems. Figures 11.5 and 11.6 of their paper give posterior distributions
from four runs. In the case of inversions, the modes are 20, 21, 21, and 25,
with the overall shape of the fourth posterior distribution being considerably
different. The modes for translocations are all in the range 185–191, but the
variance differs considerably from run to run.

11.4 Nonuniformity of Inversions

Define a syntenic segment to be a segment of chromosome where all of the
markers come from the same chromosome in the other species but not nec-
essarily in the same order. A remarkable aspect of the cattle data is that
although our estimates suggest that there have been roughly 20 transloca-
tions and 190 inversions, each chromosome consists of only a few syntenic
segments. If inversions were uniformly distributed on the chromosome, we
would expect that inversions that occur after a translocation would mingle
the two segments.

A second piece of evidence that not all inversions are equally likely comes
from the 79 marker Drosophila data. The estimated number of inversions is
large, but there is still a strong correlation between the marker orders in
the two genomes. Spearman’s rank correlation ρ = 0.326, which is significant
at the p = 0.001 level. From the point of view of Theorem 11.1 this is not
surprising: our lower bound on the mixing time predicts that 39.5 ln 75 = 173
inversions are needed to completely randomize the data. However, simulations
in [8] show that the rank correlation is randomized well before that time. In
10,000 runs, the average rank correlation is only 0.0423 after 40 inversions,
and only 4.3% of the runs had a rank correlation larger than 0.325.

To seek a biological explanation of the nonuniformity, we note that the
gene-to-gene pairing of homologous chromosomes implies that if one chromo-
some of the pair contains an inversion that the other does not, a loop will
form in the region in which the gene order is inverted. (See, e.g., page 367 of
[13].) If a recombination occurs in the inverted region, then the recombined
chromosomes will contain two copies of some regions and zero copies of oth-
ers, which can have unpleasant consequences. A simple way to take this into
account is with the θ-inversion model.
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11.4.1 θ-inversion model

Inversions that reverse markers i to i+j occur at rate θj−1/n(1−θ). The rea-
soning here is that the probability of no recombination decreases exponentially
with the length of the segment reversed.

We expect that the likelihood methods of Durrett, Nielsen, and York can
be extended to the θ-inversion model in order to estimate inversion tract
lengths. A second way to approach the problem is to see how estimates of
the number of inversions depend on the density of markers in the map. If
n markers (blue balls) are randomly distributed and we pick two inversion
endpoints (red balls) at random, then the relative positions of the n + 2 balls
are all equally likely. The inversion will not be detected by the set of markers
if there are 0 or 1 blue balls between the two red ones, an event of probability

n + 1 + n(
n+2

2

) =
4n + 2

(n + 2)(n + 1)
≈ 4

n + 2
.

This means that the 26 markers in the first Drosophila data set should have
missed only 1/7 of the inversions, in sharp contrast to the fact that our esti-
mate jumped from 24.8 with 26 markers to 86.3 with 79.

Suppose now that markers are distributed according to a Poisson process
with mean spacing M while inversion tract lengths have an exponential dis-
tribution with mean L. If we place one inversion endpoint at random on the
chromosome and then move to the right to locate the second one, then the
probability that a marker comes before the other inversion endpoint is

1/M

1/M + 1/L
=

L

L + M

so the fraction detected is L2/(L + M)2. If we take 30 Mb as an estimate for
the size of the chromosome arm studied, we see that the marker spacings in
the two studies are M1 = 30/27 = 1.11 Mb and M2 = 30/80 = .375 Mb,
respectively. Taking ratios, we can estimate L by

86.3
24.8

=
(L + 1.1)2

(L + 0.375)2
.

Taking square roots of each side and solving, we have 1.865L+0.375 = L+1.1
or L = 0.725/0.765 = 0.948 Mb. If this is accurate, then the larger data set
only detects (

0.948
1.273

)2

= 0.554 ,

or 55.4% of the inversions that have occurred. Our best guess is that the
chromosome arm has experienced 86.3/0.554 = 157 inversions. This simple
calculation is only meant to illustrate the possibilities of the method, which
needs to be developed further and tested on other examples.
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Phylogenetic hidden Markov models, or phylo-HMMs, are probabilistic mod-
els that consider not only the way substitutions occur through evolutionary
history at each site of a genome but also the way this process changes from
one site to the next. By treating molecular evolution as a combination of
two Markov processes—one that operates in the dimension of space (along a
genome) and one that operates in the dimension of time (along the branches
of a phylogenetic tree)—these models allow aspects of both sequence structure
and sequence evolution to be captured. Moreover, as we will discuss, they per-
mit key computations to be performed exactly and efficiently. Phylo-HMMs
allow evolutionary information to be brought to bear on a wide variety of
problems of sequence “segmentation,” such as gene prediction and the iden-
tification of conserved elements.

Phylo-HMMs were first proposed as a way of improving phylogenetic mod-
els that allow for variation among sites in the rate of substitution [9, 52]. Soon
afterward, they were adapted for the problem of secondary structure predic-
tion [11, 47], and some time later for the detection of recombination events [20].
Recently there has been a revival of interest in these models [41, 42, 43, 44, 33],
in connection with an explosion in the availability of comparative sequence
data, and an accompanying surge of interest in comparative methods for the
detection of functional elements [5, 3, 24, 46, 6]. There has been particular
interest in applying phylo-HMMs to a multispecies version of the ab initio
gene prediction problem [41, 43, 33].

In this chapter, phylo-HMMs are introduced, and examples are presented
illustrating how they can be used both to identify regions of interest in mul-
tiply aligned sequences and to improve the goodness of fit of ordinary phylo-
genetic models. In addition, we discuss how hidden Markov models (HMMs),
phylogenetic models, and phylo-HMMs all can be considered special cases of
general “graphical models” and how the algorithms that are used with these
models can be considered special cases of more general algorithms. This chap-
ter is written at a tutorial level, suitable for readers who are familiar with
phylogenetic models but have had limited exposure to other kinds of graphi-
cal models.



326 A. Siepel and D. Haussler

12.1 Background

A phylo-HMM can be thought of as a machine that probabilistically generates
a multiple alignment, column by column, such that each column is defined by
a phylogenetic model. As with the single-sequence HMMs ordinarily used in
biological sequence analysis [7], this machine probabilistically proceeds from
one state to another1, and at each time step it “emits” an observable ob-
ject, which is drawn from the distribution associated with the current state
(Figure 12.1). With phylo-HMMs, however, the distributions associated with
states are no longer multinomial distributions over a set of characters (e.g.,
{A,C,G,T}) but are more complex distributions defined by phylogenetic mod-
els.

Phylogenetic models, as considered here, define a stochastic process of sub-
stitution that operates independently at each site in a genome. (The question
of independence will be revisited below.) In the assumed process, a character
is first drawn at random from the background distribution and assigned to the
root of the tree; character substitutions then occur randomly along the tree’s
branches from root to leaves. The characters that remain at the leaves when
the process has been completed define an alignment column. Thus, a phyloge-
netic model induces a distribution over alignment columns having a correla-
tion structure that reflects the phylogeny and substitution process (see [11]).
The different phylogenetic models associated with the states of a phylo-HMM
may reflect different overall rates of substitution (as in conserved and noncon-
served regions), different patterns of substitution or background distributions
(as in coding and noncoding regions), or even different tree topologies (as with
recombination [20]).

Typically with HMMs, a sequence of observations (here denoted X) is
available to be analyzed, but the sequence of states (called the “path”) by
which the observations were generated is “hidden” (hence the name “hidden
Markov model”). Efficient algorithms are available to compute the maximum-
likelihood path, the posterior probability that any given state generated any
given element of X, and the total probability of X considering all possible
paths (the likelihood of the model). The usefulness of HMMs in general, and
phylo-HMMs in particular, is in large part a consequence of the fact that
these computations can be performed exactly and efficiently. In this chapter,
three examples of applications of phylo-HMMs will be presented that par-
allel these three types of computation—prediction based on the maximum-
likelihood path (Example 12.1), prediction based on posterior probabilities
(Example 12.2), and improved goodness of fit, as evidenced by model likeli-
hood (Example 12.3). Finally, it will be shown how these algorithms may be
considered special cases of more general algorithms by regarding phylo-HMMs
as graphical models.

1Throughout this chapter, it is assumed that the Markov chain for state transi-
tions is discrete, first-order, and homogeneous.
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Fig. 12.1. (a) A 3-state single-sequence HMM with a multinomial distribution
associated with each state (boxed tables). A new state is visited at each time step
according to the indicated transition probabilities (numbers on arcs), and a new
character is emitted according to the probability distribution for that state. The
shaded boxes indicate the current state and a newly emitted character, which is
appended to the sequence X. In this example, one state has an A+T-rich distribution
(s1), one has a G+C-rich distribution (s2), and one favors purines (s3). (b) An
analogous phylo-HMM. In this case, the multinomial distributions are replaced by
phylogenetic models, and at each time step a new column in a multiple alignment
X is emitted. The phylogenetic models include parameters describing the overall
shape and size of the tree as well as the background distribution for characters
and the pattern of substitution. For simplicity, the tree parameters are represented
graphically, and only one auxiliary parameter is shown.

12.2 Formal Definition of a Phylo-HMM

Formally, we define phylo-HMM θ = (S, ψ,A,b) to be a four-tuple, consisting
of a set of states, S = {s1, . . . , sM}, a set of associated phylogenetic models,
ψ = {ψ1, . . . ,ψM}, a matrix of state-transition probabilities, A = {aj,k}
(1 ≤ j, k ≤ M), and a vector of initial-state probabilities, b = (b1, . . . , bM ). In
particular, ψj is the phylogenetic model associated with state sj (1 ≤ j ≤ M),
aj,k (1 ≤ j, k ≤ M) is the conditional probability of visiting state k at some
site i given that state j is visited at site i − 1, and bj (1 ≤ j ≤ M) is
the probability that state j is visited first (thus,

∑
k aj,k = 1 for all j, and∑

j bj = 1). Let X be the given alignment, consisting of L columns (sites) and
n rows (one for each of n species), with the ith column denoted Xi (1 ≤ i ≤ L).

Each phylogenetic model ψj , in turn, consists of several components. For
our purposes, a phylogenetic model ψj = (Qj ,πj , τ j ,βj) is a four-tuple con-
sisting of a substitution rate matrix Qj , a vector of background (or equilib-
rium) frequencies πj , a binary tree τ j , and a set of branch lengths βj . The
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model is defined with respect to an alphabet Σ (e.g., Σ = {A,C,G,T}) whose
size is denoted d. Generally, Qj has dimension d × d, and π has dimension d
(but see Example 12.3). The tree τ j has n leaves, corresponding to n present-
day taxa. The elements of βj are associated with the branches (edges) of the
tree. It is assumed that all phylogenetic models in ψ are defined with respect
to the same alphabet and number of species.

The probability that a column Xi is emitted by state sj is simply the prob-
ability of Xi under the corresponding phylogenetic model, P (Xi|ψj). This
quantity can be computed efficiently by a recursive dynamic programming
algorithm known as Felsenstein’s “pruning” algorithm [8]. Felsenstein’s algo-
rithm requires conditional probabilities of substitution for all bases a, b ∈ Σ
and branch lengths t ∈ βj . The probability of substitution of a base b for
a base a along a branch of length t, denoted P (b|a, t,ψj), is based on a
continuous-time Markov model of substitution, defined by the rate matrix Qj .
In particular, for any given nonnegative value t, the conditional probabilities
P (b|a, t,ψj) for all a, b ∈ Σ are given by the d × d matrix Pj(t) = exp(Qjt),

where exp(Qjt) =
∑∞

k=0
(Qjt)k

k! [28]. Qj can be parameterized in various more
or less parsimonious ways [50]. For most of this chapter, we will assume the
parameterization corresponding to the “HKY” model [13], which implies that
Qj has the form

Qj =

⎛⎜⎜⎝
− πCj κjπGj πTj

πAj − πGj κjπTj

κjπAj πCj − πTj

πAj κjπCj πGj −

⎞⎟⎟⎠ , (12.1)

where πj = (πAj , πCj , πGj , πTj), κj represents the transition/transversion rate
ratio for model ψj , and the − symbols indicate quantities required to make
each row sum to zero.

A “path” through the phylo-HMM is a sequence of states, φ = (φ1, . . . , φL),
such that φi ∈ {1, . . . , M} for 1 ≤ i ≤ L. The joint probability of a path and
an alignment is2

P (φ,X|θ) = bφ1P (X1|ψφ1
)

L∏
i=2

aφi−1,φi
P (Xi|ψφi

). (12.2)

The likelihood is given by the sum over all paths, P (X|θ) =
∑

φ P (φ,X|θ),
and the maximum-likelihood path is φ̂ = arg maxφ P (φ,X|θ). These quanti-
ties can be computed efficiently using two closely related dynamic-program-
ming algorithms known as the “forward” and Viterbi algorithms, respec-
tively. The posterior probability that observation Xi was produced by state
sj , denoted P (φi = j|X,θ), can be computed for all i and j by combin-
ing the forward algorithm with a complementary “backward” algorithm, in a
“forward-backward” procedure. Details can be found in [7].

2For simplicity, transitions to an “end” state are omitted here.
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Fig. 12.2. (a) A 4-state phylo-HMM for gene finding. States s1, s2, and s3 represent
the three codon positions, and state s4 represents noncoding sites. The associated
phylogenetic models ψ1, . . . , ψ4 capture characteristic properties of the different
types of sites, such as the higher average rate of substitution and the greater tran-
sition/transversion ratio, in noncoding and third-codon-position sites than in first-
and second-codon-position sites. (b) The eight mammals and phylogeny assumed
for the simulation, with branch lengths drawn in the proportions of the noncoding
model (ψ4). Subsets of species were selected to maximize the sum of the branch
lengths of the induced subtree—such as rat and dog for n = 2 and rat, dog, and cow
for n = 3.

Example 12.1 A toy gene finder

This example is meant to demonstrate, in principle, how a phylo-HMM can be
used for gene finding. Consider a simple 4-state phylo-HMM, with states for
the three codon positions and noncoding sites (Figure 12.2(a)). The problem
is to identify the genes in a synthetic data set based on this model using
nothing but the aligned sequence data and the model. (This is a multiple-
sequence version of the ab initio gene prediction problem.) For simplicity,
we assume the model parameters θ are given, along with the data set X. In
practice, the parameters have been set to reasonable values for a phylogeny
of n = 8 mammals (Figure 12.2(b))3, and the data set has been generated
according to these values. The state path was recorded during the generation
of the data, so that it could be used to evaluate the accuracy of predictions.
The synthetic data set consists of L = 100000 sites and 74 genes.

The Viterbi algorithm can be used for prediction of genes in this data
set in a straightforward way. For every site i (1 ≤ i ≤ L) and state j (1 ≤
j ≤ M), the emission probability P (Xi|ψj) is computed using Felsenstein’s
algorithm. These L×M values, together with the state-transition probabilities
A and initial-state probabilities b, are sufficient to define the joint probability

3Parameter estimates from [44] were used for the phylogenetic models, and the
state-transition probabilities were approximately based on estimates from [43]. (The
probability from s4 to s1 was inflated so that genes would not be too sparse.) A
uniform distribution was assumed for initial-state probabilities.
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Fig. 12.3. Nucleotide-level sensitivity and specificity for the phylo- and nonphylo-
HMMs on the simulated data set of Example 12.1. Results are shown for n = 1, . . . , 8
species.

P (φ,X|ψ) for any path φ and can be simply plugged into the standard Viterbi
algorithm to obtain a maximum-likelihood path, φ̂. This predicted path, in
turn, defines a set of predicted genes.

To evaluate the effect on prediction accuracy of the number of species in
the data set, subsets of n = 1, . . . , 8 sequences were selected from the full
alignment (Figure 12.2(b)), and a separate set of predictions was produced
for each subset. Predictions were also produced with an alternative model, in
which emission probabilities were based on the assumption that all characters
in a column were independently drawn from the background (equilibrium)
distribution of each state—in other words, the correlation structure implied
by the phylogeny was ignored. This model, which will be called the “nonphylo-
HMM,” allows the importance of the phylogeny in the phylo-HMM to be
assessed.

The nucleotide-level sensitivity (portion correctly predicted of sites ac-
tually in genes) and specificity (portion correct of sites predicted to be in
genes) for both models are shown in Figure 12.3 as the number of species
increases from n = 1 to n = 8. The two models are identical for n = 1 (where
there is no phylogeny to consider), but as the number of species increases
from n = 2, . . . , 8, the performance of the phylo-HMM rapidly improves, with
about 98% sensitivity and specificity achieved by n = 2, and 99% sensitivity
and specificity achieved by n = 5. The nonphylo-HMM, on the other hand,
appears to improve slightly then decline in both sensitivity and specificity.4

4It might be expected that the prediction accuracy of the nonphylo-HMM would
simply fail to improve as rapidly as that of the phylo-HMM rather than declining.
The reason for the decline seems to be that the erroneous assumption of indepen-
dence causes random fluctuations in base composition to appear more significant
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The phylo-HMM is able to capitalize on differences in branch lengths and sub-
stitution patterns, while the nonphylo-HMM has to rely completely on more
subtle differences in base composition.

This example is obviously a gross simplification of the real gene prediction
problem. Here, the model used for prediction exactly matches the model used
to generate the data, while in the real problem, the model for prediction tends
to fit the data in a much more approximate way. Even if slightly contrived,
however, this example should help to illustrate how the information encoded in
substitution rates and patterns can be exploited in problems of segmentation,
such as gene prediction. ��

Example 12.2 Identification of highly conserved regions

Our second example is concerned with a phylo-HMM in which states corre-
spond to “rate categories”—classes of sites assumed to differ only in overall
rate of substitution—rather than “functional categories,” as in the previous
example. The problem is to identify highly conserved genomic regions in a
set of multiply aligned sequences. Such regions are likely to be functionally
important, and hence their identification has become a subject of considerable
interest in comparative genomics; see Margulies et al. [32] for a recent review
and a comprehensive discussion. In this example, we will use a phylo-HMM
to identify conserved regions in a subset of the data set analyzed by Mar-
gulies et al. It will be shown that a phylo-HMM can be used to obtain results
comparable to theirs and has certain potential advantages over their methods.

A phylo-HMM like the one proposed by Felsenstein and Churchill [9] is as-
sumed, with k states corresponding to k rate categories and state transitions
defined by a single “autocorrelation” parameter λ (Figure 12.4; a similar
model, but with a more complex parameterization of transition probabilities,
was proposed by Yang [52]). Regions of the alignment that are likely to have
been generated by the “slowest” rate categories will be considered putative
“Multi-species Conserved Sequences” (MCSs) [32]. Specifically, we will look
at sites i for which the posterior probability P (φi = 1|X,θ) is high, assuming
state s1 has the smallest rate constant. Posterior probabilities will be com-
puted using the forward-backward algorithm. As in Example 12.1, the L × k
table of emission probabilities—P (Xi|ψj) for every site i (1 ≤ i ≤ L) and
state j (1 ≤ j ≤ k)—together with the state-transition and initial-state prob-
abilities (parameters A and b of the phylo-HMM), can be plugged into the
standard forward-backward algorithm for HMMs. In other words, once the
emission probabilities are computed, the phylogenetic models can be ignored,
and the phylo-HMM can be treated like an ordinary HMM. Note that infer-
ences about the evolutionary rate at each site could alternatively be based on
the Viterbi path. We have opted to use posterior probabilities instead, partly
for illustration and partly because they can be conveniently interpreted as a

than they really are. These fluctuations are “explained” by changes in state, result-
ing in errors in the inferred path and a decline in accuracy.
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Fig. 12.4. State-transition diagram for the autocorrelated rate-variation model
of Felsenstein and Churchill [9] with k = 3 rate categories and a uniform stationary
distribution. The autocorrelation parameter λ defines all transition probabilities,
as shown. It takes values between 0 and 1 and describes the degree to which the
evolutionary rates at adjacent sites tend to be similar. The values r1, r2, and r3

are applied as scaling constants to the branch lengths of a phylogenetic model; all
parameters other than branch lengths are left unchanged. In our case, these “rate
constants,” as well as λ, are estimated (approximately) from the data (see [42]).

continuous-valued “conservation score” that can be plotted along the genome
(see below). With this model, the posterior probabilities also tend to be more
robust than the Viterbi path, which is highly sensitive to λ.

The data set consists of about 1.8 Mb of human sequence from chromo-
some 7 and a homologous sequence from eight other eutherian mammals [46]
(we consider only the nine mammals of the 12 species analyzed in [32].) The
species and phylogeny are as shown in Figure 12.2(b), except that in this case
the chimp is also included and appears in the phylogeny as a sister taxon to
the human. Assuming the HKY substitution model and k = 10 states, we
fitted a phylo-HMM to this alignment, obtaining an estimate of λ̂ = 0.94.
Using these parameter estimates, we then computed the posterior probability
of each state at each site. The posterior probabilities for s1 in a selected region
of the alignment are shown in Figure 12.5 along with the conservation scores
developed by Margulies et al. The known exons in this region all coincide with
regions of high posterior probability, as do several conserved intronic features
identified by Margulies et al. [32].

A detailed comparison of results is not possible here, but we note that the
posterior probabilities based on the phylo-HMM are qualitatively very simi-
lar to the binomial- and parsimony-based conservation scores of Margulies et
al. [32]. In addition, the phylo-HMM may have certain advantages as a frame-
work for addressing this problem. For example, it requires no sliding window
of fixed size and, as a result, is capable of identifying both very short highly
conserved sequences and long, not so conserved sequences. In addition, it can
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Fig. 12.5. A screen shot from the UCSC Genome Browser [25] showing a selected
region of the data set of Example 12.2, including several exons of the MET gene
(black boxes at top). The binomial-based (light gray) and parsimony-based (medium
gray) conservation scores of Margulies et al. [32] are shown as tracks in the browser,
as are the posterior probabilities (×1000) of state s1 in the phylo-HMM (dark gray).
Plots similar to this one, showing phylo-HMM-based conservation scores across the
whole human genome, can be viewed online at http://genome.ucsc.edu.

be used with any phylogenetic model, including, for example, ones that allow
for nonhomogeneities in the substitution process or context-dependent substi-
tution (see Example 12.3); it extends naturally to the case in which different
functional categories of sites, as well as rate categories, are considered [42];
and it could be adapted to model properties such as the length distributions
of MCSs (e.g., using techniques from gene finding). ��

12.3 Higher-Order Markov Models for Emissions

It is common with (single-sequence) gene-finding HMMs to condition the emis-
sion probability of each observation xi on the observations that immediately
precede it in the sequence (e.g., xi−2 and xi−1). By taking into consideration
the “context” for each observation, emission probabilities become more in-
formative, and the HMM can discriminate more effectively between different
classes of observations. For example, in a third-codon-position state, the emis-
sion of a base xi = “A” might have a fairly high probability if the previous
two bases are xi−2 = “G” and xi−1 =“A” (GAA = Glu) but should have zero
probability if the previous two bases are xi−2 = “T” and xi−1 = “A” (TAA
= Stop).

Considering the N observations preceding each xi corresponds to using an
Nth-order Markov model for emissions. (Note that such a model does not im-
ply an Nth-order Markov chain for state transitions; indeed, things are kept
simpler, and the model remains mathematically valid, if state transitions con-
tinue to be described by a first-order Markov chain.) An Nth-order model for
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emissions is typically parameterized in terms of (N +1)-tuples of observations,
and conditional probabilities are computed as

P (xi|xi−N , . . . , xi−1) =
P (xi−N , . . . , xi−1, xi)∑
y P (xi−N , . . . , xi−1, y)

, (12.3)

with the numerator being the probability of the (N + 1)-tuple (xi−N , . . . , xi)
and the sum in the denominator being over all possible observations y that
could appear in place of xi.

An Nth-order Markov model for emissions can be incorporated into a
phylo-HMM in essentially the same way. In this case, a whole alignment col-
umn Xi is considered in place of each single base xi. Because we will primar-
ily be concerned below with tuple size, let us also redefine N and speak of
(N − 1)st-order Markov models and N -tuples of observations instead of Nth-
order Markov models and (N +1)-tuples of observations. With these changes,
equation (12.3) can be rewritten as

P (Xi|Xi−N+1, . . . ,Xi−1) =
P (Xi−N+1, . . . ,Xi−1,Xi)∑
Y P (Xi−N+1, . . . ,Xi−1,Y)

. (12.4)

Notice that the sum in the denominator is now over all possible alignment
columns Y and has dn terms, where d is the size of the alphabet (d = |Σ|)
and n is the number of rows (species) in the alignment. To compute the quan-
tity in the numerator of equation (12.4), we replace an ordinary phylogenetic
model, defined with respect to an alphabet Σ, with what we will call an
“Nth-order” phylogenetic model, defined with respect to ΣN , the alphabet
of N -tuples of characters from Σ.5 (The new rate matrix and vector of equi-
librium frequencies will have dimensions dN × dN and dN , respectively.) The
N -tuple of columns in the numerator is reinterpreted as a column of N -tuples,
and its probability is computed with Felsenstein’s pruning algorithm using the
Nth-order phylogenetic model. The sum in the denominator can no longer be
evaluated directly, but it can be computed efficiently by dynamic program-
ming using a slight adaptation of Felsenstein’s algorithm [44, 42]. This new
algorithm differs from the original only in its initialization strategy. Thus,
the conditional probability P (Xi|Xi−N+1, . . . ,Xi−1) can be computed with
an Nth-order phylogenetic model and two passes through Felsenstein’s algo-
rithm, one for the numerator and one for the denominator of equation (12.4).
This procedure is feasible only for small N ; so far, for N ≤ 3.

5Note that the “order” of a phylogenetic model is given by the size of the tuples
considered and is not equal to the order of the Markov model for emissions. Here,
N th-order phylogenetic models are used to define an (N −1)st-order Markov model.
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Once the conditional emission probabilities of equation (12.4) are available,
they can be substituted directly into equation (12.2). For example, in the case
of N = 3, equation (12.2) can be rewritten as

P (φ,X|θ) = bφ1P (X1|ψφ1
)aφ1,φ2P (X2|X1,ψφ2

)

×
L∏

i=3

aφi−1,φi
P (Xi|Xi−2,Xi−1,ψφi

). (12.5)

The forward, Viterbi, and forward-backward algorithms are unaffected by the
use of a higher-order Markov model for emissions.

It is important to note that this strategy for incorporating higher order
Markov models into a phylo-HMM allows “context” to be considered in the nu-
cleotide substitution process as well as in the equilibrium frequencies of bases.
Nth-order phylogenetic models describe the joint substitution probabilities of
N -tuples of nucleotides. As a result, the conditional probabilities of equation
(12.4) may reflect various important context or neighbor dependencies in the
substitution process, such as the tendency for synonymous substitutions to
occur at a higher rate than nonsynonymous substitutions in coding regions,
or the tendency for a high rate of C→T transitions in CpG dinucleotides.
Equations (12.4) and (12.5), as will be shown in Example 12.3, essentially
provide a way of “stringing together” context-dependent phylogenetic models
so that context dependencies can be considered between every adjacent pair
of columns in an alignment.

Example 12.3 Modeling context-dependent substitution

In this example, we will look at how goodness of fit is affected by increasing
the order N of a phylogenetic model and by allowing for Markov dependence
between sites (as in equation (12.5)). We will consider the goodness of fit of
various independent-site (N = 1) and context-dependent (N > 1) phyloge-
netic models with respect to about 160,000 sites in aligned noncoding DNA
from nine mammalian species. The results presented here are taken from [44].
(The full paper should be consulted for complete details.)

For convenience, let us call the class of phylo-HMMs described by equa-
tions (12.4) and (12.5) “Markov-dependent” models because they allow for
Markov dependence of columns in the alignment. As will be seen below, these
models are actually only approximations of models that properly allow for
Markov dependence across sites in the substitution process. Regardless, these
Markov-dependent models are valid probability models (the probabilities of all
alignments of a given size sum to one), so it is fair to evaluate goodness of fit
based on model likelihoods. The way in which these models are approximate
is discussed in detail in Section 12.7 and the Appendix.

In this example, there are no functional or rate categories to consider.
We assume that the HMM has only a single state, so nothing is actually
“hidden”—only one path is possible, and the model reduces to a Markov
chain.
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As a result, equation (12.5) becomes

P (φ,X|θ) = P (X1|ψ1)P (X2|X1,ψ1)
L∏

i=3

P (Xi|Xi−2,Xi−1,ψ1). (12.6)

This simplification allows us to focus on the impact of higher-order Markov
models and to avoid issues related to the HMM structure. Keep in mind,
however, that higher-order Markov models can be used with a nontrivial HMM
as easily as with this trivial one.

In [44], various models were fitted to the data set of 160,000 noncoding
sites, and their likelihoods were compared. The models differed in the type
of phylogenetic model used (its order N and the parameterization of its rate
matrix) and whether N -tuples of columns were assumed to be independent or
whether Markov dependence was allowed. We will focus here on four types of
phylogenetic models: the HKY and UNR first-order models, the U2S second-
order model, and the U3S third-order model. The HKY model, introduced in
Section 12.2, is treated as a baseline. The UNR, or “unrestricted,” model has
a separate free parameter for every nondiagonal element of the rate matrix
and is the most general model possible for single-nucleotide substitution (see,
e.g., [51]). The U2S and U3S models are fully general second and third-order
models, respectively, except that they assume strand symmetry (so that, e.g.,
the rate at which AG changes to AC is the same as the rate at which CT
changes to GT), and like most codon models [12], they prohibit instantaneous
substitutions of more than one nucleotide. They have 48 and 288 rate-matrix
parameters, respectively. We will consider two cases for each phylogenetic
model: an “independent tuples” case, in which the data set was partitioned
into N -tuples of columns, which were considered independent; and a Markov-
dependent case, in which N -tuples were allowed to overlap, and likelihoods
were computed with equations (12.4) and (12.6). Note that, with first-order
models, the independent tuples and Markov-dependent cases are identical.

Figure 12.6(a) shows the log-likelihoods of the UNR, U2S, and U3S phy-
logenetic models, with and without Markov dependence, relative to the log-
likelihood of the HKY model. Even when N -tuples are considered indepen-
dent, context-dependent models (here U2S and U3S) produce a striking im-
provement in likelihood—a far larger increase than is obtained by replacing
even a fairly parsimonious first-order model (HKY) with a fully general one
(UNR). When Markov dependence between sites is introduced, another large
improvement occurs. This improvement appears to be largely a consequence
of the fact that, with Markov dependence, every boundary between adjacent
sites is considered, while with independent tuples, only every other (U2S) or
every third (U3S) such boundary is considered. Notice that, even with Markov
dependence, goodness of fit improves significantly when a second-order model
(U2S) is replaced with a third-order model (U3S). This is probably partly
because of direct context effects that extend beyond the nearest neighbors of
each base and partly because the third-order model does a better job than
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Fig. 12.6. (a) Log-likelihoods of the UNR, U2S, and U3S phylogenetic models, with
and without Markov dependence between sites, relative to the log-likelihood of the
HKY model. Results are for an alignment of nine species and approximately 160,000
sites of noncoding data, as described in [44]. (b) Parameter estimates of substitution
rates for the U3S model vs. estimates based on counts from aligned human genes and
pseudogenes [16]. The rates cluster into three groups: transversions, transitions, and
CpG transitions. (CpG transversions cluster with non-CpG transitions.) In general,
the two sets of estimates agree fairly well, considering the differences in methods
and data sets. (See [44] for a detailed discussion.)

the second-order model of accounting for indirect context effects—that is, it
provides a better approximation of a proper process-based model of context-
dependent substitution (see below).

The observed improvements remain essentially unchanged when a mea-
surement is used that considers the different numbers of parameters in the
models and the size of the data set (the Bayesian information criterion) and
in cross-validation experiments [44]. Thus, the apparent improvement in good-
ness of fit is not an artifact of the number of parameters in the models.

The U2S and U3S models allow context-dependent substitution rates to
be estimated with full consideration of the phylogeny and allowance for mul-
tiple substitutions per site, unlike simpler “counting” methods for estimating
context-dependent substitution rates [16]. Parameter estimates indicate a wide
variation in rates, spanning a 200-fold range, and, in particular, pronounced
CpG effects (Figure 12.6(b)).

Coding regions can be modeled using a simple 3-state phylo-HMM, with
a separate third-order phylogenetic model for each codon position. Thus, the
state corresponding to the third codon position considers columns of aligned
codons, like an ordinary codon model, but the two other states consider
columns of nucleotide triples that are out-of-frame, and, consequently, these
states can capture context effects that cross codon boundaries. Such a model
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improves substantially on ordinary codon models, indicating that context ef-
fects that cross codon boundaries are important [44] (see also [40]). ��

12.4 Phylogenetic Models, HMMs, and Phylo-HMMs as
Graphical Models

In recent years, probabilistic models originally developed in various research
communities have been unified under the heading of “graphical models.”
Graphical models provide an intuitively appealing framework for construct-
ing and understanding probabilistic models and at the same time allow for
rigorous analysis, in very general statistical and graph-theoretic terms, of al-
gorithms for inference and learning. Many familiar classes of models fit natu-
rally into the graphical models framework, including HMMs and phylogenetic
models, as well as mixture models and hierarchical Bayesian models. A phylo-
HMM can be seen as a graphical model whose structure is a hybrid of the
graphical models for HMMs and phylogenetic models (Figure 12.7). Viewing
phylo-HMMs as graphical models helps to provide insight about why they
permit efficient inference and why this property may be sacrificed when as-
sumptions such as site independence are relaxed. Our discussion of graphical
models will necessarily be brief; other tutorials should be consulted for a more
complete introduction to the field (e.g., [31, 14, 23]).

In graphical models, random variables are represented by nodes in a graph,
and dependencies between variables are represented by edges (Figure 12.7).6

Let X be the set of random variables represented by a graph with nodes
(vertices) V and edges E such that Xv is the variable associated with v ∈ V .
In addition, let XC be the subset of variables associated with C ⊆ V , and
let lowercase letters indicate (sets of) instances of variables (e.g., xv, xC , and
x). Graphical models can be defined in terms of directed or undirected graphs
and accordingly are called directed or undirected models; here we will focus on
the directed case, which for our purposes is simpler to describe. In a directed
model, the edges of the graph correspond to local conditional probability
distributions, and the joint probability of a set of instances x is a product of
the conditional probabilities of nodes given their parents,

P (x) =
∏
v∈V

P (xv|xPv ), (12.7)

where Pv denotes the set of parents of node v and P (xv|xPv ) is the local
conditional probability associated with xv. It should not be too hard to see,
looking at Figure 12.7, that equation (12.7) generalizes the joint probability
of a sequence and a particular path in the case of an HMM and the joint

6The brief introduction to graphical models provided here roughly follows the
more detailed tutorial of Jordan and Weiss [23].
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Fig. 12.7. Graphical model representations of (a) an HMM, (b) a phylogenetic
model, and (c) a phylo-HMM. In each case, nodes correspond one-to-one with ran-
dom variables; shaded nodes represent observed variables, and unshaded nodes rep-
resent unobserved (latent) variables. These are directed graphical models based on
directed acyclic graphs (sometimes called Bayesian networks). The edges between
nodes correspond to local conditional probability distributions and can be thought
of as implying dependencies between variables. (More precisely, the set of all edges
defines a set of conditional independence assertions about the variables.) In (a), each
Xi represents an observation in the sequence and each φi represents a state in the
path. The conditional probability distribution for observation Xi given state φi is
incorporated in the directed edge from φi to Xi, and the conditional probability
distribution for state φi given state φi−1 (i.e., of a transition from φi−1 to φi) is
incorporated in the directed edge from φi−1 to φi. In (b), each set of nodes collec-
tively labeled Xi represents an alignment column, and each set collectively labeled
Yi represents a set of ancestral bases. The conditional probabilities of nucleotide
substitutions (based on the continuous-time Markov model) are incorporated in the
directed edges from each parent node to its two children. In (c), conventions from
(a) and (b) are combined.

probability of an alignment and a particular set of ancestral bases in the case
of a phylogenetic model.

The general problem of probabilistic inference is to compute marginal
probabilities from this joint distribution—probabilities of the form P (xU ) =∑

xW
P (xU , xW ), where (U, W ) is a partitioning of V . The likelihood is an

example of such a marginal probability, with xU being the observed data and
XW being the set of latent variables. When the likelihood of an HMM is



340 A. Siepel and D. Haussler

CBA
X2

X5

X3 X4

X1

X2

X5

X3 X4

X1

m34(x4)

m45(x5)

m24(x4)

m14(x4)

m34(x4)

m24(x4)

m14(x4)

X2

X5

X3 X4

X1

m42(x2)

m43(x3)

m54(x4)

m41(x1)

m45(x5)

Fig. 12.8. (a) A directed graphical model whose nodes form an arbitrary tree. The
marginal probability of an observed value of X5 is desired. (b) The intermediate
values of the elimination algorithm can be seen as “messages” that are passed from
one node to another in the direction of X5. (c) In the belief-propagation algorithm,
all possible messages are generated simultaneously; the marginal probability of each
node is a product of the incoming messages. (Based on Figure 1 of Jordan and Weiss
[23].)

computed, xU is the (observed) sequence and XW is the (latent) path. With a
phylogenetic model, the procedure is applied independently at each site, and
xU is an (observed) alignment column and XW is a set of (latent) ancestral
bases. Conditional probabilities of interest, such as the posterior probabilities
of Example 12.2, can be computed as quotients of marginal probabilities. For
instance, suppose xU is the observed data and Xw (w ∈ W ) is a latent variable;
then P (xw|xU ) = P (xU∪{w})

P (xU ) .
Marginal probabilities can always be computed from the complete joint

distribution by brute-force summation7. The problem is to keep these compu-
tations tractable as the number of random variables becomes large. It turns
out that if a directed graphical model is a tree (or set of trees), as in Figure
12.7(a, b) and Figure 12.8, meaning that every node has at most one parent,
then exact inference can be accomplished efficiently by dynamic program-
ming. (As we will see, efficient exact inference is also possible in certain cases
in which the directed graph is not a tree.)

The basic algorithm for computing marginal probabilities is known as
“elimination”, and is most easily described by example. Consider the graph
of Figure 12.8(a), with X = (X1, X2, X3, X4, X5) and edges as depicted. The
elimination algorithm takes advantage of the commutativity of sums and prod-
ucts, and reuse of intermediate computations, to reduce the computational
complexity of a marginal summation.

7This discussion is restricted to discrete random variables, although it extends
directly to the continuous case.
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Algebraically, the algorithm proceeds as follows,

P (x5) =
∑

x1,x2,x3,x4

P (x1, x2, x3, x4, x5)

=
∑

x1

∑

x2

∑

x3

∑

x4

P (x1)P (x2|x4)P (x3|x4)P (x4|x1)P (x5|x4)

=
∑

x4

P (x5|x4)
∑

x3

P (x3|x4)
∑

x2

P (x2|x4)
∑

x1

P (x1)P (x4|x1)

=
∑

x4

P (x5|x4)
∑

x3

P (x3|x4)
∑

x2

P (x2|x4)m14(x4)

=
∑

x4

P (x5|x4)
∑

x3

P (x3|x4)m24(x4)m14(x4)

=
∑

x4

P (x5|x4)m34(x4)m24(x4)m14(x4)

= m45(x5), (12.8)

where the terms of the form mij(xj) denote the results of intermediate
(nested) summations. (Each mij(xj) is the result of a sum over xi and is
a function of xj .) The algorithm can be described in graph-theoretic terms as
a procedure that eliminates one node at a time from the graph until only the
node corresponding to the desired marginal probability remains. From the al-
gebraic description, many readers will recognize the similarity to Felsenstein’s
pruning algorithm [8]. Felsenstein’s algorithm, it turns out, is an instance of
the elimination algorithm—one of the earliest instances to be discovered. The
forward algorithm is another instance of the elimination algorithm, as is the
combined forward/Felsenstein algorithm that we used above to compute the
likelihood of a phylo-HMM. The Viterbi algorithm is closely related to the
elimination algorithm; it can be derived by noting that the “max” operator
commutes with products, just as the summation operator does. Note that the
elimination algorithm depends on a good “elimination ordering”. An optimal
ordering is difficult to find for arbitrary graphs but can be determined easily
for specific classes of models (such as with HMMs, phylogenetic models, and
phylo-HMMs).

Often, not just one but many marginal probabilities are desired. The elim-
ination algorithm can be extended to compute the marginal probabilities for
all nodes in two passes across the graph, with conditional probabilities com-
puted in a forward pass and marginals in a backward pass [30]. Typically, this
procedure is described as “belief propagation” [38], with node elimination
replaced by a “message-passing” metaphor (Figure 12.8(b, c)). The belief-
propagation (also called “sum-product”) algorithm generalizes the forward-
backward algorithm for HMMs and algorithms for phylogenetic models that
compute marginal probabilities of ancestral bases [27].

We have focused on directed models, but undirected models are similar.
Moreover, the undirected case turns out to be, in a sense, the more general
one with respect to inference. In undirected models, the graph is viewed in
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terms of cliques (maximal fully connected subgraphs), and a potential function
(essentially an unnormalized probability distribution) is associated with each
clique. The joint probability of all variables (equation (12.7)) is now a prod-
uct over cliques, with a normalizing constant to ensure that

∑
x P (x) = 1.

Directed graphs can be converted to undirected graphs by a process known
as “moralization,” wherein the arrowheads of the edges are removed and new
edges are added between all parents of each node. (The resulting graph is
called the “moral” graph, because it requires that all parents be “married”.)
By explicitly creating a clique that includes each node and all of its parents,
moralization ensures that all dependencies implied by the local conditional
distributions of the directed graph are captured in the undirected graph.

The moral graph for a directed tree is simply an undirected tree (i.e., no
new edges are added), and the belief-propagation algorithm for this undirected
tree is the same as that illustrated in Figure 12.8. For undirected graphs that
contain cycles, a generalization of the belief propagation algorithm, called the
“junction-tree” algorithm, can be used. The junction-tree algorithm operates
on a tree of cliques rather than of nodes and computes (unnormalized) mar-
ginal probabilities for cliques. (Marginal probabilities of nodes can be obtained
afterwards.) It requires an additional step, called “triangulation,” in which
new edges are added to the graph to represent certain implicit dependencies
between nodes. A complete introduction to the junction-tree algorithm is not
possible here. (More details can be found in [31] and [23].) The key point
for our purposes is that the computational complexity of the algorithm is ex-
ponential in the size of the largest clique. Thus, graphs with cycles can still
be handled efficiently if their clique size is constrained to be small. It is for
this reason that phylo-HMMs permit efficient inference; their (triangulated)
moral graphs have cycles, but the maximum clique size turns out to be three8.
When the clique size is large, exact inference is intractable, and approximate
methods are required. Some of the approximate methods in use include Monte
Carlo algorithms and variational methods, which include mean field methods
and “loopy” belief propagation. (Approximate methods are partially surveyed
in [23]; see also [37, 53, 48, 49].)

With phylo-HMMs, the junction-tree algorithm allows computation not
only of the posterior probability that each site was emitted by each state
(as in Example 12.2), but also of marginal posterior probabilities of ancestral
bases considering all paths. In addition, the algorithm can be used to compute
posterior expected values of interest, such as the expected number of substi-
tutions per site, or the expected numbers of each type of substitution (A→C,
A→G, etc.) along each branch of the tree (the sufficient statistics for parame-
ter estimation by expectation maximization [10, 44]). Using the junction tree
algorithm in the expectation step of an expectation-maximization algorithm,

8In the case of a phylo-HMM, the parents of each node are already connected
(Figure 12.7(c)), so moralization simply amounts to removing the arrowheads from
all edges in the graph. Moreover, it turns out that this graph is already triangulated.
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Fig. 12.9. (a) The lattice that results when context-dependent substitution is in-
corporated into a phylogenetic model, shown as an undirected graphical model. For
clarity, only a single leaf node is shown for each site, with a chain of ancestral nodes
leading to the root. (The phylogeny can be imagined as going into and out of the
page.) Each node depends not only on its parent node in the phylogeny but also
on its parent’s left and right neighbors in the alignment. (b) A version of the graph
in (a) with intermediate nodes added to the branches of the tree. As more and
more nodes are added, the branch lengths between them approach zero, and the
model approaches a true “process-based” model of context-dependent substitution.
In both (a) and (b), the untriangulated graph is shown; additional edges appear
during triangulation, leading to prohibitively large clique sizes.

it is possible to train a phylo-HMM (including its phylogenetic models) com-
pletely from unlabeled data. This technique could be used, for example, for
de novo detection of binding-site motifs in aligned sequences.

Once the effect of cycles in graphical models is understood, it becomes
clear that efficient exact inference will not be possible with models that accu-
rately describe the process of context-dependent substitution, by allowing for
dependencies between adjacent bases on all branches of the phylogenetic tree.
Figure 12.9(a) illustrates what happens to the graphical structure of a phylo-
genetic model when this kind of proper contextdependence is introduced. The
additional edges in the graph lead to the formation of a kind of lattice of depen-
dency, reminiscent of the classic Ising model from statistical mechanics. (This
case is like a two-dimensional Ising model, except that the branching structure
of the phylogeny creates a branching structure of two-dimensional sheets, not
shown in Figure 12.9(a).) Unless the size of the lattice is constrained to be
small, models of this kind are well-known to require approximate methods for
inference.

Moreover, for context-dependent substitution to be modeled properly, it
should be integrated into the continuous-time Markov model of substitution,
so that context effects can propagate indefinitely across sites as substitutions
accumulate along each branch of the phylogeny. This behavior can be approx-
imated by introducing intermediate nodes in the phylogeny while keeping
total branch lengths constant, as shown in Figure 12.9(b). As more and more
nodes are introduced, the branch lengths between them will approach zero,
and the model will approach the desired “process-based” model. Exact infer-
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ence is intractable for such models, even in the case of two sequences and an
unrooted tree, but Markov chain Monte Carlo (MCMC) methods have been
applied in this special case [21, 39]. The stationary distribution of a related
process has also been studied [2]. Extending such process-based models to full
phylogenies appears difficult, even with MCMC. However, a model without
intermediate nodes (as in Figure 12.9(a)) has been studied by Jojic et al. [22]
using variational methods for approximate inference. Jojic et al. have shown
experimentally that this model can produce significantly higher likelihoods
than the U2S version of the more approximate Markov-dependent model de-
scribed in Section 12.3.

The model of Section 12.3 essentially works by defining a simple (N −1)st-
order Markov chain of alignment columns (observed variables), while ignoring
the dependencies between the ancestral bases (latent variables) that are asso-
ciated with overlapping N -tuples of columns. As a result, this model has no
reasonable process-based interpretation. Nevertheless, it is a valid probability
model that appears to fit the data well, and it allows for exact inference at
modest computational cost [44]. The Markov-dependent model is compared
with the model of Jojic et al. in more detail in the Appendix.

12.5 Discussion

Phylogenetic hidden Markov models are probabilistic models that describe
molecular evolution as a combination of two Markov processes—one that op-
erates in the dimension of space (along a genome) and one that operates in
the dimension of time (along the branches of a tree). They combine HMMs
and phylogenetic models, two of the most powerful and widely used classes
of probabilistic models in biological sequence analysis. Phylo-HMMs often fit
aligned DNA sequence data considerably better than models that treat all
sites equally or that fail to allow for correlations between sites. In addition,
they are useful for identifying regions of interest in aligned sequences, such as
genes or highly conserved regions.

Three examples have been presented to illustrate some of the ways in which
phylo-HMMs may be used, and each one deserves additional comment. Apply-
ing phylo-HMMs to gene prediction (Example 12.1) is a much harder problem
than implied here, for several reasons. First, while coding and noncoding sites
have quite different properties on average, both types of sites are heteroge-
neous mixtures, so that correctly classifying particular sequence segments can
be difficult. For example, protein-coding sites show higher average levels of
evolutionary conservation than noncoding sites, but mammalian genomes do
appear to have many islands of conservation in noncoding regions [4, 32], which
can lead to false-positive predictions of exons [43]. Similarly, coding sites in
mammalian genomes exhibit higher average G+C content than do noncoding
sites, but base composition varies considerably in both kinds of sites from
one genomic region to another, which can have the effect of confounding gene
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prediction software. Second, the gene-finding problem ends up being largely
about identifying the boundaries of exons as determined by splice sites, and
phylo-HMMs are not necessarily the best tools for detecting these so-called
“signals.” Gene finders are often based on composite models, with special-
ized submodels for signal detection; a similar approach may be required for
phylo-HMMs to be effective in gene prediction. A third problem is that a
straightforward phylo-HMM like that of Example 12.1 induces a geometric
distribution of exon lengths, which is known to be incorrect. Some of these
problems have been addressed with a “generalized” phylo-HMM that allows
for arbitrary length distributions of exons, and also uses different sets of para-
meters for regions of different overall G+C content [33]. In other recent work, it
has been shown that the prediction performance of a phylo-HMM-based exon
predictor can be improved significantly by using context-dependent phyloge-
netic models, and by explicitly modeling both conserved noncoding regions
and nucleotide insertions/deletions [43]. Additional challenges in multispecies
gene prediction are also discussed in [43], stemming from lack of conservation
of exon structure across species and errors in the multiple alignment.

There are many possible ways of identifying conserved regions (Exam-
ple 12.2), and even quite different methods (e.g., ones that do and do not
consider the phylogeny) tend to be fairly concordant in the regions they iden-
tify [45, 32]. Perhaps more difficult than proposing a method to identify con-
served regions is confirming that it produces biologically useful results. Lim-
ited kinds of validation can be done computationally, but this is ultimately an
experimental problem and must be addressed in the laboratory. Most likely,
phylo-HMMs of the kind described in Example 12.2 will not produce results
dramatically different results from other methods, but, as mentioned above,
they provide a flexible framework in which to address the problem. It should
be noted that, while the original papers introducing phylo-HMMs focused on
improving the realism and goodness of fit of models allowing for rate varia-
tion [9, 52], they also showed that phylo-HMMs could be used to predict the
evolutionary rate at each site.

Modeling context-dependent substitution is an active area of current re-
search, and the Markov-dependent model described here (Example 12.3) rep-
resents only one of several possible approaches to this problem. The approach
of Jojic et al. [22], discussed at the end of Section 12.4, is another, and we are
aware of work in progress on at least two other, completely different methods.
At this stage, it remains unclear which models and algorithms for inference
will allow for the best compromise between computational efficiency and good-
ness of fit. It is likely that different approaches will turn out to be appropriate
for different purposes.

Space has not allowed for a complete survey of the applications of phylo-
HMMs. In particular, we have not discussed their use in the prediction of
secondary structure [11, 47, 29] or the detection of recombination [20], nor
have we touched on their use in a Bayesian setting [34, 19]. We also have not
discussed the models similar in spirit to phylo-HMMs that have been applied
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to the problems of RNA secondary structure prediction [26] and multiple
alignment [36, 18, 17, 15]. It has been noted [41] that phylo-HMMs them-
selves could be used for multiple alignment in a direct extension of the way
pair HMMs are used for pairwise alignment [7]. Indeed, phylo-HMMs provide
a natural framework for simultaneously addressing the multiple alignment and
gene prediction problems, as has been done in the two-sequence case with pair
HMMs [1, 35]. Another area in which phylo-HMMs may prove useful is ho-
mology searching. In principle, the profile HMMs that are commonly applied
to this problem [7] could be adapted to use phylogenetic models instead of
assuming independence of aligned sequences or relying on ad hoc weighting
schemes.
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Appendix

In this short appendix, we will examine more closely how the Markov-
dependent model for context-dependent substitution that was presented in
Section 12.3 (Example 12.3) compares with the graphical models of Section
12.4. We will concentrate on the model studied by Jojic et al. [22], which we
will refer to as the “simple-lattice” model, in contrast with the full process-
based model of Figure 12.9(b). The undirected graph for the simple-lattice
model is shown in Figure 12.10(a), assuming a very small alignment of n = 3
sequences and L = 3 columns. (The complete graph is shown here, whereas in
Figure 12.9(a) only a subgraph was shown.) From Figure 12.10(a), it should
be clear that the graph contains an L × 2 lattice of nodes for each branch of
the phylogeny.

The Markov-dependent model of Section 12.3 is a graphical model insofar
as it is based on a Markov chain of random variables, but it is quite different
from the simple-lattice model. The Markov-dependent model actually operates
at two levels, as illustrated in Figure 12.10(b). At one level (top of figure), a
simple Markov chain of alignment columns is assumed, with each column being
treated as an observed random variable. At another level (boxes at bottom of
figure), the conditional probability of each column given the previous column
is computed according to a phylogenetic model for pairs of columns. (Each
of these phylogenetic models is a submodel of the model shown in Figure
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Fig. 12.10. (a) Undirected graph for the “simple-lattice” model of Figure 12.9(a),
for an alignment of L = 3 sites and n = 3 species. Each node in the phylogeny is
represented by a sequence of three nodes, corresponding to sites 1, 2, and 3, and
each of these nodes is connected not only to its parent but to its parent’s neighbors
to the left and right. The shaded nodes together represent the three columns of
the alignment, X1, X2, and X3, and the unshaded nodes represent the correspond-
ing sets of ancestral bases, Y1, Y2, and Y3. (b) An interpretation of the Markov
chain model of Section 12.3 applied to the same alignment. (The case of N = 2 is
illustrated.) At one level (top), a Markov chain of alignment columns is assumed.
At another level (bottom, inside boxes), the conditional probability of each column
given the previous column is computed according to a phylogenetic model for pairs
of sites.

12.10(a).) When conditional probabilities are computed according to these
separate phylogenetic models, multiple versions of the random variables for
ancestral bases are effectively introduced (e.g., Y2 and Y′

2 in Figure 12.10(b)).
Moreover, these different versions are not required to be consistent. The effect
of this modeling choice is to ignore (indirect) dependencies between latent
variables that do not belong to the same “slice” of N columns but at the
same time permit exact likelihood computations and to capture what are
probably the most important context effects.

By failing to tie together the ancestral nodes of these multiple phyloge-
netic models, the Markov-dependent model sacrifices any claim of accurately
representing the process of context-dependent substitution. Nevertheless, it
allows the major consequences of this process to be characterized empirically
in such a way that valid likelihoods can be extracted, as well as reasonable
approximations of the conditional expectations of key quantities.
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Every nucleotide position in a genome experiences a unique set of mutational
and selective forces. Local sequence context, location in coding or noncoding
regions, structure of the DNA, and timing of replication are just some of
the diverse factors important in determining the evolutionary forces likely
to act on a given base pair. One consequence of such complexity is that base
composition (the relative usage of different DNA nucleotides and motifs) varies
considerably both within and among genomes. Drawing accurate evolutionary
inferences in the face of base composition variation is hugely challenging. First,
we must decide which factors cannot be ignored when trying to model or
interpret patterns of molecular evolution. Second, we must develop methods
and models that address such factors explicitly. This chapter aims to discuss
some of the key processes, both mutational and selective, influencing base
composition variation and various models that have been proposed to describe
their effects on molecular evolution. I will also explore how to measure base
composition variation and discuss some of the pitfalls that can arise if such
effects are ignored.

The chapter is split into three sections. The first presents a brief overview
of empirical patterns of base composition variation, both within and among
genomes. In the second section, I consider the impact of ignoring base composi-
tion variation on estimating evolutionary divergence between DNA sequences
and discuss some of the models of sequence evolution proposed to correct
for such complications. Finally, I look at models of sequence evolution that
attempt to model explicitly the different evolutionary factors that influence
base composition evolution.

13.1 Empirical Patterns of Base Composition Variation

Summarizing empirical patterns of base composition variation presents a chal-
lenge because different biological factors influencing base composition (e.g.,
selective constraints, mutational influences, replication timing, DNA strand,
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etc.) will act at different scales and in different contexts. Here I consider three
ways of summarizing base composition variation: in terms of raw nucleotide
frequencies; in terms of context-dependent variation (or variation in the fre-
quency of sequence motifs); and in terms of variation in synonymous codon
usage. For each, I also discuss some of the biological factors that are likely to
be involved.

13.1.1 Biased Nucleotide Composition

The simplest way of measuring base composition variation within or among
genomes is through the relative usage of the bases GC and AT (note that these
are base-pairing, and hence any skew to G or A will apply equally to C or T,
though biases may still exist with respect to coding and noncoding strands).
Table 13.1 illustrates the huge variation among genomes, with bacteria in
the range 25–75% GC, unicellular eukaryotes showing similar variation, and
vertebrates relatively little variation. At the genome level, base composition
can differ considerably even between related species. For example, Plasmodium
falciparum, the primary cause of malaria in sub-Saharan Africa, has a largely
uniform GC content of 23%, while P. vivax, the primary agent of malaria
in Asia, has a highly variable GC content (among genomic regions), ranging
from 15% to 50% [10].

Table 13.1. Genome-wide base composition variation.

Group Species GC content (%)

Bacteria Escherichia coli 51
Clostridium tetani 29
Streptomyces coelicolor 72

Eukaryotes Saccharomyces cerevisiae 35
Plasmodium falciparum 23
Drosophila melanogaster 42
Caenorhabditis elegans 35
Arabidopsis thaliana 35

Vertebrates Homo sapiens 41
Mus musculus 40
Fugu rubripes 44

Organelles H. sapiens mitochondrion 44
A. thaliana chloroplast 49

Nucleotide composition can also vary considerably within genomes. In
some prokaryotes, the compliementary DNA strands have differing base com-
positions, with a shift in the GC content often marking the origin and terminus
of replication [43]. Eukaryotes present a diverse, and little-understood, spec-
trum of base composition variation. In Drosophila melanogaster, noncoding
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regions vary in GC content, but the most marked base composition variation
is seen between coding regions in terms of the GC content at silent (or synony-
mous) sites [54]. Even within genes there is variation in GC content, with a
general trend for higher GC at the 5’ end of genes [38]. In birds and mammals,
base composition variation has long been described as a mosaic structure of
long (many kilobases) regions (known as isochores) with differing GC con-
tent [5, 4]. However, genome-sequencing projects have revealed a much more
complex pattern of continuous variation in base composition acting simulta-
neously at different scales [50, 42]. Figure 13.1 shows GC-content variation in
a 1 Mb stretch of human chromosome 20, demonstrating both small-scale and
large-scale fluctuations.
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Fig. 13.1. Base composition variation in a 1Mb stretch of human chromosome 20.
Significant variation in GC content is seen both in 2 kb and 20 kb windows (central,
superimposed lines). Also shown is the odds ratio for CpG dinucleotides (lower line)
and the location of genes on the forward (black) and reverse (grey) strands (data
from ENSEMBL Build 33). Stretches where CpGs are less under-represented at the
5’ end of genes are known as CpG islands [8].

Base composition bias can arise from three processes: biased mutation,
biased DNA repair, and natural selection. Biases in mutation arise from dif-
ferences in mutational environment (e.g., methylation or replication timing)
or the relative abundance of nucleotides that may be misincorporated. For ex-
ample, in prokaryotes, compositional skews in the compliementary strands are
understood to be due to the differing mutational environments of the leading
and lagging strands during replication [43].

Biased DNA repair mechanisms have a little-understood but probably cen-
tral role in generating certain biases in base composition. For example, GC/AT
base-pairing mismatches (as can occur through mutation or when heterozy-
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gotes undergo gene conversion) may preferentially be “repaired” to the GC
base in vertebrates [16], a factor that may be important in shaping GC-content
variation [21].

The role of natural selection in shaping nucleotide frequencies is much
debated. The tendency for thermophilic prokaryotes to have a high GC content
in ribosomal and transfer RNA stems may be explained by the increased
thermal stability of the G:C pair (with three Hydrogen bonds) compared
with the A:T pair (two Hydrogen bonds), though the pattern is not generally
observed across the whole genome [20]. Likewise, the tendency for warm-
blooded vertebrates to have a higher GC content than cold-blooded ones has
also been suggested to reflect selection for increased thermal stability [5].
However, there are both theoretical and empirical grounds for doubting the
efficacy of selection to generate the effect in vertebrates [16].

Irrespective of cause, biased nucleotide composition presents many chal-
lenges to studies of molecular evolution. When viewed over considerable evolu-
tionary time, base composition cannot be viewed as a stationary process (i.e.,
genomes are not at base composition equilibrium). However, because any de-
tectable change in genome-wide base composition requires many thousands
of nucleotide substitutions, there is considerable phylogenetic inertia in the
trait. On the one hand, such inertia means that there is information about
evolutionary relationships in base composition [49]. The converse of this argu-
ment is that organisms with similar GC content may appear artificially closely
related if stationarity is assumed [56]. Statistical methods aimed at estimating
evolutionary distances (and relationships) in the face of nonstationarity have
been developed [18, 26]. These methods have revealed complex patterns of
base composition evolution in the early history of prokaryotes [22].

13.1.2 Context-Dependent Base Composition Bias

Like nucleotide composition, the frequency of nucleotide motifs varies con-
siderably among (and sometimes within) genomes. For example, the under-
representation of CpG dinucleotides in species with methylation is largely a
result of the C→T hypermutability [12] of methylated C residues in such a
context [8]. Figure 13.1 depicts variation in the under-representation of CpG
motifs in a region of human chromosome 20.

The bias of nucleotide motifs is best measured relative to the expectation
of the constituent submotifs; for example, a CG deficit is measured as the ratio
of the frequency of the CG dinucleotide to the product of the frequencies of
the C and G nucleotides. More generally, for any motif X, which can be viewed
as the union of two submotifs X1 and X2, a measure of the relative bias to
the abundance of the motif is the odds ratio

ρ(X) =
f(X)f(X1 ∩ X2)

f(X1)f(X2)
, (13.1)
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where f(Y ) is the estimated frequency of the motif Y . By way of example, con-
sider the motif CTAG in the bacterium Escherichia coli. In the K12 genome,
the frequencies of the trinucleotides CTA and TAG are 0.0058 and 0.0059,
respectively, while the frequency of the TA dinucleotide is 0.0457 and the fre-
quency of CTAG is 0.00019. Therefore, the odds-ratio measure of bias is 0.25,
indicating a strong under-representation of the motif in the genome, in this
case probably due to avoidance of short palindromes and bias in the very
short patch (vsr) DNA mismatch repair system [33].

Large-scale comparative analyses of the relative motif biases of different
genomes have revealed both strong motif over- and under-representations; for
example, the dinucleotide TA is under-represented (odds ratio of 0.5 to 0.8)
in most prokaryotic sequences. However, other biases show much less evolu-
tionary conservation; for example, CG is under-represented in Mycoplasma
genitalium but not in M. pneumoniae [33].

A consequence of the variation among genomes in the nature and mag-
nitude of composition biases is that, as for nucleotide frequencies, there is
phylogenetic information in the extent to which genomes share similar biases.
Karlin and colleagues [34] have proposed a simple measure of distance be-
tween genomes f and g in terms of dinucleotide odds ratios, referred to as a
genomic signature,

δ∗(f, g) =
1
16

∑
XY

|ρ∗
f (XY ) − ρ∗

g(XY )|, (13.2)

where the ρ∗(XY )s are calculated from (13.1) from a concatenation of the for-
ward and reverse complement DNA strands. (Note that other distance metrics,
such as Euclidean distance [13], could also be used.) Importantly, such mea-
sures tend to show much greater variation among genomes rather than within
genomes. Consequently, genomic regions showing anomalous signatures may
point to recent horizontal gene transfer events [32], although the extent to
which base composition is a reliable indicator of such events has recently been
questioned [41].

Motifs longer than a few nucleotides can also show marked variation in
frequency among genomes, though clearly the expected number of motifs
also diminishes with increased length, leading to greater sampling variance
in estimates. Particularly abundant motifs tend to have specific functions; for
example, the sequence TTCAGACGGC and its reverse complement are abun-
dant in Neisseria gonorrhoeae and are related to the uptake of DNA from the
environment [33].

13.1.3 Codon Bias

So far, we have considered measures of base composition bias that take no ac-
count of the underlying genome structure. However, the coding nature of genes
imposes constraints on base composition through the structure of the genetic
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code. The physicochemical properties of an amino acid are most strongly cor-
related with the central nucleotide of the codon, while the third position is
often free to vary due to the degeneracy of the genetic code. Hence proteins
with identical functions can potentially be encoded for by genes of consider-
ably different nucleotide base composition. The nonrandom usage of different
codons (within genes or genomes) is referred to as codon bias.

The nonrandom use of synonymous codons is most easily measured in
terms of deviation from equality. For example, a widely used measure of codon
bias is the effective number of codons (ENC) [57],

ENC =
∑

a

1∑
c f2

ac

, (13.3)

where fac is the frequency of codon c for amino acid a. ENC has a range
from 20 (highly biased such that each amino acid is encoded for by a single
codon) to 61 (note that the three stop codons are ignored). Another widely
used measure is an odds-ratio formulation known as the relative synonymous
codon usage (RSCU) [53],

RSCUac =
fac

1/na
, (13.4)

where na is the number of codons for amino acid a. Table 13.2 illustrates the
bias towards codon usage in the E. coli genome. Using these genome-wide
codon frequencies, the effective number of codons is 52; in short, while certain
amino acids, such as lysine (K), show strong codon bias, the genome-wide
picture is for relatively little bias.

Whole-genome analysis obscures any variation in codon bias that might
occur between genes within a genome. Within E. coli there is significant vari-
ation in codon bias among genes, a phenomenon first discovered in the early
1980s [30, 25].

What evolutionary forces might be responsible for the variation in codon
bias among genes in the E. coli genome? An important clue is the finding that
the more commonly used codons typically correspond to the more abundant
transfer RNA species [30]. Bacteria (and actually all organisms) typically do
not have tRNAs corresponding to every codon. Furthermore, different tRNAs
are present in different copy numbers in the genome and are expressed at
different levels. A complicating factor is that some tRNAs can recognize more
than one codon through modification of the first anticodon nucleotide (corre-
sponding to the third position of the codon); however, such tRNAs typically
show differential affinity to the recognized codons.

Variation in the cellular concentration of different tRNA species has po-
tential consequences for the translation process. As mRNA moves through a
ribosome, the waiting time for the incorporation of the correct amino acid is,
under a variety of models [9], inversely proportional to the concentration of
the corresponding tRNA. Genes with a high proportion of codons correspond-
ing to abundant tRNAs will therefore be translated faster. Consequently, if
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Table 13.2. Genome-wide synonymous codon usage in Escherichia coli. Data from
the Codon Usage Database: www.kazusa.or.jp/codon. Standard single-letter abbre-
viations of amino acids are used. The asterisk indicates the stop codon.

Codon AA Freq. Codon AA Freq. Codon AA Freq. Codon AA Freq.

UUU F 0.57 UCU S 0.15 UAU Y 0.57 UGU C 0.45
UUC F 0.43 UCC S 0.15 UAC Y 0.43 UGC C 0.55
UUA L 0.13 UCA S 0.12 UAA * 0.64 UGA * 0.29
UUG L 0.13 UCG S 0.15 UAG * 0.07 UGG W 1.00

CUU L 0.10 CCU P 0.16 CAU H 0.57 CGU R 0.38
CUC L 0.10 CCC P 0.13 CAC H 0.43 CGC R 0.40
CUA L 0.04 CCA P 0.19 CAA Q 0.35 CGA R 0.06
CUG L 0.50 CCG P 0.52 CAG Q 0.65 CGG R 0.10

AUU I 0.51 ACU T 0.17 AAU N 0.45 AGU S 0.15
AUC I 0.42 ACC T 0.43 AAC N 0.55 AGC S 0.28
AUA I 0.07 ACA T 0.13 AAA K 0.77 AGA R 0.04
AUG M 1.00 ACG T 0.27 AAG K 0.23 AGG R 0.02

GUU V 0.26 GCU A 0.16 GAU D 0.63 GGU G 0.34
GUC V 0.22 GCC A 0.27 GAC D 0.37 GGC G 0.40
GUA V 0.15 GCA A 0.21 GAA E 0.69 GGA G 0.11
GUG V 0.37 GCG A 0.35 GAG E 0.31 GGG G 0.15

translation is a rate-limiting step for an organism (i.e., individuals that have
a higher rate of protein production have higher fitness), genes whose prod-
ucts are required in high abundance will be under selection to use codons
corresponding to more abundant tRNAs. Similar arguments can be made if
selection is mediated by translational accuracy rather than translational effi-
ciency [9].

In many unicellular organisms, a strong correlation between the degree of
codon bias and level of gene expression has been found [30, 24, 3]. In multicel-
lular eukaryotes, such patterns are harder to detect because tRNA concentra-
tions may vary across developmental stages and/or tissues, and genes that are
normally expressed at low levels may be needed at very high levels for short
periods in certain tissues [48]. However, by using counts of ESTs (expressed
sequence tags) as a proxy for gene expression level, Duret and colleagues have
shown strong correlations between codon usage bias and expression level in
several multicellular eukaryotes, including Caenorhabditis elegans and Ara-
bidopsis thaliana [15].

In addition to correlations between gene expression level and codon bias,
indirect evidence for the action of natural selection on codon bias can be
sought from patterns of molecular evolution and genetic variation. A strik-
ing observation made by Sharp and Li [53], in a comparison of E. coli and
Salmonella typhii, is that genes with strong codon bias tend to have relatively
low levels of divergence. This can be understood in terms of constraint: highly
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expressed genes have strong selection on codon bias, and hence most codons
will be in the “optimal” state and mutations will tend to be towards nonopti-
mal codons and hence deleterious. In contrast, synonymous mutations in genes
with low codon bias will tend to be neutral, leading to higher rates of molec-
ular evolution. Similar observations have been made for Drosophila [54, 14].

Patterns of polymorphism can also reveal the signature of selection. Dele-
terious mutations tend to be removed by selection from a population, whereas
favorable mutations may reach high frequency and fixation. By comparing the
frequency distribution (and also patterns of substitution) of mutations to and
from favorable codons, Akashi [1, 2] has demonstrated the action of selection
on codon usage in several Drosophila species.

13.2 Biased Base Composition and Models of Sequence
Evolution

Models of the substitution process employed in phylogenetic tree estimation
and other applications of molecular evolution typically make simplifying as-
sumptions to aid computational efficiency. Some of these simplifications are
implicitly making (often unrealistic) assumptions about the effects of base
composition bias on rates of substitution such as stationarity, independence
of substitution processes between sites (or codons), absence of selection, and
time-reversibility. In practice, some of these assumptions, though incorrect,
do not lead to misleading inferences except in exceptional circumstances.
However, other assumptions may have a critical influence on the biological
conclusions drawn from an analysis of molecular evolution.

In this section, I consider problems arising from biased base composition
in three areas of molecular evolution: estimating evolutionary distances; re-
porting evolutionary distances; and interpreting evolutionary distances. First,
however, I give a brief review of how evolutionary distances are typically es-
timated.

13.2.1 The General Markov Model of Sequence Evolution

Most molecular evolution analyses make use of explicit models of sequence
evolution. At the heart of these models is a continuous-time transition matrix
describing how nucleotides (or codons) are likely to change over evolutionary
time. For nucleotide substitution processes, the fully parameterized model has
12 parameters, which can be written as the following matrix (bases are in the
order TCAG; dashes indicate minus the sum of the parameters in the same
row of the matrix):

Q =

⎛⎜⎜⎝
− aπC bπA cπG

a′πT − dπA eπG

b′πT d′πC − fπG

c′πT e′πC f ′πA −

⎞⎟⎟⎠ . (13.5)
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For the transition matrix to be time-reversible (a useful property in the esti-
mation of phylogenetic trees), the requirement is that a = a′, b = b′, c = c′,
d = d′, e = e′, and f = f ′ [55]. Under these conditions, the equilibrium
frequencies of the bases are πT , πC , πA, and πG, respectively. Matrix expo-
nentiation can be used to derive the conditional probabilities of a nucleotide
in state i at t = 0 being in state j at time t,

P(t) = eQt. (13.6)

Note that time cannot be estimated independently of the substitution rate
parameters in the transition matrix, and hence Q is usually normalized such
that the sum over bases of the equilibrium frequency of each base times the to-
tal rate of mutation for that base is equal to one. (Time is therefore measured
in expected substitutions per site.) The probability of observing the states S1
and S2 at a homologous nucleotide position in species 1 and 2 separated by
time t can be extracted from the matrix given by

H(t) = P1(t1)v(t)PT
2 (t2), (13.7)

where v is a vector of the base frequencies in the most recent common ancestor.
(Note that the species might have different mutation rates or biases; hence
the use of the subscripts.) Evolutionary distances are typically estimated from
empirical data by maximum likelihood or Bayesian approaches.

Many of the most widely used models of sequence evolution are special
cases of this general model. For example, the Jukes-Cantor model [31] as-
sumes equal rates of substitution between all bases, the Kimura two-parameter
model [37] assumes equal base frequencies but allows for a nonunity transition-
transversion ratio, and the HKY model [28] allows for unequal base frequen-
cies. For the simplest evolutionary models, explicit analytical expressions ex-
ist for the maximum likelihood estimate of divergence time; for more complex
models, numerical methods are used.

13.2.2 Estimating Evolutionary Divergence

The effect of base composition bias on estimating evolutionary divergence
(the product of the time separating sequences and the mutation rate) is quite
simple: if the model is wrong, the estimate of divergence is also wrong. For
example, in comparisons of GC-rich genomes, a model that ignores biased
nucleotide frequencies will underestimate the true degree of divergence (be-
cause in such genomes multiple substitutions are more likely to return the
base to the original state). Such considerations might explain the strongly
negative relationship observed between codon usage bias and rate of substi-
tution in studies of bacteria [53] and Drosophila [54]. These analyses made
use of methods for estimating evolutionary divergence that do not account
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for biased codon usage. Consequently, in genes with stronger bias, the correc-
tion for multiple substitutions becomes more problematic and divergence is
typically underestimated.

There are many ways in which models of sequence evolution can be
wrong. Nonstationarity (base composition changing over time), nonindepen-
dence (substitution patterns influenced by neighboring base composition), and
natural selection are perhaps the most important factors missing from most
models of sequence evolution. The extent to which each factor may be im-
portant will depend on the biological question being asked and the degree
of divergence between the genomes being compared. (Many of the problems
are only really important when correcting for multiple substitutions.) Meth-
ods for estimating divergence under models that incorporate nonstationarity
[18, 19, 26], nonindependence [27, 40], and selection [47] have been developed,
but computational demands mean that such factors are not yet regularly con-
sidered in molecular evolution.

A related and important question is whether simple models of sequence
evolution that have been developed for genomes with biased nucleotide fre-
quencies, such as [28], have any biological credibility. These models, and sim-
ilar ones used in codon-based methods [23], use a substitution matrix of the
form

Q =

⎛⎜⎜⎝
− κπC πA πG

κπT − πA πG

πT πC − κπG

πT πC κπA −

⎞⎟⎟⎠ . (13.8)

In effect, the model assumes infrequent substitutions to nucleotides (or
codons) that are rare. However, a nucleotide (or codon) may be rare either
because substitutions to the state are rare or because it mutates (or is substi-
tuted) relatively faster. Which model is more correct? In Drosophila, G- and
C-ending codons are more frequent [54], despite a general AT bias in mutation
[52, 47], due to the action of natural selection (in line with the model above).
Substitutions to the more common codons are therefore expected to occur at
a higher rate than substitutions to the rare codons. In contrast, CpG residues
are rare not because they are not generated by substitution but because they
mutate rapidly. In short, whether the model is appropriate or not depends on
the biology of the system; ideally, different models should be formally com-
pared to find the most appropriate one for the system in question.

13.2.3 Reporting Evolutionary Distances

Estimates of evolutionary divergence might be used for several different pur-
poses: to estimate phylogenetic relationships; to estimate the absolute time
separating two species; or to ask whether one gene, genomic region, or species
has a higher rate of evolution than another. If we could be certain that the
model of sequence evolution employed was accurate, it would be natural to
think that the reporting of evolutionary distances between DNA sequences
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should be straightforward. However, biased base composition raises several
issues in the reporting of evolutionary distance.

The central issue is that because time and substitution rate cannot be
estimated separately, the transition matrix is typically scaled such that at
equilibrium (when base composition is unchanging) one unit of time corre-
sponds to an expectation of one substitution (averaged over nucleotides); see
Section 13.2.1. Clearly, if a genome is not at equilibrium, an estimate of one
unit of time may not actually correspond to an average of one substitution per
site. For example, in a genomic region that has experienced a dramatic shift
in forces influencing base composition, an estimate of one unit of equilibrium
time is likely to correspond to more than one substitution on average (because
systems out of equilibrium tend to evolve faster). It is therefore important to
test for nonstationarity in molecular evolution analyses.

A related issue arises in the reporting of estimates of synonymous site di-
vergence per synonymous site in codon-based models [23, 7]. In coding regions,
different amino acids have different potentials for synonymous mutation due to
the degeneracy of the genetic code. This potential is further influenced by the
relatively higher rate of transition mutations, compared with transversions,
and also by skews in base composition, particularly at the third position. In
codon-based models of sequence evolution, one unit of time represents an ex-
pectation of one substitution, be it synonymous or nonsynonymous. To report
synonymous divergence per synonymous site, the expected number of synony-
mous substitutions to which the estimated time corresponds (averaged over
all codons) is divided by the average mutation potential of nucleotides (again
averaged over all codons). However, most synonymous substitutions occur at
the third position, which in highly biased genes has the least mutation poten-
tial under the assumed model. That estimates of synonymous divergence are
influenced by the mutation potential of nonsynonymous positions is problem-
atic for comparisons of divergence among genes of differing base composition
[7].

13.2.4 Interpreting Evolutionary Distances

The substitution matrix reflects the joint effects of biased mutation, biased
DNA repair, and natural selection. However, by comparing patterns of molecu-
lar evolution in parts of the genome with different degrees of base composition
bias we might be able to ask which factor is most important. For example,
if genes with higher codon bias evolve more slowly, we might attribute this
to the action of purifying selection in highly biased genes [53, 54]. However,
what would we expect of a model in which variation in mutation bias is the
primary cause of base composition variation? It seems perfectly plausible that
we might expect similar patterns under a purely neutral model.

The key point is that in order to interpret estimated evolutionary dis-
tances, we need an understanding of what different biological explanations for
base composition biases would predict. Most widely used models of sequence
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evolution correct for base composition bias not by modelling the factors gen-
erating base composition biases explicitly but in an ad hoc manner. In the
final section, I outline a simple model for the joint effects of biased mutation
and natural selection on patterns of sequence evolution. (Different types of
biased DNA repair can be modelled as either biased mutation or selection.)
This model produces some surprising results about the relationship among
base composition biases, selection, and rates of molecular evolution.

13.3 Explicit Models of Base Composition Evolution

The demonstration that natural selection can influence synonymous codon
usage and other aspects of base composition has important implications for
the analysis of patterns of molecular evolution and genetic variation: models
that assume neutrality may potentially give misleading inferences. However,
the level of selective constraint acting on base composition and codon usage
is considerably less than that acting on protein-coding positions [51]. So just
how strong are the selection coefficients acting on base composition, and how
does selection acting on them influence patterns of molecular evolution? More
generally, what happens to our view of molecular evolution if we try to model
the factors influencing DNA composition explicitly?

13.3.1 A Two-State Model

The simplest model we might consider is a genome where there are two types
of states (e.g., GC/AT or preferred/unpreferred codon), which we call A and
B [9, 45]. At some starting point, we have a population of genomes, each
composed of As and Bs. Over time there is mutation from one state to another:
let A mutate to B with probability u per replication and B mutate to A with
probability v. The probability that a single mutation reaches fixation in the
population depends on the strength of selection acting on the mutation, the
rate of mutation, population demography, and many other factors. However,
we can approximate the probability through Kimura’s formula [35]

u(1/2N) ≈ 2Ne/Ns

1 − e−4Nes
, (13.9)

where N is the diploid population size (assumed to be constant), Ne is the
effective population size, and s is the selective differential between the novel
mutation and the ancestral state. The key point about this formula is that
the fixation probability depends on the product of the selection coefficient
and the effective population size, a compound parameter often referred to as
σ = 4Nes. When σ = 0, the formula reduces to 1/2N .

What questions might we ask of such a model? Important properties might
include the equilibrium frequency of the two alleles (if I pick a genome at ran-
dom when the population is at equilibrium, what is the expected frequency
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of the A allele?), the rate of substitution (at equilibrium), and the time taken
to achieve equilibrium. The equilibrium position is defined as the point where
the overall frequencies of the two alleles are not changing (though individual
substitutions are still occurring). Of course, in any population, the stochastic
properties of mutation and genetic drift mean that the population is con-
stantly changing, but if we assume that the genome is very long, such subtle
effects can effectively be ignored if we are just interested in the average proper-
ties of the genome. In order to make the solution more tractable, we must also
assume an infinite-sites model [36] (polymorphic sites cannot mutate again un-
til fixation of one allele) and assume that the timescale of the fixation process,
governed by (13.9), is effectively instantaneous. In effect, we are considering
the fixation process as a continuous-time Markov process, as do all models of
sequence evolution.

If we let the frequency of the A state or allele in the genome at time t be
fA(t) (note fA(t) + fB(t) = 1), the rate of change is

dfA(t)
dt

= −fA(t)u
−σ

1 − eσ
+ [1 − fA(t)]v

σ

1 − e−σ
, (13.10)

where the A state or allele has a selective advantage of s (which can be
negative) over the B allele. At equilibrium, the rate of change in frequency is
zero, giving the solution

fA(∞) =
v

v + ue−σ
. (13.11)

When there is no selection, the equilibrium frequency becomes v/(u+v). The
rate of substitution at equilibrium is therefore

k̃ = fA(∞)u
−σ

1 − eσ
+ [1 − fA(∞)]v

σ

1 − e−σ
(13.12)

=
2uvσ

(u + veσ)(1 − e−σ)
. (13.13)

Finally, the rate of approach to equilibrium is of the order of the mutation
rate; for a given starting frequency of the A allele, fA(0), the frequency of the
mutation at time t is

fA(t) = fA(0)e−∆t + fA(∞)(1 − e−∆t) where ∆ = σ

(
u

eσ − 1
+

v

1 − e−σ

)
.

(13.14)
Some examples of the equilibrium base composition and rate of evolution for
different values of the mutation bias (u/v) are shown in Figure 13.2.

What can we learn from such a model? In the absence of selection base
composition is entirely determined by mutation bias. Because mutation bi-
ases are expected to be similar in both coding and noncoding DNA, this sug-
gests that comparisons of codon usage with base composition bias in nearby
noncoding regions may provide important clues as to whether selection is
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Fig. 13.2. The relationship between the strength of selection acting on codon bias
(as measured by the scaled selection differential 4Nes between the preferred and
unpreferred alleles), the frequency of the preferred allele (solid lines), and the equi-
librium substitution rate (dashed lines). When there is no mutation bias (u/v = 1;
black lines) there is a monotonic relationship between the selection parameter and
both properties. However, when mutation bias acts in the direction opposite selection
(u/v = 3; grey lines), the rate of substitution reaches a maximum at intermediate
selection coefficients.

acting on codon usage. For example, there is a strong correlation between
nearby noncoding GC content and synonymous codon GC content in mam-
malian genomes [4] but a very much weaker correlation in the genome of
D. melanogaster [39]. If selection does act on base composition, only if the
scaled selection parameter is within a fairly narrow range, approximately
0.5 < σ < 2, do we expect to see a balance among selection, mutation,
and genetic drift [9, 45]. Weaker selection coefficients are indistinguishable
from neutrality, and stronger selection coefficients will lead to near-complete
fixation of the advantageous allele. That codon bias seems to be at such a
balance in a huge variety of organisms with very different census population
sizes is therefore something of a paradox. Possible explanations are that effec-
tive population sizes may vary much less than census population size or that
there may be opposing selective forces acting on codon usage [46].

The rate of molecular evolution is also affected by selection and muta-
tion bias. Contrary to the argument outlined in Section 13.1.3, selection on
base composition can actually increase the rate of substitution if selection and
mutation bias act in opposite directions [45]. A further important complica-
tion is that the rate at which a population approaches equilibrium is very
slow relative to the rate of change in population size, and other demographic



13 Base Composition Variation 369

processes, that species may experience. Patterns of synonymous substitution
between closely related species may therefore reflect more the demographic
history of the populations than equilibrium expectations. For example, de-
tailed analysis of patterns of synonymous substitution in Drosophila sibling
species have shown that most substitutions in the D. melanogaster lineage
have been from optimal to nonoptimal codons, suggesting a complete absence
of selection on codon usage over the most recent 3–5 million years [2, 47].
Complete loss of selective constraint after a period of long-term equilibrium
leads to an instantaneous increase in the rate of substitution by a factor of

λloss =
eσ − e−σ

2σ
, (13.15)

where σ is the scaled selective differential prior to loss of selective constraint.
For σ = 2, the relative increase in rate is 81%. In contrast, a gain of selective
constraint after a period of long-term equilibrium leads to an instantaneous
increase in the rate of substitution by a factor of

λgain =
σ

2
eσ/2 + e−σ/2

eσ/2 − e−σ/2 . (13.16)

For σ = 2, this leads to a 31% increase in rate; see Figure 13.3. In short,
substantial changes in substitution rate can be induced by changes in the
selection pressure acting on base composition or the effective population size.
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Fig. 13.3. Changes in substitution rate associated with changes in the selective
constraint on base composition. Following a period of equilibrium, both the loss of
selective constraint (σ0 = 2, σ∞ = 0; black line) and the gain of selective constraint
(σ0 = 0, σ∞ = 2; grey line) at t = 1.0 (expressed in arbitrary units) lead to an
instantaneous increase in substitution rate followed by a gradual decay to the new
equilibrium.

Finally, variation in other factors, for example mutation bias or mutation
rate, can also influence rates of synonymous substitution. For example, the
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variation in synonymous substitution rate seen in bacterial genomes is consid-
erably greater than the simple model might predict given the range of codon
bias observed and probably results from a poorly understood relationship be-
tween expression level and mutation rate [17].

13.3.2 More Realistic Models

The two-state model is a simple caricature of base composition evolution.
More realistic models have to incorporate mutational biases among all four
bases, which may also be context-dependent, and the selective differences
among multiple codons. A further complication when dealing with codon us-
age evolution is that nonsynonymous substitutions will cause a change in the
selective context: a G-ending codon may be optimal for one amino acid, but
for another it may be nonoptimal. Yet a further complication is that selection
does not act on each site independently. In particular, selective interference or
the Hill-Robertson effect [29] (either through hitch-hiking [44] or background
selection [11]) reduces the efficacy of selection at any site, a factor shown to
be important in Drosophila codon usage evolution [6]. Incorporating simul-
taneous selection at multiple sites into models of sequence evolution is both
computationally unrealistic (at least currently) and probably unnecessary for
addressing many biological questions arising in molecular evolution. However,
unravelling the causes of biased base composition is also essential for a full
understanding of the factors influencing genome evolution.
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Summary

Two papers by Thorne, Kishino, and Felsenstein in the early 1990s provided a
basis for performing alignment within a statistical framework. Here we review
progress and associated challenges in the investigation of models of insertions
and deletions in biological sequences stemming from this early work. In the last
few years, this approach to sequence analysis has experienced a renaissance,
and recent progress has given this methodology the potential for becoming a
practical research tool. The advantages of a statistical approach to alignment
include the possibility of parameter inference, hypothesis testing, and assess-
ment of uncertainty, none of which are possible using the score-based methods
that currently predominate.

Recent progress in statistical alignment includes better models, the exten-
sion of pairwise alignment algorithms to many sequences, faster algorithms,
and the increased use of MCMC methods to handle practical problems. In this
chapter, we illustrate the statistical approach to multiple sequence alignment
on a series of increasingly large data sets.

14.1 Introduction

Although bioinformatics is perceived as a new discipline, certain aspects have
a long history and could be viewed as classical bioinformatics. For example, the
application of string comparison algorithms to sequence alignment has a his-
tory spanning the last three decades, beginning with the pioneering paper by
Needleman and Wunsch [36]. They used dynamic programming to maximize
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a similarity score based on a matching score for amino acids and a cost func-
tion for insertions and deletions. Independently, Sankoff and Sellers in 1972
introduced an approach comparing sequence pairs by minimizing a distance
function. Their algorithm is very similar to the algorithm maximizing similar-
ity. Sankoff and Cedergren generalized the distance-minimizing approach to
multiple sequences related by a phylogenetic tree. In the last three decades,
these algorithms have received much attention from computer scientists and
have been generalized and accelerated. Despite knowledge of exact algorithms,
essentially all current multiple alignment programs rely on heuristic approx-
imations to handle practical-sized problems. An example is the very popular
Clustal family of programs. A completely different approach to alignment was
introduced in 1994 by Krogh et al., who used hidden Markov models (HMMs)
to describe a family of homologous proteins. This statistical approach has
proved very successful; however, it was not based on an underlying model of
evolution or phylogeny.

In 1981, Smith and Waterman introduced a local similarity algorithm for
finding homologous DNA subsequences that has so far remained the gold
standard for the local alignment problem. The main use of local alignment
algorithms is to search databases, and in this context the Smith-Waterman
algorithm has proved too slow. A series of computational accelerations have
been proposed, with the BLAST family of programs being the de facto stan-
dard in this context [1].

At the same time that score-based methods were being developed for se-
quence alignment, parsimony methods were being used to solve the problem of
phylogenetic reconstruction. The method of parsimony, which finds the mini-
mum number of evolutionary events that explain the data, can be viewed as a
special case of score-based methods. Over the last two decades, the parsimony
method of phylogenetic reconstruction has been criticized, and it has essen-
tially been replaced by methods based on stochastic modelling of nucleotide,
codon, or amino acid evolution. This probabilistic treatment of evolution-
ary processes is based on explicit models of evolution and thus gives rise to
meaningful parameters. In addition, these parameters can be estimated by
maximum likelihood or Bayesian techniques, and the uncertainty in these es-
timates can be readily assessed. This is in contrast with score-based methods,
where the weight or cost parameters cannot be easily estimated or necessarily
even interpreted. Because this probabilistic treatment of phylogenetic evolu-
tion is based on explicit models, it also allows for hypothesis testing and model
comparison.

Despite the increased statistical awareness of the biological community in
the case of phylogenetic inference, which is now fundamentally viewed as a
statistical inference problem [9], the corresponding problem of alignment has
not undergone the same transformation, and score-based methods still pre-
dominate in this field. However, recent theoretical advances have opened up
the possibility of a similar statistical treatment of the alignment inference
problem. A pioneering paper by Thorne, Kishino, and Felsenstein from 1991
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proposed a time-reversible Markov model for insertions and deletions (termed
the TKF91 model) that allowed a proper statistical analysis for two sequences.
This model provides methods for obtaining pairwise maximum likelihood se-
quence alignments and estimates of the evolutionary distance between two
sequences. The model can also be used to define a test of homology that is
not predicated on a particular alignment of the sequences. At present, this is
a test of global similarity, and although analogues of local alignment methods
are possible, they have not yet been developed in the statistical alignment
framework.

The recent extension of the TKF91 model to multiple sequences, and al-
gorithmic improvements to the analysis of this model, have considerably in-
creased the practical applicability of the model. Along with the evolutionary
processes of insertion, deletion, and mutation, analyzing multiple sequences
additionally requires the consideration of their phylogeny. Most current align-
ment programs treat alignment and phylogeny separately, whereas in fact they
are interdependent. A more principled approach is to estimate both simulta-
neously (see, e.g., [11, 45]). In this chapter, we show some preliminary results
on the co-estimation of phylogeny and alignment under the TKF models of
evolution. For up to about four sequences, a full probabilistic treatment is
feasible (see Section 14.4). For larger data sets, it is necessary to use approx-
imative methods such as MCMC (see Section 14.5).

In conclusion, the statistical alignment framework enables a coherent prob-
abilistic treatment of both the sequence alignment and phylogenetic inference
problems. However, challenges still remain, especially with respect to the com-
putational problems inherent in using larger data sets and the biological re-
alism of the evolutionary models. In this chapter, we shall review the basic
model in some detail and sketch out some recent developments and current
directions of research.

14.2 The Basic Model

The pioneering paper by Thorne, Kishino, and Felsenstein [42] proposed a
continuous-time evolutionary model (TKF91) for sequence insertions and dele-
tions, as well as substitutions, that allowed a proper statistical analysis of the
alignment of two sequences. This model treats insertions and deletions (indels)
as single-nucleotide events and is arguably the simplest possible continuous-
time model for sequence evolution in the presence of nucleotide insertions and
deletions. A major advantage of the model is that it can be treated analyti-
cally, and in fact it can be reformulated as a hidden Markov model (HMM).
This leads to alignment procedures that, using the standard HMM algorithms,
are as fast as score-based approaches.

In this section, we describe the TKF91 model and sketch the derivation
of the transition probabilities. We introduce the extension of TKF91, termed
TKF92 [43], which is able to deal with arbitrary-length nonoverlapping indels
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(a) ∼T∼A∼T∼A∼A∼A∼A∼A∼G∼G∼G∼ (b) − A T − − A A C
G A T C C − − G

Fig. 14.1. (a) In the TKF91 model, a sequence is viewed as nucleotides separated
by links (∼). Deletions originate from nucleotides, while insertions originate from
links. The leftmost link is never deleted and is called the immortal link. (b) Example
of a five-nucleotide sequence that evolved into a six-nucleotide sequence through a
series of indel and substitution events. The evolutionary outcome is summarized
by an alignment showing that three of the ancestral nucleotides (top line) share
homology with descendant nucleotides, while other nucleotides have been either
deleted or inserted.

and can be viewed as the statistical analogue of “affine gap penalties” in the
score-based setting. Finally, we introduce the “long indel” model, a stochastic
indel process that allows for overlapping indels of arbitrary length, and discuss
some approaches that approximate this process.

14.2.1 The TKF91 Model

In the TKF91 model, a nucleotide sequence is modelled as a finite string of
nucleotides, or letters, separated by links. The string both starts and ends with
a link, so that there is always one more link than there are nucleotides; see
Figure 14.1(a). The insertion and deletion events are modelled as continuous-
time Markov processes. Insertions of single letters originate from links and
occur at a rate of λ per unit of time and per link. Deletions, also of a single
letter at a time, originate from the letters and occur at a rate µ per unit of
time per letter. Models like these are known as birth-death processes. We may
view the sequence as consisting of a single link followed by letter-link pairs
that get inserted and deleted as little modules. In this view, the leftmost link
is never deleted and is called the immortal link. This immortal link ensures
that the empty sequence is not a sink for the process.

Parallel to this birth-death process, the individual nucleotides are subject
to a continuous-time substitution process. The original paper used Felsen-
stein’s one-parameter model [8], but this can be generalized to other models
without difficulty. Similarly, in case alignments of proteins are desired, a sub-
stitution model on the amino acid alphabet is used.

Birth-death processes in which only singlet births and deaths occur, of
which the TKF91 model is an example, are automatically time-reversible by
virtue of the state graph’s linear topology. This fact considerably simplifies
calculations. Saying that a model is time-reversible is equivalent to saying
that the detailed balance condition holds, and this can be used to work out
the equilibrium length distribution. Suppose that, at equilibrium, the prob-
ability of observing a sequence of length k is qk. The transition rate from a
length-k sequence to one of length k −1 is µk since each individual nucleotide
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contributes a deletion rate µ. Since a sequence of length k − 1 has k links,
the transition rate in the other direction is similarly λk. Detailed balance now
requires that

µkqk = λkqk−1 ⇔ qk

qk−1
=

λ

µ
. (14.1)

Since the qk are probabilities,
∑∞

k=0 qk = 1, and we have

qk =
(

1 − λ

µ

)(
λ

µ

)k

. (14.2)

This means that λ < µ is a requirement to have an equilibrium length dis-
tribution. This is not surprising since otherwise the birth rate of a length-k
sequence, λ(k + 1) (there are k + 1 links), always exceeds the death rate µk,
so that sequences would tend to grow indefinitely.

Now suppose we let the TKF91 process act on a given initial sequence.
After time t, the process will have resulted in a descendant sequence through
a series of insertion, deletion, and substitution events (see Figure 14.2). Some
nucleotides will have survived (though they may have undergone substitu-
tions), and others will have been deleted or inserted. The latter will not be
homologous to any nucleotide in the other sequence. This outcome can be sum-
marized by an alignment of the ancestral and descendant sequences, where the
homologous nucleotides are aligned in columns (see Figure 14.1(b)).

Because all nucleotides evolve independently, the probability of a partic-
ular outcome at time t, conditioned on the ancestral sequence, can be calcu-
lated by simply multiplying the probabilities of the outcomes of the individual
nucleotides. For a given nucleotide, there are two sets of possible outcomes
we want to distinguish, namely those where the ancestral nucleotide survives
and those where it is deleted. To complete the description, we also need the
probabilities for births emanating from the immortal link:

Outcome: Probability:
# − · · · −
# # · · · # (Homologous nucleotide survives, with n − 1 new ones) pH

n (t) (n = 1, 2, . . .)

# − · · · −
− # · · · # (Ancestor was deleted, leaving n new nucleotides) pN

n (t) (n = 0, 1, . . .)

� − · · · −
� # · · · # (Immortal link gives rise to n new nucleotides) pI

n(t) (n = 0, 1, . . .)

Here # denotes a nucleotide, and we adopt the usual convention that nu-
cleotides appearing in a column are homologous, with the ancestor appearing
above the descendant. We do not explicitly write the links, except the im-
mortal link, which is denoted by a �. It is now possible to set up differential
equations, known as Kolmogorov’s forward equations, for the time-dependent
outcome probabilities by considering the rate at which a state is populated
from other states and the rate at which it populates other states. For instance,
the equations for pI

n(t) are
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Fig. 14.2. One possible evolution of a sequence under the TKF91 model, resulting
in the outcome represented in Figure 14.3(a), and summarized by the alignment of
Figure 14.3(b). In this example, the immortal link (�) gave birth to a new nucleotide
that survived, its neighboring ancestral nucleotide gave rise to a new nucleotide
that did not survive, and so on. Note that this detailed evolution contains far more
information than the outcome as depicted in Figure 14.3(a) (and far more than
we can observe). The associated outcome probability includes contributions of all
possible evolutions compatible with the outcome.

d
dt

pI
n(t) = (n + 1)µpI

n+1 + nλpI
n−1 − [nµ + (n + 1)λ] pI

n(t), (14.3)

pI
n(0) = 1 for n = 0, 0 otherwise, (14.4)

where pI
−1 is defined to be 0. These equations for a classic birth-death process

are solved by

pI
n(t) = (1 − λβ(t)) [λβ(t)]n, where β(t) =

1 − e(λ−µ)t

µ − λe(λ−µ)t . (14.5)

The differential equations for the other probabilities are more involved but
can also be solved analytically [42]. In terms of the following abbreviations,

Bτ = λβ(τ), Eτ = µβ(τ),

Nτ = (1 − e−µτ − µβ(τ))(1 − λβ(τ)), Hτ = e−µτ (1 − λβ(τ)),
Iτ = 1 − λβ(τ), (14.6)

the solutions are
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(a)
t = 0 : � − # # − # # − #
t = τ : � # # # # − − # #
Probability: Iτ Bτ Hτ Hτ Bτ Eτ Nτ Hτ

(b)
− # # − − # # #
# # # # # − − #

(c)

t = −∞ : � # # #

t = 0 : � # # # # # − − −
· · ·

Probability: I∞ B∞ B∞ B∞ B∞ B∞ E∞ E∞ E∞ · · ·

Fig. 14.3. Example of an evolutionary history for two sequences, and the associated
probability according to the TKF91 model. (a) Example history for five nucleotides
evolving into a length-6 sequence. Note that the event Nτ , where a nucleotide dies
but not before giving birth to a new, nonhomologous nucleotide, is represented by
two columns in an alignment. Conditional on the ancestral sequence, the probability
for this history is IτB2

τH2
τ NτEτ . (b) The alignment resulting from this history. Since

alignments summarize only the homology relationships between sequences, certain
columns can be swapped without altering the meaning of the alignment (and differ-
ent evolutionary histories may give rise to the same alignment). (c) Summary of the
probabilities for a length-5 sequence at equilibrium (that is, after an infinitely long
time). The last columns are added for illustration; the ancestral sequence at t = −∞
is unknown, but this makes no difference since E∞ = 1 (the probability of a nu-
cleotide being deleted tends to 1 if we wait long enough). Therefore, the probability
of observing a length-5 sequence at equilibrium is I∞B5

∞ = (1 − λ/µ) (λ/µ)5 = q5.

pN
0 (t) = Eτ , (14.7)

pN
n (t) = NτBn−1

τ , (n > 0) , (14.8)
pH

n (t) = HτBn−1
τ , (n > 0) , (14.9)

pI
n(t) = IτBn

τ . (14.10)

See Figure 14.3 for an example of how to calculate the probability of a par-
ticular evolutionary history.

14.2.2 The TKF92 Model

The most obvious drawback of the TKF91 model, as already noted in the
original paper, is that insertions and deletions occur one letter at a time.
In reality, many indel events involve more than a single nucleotide. In 1992,
Thorne, Kishino, and Felsenstein introduced an improved version of their
model, designed to model indel events of more than a single letter [43]. This
model, referred to as TKF92, differs from the TKF91 model by acting on
sequence fragments instead of single nucleotides. The fragments themselves
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are not observed, and their length is randomly distributed according to a
geometric distribution with parameter ρ. This approach leads to a model that
can still be treated analytically and is a reasonably good approximation of
the actual observed indel length distribution.

The approximation that is made in the model, and that makes it possible
to analytically compute the probabilities, is that the fragments (and their
sizes) are supposed to stay fixed over the entire evolutionary history of the
sequence. This assumption, made for technical reasons, is clearly not realistic.
However, things are not as bad as they might seem. In the same way that the
TKF91 model sums over all possible alignments, the TKF92 model also sums
over all possible fragment assignments. Effectively, this means that indels of
any length may occur at any position in the sequence, but such indels may not,
in the course of evolutionary history, overlap. See Figure 14.8 for an alignment
under the TKF91 and TKF92 models.

14.2.3 Parameters of the TKF Models

Although the TKF91 model has two parameters, λ and µ, their ratio is in
practice fixed by the sequence length. Indeed, if we maximize the likelihood

qL =
(

1 − λ

µ

)(
λ

µ

)L

(14.11)

in terms of λ/µ, for a fixed sequence length L, we find that the maximum is
obtained for

λ

µ
=

L

L + 1
. (14.12)

For maximum likelihood parameter estimates, it is therefore not meaningful
to estimate λ and µ independently but rather to fix their ratio based on the
average of the sequence lengths that are to be aligned and estimate just one
free parameter.

The TKF92 model has one extra parameter, ρ, parameterizing the geo-
metric fragment length distribution. Fragments drawn from this distribution
have an expected length of 1

1−ρ . In the TKF92 model, the parameters λ and
µ refer to the indel rate per fragment. To allow a meaningful comparison, it
is useful to introduce new parameters λ′ and µ′ that specify the average indel
rates per site and are related to the parameters λ and µ by

λ = (1 − ρ)λ′, µ = (1 − ρ)µ′. (14.13)

Note that TKF91 is a special case of TKF92, obtained by setting ρ = 0. This
corresponds to a degenerate fragment length distribution where all fragments
have length 1 (see, e.g., Figure 14.4). For an example of how to calculate the
likelihood given a fragmentation, see Figure 14.5.
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Fig. 14.4. The most likely pairwise alignment of human α and β hemoglobins,
according to the TKF91 model. The vertical bars indicate posterior column
probabilities (i.e., the proportion of alignments that include that particular column,
weighted according to the posterior probability under the model). See Section 14.3.3
for the algorithms used to calculate the alignment and posterior probabilities. The
log-likelihood of observing this alignment under the TKF91 model, using maximum
likelihood parameters for these sequences (λ = 0.03718, µ = 0.03744, t = 0.91618,
see [14]), is −735.859. This low likelihood reflects the relatively high sequence di-
vergence and the fact that it is very unlikely for the ancestor of these sequences
to have evolved by chance; however, the log-likelihood of observing both sequences
by chance independently is far smaller still, −401.372 − 418.764 = −820.136, giving
strong support to the hypothesis that these sequences are homologous.

(a)

t = 0 : � # # # − − − − # # # # # #
t = τ : � # # # # # # # # # # # # #
Probability: Iτ Hτρ2(1 − ρ) Bτρ3(1 − ρ) Hτρ3(1 − ρ) Hτρ(1 − ρ)

(b)

# # # − − − − # # # # # #
# # # # # # # # # # # # #

Fig. 14.5. An evolutionary history according to the TKF92 model. (a) One possible
fragmentation into fragments of sizes 3, 4, 4, and 2, respectively, and the associated
probability for this evolutionary history. (b) The alignment resulting from this his-
tory. Many different fragmentations contribute to this alignment.

14.2.4 The “Long Indel” Model

The TKF92 model is a substantial improvement over the TKF91 model, as it
allows indel events involving more than one nucleotide. The main assumptions
that go into the model are (1) that indel events do not overlap and (2) that
the indel lengths are geometrically distributed. A natural, more general evo-
lutionary model would relax these two assumptions, specifically by allowing
indel events to overlap and by allowing an arbitrary indel length distribu-
tion. Here we focus on relaxing the former assumption, although the proper
modelling of the actual indel length distribution (see, e.g., [38]) is probably at
least as important for alignment accuracy. We refer to the more general model
as the “long indel” model. In its general form, no closed-form solution of the
outcome probabilities is known, even for a geometric indel length distribution.



384 G. Lunter, A. J. Drummond, I. Miklós, and J. Hein

The main difficulty is that by allowing overlapping indel events, the fates of
neighboring nucleotides become entangled over time, so that the probability
of the total outcome does not factorize into individual nucleotide outcome
probabilities, as is the case for the TKF models.

To arrive at a tractable implementation of this model, some kind of approx-
imation is necessary. Knudsen and Miyamoto [21] develop an approximation
that is analytically no more complex than the TKF models: their pairwise
alignment algorithm takes O(L2) time, where L is the sequence length. In
fact, their model is formulated as an HMM with the same topology as that
in which TKF models are commonly formulated, and differs only in the tran-
sition probabilities. It is satisfying that, in contrast with TKF92, this indel
model is derived from first principles, but given its similar structure, it is
unclear how much it improves upon TKF92.

If one is willing to use computationally more demanding algorithms, then
an even more realistic approximation to the long indel model is possible. In
[32] an approximation is used that allows each indel event to overlap with up
to two others, and allows an arbitrary indel length distribution to be used.
The corresponding pairwise alignment algorithm has time complexity O(L4),
making the algorithm unsuitable for large database searches, for example.
However, single pairwise alignments can still be computed relatively quickly,
and on a set of trusted alignments based on known 3D protein structure, this
model outperformed TKF92. See [32] for more details.

14.3 Pairwise Alignment

In this section, we describe how the TKF models are used in practical pair-
wise sequence alignment algorithms. First, we describe an intuitive dynamic
programming recursion, which, however, has a high computational complex-
ity. More efficient recursions exist, and we describe in detail one that is based
on the formulation of the TKF models in terms of hidden Markov models.
The additional structure makes it easier to describe the various algorithms
that are based on it and paves the way for the multiple alignment algorithms
later on.

14.3.1 Recursions for the Likelihood of Two Homologous
Sequences

Let us now turn to the task of calculating the likelihood of homology; that
is, the likelihood that two sequences have evolved from a common ancestor.
Because of the time-reversibility of the TKF91 model, this is equivalent to
the likelihood that one sequence evolved into the other in twice the time that
separates the ancestor from the two descendants (referred to as τ below). This
likelihood is, by definition, the total probability corresponding to all evolu-
tionary histories that are consistent with the observed sequences. Obviously,
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there are extremely many of these evolutionary histories, so a direct evalua-
tion of this sum is impractical. However, a dynamic programming approach
is possible that computes this sum in reasonable time.

In the following, P (i, j) is the likelihood of the length-i prefix of the an-
cestral sequence evolving into the length-j prefix of the descendant sequence.
For instance, P (0, 0) = I∞Iτ since the probability of observing the empty an-
cestral sequence is I∞, while the probability of the empty sequence evolving,
in time τ , into the empty sequence again is Iτ . The dynamic programming
solution now consists of computing P (i, j) in terms of previously computed
P (i′, j′). By filling a table, all values can then be computed in reasonable
time.

As we saw in Section 14.2.1, each ancestral nucleotide evolves indepen-
dently of the others, and a single ancestral nucleotide can evolve into 0, 1, 2, . . .
descendant nucleotides (which may or may not be homologous to the ances-
tor). For the recursion, this means that we can express P (i, j) in terms of
P (i − 1, j − k) with k = 0, 1, . . . , j (corresponding to outcomes with k de-
scendant nucleotides) multiplied by the probability of a particular evolution
of the last ancestral nucleotide. The contribution of the indel process to these
probabilities is given in Section 14.2.1. This must be multiplied by (1) the
probability B∞ of observing one additional ancestral nucleotide; (2) the equi-
librium probability of the particular nucleotide observed; (3) the probability
of that nucleotide evolving into the descendant nucleotide (in case of a homol-
ogous descendant nucleotide); and (4) the nucleotide equilibrium probabilities
of any nonhomologous descendant nucleotides. The resulting algorithm is il-
lustrated in Figure 14.6.

As the algorithm is formulated here, its running time is cubic in the se-
quence length. However, due to the geometric tails of the outcome probabilities
pN

n , pH
n , and pI

n as functions of n, the recursion may be reformulated so that
it only uses a bounded lookback, resulting in an algorithm that has quadratic
time complexity [42]. In this context, this is just an algebraic trick and is remi-
niscent of the method used by Gotoh in 1982 for reducing the time complexity
of a score-based sequence alignment algorithm with affine gap penalties (see
[10]). However, there is a more meaningful and conceptual way to look at
this. It turns out that the TFK91 model can be viewed as an instance of what
is known as a hidden Markov model (HMM). From that point of view, the
algorithm derived using the algebraic trick becomes the well-known forward
algorithm for HMMs, and more algorithms are immediately applicable, such
as the Viterbi algorithm for determining the most likely path through the
chain, corresponding to the most likely alignment supported by the model. In
the next section, we will develop this point of view in more detail.
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Fig. 14.6. A graphical illustration of a dynamic programming recursion for the
TKF91 likelihoods. The left-hand side is the likelihood P (i, j) defined in the text;
horizontal black bars represent sequences, and the grey area represents “evolution.”
Since individual nucleotides evolve independently, the likelihood for the length-i
ancestral prefix to evolve into the length-j descendant prefix factorizes into several
other prefix likelihoods and probabilities of the ith residue to evolve into descendant
subsequences.

14.3.2 A Hidden Markov Model Formulation of TKF models

The outcome probabilities pH
n (t) and pN

n (t) of the TKF91 model are geometric
functions of n. As a result, we can construct a graph, with probabilities on
each of its edges, such that each path through the graph corresponds uniquely
to a particular outcome, and the product of all the probabilities encountered is
precisely the probability of that outcome. The graph shown in Figure 14.7(a)
has all these properties and generates alignments according to the TKF91
model. Such graphs are called Markov models if the outgoing probabilities sum
to 1 for each of the states. This is accomplished in Figure 14.7 by multiplying
and dividing by a factor 1 − Bτ at certain positions in such a way that the
total probability of any closed path from the start state to the end state does
not change. We use this Markov model as a hidden Markov model (HMM)
because we treat only the sequences as known, while the alignment structure
is regarded as unknown. This unknown information is encoded by the path
taken through the Markov chain, while the emitted sequences of nucleotides
are given. We refer to [6] for more information about HMMs.

By manipulating the graph of Figure 14.7(a), the number of states can
be reduced to just three (apart from the Start and End states) see Figure
14.7(b). This reduces the time and memory complexity of the HMM algo-
rithms (especially when more sequences are considered, see below). Because
of the algebraic manipulations, the transition probabilities take a more com-
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Fig. 14.7. Two HMM formulations of the TKF91 model. (a) Direct translation of
TKF91 probabilities into an HMM. A factor 1 − Bτ is needed for three transitions
to make all outgoing transition probabilities add up to 1. (b) Another HMM that
is emission-equivalent to (a). The two states #

− were merged into one and all non-
emitting states removed, leaving a fully connected three-state HMM. Note that the
evolutionary indel model by Knudsen and Myamoto [21] is formulated using an
HMM with exactly the same topology.

plicated form and are listed in Table 14.1. Henceforth, when we refer to the
TKF91 HMM, we are referring to the reduced HMM of Figure 14.7(b).

Starting from this HMM formulation of TKF91, it is straightforward to
transform it into the HMM for TKF92. This is done by adding a self-transition
(with probability ρ) to each state, which accounts for the geometric fragment
length distribution. To compensate, all other transition probabilities (includ-
ing the existing self-transitions) are multiplied by 1 − ρ, making outgoing
probabilities add up to 1 again. See Table 14.1 for the explicit transition
probabilities.

14.3.3 Algorithms

The formulation of the TKF models above in terms of HMMs allows us to use
standard HMM algorithms, such as the forward-backward algorithm, and the
Viterbi algorithm. For a detailed explanation of these algorithms, we refer to
[6]; here we focus on their application.

Applied to the TKF HMMs, the forward (or backward) algorithm cal-
culates the total likelihood of one sequence to have evolved from another. In
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Table 14.1. Transition probabilities in the HMM of Figure 14.7(b) for the TKF91
and TKF92 models. The probabilities for TKF91 are obtained from those of TKF91
by multiplying all transition probabilities by 1 − ρ and adding a self-transition with
probability ρ to every state.

fact, in most cases, we want to calculate the likelihood of an unknown root
sequence having evolved, independently, into two observed modern sequences.
Because of the time-reversibility of the model, the position of the root on the
branch connecting these two sequences does not influence the likelihood, and
therefore these two likelihoods are equal. This symmetry property is known
as Felsenstein’s pulley principle [8].

The forward and backward algorithms compute the total probability of all
paths through the Markov chain that emit the observed sequences. This can be
used for homology testing [12] and to estimate evolutionary parameters [42],
such as the divergence time and the indel rate, by maximum likelihood. The
Viterbi algorithm is the HMM analogue of the Needleman-Wunsch [36] score-
based alignment algorithm and is traditionally the main workhorse for doing
inference in hidden Markov models. The algorithm finds the most probable
(that is, the maximum likelihood) path to emit the given sequences, and this
path codifies the alignment of the sequences.

From the intermediate results from both the forward and backward algo-
rithms, it is possible to compute the posterior probability of passing through
any given state, conditional on emitting the observed sequences. Figures 14.4
and 14.8 show examples of Viterbi alignments and corresponding posterior
state probabilities on the Viterbi paths. For the alignment models, these are
interpreted as the posterior probability of observing an individual column in
the alignment. These posteriors are therefore indicators of the local “reliabil-
ity” of an alignment. They add important information to the simple “best”
answer obtained for example by the Viterbi algorithm and can be seen as the
alignment equivalent of confidence intervals for simple numerical parameter
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Fig. 14.8. Viterbi alignment of human α hemoglobin with human myoglobin un-
der (a) the TKF91 model and (b) the TKF92 model (with parameter ρ = 0.44).
Clearly, the TKF92 model fits the data much better, generally assigning higher
posterior probabilities to the alignment. (Maximum log-likelihoods for TKF91 and
TKF92 are −825.25 and −817.25, respectively.) Note the ≈ 6 aligned columns that
show a sudden decrease in posterior probability in the TKF92 alignment, where the
corresponding TKF91 alignment has two small indels. The TKF92 model is reluc-
tant to include many individual indels, preferring a single large one. Although the
maximum likelihood path is the one without any indels in that region, alignments
with indels contribute significantly to the total likelihood, indicating that the ho-
mology implied by the alignment there should be treated with caution. This is a
good example of what additional information can be obtained from the posterior
column probabilities.

estimates. In practical examples, there are very many alignments that con-
tribute to the total likelihood, and the most likely alignment may contribute
only a very small fraction. This makes a single best answer not very informa-
tive, and the local reliability measure indicates which parts of the alignment
can be trusted and which parts are essentially random, giving a quantitative
underpinning of the notion of “unalignable region” [23].

Although the Viterbi algorithm, computing the maximum likelihood path,
is ubiquitously used for alignment inference, it should here be mentioned that
there is no one-to-one relationship between paths through the Markov chain
and alignments. More than one evolutionary history can give rise to a single
alignment, see Figure 14.3 for an example. Note that for the output of the
Viterbi algorithm, the exact topology of the HMM is important, and, in gen-
eral, two HMMs may be emission-equivalent without being path-equivalent.
An example is provided by the TKF92 versions of the HMMs of Figure 14.7,
which are derived by adding self-transitions with probability ρ to each (emit-
ting) state. Paths through Figure 14.7(a) codify the sequence fragmentation,
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while in Figure 14.7(b) the sequence fragmentation is analytically summed out
and cannot be deduced from the path. Their hidden information differs, but
the observables (the emitted nucleotides) follow exactly the same distribution.
The result is that the forward or backward algorithms give the same answers,
but the Viterbi algorithm is biased toward alignments with more indels if the
HMM of Figure 14.7(a) is used.

Although not much of a problem for pairwise alignment, the nonequiva-
lence of paths and alignments turns up again, and more seriously, in the case
of alignments on trees. One way of dealing with this problem is to explicitly
look for the most probable alignment and keep track of all paths that con-
tribute to it [22]. Unfortunately, the resulting algorithm is very slow. Another
method that recovers a “best” alignment from an HMM, without relying on
path reductions, is posterior decoding [6]. The idea is first to compute poste-
rior probabilities for each possible column that may appear in the alignment
and then find the alignment that maximizes the combined posterior column
probability. This can be done efficiently using dynamic programming, which
is the same strategy that underlies the forward, backward, and Viterbi algo-
rithms. Although there is no guarantee that the alignment obtained in this
way is the most probable one, in practice this method gives very good results.
Another advantage of the method is that it is also applicable in Markov chain
Monte Carlo settings (see Section 14.5), where the Viterbi algorithm cannot
be used but estimates of posterior column probabilities are available.

14.4 Multiple Statistical Alignment

The simultaneous alignment of several sequences can reveal conserved mo-
tifs much more sensitively than a pairwise alignment can. This assists in the
alignment of more distantly related sequences and the detection of functional
sites. Unfortunately, multiple alignment is a computationally hard problem,
and certain particular cases are known to be NP-hard [46]. Furthermore, the
problems of multiple alignment and phylogenetic inference are closely inter-
linked: to properly align a set of homologous sequences, it is necessary to
know their phylogeny, and vice versa [11, 45]. Keeping this interrelatedness
in mind, we will nonetheless focus mostly on alignments. We do not discuss
the various interesting approaches developed for phylogenetic reconstruction
and will return to this topic only at the end of this section, where we discuss
co-estimation of alignment and phylogeny.

In the 1970s, Sankoff introduced the first multiple-alignment algorithm
[39], and since then many other algorithms have been proposed. Most of these
are “score-based” and use a score function that assigns a “goodness” to par-
ticular multiple alignments (and sometimes phylogenies). The algorithms then
find the best alignment by optimizing this score function. Because of the large
number of possible alignments, full optimizations are practically impossible,
and several clever heuristics have been introduced to find reasonable solutions
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in reasonable time. Successful programs include ClustalW [41], PSI-Blast [2],
DiAlign [34], and T-Coffee [37].

A drawback of score-based approaches is that it is hard to justify the para-
meter settings of the score function—or indeed the score function itself. This is
one reason why probabilistic approaches are becoming more popular. Instead
of assigning a score, these methods assign a probability to alignments, making
it easier to train a model on data and find parameters by techniques such as
maximum likelihood. Two popular probabilistic approaches, both based on
HMMs, are HMMER [7] and SAM [20]. Another important advantage of
probabilistic models is that they provide estimates of the uncertainty in the
final answer, such as posterior column probabilities for alignments and confi-
dence intervals for parameter estimates. An example of a probabilistic progres-
sive multiple-alignment method is [25], which has since been extended to in-
clude structure-dependent evolution (Löytynoja and Goldman, pers. comm.).
Another example is by Mitchison [33], who estimates phylogeny and alignment
simultaneously using an MCMC sampler in a probabilistic framework.

However, probabilistic models also have some problems. Such models are
mostly phenomenological, describing the data but not explicitly making state-
ments about the process that generated them. In particular, the evolutionary
relationships between the sequences are often treated heuristically. Parame-
ters of phenomenological models are linked to observables, not to the evolu-
tionary process, making it difficult to interpret parameter values. For correct
modelling, one should ideally reestimate parameters for every data set with
different evolutionary parameters.

An evolutionary approach is based on a model of sequence evolution from
which a probabilistic model for the observed sequences is derived. In this
way, the parameters of the model (such as indel and substitution rates and
divergence time) are meaningful and can be estimated using the same meth-
ods as for probabilistic models. The TKF91 and TKF92 models fit in this
framework. Algorithmically, the approach is not very different from proba-
bilistic or even score-based methods, and it encounters the same problems.
Full-likelihood methods are possible only for a very limited number of se-
quences, after which approximations and heuristics are necessary. One partic-
ularly useful approximation method is Markov chain Monte Carlo (MCMC).
This method generates samples from the posterior distribution of alignments,
thereby disregarding alignments that are very unlikely.

14.4.1 Multiple Alignment and Multiple HMMs

The first step in extending statistical alignment to multiple sequences was
taken by Steel and Hein [40], who provided an algorithm to align sequences
related by a star tree (a tree with a single internal node). This was soon
extended to arbitrary phylogenetic trees [12] with an algorithm with time
complexity O(L2n), where L is the mean sequence length and n the number
of sequences. For star trees, this running time was subsequently reduced to
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O(4nLn) [31]. These results used rather complicated algebraic manipulations
to derive the algorithms, and when it was realized that for two sequences the
TKF91 model can be described as a pair HMM [29, 12, 18], the extension to
multiple sequences became much easier. Holmes and Bruno [18] showed how to
construct a multiple HMM describing the evolution of an ancestral sequence
and its two descendants. Subsequently, Hein, Jensen, and Pedersen showed
how to generate a multiple HMM for TKF91 on an arbitrary phylogenetic
tree [13]. The details concerning the construction of these multiple HMMs are
beyond the scope of this book, but to give a flavor of the techniques involved
we give a single example for three sequences in Figure 14.9.

We can loosely argue that this multiple HMM correctly generates mul-
tiple alignments according to TKF91. First, note that each path from the
start state to the end state corresponds to a multiple alignment. From the
start state, the chain first jumps to a silent state next to the state emitting a
character to all the sequences, which models “births” emanating from the im-
mortal link. Eventually the process reaches the rightmost silent state, where
a decision is made whether there is a new root birth. If there is, a decision
tree with transition probabilities αi and 1−αi decides on which branches this
nucleotide survives, after which subsequent births associated with the surviv-
ing nucleotides are introduced. It can be verified that the path probabilities
equal the probabilities that the TKF91 model assigns to the corresponding
alignments, a task we gladly leave to the reader.

In the same vein, TKF92 can be extended to multiple alignments on trees.
The simplest way to do this is by adding self-transitions to the HMM of Fig-
ure 14.9. This fixes fragmentations over the entire phylogenetic tree, so that
indels cannot overlap even if they occur on separate branches, clearly creating
undesirable correlations between independent subtrees. A better behavior is
obtained if the three-state TKF92 HMM is used as a building block on each
of the branches and communicates sequences (not fragmentations) at internal
nodes. Holmes introduced the concept of transducers, or conditionally nor-
malized pair HMMs describing the evolution along a branch, which provides
an algorithmic way to construct multiple HMMs on a tree [17]. This leads
to an HMM with the same number of states as before, but one that allows
overlapping indels as long as they occur on separate branches.

As an aside, note that, in contrast with the fixed-fragmentation TKF92
model, likelihoods now depend on the number and position of internal nodes
along a branch. In fact, even introducing a node of degree 2 (i.e., a node with
one incoming and one outgoing branch) changes the model. By increasing
the density of such degree-2 nodes, the model eventually converges to the
long indel model, allowing arbitrary overlapping indels. Unfortunately, the
number of HMM states increases exponentially with the number of nodes, so
that adding such degree-2 nodes is an impractical way of approximating the
long indel model.

A technical problem with the multiple HMMs generated above is that they
may contain silent states that do not emit any characters or emit only into
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Fig. 14.9. Multiple HMM describing the evolution of three sequences related to a
star tree, under the TKF91 model. The following abbreviations are used: αi = e−µti ,
βi = (λ − λe(λ−µ)ti)/(µ − λe(λ−µ)ti), and γi = (1 − αi)−1(1 − e−µti − βi), where ti

is the length of the branch descending to tip i in the phylogenetic tree. Big circles are
states that emit the column shown according to the underlying substitution model;
R, A, B, and C represent characters in the root sequence and the three observed
sequences, respectively. Small ellipses represent silent states, (see [18]).

(unobserved) internal nodes. (An example of a silent state is the R/-/-/- state
in Figure 14.9.) These states create self-references (or loops) in the state graph
and need to be eliminated before the Markov chains can be used in algorithms.
The technique of silent-state elimination is well-known in the HMM literature
[7], and it involves solving a set of linear equations. See [27] for more details.

14.4.2 Algorithms for Multiple Sequence Alignment

After eliminating silent states, we can calculate the joint probability of a set
of sequences related by a phylogeny by the standard forward and backward al-
gorithms, calculate the posterior probability of particular alignment columns,
and can find the most likely alignment with the Viterbi algorithm [6]. An
example is presented in Figures 14.10 and 14.11.

A practical problem that besets algorithms for multiple HMMs is that the
time and memory complexity increase rapidly with the number of sequences.
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Fig. 14.10. Maximum likelihood trees relating human α1 and β hemoglobins, myo-
globin, and bean leghemoglobin for all three topologically distinct trees, total like-
lihood values (L), and insertion rates (λ) under the TKF91 model. The numbers
next to the branches refer to branch lengths in units of expected number of substi-
tutions per site. Dayhoff’s PAM matrix was used as the substitution rate matrix.
As expected, the most likely tree is the one that groups human alpha and beta
hemoglobins together. The other trees are close to degenerate, with only a very
short segment connecting the internal nodes, again suggesting that these phyloge-
nies are incorrect. The tree likelihoods combine all possible alignments of the four
sequences, in contrast with most other methods, which rely on a single alignment,
preventing inaccuracies in a single alignment from biasing the phylogeny inference
(see [27]).

Two factors contribute to this rapid increase: (1) The dimension of the dy-
namic programming (DP) table is equal to the number of sequences n, and
(2) the number of states S of the multiple HMM itself grows exponentially
with the number of sequences. Generally, the basic algorithms have time and
memory complexities of O(S2Ln) and O(SLn), respectively. For TKF91 and
TKF92, the number of states S is of the order

√
5

n
[27]. One implementation

of the TKF91 model for four sequences uses 47 states and 1293 transitions be-
tween them, so that for sequences of length 150, naive implementations would
require about 2 · 1010 memory positions and 1012 floating point operations.
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Fig. 14.11. The Viterbi alignment of α and β human hemoglobin, human myo-
globin, and leghemoglobin (Lupinus luteum) for the first phylogenetic tree in Fig-
ure 14.10. The log-likelihood of this alignment (one of those included in the tree
likelihood of Figure 14.10) is −1593.223. The column posterior probabilities vary
considerably and clearly point to several highly conserved domains, punctuated by
much less conserved regions. Amino acids that participate in α helices are shown
in uppercase; asterisks denote the four conserved residues that coordinate the heme
group.

The TKF91 model has some surprising symmetries that allow the forward
algorithm based on the three-state pair HMM to be reduced to a one-state
recursion [14]. This algebraic reduction results in a recursion that contains
negative coefficients, so that it cannot be interpreted as a Markov chain any-
more. Nevertheless, similar reductions are possible on trees, also resulting in a
one-state recursion, resulting in an algorithm to compute the total likelihood
using Ln memory positions with a running time of order O(2nLn). See [27]
for details.

The tricks involved in the reduction seem unique to TKF91, and for TKF92
and similar models, we have to resort to general algorithms. In the following
section, we discuss a number of modifications to the original forward-backward
and Viterbi algorithms and some corner-cutting methods that make full like-
lihood methods possible in practice.

Multiple forward-backward algorithm

In practice, memory resources are often the limiting factor, and strategies
to reduce memory usage are therefore of great practical importance. For the
forward and backward algorithms, if only the total likelihood is required, one
can relinquish DP table entries dynamically, resulting in memory requirements
of the order SLn−1, not SLn. To compute posterior column probabilities, the
straightforward algorithm computes the full DP table using both the forward
and backward algorithms and therefore requires order SLn memory. However,
if the posterior probabilities for a particular alignment are required, a more
careful implementation can still compute this using order SLn−1 memory by
relinquishing during the iterations all DP table entries that are not referenced
by either the alignment of interest or new DP table entries [15, 30]. Even
with these leaner implementations, the computational complexity is still very
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high. Further reduction in space can be achieved by heuristic corner-cutting
methods. Such methods are well-known in score-based alignment approaches
[44, 35, 3, 24, 47], and here we describe their counterparts for HMMs.

In practice, only a small region of the DP table is responsible for the
dominant contribution to the total likelihood. This region often consists of a
well-defined “spine” corresponding to the maximum likelihood alignment and
close neighbors. If this “contributing region” were known, the recursion could
be confined to it, resulting in a considerable speedup [14] and a negligible loss
of total likelihood. The problem is clearly circular, however, as the contribut-
ing region can only be determined after the full DP table has been computed.
Having said this, heuristic methods for selecting the contributing region exist
that work very well in practice, for example based on full pairwise alignments.

The likelihood that is computed in this way is, by construction, a lower
bound for the actual likelihood since each time the DP recursion refers out-
side the contributing region, probability 0 is used instead of the true (small
but nonzero) probability. It is possible also to compute an upper bound using
the same contributing region. This sandwiches the actual likelihood between
two bounds and, if these bounds are tight enough, provides an effective a
posteriori proof that the maximum likelihood alignment lies within the con-
tributing region. The method is based on calculating the alignment likelihood
of m known sequences and n − m sequences of unknown composition and
length on an n-leaved phylogenetic tree. A recursion of memory complexity
SLm exists that computes the sum of alignment probabilities over all possible
alignments of these sequences, where for a particular alignment this proba-
bility is maximized over the sequence composition of the unknown sequences.
This obviously gives an upper bound for the total alignment likelihood of the
n sequences, and one that is considerably better than the likelihood of sim-
ply aligning the m known sequences on an m-leaved tree. Moreover, it gives
upper bounds for each of the DP table entries in the n-dimensional table by
projecting to the smaller m-dimensional table. By taking the minimum over
all combinations of m sequences out of the n given ones, good upper bounds
are obtained for the entire DP table. The final upper bound for the alignment
probability is obtained by performing the DP recursion on the contributing
region and using the m-sequence-based upper bound whenever the recursion
refers to an entry outside that region. This approach was used to compute the
alignment likelihoods and maximum likelihood trees depicted in Figure 14.10.

Multiple Viterbi algorithm

The method of “shaving off” a dimension of the DP table in the forward-
backward algorithm cannot be used for the Viterbi algorithm, as it contains
a backtracking loop to find the most likely path, which may visit any part
of the DP table. A clever idea due to Hirschberg [15] reduces the memory
requirements to order SLn−1 in a different way at the cost of an increase in
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time complexity by only a constant factor. The algorithm consists of a stan-
dard Viterbi algorithm that, however, does not retain its DP table and stops
halfway. A “backward” Viterbi algorithm then starts at the other end and
again stops halfway. Using their outputs, the central state of the Viterbi path
is determined, but no backtracking is possible. However, with the central state
known, the Viterbi recursion can be performed again but is now constrained
to two DP tables of size roughly (L/2)n. The same strategy is used again in
the smaller tables until after several recursive divisions the full Viterbi path
is found. The algorithm runs in time proportional to

S2Ln ×
[
1 +
(

1
2

)n−1

+
(

1
2

)2(n−1)

+ · · ·
]

= S2Ln 2n−1

2n−1 − 1
, (14.14)

an increase of at most a factor 2. Unfortunately, Hirschberg’s algorithm does
not perform so well if it is combined with constraints to a contributing re-
gion. Such regions usually lie close to the diagonal of the DP table, and the
Hirschberg halving strategy takes off almost nothing from such an essentially
one-dimensional contributing region. The use of table constraints is highly
desirable, however, as the algorithm otherwise becomes impractical already
for as little as four sequences.

Another strategy, termed “bushy Viterbi,” has the same memory usage
as Hirschberg’s algorithm and the same constant time penalty but can be
combined with the contributing region strategy as well. The idea is to combine
the two stages of the Viterbi algorithm into one and do backtracking on-the-
fly. For this to work, each state requires an additional pointer to the state it
refers to and a reference count. The algorithm keeps optimal paths for each
state in the current n − 1-dimensional DP table slice. Whenever a slice is
completed, all reference counts in the previous slice are decreased by one, and
those that are not referenced by states in the current slice are removed. The
table entries to which these states refer have their reference counts decreased
as well, and when they reach zero, the entries are removed in turn, and so on.
Since the optimal paths for the various states quickly coalesce, the set of all
paths is in practice very tree-like, as most coalescence events occur close to the
tips, and requires not much more memory beyond the Ln−1 DP table entries.
By doing the garbage collection only occasionally, the time complexity is also
not much more than for the ordinary Viterbi algorithm. This algorithm was
used to calculate the Viterbi alignment of Figure 14.11.

14.5 Monte Carlo Approaches

The major difficulty with statistical alignment has been in extending it to
practical problem sizes. Alignments of tens or hundreds of sequences are rou-
tinely required in standard bioinformatics and phylogenetics settings. Exact
techniques for statistical alignment are restricted to four or five sequences [27].
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In this section, we review Monte Carlo approaches that promise to consider-
ably extend the domain of application of statistical alignment.

14.5.1 Statistical Alignment Using MCMC and TKF91

A number of researchers have been motivated to develop MCMC sampling
algorithms to extend the use of the TKF91 model into the realms of prac-
tical multiple-sequence alignment. The first such effort was by Holmes and
Bruno [18], who produced an MCMC approach to statistical alignment under
the TKF91 model conditional on a fixed tree topology and branch lengths.
They used data-augmentation techniques to include paired-sequence align-
ments (henceforth referred to as branch alignment) on each branch of the tree
as well as inferred sequences at internal nodes. The proposal distribution they
used consisted of two Gibbs sampling moves that resampled (1) a branch
alignment conditional on the two adjacent sequences (one of which might
be an inferred sequence) and (2) a sequence at an internal node conditional
on the three adjacent branch alignments (while allowing insertion of charac-
ters unaligned with any of the three neighbors). Both of these moves involve
sampling a subspace of the augmented problem from the exact conditional
probability. This method was followed by another Gibbs sampler [13] that
reduced the state-space by not requiring the branch alignments to be retained
between successive states. This was achieved by using a more computationally
intensive Gibbs move that resampled an internal sequence conditional only on
the three neighboring sequences. The algorithm of Hein et al. is O(L3) in the
length of the sequence, as opposed to the O(L2) move of Holmes and Bruno.
However, Hein et al. demonstrated that their algorithm’s superior mixing
more than made up for the extra computational time. In terms of effectively
independent samples per CPU second, the Hein et al. method appeared to be
an improvement. Both of these methods relied on EM optimization for val-
ues of the rates of substitution, insertion, and deletion. Theoretically, these
parameters could easily be Metropolis sampled as part of the algorithm.

A third group has used MCMC to sample pairs of sequences [29, 28].
This work focuses on including alignment uncertainty into estimates of branch
lengths. While these authors do not address the full problem of multiple align-
ments, they were the first to demonstrate the feasibility of a full Bayesian
approach to co-sampling alignments and evolutionary parameters.

14.5.2 Removing the Requirement for Data Augmentation

One of the reasons that data augmentation was required for the MCMC meth-
ods above was that the likelihood of the whole tree could not be efficiently
calculated without internal sequences. A better solution would be to have an
analogue of the Felsenstein peeling algorithm [8], which would analytically
sum out the sequences and gaps at internal nodes. With such an algorithm,
the state could simply consist of the tree topology together with the homology
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structure (multiple sequence alignment) at the tips. No branch alignments or
internal sequences are then required. Not only would this considerably sim-
plify the extension of the statistical alignment problem to co-estimation (the
tree topology can be sampled without worrying about disturbing augmented
data), but it should also reap computational benefits in the same way that
the Hein et al. method did over the Holmes and Bruno one.

Surprisingly, a peeling method for the TKF91 model on a binary tree is not
only possible, but is also computationally very cheap. We used this method
to include indels as informative events in phylogenetic inference [26], and it is
the basis of the co-estimation method described below.

14.5.3 Example of Co-estimation

Previous methods applying MCMC to statistical alignment problems did not
sample evolutionary trees. The recent development of the TKF91 peeling
method mentioned above removes the requirement for data augmentation,
making tree-change proposals very simple. However, this ease of manipulat-
ing the tree comes with a drawback: without data augmentation, it does not
appear to be possible to perform Gibbs sampling on the alignment. Instead,
other sampling methods are required, and careful design is needed for good
performance. We have developed a partial importance sampler, which has
good mixing properties in terms of estimated sample size (ESS) per CPU
cycle. This method uses a stochastic score-based approach to propose new
alignments. The proposal distribution is reshaped into the posterior distribu-
tion by standard Metropolized importance sampling techniques. We used the
program BEAST written in Java as the MCMC inference engine [4, 5].

In more detail, the method works as follows. Given a multiple alignment,
a random window is selected for modification, and a new subalignment in
this window is proposed by a stochastic version of a score-based progressive
alignment method. In this stochastic alignment method, sequences and pro-
files are progressively aligned using a pairwise algorithm, guided by the tree
of the current MCMC state. In each iteration of the stochastic alignment,
the dynamic programming table is filled as in the deterministic case by using
linear gap penalties and standard similarity matrices. The stochastic element
appears during the traceback phase. At each step during traceback, a random
decision is made, biased toward the highest-scoring alternative. If the three
alternatives have scores a, b, and c, respectively, the algorithm chooses among
the alternatives with probabilities proportional to xa, xb, and xc, respectively,
where x > 1. The stochastic path chosen determines the proposed alignment.
It can be shown that all possible alignments of the subsequences can be pro-
posed in this manner, and the proposal and back-proposal probabilities can
be calculated relatively easily.

To get a reversible Markov chain, all window sizes must be proposed with a
nonzero probability. We used a truncated geometric window-size distribution,
but other distributions can also be used. The parameters that appear in this
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V-HWTADEKQLITSLWGKVN-V-EECGSEALARLLIVYPWTQRFFSTFGNLSNAEAILHNPHVHAHGKKVLTSFGEA-----VKNLDHIKQTFATLSKLHCEKLHVDPENF-KLLGNVLIIVLASHFTKEFTPACQAAWQKLVSAVAHALALGY------H 
G--LSDGEWQLVLNVWGKVEADIPGHGQEVLIRLFKGHPETLEKFDKFKHLKSEDEMKASEDLKKHGATVLTALGGI-----LKKKGHHEAEIKPLAQSHATK-HKIPVKYLEFISECIIQVLQSKHPGDFGADAQGAMNKALELFRKDMASNYKELGFQG 
G--LSDQEWQQVLTIWGKVEADIAGHGHEVLMRLFHDHPETLDRFDKFKGLKTPDQMKGSEDLKKHGATVLTQLGKI-----LKQKGNHESELKPLAQTHATK-HKIPVKYLEFISEVIIKVIAEKHAADFGADSQAAMKKALELFRNDMASKYKEFGFQG 
G--LSDDEWHHVLGIWAKVEPDLSAHGQEVIIRLFQVHPETQERFAKFKNLKTIDELRSSEEVKKHGTTVLTALGRI-----LKLKNNHEPELKPLAESHATK-HKIPVKYLEFICEIIVKVIAEKHPSDFGADSQAAMRKALELFRNDMASKYKEFGFQG 
GV-LTDVQVALVKSSFEEFNANIPKNTHRFFTLVLEIAPGAKDLFSFLKGSSEVPQ--NNPDLQAHAGKVFKLTYEAAIQLQVNGAVASDATLKSLGSVHVSK-GVVDAHF-PVVKEAILKTIKEVVGDKWSEELNTAWTIAYDELAIIIKKEMK---DAA 

Fig. 14.12. The maximum posterior decoding of an alignment of ten globins: alpha
hemoglobin (human, chicken, turtle), beta hemoglobin (human, etc.), myoglobin
(human, etc.), and bean leghemoglobin). Estimates of posterior column probabilities
were obtained by co-sampling phylogenetic trees and alignments through MCMC
using an alignment proposal distribution in windows of varying sizes and a linear-
time likelihood calculator for the TKF91 model in trees. For the MCMC run on
which these results are based, the estimated sample size was about 80. The column
posterior probabilities qualitatively agree with the analytic posterior probabilities
for the maximum likelihood alignment, based on just four of the ten globins (see
Figure 14.11).

stochastic alignment algorithm, such as the average window size, determine
the proposal distribution but do not influence the resulting posterior distrib-
ution. However, they do influence the efficiency of the MCMC sampler. For
example, if the basis of exponentiation, x, is small, the proposal distribution
will be flat, leading to a small acceptance ratio. When x is too large, the pro-
posal distribution will be too narrow, resulting in bad mixing behavior if the
distribution is far from the target distribution. The gap penalty value has a
similar effect: if it is small, many alignments have a similar probability of be-
ing proposed, while a big penalty results in a proposal distribution containing
very few alignments.

Figures 14.12 and 14.13 illustrate the results of this co-estimation method
on a set of ten globin sequences. These pictures were produced from two
MCMC runs with a total chain length of 10,000,000 and a burn-in of 500,000.
The basis of exponentiation x was chosen to be 1.5, and the mean window size
was 40 amino acids. We used the BLOSUM62 matrix and gap penalty −10.
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Fig. 14.13. The maximum posterior tree (black) relating the ten globins of Figure
14.12 and 95% confidence intervals of the node heights (grey boxes). Most of the
tree’s topology is well-determined, with the exception of the myoglobin subtree.
Note that this relatively unresolved topology differs from the more well-defined
topologies down the alpha and beta hemoglobin branches, both of which conform
to the accepted phylogenies of human, chicken, and turtle.

14.6 Discussion

Recent progress in the development of statistical alignment methods, and es-
pecially the emergence of practical algorithms, has made it possible to treat
the problem of sequence alignments as a statistical inference problem, es-
timate evolutionary indel parameters, and quantify alignment uncertainties.
This development shows parallels with the success of statistical methods for
phylogenetic inference since the 1980s.

Several aspects of statistical alignment methods have seen important
progress: methods for pairwise alignment have been generalized to multiple
sequences; more realistic insertion/deletion models have been proposed; hid-
den Markov model theory has conceptually simplified many algorithms; and
MCMC methods have considerably extended the domain of application. These
successes are due to, and resulted in, a growing interest in statistical align-
ment problems [14, 18, 12, 40, 29, 31, 19, 26, 27, 28, 13, 21, 17, 32]. In 2001,
pairwise alignment was just about a feasible task for statistical alignment. At
present, the limit has been pushed up to about ten sequences. Much larger
data sets are routinely of interest, and there is clearly a need for cleverly
designed MCMC algorithms to tackle such problems.

The possibility of assessing the goodness-of-fit of a given statistical align-
ment model is a strength of probabilistic approaches and allows for data-driven



402 G. Lunter, A. J. Drummond, I. Miklós, and J. Hein

model improvements. Many such challenges remain, such as the inclusion of
more biological realism in the models, incorporating, for example, indel rate
heterogeneity and variable substitution rates. Although heterogeneity of sub-
stitution processes has been extensively explored in the context of phyloge-
netic inference, it is largely unexplored in the context of sequence alignment.
Perhaps even more importantly, the development of user-friendly software will
be essential to make the methods appeal to a wider audience.

Sequence alignment is often just the first step in any analysis. Most current
methods, such as comparative gene finding and RNA secondary structure pre-
diction, but also phylogenetic inference, assume a prior and fixed alignment.
These methods can be combined with statistical alignment either by a full
co-estimation procedure, simply by using a sample of alignments, or by incor-
porating the column reliabilities as weights. Such a hybrid approach would
reduce the bias introduced by assuming exact knowledge of sequence homol-
ogy and at the same time increase the sensitivity by focussing on reliable data,
and work in this direction is already in progress (see ,e.g., [16]).

The understanding of molecular evolution today owes much to the devel-
opment of adequate evolutionary models. We hope that statistical alignment
will contribute to this fundamental understanding in the coming years.
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15.1 Introduction

An amino acid substitution matrix is used in sequence alignment to assign
a measure of evolutionary similarity between every pair of amino acids. The
substitution score S(a, b) for amino acids a and b can be interpreted proba-
bilistically as being proportional to the logarithm of a probability ratio

S(a, b) = s log
f(a, b)

π(a)π(b)
, (15.1)

where f is a joint distribution that reflects some evolutionary relation, π is
the background distribution, and s is a constant. Thus the product in the
denominator is the probability that two unrelated aligned residues happen to
be a and b, and the fraction is the likelihood ratio of homology (relatedness)
against nonhomology. Usually, the joint probability is chosen to be symmetric
(i.e., for any a and b, f(a, b) = f(b, a)), and the background frequencies are
the same as the row or column sum or the marginal distribution of the joint
distribution: π(a) =

∑
b f(a, b) =

∑
b f(b, a). As a consequence, S is symmet-

ric, and this has the advantage that it is not necessary to distinguish between
the sequences. Another consequence is that construction of S is reduced to
that of a symmetric joint distribution. In this chapter, we only deal with
symmetric substitution matrices. Asymmetric matrices are useful for certain
database searches [32]. Since amino acid matrices have been used for a longer
time than DNA matrices, and almost all of the theory is common to both, we
will only discuss the former, except in Section 15.7.

The result of sequence alignment depends substantially on the substitution
matrix, and much work has gone into choosing optimal matrices [16, 36, 5, 23].
Moreover, sequence similarity varies considerably, so that a series of substi-
tution matrices tuned to different evolutionary distances are necessary. The
most widely used matrices are the PAM [9] and the BLOSUM [24] series.
They are empirical in the sense that they were estimated from aligned amino
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acid sequences without any extra information. The PAM matrices and similar
matrices [31, 22, 27, 26] were derived on the assumption that the substitution
process was like a reversible homogeneous Markov process (i.e., the substi-
tution rates were constant in time, and the substitution process looked the
same going forward and backward in time). The data used consisted of closely
related sequences, so the fact that the sequences were separated by different
evolutionary distances could be ignored. More recently, methods capable of
dealing rigorously with more distantly related sequences were used, including
the resolvent method by Müller and Vingron [34] and the maximum likelihood
methods of Müller et al. and Holmes and Rubin [33, 25]. There are several
other methods for estimating a reversible substitution process [2, 11], but
these will not be discussed because they were not used to construct substitu-
tion matrices. A very different approach was taken by Henikoff and Henikoff
[24], who employed a heuristic weighting technique on multiple alignments
to produce the BLOSUM series. Unlike the former methods, the BLOSUM
method is not explicitly based on any substitution model, though it quite
clearly takes into account nonconstant substitution rates (inhomogeneity). In
principle, this seems to us a good idea since nonconstant substitution rates had
been observed [3]; however, see [35] for a different point of view. Indeed, BLO-
SUM matrices often outperform PAM matrices in database searches. There
are many substitution matrices that were derived with some additional infor-
mation such as physical or chemical properties of amino acids and secondary
structures of proteins [24, 29]. Generally, these matrices seem no better than
the empirical matrices.

The aim of this chapter is to describe some estimation methods for sub-
stitution matrices and to discuss their relative strengths and weaknesses. We
conclude that the BLOSUM method is preferable for constructing substitu-
tion matrices at large evolutionary distances, while methods based on ho-
mogeneous substitution processes are better at small evolutionary distances.
The outline of the chapter is as follows. In Section 15.2, the theory of Markov
processes is briefly reviewed. The PAM and BLOSUM methods are explained
in Sections 15.3 and 15.5. Section 15.4 discusses two consistent estimation
methods for homogeneous Markov processes: maximum likelihood and the re-
solvent method. Section 15.6 is a comparison of methods on simulated data
from homogeneous and inhomogeneous processes. Finally, Section 15.7 is a
brief description of DNA substitution matrices.

15.2 Markov Substitution Processes

The substitution process on a site is almost always modeled as a Markov
process {Xt}t≥0 (i.e., if t1 < t2 < · · · < tn, then the conditional distri-
bution of Xtn given Xt1 , . . . , Xtn−1 depends only on Xtn−1). Equivalently,
given the present state, the past and future substitutions are conditionally
independent. The Markov property is probably a good approximation to re-
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ality and greatly simplifies the calculation of probabilities. For s < t, let
P (s, t) denote the transition probability from s to t (i.e., its (a, b) entry
P (s, t, a, b) = Pr(Xt = b|Xs = a)). In a Markov process, the family of transi-
tion probabilities is sufficient to compute the probabilities of all events of in-
terest. Another assumption is that sites evolve independently, which is known
to be false in general but is not a great concern here since most sites seem to
behave independently. A Markov process can be realized on a rooted tree by
starting at the root and splitting into independent copies whenever a branch-
ing point is encountered until the leaf nodes are reached.

A homogeneous Markov process has the property that P (s, t) depends only
on t−s, so that it makes sense to define P (t−s) = P (s, t). Without loss of ap-
plicability, we may assume that the transition probabilities have a right deriv-
ative at t = 0 (defining P (0) = I, the identity matrix). This derivative Q is the
infinitesimal generator, or rate matrix, of the process. Thus, the off-diagonal
entries of Q are nonnegative, and every row sums to 0. Furthermore, we have
P (t) = exp(Qt). Consider only those rate matrices with strictly positive off-
diagonal entries. Such a matrix Q has a unique probability vector π satisfying
πQ = 0, or equivalently, πP (t) = π for any t. π is called the equilibrium dis-
tribution of Q. Let the process start with π (i.e., X0 ∼ π). Then the marginal
distribution of each Xt is also π (i.e., the process is stationary). A canonical
construction of the process proceeds as follows. Given Xs = a, the waiting
time to the next substitution is distributed exponentially with rate −Q(a, a)
(i.e., the probability that the next substitution happens after time t > s is
exp(Q(a, a)(t − s))). If the next substitution happens at time u > s, then the
process jumps from a to b �= a with probability −Q(a, b)/Q(a, a). A homo-
geneous Markov process is reversible if for any t1 < · · · < tn, (Xt1 , . . . , Xtn

)
has the same distribution as (Xtn , . . . , Xt1). A reversible process is stationary,
and furthermore Q satisfies the detailed balance equations

π(a)Q(a, b) = π(b)Q(b, a) ∀a, b (15.2)

or equivalently
π(a)P (t, a, b) = π(b)P (t, b, a) ∀t, a, b.

Conversely, if the detailed balance equations hold and the process is stationary,
then it is reversible [28]. Consider the joint distribution F for two states Xα

and Xβ at leaf nodes α and β at distance t apart: F (a, b) = Pr(Xα = a,Xβ =
b). A nice property of the reversible process is that F is independent of where
the common ancestor is located on the path connecting the leaf nodes (i.e.,
F (t) := F is well-defined). In particular, treating α and β as the ancestor,
respectively, gives

F (t, a, b) = π(a)P (t, a, b) = π(b)P (t, b, a) = F (t, b, a), (15.3)

or F (t) = ΠP (t) is symmetric, where Π is the diagonal form of π. Plugging
F (t) into the numerator of (15.1) gives a substitution matrix at distance t.
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All substitution matrices, except for the BLOSUM series, were constructed
based on the reversible process, and hence they are symmetric. The reversible
process is also widely used in the study of molecular evolution [30].

If a set of extant sequences are homologous (i.e., they share a common
ancestor), then their evolutionary history can be represented as a tree with
the ancestor at the root and the sequences at the leaf nodes. Moreover, the
distance (time) d between the root and any leaf node is the same. Consider
the problem of inferring the tree from a multiple alignment of the sequences.
Clearly, without knowing d, this is impossible, but if the molecules behave like
clocks, then we will get branch lengths proportional to the real distances. How-
ever, real molecules are not clock-like (i.e., the substitution rates vary across
lineages). One is almost forced to estimate evolutionary distance, which is
proportional to the number of substitutions per site, instead of chronological
time. Clearly, if the process is sped up by a factor of 2, then the estimated
evolutionary distance is halved. In order to compare distances estimated from
different processes, it is necessary to calibrate the processes so that they all
have the same expected number of substitutions per unit time. For the homo-
geneous process determined by Q, the expected number of substitutions per
site in an interval of length t is κ(Q)t, where

κ(Q) =
∑

a

π(a)Q(a, a).

Dayhoff et al. [7] essentially chose the calibration κ(Q) = 0.01 (explained fully
in the next section) and called the associated unit of evolutionary time PAM.

15.3 PAM Matrices

The PAM (accepted point mutations) matrices by Dayhoff et al. [7, 8, 9]
were the first substitution matrices. The dataset in [9] consisted of families
of closely related amino acid sequences, such that every pair of homologous
sequences were more than 85% identical. The aim was to estimate a transition
probability P1 with equilibrium distribution π such that the probability that
a site is unchanged,

∑
a π(a)P1(a, a), is 0.99. This calibration is essentially the

same as that in the previous section (i.e., if P1 = exp(Qt) for some calibrated
Q and some t > 0, then t ≈ 1). Indeed, since Qt is small, P1 ≈ I + Qt, so we
have

0.99 =
∑

a

π(a)(1 + Q(a, a)t),

which reduces to κ(Q)t = 0.01, or t = 1. In view of this, we will use P (1)
instead of P1. The PAM1 substitution matrix, by (15.1) and (15.3), is

PAM1(a, b) = 10 log10
F (1, a, b)
π(a)π(b)

= 10 log10
P (1, a, b)

π(b)
.
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Matrices at larger distances are derived by raising P (1) to the appropriate
power. In practice, the entries of substitution matrices are rounded.

A tree was constructed for each family, and the ancestral sequences were
inferred by parsimony [15]. The number of occurrences of all 400 types of
substitutions between neighboring sequences were collected into a 20 × 20
frequency table C, which was symmetrized by adding its transpose to itself.
After C is normalized (i.e., divided by the sum of all entries), we have a
symmetric joint distribution. Associated with C is a transition probability P
obtained by dividing each row of C by its sum. One way of going from P
to P (1) is to compute Q = log P followed by calibration and exponentiation.
Using octave, these operations produce Q with negative off-diagonal entries.
It turns out that the phenomenon is general: if Q has many small off-diagonal
entries, then going from P to Q will likely yield negative off-diagonal entries;
a simple fix is to set every negative off-diagonal entry to 0. Dayhoff et al.
avoided taking logarithms, perhaps for this reason. Instead they relied on the
fact, without explicit calculation involving a rate matrix, that the family of
transition probabilities {Pλ}λ>0 defined by

Pλ(a, b) =
{

1 − λm(a) if a = b
λP (a, b) otherwise

approximately correspond to a reversible process, where m(a) is the mutability
of amino acid a (i.e., m(a) =

∑
d�=a P (a, d)). Now λ could be chosen so that

the probability that a site does not change is 0.99:

λ =
0.01∑

a π(a)m(a)
.

Then set P (1) = Pλ.
Wilbur [37] pointed out some deficiencies of the PAM matrices based on

codon substitution considerations. Here, we are more concerned with the sta-
tistical aspect of going from the data to the estimate P (1). Two steps of the
method could introduce bias:

1. Substitution events over branches of different lengths are aggregated. This
is correct if all branch lengths are the same.

2. The approximation P (t) = I + Qt was used for calibration: going from P
to P (1). This is good if Qt is small enough.

As explained before, step 2 can be accomplished reasonably via the logarithm
of P and setting negative off-diagonal entries to 0. Let D2 be a new procedure,
which uses step 1 and exact calibration. Thus, the only source of bias in D2 is
step 1. Comparing the PAM method and D2 gives some idea about the bias
introduced by step 2.

We performed simulations to evaluate the bias introduced by the Dayhoff
and D2 procedures. In fact, we only investigate the asymptotic bias, by assum-
ing that the amount of data is infinite, so that all transition probabilities are
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known. A slightly modified version of the rate matrix estimated by Dayhoff
et al. was taken as the true rate matrix Q. Assuming that on average each of
the 71 trees used by Dayhoff et al. has five leaf sequences, the total number of
branches is about 71×8 = 568. We generated 600 branches of lengths between
0 and 15 PAMs according to six schemes:

1. All branches are of length 1.
2. All branches are of length 5.
3. All branches are of length 10.
4. All branches are of length 15.
5. Branch lengths are drawn from the uniform distribution on (0, 15), U(0, 15).
6. 300, 150, and 50 branch lengths are drawn from U(0, 5), U(5, 10) and

U(10, 15), respectively. This case is perhaps close to the original dataset.

Since the amount of data is infinite, the frequency table for each branch
is proportional to the appropriate joint distribution. The two methods were
applied to get substitution matrices at 1, 50, 100, 160, and 250 PAMs, which
were then compared with the true substitution matrices computed from Q. It
turns out that in almost all the cases, the entrywise absolute difference is 0 or
1, so the number of different entries is a good measure of distance. The results
are summarized in Table 15.1. For the last two schemes, 100 simulations were
performed and the rounded averages were reported; the standard deviations
are at most 7% of the averages and hence are not shown.

Table 15.1. Number of different entries between estimated and true substitution
matrices. a: PAM method; b: D2 method.

branch lengths 50 100 160 250

a b a b a b a b
all equal to 1 0 0 0 0 0 0 0 0
all equal to 5 58 0 26 0 34 0 10 0
all equal to 10 128 0 76 0 69 0 32 0
all equal to 15 192 0 131 0 103 0 58 0
scheme 5 129 36 75 18 69 20 31 6
scheme 6 102 38 52 19 46 22 22 6

In the first four rows of Table 15.1, as expected, D2 makes no error, and
the PAM method deteriorates with increasing branch length. Since branch
lengths are the same in each case, the biases are entirely due to step 2. The
last two rows suggest that the bias caused by both steps 1 and 2 is about 3 to
4 times larger than that due to step 1 alone. The results are the same when
the number of branches is increased up to 5000. Thus, it appears that step
2 is culpable for most of the bias in the Dayhoff method. Interestingly, in all
the simulations, the bias at larger PAM distances tends to become smaller.
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This is due to the fact that both methods estimate the equilibrium distribu-
tion well, so as the distance gets larger, the estimated transition probabilities
become closer to the true transition probability. The largest bias at 160 PAMs
is 103 for the worst case, where each branch length is 15 PAMs. Henikoff and
Henikoff suggested that BLOSUM62 is comparable to PAM160. The maxi-
mum entrywise difference is 8, while the sum of the absolute differences is 808.
The corresponding numbers for comparing PAM160 to BLOSUM45, which is
more appropriate in our opinion (see Section 15.6), are 7 and 803. These are
quite large compared with the largest deviation at 160 PAMs (103), suggesting
that correcting the bias in the PAM method does not seem to matter much in
practice. The corrected PAM matrices should be very similar to the original
ones, relative to the BLOSUM matrices.

15.4 Consistent Estimation of a Reversible Rate Matrix

The PAM method is inconsistent (i.e., it is biased even with an infinite amount
of data). Besides the two issues discussed in the previous section, inferring
tree topologies by parsimony, which is inconsistent [13], also contributes to
its inconsistency, though this is not serious for the dataset of Dayhoff et al.
Maximum likelihood (ML) is consistent but is computationally expensive. A
promising approach is via Markov chain Monte Carlo in a Bayesian framework
[12]. From now on, we assume that the tree topology is known and consider
the estimation of branch lengths and a reversible substitution process. A sim-
ple approach is to toggle between two simpler procedures: (a) estimating the
calibrated rate matrix given the current branch-length estimates and (b) es-
timating the branch lengths given the current rate matrix estimate. It is not
hard to see that if (a) and (b) are consistent, then the whole procedure is
consistent. (b) can be done quite easily by ML. We describe three consistent
methods of doing (a). The first, called ML I, is ML for a reversible process. The
second, ML II, is also ML, but for a more general substitution process, which
can be implemented via an EM algorithm. Finally, there is a deterministic
method based on resolvents (RES).

15.4.1 ML I

To find the ML estimate of the calibrated rate matrix, it is necessary to
compute the probabilities of the observed sequences at the leaf nodes. Suppose
for the moment that the ancestral sequences at the internal nodes as well as
the root are observed. Let ti be the length of the ith branch, and let ν(i) be
the frequency table for the pair of sequences connected by this branch:

ν(i, a, b) = |{ancestor = a,descendant = b}|.

Denote the row sum of the frequency table corresponding to the root by r.
Then, by the Markov property, the probability of all sequences is
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a

π(a)r(a)
∏

i

∏
a,b

P (ti, a, b)ν(i,a,b).

By reversibility, this probability is independent of the location of the root.
Summing probabilities like that above over all possible ancestral sequences
gives the probability of the observed data at the leaf nodes. This can be
efficiently done by the up algorithm (Subsection 15.4.5) due to Felsenstein
[14], which recursively moves up the tree from the leaf nodes to the root. The
probabilities of the data under different calibrated rate matrices constitute
the likelihood function, and the rate matrix with the highest likelihood is the
ML estimate.

To maximize the likelihood, one can use any of various parameterizations
of a calibrated rate matrix. A natural choice is obtained by noting that the
detailed balance equation (15.2) implies that Q = RΠ, with R symmetric.
Then the parameters are the equilibrium frequencies π and the top right off-
diagonal elements of R, with the constraints

π(a) ≥ 0, ∀a,

R(a, b) ≥ 0, ∀a < b,∑
a

π(a) = 1,

2
∑
a<b

π(a)π(b)R(a, b) = 0.01.

The last constraint calibrates Q. Another parameterization was used by Müller
et al. [33]. Even for the simplest case, where each tree consists of a pair of
sequences, it is difficult to get closed-form expressions for the ML estimate;
numerical maximization needs to be used.

The relation Q = RΠ can be used to diagonalize Q, and this is useful for
quick computation of the transition probabilities from Q. Let A be the positive
square root of Π. Then Q = RΠ = A−1(ARA)A. Since ARA is symmetric,
there exist orthogonal V and diagonal Λ such that ARA = V ΛV ′, so

Q = A−1V ΛV ′A (15.4)

(i.e., Q is diagonalizable and its eigenvalues are the diagonal entries of Λ).

15.4.2 ML II

Holmes and Rubin [25] showed that an EM algorithm can be used to estimate
a reversible rate matrix from a rooted tree. We will show that in general this
algorithm finds the most likely substitution process defined by an initial distri-
bution π and rate matrix Q, where π need not be the equilibrium distribution
of Q and Q need not be reversible. If the data are such that the frequency ta-
ble for any pair of leaf nodes is symmetric, and the initial rate matrix estimate
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is reversible, then the final estimate is guaranteed to be reversible. Thus, to
force the algorithm to output a reversible rate matrix, some symmetrization
of data is required. Moreover, a root position has to be specified, though this
seems unimportant if the data are symmetrized; the root can be put at any
leaf node.

If the root is put at a leaf node, then in some sense the estimates π̂ and Q̂
are separately inferred: π̂ is simply the observed frequency at the root, and Q̂
maximizes the conditional probability of the data given the root; this quantity
is known as the partial likelihood of Q. Maximizing the partial likelihood is
consistent [4], though less efficient than ML on the reversible process.

It is interesting to note that ML I implicitly symmetrized the data. This
is most clearly seen by considering a pair of sequences separated by t PAMs
with frequency table ν. Since the joint distribution F (t) is symmetric, the
probability of the data is∏

a,b

F (t, a, b)ν(a,b) =
∏
a,b

F (t, b, a)ν(a,b),

and this is in turn the same as∏
a,b

F (t, a, b)ν∗(a,b),

where ν∗(a, b) = (ν(a, b) + ν(b, a))/2. In other words, we can assume that
the symmetric frequency table ν∗ is observed; this ν∗ is to be used in the
EM algorithm to guarantee a reversible estimate. Now we can see that, given
multiple independent pairs of sequences of similar compositions, both ML I
and ML II give very similar estimates of a reversible rate matrix. Indeed, ML
I gives an estimate Q̂I whose equilibrium distribution π̂I is very close to the
overall composition. Let the ML II estimates be (π̂II , Q̂II). Since π̂II is exactly
the overall composition, π̂I ≈ π̂II , and it follows that Q̂I maximizes the partial
likelihood (i.e., Q̂I ≈ Q̂II). The claim that ML I and ML II are essentially
equivalent for estimating a reversible rate matrix for the more general cases
where the pairs have different compositions, and for more than two sequences,
is plausible, but we will not need it.

If sequences at all internal nodes are observed, all branches have the same
length t, and the branch-specific frequency tables νi are symmetrized, then
the partial likelihood is ∏

i

∏
a,b

P (ti, a, b)ν(i,a,b)

=
∏
a,b

P (t, a, b)C(a,b),

where C =
∑

i ν(i) is exactly the frequency table in the PAM method. Thus,
the PAM method may be viewed as an approximation to maximizing partial
likelihood.
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We present the EM algorithm for two sequences generated by a discrete-
time Markov chain, then the continuous-time version, and finally the tree
version.

15.4.3 Pair EM: Discrete-Time Version

Let T be a positive integer. Consider independent realizations of the Markov
chain {X0, X1, . . . , XT } with initial distribution π and transition probability
P . The full data F refer to the complete record of states at each time. Suppose
that the observed data O consist of states only at times 0 and T (i.e., only
the ancestral and descendant sequences are observed, but not the intermediate
sequences). The probability of the realization X0 = x0, . . . , XT = xT is clearly

π(x0)
T∏

t=1

P (xt−1, xt).

Let Xi = (Xi,0, Xi,1, . . . , Xi,T ) denote the realization at site i. The log-
likelihood for all sites can be expressed as

L(π, P ;F) =
s∑

a=1

π(a)Y (a) +
s∑

a,b=1

log P (a, b)Z(a, b), (15.5)

where Y and Z are the frequencies of initial states and transitions:

Y (a) =
∑

i

|{Xi,0 = a}|,

Z(a, b) =
∑

i

T∑
t=1

|{Xi,t−1 = a,Xi,t = b}|.

It follows that the ML estimate of (π, P ) based on F is

π̂(a) =
Y (a)∑s
c=1 Y (c)

, (15.6)

P̂ (a, b) =
Z(a, b)∑s

d=1 Z(a, d)
. (15.7)

The ML estimates based on O are not expressible in closed forms. However,
using the EM algorithm, we can start at any estimate, say, (π0, P0), and get
new estimate (π1, P1) such that the log-likelihood based on O increases:

L(π0, P0;O) ≤ L(π1, P1;O).

The new estimates are given by formulas similar to (15.6) and (15.7), with
Y and Z substituted by the respective conditional expectations Eπ0,P0 [Y |O]
and Eπ0,P0 [Z|O]. In fact, the inequality is strict unless (π0, P0) = (π1, P1),
and iterating the algorithm gives a sequence of estimates that converges to a
local maximum [10].

The EM algorithm consists of an iteration between two steps.
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1. E step. Evaluate the conditional expectation of the log-likelihood for
the full data at (π1, P1), given the observed data, under the distribution
specified by (π0, P0):

G := Eπ0,P0 [log L(π1, P1;F)|O] .

2. M step. Find the (π1, P1) that maximizes G.

Clearly, G is a sum of similar terms over the independent observations. Thus,
it suffices to consider a single site i with (Xi,0, Xi,T ) = (c, d). Let Yi and Zi

be frequencies of initial states and transitions for this site.

Yi(a) = |{Xi,0 = a}|,

Zi(a, b) =
T∑

t=1

|{Xi,t−1 = a,Xi,t = b}|.

Then,

Eπ0,P0 [Yi(a)|Xi,0 = c, Xi,T = d] = 1{a=c},

Eπ0,P0 [Zi(a, b)|Xi,0 = c, Xi,T = d] = P0(a, b) · u(a, b; c, d)
PT

0 (c, d)
,

where u is given by

u(a, b; c, d) =
T∑

t=1

P t−1
0 (c, a)PT−t

0 (b, d) (15.8)

and the s4 components sum to exactly Ts2. Summing over all sites gives

G =
s∑

a=1

log π1(a)y(a) +
s∑

a,b=1

log P1(a, b)z(a, b), (15.9)

where

y(a) =
∑

i

|{Xi,0 = a}|,

z(a, b) = P0(a, b)
s∑

c,d=1

ν(c, d)
u(a, b; c, d)
PT

0 (c, d)
,

ν(c, d) =
∑

i

|{Xi,0 = c, Xi,T = d}|.

This completes the E step. Notice that (15.9) has exactly the same form as
(15.5), with Y and Z substituted by their respective conditional expectations
y and z. Incidentally, since Y is observed, y = Y . The M step is easy:
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π1(a) =
y(a)∑s
c=1 y(c)

,

P1(a, b) =
z(a, b)∑s

d=1 z(a, d)
.

We make two remarks about the pair EM algorithm. First, only half of
the s4 u quantities need to be computed. Indeed, let the s2 × s2 matrix M be
defined by

M((c − 1)s + a, (b − 1)s + d) = u(a, b; c, d).

Then it is easy to see that M is symmetric. Second, if P0 is reversible,

x(a)P0(a, b) = x(b)P0(b, a), ∀a, b,

where x is the equilibrium distribution of P0, and the frequency matrix ν is
symmetric, then P1 is also reversible. To show this fact, notice that

x(c)u(a, b; c, d)P0(a, b)

=
T∑

t=0

x(c)P t−1
0 (c, a)P0(a, b)PT−t

0 (b, d) by (15.8)

=
T∑

t=0

P t−1
0 (a, c)P0(b, a)PT−t

0 (d, b)x(d) (reversibility)

= x(d)u(b, a; d, c)P0(b, a).

It follows from this calculation, the reversibility of PT
0 , and the symmetry of

ν that z is a symmetric matrix:

z(a, b) =
s∑

c,d=1

ν(c, d)
x(c)u(a, b; c, d)P0(a, b)

x(c)PT
0 (c, d)

=
s∑

c,d=1

ν(c, d)
x(d)u(b, a; d, c)P0(b, a)

x(d)PT
0 (d, c)

=
s∑

d,c=1

ν(d, c)
u(b, a; d, c)P0(b, a)

PT
0 (d, c)

= z(b, a).

It is then easy to verify that the equilibrium distribution of P1 is proportional
to the row or column sum of z and that P1 is reversible.

15.4.4 Pair EM: Continuous-Time Version

Let T be a fixed positive number, let N be a fixed large positive integer, and set
h = T/N . Approximate the Markov process {Xt}t≥0 defined by (π, Q) by the
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Markov chain {X0, Xh, . . . , XNh}. The E step evaluates Gh, which is exactly
as in (15.9), except that P0 and P1 are substituted by P0(h) = exp(Q0h) and
P1(h) = exp(Q1h), respectively. Clearly, the first term of Gh is the same as
G so that the estimate of π is given by (15.6). It remains to consider the
estimation of Q. Since h is small, the following are good approximations:

P (h, a, b) ≈
{

1 + Q(a, a)h if a = b
Q(a, b)h otherwise,

log P (h, a, b) ≈
{

Q(a, a)h if a = b
log Q(a, b) + log h otherwise.

Hence, maximizing the second term of Gh is equivalent to maximizing

s∑
a=1

Q1(a, a)zh(a, a) +
s∑

a,b=1,a �=b

log Q1(a, b)Q0(a, b)zh(a, b), (15.10)

where

zh(a, b) =
∑
c,d

ν(c, d)
uh(a, b; c, d)h

P (T, c, d)
,

uh(a, b; c, d) =
N∑

t=1

P0((t − 1)h, c, a)P0((N − t + 1)h, b, d).

The first and second derivatives of (15.10) with respect to Q1(a, b), where
a �= b, are

−zh(a, a) + Q0(a, b)
zh(a, b)
Q1(a, b)

,

−Q0(a, b)
zh(a, b)

Q1(a, b)2
< 0.

It follows from elementary calculus that setting

Q1(a, b) = Q0(a, b)
zh(a, b)
zh(a, a)

maximizes the second term of Gh. Define

u0(a, b; c, d) =
∫ T

0
P0(x, c, a)P0(T − x, b, d)dx = lim

h↓0
uh(a, b; c, d),

z0(a, b) =
s∑

c,d=1

ν(c, d)
u0(a, b; c, d)
P (T, c, d)

.

The continuous-time version of the EM algorithm is given by
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Q1(a, b) =

{
Q0(a, b) z0(a,b)

z0(a,a) if a �= b

−
∑

d�=a Q1(a, d) if a = b.

Since the approximations can be made as accurate as possible and we know
that the discrete-time EM increases the log-likelihood, we conclude that the
continuous-time version does also:

L(π0, Q0;O) ≤ L(π1, Q1;O).

As in the discrete-time case, only half of the u0 need to be evaluated. If
Q0 is diagonalizable, then u0 can be computed exactly. Write

Q0 = EΛE−1

for invertible E and diagonal Λ = diag(λ1, . . . , λs). It follows that

P0(x, c, a) =
∑

k

E(c, k)E−1(k, a) exp(λkx),

P0(T − x, b, d) =
∑

l

E(b, l)E−1(l, d) exp(λk(T − x)),

and hence

u0(a, b; c, d) =
∑
k,l

E(c, k)E−1(k, a)E(b, l)E−1(l, d)e(k, l),

where

e(k, l) =
{

T exp(λkT ) if k = l,
exp(λkT )−exp(λlT )

λk−λl
otherwise.

In fact, in this case, u0 is much faster to compute than the u in the discrete-
time version, especially when T is large, although this is true only when Q0
is diagonalizable.

15.4.5 Tree EM

Let r denote the root of a phylogenetic tree. Suppose that only the sequences
at the leaf nodes are observed (the observed data O). Proceeding as in the pair
EM, we consider evaluating Gi at a site i for which the full and observed data
are denoted by Fi and Oi. Let Yi be the frequencies of states at the root r. For
a branch j of length tj , let φj and ψj be, respectively, the nodes immediately
above and below it, and let F j

i denote the full data corresponding to this
branch, including Xi,φj and Xi,ψj . Since F j

i is conditionally independent of
Oi given Xi,φj and Xi,ψj , for site i, we have
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Eπ0,Q0 [Li(π1, Q1; Fi)|Oi] =
s∑

a=1

log π1(a) Pr(Yi = a|Oi)

+
∑

j

s∑
a,b=1

Gj(a, b) Pr(Xi,φj
= a,Xi,ψj

= b|Oi),

where
Gj(a, b) = Eπ0,Q0 [Li(π1, Q1; F i

j )|Xi,φj
= a,Xi,ψj

= b].

Let

y(a) =
∑

i

Pr(Yi = a|Oi),

µ(j, a, b) =
∑

i

Pr(Xi,φj
= a,Xi,ψj

= b|Oi).

It follows from summing over the sites that

G =
s∑

a=1

log π1(a)y(a) +
∑

j

s∑
a,b=1

Gj(a, b)µ(j, a, b).

Thus, the first term corresponds to π, and the others, corresponding to Q, are
branch-specific Gj terms such as G in the continuous-time pair EM, weighted
by µj , which are analogs of ν. Each Gj can be computed as before, and the
M step is given by

π1(a) =
y(a)∑s
c=1 y(c)

,

Q1(a, b) =

{
Q0(a, b)

∑
j z0(j,a,b)

∑
j z0(j,a,a) if a �= b

−
∑

d�=a Q1(a, d) if a = b,

where

z0(j, a, b) =
s∑

c,d=1

µ(j, c, d)
u0(j; a, b; c, d)

P (tj , c, d)
,

u0(j; a, b; c, d) =
∫ tj

0
P0(x, c, a)P0(tj − x, b, d)dx.

The probability Pr(Xφj = a,Xψj = b|O) can be efficiently computed by
the up-down algorithm. Let the nodes of the tree be labeled 1, 2, . . . so that
every parent has a larger label than all its children. For a node α, let χα

denote the set of its children. Let φ and γ denote its parent and grandparent,
respectively, and let the distance between α and β be tαβ . Let U(α, a) be the
probability that the states at the leaf nodes that are descendants of α are as
in the observed data, given that Xα = a. As shown by Felsenstein [14], U can
be evaluated recursively starting from the leaf nodes. If α is a leaf node and
Xα = b, then U(α, a) = δa,b. If α is not a leaf node, then
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U(α, a) =
∏

κ∈χα

s∑
c=1

P (tακ, a, c)U(κ, c).

The joint probability of the observed data is given by

Pr(O) =
s∑

a=1

π(a)U(r, a).

Next, let D(α, a) be the probability that the states at the nodes that are
not α or its descendants are as in the observed data and that the parent node
φ is in state a. D is evaluated from the children of the root down the tree. If
α is a child of r, then

D(α, a) =
∏

κ∈χφ,κ �=α

s∑
c=1

P (tφκ, a, c)U(κ, c)π(a).

If α is not a child of r, then

D(α, a) =
∏

κ∈χφ,κ �=α

s∑
c=1

P (tφκ, a, c)U(κ, c)
s∑

d=1

D(φ, d)P (tγφ, d, a).

It is then easy to verify that

Pr(Xφj
= a,Xψj

= b|O) =
D(ψ, a)P (tφjψj

, a, b)U(ψj , b)
Pr(O)

.

Finally, we remark that combining sequences from different trees to esti-
mate the parameters is very easy: simply add the G quantities corresponding
to each tree, and then do the M step.

15.4.6 The Resolvent Method

Müller and Vingron [34] proposed a fast estimation method on sequence pairs
based on resolvents. It will be apparent that it can in fact be applied to mul-
tiple alignments generated by a reversible Markov process without knowledge
of the tree topology. For α > 0, the resolvent Rα of a rate matrix Q is defined
as

Rα = (αI − Q)−1.

Solving for Q gives the following formula, valid for any α:

Q = αI − R−1
α . (15.11)

It turns out (see [20] or [34]) that the resolvent is the Laplace transform of
the transition probabilities:
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Rα =
∫ ∞

0
e−αtP (t)dt. (15.12)

This is the key formula for the resolvent method. Clearly, given many pairs of
sequences (not necessarily disjoint) that are separated by t PAMs, an unbiased
estimate of P (t) is obtained by normalizing the symmetrized sum of frequency
tables. If P (t) can be estimated for a wide range of t’s, then we get an estimate
of Q via (15.12) and (15.11).

In practice, there are two issues: (1) the distances are unknown and are
estimated by maximum likelihood, and (2) the estimated distances are dis-
crete, so interpolation is used to estimate the rate matrix. Let the estimated
distances be 0 < t1 < · · · < tN . The integral (15.12) is approximately equal
to the sum of N pieces:

Rα ≈
(∫ t1

0
+ · · ·

∫ tN

tN−1

)
e−αtP (t)dt.

The kth integral is approximated by linear interpolation,∫ tk

tk−1

e−αt

(
P (tk−1) +

t − tk−1

tk − tk−1
[P (tk) − P (tk−1)]

)
dt,

which can be evaluated exactly after replacing the P ’s by their estimates.
Summing these integrals gives an estimate of Rα, and a new estimate of Q,
denoted by Q1, is obtained by using (15.11). In principle, Rα, and hence Q1,
is independent of α, but this is not so in practice. Müller and Vingron recom-
mended choosing the α that maximizes the likelihood of all data. Another issue
is that Q1 may not be reversible. In our implementation, we force it to be re-
versible by first deriving its equilibrium distribution π1, and let R1 = Q1Π

−1
1 .

If R1 is symmetric, then Q1 is reversible. If not, let R2 = R1 +R′
1 be the sum

of R1 and its transpose. Then Q2 = Π1R2 is reversible and upon calibration
is our RES estimate.

15.5 BLOSUM Matrices

Henikoff and Henikoff [24] used an ad hoc method that takes inhomogeneity
into account to construct the BLOSUM (BLOck SUbstitution Matrix) ma-
trices. The input is a set of blocks, which are gap-free multiple alignments of
segments of homologous amino acid sequences. A frequency table is derived
from the blocks by summing over the frequency tables from all within-block
pairwise comparisons. Since a mismatch, such as an A aligned with an S, can
be written in two ways, AS and SA, we get rid of the ambiguity by using
only AS. In general, a mismatch is represented by XY, where X precedes Y
alphabetically. For example, suppose that in a block with six sequences, two
columns are as follows:
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..AD..

..AD..

..AE..

..AE..

..AD..

..SD..

There are a total of 15 pairwise comparisons. The left column contributes
10 AA and 5 AS pairs to the frequency table. Similarly, the right column
contributes 6 DD, 1 EE, and 8 DE pairs. Adding these column contributions
within the block, and then across all blocks, gives a triangular frequency
table. The matrix is symmetrized by adding itself to its transpose. Dividing
the matrix by its sum yields a symmetric joint distribution and a substitution
matrix via (15.1).

To capture the substitution patterns from the more distantly related se-
quences, the more closely related ones are downweighted by clustering. Let
θ be a fixed number between 0 and 100. Sequences that are more than θ%
similar are “greedily” clustered. In other words, any two sequences that are
more than θ% similar are put in the same cluster, and if each sequence al-
ready belongs to some cluster, then the two clusters are combined to form a
larger cluster. In the end, the sequences within a block are partitioned into
disjoint clusters so that any two sequences from distinct clusters are less than
θ% similar. It is clear that the clusters are independent of the initial choice of
sequences. Sequences in the same cluster are downweighted by the cluster size
in cross-cluster pairwise comparisons, and pairwise comparisons of sequences
in the same cluster do not contribute to the frequency table. In the example,
suppose that the first four sequences are clustered while the last two sequences
are not. Then the contribution of the left column is the same as an A-A-S
column: 1 AA, 2 AS pairs. The right column is effectively (D/E)-D-D, where
D/E represents half a D and half an E. Its contribution is 2 DD (1 + 1/2 +
1/2) and 1 DE (1/2 + 1/2) pairs. Equivalently, sequences in the same cluster
are replaced by an “average” sequence with a fractional number of residues at
each position. Then the frequency table is derived as if the average sequences
are real sequences; blocks that have only one cluster are left out.

Let the symmetric joint distribution at threshold θ be denoted by fθ. Let
π be the row of column sum of fθ. Then the substitution matrix BLOSUMθ
is given by

S(θ, a, b) = 10 log10
fθ(a, b)
π(a)π(b)

.

If θ is 100, then every cluster is of size 1, so fθ is an average of the substitution
patterns over all distances. If θ is a small value, such as 20, then there are
a small number of large clusters, and the similarity between sequences from
distinct clusters ranges from 0 to 20%, so fθ only depends on the substitution
patterns of the distantly related sequences. Thus, reducing the threshold θ
gives substitution matrices that are more suitable for aligning distantly related
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sequences. For example, when aligning distantly related protein sequences,
BLOSUM40 is preferred to BLOSUM80.

The BLOSUM method does not explicitly involve the phylogenetic tree re-
lating the sequences in a block. This has the advantage that it is not necessary
to know the tree in order to estimate the substitution matrices. Nevertheless,
it has a ready interpretation when the tree is made explicit, provided the tree
has the molecular clock property: the distance between the root and any leaf
node is the same; this distance T is the depth of the tree. An example is
illustrated in Figure 15.1.

0

2 31

4

5

T

Fig. 15.1. A phylogenetic tree with the molecular clock property. The ancestral
sequence at 0 and the intermediate sequences at the internal nodes 4 and 5 are not
observed, but the sequences at the leaf nodes 1, 2, and 3 are observed. The depth
of the tree is T .

Suppose that the sequences were generated by a Markov substitution
process with the property that the average percentage identity of a pair of
observed sequences is a strictly decreasing function φ of the distance between
them. Both the well-known reversible and the inhomogeneous processes de-
scribed in Subsection 15.6.1 have this property. This strict monotonicity al-
lows us to restate the clustering step in the BLOSUM method in terms of tree
distances.

Let T be the depth of the tree. Fix a distance t with 0 < t < T . Consider
cutting the tree at distance T − t/2 below the root. Any pair of observed
sequences that descended from the same cut point are separated by at most
t, so they are more than θ% similar, where

θ = φ(t).

Conversely, any pair of observed sequences more than θ% similar share a
common cut point at distance t/2 from both of them. Hence, the clustering
step is exactly the same as replacing the observed sequences below each cut
point by an average sequence.
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15.6 Comparison of Methods

Five methods of estimating symmetric substitution matrices have been de-
scribed: PAM, ML I, ML II, RES, and BLOSUM. The first four methods as-
sume that sequences are generated by a reversible substitution process. These
methods are consistent, except for PAM, which will be dropped from the
ensuing exposition. The BLOSUM method is not explicitly based on any sub-
stitution model but seems able to take inhomogeneity in substitution rates
into account. Since all our models produce sequence pairs of the same com-
position, we can appeal to the discussion in paragraph 3 of Subsection 15.4.2
to conclude that ML I and ML II behave equivalently. Hence, only ML I will
be used, and this will be referred to as ML. We will compare the performance
of ML, RES, and BLOSUM theoretically and also by simulations on indepen-
dent sequence pairs generated by a reversible (homogeneous) process and two
inhomogeneous processes.

Instead of comparing the estimated substitution matrices directly, we com-
pare the joint distributions used to compute the substitution matrices. Con-
sider a giant “tree of proteins” that relates all existing proteins. For a distance
t, collecting all the protein pairs separated by t units yields a frequency table,
symmetrized if necessary. We assume that, for any t, the substitution matrix
constructed from the frequency table via (15.1) is the best one for aligning
proteins separated by t. Then we just need to compare, for various evolution-
ary distances, the joint distributions obtained by the different methods to the
“real joint distribution” in order to assess their accuracy. Unlike ML and RES,
the BLOSUM joint distribution fθ at threshold θ is not constructed explic-
itly from an evolutionary distance. Thus, in order to compare the methods,
it is necessary to associate an effective divergence time with fθ. This issue
was dealt with in [35], but we chose a simpler approach. If a symmetric joint
distribution f can be written as

f = Π∗ exp(Q∗t∗)

for some calibrated rate matrix Q∗ with equilibrium distribution π∗ and some
t∗ > 0, then we say f is embeddable in a reversible process, and t∗ is the
effective divergence time of f . Although not all symmetric joint distributions
are embeddable, in practice, almost all realizations of fθ are. If f = F (t),
a joint distribution at t PAMs from a calibrated reversible process as in
(15.3), then its effective divergence is clearly t. The effective divergence time
provides another way of matching PAM and BLOSUM matrices. Henikoff
and Henikoff used Altschul’s idea of relative entropy [1, 24] to conclude that
BLOSUM45, BLOSUM62, and BLOSUM80 are, respectively, comparable to
PAM250, PAM160, and PAM120. We found that the effective divergence times
of these BLOSUM matrices are 168, 138, and 101 PAMs, respectively. Thus,
our matching is clearly different.

We can now imagine assessing the performance of the methods on se-
quence data generated by a substitution process in the following way: for a
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fixed threshold θ, compare the BLOSUM fθ, fml(t∗θ), and fres(t∗θ), the joint
distributions based on the ML and RES estimates of Q, where t∗θ is the ef-
fective divergence time of fθ, with the “true” joint distribution. Before we
embark on the comparison study, we first provide some concrete examples of
the kind of inhomogeneous processes that will be considered.

15.6.1 Inhomogeneous Processes

An inhomogeneous process can be easily postulated starting with the homo-
geneous process: replace the constant rate matrix Q with a family of rate
matrices {Q(t)}t≥0. Then the construction of the process is the same ex-
cept that now, given Xs = a, the probability that the next substitution hap-
pens after t > s is exp(

∫ t

s
Q(x, a, a)dx), and if the next substitution hap-

pens at time u > s, then the process jumps from a to b with probability
−Q(u, a, b)/Q(u, a, a). Thus, one technical condition for this to work is that
the rate matrix family should be integrable. The analogous formula for the
transition probability, namely P (s, t) = exp(

∑t
s Q(x)dx), is correct if every

pair of rate matrices in the family commutes [21]. In addition to commuta-
tivity, we shall also assume that the Q(t)’s have a common distribution π,
so that the process is stationary. Under the inhomogeneous process, the joint
distribution of two leaf states depends on the location of the common ances-
tor. However, if the ancestor is equidistant to the leaf nodes, then the joint
distribution is symmetric. If each Q(t) is calibrated, then the expected num-
ber of substitutions in any time interval of length 1 is 0.01, and we say that
the process is calibrated. Hence we may compare estimated distances from
homogeneous and inhomogeneous processes.

Fix a tree with the molecular clock property with depth T . We only con-
sider stationary inhomogeneous processes such that the percentage identity
between two observed sequences is a strictly decreasing function of the dis-
tance separating them. This will be effected by imposing some constraints on
the family of rate matrices, which will be described after several examples are
presented.

Example 15.1

Let Q1 be a calibrated reversible rate matrix, with all off-diagonal entries
strictly positive, and let π be its equilibrium distribution. Define a reversible
rate matrix Q0 as the calibrated version of the following:

Q0(a, b) =
{

π(b) if a �= b,
−
∑

d�=a π(d) if a = b.

Thus, Q0 is the simplest reversible rate matrix with equilibrium distribution
π. Since Q1 is irreducible, π is strictly positive, so all off-diagonal entries
of Q0 are positive. It can be readily checked that Q0 commutes with Q1:
Q0Q1 = Q1Q0. Consider the process defined by the family
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Q(x) =
{

Q0 0 ≤ x < 100,
Q1 100 ≤ x ≤ 200.

Since both Q0 and Q1 have the same equilibrium distribution π, the inho-
mogeneous process is also stationary with the same equilibrium distribution.
Moreover, since both Q0 and Q1 are calibrated, the new process is also cali-
brated. The process is sketched in Figure 15.2.

0

2 31

4

5

T = 0

T = 100

T = 200

Q0

Q1

Fig. 15.2. An illustration of the process in Example 15.1 generating sequences on
a tree with the molecular clock property. The distance between nodes 2 and 3 is less
than 200 PAMs, while that between nodes 1 and 2 is more than 200 PAMs.

Example 15.2

Let Q0 and Q1 be as in Example 1, and let g : [0,∞) → [0, 1] be an integrable
function. Then the process defined by the family

Q(x) = Q0 + g(x)(Q1 − Q0), x ≥ 0, (15.13)

is calibrated and has equilibrium distribution π. Clearly, this generalizes Ex-
ample 15.1.

Example 15.3

Let Q1 be as before. We will construct Q0 by diagonalizing Q1. Let

Q1 = BΛ1B
−1,

where B = A−1V , as in (15.4). Since the off-diagonal entries of Q1 are strictly
positive, the Perron-Frobenius theorem [17] implies that exactly one diagonal
entry of Λ1 is zero. Let Λ0 be the diagonal matrix with zero at the same
position as in Λ1 and with the other diagonal entries equal to −a with a > 0.
Then it is easy to verify that BΛ0B

−1, after calibration, is exactly Q0. Fur-
thermore, the diagonalized forms of Q0 and Q1 immediately imply that they
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are commutative. This device can be extended to generate a set of commuta-
tive reversible rate matrices all sharing the same equilibrium distribution as
Q1. Denote this set by r(Q1). Let Λ be a diagonal matrix with zero at the
same position as in Λ1 and with the other diagonal entries restricted to be
negative, and let Q = BΛB−1. Such a Q might not be a rate matrix; some
of its off-diagonal entry may be negative. But if the diagonal entries of Λ are
not too different from Λ1, then Q is a rate matrix by continuity. In any case,
Q0 is a rate matrix, so r(Q1) has at least two elements, and by interpolat-
ing between Q0 and Q1, we have infinitely many calibrated rate matrices in
r(Q1). All these rate matrices share the same equilibrium distribution and
are reversible. Any integrable function from [0,∞) into r(Q1) gives a family
of desired rate matrices. Hence this example generalizes Examples 15.2 and
15.1.

Example 15.3 represents the class of inhomogeneous processes that we
intend to study. Thus, we are interested in families of rate matrices whose
members all belong to a set r(Q) of all calibrated reversible rate matrices that
have the same eigenvectors as some reversible rate matrix Q. As a consequence,
the rate matrices are commutative: Q(s)Q(t) = Q(t)Q(s) for any s and t, so

P (s, t) = exp
(∫ t

s

Q(x)dx

)
. (15.14)

Reversibility implies that each transition probability is reversible with re-
spect to the equilibrium distribution. Finally, we have a monotonicity prop-
erty, proved in the Appendix: the percentage identity between two observed
sequences is a strictly decreasing function of the distance separating them.

Let α and β be leaf nodes separated by t PAMs, where 0 < t ≤ 2T and
T is the depth of the tree. Then, the distance between either node and their
common ancestor γ is t/2. Let f(t) denote the joint distribution of Xα and
Xβ . f(t) is a well-defined function of t: it is the joint distribution of states at
any pair of leaf nodes separated by t PAMs since the tree has the molecular
clock property. By the Markov property, f(t) given Xγ is independent of the
history before time T − t/2. It follows that

f(t, a, b) =
∑

z

π(z)P (T − t/2, T, z, a)P (T − t/2, T, z, b)

= π(a)
∑

z

P (T − t/2, T, a, z)P (T − t/2, T, z, b). (reversibility)

In matrix notation, using (15.14) and commutativity, we have

f(t) = ΠP (T − t/2, T )P (T − t/2, T )

= Π exp

(∫ T

T−t/2
Q(x)dx

)
exp

(∫ T

T−t/2
Q(x)dx

)

= Π exp

(
2
∫ T

T−t/2
Q(x)dx

)
. (15.15)
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Clearly, f(t) is a symmetric matrix with effective divergence time t. Since the
process is stationary, the sum of its ath row is π(a). Similarly, the sum of the
bth column is also π(b). Dividing the ath row of f(t) by π(a), for all rows,
gives a transition probability p(t):

p(t) = Π−1f(t) = exp

(
2
∫ T

T−t/2
Q(x)dx

)
. (15.16)

p(t) is also well-defined and is not equal to any of the transition probabilities
P (s, t) of the inhomogeneous process in general. Clearly, if the process is re-
versible, then f(t) = F (t) and p(t) = P (t). Given a pair of observed sequences
known to be separated by distance t, f(t) and p(t) can be estimated easily
from the frequency table without knowledge of the tree topology.

Equations (15.15) and (15.16) can be simplified for simple inhomogeneous
processes. In Example 15.1, let t23 be the distance between nodes 2 and 3 in
Figure 15.2, with common ancestor 4. Since 200− t23/2 > 100, it follows that∫ 200

200−t23/2
Q(x)dx = Q1t23/2,

f(t23) = Π exp(t23Q1),
p(t23) = exp(t23Q1).

15.6.2 Theoretical Comparison

Consider a phylogenetic tree with the molecular clock property and so many
leaf nodes that the distances between all sequence pairs 0 < t1 < · · · < tn
cover a wide range of values, n being the number of distinct distances. Imagine
running (1) a reversible (homogeneous) process and (2) an inhomogeneous
process down this tree to give leaf sequences. By the monotonicity property,
the percentage identity of sequence pairs also covers the range (0, 100). Assume
that the sequences are long enough that the frequency tables yield almost
exact estimates of the joint distributions {f(tk) : 1 ≤ k ≤ n} and hence
the transition probabilities {p(tk) : 1 ≤ k ≤ n}, as well as the distances
t1 < · · · < tn.

With the distances considered known, the Laplace transform (15.12) is
approximately

Rα ≈
n∑

k=1

∫ tk

tk−1

e−αt

(
p(tk−1) +

t − tk−1

tk − tk−1
[p(tk) − p(tk−1)]

)
dt, (15.17)

where t0 = 0.
Let φ(tn) < θ < 100 be a BLOSUM threshold. For each k, let w(tk) be

the weight given to f(tk) after clustering, so that fθ is given by
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fθ =
n∑

k=1

f(tk)w(tk)

=
∑

tk≥φ−1(θ)

f(tk)w(tk) (15.18)

since w(tk) is zero whenever tk < φ−1(θ).
(1) If the sequences were generated by a reversible model, then the esti-

mated rate matrix Qres = αI − R−1
α by RES is close to Q since there is a

large number of distances spread out on the positive real line. It follows that
the joint distribution fres(t) is close to f(t) for any t.

Suppose that fθ is embeddable, so fθ = Π∗ exp(Q∗t∗). Then, in gen-
eral, Q∗ �= Q, and the effective divergence time t∗ is quite a bit larger than
φ−1(θ). The average of d(fθ, f(t∗)) is bound to be larger than the average
of d(fres(t∗), f(t∗)). We conclude that BLOSUM is worse than RES at any
threshold θ.

(2). Let the sequences be generated by an inhomogeneous model. In
(15.17), if α is large, then since exp(−αt) decays rapidly, Rα is independent
of p(t) at large distances. If α is very small, then exp(−αt) is almost flat, and
Rα is almost like a simple average over the smaller distances. In both cases,
Rα only depends on the p(t) at small distances.

On the other hand, for BLOSUM, the weights in (15.18) seem to be able to
capture the f(t) at large distances. In conclusion, BLOSUM should produce
an fθ that is better than RES, especially when θ is small.

Although it is impossible to analyze ML explicitly, some of its qualitative
behavior may be roughly described. When the process is reversible, ML seems
to perform better than RES [33], so it is better than BLOSUM. On the other
hand, if the process is inhomogeneous and the data are such that there are
more closely related sequences than distantly related sequences, then compu-
tational experiments suggest that the estimated rate matrix tends to reflect
the substitution patterns of closely related sequences. In this case, it is plau-
sible that ML is worse than BLOSUM for estimating joint distributions at
large distances.

15.6.3 Simulations

We will compare BLOSUM, RES, and ML in the following way. Let θ ∈
{30, 35, . . . , 85} be fixed. Given the sequence blocks generated by a substitu-
tion process, run BLOSUM at threshold θ to get fθ, with effective divergence
time t∗θ. Apply RES and ML to get the estimated rate matrices fres and fml.
Define the deviations

dblo = d(fθ, f(t∗θ)),
dres = d(fres(t∗θ), f(t∗θ)),
dml = d(fml(t∗θ), f(t∗θ)),
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where d, the total variation distance between two probability distributions µ
and ν on the same finite set X, is defined as

d(µ, ν) :=
∑
x∈X

|µ(x) − ν(x)|.

Suppose that the substitution model is fixed (i.e., the substitution process,
the trees, and the sequence lengths are all fixed). Then the average of the
deviations over all realizations of the sequences is a measure of the relative
performance of the methods. In the simulations, we approximate the aver-
ages by averaging the outcomes of 100 random samples. Using 200 samples
gives almost the same averages and standard deviations (SD), so we are quite
confident that the sample size 100 is large enough.

Let Q1 be a calibrated rate matrix estimated by ML from 13,255 pairwise
amino acid alignments of length at least 100 from the SYSTERS database,
courtesy of Tobias Müller. Let Q0 be the simplest calibrated reversible rate
matrix with the same equilibrium distribution as Q1, as constructed in Sub-
section 15.6.1. In every simulation, 30 sequence pairs of length 5000 separated
by 10, 20, . . . , 300 PAMs are generated according to a substitution model. In
other words, there are 30 blocks, and each block has two sequences. Also, all
trees have depth 150 PAMs, so that a sequence pair separated by 100 PAMs
have a most recent common ancestor 50 PAMs ago, and the most recent com-
mon ancestor of a sequence pair separated by 300 PAMs sits at the top of the
tree. The simulations differ in the substitution model, as described below.

1. A reversible process generated by Q1.
2. An inhomogeneous process with

Q(t) = Q0 + (Q1 − Q0)t/150, 0 ≤ t ≤ 150.

3. An inhomogeneous process with

Q(t) =
{

Q0 0 ≤ t < 100
Q1 100 ≤ t ≤ 150.

The average deviations are displayed in the following graphs. Since the
SDs are typically not larger than one-tenth of the averages, they are not
represented in the plots.

Figure 15.3 shows that under the reversible process, ML is better than
RES, which in turn is better than BLOSUM, for all the thresholds 30, 35, . . . ,
85. While the deviations of ML and RES are quite constant, BLOSUM’s
decreases from 0.08 at 85 to 0.04 at 30, and at the lower thresholds, it is
almost as good as the resolvent. This may be explained by observing that, at
a high threshold, sequence pairs at a wider range of similarity are summed,
causing more error in the joint distribution compared with a low threshold.

Under the inhomogeneous process with smooth rates (Figure 15.4), ML is
the best, followed by BLOSUM, while RES is rather more worse off than both
ML and BLOSUM.
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Fig. 15.3. Simulation 1: reversible process.
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Fig. 15.4. Simulation 2: inhomogeneous process with smooth rates.

Finally, under the inhomogeneous process with discontinuous rates (Figure
15.5), at high thresholds, BLOSUM is worse than both ML and RES, but
at low thresholds, BLOSUM is significantly better than ML and RES. The
BLOSUM and RES curves cross at 80, while those of BLOSUM and ML cross
at about 65.

In summary, for an inhomogeneous process, BLOSUM is rather more sta-
ble and better than both ML and RES at low thresholds, but not so good at
high thresholds. On the other hand, for a reversible process, BLOSUM is only
slightly worse than ML and RES at high thresholds. Thus, the simulations
suggest that for pair data (1) BLOSUM is a robust method for deriving substi-
tution matrices at large evolutionary distances, regardless of the homogeneity
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Fig. 15.5. Simulation 3: inhomogeneous process with discontinuous rates.

of the substitution process, while (2) ML and RES are better than BLOSUM
(and ML appreciably better than RES) at small distances. It seems plausible
that our conclusion for pair data should still hold for the general case where
the trees have an arbitrary number of observed sequences.

15.7 DNA Substitution Matrices

As more genomes are getting completely sequenced, DNA substitution matri-
ces are expected to play an important role in the great challenge to understand
the evolutionary history and biological functions of genomic DNA sequences.
While the previous theory applies readily to DNA substitution matrices, in
order for the result of alignment to be independent of the choice of strands, it
makes sense to construct strand-symmetric matrices, where the score is invari-
ant under complementation. For example, S(A, C) = S(T, G), and so on. The
reversible rate matrices Q that give strand-symmetric substitution matrices
at all evolutionary distances are precisely those that have a strand-symmetric
R, where Q = RΠ is the factorization described at the end of Subsection
15.5.1. Both strand symmetry in primates and the lack of it in bacterial genes
have been described [18, 19]. A priori, strand symmetry is not expected to
hold due to the asymmetry of the replication process and the exposure of
the complementary strand of genes to mutagens during protein synthesis;
however, intergenic substitution patterns between human and mouse seem
approximately strand-symmetric [38]. The HOXD70 matrix, constructed by
Chiaromonte et al. [6] from reliable human-mouse alignments with BLOSUM
and ML methods, outperformed several default matrices, thus confirming the
utility of the empirical approach.



15 Estimating Substitution Matrices 435

15.8 Appendix

Let {Q(t)}t≥0 be integrable n × n rate matrices of the form

Q(t) = A−1V Λ(t)V ′A, (15.19)

where A is the positive square root of the diagonal matrix Π with a strictly
positive probability distribution π on its diagonal, V is orthogonal, and for
each t, Λ(t) is diagonal with Λ(t, 1, 1) = 0 and other diagonal entries strictly
negative.

It is readily checked that the rate matrices are commutative. Hence, the
percentage identity between two observed sequences separated by t is

n∑
a=1

f(t, a, a) =
n∑

a=1

π(a)p(t, a, a),

where f(t) and p(t) are given by (15.15) and (15.16), respectively. To show
that the percentage identity is strictly decreasing in t, it suffices to examine
each p(t, a, a).

Substituting (15.19) into (15.16) gives

p(t) = exp

(
2
∫ T

T−t/2
Q(x)dx

)

= A−1V exp

(
2
∫ T

T−t/2
Λ(x)d(x)

)
V ′A,

implying that in terms of the entries of V and Λ(x),

p(t, a, a) = V (a, 1)2 +
n∑

b=2

V (a, b)2 exp

(
2
∫ T

T−t/2
Λ(x, b, b)d(x)

)
.

Since the integral is strictly decreasing, each p(t, a, a) is either constant or
strictly decreasing in t. If all are constant, then the matrix V consists of 1’s
on its first column and 0’s elsewhere, contradicting the assumption that V is
orthogonal. Hence, all p(t, a, a) are monotone decreasing, some strictly, and
the percentage identity is indeed strictly decreasing in t.

Acknowledgments

The authors thank Ian Holmes, Tobias Müller, and an anonymous referee for
many comments and suggestions.



436 V. B. Yap and T. Speed

References

[1] S. F. Altschul. Amino acid substitution matrices from an information
theoretic perspective. J. Mol. Biol., 219:555–565, 1991.

[2] L. Arvestad and W. J. Bruno. Estimation of reversible substitution ma-
trices from multiple pairs of sequences. J. Mol. Evol., 45:696–703, 1997.

[3] S. A. Benner, M. A. Cohen, and G. H. Gonnet. Amino acid substitution
during functionally constrained divergent evolution of protein sequences.
Protein Eng., 7:1323–1332, 1994.

[4] P. Billingsley. Statistical Inference for Markov Processes. University of
Chicago Press, Chicago, 1961.

[5] S. E. Brenner, C. Chothia, and T. J. P. Hubbard. Assessing sequence
comparison methods with reliable structurally identified distant evolu-
tionary relationships. Proc. Natl. Acad. Sci. USA, 95:6073–6078, 1998.

[6] F. Chiaromonte, Yap V. B., and W. Miller. Scoring pairwise genomic se-
quence alignments. In R. B. Altman, A. K. Dunker, L. Hunter, K. Laud-
erdale, and T. E. Klein, editors, Proceedings of the Pacific Symposium
on Biocomputing, pages 115–126. World Scientific, Singapore, 2002.

[7] M. O. Dayhoff and R. V. Eck. A model of evolutionary change in pro-
teins. In M. O. Dayhoff, editor, Atlas of Protein Sequence and Structure.
National Biomedical Research Foundation, Silver Spring, MD, 1968.

[8] M. O. Dayhoff, R. V. Eck, and C. M. Park. A model of evolution-
ary change in proteins. In M. O. Dayhoff, editor, Atlas of Protein Se-
quence and Structure, volume 5. National Biomedical Research Founda-
tion, Washington, DC, 1972.

[9] M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt. A model of evolu-
tionary change in proteins. In M. O. Dayhoff, editor, Atlas of Protein
Sequence and Structure, volume 5. National Biomedical Research Foun-
dation, Washington, DC, 1979.

[10] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from
incomplete data via the EM algorithm. J. Roy. Stat. Soc. B, 39:1–38,
1977.

[11] C. Devauchelle, A. Grossmann, A. Hénaut, M. Holschneider, M. Mon-
nerot, J. L. Risler, and B. Torrésani. Rate matrices for analyzing large
families of protein sequences. J. Comput. Biol., 8:381–399, 2001.

[12] R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Biological Sequence
Analysis. Cambridge University Press, Cambridge, 1998.

[13] J. Felsenstein. Cases in which parsimony or compatibility methods will
be positively misleading. Syst. Zool., 27:401–410, 1978.

[14] J. Felsenstein. Evolutionary trees from DNA sequences. J. Mol. Evol.,
18:368–376, 1981.

[15] J. Felsenstein. Inferring Phylogenies. Sinauer Associates, Inc., Sunder-
land, MA, 2004.



15 Estimating Substitution Matrices 437

[16] D. F. Feng, M. S. Johnson, and R. F. Doolittle. Aligning amino acid se-
quences: Comparison of commonly used methods. J. Mol. Evol., 21:112–
125, 1985.

[17] J. B. Fraleigh and R. A. Beauregard. Linear Algebra. Addison-Wesley,
Reading, MA, 3rd edition, 1994.

[18] M. P. Francino and H. Ochman. Strand asymmetries in DNA evolution.
Trends Genet., 13:240–245, 1997.

[19] M. P. Francino and H. Ochman. Strand symmetry around the β-globin
origin of replication in primates. Mol. Biol. Evol., 17:416–422, 2000.

[20] M. Fukushima. Dirichlet Forms and Markov Processes. North Holland,
Amsterdam, 1980.

[21] R. D. Gill and S. Johansen. A survey of product-integration with a view
towards application in survival analysis. Ann. Stat., 18:1501–1555, 1990.

[22] G. H. Gonnet, M. A. Cohen, and S. A. Benner. Exhaustive matching of
the entire protein sequence database. Science, 256:1433–1445, 1992.

[23] R. E. Green and S. E. Brenner. Bootstrapping and normalization for en-
hanced evaluations of pairwise sequence comparison. Proc. IEEE, 9:1837–
1847, 2002.

[24] S. Henikoff and J. G. Henikoff. Amino acid substitution matrices from
protein blocks. Proc. Natl. Acad. Sci. USA, 89:10915–10919, 1992.

[25] I. Holmes and G. M. Rubin. An expectation maximization algorithm for
training hidden substitution models. J. Mol. Biol., 317:753–764, 2002.

[26] M. S. Johnson and J. P. Overington. A structural basis for sequence
comparisons. J. Mol. Biol., 233:716–738, 1993.

[27] D. T. Jones, W. R. Taylor, and J. M. Thornton. The rapid generation of
mutation data matrices from protein sequences. Comput. Appl. Biosci.,
8:275–282, 1992.

[28] F. P. Kelly. Reversibility and Stochastic Networks. John Wiley & Sons,
New York, 1979.

[29] J. M. Koshi and R. A. Goldstein. Context-dependent optimal substitution
matrices. Protein Eng., 8:641–645, 1994.
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If we view statistics as a discipline in the service of science, and science
as being an attempt to understand (i.e., model) the world around us, then
the ability to reveal sensitivity of conclusions from fixed data to various
model specifications, all of which are scientifically acceptable, is equivalent
to the ability to reveal boundaries of scientific uncertainty. When sharp
conclusions are not possible without obtaining more information, whether
it be more data, new theory, or deeper understanding of existing data and
theory, then it must be scientifically valuable and appropriate to expose
this sensitivity and thereby direct efforts to seek the particular information
needed to sharpen conclusions. (Rubin [38])

16.1 Introduction

Bayesian statistical approaches are becoming increasingly common in the field
of molecular evolution and phylogenetics. Rubin [38] makes an eloquent ar-
gument for the value of Bayesian approaches through the identification of
sensitivity to our assumptions and the potential uncertainty in our conclu-
sions given our data at hand. While many may see Bayesian approaches as
flawed by their dependence on prior distributions and sensitivity to model
specifications, others, as with Rubin, will view this as a beneficial property
of the method—not accounting for uncertainty can lead to overconfidence in
the conclusions. This chapter will review two Bayesian approaches that in the
last few years have seen important developments: posterior mapping of char-
acters and posterior predictive distributions. These methods clearly identify
and accommodate uncertainty while providing valuable solutions to our ques-
tions. It is this author’s opinion that these methods will provide invaluable
contributions to our understanding of molecular evolution and phylogenetics
in the future.
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16.1.1 Character Mapping

The mapping of characters on genealogies has been invaluable in answer-
ing questions in evolutionary biology since the 1970s; studies such as test-
ing for a molecular clock [21], detecting the signature of positive selection
[28], and looking for associations between characters (see [10] for a review)
have all employed character mapping. Traditionally, parsimony has been the
mainstay—although approaches that combine the methods of maximum like-
lihood and parsimony and Bayesian inference and parsimony have been devel-
oped [21, 16]. Parsimony as a method for mapping characters, while straight-
forward in its application, has a number of serious drawbacks. First, it un-
derestimates the number of character transformations, often severely. This
underestimation arises because parsimony does not account for evolutionary
time along branches of a phylogeny: as evolutionary time increases, the num-
ber of inferred changes at a site is either zero or one. Second, parsimony
underestimates the variance in ancestral states, placing all of the support on
one reconstruction when they are not known with certainty. Lastly, parsi-
mony provides no framework for accommodating uncertainty in genealogical
relationships.

The drawbacks inherent in parsimony have long been recognized both by
molecular evolutionists [8] and phylogeneticists [10]. For example, Langley and
Fitch [21], in a study testing the molecular clock hypothesis, employed a mixed
method of parsimony to assign ancestral states and maximum likelihood to
estimate the rates along the branches. While this early approach acknowledged
the underestimation of character changes by parsimony and accommodated
it using maximum likelihood, it still left the problem of uncertainty in the
phylogeny and ancestral states unresolved.

Recently, methods for accommodating uncertainty in the ancestral states
and topology have been devised. For example, one approach to accommodat-
ing uncertainty in ancestral states is to use maximum likelihood to estimate
the probabilities of each possible state and parsimony to reconstruct the char-
acter changes weighted by their probabilities [39, 40, 29, 34]. Uncertainty in
topology has also been addressed in a number of ways. Some authors have
used a set of reasonable trees and evaluated mappings on each of them (e.g.,
[42]). Others have evaluated mappings on trees generated under a stochastic
process, such as birth-death [24, 26], or evaluated mappings on trees weighted
by the probability of the tree being true [25, 33, 16].

While these approaches have made significant advances in accommodat-
ing different sources of uncertainty none of them accommodate all sources of
uncertainty. In addition, due to their reliance on parsimony, none of these
approaches is able to provide detailed information on the timing, order, and
types of multiple changes—if any—occurring along a branch. Nielsen [30, 31]
has developed a stochastic method for mapping characters using a Bayesian
statistical framework. This approach of sampling from the posterior distrib-
ution of character histories (also referred to in this chapter as mappings or
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maps) successfully addresses the drawbacks inherent in parsimony and pro-
vides a statistically valid framework for accommodating uncertainty in the
phylogeny and model parameters. This approach is the topic of the next sec-
tion and will be discussed in detail.

16.1.2 Posterior Predictive Distributions

Posterior predictive distributions evolved from concerns regarding the depen-
dence on the prior distribution in prior predictive distributions. Instead of
integrating out nuisance parameters using the specified prior distribution of
the parameters, the posterior approach integrates with respect to the posterior
distribution of the parameters. The justification for, the particular implemen-
tation of, and other issues surrounding the use of posterior predictive distri-
butions are rather contentious among statisticians, resulting in an active and
healthy research program. Because of this there exists a diversity of different
approaches—prior, posterior, and their use in approximating Bayes’ factors,
to name a few—and opinions regarding these predictive distributions. Much
of the discussion revolves around the appropriate formulation of a p-value.
The discussion here will deal mostly with posterior predictive distributions
and their related p-values. Differences between the approaches and the short-
comings of the posterior method will be highlighted in the relevant places, and
a brief account of the controversy will be discussed at the end of the chapter.

Within evolutionary biology, posterior predictive distributions appeared
simultaneously with those of posterior mapping. While they can be used to
test a variety of hypotheses, their first application was to character histories
[32]. A similarity between posterior mapping and posterior predictive distrib-
utions is their ability to naturally accommodate uncertainty in the phylogeny
and model parameters by treating them as nuisance parameters. (This aspect
of both methods is not unique to them and has been a motivating factor be-
hind many of the Bayesian developments in biology; see [18] for a review.)
Posterior predictive distributions have in the last few years seen application
to hypotheses such as detecting positive selection [32], evaluating substitution
model adequacy [3], testing for nucleotide frequency heterogeneity [18], corre-
lated character change [14], concordance between genes [46], and patterns in
protein evolution.

The use of predictive distributions in Bayesian hypothesis testing in gen-
eral and evolutionary biology in particular is appealing for a number of rea-
sons. First, the generality of the approach makes it applicable to a wide vari-
ety of questions in molecular evolution and phylogenetics. Second, the method
provides a rigorous statistical framework for accommodating uncertainty in
model parameters and genealogical (or phylogenetic) relationships. This alone
may be the strongest argument for the use of predictive distributions over
methods such as the parametric bootstrap. Third, predictive probabilities
(called posterior predictive p-values) are constructed using tail areas of the
predictive distribution and are straightforward in their implementation and
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interpretation. Unlike classical frequency probabilities, posterior predictive
probabilities do not evaluate observed values relative to a fixed set of val-
ues under the null model but averages over probable sets. Lastly, predictive
p-values produce a Type I frequentist error at a given α similar to the ex-
pected α (often lower but never greater than 2α) [27]. While these reasons
make predictive distributions appealing, a number of concerns and potential
drawbacks exist and will be discussed at the end of Section 16.3. Briefly, this
approach requires the description of a probabilistic model (null hypothesis),
specification of a prior distribution for the model, an estimation of the model’s
posterior distribution, and a little ingenuity on the part of the researcher in
determining appropriate test statistics (see [38] for a general review). Each
of these will be dealt with in detail in Section 16.3. Of these requirements,
the last is clearly the most difficult to accomplish: a good test statistic needs
to be a relevant summary of the hypothesis being tested, and each question
will require a different sort of test statistic. The logic behind the posterior
predictive approach is similar to that underlying the parametric bootstrap. In
fact, the parametric bootstrap sampling distribution may be indistinguishable
from the posterior predictive sampling distribution when maximum likelihood
estimates are used and the posterior is concentrated. The fit of a hypothesis
is tested by comparison of the observed test statistic—often referred to as the
realized value—with the distribution of that statistic under the null model.
If our realized value falls within the 95% confidence region of the null dis-
tribution, we are unable to reject the null hypothesis—otherwise, we reject
it.

The remainder of this chapter will explore the underlying methodology of
these two approaches, review a number of their recent applications, demon-
strate how posterior predictive distributions can be used to test hypotheses
about character histories, and discuss how predictive distributions can be used
to address a wealth of different questions in molecular evolution and phyloge-
netics.

16.2 Posterior Mapping

In this section, I will try to answer four questions: (1) What are character
histories?; (2) How do we go about sampling character histories?; (3) How
do we accommodate uncertainty in model parameters and topologies?; and
(4) What types of questions can we address with posterior mapping? The
second and third questions will be answered by introducing the method of
posterior mapping first proposed by Nielsen [30, 31] and then later extended
by Huelsenbeck et al. [14] to morphological characters. The last question will
be answered by briefly reviewing examples from the literature.

First, let us tackle the question of what a character history is by providing
a definition. A character history is a description of the historical pattern of
state occurrences and transformations along a phylogeny. The history is more
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than just a simple description of the ancestral reconstructions at the internal
nodes of the tree. It includes information about the placement (timing), order
of states, types of character state transformations (e.g., A ⇔ G), and direction
(or bias; e.g., A → G versus G → A) of transformations when the root of the
phylogeny is known (see Figure 16.1d for an example of a character history).
What we would like is to sample possible character histories (individual char-
acter histories will also be referred to as a map) in which they are sampled in
proportion to their posterior probabilities. More often we will be interested
in a function of these sampled histories and not individual histories. For ex-
ample, we may wish to determine the number of radical amino acid changes
relative to conservative changes [32]. In addition, we may be interested not
only in the relative types of changes but also the order and timing of changes.
For example, contingency tests of neutrality rely on being able to determine
types of changes (silent/replacement) and their placement on the tree [30].

But, before we get into the details of the method (questions 2 and 3), we
might wonder why we should not rely on parsimony and what the differences
are. To illustrate these differences, we will explore four different mappings of
a single site for four species shown in Figure 16.1. We will ask: (1) How does
the placement of character transformations along a branch differ?; (2) How
does the number of character transformations along a branch differ?; and (3)
How probable are nonparsimonious mappings? Two of the trees in Figure 16.1
are parsimony mappings (trees a and b) and two are posterior mappings, one
of which is consistent with parsimony (trees c and d).

Fig. 16.1. A comparison between parsimony and two representative realizations
from the posterior distribution of mappings. Trees a and b are parsimony reconstruc-
tions, while c and d are from the posterior distribution of mappings. The inferred
number of changes in tree c is consistent with parsimony. The posterior mappings
were generated with SIMMAP, a program that implements the posterior mapping
method and can be downloaded at http://www.simmap.com.
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The position along a branch at which an inferred change occurs un-
der parsimony is shown directly following a bifurcation. This was done
for convenience—we could have placed the changes equidistant along the
branches. This illustrates the first difference between parsimony and poste-
rior mappings—their placement of transformations along branches. Parsimony
provides no information about the timing of changes along a branch; parsi-
mony simply concludes that a single change has occurred. Posterior mapping,
however, does provide information about placement and order of multiple
changes along a branch. (In addition, the timing of changes between different
sites can be compared. See the discussion on correlated character evolution, in
Subsection 16.3.5 , for an example.) For example, in trees c and d, in Figure
16.1, we can clearly see when the events occurred and the order in the case
of tree d. In many cases, the order of changes is of interest. For example, we
might wish to know whether a burst of amino acid replacements immediately
follows speciation or whether it is evenly distributed after the split.

To illustrate the difference in the number of transformations considered
by each method, let us compare the posterior mapping on tree d in Figure
16.1 with the parsimony mappings (trees a and b). First, we should note
that the map on tree d is not consistent with parsimony; four changes have
been inferred, compared with two changes required by parsimony. Sampling
from the posterior distribution of mappings has produced a map in which two
additional changes have occurred. While, admittedly, I have not shown you
that mappings with two additional changes have a large or small probability,
it does have a probability greater than zero. Under parsimony this is not even
considered plausible, let alone probable, while the posterior method is not
constrained to minimizing the number of changes.

Let’s consider the final difference between parsimony and posterior map-
pings—how probable are nonparsimonious mappings? In this example, we will
compare the probability of parsimonious and nonparsimonious mappings. In
effect, we will be evaluating two assumptions of parsimony: the minimization
of changes and the reduction in variance associated with ancestral state re-
construction at the root. This example should also provide an introduction
to the underlying logic of posterior mapping. To address this difference, we
will first calculate the overall probability of the data and then conditional
probabilities given the branch lengths and the number of character changes
along the trees shown in Figure 16.2.

In this particular example of two species, there is only a single phylogeny
relating the two sites. This is the equivalent of assuming that the tree is
known in cases of more than three species. (Later, it will be shown that the
method allows us to accommodate uncertainty in the phylogeny and model
parameters.) To compare the mappings, we are interested in calculating

Pr(Mi|D) =
Pr(Mi, D)

Pr(D)
, (16.1)
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Fig. 16.2. Comparison of the probabilities associated with parsimonious and non-
parsimonious character histories. TH is the tree height, from the root, in the expected
number of substitutions per site and will be used to evaluate an increase in branch
lengths (0.5, 1.0, and 2.0, respectively; see the text). xi is the state we are changing
from at the root and is dependent on whether we are observing one or two changes;
under one change xi ∈ {C}, while under two changes xi ∈ {G, T }.

where Mi is a character map and D is the observed data. This is the proba-
bility of the map given the data. Calculation of the probability of the data,
Pr(D), requires a model that describes substitution probabilities from one
state to the next. We will assume the Jukes and Cantor [19] model, which is
a time-reversible Markov model. Under the JC69 model, the stationary nu-
cleotide frequencies are πi = 1/4 for all i, and the probability of a change
from nucleotide i to j along a branch of length t is

Pij(t) =
{

1/4 + (3/4)e−(4/3)t if i = j,
1/4 − (1/4)e−(4/3)t if i �= j.

(16.2)

We can now calculate Pr(D) by considering all possible state assignments at
the root i as

Pr(D) =
∑

i∈{A,C,G,T}
πiPiA(t)PiC(t). (16.3)

When TH = 0.5, then Pr(D) = 0.04602 for the data and phylogeny shown.
Next we want to calculate the probability of histories a and b conditional

on the data at the tips of the trees. For the mapping shown on tree a (Ma), we
want to calculate Pr(Ma, D). This can easily be done using the fact that for
the JC69 model and other continuous-time Markov chain models, the num-
ber of changes along a branch is Poisson-distributed. For example, along the
left lineage of tree a, the conditional probability of observing a single change
is 0.5e−0.5 × (1/3). The last term represents the probability of a change be-
tween nucleotides, which is 1/3 under the JC69 model. Therefore, we calculate
Pr(Ma, D) as



446 J. P. Bollback

Pr(Ma, D) =
e−0.5 × (0.5e−0.5/3)

4
= 0.0153, (16.4)

where the probability of not observing a change along a branch of length
t = 0.5 is e−0.5 and again the probability of observing a single change along
a branch of this length is 0.5e−0.5 × 1/3 under the JC69 model.

The root state for tree a must be a C, given the states at the tips and a
single change occurring along the branch leading to the state A. However, in
tree b the state of the root is uncertain. An observation of a T or a G at the
root of tree b would be consistent with the mapping shown and the states
at the tips of the tree. Given these possible root states, we can calculate the
probability as

Pr(Mb, D) =
(0.5e−0.5/3)2

4
× (0.5e−0.5/3)2

4
= 0.0051. (16.5)

Using these probabilities and Pr(D), we can calculate the conditional prob-
abilities for the character histories on trees a and b as 0.333 and 0.111, respec-
tively. The parsimony-consistent history is three times as probable. However,
what happens as the time from the root to the tips increases? Table 16.1
shows the probabilities for the trees and mappings in Figure 16.2 given three
different sets of branch lengths.

Table 16.1. A comparison of the probabilities associated with the parsimony con-
sistent mapping in tree a with that of the nonparsimonious mapping of tree b (see
Figure 16.2) and the cumulative probability of mappings greater than two substitu-
tions (Pr(Mi>b|D)).

Tree a Tree b Changes > 2
TH Pr(D) Pr(Ma, D) Pr(Ma|D) Pr(Mb, D) Pr(Mb|D) Pr(Mi>b|D)

0.5 0.046025 0.015328 0.333 0.005109 0.111 0.556
1.0 0.058157 0.011277 0.194 0.007519 0.129 0.677
2.0 0.066239 0.003052 0.034 0.004070 0.045 0.921

A couple of things should be noticed in Table 16.1. First, as the branch
lengths increase, the probability of the mapping consistent with parsimony
(tree a) decreases. Second, the parsimony mapping decreases from a threefold
higher probability to a probability lower than the mapping with two changes
(tree b) as branch lengths increase. As expected, as time increases, the prob-
ability of multiple changes increases, making mappings with one, and even
two, changes much less probable (although they probably have the largest
probabilities). The cumulative probability of more than two changes increases
with increasing time, reaching 0.921 at divergences of 2.0 expected substitu-
tions per site. Hopefully, I have been able o show that even for the simplest
phylogeny, nonparsimonious mappings should be considered.
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16.2.1 Sampling Character Histories

How do we go about sampling character histories using the method of poste-
rior mapping? The following is a description of simulating a map for a site.
Complete gene sequences can be sampled by repeating this approach for each
site. Four steps are involved in sampling a character map: (1) define a sub-
stitution model in which probabilities of state changes can be calculated; (2)
calculate the conditional likelihood for each state at each node of the tree, in-
cluding the root; (3) simulate ancestral states; and (4) simulate a substitution
(mutational) history, conditional on the ancestral states and states at the tips
of the tree. (Often the states at the tips of the tree are unknown or uncertain
(e.g., N, R, etc.). This type of uncertainty can easily be accommodated by
revisiting these nodes after simulating ancestral states for the internal nodes
and repeating step 3 for the tips.)

First, we need to define a model of nucleotide (or morphological) change
(step 1). Any number of continuous-time Markov models are available, that
accommodate a variety of different plausible aspects of sequence evolution.
Available models and their uses have been extensively described elsewhere,
and a detailed treatment is beyond the scope of this chapter [48, 11]. Briefly,
many commonly used models are special cases of the general time-reversible
(GTR) model of sequence evolution [20, 37]. With this model, we can describe
the instantaneous rates of changing from state i to state j using the rate matrix

Q = {qij} =

⎛⎜⎜⎝
− aπC bπG cπT

aπA − dπG eπT

bπA dπC − fπT

cπA eπC fπG −

⎞⎟⎟⎠ , (16.6)

where a–f represent the rates of changing from one nucleotide to the next,
and πi represent the stationary nucleotide frequencies. Using this matrix, we
can easily calculate substitution probabilities for a change from nucleotide i
to j over a branch of length t as P = {pij(t)} = eQt. In many cases, such as
the JC69 model described above, analytical solutions are available. In those
cases in which solutions are not available, standard linear algebra approaches
are available for exponentiating the matrix Q.

With these probabilities, step 2 can be easily accomplished using the prun-
ing algorithm of Felsenstein [4]. Given a tree with branch lengths τ , a set of
observations D at the tips of the tree, and a vector θ containing a set of model
parameters describing sequence evolution, we can calculate the conditional
likelihood for each internal node and the root using a post-order traversal of
the tree.

Next, we simulate a state at the root of the tree (step 3). Let us denote
the root as σ and the simulated observation as d. The new state at the root
will then be denoted dσ. (All s descendant nodes and branches are indexed
as σ − 1, . . . , σ − (2s − 3).) A site can be simulated by sampling from the
posterior distribution
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Pr(dσ = i|D, τ, θ) =
lσ,iπi∑

j∈{A,C,G,T} lσ,jπj
, (16.7)

where lσ,i is the conditional likelihood of being in state i—we are conditioning
on the observations at the tips of the tree, model parameters, and topology.
Now, in a preorder traversal of the tree from the root, we visit a node directly
above, σ − 1, and simulate an ancestral state by sampling from

Pr(dσ−1 = j|dσ = i,D, τ, θ) =
lσ−1,iPij(tσ−1)∑

k∈{A,C,G,T} lσ−1,kPik(tσ−1)
, (16.8)

where j represents the recently simulated state at the ancestral node (in this
case the root) and Pij(tσ−1) is the transition probability from state i to state
j over a length of tσ−1. We proceed with the traversal and simulate ancestral
states for the remaining nodes. As noted above, often we find that a site may
be unknown or uncertain for some sequences. Using this approach, we can
also simulate a tip state. In this way, we treat the uncertainty at the tips
in a fashion identical to that for internal nodes. Now we have sampled and
assigned ancestral states from the posterior distribution for each internal node
of the phylogeny.

The final step is to generate a character history for each branch of the
tree given the previously simulated ancestral states and observed states at
the tips of the tree (step 4). This, perhaps, is the most challenging step, and
Nielsen [31] provides an elegant and computationally efficient solution. We
simulate a realization of a continuous-time Markov chain conditional on the
starting state and ending states along a branch. The waiting times between
substitution events along a branch are drawn from an exponential distribution

λe−λt (16.9)

with the rate λ = −qii. This rate is taken from the diagonal elements of our
Q matrix, which are interpreted as the rate of moving away from a state i.
Waiting times can be obtained from this distribution using the inverse trans-
formation method. If the exponential waiting time is longer than the branch
length t and the states at each end of the branch are the same, then the process
is terminated; no changes have occurred along this branch. If the waiting time
is smaller than the branch length t, then a character transformation is deter-
mined by Prij = qij

−qii
, and the process is continued with the new length, t−t1,

by drawing another exponential waiting time. If the next waiting time is longer
than the remaining time along the branch and the states are the same, the
process ends for that branch. On the other hand, if the states are different,
the process is repeated from the ancestral node, not the previous simulated
transformation. If we were to proceed from the previous transformation, the
waiting times would no longer be exponentially distributed.
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Nielsen [30] has pointed out that this approach is not computationally
efficient when the reconstructed ancestral states are not the same and the
length t is small. Nielsen [30] proposed conditioning the first waiting time on
being less than the length of the branch as

f(t1|t1 < t) =
λe−λt1

1 − e−λt
, 0 ≤ t1 < t, (16.10)

where λ = −qii. Waiting times can also be drawn from this distribution using
the inverse transformation method. This approach enhances the computa-
tional efficiency of the algorithm by reducing the number of realizations that
are rejected. Using this approach, the first draw always produces a waiting
time less than t and thus is consistent with at least one change occurring along
the branch. The next draw uses the unconditional distribution as above. Once
all internal nodes of the tree have been visited, we have successfully simulated
a single realization of a map from Pr(M |D, θ, τ).

16.2.2 Integrating over Topologies and Model Parameters

In general, parameter values of the substitution model θ and the topology τ
are not known with certainty. We would like to evaluate Pr(M |D) and not
Pr(M |D, θ, τ). The Bayesian approach permits a natural way of accommodat-
ing uncertainty in these values. We wish to sample from

Pr(M |D) =
ψ∑

k=1

∫
vk

∫
θ

Pr(M |D, θ, τ)p(τk, vk, θ|D)dvkdθ, (16.11)

where ψ is the set of possible trees and vk are the branch lengths associated
with tree k. While this cannot be solved analytically due to its complexity,
numerical approximations can be obtained using MCMC methods [35, 22, 17]
(see Chapters 3 and 7).

In practice, how do we go about sampling character histories not dependent
on fixed values for these parameters? The answer is quite simple. As described
above, we have a method for sampling a map along a phylogeny. Using a
program such as MrBayes or BAMBE, we can easily obtain an approximation
of p(τk, vk, θ|D). With this distribution in hand, we can simulate a map for
each posterior sample producing a valid approximation of Pr(M |D).

As mentioned previously, what we are most often interested in is some
function of the histories, h(M,D). These functions might evaluate the number
of nonsynonymous substitutions, radical amino acid changes, relative timing
of changes, correlation in the timing of transformations between two sites, or
covariation of states between sites. We now have all the pieces necessary to
evaluate any desired function and its expectation. For example, if we wish to
evaluate the expected number of nonsynonymous changes, nNSY N (M,D), we



450 J. P. Bollback

can evaluate the expectation numerically from the distribution of character
histories as

E[nNSY N (M,D)|D] ≈ 1
N

N∑
i=1

nNSY N (Mi, D), (16.12)

where N is the number of simulated character histories and nNSY N (Mi, D)
is the observed number of nonsynonymous changes along map i.

16.2.3 Examples from the Literature

This section is intended to direct the reader to the most recent applications of
posterior mapping in the literature. A brief overview of the specific questions
addressed in the literature should provide a better understanding of the power
of this approach.

The first application of this method in the literature [30] used it to address
a number of questions pertinent to molecular evolution and population genet-
ics. First, the author made inferences regarding the population parameter θ,
which is the product of the population size and mutation rate, to a data set of
63 human mtDNA sequences from the Nuu-chah-Nulth tribe (see [50] in [30])
demonstrating the method’s utility in population genetics. In addition, the
method was applied to estimating the ages of mutations and then specifically
the ages of synonymous and nonsynonymous mutations in a test of neutrality
proposed by Templeton [49].

The method was further used to address how the parsimony method com-
pared with the posterior method in estimating the number of mutations across
two genes: β-globin and influenza hemagglutinin-A [31]. An analysis of the
complete gene sequences found that the parsimony method greatly underesti-
mated the total number of substitutions compared with the posterior method.
Nielsen argued that the large discrepancy was likely due to differences in
lineages; for example, rate heterogeneity among lineages, mutational biases
among lineages, such as a transition/transversion bias, or biases among lin-
eages in synonymous and nonsynonymous evolutionary rates. To address these
questions, he tested for rate homogeneity among lineages, finding that there
appeared to be considerable variance among lineages, particularly in the β-
globin data set.

Finally, this method was extended to mapping morphological characters
[14] using the Mk series of stochastic models [23]. While possibly of little
interest to molecular evolutionists, this represents a major advancement in the
phylogeneticist’s ability to address questions about morphological character
evolution using a statistical approach not relying on parsimony. Not only
does this paper extend the method of stochastic mapping to morphological
characters, using the Nielsen [31] method, but it provides a novel approach to
looking for correlated character evolution using predictive distributions (see
Section 16.3).
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16.3 Predictive Distributions

Often we are confronted with situations in which the data, or some aspect of
an analysis, do not meet the assumptions of a standard statistical test (e.g.,
the use of improper prior distributions in calculating Bayes factors). In cases
like these in molecular evolution and phylogenetics, we rely on alternative
methods, such as permutation tests (e.g., randomization tests), resampling ap-
proaches (e.g., the nonparametric bootstrap), the parametric bootstrap, and,
in the Bayesian framework, predictive distributions. The latter approach is
operationally analogous to the parametric bootstrap but has a number of dif-
ferences and potential advantages over the traditional parametric bootstrap.
This potential will hopefully become clear in the remainder of the chapter.

16.3.1 Posterior Predictive Simulations

Bayesian approaches to hypothesis testing come in two general forms: Bayes
factors and predictive distributions. While hypothesis tests using Bayes fac-
tors have received a fair amount of attention in the phylogenetics litera-
ture [44, 13, 43, 45], the alternative, predictive distributions, only recently
have been applied to methods in molecular evolution and phylogenetics
[32, 31, 3, 46]. In this section, I will provide background on what predictive
distributions are and how to use them, explore some recent applications from
the literature, and discuss the pros and cons of their use. Predictive distrib-
utions provide a very general and flexible framework for Bayesian hypothesis
testing, making them likely to be applied to a broad array of questions. In
addition, they provide a natural way of accommodating uncertainty in the
substitution model parameters and topology. This being said, the method
isn’t free of problems. The specifics of these issues will be reviewed at the end
of this section. In evaluating a hypothesis, we would like to know how well
it fits the underlying process that generated the data at hand. If a hypothe-
sis is adequate, then it should perform well in predicting the distribution of
data observations or some summary value relevant to the hypothesis being
scrutinized. These distributions of future observations are called predictive
distributions (also called reference distributions or densities). Most often we
are not directly interested in the predictive distribution of the data but a
summary statistic, referred to as a test statistic in this chapter, that captures
relevant features of predictive data and our observed data given the hypothe-
sis. Test statistics are dealt with in Section 16.3.2 but, for the moment let us
assume we have some function, T (·), that summarizes an aspect of our data.

An analogy: parametric bootstrap

Before we get into the details of how to sample from posterior predictive
distributions, I want to develop an operational analogy with the parametric
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bootstrap. Since many readers are already familiar with the use of the para-
metric bootstrap, it will hopefully serve as a useful heuristic to understanding
predictive methods. The thought experiment will be a test of the molecular
clock. While I don’t advocate the test described below, as it is untested, it does
provide a useful heuristic for understanding the differences between the two
methods. (Note: There are numerous other well-established ways of testing
the molecular clock.)

Let θc be a vector containing our model parameters (which include the
substitution model parameters, topology, and associated node depths) under
the clock hypothesis and θnc be the similar vector of parameters under the
unconstrained hypothesis. Under the parametric bootstrap, these values are
chosen to be the maximum likelihood estimates (MLE) for these quantities.
Since we wish to test the molecular clock, we can generate our reference dis-
tribution using these θ̂c values and simulate n data sets (see Figure 16.3).
These are the predictive outcomes we might expect to observe in future data
collection expeditions, given that the values of θ̂c are true. Next, we need to
summarize the data (observed and predictive) in some relevant way. We can
use the difference in maximum likelihood estimates between the constrained
(clock) and unconstrained branch length hypotheses [4], but for this example
we will take an alternate approach. Let’s assume that we have an outgroup
that establishes the placement of the root and use the standard deviation of
distance of the tips to the root under each hypothesis. The reference distrib-
ution, simulated under the clock, allows us to check the degree to which the
clock would appear violated (magnitude of the standard deviation), given that
the underlying process is truly clock-like. If the observed, or realized, value
falls outside of this distribution, we might be inclined to reject the clock hy-
pothesis or, more precisely, we reject that the observed deviation could have
arisen under our null hypothesis—a molecular clock and the particulars of the
substitution model.

In comparison, how might this be accomplished using posterior predictive
simulations, and what are the possible differences in outcome with the para-
metric bootstrap? The first difference is immediately apparent: values of θ are
not point estimates but averaged over samples from the posterior distribution
of θ (see Figure 16.3) under the clock and unconstrained hypotheses. Samples
from the posterior distribution under the clock model (θc) and unconstrained
model (θnc) can be obtained using a program such as MrBayes [17]. Using
these models, we can evaluate the expectation of our standard deviation test
statistic, under the unconstrained hypothesis. This reveals a–second difference
with the parametric bootstrap: we have accommodated uncertainty in the θnc,
and therefore uncertainty in the value of the realized test statistic, by aver-
aging over values sampled from the posterior distribution. To obtain the null
distribution of the test statistic under the clock hypothesis, we will simulate
data by sampling the posterior distribution of θc under the clock hypothesis
(see Figure 16.3). For each of the predictive data sets sampled, we will need to
perform another round of MCMC to sample from the posterior distributions
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Fig. 16.3. Comparison of the parametric bootstrap and posterior predictive sim-
ulation. Values of θ are used to simulate n new data sets ({y1, y2, . . . , yn}). These
are then evaluated using our chosen test statistic, T (·), giving us the reference dis-
tribution under the hypothesis, which is compared with the realized test statistic,
T (X).

under the unconstrained hypothesis. The null distribution is summarized from
these samples. In this case, the standard deviation for each of these replicates
is the predictive distribution of standard deviations expected under the clock
hypothesis (conditional on the data and chosen model). As with the para-
metric bootstrap, we can compare the expectation of the realized deviation
to the predictive values under the molecular clock. If the realized value falls
outside of the predictive distribution under the clock, then we are tempted to
consider the observed deviations as unexplained by a strict molecular clock.

Now, hopefully, you have a feel for the mechanics of predictive tests and
some of the differences with the parametric bootstrap, and we are ready to
move on and look more closely at the method of posterior predictive simula-
tions.

Sampling from posterior predictive distributions

First, we need a method for generating the predictive distribution of the data
before evaluating some function of it. Let Y = {y1, y2, · · · , yn} be a vec-
tor containing n future observations and X = {x1, x2, · · · , xn} be a vector
containing our current observations. What we would like to sample is the
predictive distribution of Y conditional on the hypothesis H,

p(Y|H,X) =
∫

θ

p(Y|θ)p(θ|X)dθ, (16.13)

where θ is a vector containing model parameters under the hypothesis under
scrutiny, and p(θ|X) is the posterior distribution of these parameters. Un-
fortunately, we can’t analytically determine p(Y|H,X) because the posterior
distribution, p(θ|X), the source of a reasonable set of values for θ under the
hypothesis being scrutinized, is impossible to determine analytically for all but
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the simplest cases in molecular evolution. Furthermore, we can use sampling
methods, such as Markov chain Monte Carlo (MCMC), to sample from this
distribution, providing an approximation of p(θ|X) [35, 22, 17] (see Chapters
3 and 7). With values of θ from the posterior distribution, we can approximate
the predictive distribution by sampling using the following algorithm:

1) Draw a set of parameter values, θi, from the joint posterior distribution
of parameters under the null model being tested. (In practice, this can
be accomplished by sampling the posterior output of a program that
approximates posterior distributions using MCMC, such as MrBayes
[17].)

2) Using the values of θi (which may include values for the parameters of
the substitution process, topology, branch lengths, etc.), simulate data,
yi .

3) Repeat steps one and two N times to create a collection of data sets,
y1,y2, · · · ,yn , corresponding to samples from the posterior distribution
of θ1, θ2, · · · , θn.

4) These simulated data sets are samples from the posterior predictive dis-
tribution shown in (16.13) and can be used to evaluate our hypothesis
of interest.

The precision of the sampling approximation is a function of the number of
draws from the posterior distribution, the precision of our posterior estimate,
and the appropriateness of the underlying prior distributions. Fortunately, we
are guaranteed by the law of large numbers that we will converge on the target
distribution. What exactly is “large” is not clear and is likely to be dependent
on the particular parameters of the distribution.

16.3.2 Test Statistics

By sampling we now have an approximation of the posterior predictive dis-
tribution of the data simulated under the null model being scrutinized. But
we are still left with the following problem: How can we use the posterior
predictive distribution to assess our hypothesis H? As already mentioned, we
are generally not interested in the predictive distribution of the data directly
but some function of it (in our case, a function of the sampling distribution),
or more concisely the predictive distribution of the function of interest. Our
functions will most often be a descriptive test statistic (often referred to as
a summary or discrepancy variable [5]) that quantifies some aspect of the
data. The test statistic is referred to as a realized value when summarizing
the observed data. In principle, an appropriate test statistic can be defined to
measure any aspect of the predictive distribution of the data, but in practice
the issue of defining an appropriate statistic for a given hypothesis may not
be straightforward [6] and is considered contentious [2].
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I follow the general notation T (·), where this is some function of the data.
To emphasize that our interests are in sampling from the predictive distribu-
tion of T (·), equation (16.13) could be rewritten as

p[T (Y)|X] =
∫

θ

p[T (Y)|θ]p(θ|X)dθ, (16.14)

where Y is a set of future or predictive observations of the data, X. Using the
algorithm outlined above, we can sample this distribution with one additional
step; for each simulated data set, we evaluate the function T (Y). (Examples
of different test statistics will be described later.) In this way, we now have
a sampling approximation of the predictive distribution of the test quantity
in which we are directly interested. Importantly, it should be noted that this
distribution is averaged over samples from the posterior distribution, allowing
us to accommodate uncertainty in our parameter estimates. This frees the test
from dependence on any particular set of parameter values by evaluating them
in accordance with their probabilities. Whether this is a benefit of the method
is yet unclear. (The effects of accommodating uncertainty in parameters in
Bayesian molecular evolution studies has not been looked at closely.) This
distribution can then be compared with the realized test statistic, T (X), which
is calculated from the original data, and the predictive probability of the null
hypothesis can then be evaluated.

16.3.3 Predictive p-Values

Recently, much research has been directed at the use, properties, and inter-
pretation of p-values as measures for predictive distributions and we direct the
reader to [2, 36]. Predictive p-values are often denoted pT to indicate their
dependence on the test statistic and have an operational interpretation simi-
lar to classical p-values, as they are both derived from tail area probabilities;
values that lie in the extremes of the null distribution of the test quantity are
considered significant to reject the null hypothesis. Under classical statistics,
the distributions are conditioned on point estimates for model parameters.
Predictive densities, on the other hand, are not because parameter values are
sampled from the posterior distribution in proportion to their probabilities.
This sampling scheme allows them to be treated as nuisance parameters—
values not of direct interest—and to be integrated out. Samples from the
predictive distribution of the test statistic allow us to evaluate the posterior
predictive probability as

pT = Pr[T (yrep) ≥ T (X)|X, θ]. (16.15)

The posterior predictive p-value for the test statistic is calculated as

pT =
1
N

N∑
i=1

I(T (yi)≥T (X)), (16.16)
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where I is an indicator function that takes on the value of 1 when the equality
is satisfied and 0 otherwise, T (yi) is the test statistic for the ith simulated data
set, and T (X) is the realized test statistic. Probabilities less than the critical
threshold, say α = 0.05, suggest that the hypothesis under examination is
inadequate. Predictive p-values are interpreted as the probability that the
hypothesis would produce as extreme a test value as that observed for the
data [6]. This approach evaluates the practical fit of the hypothesis to our
observations and is dependent on the test statistic employed. These p-values
should not be interpreted as frequentist error probabilities or as the probability
of our hypothesis. Sellke, Bayarri, and Berger [41] have suggested that p-values
can be calibrated to allow for a Bayes factor interpretation (i.e., the odds of
H0 to an unspecified alternative H1),

B(p) = −ep log(p), p < e−1, (16.17)

or a frequentist error probability,

α(p) = (1 + [−ep log(p)]−1)
−1

. (16.18)

While an extremely powerful and appealing aspect of predictive distrib-
utions is the ease and flexibility in test statistics that can be employed, not
all test statistics are appropriate. Careful consideration of the hypothesis and
its underlying assumptions, and the test statistic, should be made prior to
decisions about the hypothesis under scrutiny.

16.3.4 Issues Concerning the Use of Predictive Distributions

Practitioners should be aware of a number of issues surrounding the applica-
tion of posterior predictive distributions. First, there is an apparent double use
of the data. The data are used in the estimation of the posterior distribution
during simulation of the predictive distribution and are used again during cal-
culation of the tail area probabilities. A number of general solutions have been
suggested by various authors (see [27, 6, 7]). Second, the results are dependent
on the choice of test statistic. While the ability of the method to accommo-
date many different statistics is a benefit, poorly chosen statistics may lead to
incorrect conclusions and unpredictable behavior. Third, there are concerns
over the properties and interpretation of the different predictive p-values that
are available (see [2, 36]), particularly in situations for which composite null
models are being entertained. Finally, posterior predictive methods may be
highly conservative, resulting in a failure to detect problems with, or devia-
tions from, the null model.

16.3.5 Examples from the Literature

Predictive distributions are a new introduction to studies in molecular evolu-
tion and phylogenetics although they have been extensively discussed in the
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statistical literature (see [38]). Yet they have seen a rapid application to a
diverse array of questions in the last few years. In this section, I will briefly
review a few different applications from the literature. This should give us
some insight into what types of questions have been addressed and can be
addressed in the future.

Substitution model adequacy

While substitution model testing in phylogenetics and molecular evolution has
been an area of extensive research, until recently little had been done within
the Bayesian framework, and many researchers relied on classical approaches,
such as the likelihood-ratio test (for a review, see [15]), parametric bootstrap
[9], or Akaike information criterion [1], to select models for Bayesian analysis.
One drawback to these approaches is that they do not easily accommodate
uncertainty in parameter estimates and the topology used in the test. As we
have seen, predictive distributions provide a natural approach to accommo-
dating uncertainty. (This is not the only Bayesian approach to model testing
that accommodates uncertainty; see the use of Bayes factors in model selec-
tion [44].) This approach has been applied to determining model adequacy
and choice [3], testing for homogeneity of base frequencies among lineages
[18], and testing for lineage rate heterogeneity [31].

Bollback [3] proposed that we could evaluate a substitution model’s ad-
equacy using predictive distributions and that this would naturally lead to
selection through refinement or enhancement of the model to be used in fur-
ther analysis. This approach differed most importantly from likelihood-based
approaches by taking into account uncertainty in topology, branch lengths,
and model parameters. Therefore, model choice has been freed from condi-
tioning on these parameters and has resulted in a more accurate estimate of
model variance. The multinomial test statistic was used to evaluate how well
a model was able to generate data similar to existing data. Further, the study
found that a number of factors affected an increase in the power of the test
statistic: (1) increasing the number of sites; (2) increasing sequence divergence
(expected number of substitutions per site); and (3) the degree of violation of
a model’s assumptions.

In a review of Bayesian inference, Huelsenbeck et al. [18] tested for ho-
mogeneity of nucleotide frequencies among lineages of the Drosophila alcohol
dehydrogenase (Adh) locus. They used the following test statistic to evaluate
the deviation from homogeneity among 58 lineages over time:

χ2 =
58∑

i=1

∑
j∈{A,C,G.T}

(fij − f̄j)2

fj
. (16.19)

The authors were able to strongly reject the null hypothesis of nucleotide
frequency homogeneity among lineages.
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In the final example of evaluating substitution models, Nielsen [31] eval-
uated lineage rate variation for two data sets: β-globin and influenza hemag-
glutinin-A. He used the variance in expected number of substitutions, (Vk), as
the test statistic and tested the null hypothesis of homogeneity of variances
among lineages. By examining the posterior and predictive distributions, he
concluded that, because of their small overlap, the null hypothesis of homo-
geneity could be rejected. This study is important because it used the method
of posterior mapping to obtain estimates of Vk for each lineage and used pre-
dictive distributions to evaluate significance.

Positive selection

A diverse array of methods for detecting positive selection at sites within a
gene is available to molecular evolutionists and phylogeneticists alike, ranging
from parsimony-based methods [47] to likelihood-based methods (see Chapter
5) and Bayesian methods (e.g., [32, 12]). The use of posterior mapping and
predictive distributions to detect positive selection was introduced by Nielsen
[32]. I will focus on this paper because it demonstrates both posterior mapping
and predictive distributions to test the null hypothesis of no selection. The
authors evaluated the number of nonsynonymous substitutions as their test
statistic for an influenza hemagglutinin-A data set. They observed that 11
sites had significant p-values (pT ≤ 0.01), suggesting these sites had an excess
of nonsynonymous substitutions. They concluded that these sites were under
positive selection. To further strengthen their argument, they compared their
results with the results of Yang et al. [51], showing a strong concordance
between the posterior predictive p-values and posterior probabilities according
to the M3 model. None of the 11 sites determined to be under positive selection
showed posterior probabilities lower than 0.975.

Correlated character evolution

In this last section, I will review a recent study in which the authors used pos-
terior mapping and predictive distributions to determine correlation among
evolving characters [14]. Because the paper deals with morphological charac-
ters, it may seem on the surface to have little importance to studies in mole-
cular evolution. But, quite the contrary, it demonstrates how these methods
can be extended to studies of correlated molecular evolution. For example, the
methods could be applied to looking for correlated change among nucleotides,
such as RNA stem partners, or interactions among amino acid sites. Huelsen-
beck et al. [14] analyzed the coincidence of states for two morphological char-
acters: self-incompatibility and flower reproductive structure morphology in
the family Pontederiaceae.

The phylogeny was estimated using molecular data, and then characters
were mapped using the Mk class of models of Lewis [23]. In addition, because
the branch lengths of the topology do not reflect the evolutionary rates of
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the morphological traits and the bias parameter of the morphology model is
unknown, a variety of prior distributions were explored for these parameters
to reduce dependence on a particular set of values. They used two different
test statistics to evaluate coincidence or correlation among the states of the
two traits. The first evaluated each character individually, while the second
looked for coincidence summed over all state comparisons between the two
characters. The basic form of the statistics is

dij = a
(o)
ij − a

(e)
ij , (16.20)

where a
(o)
ij is the observed coincidence and a

(e)
ij is the expected coincidence.

The authors found that when evaluating overall coincidence among states
they were unable to detect a significant coincidence between the states of
the traits. However, by looking at states individually, there was support for
a strong coincidence between tristylous flowers and self-incompatibility. This
demonstrates an important point about test statistics: a test statistic is only
as good as it is a relevant summary of the data with respect to the hypothesis
being tested. In the case of the overall coincidence measure, it masked the
effect.

16.4 Conclusions

Two recent developments, posterior mapping and predictive distributions,
have been developed and applied to questions on molecular evolution and
phylogenetics. These methods provide a natural way to address and accom-
modate uncertainty in various model parameters by sampling with respect
to the model’s posterior distribution. Posterior mapping provides a powerful
method for addressing questions in which detailed data (e.g., type, timing,
and order) about the history of a character(s) is required. The dependence on
the method of parsimony and its assumptions is no longer necessary. Predic-
tive distributions offer a new approach to hypothesis testing that is general
and flexible. Application of these new methods has just begun and will un-
doubtedly play an ever-increasing role in future studies in molecular evolution
and phylogenetics.
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17.1 Introduction

Since the seminal works of Cavalli-Sforza and Edwards [6] and Felsenstein
[14], the maximum likelihood (ML) method has been widely used for inferring
molecular phylogenies. None of the common methods, for estimating phylo-
genies, such as distance matrix methods, parsimony methods, and ML, can
estimate the true phylogenetic tree with one hundred percent confidence. This
is because the amount of information in molecular sequences of finite length
is limited. Erroneous estimates of the tree topology can occur because of the
statistical sampling error. It is therefore quite important to assess the uncer-
tainty in the tree topology estimation. We discuss this problem in terms of
likelihood, bootstrap, and testing.

Our arguments are based on the probability function of molecular se-
quences, which is obtained by specifying the substitution process and the tree
topology. Estimating these specifications is formulated as a problem of statis-
tical model selection. We mostly focus on tree topology selection and assume
that the substitution process has been estimated in a preliminary analysis.

Model selection procedures using information criteria have been developed
to overcome limitations of conventional hypothesis testing such as the likeli-
hood ratio test. However, they do not have a built-in measure to assess the
uncertainty of model selection. Therefore, model selection tests, such as the
Shimodaira-Hasegawa test, have been developed by incorporating the idea of
testing into the model selection procedure. The model selection uncertainty
is then measured by the probability value (p-value).

There are several other measures of statistical confidence used in phylo-
genetics beyond the p-values calculated in the model selection tests, includ-
ing Bayesian posterior probabilities, bootstrap probabilities, and the approx-
imately unbiased p-value. These measures of statistical uncertainty can lead
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to very different conclusions in practice. With respect to bias and robustness
we compare these measures with model misspecifications.

17.2 Likelihood Methods

17.2.1 Maximum Likelihood Estimate

Likelihood function of a tree

The data sets in our analysis consist of aligned molecular sequences from
different species. The number of species is denoted by s, and the sequence
length is denoted by n. Let xih be the nucleotide or amino acid of the ith
species at the hth site for i = 1, . . . , s and h = 1, . . . , n. Then the data set
is the s × n matrix X = (x1, . . . ,xn), where each s-dimensional vector xh

consists of elements x1h, . . . , xsh.
We assume that the pattern at site h, xh, is an observed value of random

variable x. The probability function of x may be denoted as p(x; S, T, θS ,θT ),
where S specifies the model of evolution (i.e., the substitution process) and T
specifies the branching order of the labeled tree (i.e., the tree topology). θS and
θT denote parameter vectors for S and T , respectively. We assume that there
is an underlying true probability function q(x) of the random variable x. The
parametric model p(x; S, T, θS ,θT ) is considered an attempt to approximate
q(x) by specifying S and T as well as θS and θT . For example, S may be the
HKY model [23] for nucleotides with gamma rate heterogeneity [55]; then θS

may consist of the transition rate, the transversion rate, base frequencies, and
gamma shape parameter. On the other hand, T is one of 1×3×5×· · ·×(2s−5)
possible unrooted tree topologies, and θT consists of 2s − 3 branch lengths.
The pair (S, T ) specifies the parametric model of x.

The probability function of X is simply the product of all the probability
functions of x1, . . . ,xn, because we assume these random variables are inde-
pendent. The likelihood function of (S, T, θS ,θT ) is nothing but the proba-
bility function of X, but the roles of X and (S, T, θS ,θT ) are exchanged:

L(S, T, θS ,θT ;X) =
n∏

h=1

p(xh; S, T, θS ,θT ).

The likelihood function indicates the plausibility of (S, T, θS ,θT ) for a given
data set X.

Once we give the model specification (S, T ), the ML estimate of the para-
meter vector (θS ,θT ) is obtained by finding the value (θ̂S , θ̂T ) that maximizes
the likelihood function. Because the likelihood function is very complicated
in phylogenetic inference, (θ̂S , θ̂T ) is obtained by numerical optimization al-
gorithms using computer software such as PAML [56]. We often work on the
log-likelihood � = log L for computational convenience. Although the compu-
tation can be demanding, the ML estimate of the parameter vector can be
shown to have certain optimal statistical properties.
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Akaike information criterion

It is often the case that we have to estimate the model specification (S, T ) from
a list of candidate models. This is an example of statistical model selection.
The likelihood function of (S, T ) may be defined as the maximum value of the
likelihood function over the parameter space

L(S, T ;X) = L(S, T, θ̂S , θ̂T ;X),

and the ML estimate of (S, T ) can be obtained by maximizing L(S, T ;X)
over the candidate models. However, this naive ML approach does not work
in general because we can always increase the likelihood value by adding
extra parameters in the model. In other words, complicated models are always
favored over simpler models.

The information criterion of Akaike [2] is defined as

AIC(S, T ;X) = −2 ×
{

log L(S, T ;X) − (dimθS + dimθT )
}

,

which estimates the expected performance of the model-based prediction in
terms of the Kullback-Leibler (KL) divergence. The penalty term dimθS +
dimθT is the number of parameters in the model. AIC balances the increase
in the log-likelihood value with the loss of estimating many parameters. A
wrong model with few parameters can be better on average in approximating
q(x) than a correct model with many parameters. AIC does not intend to
find a correct model but to find a good model for approximating reality. In-
stead of maximizing L(S, T ;X), we may find an optimal model by minimizing
AIC(S, T ;X).

Substitution process selection

Let us consider that we have J candidates for S (i.e., S1, S2, . . . , SJ) and that
we have K candidates for T (i.e., T1, T2, . . . , TK). We select S and T from these
candidates. A straightforward application of the model selection procedure to
this problem is to consider all the J × K combinations (Sj , Tk), j = 1, . . . , J ,
k = 1, . . . , K, and find the combination that minimizes AIC(Sj , Tk;X). This
joint estimation of S and T is computationally demanding, and interpretation
of the confidence limits becomes rather complicated.

What we do in practice is to specify S first and fix S when selecting T
from the candidates. There are several ways of specifying S. One may specify
S from experience somewhat arbitrarily. Otherwise, we compare S1, . . . , SJ

by AIC or the likelihood ratio (LR) tests as implemented in MODELTEST
[40, 39].

For comparing the substitution processes, we usually specify a guiding tree
topology obtained in advance by a fast distance matrix method. The likelihood
function of S is L(S, T̂ ;X), where T̂ denotes the guiding T . Then we select
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Sj that minimizes AIC(Sj , T̂ ;X). The estimated S is denoted by Ŝ. Once Ŝ

is obtained, we discard the temporary T̂ and then estimate T using Ŝ.
Instead of AIC, we can also use the LR tests for estimating Ŝ. As described

in Section 17.4.1, the LR test procedure judges whether S is appropriate
against an alternative S′. The model S is accepted if L(S′, T̂ ;X)/L(S, T̂ ;X)
is smaller than a threshold value. In the hierarchical LR tests, we repeatedly
apply the LR test to the candidate models by taking advantage of the rela-
tionship among the models. However, this may cause a problem of multiplicity
of testings. For constructing a confidence set of models, the closed testing pro-
cedure of Marcus et al. [34] suggests that general models should automatically
be accepted if any one of their restricted models is accepted by the LR test.

In the following argument, Ŝ is assumed to specify the substitution process
properly, and thus we focus on tree topology selection.

Tree topology selection

The likelihood function of T is defined by dropping S from L(S, T ;X) as

L(T ;X) = L(Ŝ, T ;X),

and the log-likelihood function of T is �(T ;X) = log L(T ;X). They will be
written L(T ) and �(T ) for the sake of brevity. �(T ) is expressed as

�(T ) =
n∑

h=1

�h(T ),

where �h(T ) is the sitewise log-likelihood

�h(T ) = log p(xh; S, T, θ̂S , θ̂T ).

The ML estimate of T is obtained by searching the tree topology T̂ML that
maximizes L(T ) among T1, . . . , TK . This is equivalent to maximizing �(T ),
and thus to minimizing AIC(Ŝ, T ;X), since dim θT = 2s − 3 is the same for
all bifurcating trees. See Figure 17.1 for an example of the ML inference.

The ML estimate T̂ML converges to the true topology as n goes to in-
finity. This property of an estimator is called asymptotic consistency. The
consistency is rather easily verified under the assumption that S is correctly
specified in advance and the true topology, denoted T̄ , is included in the K
candidates. Let D(q, p) be the KL divergence between probability functions
q(x) and p(x),

D(q, p) =
∑
x

q(x) log q(x) −
∑
x

q(x) log p(x),

which indicates the separation between the two functions and becomes zero if
they are the same. The KL divergence between the true distribution and the
parametric model specified by T is then denoted as
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D(q, p̄(T )) = min
θS ,θT

D(q, p(S, T, θS ,θT )),

where the optimal parameter value that attains the minimum is denoted by
(θ̄S , θ̄T ). p̄(x; T ) = p(x; S, T, θ̄S , θ̄T ) is the best approximating probability
function defined for each T . D(q, p̄(T )) has the minimum value zero at T = T̄ ,
and D(q, p̄(T )) > 0 for T �= T̄ unless p̄(T ) = p̄(T̄ ). It is shown in the derivation
of the AIC [42] that the expected value of (1/n) log L(T ;X) is approximately
−D(q, p̄(T )) +

∑
x q(x) log q(x) + (dimθS + dimθT )/2n, which is maximized

at T̄ . It follows from the law of large numbers that (1/n) log L(T ;X) converges
to the expected value, and thus P (T̂ML = T̄ ) → 1 as n → ∞.

It is known for the parameter estimation that the ML estimate (θ̂S , θ̂T ) has
the minimum variance for sufficiently large n among possible asymptotically
unbiased estimates. Estimators with this property are called asymptotically
efficient. However, it is not clear that a similar property also holds for T̂ML,
although there is a related result of Shibata [44] for the optimality of AIC
model selection.

17.2.2 Bayesian Inference

Posterior probability

Bayesian inference is another form of likelihood-based inference in which the
likelihood function is averaged instead of maximized. In addition to the like-
lihood function, we also specify π(θS ; S) and π(θT ; T ) (i.e., the prior density
functions of parameters given model specifications). They are used as weights
for averaging the likelihood function over the parameter space to calculate the
probability function of X:

P (X; S, T ) =
∫ ∫

L(S, T, θS ,θT ;X)π(θS ; S)π(θT ; T ) dθS dθT . (17.1)

We further specify π(S) and π(T ) (i.e., the prior probability functions of
the model specifications). According to Bayes’ theorem, the posterior joint-
probability function of (S, T ) is given by

P (S, T ;X) ∝ P (X; S, T )π(S)π(T ),

where ∝ indicates “proportional to” as a function of (S, T ). In practice, we
may specify Ŝ in a preliminary analysis and assume a uniform prior π(Tk) =
1/K for tree topologies. Then the posterior probability (PP) of T is

P (T ;X) ∝ P (X; Ŝ, T ),

which will be denoted P (T ) for the sake of brevity. Here the proportional
constant is defined from the relation P (T1)+ · · ·+P (TK) = 1. P (T ) indicates
the plausibility of tree topology T . The computation of P (T ) has become
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Fig. 17.1. The ML tree for 32 mammalian species estimated from a part of the mi-
tochondrial protein sequences of Nikaido et al. [37]. A biological discussion is given
in Section 17.5. This ML topology is represented as ((G1, G2), (G3, G4), G5) us-
ing the five groups of taxa defined above. The MAP topology of Bayesian inference
(Section 17.2.2) is represented as ((G1,(G2,G3)),G4,G5), where the subtrees are the
same as above except for (((elephant shrew, golden mole), aardvark), tenrec) in G3
being changed to ((tenrec, aardvark), (elephant shrew, golden mole)). Our data set
consists of the sequences of n = 3392 amino acids for s = 32 species. The mtREV
model [1] was used for amino acid substitutions, and the site heterogeneity was
modeled by the discrete gamma distribution [55]. A limited list of 2502 candidate
topologies was obtained from heated MCMCMC simulations as explained in Fig-
ure 17.2 and Figure 17.3, and their log-likelihood values were calculated by PAML
to find the ML topology. Three numbers near the branches are the approximately
unbiased p-value (AU) (top), the bootstrap probability (BP) (middle) calculated by
CONSEL (Section 17.3), and the posterior probability (PP) (bottom) calculated by
MrBayes (Section 17.2.2).
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possible by the Markov chain Monte Carlo (MCMC) method implemented in,
for example, MrBayes [27]. MCMC is a stochastic simulation procedure for
generating a sequence of trees in frequencies proportional to P (T ).

The maximum a posteriori (MAP) estimate of T is defined as the tree
topology T̂MAP that maximizes P (T ) among T1, . . . , TK . In Bayesian inference,
we are confident that T̂MAP is the true tree topology if the value of P (T̂MAP) is
close to one, say, larger than 0.95. Otherwise, the uncertainty in phylogenetic
inference is so large that other tree topologies with nonnegligible P (T ) values
could be true.

A phylogenetic hypothesis is often represented as a collection of tree
topologies. For example, we can collect tree topologies from T1, . . . , TK such
that a specified group of taxa is monophyletic. Let H denote such a composite
hypothesis. The PP of H is then defined as the sum of all the PPs of the tree
topologies in the hypothesis

P (H) =
∑
T∈H

P (T ).

Bayesian information criterion

The computation of P (X; S, T ) is difficult since it involves integration over
the parameter space as seen in eq. (17.1). MCMC approximates integration
by simulation. There is another approximation method that does not rely on
simulation. This method utilizes the fact that, for sufficiently large n, the
integration is dominated by a small region centered around (θ̂S , θ̂T ). This
idea leads to

log P (X; S, T ) = −1
2
BIC(S, T ;X) + O(1), (17.2)

where BIC is the Bayesian information criterion of Schwarz [43] defined by

BIC(S, T ;X) = −2 ×
{

log L(S, T ;X) − log n

2
(dimθS + dimθT )

}
.

The approximation error term O(1) in eq. (17.2) involves the prior density
functions. Here we have used the notation O(na) to indicate a term propor-
tional to na for sufficiently large n. Even if we consider the limit of n → ∞,
the approximation error does not vanish, but it will become negligibly smaller
than BIC since the magnitude of the log-likelihood is O(n).

For tree topology selection, we again assume the specification of Ŝ and a
uniform prior distribution of trees. Then the BIC approximation states that
log P (T ) is approximately log L(T ) plus a constant term independent of T ,
and thus T̂MAP is approximately T̂ML. This also implies consistency of T̂MAP
since P (T̂MAP = T̂ML) → 1 as n → ∞. Moreover, we have the approximation
formula

P (T ) ≈ L(T )∑K
k=1 L(Tk)

, (17.3)
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which is indicated in eq. (5) of Hasegawa and Kishino [21]. This formula pro-
vides a bridge between ML inference and Bayesian inference. Unfortunately,
the BIC approximation is very rough, and the numerical values obtained from
eq. (17.3) will not agree very well with the results of MCMC as shown in the
left panel of Figure 17.2. This is partially because the O(1) term in eq. (17.2)
becomes a multiplier factor to L(T ) in eq. (17.3).

It is not a good idea to calculate P (T ) from L(T ) for a Bayesian inference
of topology. However, eq. (17.3) enables us to utilize MCMC for ML inference.
T̂ML should be found in candidates with relatively high P (T ) values. Thus we
do not have to calculate L(T ) for all the K topologies but only for those
appearing in the sequence generated using MCMC. We may prepare a limited
list of candidate tree topologies consisting of those with P (T ) greater than a
small threshold value. This greatly speeds up the ML inference by reducing
the number of tree topologies to a manageable size.
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Fig. 17.2. Plots of the PP values. In the left panel, the PP values calculated by the
MCMCMC simulation for the 2502 candidate topologies are plotted against those
calculated by the BIC approximation of eq. (17.3). The right panel shows the PP
values of the MAP topology; the PP values are calculated by heated MCMCMC
simulations for five inverse temperature values. The theoretical curve of eq. (17.4)
is also shown. For r = 1, we ran MCMCMC for 1,080,000 generations after 30,000
burn-in generations. For each r < 1.0, we ran MCMCMC for 540,000 generations
similarly. Four chains are generated in each MCMCMC simulation. We modified the
source code of MrBayes to allow any value of r. The initial tree was obtained by a
preliminary MCMCMC run of 300,000 generations with r = 1.

Changing the “temperature”

When utilizing MCMC for ML inference, we may need to control the range
of the candidate topologies. Sometimes P (T ) is concentrated on a very small
number of topologies, and it may be necessary to increase the range of the
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candidates so that a larger collection of topologies are included in the limited
list of candidates.

This is possible by reducing the sequence length so that the likelihood
surface becomes flatter. Let us consider downsampling the sites of the aligned
molecular sequences; a data set X′ of length n′ is obtained by resampling n′

sites from X. r = n′/n is the proportion of the sampled sites. The expected
value of log L(T ;X′) is approximately r log L(T ;X) since it is the sum of the
sitewise log-likelihoods. Therefore, we have L(T ;X′) ≈ L(T ;X)r and thus
the PP of T becomes proportional to P (T )r. This makes small P (T ) values
become larger, while large P (T ) values become smaller. A problem of down-
sampling is that the center of the candidate range (i.e. T̂MAP) may be different
from that of the original data set.
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Fig. 17.3. Visualization of the candidate tree topologies using the method of Shi-
modaira [48]. In the left panel, the first two principal components (PC) of the sitewise
log-likelihood vector (�1(T ), . . . , �n(T )) are plotted for the 2502 candidate topologies.
The axes are adjusted so that the ML topology is centered. Each point represents a
tree topology, and the distance between points indicates the square root of the sym-
metric Kullback-Leibler divergence between the probability functions for the two
topologies. In the right panel, the vertical axis indicates the log-likelihood difference
from the ML topology. The limited list of candidate topologies was obtained from
the MCMCMC runs of the five r values explained in Figure 17.2. The numbers of
distinct topologies are 197, 239, 572, 2483, and 15,495, respectively, for r = 1.0,
0.8, 0.6, 0.4, and 0.2. Only the topologies with PP values larger than 0.00025 were
collected for the candidates from each run; they number 74, 86, 188, 672, and 2086,
respectively. Some topologies are overlapped, and the total number is 2502. Large
points indicate the topologies obtained from r = 1.0, and small points are those
from r < 1.0.

A sophisticated way to do the same thing yet fix the problem of down-
sampling is simply to replace log L(T ;X) with r log L(T ;X) in the MCMC
computation. This is called “heating” in the Metropolis-coupled MCMC
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(MCMCMC) implemented in MrBayes [27] since r is called the inverse tem-
perature in statistical physics. In MCMCMC, several chains of trees with
different r values are generated, and trees are occasionally swapped between
the chains. We expect heated chains easily to escape deep valleys of the like-
lihood surface so that we will not miss the highest peak. Usually the chain of
the largest r value (i.e., the cold chain) uses r = 1 in MCMCMC, but we will
consider other values of r.

Let Pr(T ) denote the PP of T obtained by the modified MCMC with the
inverse temperature r. According to eq. (17.3), we then have

Pr(T ) ≈ P (T )r∑K
k=1 P (Tk)r

. (17.4)

The PP value changes by altering r as shown in the right panel of Figure 17.2.
We can control the range of candidates by choosing r. Smaller r values make
the range wider, as shown in Figure 17.3.

17.3 Bootstrap Methods

17.3.1 Bootstrap Resampling

Sampling error

Let us recall that the ML estimate depends on the data set. For tree topology
selection, the ML topology T̂ML is in fact a function of X, and thus we may
write T̂ML(X); it maximizes L(T ;X) among T1, . . . , TK . If we have used an-
other data set X′, the ML inference will give T̂ML(X′), which may be different
from T̂ML(X). Since X, if regarded as a random variable, varies due to the
sampling error, T̂ML(X) also varies, and it is not necessarily the true topology
T̄ even if all the assumptions in the ML inference are satisfied correctly. This
is the uncertainty in phylogenetic inference. Thus it is important to measure
how much confidence we have in T̂ML(X).

This issue applies not only to the ML inference but also to any other
inference methods. Here we do not intend to discuss which inference method
is most accurate, although there are differences in the estimate accuracy. We
rather assume that we have chosen the best inference method available, and
the tree topology estimation is written as T̂ (X) in general. Then, we discuss
methods to elucidate how much T̂ (X) is influenced by the sampling error.

The mechanism causing the sampling error is explained in the following
manner. The data set X consists of elements x1, . . . ,xn for n sites. The ele-
ments xh, h = 1, . . . , n are observed values of a random variable x distributed
according to the underlying true probability function q(x). This is mathe-
matically equivalent to sampling n sites randomly from imaginary molecular
sequences of infinite length in which the frequency of pattern x is proportional
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to q(x). The observed frequency of pattern x in X will converge to q(x) as n
goes to infinity, but it varies randomly around q(x) at finite n.

Let us suppose that we can obtain another data set by sampling n sites
again randomly from the infinite length sequences, and let X′ be a replicate
data set obtained this way. If we repeat it B times, say B = 10,000, then
we get replicates X′

1, . . . ,X
′
B . The sampling error will be observed directly by

looking at differences in T̂ (X′
1), . . . , T̂ (X′

B). Unfortunately, we cannot perform
this procedure because only the original data set X is available in practice.

Bootstrap probability

The bootstrap resampling of Efron [11] is a stochastic simulation technique
for observing the sampling error using only the original data set. A replicate
data set is obtained by sampling n sites randomly from X instead of the
infinite length sequences. Let h1, . . . , hn be n integers sampled randomly from
1, . . . , n. We pick xh1 , . . . ,xhn

from X for constructing a bootstrap replicate
data set, denoted X∗ = (x∗

1, . . . ,x
∗
n), by setting x∗

1 = xh1 , . . . ,x
∗
n = xhn . The

same integers are allowed to be sampled several times in h1, . . . , hn, otherwise
X∗ differs from X only in the order of the elements. In other words, X∗ is
obtained by “resampling with replacement” from X. This is mathematically
equivalent to sampling from imaginary molecular sequences in which X is
copied infinite times.

The bootstrap resampling is repeated B times to get bootstrap repli-
cates X∗

1, . . . ,X
∗
B . We count how many times each tree topology is found in

T̂ (X∗
1), . . . , T̂ (X∗

B) to measure the sampling error. Let C(T ) be the frequency
of observing T̂ (X∗) = T :

C(T ) = #{T̂ (X∗
b) = T, b = 1, . . . , B}.

The bootstrap probability (BP) of Felsenstein [15] is then obtained by
C(T )/B for T . We are confident that T̂ (X) = T̄ if C(T̂ (X))/B is close to
one (say, larger than 0.95).

There is a sampling error also in the bootstrap resampling. As we increase
B, C(T )/B converges to the limiting value denoted as α̃(T ;X). This is the
conditional probability of observing T̂ (X∗) = T given X,

α̃(T ;X) = P
(
T̂ (X∗) = T ;X

)
,

which will be denoted α̃(T ) for the sake of brevity. The standard error of
C(T )/B is

√
α̃(T )(1 − α̃(T ))/B, and it is only

√
0.05 × 0.95/10,000 = 0.002

for α̃(T ) = 0.05 and B = 10,000. This error is ignored in the following argu-
ment, and α̃(T ) and C(T )/B are used interchangeably to denote the BP of
T .

The BP of the composite hypothesis H is the conditional probability of
observing T̂ (X∗) ∈ H given X,
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α̃(H;X) = P
(
T̂ (X∗) ∈ H;X

)
,

which is denoted α̃(H). This is the sum of the BPs of tree topologies in H,

α̃(H) =
∑
T∈H

α̃(T ).

Speeding up the bootstrap

When the computation of T̂ (X) is demanding, it is almost impractical to
compute T̂ (X∗) for thousands of replicates. This is the case for T̂ML, and an
approximation is required for making it practical.

Let us consider a vector w = (w1, . . . , wn) of real-valued elements and a
function

f(w, T ) = max
θS ,θT

n∑
h=1

wh log p(xh; S, T, θS ,θT ).

The log-likelihood function of T is expressed as log L(T ;X) = f(w0, T ) using
w0 = (1, . . . , 1). We can also write log L(T ;X∗) = f(w∗, T ) using w∗ =
(w∗

1 , . . . , w∗
n), where w∗

h is the number of times that xh is resampled in X∗.
By considering the Taylor expansion of f(w, T ) with respect to w around w0,
we obtain the linear approximation formula

log L(T ;X∗) ≈
n∑

h=1

w∗
h�h(T ).

This is the linear approximation of bootstrap replicates [8] applied to the log-
likelihood function and has been implemented as the resampling of estimated
log-likelihoods (RELL) of Kishino, Miyata, and Hasegawa [30] in phylogenet-
ics. We can improve the approximation by including the quadratic term of the
Taylor expansion [48], but the linear approximation is often accurate enough
[22]. By using the RELL method, we can avoid time-consuming recalculation
of (θ̂S , θ̂T ) for the replicates.

17.3.2 Approximately Unbiased Tests

Multiscale bootstrap method

The BP is biased, as discussed later, when it is interpreted as the probability
value (p-value) of statistical testing. The multiscale bootstrap (MB) method
of Shimodaira [49] is an attempt to reduce the test bias of the BP. The MB
method calculates an approximately unbiased (AU) p-value. Although we only
work on a composite hypothesis H instead of each T below, our argument
applies to T by taking H = {T} (i.e., the hypothesis consisting of a single T ).
In this case, we will write T , instead of {T}, for H to simplify the notation.
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The key idea of the MB is to alter the sequence length of bootstrap
replicates. Let n′ be a revised sequence length and r = n′/n be the ratio. We
sample h1, . . . , hn′ from 1, . . . , n with replacement and construct a bootstrap
replicate X∗ = (x∗

1, . . . ,x
∗
n′) by setting x∗

1 = xh1 , . . . ,x
∗
n′ = xhn′ . We can

choose arbitrary positive integers for n′ to generate bootstrap replicates. The
BP of H with this modification is denoted as α̃r(H) to indicate the ratio r.
The value of α̃r(H) changes by altering r from 1 because the random variation
inherent in X∗ is rescaled by the factor 1/

√
r.

In the MB method, we calculate the BPs for several r values. Let M be the
number of bootstrap simulations, say M = 10. We first specify arbitrary values
r1, . . . , rM for r. For example, we will use r1 = 0.5, r2 = 0.6, . . . , r10 = 1.4
for the examples in Figure 17.4. Then, M sets of B bootstrap replicates are
generated using these r values to obtain BP values α̃r1(H), . . . , α̃rM

(H). The
total number of replicates is M × B. By fitting a theoretical curve

α̃r(H) ≈ 1 − Φ(d̂H

√
r + ĉH/

√
r) (17.5)

to the observed BP values, the two coefficients d̂H and ĉH in eq. (17.5) are esti-
mated. Φ(·) is the standard normal distribution function. Finally, we calculate
the AU p-value for testing H by

α̂AU(H) = 1 − Φ(d̂H − ĉH). (17.6)

This MB method is implemented in the software CONSEL [51].
The hypothesis H is rejected if α̂AU(H) < α, where the threshold value

α is a prespecified level of significance for statistical testing; α = 0.05 is used
conventionally. H is not rejected if α̂AU(H) ≥ α, and we may say that H is
accepted. However, this acceptance does not mean any strong support for H
but could be a consequence of too little information in X (i.e., the sequence
length is too short). The confidence set of trees is obtained by collecting T for
which α̂AU(T ) ≥ α. The number of trees in the confidence set will decrease
as n becomes larger.

A large value of α̂AU(H) provides evidence in support of H. In fact, H is
supported significantly if α̂AU(H) > 1 − α. This statement needs explanation
since it is not a standard property of statistical testing but holds for the
α̂AU(H) calculated by the MB method. Let Hc be the complement of H (i.e.,
the composite hypothesis consisting of all T1, . . . , TK but not in H). It is
easy to verify from α̃r(Hc) = 1 − α̃r(H) and eq. (17.5) that d̂Hc = −d̂H and
ĉHc = −ĉH , and thus α̂AU(Hc) = 1− α̂AU(H). Hc is rejected if α̂AU(Hc) < α,
or equivalently α̂AU(H) > 1 − α. This implies support for H.

Simplified working model

There is an extension of the geometric theory of Efron, Halloran, and Holmes
[12] behind the MB method. This theory is easily understood by working on
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Fig. 17.4. Illustration of the MB method for testing H = {T1} (left panel) and
H = {T8} (right panel) of the constrained candidate trees of Table 17.2. The BP
values are calculated for the ten r-values. The vertical axis indicates the z-value
of the BP; z = Φ−1(1 − α̃r(H)), where q = Φ−1(p) is the inverse function of p =
Φ(q). The horizontal axis indicates

√
r. The theoretical curve of eq. (17.5) becomes

z = d̂H
√

r + ĉH/
√

r, where the coefficients are estimated by fitting the curve to the
observed z-values by the ML method as described in Shimodaira [49]. The slope of
the z curve at

√
r = 1 (i.e., the differentiation z′(1) = dz/d

√
r |1 as a function of

√
r)

indicates the AU p-value since eq. (17.6) is also expressed as α̂AU(H) = 1−Φ(z′(1)).
Thus α̂AU(H) > 0.5 if z′(1) < 0 (left panel) and α̂AU(H) < 0.5 if z′(1) > 0 (right
panel).

a simplified model of the multivariate normal distribution with the identity
covariance matrix

y ∼ Np(µ, Im). (17.7)

In other words, the elements y1, . . . , ym of an m-dimensional random vector y
are normally distributed with means µ1, . . . , µm, and they are independent of
each other. We assume that there is a smooth, possibly nonlinear, transforma-
tion from X to y at least approximately, where m is chosen for convenience
of the transformation. The data set X is now represented by y. The unknown
true distribution q(x) is represented by µ.

The hypothesis H is represented by a region RH in the m-dimensional
space of the mean vector µ. If H is true (i.e., T̄ ∈ H) then µ is included in
the region (i.e., µ ∈ RH). Observing T̂ (X) ∈ H is equivalent to y ∈ RH .
Let RT denote the region RH for H = {T}. The m-dimensional space of µ is
divided into K regions RT1 , . . . ,RTK

when comparing the K alternative tree
topologies: µ ∈ RT for T = T̄ , and y ∈ RT for T = T̂ (X). The composite
hypothesis H is now written as the union RH =

⋃
T∈H RT .

The bootstrap replicate X∗ is represented by a vector y∗, which is dis-
tributed as

y∗ ∼ Nm(y, 1
r Im). (17.8)
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In other words, the elements y∗
1 , . . . , y∗

m are distributed around y1, . . . , ym, and
the variance is 1/r. The BP is now written as

α̃r(H) = P (y∗ ∈ RH ;y) .

It has been shown in Shimodaira [49] that the BP satisfies eq. (17.5), where d̂H

and ĉH are interpreted geometrically. Let ∂RH denote the boundary surface
of RH , and let µ̂H be the point on ∂RH that is closest to y. Then, d̂H is
the signed distance d̂H = ±‖y − µ̂H‖. The sign is positive for y �∈ RH and
negative for y ∈ RH . ĉH represents the curvature of ∂RH at µ̂H . ĉH = 0
when the boundary is flat, and ĉH > 0 if the boundary is curved toward RH .

We use d̂H as a statistic for testing H. If d̂H is very large, or equivalently
if y is very far from RH , then H will be rejected. To examine whether d̂H is
significantly large or not, we may generate replicates around µ̂H instead of y,

y∗∗ ∼ Nm(µ̂H , Im), (17.9)

and calculate the signed distance, denoted d̂∗∗
H , for each y∗∗. The distribution

of d̂∗∗
H simulates that of d̂H by assuming that H is true. A p-value for testing

H is the probability of observing d̂∗∗
H larger than d̂H :

α̂AU(H) = P
(
d̂∗∗

H > d̂H ;y
)

.

If this p-value is smaller than α, then we consider that such a large d̂H value
would not be observed by chance under the assumed hypothesis H, and we
reach the conclusion that the assumption is wrong. The MB method calculates
the same p-value approximately from eq. (17.6), bypassing the theoretical
argument given above.

Biases of probability values

There are several definitions of p-values for testing hypotheses. They may
differ in the test statistic to detect the discrepancy between the hypothesis and
the data set and also differ in the type of mathematical approximation used to
calculate the p-value. One of the properties used to compare different p-values
is unbiasedness. The p-value calculated by the MB method is approximately
unbiased, as explained below.

Let α̂(H;y) denote a p-value, in general, for testing H. The probability of
rejecting H is a function of µ written as

β(H, µ) = P (α̂(H;y) < α; µ) .

If H is true, β(H, µ) is the probability of false rejection; the p-value should be
designed so that β(H, µ) ≤ α for any value µ ∈ RH . If H is not true, β(H, µ)
is the probability of correct rejection; the p-value may have an additional
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property that β(H, µ) ≥ α for any value µ �∈ RH . The p-value is said to be
unbiased if these two properties hold. Since β(H, µ) changes continuously as
µ changes, an unbiased p-value should satisfy

β(H, µ) = α, µ ∈ ∂RH . (17.10)

The p-value calculated by the MB method is approximately unbiased.
Equation (17.10) holds approximately for the α̂AU(H) of eq. (17.6), where
the bias reduces as n becomes larger. The p-value is said to be third-order ac-
curate, meaning that the bias is of order O(n−3/2). The third-order accuracy
usually implies that the p-value is very accurate and almost unbiased, while
it does not guarantee the accuracy for a finite n.

The geometric theory of the MB method assumes that the boundary sur-
face of the region is smooth and that the curvature is not extremely large.
This assumption, however, does not hold in practice, and the bias can be
larger than expected from the theory. It has been argued in Shimodaira [49]
that the method works well in typical cases of phylogenetic analysis.

The BP is also approximately unbiased, although the bias of the BP can
be very large. It follows from eq. (17.5) that α̃(H) ≈ 1 − Φ(d̂H + ĉH), which
differs from eq. (17.6) only by the sign of ĉH . The curvature term ĉH explains
the difference between α̃(H) and α̂AU(H). The difference is O(n−1/2), and it
vanishes when ∂RH is flat. However, ∂RH is often curved in practice, leading
to the large bias of the BP. The BP is said to be first-order accurate since
the bias is O(n−1/2). For sufficiently large n, n−3/2 � n−1/2 so that the MB
method is less biased than the BP. The bias of the BP has also been discussed
from other viewpoints in the literature by Zharkikh and Li [57], Felsenstein
and Kishino [16], and Hillis and Bull [25].

17.4 Testing Methods

17.4.1 Hypothesis Testing

Parametric bootstrap method

In the bootstrap resampling, we have generated the replicates from the data
set itself. If we have a reason to believe the parametric model, we can generate
the replicates from the model instead of the data set. The elements of a
replicate data set X∗ are generated using pseudo-random numbers according
to

x∗
1, . . . ,x

∗
n ∼ p(x; S, T, θ̂S , θ̂T ).

This is a computer simulation of the evolution along the tree and implemented
in the software SeqGen [41]. This procedure is called the parametric boot-
strap (PB) method, whereas the previously explained bootstrap procedure is
sometimes referred to as nonparametric bootstrapping to indicate the differ-
ence.
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The distribution of the replicates X∗
1, . . . ,X

∗
B is specified by (S, T ), which

represents a null hypothesis to be tested. Let δ(X) be a test statistic to detect
the discrepancy between the hypothesis and the data set. For example, we use
the log-likelihood difference

δ(X) = �(S, T ′;X) − �(S, T ;X) (17.11)

for testing T against an alternative T ′ given S, and we may use

δ(X) = �(S′, T ;X) − �(S, T ;X) (17.12)

for testing S against an alternative S′ given T . The test statistic is designed
so that the deviation from the hypothesis toward the alternatives is easily
detected. We generate δ(X∗

1), . . . , δ(X
∗
B) by the PB and count the frequency

of observing δ(X∗) ≥ δ(X) in the replicates. This frequency

α̂PB(S, T ;X) = P (δ(X∗) ≥ δ(X);X) (17.13)

is the p-value for testing the null hypothesis. We reject the pair (S, T ) if
α̂PB(S, T ;X) < α. This PB method is introduced for phylogenetics in Gold-
man [17].

The model S is said to be nested in S′ if S is obtained as a special case of
S′ by specifying some constraints on θS′ . In this case, 2δ(X∗) of eq. (17.12)
is asymptotically distributed as χ2 with degrees of freedom dimθS′ −dimθS ,
and the p-value is calculated approximately from the χ2 distribution function
instead of the PB. This procedure is often referred to as the LR test.

The SOWH test

For tree topology selection, the parametric models for two bifurcating tree
topologies T and T ′ are nonnested. In this case, δ(X∗) of eq. (17.11) is nor-
mally distributed asymptotically under some regularity conditions, and the
normal approximation test of Cox [7] can be used instead of the PB.

In practice, however, T ′ is not specified in advance, but T ′ is set to T̂ML.
The test statistic is then

δ(X) = �(S, T̂ML(X);X) − �(S, T ;X)

=
K

max
k=1

�(S, Tk;X) − �(S, T ;X) (17.14)

for testing T against alternatives T1, . . . , TK given S. δ(X∗) of (17.14) is equal
to that of (17.11) with T ′ = T̂ML(X∗), which is distributed differently from
δ(X∗) of (17.11) with T ′ = T̂ML(X). In order to calculate α̂PB(S, T ;X) for
(17.14), we must use the PB method rather than the Cox test to adjust for
the effect of taking the maximum in (17.14), called “selection bias.” This test
is repeated K times for T = T1, . . . , TK , and the confidence set of trees is
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obtained by collecting nonrejected T ’s. This procedure is the Swofford-Olsen-
Waddell-Hillis (SOWH) test of Swofford et al. [52].

The p-values of tree topologies calculated by the SOWH test are often very
small, and the confidence set of trees may include very few trees. The SOWH
test is prone to reject too many trees, as discussed in Goldman, Anderson,
and Rodrigo [18], Buckley [4], and Aris-Brosou [3]. We know that all the
parametric models are merely ideal representations of reality, and none of
them are exactly correct. There is nothing wrong with the SOWH test, but it
may with high probability detect misspecification of S, resulting in rejection
of the pair (S, T ) even for the true tree topology.

Difference in the null hypothesis

An intuitive interpretation is given for the SOWH test using the simplified
working model of the multivariate normal distribution. First, note that a prob-
ability function of x is represented as a point in the m-dimensional space of µ.
For the parametric model of x specified by (S, T ), we can consider a surface
or a curve, denoted MT , consisting of all the points of µ obtained by chang-
ing the parameter value (θS ,θT ). The K tree topologies are represented by
MT1 , . . . ,MTK

. This picture is exactly true if we consider the multinomial
distribution of x so that any (S, T ) becomes a submodel nested in it. Consid-
ering the central limit theorem, the simplified model suffices for explanation,
and it is accurate enough in practice for large n.

Let µ̂(MT ) denote the point on MT closest to y, known as the projection
of y onto the surface MT . This point represents p(x; S, T, θ̂S , θ̂T ), and thus

y∗ ∼ Nm(µ̂(MT ), Im) (17.15)

represents the PB replicate X∗. Since the negative of twice the log-likelihood
corresponds to the squared distance in µ, the test statistic δ(X) of eq. (17.14)
is equivalent to

δ(y) = −1
2

×
(

K
min
k=1

‖y − µ̂(MTk
)‖2 − ‖y − µ̂(MT )‖2

)
,

and the p-value of eq. (17.13) becomes the frequency of observing δ(y∗) ≥ δ(y)
in the replicates. We reject the null hypothesis that µ ∈ MT if this p-value is
smaller than α.

The null hypothesis for the AU test is also explained using the notation
above. The AU test for H = {T} rejects the null hypothesis that µ ∈ RT

if α̂AU(T ) < α. When the ML method is used for topology estimation, the
region RT consists of all the points y for which δ(y) = 0. If δ(y) = 0, then
T̂ML = T , and y ∈ RT . If δ(y) > 0, then T̂ML �= T , and y �∈ RT . In fact,
δ(y) becomes analogous to the signed distance d̂H for H = {T}, denoted d̂T ,
if the range of Tk in taking the maximum of eq. (17.14) skips T so that the
original δ(y) is written as max(0, δ(y)). This modification does not change
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the result of the SOWH test except for T = T̂ML. Using this modified δ(y),
the region RT is characterized by δ(y) ≤ 0 for y ∈ RT , and the boundary is
characterized by δ(y) = 0 for y ∈ ∂RT . This property of the modified δ(y)
is the same as that of d̂T . The two test statistics δ(y) and d̂T are similar in
nature, but contours of them are different except for those on ∂RT .

The point µ̂H for H = {T} is also written as µ̂(∂RT ), where ∂RT consists
of points equidistant from MT and some other MT ′ . Therefore, the replicate
y∗∗ of eq. (17.9) is different from y∗ of eq. (17.15) only in the mean vector.
The null hypothesis of the AU test is represented by RT , but that of the PB
test is represented by MT . This difference in the null hypothesis together with
that in the test statistic leads to the difference in the p-value. If S is correctly
specified, µ ∈ MT̄ . However, we cannot expect that S is exactly correct in
practice. For small deviations from S, µ �∈ MT̄ , yet µ ∈ RT̄ . Thus the PB
test is sensitive to misspecifications, while the AU test is more robust.

Combining nonnested models

It is possible to apply the LR test to tree topology selection if the alternative
hypothesis is represented by a parametric model in which all the K models
specified by (S, T1), . . . , (S, TK) are nested. One such “supermodel” is the
multinomial distribution of x in which any (S, T ) is nested. However, it is
better to keep the number of free parameters of the supermodel as small as
possible to avoid unwanted detection of misspecifications of S. We can combine
the log-likelihood functions of these submodels to construct a supermodel
with minimum dimensions as described in Shimodaira [48]. The method is
analogous to the split decomposition of Dopazo et al. [10] and is considered
an extension of the spectral analysis of Hendy et al. [24] for the ML analysis
based on a general class of the substitution model.

Let us consider the case where T1, . . . , TK are the unrooted bifurcating
tree topologies of g groups of taxa, where K = 1 × 3 × 5 × · · · × (2g − 5). For
each group of taxa, the subtree topology is estimated in advance so that we
obtain the constrained candidate topologies; see Table 17.2 for an example of
g = 5.

The split or bipartition of the g groups of taxa divides these groups into two
sets. Each split is represented by a multifurcating tree topology with only one
internal branch among the g groups. There are m = 2g−1 − (g + 1) nontrivial
splits, and their topologies are denoted by U1, . . . , Um. The star-shaped tree
topology of the g groups is denoted by U0.

The branch lengths of the supermodel are θ1, . . . , θm. They constitute the
“spectrum” in the sense of the spectral analysis. All of them are zero for
U0, and only one of them is nonzero for each U1, . . . , Um. There are g − 3
nonzero values for each T1, . . . , TK . Each tree topology is obtained from the
supermodel by specifying constraints on the branch lengths. Let θ̂Ui be the
ML estimate of the nonzero branch length of Ui and θ̂i be the ML estimate of
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the corresponding branch length under the supermodel. Then we can calculate
the latter estimate approximately from the former by

θ̂i ≈ viθ̂Ui
,

where the coefficients vi, i = 1, . . . , m, are⎛⎜⎝ v1
...

vm

⎞⎟⎠ =

⎛⎜⎝ a′
1a1 · · · a′

1am

...
...

a′
ma1 · · · a′

mam

⎞⎟⎠
−1⎛⎜⎝ a′

1a1
...

a′
mam

⎞⎟⎠ ,

and ai is an n-dimensional vector consisting of elements �h(Ui) − �h(U0),
h = 1, . . . , n. Here a′

iaj denotes the inner product of the two vectors. The
site-wise log-likelihood of the supermodel is calculated approximately by

�h(supermodel) ≈
m∑

i=1

vi(�h(Ui) − �h(U0)) + �h(U0).

This procedure can be applied to any combination of the splits, not just the
m splits. The tree topology selection is then treated as the subset selection
problem of multiple regression, and even sophisticated searching techniques,
such as the branch-and-bound algorithm, can be used for topology selection,
although the accuracy of the approximation may be a problem in practice.

The LR test statistic for testing T against the supermodel is 2∆� =
2 × �(supermodel) − 2 × �(T ), which is asymptotically distributed as χ2 with
degrees of freedom m − (g − 3). This LR test is also sensitive to misspecifica-
tions of S. It sometimes rejects all the bifurcating tree topologies, including
even T̂ML; see Table 17.1.

The null hypothesis for testing T is that θi = 0 for m − (g − 3) splits not
included in T , whereas the branch lengths for the g − 3 splits in T can change
freely as long as θi ≥ 0; the MT of the simplified working model is represented
as a (g−3)-dimensional surface in the m-dimensional space of branch lengths.
We ignore the complication caused by the constraints θi ≥ 0 [38]. A general
point in the m-dimensional space does not necessarily correspond to a tree but
may correspond to a network in the sense of split decomposition. It represents
a mixture of the splits that is the weighted sum of their probability functions.
A tree is a special case of the network. The region RT consists of general
points for which the surface MT is closer than MT ′ , T ′ �= T .

17.4.2 Model Selection Tests

The Kishino-Hasegawa test

For comparing two bifurcating trees T and T ′, the test statistic δ(X) of
eq. (17.11) indicates how much better T ′ is than T . The data set X sug-
gests that T ′ is better than T if δ(X) > 0, and that T is better than T ′ if
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Table 17.1. The LR test for the 15 tree topologies of Table 17.2.

model θ1 θ2 θ3 θ4 θ5 θ6 θ7 θ8 θ9 θ10 2∆� p-value

super 58 138 164 117 53 60 86 70 24 60 0.0
T1 62 118 0 0 0 0 0 0 0 0 89.5 10−15

T2 0 0 167 108 0 0 0 0 0 0 92.5 10−16

T3 101 0 156 0 0 0 0 0 0 0 92.9 10−16

T4 0 153 0 0 60 0 0 0 0 0 93.3 10−16

T5 0 147 0 0 0 43 0 0 0 0 94.8 10−16

T6 101 0 0 0 0 0 67 0 0 0 102.0 10−18

T7 0 0 0 85 0 0 0 60 0 0 103.2 10−18

T8 0 0 0 111 44 0 0 0 0 0 106.2 10−19

T9 0 0 0 0 0 0 96 97 0 0 106.9 10−19

T10 0 0 0 0 0 53 0 100 0 0 109.3 10−19

T11 0 0 190 0 0 0 0 0 8 0 115.0 10−20

T12 0 0 0 0 0 0 102 0 0 27 121.3 10−22

T13 0 0 0 0 69 0 0 0 0 31 126.7 10−23

T14 0 0 0 0 0 62 0 0 4 0 127.1 10−23

T15 0 0 0 0 0 0 0 0 5 34 132.5 10−24

Note: ∆� denotes the log-likelihood difference from the supermodel. The
p-value is calculated by assuming 2∆� is distributed as χ2 with 8 degrees
of freedom. Branch lengths (θ1, . . . , θ10) are multiplied by 10,000. The ten
splits U1, . . . , U10 represents clades (G1, G2), (G3, G4), (G1, G2, G3), (G2,
G3), (G2, G3, G4), (G1, G3, G4), (G1, G2, G4), (G1, G4), (G1, G3), and
(G2, G4), respectively.

δ(X) < 0. We may choose either T or T ′ depending on the sign of δ(X).
However, this model selection procedure is influenced by the sampling error.

The expected value of δ(X), denoted E(δ(X)), indicates how much bet-
ter T ′ is than T on average, if X is sampled repeatedly from the underlying
true distribution. It follows from the consistency argument of T̂ML in Sec-
tion 17.2.1 that E(δ(X)) is minimized at T = T̄ against any fixed T ′ if S is
correctly specified. Therefore, the model selection procedure becomes error-
free if E(δ(X)) is used instead of δ(X), although we never know the value of
E(δ(X)) in practice.

If a positive value of δ(X) is observed, we check whether this value is
sufficiently large to reject the null hypothesis E(δ(X)) ≤ 0. If δ(X) is larger
than a certain threshold, then we conclude that E(δ(X)) > 0 and that T ′

is better than T . Otherwise, the decision is inconclusive; the two topologies
are left for further analysis. This test is directional, and the roles of the two
topologies are exchanged if a negative value of δ(X) is observed.

This procedure is the test of Kishino and Hasegawa [29], which has been
used widely in phylogenetics and is referred to as the Kishino-Hasegawa (KH)
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Table 17.2. p-values for the 15 constrained candidate tree topologies.

model ∆� PP1 PP2 BP AU KH SH WSH tree topology

T1 0.0 0.28 0.61 0.23 0.69 0.55 0.97 0.95 ((G1,G2),(G3,G4),G5)
T2 1.5 0.49 0.14 0.28 0.60 0.46 0.83 0.86 ((G1,(G2,G3)),G4,G5)
T3 1.7 0.15 0.12 0.16 0.47 0.41 0.84 0.84 (((G1,G2),G3),G4,G5)
T4 1.9 0.06 0.09 0.13 0.45 0.33 0.84 0.81 (G1,(G2,(G3,G4)),G5)
T5 2.6 0.01 0.04 0.09 0.37 0.27 0.80 0.73 ((G1,(G3,G4)),G2,G5)
T6 6.2 0.00 0.00 0.02 0.16 0.15 0.64 0.54 (((G1,G2),G4),G3,G5)
T7 6.8 0.00 0.00 0.03 0.25 0.28 0.58 0.61 ((G1,G4),(G2,G3),G5)
T8 8.3 0.00 0.00 0.01 0.08 0.23 0.51 0.40 (G1,((G2,G3),G4),G5)
T9 8.7 0.00 0.00 0.04 0.25 0.21 0.50 0.66 (((G1,G4),G2),G3,G5)
T10 9.9 0.00 0.00 0.02 0.14 0.18 0.43 0.59 (((G1,G4),G3),G2,G5)
T11 12.7 0.00 0.00 0.00 0.00 0.10 0.29 0.20 (((G1,G3),G2),G4,G5)
T12 15.9 0.00 0.00 0.00 0.01 0.05 0.17 0.27 ((G1,(G2,G4)),G3,G5)
T13 18.6 0.00 0.00 0.00 0.00 0.03 0.09 0.13 (G1,((G2,G4),G3),G5)
T14 18.8 0.00 0.00 0.00 0.00 0.02 0.09 0.09 (((G1,G3),G4),G2,G5)
T15 21.5 0.00 0.00 0.00 0.00 0.01 0.04 0.10 ((G1,G3),(G2,G4),G5)

Note: Only the 15 candidate tree topologies are considered; the subtree
topologies for G1, . . . , G5 are specified in Figure 17.1. ∆� denotes the log-
likelihood difference from the ML topology. The trees are numbered by
increasing order of ∆�. PP1 denotes the PP calculated by the MCMCMC
using MrBayes with clade constraints, and PP2 denotes the PP calculated
by the BIC approximation. p-values ≥ 0.05 are in boldface.

test. For general model selection using AIC, the same idea as the KH test has
been proposed independently in Linhart [32] and Vuong [53].

The KH test, like the Cox test, is usually implemented as a normal ap-
proximation test. The variance of δ(X) is estimated by

v̂ar(δ(X)) =
n

n − 1

n∑
h=1

{
�h(T ) − �h(T ′) − 1

n

n∑
h′=1

(�h′(T ) − �h′(T ′))

}2

.

The standardized test statistic z = δ(X)/
√

v̂ar(δ(X)) is compared with the
standard normal distribution. If z > 1.64, then we conclude T ′ is better than
T at the 5% significance level. The p-value is 1 − Φ(z). For two-sided tests,
the p-value should be doubled.

The KH test can best be explained by comparing it with the PB. The
p-value of the KH test is interpreted as eq. (17.13), where a replicate X∗ is
generated by a modified PB using a weighted sum of the probability functions
of the competing trees. The replicates are generated under the additional
assumption of E(δ(X)) = 0. This assumption is “least favorable,” meaning
that it maximizes the frequency of δ(X∗) > δ(X) under the null hypothesis
E(δ(X)) ≤ 0. The least favorable model for the KH test is sought by changing
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only E(δ(X)) but not var(δ(X)). Instead of generating replicates directly by
the PB under the least favorable assumption, we first generate X∗

1, . . . ,X
∗
B by

the nonparametric bootstrap and calculate a modified test statistic δ′(X∗) =
δ(X∗)−δ̄ for each replicate, where δ̄ = (δ(X∗

1)+· · ·+δ(X∗
B))/B. This centering

procedure makes the average of δ′(X∗) zero, approximating the replicates
from the least favorable model. The p-value is the frequency of observing
δ′(X∗) ≥ δ(X) in the modified replicates δ′(X∗

1), . . . , δ
′(X∗

B). This p-value
will be indistinguishable from that of the normal approximation for sufficiently
long sequences.

Let us consider the simplified working model with K = 2. The two regions
RT and RT ′ are separated by the boundary ∂RT = ∂RT ′ . The assumption
E(δ(X)) = 0 is represented by the hypothesis that µ ∈ ∂RT , and therefore it
does not specify a particular point on the boundary surface. When the KH test
is interpreted as the PB, however, the least favorable model must be specified
as a point for generating the replicates. It is, in fact, represented approximately
by the point µ̂(∂RT ) for the KH test. This explains the similarity between
the KH test and the AU test in the case of K = 2.

The least favorable model is considered as a consequence of the possibility
of misspecification of S. Because only the points on MT or those on MT ′

represent trees, a general point in the m-dimensional space, including ∂RT ,
represents a network. ∂RT includes the intersection of MT and MT ′ as a
special case, representing the consensus trees of T and T ′ (e.g., the star-shaped
tree). When y is in this intersection, the internal branch lengths are estimated
to be zero so that µ̂(MT ) and µ̂(MT ′) are identical. The regularity condition
for justifying the KH test requires, however, that µ not be in this intersection
[53, 46], implying that the least favorable model is strictly a network rather
than a tree.

Multiple-comparisons tests

The KH test assumes that the alternative tree topology T ′ is specified in
advance of observing X. In practice, however, we specify T ′ = T̂ML after
looking at X. In this case, the KH test suffers from a selection bias, meaning
that the expected value of �(T̂ML) is larger than that of �(T ′) for T ′ = T̂ML.
As K becomes larger, the maximum of �(T ′) over all the alternative tree
topologies can easily have a very large value by chance, and δ(X) of eq. (17.14)
tends to be larger than expected from the normal approximation of the KH
test. The selection bias often leads to overconfidence in the wrong trees. This
may result in conflicting conclusions, each claiming statistical significance.

The selection bias of the KH test has been discussed in the literature,
such as Shimodaira and Hasegawa [50], Goldman, Anderson, and Rodrigo
[18], and Buckley [4]. We have to modify the KH test in the same way as we
did for obtaining the SOWH test from the Cox test. This is implemented as a
resampling version of the multiple-comparisons procedure in Shimodaira and
Hasegawa and is referred to as the Shimodaira-Hasegawa (SH) test.
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The statistic to test Tk against T1, . . . , TK is δk(X) = �(T̂ML(X);X) −
�(Tk;X). This value is compared with the replicates to see if it is signif-
icantly large to reject Tk. In the SH test, we first generate X∗

1, . . . ,X
∗
B

by the nonparametric bootstrap and calculate �(Tk;X∗
b) for k = 1, . . . , K,

b = 1, . . . , B, using the RELL approximation. The centering procedure is
applied to each log-likelihood; �′(Tk;X∗

b) = �(Tk;X∗
b) − �̄k, where �̄k =

(�(Tk;X∗
1) + · · · + �(Tk;X∗

B))/B. A modified replicate of δk(X) is defined
as δ′

k(X∗
b) = maxK

k′=1 �′(Tk′ ;X∗
b) − �′(Tk;X∗

b). The p-value of Tk is then the
frequency of observing δ′

k(X∗
b) ≥ δk(X), b = 1, . . . , B. This procedure is re-

peated for k = 1, . . . , K, and the confidence set of tree topologies is obtained
by collecting Tk with the p-value not smaller than α.

The test statistic of the SH test can be written as

δk(X) =
K

max
k′=1

(�(Tk′ ;X) − �(Tk;X)).

If each term in the maximization is standardized, and the redundant term of
k′ = k is ignored, the weighted test statistic is obtained as

δk(X) = max
k′=1,...,k−1,k+1,...,K

�(Tk′ ;X) − �(Tk;X)√
v̂ar(�(Tk′ ;X) − �(Tk;X))

. (17.16)

The weighted SH (WSH) test uses eq. (17.16) for δk(X). The WSH test often
improves the SH test, meaning that the number of nonrejected tree topologies
of the WSH test is smaller than that of the SH test, especially for a large
K. The WSH test is a resampling version of the Gupta procedure [19, 20]
for ranking and selection of normal variables, or equivalently the method of
multiple comparisons with the unknown best [26]. The WSH test has been im-
plemented in Shimodaira [45, 47] for a general model selection using the AIC,
where (�′(T1;X∗), . . . , �′(TK ;X∗)) is generated as a normal random vector in-
stead of the RELL approximation. This pseudo-random generation is faster
than the RELL method for a relatively small K, but the matrix computation
needed for taking account of the covariance structure makes it slower for a
large K.

The null hypothesis for testing Tk in the multiple-comparisons tests is
that E(�(Tk;X)) is the largest among E(�(T1;X)), . . . , E(�(TK ;X)), and it is
written as

E (�(Tk′ ;X) − �(Tk;X)) ≤ 0, k′ = 1, . . . , k − 1, k + 1, . . . , K. (17.17)

The least favorable model assumes that all the inequalities of (17.17) hold as
equalities. In other words, all the tree topologies are assumed to be equally
good on average. The centering procedure for the log-likelihoods approximates
this assumption. The least favorable model represents the worst case in which
the probability of false rejection is maximized due to the selection bias; this
probability is not larger than α under the null hypothesis, and it is equal
to α in the least favorable model. Typically, the false rejection probability
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is much smaller than α because only a few of the tree topologies are nearly
as good as the best one. As K increases, the number of nonrejected tree
topologies can become very large. In order to avoid this conservative behavior
of the multiple-comparisons tests, we should make K as small as possible by
eliminating extremely unlikely topologies from the candidates. All the possible
topologies are not necessarily to be included in the candidates when we are
interested in biological hypotheses represented by their typical topologies.

The null hypothesis of (17.17) is represented as the hypothesis that µ ∈
RTk

using the simplified working model. There are K regions RT1 , . . . ,RTK

separated by the boundaries ∂RT1 , . . . , ∂RTK
. The region RTk

is in the shape
of a polyhedral cone with faces corresponding to the equalities of (17.17). The
least favorable model corresponds to the apex of the cone, where the amount of
bending of the boundary ∂RTk

is maximized. The amount of bending indicates
the selection bias. This also explains the difference between the BP and the
AU test. The MB method will estimate the curvature term ĉTk

as the amount
of bending around µ̂(∂RTk

); this is the point on the boundary closest to the
data set, and it represents the probability function of a typical case. The AU
test is adjusting the selection bias in the BP by assuming the typical case,
whereas the multiple-comparisons tests are adjusting the selection bias in the
KH test by assuming the worst case.

17.5 Concluding Remarks

17.5.1 Two Approaches to Testing

As we have seen, there are several methods for assessing the uncertainty in
phylogenetic inference. The uncertainty due to the sampling error is measured
by the p-value of statistical testing. There are two very different approaches
to testing. They differ in the null hypothesis to be tested.

The standard approach in statistics assumes that the null hypothesis is
represented by the parametric model specified by the substitution process S
and the tree topology T . This approach includes the hypothesis testing meth-
ods (Section 17.4.1) such as the Cox test, the SOWH test, and the LR test.
These methods are sensitive to misspecifications of S and may have difficulty
comparing nonnested models of the tree topologies. The null hypothesis is
denoted by MT using the simplified working model; µ ∈ MT if both S and
T are correctly specified, but µ �∈ MT for the true T if S is misspecified even
slightly.

The second approach is relatively new in statistics. The null hypothesis in
the second approach is that the parametric model specified by (S, T ) approx-
imates reality better than the other parametric models specified by (S, T ′),
where T ′ is one of the other candidate tree topologies. This approach in-
cludes the model selection tests (Section 17.4.2) such as the KH test and the
multiple-comparisons tests, and also the nonparametric bootstrap methods
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(Section 17.3) such as the BP and the AU tests. The second approach is to
find the best-approximating model, while the first approach is to find the cor-
rect model. The null hypothesis is now denoted by RT using the simplified
working model; µ ∈ RT for the true T even if S is misspecified slightly. Thus
the methods are robust to misspecifications of S. However, the confidence set
of tree topologies is larger than that of the first approach. This is the price
we have to pay for the robustness.

The difference between the two approaches is also described as parametric
versus nonparametric. The null hypothesis of the first approach is the para-
metric model itself, whereas the null hypothesis of the second approach is
defined not as a parametric model but a family of probability functions in
the nonparametric sense. This difference is also apparent in the type of boot-
strap procedure. The methods of the first approach are implemented using
the parametric bootstrap, while those of the second approach use the non-
parametric bootstrap. Parametric models are useful, but we should be careful
when parametric methods are used to evaluate a model itself.

The PP of Bayesian inference (Section 17.2.2) is not a frequentist p-value,
but it is interpreted similarly as a measure of uncertainty in phylogenetic
inference. The calculation of the PP is parametric indeed and belongs to the
first approach, but there exists a Bayesian inference belonging to the second
approach as well. In fact, the BP can be regarded as the PP for the region
RT , and the bias correction of the AU test can be implemented approximately
by giving an elaborate prior distribution (i.e., the matching prior) on the m-
dimensional space of the simplified working model as discussed in Efron and
Tibshirani [13].

17.5.2 Recommended Methods

Among several methods for p-value calculation, we currently recommend the
AU test for general tree selection problems. It satisfies the requirement for
unbiasedness at least approximately, and it is not susceptible to an increase
in the number of candidate trees. The AU p-values for the branches as well as
those for the trees are easily obtained by the MB method. The AU test can
be used with any inference methods such as the distance matrix methods, the
parsimony method, and the ML method. When used with the ML method, the
computational burden is reduced by the MCMC and the RELL techniques; the
limited list of candidate tree topologies is prepared by the MCMC simulation,
and the ML tree topologies for bootstrap replicates are calculated by the
RELL method.

We also recommend the multiple-comparisons tests such as the SH test
and the WSH test for obtaining the confidence set of tree topologies when
the number of candidate tree topologies is not very large. The p-values of
topologies are often larger than those obtained from the AU test, and thus
the confidence set becomes larger. The multiple-comparisons tests are con-
servative, and the conclusions are drawn safely; it is harder for them to miss
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the true topology in the confidence set than for the AU test. A practical dif-
ficulty is that the SH test is very susceptible to an increase in the number of
candidate trees. This is alleviated in the WSH test.

The use of Bayesian inference in molecular phylogenetics was advocated by
Huelsenbeck et al. [28] and is spreading rapidly (e.g., [35]). However, Bayesian
inference is sometimes misleading in phylogenetic tree selection, giving ex-
tremely high PP to a wrong tree, as has been pointed out by several authors
(e.g., [54]). In spite of this problem, Bayesian inference equipped with MCMC
is computationally efficient and may be useful to find candidate trees for large
phylogenies, where the standard ML approach is computationally prohibitive.

It should be noted that phylogenetic inference is still a very active research
area, and there is still room for improving the methodology. Several inference
methods have been developed by introducing new ideas; some of them are, in
fact, new to statistics as well. This research subject is also controversial due
to the difficulty of the problem. Currently, the field is divided in its opinions
regarding the best methodology. Further research is expected to follow.

17.5.3 Biological Discussion

An example of phylogenetic inference is illustrated in Figure 17.1. We analyzed
mitochondrial proteins (concatenated sequences of 12 genes encoded on the
same strand of mitochondrial DNA) for 28 eutherian mammals with four
species from marsupials and monotremes as an outgroup. The mtREV+Γ
model was used for amino acid substitutions.

In the tree of Figure 17.1, guinea pig, mouse, and squirrel form a mono-
phyletic clade (rodent monophyly), in contrast with the rodent polyphyly tree
suggested by a conventional ML analysis of mitochondrial proteins [9]. The
rodent monophyly tree is consistent with the tree obtained from the abundant
data set of nuclear DNA [33, 35, 36] and with the ML analyses by some ad hoc
method of tree topology search [5, 37]. Although the BP and AU p-values are
not high enough to exclude alternative relationships (PP values are high in
most of the nodes), the rodents/rabbit clade (Glires) and the primates/Glires
clade, both supported by the nuclear DNA data, are suggested. The moon-
rat/mole clade is also suggested in accord with the nuclear DNA analyses as
well as with the traditional morphology, but in contrast with the conventional
mitochondrial analyses [37]. Furthermore, it is suggested that the eutherian
mammals consist of four major groups; that is, G1: Euarchontoglires (primates
+ rodents + rabbits), G2: Laurasiatheria (cetartiodactyls + perissodactyls +
carnivores + bats + core insectivores), G3: Afrotheria (elephants + dugongs
+ hyraxes + aardvarks + elephant shrews + golden moles + tenrecs), and
G4: Xenarthra (armadillos and their relatives), again consistent with the other
evidence [54, 33, 35, 36, 31]. Thus, the combination of the MCMC Bayesian
method with the ML method seems to be useful in applying the likelihood
approach to phylogenetic problems with many taxa.
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It is interesting to mention the analysis of six mammalian species (human,
harbor seal, cow, rabbit, mouse, and opossum) of Shimodaira [49]. Both the
ML topology and the MAP topology in our analysis of the 32 species corre-
spond to ((human, (rabbit, mouse)), (harbor seal, cow), opossum) (i.e., the
tree 7 in Table 3 of Shimodaira [49]), whereas the ML topology for these six
species is (((human, (harbor seal, cow)), rabbit), mouse, opossum) (i.e., the
tree 1 therein). The PP values are calculated by the BIC approximation: 0.93
for tree 1, 0.07 for tree 2, and almost zero for the others. On the other hand,
tree 7 is not rejected by the p-values of the AU, the SH, and the WSH tests.
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Felsenstein pruning algorithm, 328, 447

likelihood calculation, 281
FISH, 319
Fisher information matrix, 132, 133
FIT-GEN model, 274
FIT-PC model, 271, 273, 274, 279
Fitness functions, 271

amino acid, 279

amino acid fitnesses, 271
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maximum likelihood estimator, 36

HBL, see HyPhy Batch Language
Heterogeneity models over time, 275
Hidden Markov model, 268, 325, 326,

385, 386, 389
across sites, 268
emission-equivalent, 389
hidden classes, 268
hidden path, 326
HMMER, 391
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likelihood function, 128, 130
local branch parameters, 135
maximizing the likelihood, 162
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model description, 160
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tree, 128
tree viewer, 131
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analyzing codon data, 178
model definition, 162
molecular clocks, 168
simulation tools, 170
site-to-site rate heterogeneity, 175

Hypothesis testing, 19, 33, 113, 139,
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alternative hypothesis, 33
null hypothesis, 33
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significance level, 34
type I error, 34
type II error, 34

Indel rate per fragment, 382
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Independent sites–structurally con-

strained protein evolution, see
IS-SCPE method

Individual, 26
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Instantaneous transition matrix, 263
Instantaneous transition rate matrix,

262
IS-SCPE method, 270
Ising model, 343
Isochore, 357

JC69 model, see Jukes and Cantor
model

JTT model, 12, 149, 264, 265
JTT+Γ model, 270
Jukes and Cantor model, 10, 36, 201,

363, 445
maximum likelihood estimator, 37

KH test, see Kishino-Hasegawa test
Kimura two-parameter model, 363
Kimura’s formula, 366
Kishino-Hasegawa test, 482, 484, 485,

487
KL divergence, 465, 466
Kolmogorov’s forward equations, 379
Kullback-Leibler divergence, see KL

divergence

Likelihood, 193
Likelihood function, 8, 9, 25–27, 46,

106, 107, 130, 184, 185
Bayesian inference, 46, 467
binomial distribution, 27
multiple-parameter models, 184
phylogenetic, 269, 280
phylogenetics, 39
tree, 8, 464

Likelihood methods, 25, 464
Likelihood profile, 133, 135
Likelihood ratio, 19, 48, 465
Likelihood ratio test, 19, 34, 104

generalized, 34
Lineage sorting, 77
Link, 378

immortal, 378
Local algorithm, 50
Local clocks, 239
Log-likelihood, 9, 31, 196, 464
Long indel model, 383, 384, 392
LR, see Likelihood ratio
LR statistics, 19
LRT, 19, see Likelihood ratio test

MAP, see Maximum a posteriori
Markov chain, 3, 187, 325, 408

continuous-time, 5, 296
EM algorithm, see EM algorithm
equilibrium distribution, 409
ergodic, 6
higher-order, 333
homogeneous, 409
inhomogeneity, 427
posterior probability, 17
rate matrix, 409
resolvent, 422
reversible, 409
stationary, 409
stationary distribution, 6
substitution matrix, 408
time reversibility, 7
time-reversible, 48
transition probabilities, 409

calculations, 7
transition rates, 5

Markov chain Monte Carlo, 45, 197, 469
assessing convergence, 54
burn-in, 55, 57, 58, 400, 470
Metropolis-coupled, 58, 471

cold chain, 59
hot chain, 59

reversible jump, 52
dimension matching, 53

temperature, 470
trace plots, 55

Markov models, 3, 105, 189, 259, 327,
362, 386

codon evolution, 105
coevolutionary, 279
continuous-time, 263
emission probability, 329, 333
forward algorithm, 328
higher-order, 333
matrix of state-transition probabili-

ties, 327
phylogenetic analyses, 18
REV, 261
sequence evolution, 10, 362

continuous-time transition matrix,
362

state-transition diagram, 332
Viterbi algorithm, 328

Markov process, see Markov chain
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Markov property, 3, 408
Markov-dependent models, 335
Maximum a posteriori, 469
Maximum likelihood, 20, 28, 103–105,

184, 264, 464
computing the estimate, 29
confidence intervals, 31
estimate, 20, 28, 464

bootstrap, 32
efficiency, 33
variance, 31

estimation, 28
estimator, 184
expected information, 31
hypothesis testing, 33
likelihood equation(s), 29
multinomial distributions, 30
PAML, 104
parameter estimation, 20
phylogenetic inference, 463
phylogeny estimation, 197
point estimate, 31
support, 29
variance, 242

Maximum parsimony, 310
MB, see Multiscale bootstrap method
MCMC, see Markov chain Monte Carlo
MCMCMC, see Markov chain Monte

Carlo, Metropolis-coupled, see
Markov chain Monte Carlo,
Metropolis-coupled

MCS, see Multi-species conserved
sequences

Mechanistic models, 270
Message Passing Interface, 155
Metropolis-coupled MCMC, see

Markov chain Monte Carlo,
Metropolis-coupled

Metropolis-Hastings algorithm, 47, 48,
247

candidate, 48
Hastings ratio, 48
likelihood ratio, 48
posterior ratio, 48
prior ratio, 48
proposal distribution, 47
proposal ratio, 48
target ratio, 48

MG94×HKY85 3×4 model, 144–146,
149–151, 156

Microsatellite evolution
models, 291
point mutations, 293
random walk models, 291
slippage model, 291
stepwise mutation model, 291
symmetric slippage models, 295

Microsatellite markers, 289
Microsatellites, 289

PCR, 294
Polymerase chain reaction, see PCR

Mixed data analyses, 155
ML, see Maximum likelihood
MLE, see Maximum likelihood estimate
Model, 26
Model estimation

likelihood methods, 264
Model selection tests, 463, 482
Modeling correlated evolution between

sites, 278
MODELTEST program, 204, 207, 465
Molecular clock, 145, 234, 235

hypothesis, 235
Monte Carlo, 45
Monte Carlo approximations, 191
Monte Carlo procedure, 191
Monte Carlo simulation, 191
MPI, see Message Passing Interface, 155
MrBayes, 183

phylogenetic inference
complex models, 208

MrBayes program, 449
MT126 model, 270
Multi-species conserved sequences, 331
Multigene analyses, 250
Multinomial distributions, 30
Multiple alignment, 376, 390, 391, 393

algorithms, 393
corner-cutting methods, 396
goodness, 390
HMMER, 391
multiple forward-backward algorithm,

395
multiple HMM, 391
multiple Viterbi algorithms, 396
phylogenetic inference, 390
programs, 391
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ClustalW, 391
DiAlign, 391
PSI-Blast, 391
T-Coffee, 391

SAM, 391
score-based approach, 390
time complexity, 391, 394
TKF91 model, 392
TKF92 model, 392
transducers, 392

Multiple gene alignments, 208
Multiple substitutions, 364
Multiscale bootstrap method, 474

CONSEL software, 475
Multivariate normal densities, 248

covariance matrix, 248
Mutability, 262
Mutation bias, 357
Mutation probability matrix, 262
Mutation rate, 235
Mutation rate matrix, see Instantaneous

transition rate matrix
Mutation-selection-drift theory, 366

Nadeau and Taylor method, 318
Natural selection, 79, 364
Nearly neutral molecular evolution, 84
Negative selection, 67
Neutral theory, 65, 67, 266
NEXUS format, 127, 228
Node rates, 244, 245
Node time constraints, 247
Node times, 245
Node-dating, 241
Non-independence, 364
Nonhomogeneous models, 13
Nonindependence between sites, 14
Nonparametric bootstrap, see Bootstrap

methods, nonparametric
Nonphylo-HMM, 330, 331
Nonstationarity, 364
Nonsynonymous rate change, 252
Nonsynonymous substitution, 103, 105,

140, 146, 335, 370
Nonsynonymous substitution rate, 108,

144, 156
NP problems, 390
Nucleotide composition, 356

GC content variation, 356

Nucleotide-level sensitivity, 330

Overdispersed molecular clock, 239
Oxford graph, 320
Oxford grid, 320

P-matrix, see Substitution probability
matrix

Pairwise alignment, 375, 384
hidden Markov models, 384
likelihood calculations, 384
nonequivalence of paths, 390
time complexity, 385
TKF models, 384

hidden Markov models, 386
PAM, 263, 410
PAML software, 104, 210
Parameter estimation, 20
Parametric bootstrap, see Bootstrap

methods, parametric
Parsimony, 195, 307, 376
Parsimony mapping, 443
PASSML model, 268, 269, 273, 278
PASSML-TM model, 269
Pattern heterogeneity

across sites, 267
PAUP* program, 41, 197, 203–205
PB, see Bootstrap methods, parametric
Penalized likelihood, 240
Penalized log-likelihood, 241
Penalty function, 241
PHAS, see Pattern heterogeneity across

sites
PHAS model, 270, 271, 275
PHYLIP format, 127
Phylo-HMM, 325–327

as graphical models, 338
autocorrelated rate-variation model,

332
autocorrelation parameter λ, 331
context-dependent substitution, 346
full process-based model, 346
highly conserved regions, 331
HKY, 336
junction-tree algorithm, 342
Markov-dependent model, 346
matrix of state-transition probabili-

ties, 327
simple-lattice model, 346
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toy gene finding, 329
U2S, 336, 337
U3S, 336, 337
UNR, 336

Phylogenetic analyses, 18
simulations, 18

Phylogenetic hidden Markov models,
see Phylo-HMM

Phylogenetic inference, 187, 463
assessing uncertainty, 463

Bayesian inference, 467
Bayesian approach, 50
Bayesian information criterion, 469
Bootstrap methods, 472
Cox test, 479, 484, 485, 487
hypothesis testing, 478

combining nonnested models, 481
maximum likelihood

Akaike information criterion, 465
substitution process selection, 465
tree topology selection, 466

maximum likelihood estimate, 464
model selection tests, 482

Kishino-Hasegawa test, 482
multiple-comparisons, 485

MrBayes, 208
multiple alignment, 390
SOWH test, 479

Phylogenetic model, 325, 327
Bayesian, 196
context-dependent, 335
hidden Markov model, 325
Markov models, 18
Phylo-HMM, 325

Phylogenetic tree, 8
EM, 420
Likelihood function

calculations, 39
likelihood function, 39
maximum likelihood, 41
MLE, 127
posterior probabilities, 200
rooted, 187
unrooted, 187

Phylogeny estimation, 183, 196
Physicochemical properties, 261
Point accepted mutation, see PAM
Poisson random variable, 315
Population, 26

Positive selection, 67, 103, 458
detection methods, 458

Posterior decoding, 390
Posterior distribution, 46
Posterior mapping, 439, 442
Posterior predictive distributions, 439,

441
Posterior predictive probabilities, 441
Posterior predictive values, 441, 455
Posterior probabilities on trees, 200
Posterior probability, 35, 185, 467
Potential function, 342
PP, see Posterior probability
Predictive distributions, 451

parametric bootstrap, 451
Prior distribution, 35, 46
Prior probability, 185
Probabilistic inference, 339
Probabilistic models, 338
Protein evolutionary models, 259
Protein folding, 260
Purifying selection, 103

R-matrix, see Relative rate matrix
Rate heterogeneity

across sites, see RHAS model
Gamma distribution, 266

Rate heterogeneity across time, see
RHAT model

Rate matrix, 6, 10, 187
amino acid models, 11
codon models, 12
DNA models, 10
nonhomogeneous models, 13

Rate matrix, Q, 188
Rate multiplier, 212
Rate trajectory, 238
Rate variation parameter ν, 245
Recombination, 89
Relative rate matrix, 263
Relative ratio test, 143
Relative substitution rates, 268
Relative synonymous codon usage, 360
RELL method, 474, 486, 488
Replication slippage, 290
RES, 413, 422
Residue disequilibrium value, 280
Resolvent method, 422
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REV model, 11, 164, 261, 263–267, 270,
273, 274

REV+Γ model, 267
Reversible jump MCMC, 52, 205
Reversible rate matrix, 413

estimation
ML I, 413
ML II, 414
pair EM, 416

Maximum likelihood, 413
RES, 422
resolvent method, 422
tree EM, 420

RHAS model, 266, 275, 277
RHAT model, 275, 277
Rooted trees, 187
RSCU, see Relative synonymous codon

usage
rtREV model, 265

Sample, 26
Secondary structure, 260
Selective interference, 370
Sequence evolution

Markov models, 10
Shared rate, 238
Signal detection, 345
SIMMAP program, 195, 443
Simulations, 18
Site-specific models, 212
Site-to-site dependence, 269
SOWH test, 479–481, 485, 487
Spatial rate heterogeneity, 149
SS, see Site-specific models
Star tree, 391
State-transition diagram, 332
Stationary distribution, 6, 192
Stationary frequencies, 7, 193, 210
Statistical alignment, 375

Markov chain Monte Carlo, 397
multiple, see Multiple alignment

Stem regions, 209
Stirling’s formula, 314
Stochastic models, 183
Substitution function

amino acid, 271
Substitution matrix, 10, 365, 407, 408

amino acid, 407
amino acid models, 11

blocks, 423
BLOSUM, 407, 408, 410, 413,

423–427, 430–433
BLOSUMθ, 424
BLOSUM40, 425
BLOSUM45, 413
BLOSUM62, 413
BLOSUM80, 425
calibration, 410
codon models, 12
comparison, 426

simulations, 431
DNA, 434

HOXD70, 434
DNA models, 10
estimation, 407
Jukes and Cantor, 10
markov process, 408
nonhomogeneous models, 13
PAM, 407, 408, 410–413, 415, 426
PAM1, 410
PAM160, 413
substitution score, 407
theoretical comparison, 430

Substitution model, 36, 457
Substitution probability matrix, 261
Substitution process selection, 465
Substitution rate, 368
Substitution rate matrix, 327
Substitutions per synonymous site, 365
Swofford-Olsen-Waddell-Hillis, see

SOWH test
Synonymous rate change, 252
Synonymous substitution, 103
Syntenic segment, 320

Taxon bipartitions, see Clades
Tertiary structure, 260
Test statistic, 33, 34
Thermodynamic Hypothesis, 260
Time reversibility, 7
Time-reversible, 48
TKF models, 377, 384

hidden Markov models
algorithms, 387
forward-backward algorithm, 387
maximum likelihood path, 389
Viterbi algorithm, 388

likelihood calculations, 387
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maximum likelihood, 382
parameters, 382

TKF91 model, 377, 378, 392, 394, 395,
398

deletion rate, 379
hidden Markov models, 387
transition rate, 378

TKF92 model, 377, 381, 392
fragments, 381
indel, 381

tmREV matrix, 264
TN93 model, 52–54
Total variation distance, 310
Trace plots, 55
Transition probabilities, 7, 188, 191, 409
Transition probability matrix, 127, 191,

192
Transition rates

continuous time, 5
Transition/transversion rate ratio, 188,

328

Transitions, 10
Translational efficiency, 361
Transversions, 10
Tree, 38

branch length, 38
branches, 38
likelihood function, 464
nodes, 38

Type I error, 34
Type II error, 34

Unrooted trees, 187

Variable, 26
Viterbi algorithm, 328, 388, 389, 393,

396

WAG matrix, 265
Waiting time, 189
Weighted SH test, 486
Wright-Fisher model, 71




